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Short abstract 

I argue that the popular neural coding metaphor is often misleading. First, the “neural code” often spans 

both the experimental apparatus and the brain. Second, a neural code is information only by reference to 

something with a known meaning, which is not the kind of information relevant for a perceptual system. 

Third, the causal structure of neural codes (linear, atemporal) is incongruent with the causal structure of 

the brain (circular, dynamic). I conclude that a causal description of the brain cannot be based on neural 

codes, because spikes are more like actions than hieroglyphs. 

 

 

Long abstract 

“Neural coding” is a popular metaphor in neuroscience, where objective properties of the world are 

communicated to the brain in the form of spikes. Here I argue that this metaphor is often inappropriate 

and misleading. First, when neurons are said to encode experimental parameters, the neural code 

depends on experimental details that are not carried by the coding variable (e.g. the spike count). Thus, 
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the representational power of neural codes is much more limited than generally implied. Second, neural 

codes carry information only by reference to things with known meaning. In contrast, perceptual systems 

must build information from relations between sensory signals and actions, forming an internal model. 

Neural codes are inadequate for this purpose because they are unstructured and therefore unable to 

represent relations. Third, coding variables are observables tied to the temporality of experiments, while 

spikes are timed actions that mediate coupling in a distributed dynamical system. The coding metaphor 

tries to fit the dynamic, circular and distributed causal structure of the brain into a linear chain of 

transformations between observables, but the two causal structures are incongruent. I conclude that the 

neural coding metaphor cannot provide a valid basis for theories of brain function, because it is 

incompatible with both the causal structure of the brain and the representational requirements of 

cognition. 
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1. Introduction 

A pervasive paradigm in neuroscience is the concept of neural coding (deCharms and Zador, 2000): the 

query “neural coding” on Google Scholar retrieves about 15,000 papers in the last ten years. Neural coding 

is a communication metaphor. An example is the Morse code (Fig. 1A), which was used to transmit texts 

over telegraph lines: each letter is mapped to a binary sequence (dots and dashes). In analogy, visual 

signals are encoded into the spike trains of retinal ganglion cells (Fig. 1B). Both the Morse code and the 

retinal code relate to a communication problem: to communicate text messages over telegraph lines, or to 

communicate visual signals from the eye to the brain. This problem has been formalized by 

communication theory (Shannon, 1948), also called information theory, a popular tool in neuroscience 

(Rieke et al., 1999). 

 

Figure 1. The coding metaphor. A, An emitter transmits a message to a receiver, in an altered form named 

“code” (here Morse code). The receiver knows the correspondence and can reconstruct (“decode”) the 

original message. B, In analogy, visual signals are encoded in the spike trains of the optic nerve. The rest of 

the visual system treats these spike trains as visual information. C. Implicit structure of the neural coding 

metaphor (“Y encodes X”): there is a correspondence between X and Y; encoding refers to a causal mechanism 

from X to Y, while decoding is a theoretical inverse mapping; Y causes changes in the reader (often 

improperly called “decoding”), and represents X in some sense. 

The neural coding metaphor has shaped neuroscience thinking for more than five decades. Barlow (1961) 

used the metaphor extensively in his work on sensory neurons, although he warned to “not regard these 
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ideas as moulds into which all experimental facts must be forced”. In a seminal review entitled “Neural 

coding”, Perkel and Bullock (1968) depicted “the nervous system [as] a communication machine” and 

already recognized the “widespread use of "code" in neuroscience”. An illustration of hieroglyphs figures 

prominently at the top of the technical appendix. Around the same time entire books were devoted to 

“sensory coding” (Somjen, 1972; Uttal, 1973). 

As the linguists Lakoff and Johnson (1980) have argued, the metaphors that pervade our language are not 

neutral; on the contrary, they form the architecture of our conceptual system. What are the concepts 

carried by the neural coding metaphor, which makes it a possibly relevant metaphor for the activity of the 

retina? There are three key properties (Fig. 1C), which are all used in Perkel and Bullock’s review: 

1) The technical sense of a code is a correspondence between two domains, e.g. visual signals and spike 

trains. We call this relation a code to mean that spike trains specify the visual signals, as in a cipher: one 

can theoretically reconstruct the original message (visual signals) from the encoded message (spike 

trains) with some accuracy, a process called decoding. Information theory focuses on statistical aspects of 

this correspondence  (Shannon, 1948). It is in this sense that neurons in the primary visual cortex encode 

the orientation of bars in their firing rate, neurons in the auditory brainstem encode the spatial position of 

sounds (Ashida and Carr, 2011), and neurons in the hippocampus encode the animal’s location (Moser et 

al., 2008). 

