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ABSTRACT

According to a growing trend in theoretical neuroscience, the human perceptual system is

akin to a Bayesian machine. The aim of this article is to clearly articulate the claims that

perception can be considered Bayesian inference and that the brain can be considered

a Bayesian machine, some of the epistemological challenges to these claims; and some of

the implications of these claims. We address two questions: (i) How are Bayesian models

used in theoretical neuroscience? (ii) From the use of Bayesian models in theoretical

neuroscience, have we learned or can we hope to learn that perception is Bayesian infer-

ence or that the brain is a Bayesian machine? From actual practice in theoretical neuro-

science, we argue for three claims. First, currently Bayesian models do not provide

mechanistic explanations; instead they are useful devices for predicting and systematizing

observational statements about people’s performances in a variety of perceptual tasks.

That is, currently we should have an instrumentalist attitude towards Bayesian models in

neuroscience. Second, the inference typically drawn from Bayesian behavioural perform-

ance in a variety of perceptual tasks to underlying Bayesian mechanisms should be

understood within the three-level framework laid out by David Marr ([1982]). Third,

we can hope to learn that perception is Bayesian inference or that the brain is a Bayesian

machine to the extent that Bayesian models will prove successful in yielding secure and

informative predictions of both subjects’ perceptual performance and features of the

underlying neural mechanisms.
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1 Introduction

Theoretical neuroscience uses mathematical modelling and computer simula-

tions to understand the brain and the behaviour it generates. Following on

from an insight of Hermann von Helmholtz (Helmholtz [1925]), a growing

trend in theoretical neuroscience considers that the human perceptual system

is akin to a Bayesian machine (Jaynes [1957]; Knill et al. [1996]; Kersten and

Schrater [2002]; Knill and Pouget [2004]; Friston and Stephan [2007]).

The function of this machine would be to infer the causes of sensory inputs

in an ‘optimal’ way. Since sensory inputs are often noisy and ambiguous, this

requires representing and handling uncertainty. In order to carry out such

a function, the nervous system would encode probabilistic models. These

models would be updated by neural processing of sensory information using

Bayesian inference.

Work on Bayesian modelling of perception can be usefully understood

within David Marr’s ([1982]) three levels of analysis framework. Marr’s

levels include the computational, the algorithmic, and the level of implemen-

tation. The computational level specifies the problem to be solved in terms of

some generic input–output mapping. In the case of Bayesian modelling in

theoretical neuroscience, this is the problem of handling uncertainty. If the

task is one of extracting some property of a noisy stimulus, for example, the

generic input–output mapping that defines the computational problem is a func-

tion mapping the noisy sensory input to an estimate of the stimulus that caused

that input. It is ‘generic’ in that it does not specify any class of rules for

generating the output. Such class is defined at the algorithmic level. The algo-

rithm specifies how the problem can be solved. Bayesian models belong to this

level. They provide us with one class of method for producing an estimate of a

stimulus variable in function of noisy and ambiguous sensory information. The

level of implementation is the level of physical parts and their organization. It

describes the mechanism that carries out the algorithm.

Bayesian modelling is essential in machine learning, statistics, and econom-

ics. Given the increasing influence on neuroscience of ideas and tools from

such fields, it’s not surprising that Bayesian modelling has a lot to offer to the

study of the brain. Yet, that the brain is a Bayesian machine does not follow

from the fact that Bayesian models are used to study the brain and the

behaviour it generates.

The aim of this article is to clearly articulate the claims that perception can

be considered Bayesian inference and that the brain can be considered a

Bayesian machine; some of the epistemological challenges to these claims;

and some of the implications of these claims. In order to achieve this aim,

we address two questions:

(i) How are Bayesian models used in theoretical neuroscience?
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(ii) From the use of Bayesian models in theoretical neuroscience, have we

learned, or can we hope to learn, that perception is Bayesian infer-

ence or that the brain is a Bayesian machine?

The article is structured as follows: Section 2 explains how Bayesian models

are used in theoretical neuroscience by drawing on a widely cited case-study

from psychophysics. Section 3 assesses whether, and in what sense, perception

is akin to Bayesian inference. It is argued that currently this claim should be

understood in an instrumentalist framework. That is, currently, Bayesian

models are useful devices for predicting and systematizing observational

statements about people’s performances in a variety of perceptual tasks.

Section 4 argues that the link between the claim that people perform as if

they were Bayesian observers in a variety of tasks and the claim that the brain

is a Bayesian machine should be understood within Marr’s three levels of

analysis framework. Section 5 takes up the questions whether, and in what

sense, the claim that the brain is a Bayesian machine may be justified. Section 6

offers some concluding remarks.

2 Theoretical Neuroscientists Meet Bayes

Statistical inference is the process of drawing conclusions about an unknown

distribution from data generated by that distribution. Bayesian inference

is a type of statistical inference where data (or new information) is used to

update the probability that a hypothesis is true. To say that a system performs

Bayesian inference is to say that it updates the probability that a hypothesis H

is true given some data D by applying Bayes’ rule:1

PðHjDÞ ¼
PðDjHÞPðHÞ

PðDÞ
ð1Þ

We can read Equation (1) thus: the probability of the hypothesis given the

data (P(HjD)) is the probability of the data given the hypothesis (P(DjH))

times the prior probability of the hypothesis (P(H)) divided by the probability

of the data (P(D)).

Theoretical neuroscientists have been increasingly using Bayesian

modelling to address questions about biological perception (Rao et al.

[2002]; Doya et al. [2007]): ‘One striking observation from this work

is the myriad ways in which human observers behave as optimal

Bayesian observers’ (Knill and Pouget [2004], p. 712). From these types

of behavioural results, further hypotheses are drawn about the brain.

1 The issue of what it is for a physical system to apply Bayes’ rule is controversial (Piccinini

[2010]). Here, we assume a mechanistic account, according to which a machine that executes

Bayes’ rule is a system of organized components and related activities that processes ‘compu-

tational vehicles’ according to Bayesian inferential schemes that are ‘sensitive to certain vehicle

properties’ (Piccinini [2010], section 2.5).
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‘This observation,’ claim Knill and Pouget ([1996], p. 712) ‘along with the

behavioural and computational work on which it is based, has fundamental

implication for neuroscience.’ The ‘fundamental implication for neurosci-

ence,’ is what they call the Bayesian coding hypothesis: ‘the brain represents

information probabilistically, by coding and computing with probability

density functions or approximations to probability density functions’ (Knill

and Pouget [2004], p. 713).

The hypothesis is two-fold:

(1) The brain performs Bayesian inference to enable us to make

judgements and guide action in the world.