2) Yet, not all cases of correlations in nature are considered instances of coding. Climate scientists, for 

example, rarely ask how rain encodes atmospheric pressure. Another key element of the coding metaphor 

is that the spike trains are considered messages for a reader, the brain, about the original message: this is 

the representational sense of the metaphor. Perkel and Bullock call the reader’s activity “interpretation of 

the encoded information”. In his book on sensory coding, Somjen (1972) writes: “Information that has been 

coded must at some point be decoded also; One suspects, then, that somewhere within the nervous system 

there is another interface […] where 'code' becomes 'image.'”. Similar statements abound in modern 

neuroscience literature: “A stimulus activates a population of neurons in various areas of the brain. To guide 

behavior, the brain must correctly decode this population response and extract the sensory information as 

reliably as possible.” (Jazayeri and Movshon, 2006). 
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3) Finally, we would not say that visual signals encode retinal spike trains, even though this would comply 

with the technical sense. The reason is the communication metaphor implicitly assumes a causal relation 

between the original message and the encoded message; here, spike trains result from visual signals by a 

causal process (transduction). Similarly, to be a representation for a reader, the neural code must at least 

have a causal effect on the reader. This causal structure is implicit in Perkel and Bullock’s definition of 

neural coding: “the transformations of information in the nervous system, from receptors through 

internuncials to motor neurons to effectors”. 

These three elements (correspondence, representation, causality) constitute the conceptual scaffold of the 

neural coding metaphor. It could be argued that most technical work on neural coding only uses the first 

technical sense (correspondence), where the word “code” is used as a synonym for “correlate”. The use of 

the metaphor would thus only amount to an inappropriate but innocuous choice of words. But what is the 

scope of neural codes if they have no causal powers? In his famous critique of Skinner’s behaviorism, 

Chomsky (1959) summarizes the problem with the improper use of metaphors: “[Skinner] utilizes the 

experimental results as evidence for the scientific character of his system of behavior, and analogic guesses 

(formulated in terms of a metaphoric extension of the technical vocabulary of the laboratory) as evidence for 

its scope”. The goal of this article is to show that this quote fully applies to the neural coding metaphor, 

where “scope” is a particular theory of brain function implied by the conceptual structure of the metaphor. 

The general argument is as follows. Scientific claims based on neural coding rely on the representational 

sense or at least on the causal sense of the metaphor. But none of these two senses is implied by the 

technical sense (correspondence). When we examine the representational power of neural codes (part 1), 

we realize that coding variables are shown to correlate with stimulus properties but the code depends on 

the experimental context (stimulus properties, protocol, etc). Therefore neural codes do not provide 

context-free symbols. But context cannot be provided by extending the code to represent a larger set of 

properties, because context is what defines properties (e.g. the orientation of a bar). Thus, neural codes 

have little representational power. The fundamental reason (part 2) is that the coding metaphor conveys 

an inappropriate concept of information and representation (Bickhard and Terveen, 1996; Bickhard, 

2009). Neural codes carry information by reference to things with known meaning. In contrast, perceptual 

systems have no other option than to build information from relations between sensory signals and 

actions, forming a structured internal model. Finally (part 3), the neural coding metaphor tries to fit the 
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causal structure of the brain (dynamic, circular, distributed) into the causal structure of neural codes 

(atemporal, linear), substituting the arbitrary temporality of algorithms for the temporality of the 

underlying physical system. The two causal structures are incongruent. Without denying the usefulness of 

information theory as a technical tool, I conclude that the neural coding metaphor cannot constitute a 

valid basis for theories of brain function because it is disconnected from the causal structure of the brain 

and incompatible with the representational requirements of cognition. 