(2) The brain represents sensory information in the form of probability

distributions.

Although there is no agreement on how the details of the hypothesis should

be cashed out, much published work in theoretical neuroscience subscribes to

the general claim that some neural processes can be described as Bayesian

inference. The remainder of this section focuses on a widely-cited experiment.

This case study will help us to do three things: first, to make clearer why and

how Bayesian models are used in theoretical neuroscience; second, to explain

in what sense there is evidence underwriting the idea that ‘human observers

behave as optimal Bayesian observers’ (Knill and Pouget [2004], p. 712); third,

to assess the link drawn between behavioural evidence and the Bayesian

coding hypothesis.

Our senses can be viewed as independent sources of information about the

properties of external objects. Object perception, hence, can be viewed as

integration of information from different senses. Pursuing these ideas, Ernst

and Banks ([2002]) tackled these questions: When people both touch and look

at an object, why are their percepts often more affected by visual than by

haptic information? How does visual information integrate with haptic infor-

mation? In particular, does this integration vary with the relative reliability of

the information provided by each modality?

Since Knill and Pouget ([2004], p. 713) claim that ‘[p]erhaps the most

persuasive evidence for the Bayesian coding hypothesis comes from sensory

cue integration’, we believe that Ernst and Banks’s ([2002]) work is particu-

larly suited to assess the sense in which perception can be considered Bayesian

inference and the brain a Bayesian machine.

Ernst and Banks ([2002]) designed an experiment where human subjects

were required to make discrimination judgements. Subjects had to judge

which of two sequentially presented ridges was taller. There were three

types of trials. First, the subjects had only haptic information: they could

only touch the ridge. Then they had only visual information: they could

only see the ridge. Finally, subjects had both types of information at the
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same time: they could both touch and see the ridge simultaneously. The trials

involving only visual information comprised four conditions that differed in

the amount of noise in the visual stimuli so as to manipulate the reliability of

the visual cue. To investigate cue integration quantitatively, Ernst and Banks

measured the variances associated with subjects’ judgements across the three

types of trials. They first measured the variances associated with judgements

based only on visual information, and based only on haptic information.

From these, they could predict the performance of subjects for the condition

where both visual and haptic cues were present, under the assumption that

subjects would integrate information from the two cues in a Bayesian optimal

way. They found that measured performance was in fact very similar to the

Bayesian prediction. This and other results from a variety of different psycho-

physical experiments on perception—e.g. on colour perception (Brainard and

Freeman [1997]), motion perception (Stocker and Simoncelli [2006]), visual

illusions (Weiss et al. [2002]), and sensory-motor learning (Körding and

Wolpert [2004a])—would be evidence that human observers are Bayes’ opti-

mal (Knill and Pouget [2004]).

What exactly does it mean that the subjects in Ernst and Banks’s experiment

behaved in a ‘statistically optimal way’? How was Bayesian modelling used to

reach the conclusion that ‘humans integrate visual and haptic information

in a statistically optimal fashion’? (Ernst and Banks [2002], p. 429).

To answer these questions, let’s examine the logic underlying their experi-

ment. Call S a random variable that takes on one of a set of possible values

S1, . . . , Sn of some physical property—e.g. colour, length, or velocity. A phys-

ical property of an object is any measurable property of that object. The value

of S at a certain time describes the state of that object with respect to that

property at that moment in time. Call M a sequence of measurements M1, . . . ,

Mn of a physical property. M can be carried out through different measure-

ment modalities. Call Mi a sequence of measurements obtained through

modality i. Measurements Mi are typically corrupted by noise. Noise might

cause a measurement Mi to yield the wrong value for a given S. An estimator

f(Mi) is a deterministic function that maps measurements Mi corrupted

by noise to values of the physical property S. If we assume that Mi is the

measurement carried out by sensory modality i—e.g. vision or touch—then

perception can be modeled as Bayesian inference. Given a sequence of

measurements Mi, the task of a Bayesian sensory system is to compute the

conditional probability density function P(SjMi). We can then restate Bayes’

rule (1) thus:

PðSjMiÞ ¼
PðMijSÞPðSÞ

PðMiÞ
ð10Þ
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where P(MijS) specifies the likelihood of the sensory measurements Mi for

different values of the physical property S, P(S) is the prior probability of

different values of S, and P(SjMi) is the posterior density function. Bayesian

inference here is concerned with computing the set of beliefs about the state of

the world given sensory input. Bayes’ rule alone does not specify how these

beliefs should be used to generate a decision or a motor response. How to use

the posterior distribution to generate a single response is described by

Bayesian decision theory and requires the definition of a loss function

L(S, f(Mi)), which specifies the relative cost of getting the estimate wrong.

If the aim of the task is to compute a single estimate of S, the problem reduces

to one of estimation.

It is worth noticing with Simoncelli ([2009]) two things: First, the estimation

problem of extracting values of some physical property from noisy sensory

measurements can be addressed with different classes of methods, of which

exact Bayesian inference is only one possibility. This possibility, moreover,

might not be biologically feasible: some researchers have argued that biologic-

al implementation of exact Bayesian inference is unfeasible because of its

computational complexity and the knowledge it presupposes (e.g. Shimojo

and Nakayama [1992]; Maloney [2002]; Fiser et al. [2010]). Alternative

methods that do not require either representing or computing probabilities

include: regression techniques, look-up tables, and some other supervised and

unsupervised inferential strategies. Second, in the case of Bayesian modelling

‘[o]ptimality is not a fixed universal property of an estimator, but one that

depends on [three] defining ingredients’ (Simoncelli [2009], p. 529). The first

two ingredients are:

. the prior P(S); and

. the measurement probability density P(MijS).

Together, they specify how to form the posterior distributions. However, they

do not tell us how to use the posterior distribution to make judgements and

decisions in a task. The prior and measurement probability density, that is, are

not sufficient to specify which estimate should be picked in a task. The optimal

choice for this depends on a third ingredient:

. the loss function L(S, f(Mi)).

If exact Bayesian inference is not feasible, optimality will depend on a fourth

ingredient, that is:

. the family of functions F from which the estimator is to be chosen

(Simoncelli [2009], p. 525), e.g. linear functions.

The most common way of choosing an estimate from the posterior distribu-

tion is known as maximum likelihood estimator (MLE). This corresponds to
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choosing as an estimate ŝ the value of the physical property that maximizes

the probability of resulting in the observed measurements.

ŝ ¼ arg max
s
ðPðMijSÞÞ ð2Þ

The MLE method corresponds to optimal estimation under the assumption

that the prior is flat (uniform), the loss function is 0 for ŝ¼ s ± " (where " is a

very small quantity) and constant otherwise, and the family of functions F is

not constrained.

Let’s now re-examine Ernst and Banks’s ([2002]) experiment in this frame-

work. In their experiment, the physical property of interest was the height of

the ridges, S. Two types of sensory measurements Mi were used: visual and

haptic measurements. If we call V the sequence of visual measurements and T

the sequence of haptic measurements of S, then the estimator f(V, T) maps the

integration of visual and haptic measurements corrupted by noise to estimated

values ŝ. Ernst and Banks ([2002], pp. 429–30) reasoned that ‘[i]f the noises are

independent and Gaussian with variance �2
i , and the Bayesian prior is uni-

form, then the maximum-likelihood estimate of the environmental property

[. . .] states that the optimal means of estimation (in the sense of producing the

lowest-variance estimate) is to add the sensor estimates weighted by their

normalized reciprocal variances.’

The noises of different sensory modalities are independent when the condi-

tional probability distribution of either, given the observed value of the other,

is the same as if the other’s value had not been observed. This assumption

might be motivated by the fact that the neurons processing visual information

are far apart from the cortical neurons processing haptic information in the

cortex. To say that the Bayesian prior is uniform is to say that all values of

S are equally likely before any measurement Mi. This assumption can be

justified by noticing that the subjects in Ernst and Banks’s ([2002]) experiment

had no prior experience with the task, and thus no prior knowledge as to

the height of the ridges in the experiment.

Based on individual measurements T and V of the physical property S, and

assuming that the two modalities are independent, we can derive the likelihood

function P(T, VjS) which describes how likely it is that any S gives rise to

measurements (T, V). Once particular measurements (T, V) are obtained, by

using Bayes’ rule the posterior probability P(SjT, V) of S being the height

of the ridge can be expressed as:

PðSjT , V Þ ¼
PðT , V jSÞPðSÞ

PðT , V Þ
¼

PðT jSÞPðV jSÞPðSÞ

PðT , V Þ
/ PðT jSÞPðV jSÞPðSÞ

ð100Þ

If we assume that the prior P(S) is flat (i.e. a constant) and we know the mean

estimate and variance for each modality in isolation, we can predict the mean
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and variance of the Bayes-optimal bimodal estimate in this way. If �2
T is

the variance of the estimate of S based on haptic measurements T, and �2
V

is the variance of the estimate of S based on visual measurements V, and the

likelihoods are Gaussian, that is:

PðT jSÞ / exp �
ðT � SÞ2

2�2
T

 !
ð3Þ

PðV jSÞ / exp �
ðV � SÞ2

2�2
V

 !
ð30Þ

then the posterior distribution of the final visual-haptic estimate will also be

described by a Gaussian. That is, from (100), (3), and (30) it follows that:

PðSjT , V Þ / exp �
ðT � SÞ2

2�2
T

�
ðV � SÞ2

2�2
V

 !
¼ exp �

S �
�2

V
T + �2

T
V

�2
V

+ �2
T

� �2

2
�2

V
�2

T

�2
V

+ �2
T

0
B@

1
CA ð4Þ

If we assume that subjects’ estimations correspond to extracting the maximum

of this distribution (MLE), the mean of their response is given by the mean of

this Gaussian:

Sh i ¼
�2

T

�2
T + �2

V

V +
�2

V

�2
T + �2

V

T ð5Þ

It will fall between the mean estimates given by each isolated cue (if they differ)

and will tend to be pushed towards the most reliable cue. Its variance is:

�2
S ¼

�2
V�

2
T

�2
V + �2

T

ð6Þ

This entails that the reliability of the combined estimate is always greater than

that given by the estimates of each individual modality.

Ernst and Banks tested experimentally whether the variance of the sub-

jects’ visual-haptic estimates, ŝ, was close to the variance worked out through

MLE. When they found that this was in fact the case, they concluded that

humans integrate visual and haptic information in a statistically optimal

fashion.

3 Is Perception Bayesian Inference?

The kind of results yielded by experimental studies such as Ernst and Banks’s

is often taken as evidence that perception is Bayesian inference (Knill et al.

[1996]; Kersten and Schrater [2002]; Knill and Pouget [2004]; Friston and
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Stephan [2007]). This conclusion may suggest that Bayesian models are

descriptions of the mechanisms of sensory systems, that is: of the sets of entities

and associated activities organized so as to constitute perceptual phenomena

(Machamer et al. [2000]; Craver [2007]).

In this section, we argue that, currently, Bayesian models are not descrip-

tions of the mechanisms of sensory systems. The most we can acknowledge

from existing evidence is that viewing ‘perception as Bayesian inference’ is

useful for generating predictions about people’s performance in perceptual

tasks. We explain that the goal of Bayesian models in psychophysics experi-

ments is not to describe sensory mechanisms. Bayesian models are used as

tools for predicting, systematizing and classifying statements about people’s

observable performance. Hence, claims about perception as Bayesian infer-

ence should be interpreted within an instrumentalist framework.

We start by introducing the distinction between scientific realism and

instrumentalism. These are two stances about scientific theories (Devitt

[2008]). The contrast between scientific realism and instrumentalism can be

thought as a contrast in how scientific theories and models are to be under-

stood—as a contrast in the epistemic attitude one should have towards

scientific theories and models.

Call X the target system that a scientific model aims to ‘represent’. Roughly,

according to instrumentalism, scientific models of X are useful instruments,

heuristic devices, or tools we employ to predict observable phenomena con-

cerning X or to summarize and systematize data about X. For instrumental-

ists, a good model need not pick out organized component entities and

activities in the target system. Scientific realism contrasts with instrumental-

ism. For realists, good scientific models of X pick out organized component

entities and activities in the target system. In this sense, for realists, good

scientific models do not only, or mainly, aim to make predictions, summarize,

or systematize data about X.

For scientific realists, a model of X is better than alternative models of X if

it is more successful than alternatives at describing the mechanism of

X. According to instrumentalists, a successful model of X need not describe

any aspect of a putative mechanism of X. From this perspective, a model of

X is better than alternative models of X if it is more successful than alternatives

in predicting a certain set of phenomena concerning X or in summarizing

and systematizing data about X. We are aware that scientific realism

and instrumentalism consist of a number of more specific theses (Psillos

[1999]); for our purposes, however, this general characterization should be

sufficient.

A scientific model of the human perceptual system such as Ernst and

Banks’s is not aimed at describing mechanisms. Ernst and Banks’s experiment

was informed by abstract considerations about information processing rather
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than data about some mechanism of visual or tactile perception. The consid-

erations that informed Ernst and Banks’s experiment were two-fold. On the

one hand, our senses need to extract information from different cues for

estimating the properties of objects. On the other, under certain conditions

a certain sensory modality or a certain type of cue seems to have more weight

in the final estimation of the properties of objects. Given these considerations,

we can be interested in the mechanistic project of understanding how humans’

perceptual systems integrate different sensory cues, or we can be interested in

the project of predicting and systematizing data about people’s performance

in a variety of perceptual estimation tasks. The psychophysical approach

to the study of the human perceptual system is concerned with the latter

project.

Works in ‘Bayesian psychophysics’ typically proceed from the definition of

a simple experimental task and the specification of how a Bayesian observer

would perform in that task. The experimental task is such that experimenters

can determine probability distributions necessary to test whether subjects’

performance is consistent with Bayesian inference. With visual-alone and

haptic-alone subjects’ discrimination estimations, Ernst and Banks could

measure the variability of the unimodal estimates. From these, Ernst and

Banks derived the optimal bimodal estimate by applying MLE; then they

compared it to the experimental data.

Thus, MLE was used to formalize the idea that perception is statistical

inference. It defined how an ideal observer would perform in a well-defined

visual task. One type of ideal observer is the one who uses Bayesian inference

to make perceptual estimations. Ideal observers serve as a benchmark against

which human performance in the perceptual task can be compared. However,

from the fact that human performance in such tasks is consistent with an ideal

observer’s performance, it does not follow that human observers carry out

(either consciously or unconsciously) MLE when they integrate sensory infor-

mation. Nor does it follow that people’s brain implement MLE. The use of

Bayesian modelling in psychophysical research is aimed at predicting and

systematizing data. Given this aim, the claim that perception is Bayesian in-

ference should be understood in an instrumentalist framework. There are two

reasons that justify this conclusion. First, the methodology adopted is typic-

ally performance-oriented, instead of process-oriented. Second, typically the

choice of the prior and of the loss function, which define the Bayesian formu-

lation of perceptual estimation problems, has a mathematical justification

rather than an empirical one.

Unlike process-oriented models, performance-oriented models treat their

targets as systems that exhibit overall properties. No internal structure is

specified within the model. The focus is not on the mechanism that

gives rise to the performance but on the relationship between performance
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and a benchmark.2 The methodology informing Bayesian modelling in psy-

chophysical experiments such as Ernst and Banks’s is performance-oriented.

Their data consist of subjects’ judgements under different conditions

(e.g. estimations relying on visual information only versus estimations relying

on haptic information only). Subjects’ performances could finally be com-

pared with the ideal observer’s performance. This approach focuses on

describing regularities in behavioural data. It makes no claim as to the pro-

cesses underlying performance.

Maloney and Mamassian ([2009]) make an analogous point. They argue

that the use of a Bayesian model ‘as a benchmark model does not imply that

human visuomotor processing is in any sense Bayesian inference, even when

human performance is close to ideal’ (p. 148). The behavioural patterns

displayed by people in such perceptual tasks can result from different classes

of non-Bayesian models. Maloney and Mamassian show how optimal

performance in cue integration can be achieved by ‘table look-up’ observers

who would process information in a non-Bayesian fashion by implementing

reinforcement learning. One of their conclusions is that if we want to know

whether people process information in a Bayesian way, we have to use

Bayesian models in visuomotor experimental tasks differently. In particular,

one could investigate the implications of Bayesian models in terms of

representation of the underlying probability distributions. Maloney and

Mamassian propose an experimental methodology, which they call ‘transfer

criteria’, which may help us to discriminate Bayesian inference from some

reinforcement learning algorithm in visuomotor experimental tasks. This

methodology aims to assess whether observers can transfer knowledge

about previously encountered priors, likelihoods, and loss functions to carry

out novel tasks. If perception is Bayesian, observers who have learned to carry

out two perceptual tasks, which are defined by two different priors, likeli-

hoods, and loss functions, should be able to transfer knowledge of these func-

tions to carry out a new task corresponding to novel combinations of the

previously encountered priors, likelihoods, and loss functions. If observers’

performances in the novel task is close to optimal without much practice, then

we would have evidence that the system saves, restores, and combines in a

Bayesian fashion representations of those functions. With few exceptions (e.g.

Adams et al. [2004]), Bayesian models are not used in this way. They are

typically used as a benchmark for performance in a single task.

2 A different way to put the distinction between process- and performance-oriented models is in

terms of models that are intended to be constrained by the details of the underlying mechanism

versus models that are intended to be used to summarise/systematize data and make predictions

about some outcome. Thanks to an anonymous referee for drawing our attention to this way to

put the distinction.
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That the aim of Bayesian modelling is predictive, since the underlying

methodology is performance-oriented, can also be justified thus. Typically,

the models used in psychophysical experiments are empirically undercon-

strained. Ernst and Banks’s model, for example, does not provide any clue

about how exactly information is acquired, represented, and transformed by

the perceptual system. Models of perception that are constrained by incorpor-

ating empirical data about information acquisition, for example, may help us

to understand in which order information is searched, when a search termin-

ates, and why a certain class of models is suitable to predict subjects’ perform-

ance in certain types of circumstances rather than others. If we want models

that instruct us about the nature of certain phenomena, such models need to

be constrained to incorporate data about some putative mechanism under-

lying subjects’ performance. Without such constraints we have few grounds

for maintaining that the model has counterparts in the world, even though

people’s performance in a given task is consistent with the performance the

model predicts. If we have little reason to maintain that the model has coun-

terparts in the world, we cannot conclude that people’s perception is Bayesian

inference from evidence that people often behave as ideal observers. As shown

by Maloney and Mamassian ([2009]), a good fit between predictions about

what an ideal observer will do in a given task and people’s performances in

that task does not necessarily mean that the Bayesian model describes the

cognitive processes behind people’s performances.

Secondly, to formulate cue combination in terms of Bayesian integration it

is necessary to choose a prior and a loss function. The prior is assumed to

capture the statistical structure of the environment. The loss function defines

the goal of a given task by specifying the costs and benefits to the observers of

their estimations. If Bayesian models were intended to represent some feature

of the mechanisms of sensory perception, the experimenters’ choice of prior

and loss functions should be informed by empirical considerations. But typ-

ically prior and loss functions are chosen on theoretical grounds only, in order

to keep the assumptions of the model as simple as possible. Hence Bayesian

models are not aimed at representing some feature of the mechanisms of

sensory perception. The choice of prior and loss function is aimed at

making prediction in experimental tasks simple.

Stocker and Simoncelli ([2006], p. 578) underwrite this last claim by arguing

that ‘the prior distribution used in most Bayesian models to date was chosen

for simplicity and/or computational convenience’. Ernst and Banks ([2002]),

for example, chose uniform prior distributions for the physical property being

estimated in their experiment (i.e. height cues). This decision can be justified

on ‘intuitive’ grounds by observing that their subjects had no prior knowledge

of the size of the ridges in that experiment. In general, however, sensory system

processes are adapted to the perceptual signals to which they are exposed at
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evolutionary, developmental, and behavioural timescales. Not all sensory sig-

nals are equally likely in one’s environment, ‘it is natural to assume that per-

ceptual systems should be able to best process those signals that occur most

frequently. Thus, it is the statistical properties of the environment that are

relevant for sensory processing’ (Simoncelli and Olshausen [2001],

pp. 1193–4). Hence, in general, if the aim of Bayesian modelling is to acquire

knowledge about underlying mechanisms of perception, then the criterion for

choosing the prior should include some ‘ecological’ consideration since neural

processing is influenced by the statistical properties of the environment.

An analogous set of issues arises in choosing the loss function. Ideal obser-

vers are those who minimize the average loss. Thus, the choice of the loss

function defines what counts as optimal performance in a given perceptual

task. The criterions for the choice of the loss function could be whether it

represents the true gains (or losses) of the observer, or whether it facilitates

prediction of certain types of performance in a given task because of its math-

ematical tractability. Discussing models of sensorimotor control, Körding and

Wolpert ([2004b], p. 9839) argue that ‘[l]oss functions have been assumed to

be quadratic in error in almost all the models of sensorimotor control.’

This assumption is typically made purely for mathematical convenience.

If the loss function is quadratic in error, that is L(S, f(Mi))¼ (S� f(Mi))
2,

then the optimal estimate is the mean of the posterior. A quadratic loss is

simple to solve since it is differentiable, whereas, say, absolute error is not.

Ernst and Banks ([2002]) made this assumption, and thereby showed that their

subjects’ performance was consistent with the claim that observers combine

cues linearly with the choice of weights that minimize quadratic loss.

However, Ernst and Banks gave no empirical reason for the claim that

human observers in fact penalize the errors they make in that way.

One possible approach to the choice of prior and loss function is to develop

psychophysical tasks that allow us to estimate them. Once we have gained

some knowledge of the prior and loss function of the subjects performing in

a task, we may constrain the Bayesian model and use it to predict the subjects’

behaviour in different psychophysical tasks, as Maloney and Mamassian

([2009]) recommend with their ‘transfer criteria’. This use of Bayesian model-

ling would give us grounds to maintain that the claim that perception is

Bayesian inference is intended to offer an approximately true account of the

mechanisms of perception. Some recent work in psychophysics (e.g. Körding

and Wolpert [2004b]; Stocker and Simoncelli [2006]; Chalk et al. [2010])

pursued this approach by ‘reverse-engineering’ the shape of the prior and of

the loss function directly from people’s perceptual behaviour. The question

underlying this ‘reverse-engineering’ approach is: for what choices of prior

and loss function would the subject’s performance be considered optimal?
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Körding and Wolpert ([2004b]), for example, adopted this approach. They

measured the loss associated with different errors in a sensorimotor task. The

task was such that the subjects’ choices were associated with different patterns

of errors. The subjects were required to make their choice so as to be

‘on average as accurate as possible’. Körding and Wolpert estimated the

loss function used by subjects from their choice behaviour in the task. They

assumed that ‘people are able to optimize an inherent loss function and that

we can systematically measure this function’ (p. 9841). From the distribution

of errors in the task, Körding and Wolpert found that their subjects seemed to

use a loss function in which the cost increases approximately quadratically for

small errors, and significantly less than quadratically for large errors.

The estimation of the loss function or of the prior, however, does not con-

tribute by itself to the justification of a realistic interpretation of Bayesian

models of sensory perception. In order to give grounds to such an interpret-

ation, the choice of prior and loss function should be systematically con-

strained by evidence from independent studies. Once researchers fit

parameters in a Bayesian model to one set of data, they should try to predict

subjects’ performances—now with these parameters fixed—in a further new

set of circumstances. However, this kind of validation presents a number of

challenges and might be unfeasible. As pointed out both by Stocker

and Simoncelli ([2006]) and Körding and Wolpert ([2004b]), it is likely

that the prior and the loss function are specific to the particular experimental

task and the details of the particular physical property to be estimated in the

task. Thus the prior and loss function estimated for certain subjects perform-

ing in a particular task may not generalize to different experimental

conditions.

In contrast to current Bayesian models of perception, mechanistic models

have different purposes. They aim to be explanatory, as they aim to give

us genuine insight into the way perceptual systems work by describing their

physical implementation. Mechanistic models, unlike current Bayesian

models, purport to produce explanations that are potentially useful for inter-

vention and control. So if we want to understand what we can currently learn

about the brain with Bayesian models and how we can use them in cognitive

neuroscience, it is important for us to mark their difference from mechanistic

models.

Although Bayesian models are currently not mechanistic, they are still

useful epistemic devices. For example, a model showing good predictive suc-

cess in a given psychophysical task can give us reason to investigate why this is

the case (Schrater and Kersten [2002]). Researchers in theoretical neuroscience

typically make the inference that if people behave as Bayesian observers in

psychophysical tasks, then their brains must implement some Bayesian esti-

mation scheme and somehow represent probability distributions over possible
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states of the sensory world (see e.g. Ma et al. [2006], p. 1432). But how should

we understand the inference from psychophysics to brain mechanisms? The

next section addresses this question.

4 How Should we Understand the Inference from Bayesian

Observers to Bayesian Brains?

From their psychophysical results, Ernst and Banks ([2002], p. 431) drew a

conclusion about brain functioning: ‘we found that height judgements were

remarkably similar to those predicted by the MLE integrator. Thus, the

nervous system seems to combine visual and haptic information in fashion

similar to the MLE rule.’ It is not clear that this claim should be read in

a realist fashion since the use of ‘similar’ can be compatible with an instru-

mentalist reading of Ernst and Bank’s position.

Some authors seem to display more explicitly a realist stance towards results

like those obtained by Ernst and Banks. Knill and Pouget ([2004], p. 718), for

example, write that ‘these [psychophysical] data strongly suggest that the brain

codes even complex patterns of sensory and motor uncertainty in its internal

representations and computations’. Knill writes that ‘[a]n emerging consensus

from the perceptual work [in psychophysics] is that the visual brain is a

near-optimal Bayesian estimator of object properties, for example, by

integrating cues in a way that accounts for differences in their reliability’

(Knill [2005], p. 103). Ma et al. ([2006]) claim that behavioural studies

showing that subjects often behave as Bayesian observers have ‘two important

implications. First, neural circuits must represent probability distributions . . .

Second, neural circuits must be able to combine probability distributions nearly

optimally, a process known as Bayesian inference’ (p. 1432, emphases added).

Beierholm et al. ([2008]), after having introduced behavioural results on multi-

sensory perception, write that ‘cue combination has become the poster child

for Bayesian inference in the nervous system’.

According to the realist stance, the model used in the psychophysical task

would pick out at least some features of the mechanism that gave rise to the

psychophysical performance. Hence a realist interpretation of Bayesian

models would be apt to motivate the inference from behavioural performance

to brain mechanism. Moreover, according to the so-called ‘no miracle

argument’ for scientific realism (see e.g. Putnam [1975]), the inference from

behavioural performance to brain mechanism would be necessary to account

for the success of the model in the psychophysical task. The no-miracle argu-

ment starts from the premise that the success of Bayesian models in predicting

behavioural performance in a wide range of tasks calls for explanation.

We would have an explanation of why the predictions of Bayesian models

hold only if they picked out organized component entities and activities
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responsible for the system’s performance. People’s performance would there-

fore be explained in virtue of Bayesian models picking out features of brain

mechanisms. The success of Bayesian models would appear miraculous if

scientific realism were not endorsed.

Thus, under a realist interpretation, the fact that people’s performance can

be described in terms of MLE integration of sensory information would justify

the inference that the nervous system combines information in a way ‘similar

to MLE.’ A realist, it is worth noting, need not assume that for every model of

behavioural performance there is a model of the neural processing carried out

in some part of the brain such that the two models are isomorphic. The realist

can hold that the Bayesian algorithms describing behavioural performance are

not implemented in a particular neural population. Visual processing, for

example, takes place along a cascade of many processing stages: ‘If the

system as a whole performs Bayesian inference, it seems unlikely that any

one stage in this cascade represents a single component of the Bayesian

model (e.g. the prior) or performs one of the mathematical operations in

isolation (e.g. multiplying the prior and the likelihood)’ (Rust and Stocker

[2010], p. 384). In general, it may be the case that whole brains solve certain

‘computational problems’ in a distributed way such that their solutions are

visible only at the level of behavioural performance, and the performance does

not depend on any particular process in any specific part of the brain (see e.g.

Dennett [1991]).

However, no-miracle arguments are controversial (see e.g. Lipton [2004],

Ch. 11). And, more importantly, current practice in theoretical neurosci-

ence—we have argued—shows that it is premature to endorse a realist attitude

towards Bayesian models of sensory perception. Bayesian models do not,

and do not purport to, represent features of the mechanisms of perception.

How should we understand the inference from Bayesian observers to Bayesian

brains then?

We argue that understanding this inference within Marr’s three-level frame-

work (Marr [1982]) fits nicely with an instrumentalist attitude towards

Bayesian models. Marr’s framework of levels of analysis is in fact often

used to understand probabilistic models of cognition (e.g. Griffiths et al.

[2010]). It can also be used to understand Bayesian models of sensory percep-

tion. The adoption of Marr’s framework can both motivate the inference from

behavioural performance to underlying mechanisms, and an instrumentalist

attitude towards the Bayesian model. This is because of two features of

Marr’s framework: First, the relationship between the three levels is one of

non-decompositional realization. This relationship does not necessitate

inferences across levels. Nonetheless, it can motivate us to ask what type of

mechanism may implement a given algorithm. Second, questions at the

computational level are formally independent of issues at the other levels,
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and therefore they can be tackled with little or no concern for constraints at

lower levels.

Craver ([2007]) explains that the relationship between levels in a mechanism

is a type of part-whole relationship where entities and activities at one level are

components of organized entities and activities at a higher level (Craver [2007],

Ch. 5). Craver notes that the relationship between Marr’s three levels is not

one of composition, but rather one of realization. Computational, algorith-

mic, and implementation levels are not decompositional. Algorithms are not

components of computations. Rather, the algorithmic level realizes the com-

putational level. Thus, the estimation of environmental properties in the

human sensory system may be realized by certain algorithmic Bayesian trans-

formations, which in turn may be realized by certain organized collections of

neural structures and activities. This relationship of realization allows one to

avoid questions concerning biological mechanisms, as it suggests that algo-

rithmic and biological implementation approaches are just different ways of

looking at the same system.

Adapting Craver’s ([2007], p. 218) reconstruction of Marr’s framework to

our topic it may be said that the human sensory system as a whole is at once an

estimator, a Bayesian manipulator of sensory information, and an organized

collection of certain patterns of neural spikes. The system is an estimator in

virtue of being a Bayesian manipulator of sensory information. It is a

Bayesian manipulator of sensory information in virtue of being an organized

set of neural circuits. The computational process of estimation, the Bayesian

transformations, and the organized collection of neural circuits are all proper-

ties of the same system. But if they are all properties of the same system, the

predictive success of a Bayesian model in a given psychophysical task can

motivate us to investigate why this is the case. Hence, the discovery that the

sensory system can solve the problem of sensory cue integration by using

Bayesian inference, or its approximation using MLE, motivates the

Bayesian coding hypothesis at the neural level.

Marr emphasized the formal independence of the three levels because dif-

ferent algorithms can solve the same computational problem and different

hardwares (or mechanisms) can implement the same algorithms. In this

sense, the discovery that people behave as though they were Bayesian obser-

vers does not compel us to make any specific claim at the neural level of

implementation. Theoretical neuroscientists pursuing Marr’s methodological

approach can continue to work at the algorithmic level independently of

findings about the hardware that implements it. It is important to note,

however, that the formal independence of algorithmic and implementation

levels does not entail that the algorithms used by the human cognitive

system are best discovered independently of a detailed understanding of its

neurobiological mechanisms. The formal independence of algorithms and
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neural hardware allows theoretical neuroscientists to be able to use Bayesian

models to generate predictions and systematize data, while remaining agnostic

about the underlying mechanism (on instrumentalism and Marr’s framework,

see Danks [2008]).

The formal independence of the three levels emphasized by Marr, however,

is not a claim about how the algorithms implemented by our cognitive system

are best discovered. Ultimately, knowledge of the nervous system is essential to

discovering what types of algorithms are carried out by our cognitive system.

Therefore, knowledge of the nervous system should inform the Bayesian

models we use to study perception if, by using those models, we aim to dis-

cover whether our cognitive system implements some Bayesian algorithm in

solving a given perceptual task. The next section explains this last claim by

exploring the issue of how Bayesian models could be used so as to be gradually

informed and constrained by knowledge at the neural level of implementation.

5 How Could we Discover that Brains are Bayesian?

Theoretical neuroscientists are ultimately interested in how a system actually

works. Hence they are ultimately interested in building mechanistic models

where findings about the hardware inform investigations at the algorithmic

and computational levels. Mechanistic models of sensory perception describe

entities, activities, and organizational features that are relevant to represent

and explain perceptual phenomena. Granted this goal of theoretically neuro-

science, and granted that currently Bayesian models should be understood as

no more than toolboxes for making predictions and systematizing data, how

can an instrumentalist use of Bayesian models lead to gradually transforming

them into mechanistic models so that a realist attitude towards such models

can be justified?

A growing number of theoretical studies have started to explore how neural

mechanisms could implement the types of Bayesian models used in psycho-

physical perceptual tasks (Rao [2004]; Ma et al. [2006]; Beck et al. [2008];

Deneve [2008]). To carry out this project, three issues need be addressed:

(i) How might neurons represent uncertainty? (ii) How might they represent

probability distributions? (iii) How might they implement different approxi-

mations to Bayesian inference?

Recall our case study above. Ernst and Banks ([2002]) derived psychometric

functions from subjects’ estimations. That is, they derived functions that

described the relationship between a parameter of the physical stimulus (the

height of a ridge) and the discrimination performances of the subjects. At the

neural level, the probability that the physical stimulus takes any particular

value can be estimated from firing activity. If one adopts Marr’s framework

the psychophysical model and the neural model are isomorphic. If the
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algorithm that solves a problem such as sensory integration uses certain prob-

ability distributions, then that algorithm and those probability distributions

are to be implemented neurally since it is on the neural hardware that this

algorithm would run.

Although for a given experimental task the two models can be taken to be

isomorphic, that does not mean that there is only one way that probability

distributions could be neurally encoded. There are a number of proposals

about how populations of neurons might code probability distributions

(Ma et al. [2008]; Fiser et al. [2010]). These proposals consist of neural

models aimed at predicting and systematizing statements about neural data.

The current challenge for these models is to yield good, clear, and testable

predictions at the neural level, a goal that has yet to be satisfactorily reached

(Fiser et al. [2010]).

In general, good predictions have two epistemic virtues: they are secure and

informative. Secure predictions are based on reliable, solid grounds. The more

adjustable parameters a proposed model has, the more secure its predictions

are, but the greater the risk of merely accommodating the data used to con-

struct the model. In general, models should accommodate the data used to

formulate them. But the risk for models that merely aim to accommodate

some known data set is to overfit the data (Hitchcock and Sober [2004]).

If a model fits perfectly the data of a given data set, its predictive power can

be undermined. By over-fitting the data, it would be too sensitive to the

idiosyncrasies or noise in the particular data set and would be unlikely to

generalize across samples drawn from the same underlying distribution.

Due to over-fitting the data, a model can yield predictions that are either

uninformative or inaccurate.

Bayesian models are often simpler and depend on fewer parameters than

other types of models designed to fit the same data (see e.g. Weiss et al. [2002];

Chalk et al. [2010]). In that sense, they are not particularly prone to

over-fitting the noise. However, they suffer from a related concern: they

have sometimes been accused of merely accommodating the data due to the

use of ad hoc priors, thereby running the risk of yielding uninformative

predictions. Hammett et al. ([2007], p. 565) emphasize this problem when

they argue that ‘a Bayesian model [of speed perception] might be seen as

little more than a re-description of the data with little predictive power.’

Their point is that it is not clear that, in general, a given Bayesian model

can yield informative predictions of perceptual phenomena like speed percep-

tion. The model might accommodate any experimental result by moulding ‘the

shape of the prior to observed data’ ([2007], p. 565). Theoretical neuroscien-

tists, like Stocker and Simoncelli, using Bayesian models of sensory perception

are aware of this problem. Their methodological advice is that ‘in order to

realize its potential for explaining biology, [a Bayesian model] needs to be
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constrained to the point where it can make quantitative experimentally test-

able predictions’ (Stocker and Simoncelli [2006], p. 583). The idea is that

Bayesian models can be more than mere ‘descriptions of the observed data.’

They can yield good predictions of both subjects’ perceptual performance in a

variety of tasks and features of the underlying mechanisms to the extent they

are able to incorporate knowledge of relevant neurophysiological constraints.

By yielding good predictions, the models can then gradually ‘explain biology.’

If Bayesian models ‘explain biology,’ we would have more grounds for a

realistic attitude towards them.

Good predictions are typically quantitatively accurate and informative, in

that they match some novel phenomena, thereby avoiding over-fitting.

Musgrave ([1974]) distinguishes three ways in which predictions match

novel phenomena. According to the temporal view, a phenomenon is novel

for a model only if it was unknown at the time the model was construed.

According to the heuristic view, a phenomenon is novel if the model was

not constructed only to accommodate it. According to the theoretical view,

a phenomenon is novel for a model if it is not predicted by any of the model’s

extant alternatives. As the predictions yielded by a model neural network

become more secure and informative, the model is gradually transformed

into a mechanistic model. Whether a literal understanding of the claim that

the brain is akin to a Bayesian machine is justified depends ultimately on the

success of the transformation from Bayesian models as predictive tools to

Bayesian models as mechanistic models.

Let’s illustrate the logic underlying such a transformation by considering

Ma et al.’s ([2006]) work. They tackled the questions of how neuronal activity

can encode probability distributions and perform Bayesian inference by build-

ing a model network. Their methodology is top-down: the computational

problem that motivates their work is analogous to Ernst and Banks’s

([2002]). They relied on the finding that human observers perform in a

Bayesian fashion in a variety of psychophysical tasks to claim that neurons

‘must represent probability distributions’ and ‘must be able’ to implement

Bayesian inference ([2006], p. 1432).3 They approached this implementational

3 As already noted, the way Ma et al. ([2006]) put this point suggests a decidedly realist attitude

towards Bayesian models of sensory perception. They write: ‘Behavioral studies have confirmed

that human observers not only take uncertainty into account in a wide variety of tasks, but do so

in a way that is nearly optimal [. . .] This has two important implications. First, neural circuits

must represent probability distributions [. . .] Second, neural circuits must be able to combine

probability distributions nearly optimally, a process known as Bayesian inference’ (p. 1432,

emphases added). Interestingly, the way the same authors phrase the same point in a subsequent

paper does not underwrite the same realist attitude. Now they write: ‘models of neural repre-

sentation and computation have started to explore the possibility that neurons encode probabil-

ity distributions and that neural computation is equivalent to probabilistic inference. This work

was inspired by psychophysical findings showing that human perception and motor control are

nearly optimal in a Bayesian sense.’ (Ma, Beck and Pouget [2008], p. 217, emphases added).
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problem by observing that the response of cortical neurons has high variabil-

ity, namely: firing responses of cortical neurons to the same stimulus vary

dramatically from one presentation to the next. This variability can be

described by Poisson statistics. Ma et al. ([2006], p. 1432) gave a specific in-

terpretation to neural firing-rate variability: ‘it allows neurons to represent

probability distributions in a format that reduces optimal Bayesian inference

to simple linear combinations of neural activities.’ When a population of

neurons displays Poisson-like firing-rate statistics, Bayesian cue integration

can be implemented by a network of neurons by using linear operations on

population activities. Ma et al. ([2006], p. 1436) claimed that their model

makes a number of specific predictions about neural activations and behav-

ioural performance in psychophysical tasks. For example, if an observer per-

forms in a Bayesian fashion in a cue combination task, and the variability of

multisensory neurons is Poisson-like, then ‘the responses of these neurons to

multisensory inputs should be the sum of the responses to the unisensory

inputs’ (p. 1436). Hence the model network is used as a tool to interpret

existing neural data and to yield predictions based on such an interpretation.

The security of its predictions depends both on the identification of the

particular types of circumstance where people behave as Bayesian observers

and on the extent to which specific neural circuits exhibit Poisson statistics.

The security of the predictions of the neural model, that is, depends on

research both at the psychophysical and neurobiological level. Research at

the psychophysical level should provide information about the relationship

between certain classes of algorithms and certain classes of tasks. Knill and

Pouget ([2004], p. 712) claim that there are ‘myriad ways in which humans

behave as optimal Bayesian observers.’ But it may be the case that the ‘myriad

ways’ are in fact instances of the same type. It may be the case that, though the

tasks where people behave as optimal Bayesian observers seem to be different

types of perceptual tasks, they are in fact the same type. By gaining better

knowledge about such a relationship, we can identify under what circum-

stances a certain type of algorithm is sufficient to warrant the prediction

that people will behave as Bayesian in a given task. Experimental situations

where human subjects are found to behave sub-optimally, violating the

predictions given by the Bayesian model (e.g. Eckstein et al. [2004]; Seriès

et al. [2009]; Brayanov and Smith [2010]), are thus particularly informative

for two reasons: they can lead to questioning the computational goal of the

system and they can shed light into the constraints on the system at the

implementational level.

Research at the level of neurophysiology should provide information about

the extent to which Poisson-like variability is specific to some neural circuits.

Ma et al.’s neural model does not target a specific neural population. Yet its

predictive power depends on a specific neural feature, namely Poisson-like
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variability. If it is uncertain whether Poisson-like variability is a general fea-

ture of cortical neurons, or even of all neurons involved in visual processing,

then the predictions yielded by the model are unsecure. As mentioned above,

visual processing takes place along a cascade of processes distributed over

different circuits. If the visual system as a whole represents probability distri-

butions and performs Bayesian inference, then it is likely that their specific

instantiations will vary as a function of the specific neural, non-mathematical

constraints along this cascade. Once knowledge is gained of where in the

brain, and to what degree, neuronal variability is Poisson-like, Ma et al.’s

model might be revised to incorporate information about the architecture of

such a circuit. The predictions of this revised neural model will be limited to a

specific circuit but, because of this greater level of detail, more secure.

Ma et al.’s model predicts novel phenomena in the heuristic and theoretical

sense, hence it is informative. In the heuristic sense, the construction of their

model was motivated by a computational problem and by psychophysical

findings. It was not formulated specifically to accommodate the data about

the high variability of the responses of cortical neurons. In the theoretical

sense, unlike alternative proposals about how probabilities can be neurally

represented and how Bayesian inference may be implemented in neural activ-

ity, it predicts that Bayesian cue integration is carried out by populations of

neurons because of the specific Poisson-like form of their variability. Insofar as

neural Bayesian models such as Ma et al. will explicitly commit themselves to

precise interpretations of specific neural features that stand in some relation-

ship to other features, they may predict ‘novel’ facts about these other neural

features, such as the time course of multisensory integration or the action of

specific neuromodulators. As the predictions of the model become more in-

formative, the model itself might enable us to identify candidate mechanistic

features of Bayesian cue integration.

An instrumentalist use of Bayesian models of perception may gradually

transform the models into mechanistic models. Good predictions are secure

and informative. Secure predictions can be yielded by models that specify

under what circumstances a phenomenon is likely to obtain. Informative

predictions can be yielded by models that provide novel interpretations of

known neural features. If a model enables us to learn under what circum-

stances, in virtue of what components and in virtue of what relationships

between such components a phenomenon is to be expected, then the model

provides us with information about some set of organized parts and activities

that may be responsible for that phenomenon. That is, the model provides us

with information about a candidate mechanism. Currently, the claim that the

brain is a Bayesian machine should not be understood as taking on a com-

mitment to the truth of the Bayesian coding hypothesis. Talk of the Bayesian

brain is currently a useful locution that refers to a class of models that function
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as predictive tools. They enable us to make predictions about human perform-

ance and the neural activities that may generate that performance. We have

argued that as long as such tools yield increasingly better predictions they may

gradually transform into models of candidate mechanisms of sensory percep-

tion. Ultimately, the status of the claim that brains are Bayesian machines will

depend on the quality of the predictions that Bayesian models in theoretical

neuroscience can yield.

6 Conclusion

In 1952, Hodgkin and Huxley published their work on the action potential in

the squid giant axon. This is one of the first and most successful models in

theoretical neuroscience. Their model can be used to predict many features of

different kinds of neurons. Hodgkin and Huxley wrote: ‘certain features of our

equations were capable of a physical interpretation, but the success of the

equations is no evidence in favor of the mechanism of permeability change

that we tentatively had in mind when formulating them’ ([1952], p. 541).4

Currently, Bayesian models in theoretical neuroscience should be treated

analogously. In this article, we have explained how Bayesian models are

used to understand the workings of the brain and the behaviour they generate.

From actual practice in theoretical neuroscience, we have argued for three

claims. First, Bayesian models do not provide mechanistic explanations cur-

rently, instead they are predictive instruments. Second, the inference typically

drawn from psychophysical performance to the Bayesian coding hypothesis

should be understood within Marr’s framework. Third, within Marr’s frame-

work we can hope to learn that perception is Bayesian inference or that the

brain is a Bayesian machine to the extent that Bayesian models will prove

successful in yielding secure and informative predictions.
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