 

2. Encoding stimulus properties 

2.1. Encoding an experimental parameter 

The activity of neurons is often said to encode properties, for example: “Many cortical neurons encode 

variables in the external world via bell-shaped tuning curves” (Seriès et al., 2004). Here the authors refer to 

a particular type of experiment, where a parameterized stimulus is presented to an animal and the activity 

of a neuron is recorded. For example the orientation of a small bar is varied and the activity of a neuron in 

the primary visual cortex is recorded (Fig. 1B). It is found that orientation and neural activity co-vary, and 

therefore that the neuron’s firing rate encodes the orientation of the bar in the sense of correspondence. 

What is the scope of such a proposition? 

I will discuss a cartoon example from color perception, used by Francis Crick to warn against the “fallacy 

of the overwise neuron” (Crick, 1979). Cones are broadly tuned to wavelength (Schnapf et al., 1987): in an 

experiment where light of different wavelengths is flashed, the amplitude of the transduced current varies 

systematically with wavelength (Fig. 2A). Thus, the current encodes wavelength, in the technical sense of 

correspondence: one can recover wavelength from the magnitude of the current. Yet animals or humans 

with a single functional type of cones are color blind. Why are they color blind if their cones encode color 

information? This is clear in Fig. 2A: if the current also depends on light intensity, then it does not provide 

unambiguous information about wavelength. In other words, the cone does not in fact encode wavelength 

in any general setting, even in the narrow sense of correspondence. The same remark applies to any 

tuning curve experiment. 
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Figure 2. Encoding wavelength of light. A, Response of a cone to flashed light as a function of wavelength 

(cartoon), at different intensities (grey). If intensity is fixed, wavelength can be inferred from transduced 

current. Otherwise, current is not informative about wavelength. B, In a tuning curve experiment, the coding 

relation is implied by the experimental design: wavelength is mapped to stimulus, which is transduced into 

current. C, If wavelength is just one property of a larger set of stimuli, there might be no coding relation.  D, 

The relative response of cones with different tunings may provide intensity-invariant information about 

wavelength. 

Formally, the logical problem can be analyzed as follows. The tuning curve experiment shows a 

correspondence between stimulus parameter and current. This correspondence is composed of two parts 

(Fig. 2B): a mapping from wavelength to stimulus, which is experiment-specific, and the transduction of 

stimulus into current. Thus, the experimental design ensures that there exists a mapping from wavelength 

to current. In other words, the proposition that the neuron encodes the experimental parameter is mainly 

a property of the experimental design rather than of the neuron (which only needs to be sensitive to the 

parameter). However, the situation is completely different in the real world, which is not constrained by 

the experimental design (Fig. 2C). In general, there might be a variety of stimuli, one of their properties 

being wavelength. Thus, there is a mapping from stimulus to wavelength and a mapping from stimulus to 

current, and it is not obvious at all that there is a mapping from wavelength to current, because current 

depends also on other properties. In this context, the proposition that the neuron encodes wavelength is a 

much stronger claim, but it is not at all entailed by the tuning curve experiment1. This confusion underlies 

influential neural coding theories of perception, for example Bayesian theories (Pouget et al., 2003; 

                                                                 
1
 A strong correlation (or mutual information) between wavelength and current observed in the first case 

(Fig. 2B) may transfer to a negligible correlation in the second one (Fig. 2C) (Brette, 2010). 
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Jazayeri and Movshon, 2006), where a neuron’s firing rate is assumed to be a function of the stimulus 

parameter, rather than a context-dependent correlate (see section 2.3.2). 

Thus, the correct interpretation of the tuning curve experiment is that the neuron is sensitive to the 

stimulus parameter, while to encode a property of stimuli (a “variable in the external world”) is a 

somewhat orthogonal proposition: it means that the observable is not sensitive to other properties. For 

example, a color scientist would point out that wavelength is indeed not encoded by single cones, but by 

the relative activity of cones with different tunings (Fig. 2D), because that quantity does not depend on 

light intensity. 

Thus, referring to tuning curve experiments in terms of coding promotes a semantic drift, from the modest 

claim that a neuron is sensitive to some experimental manipulation, to a much stronger claim about the 

intrinsic representational content of the neuron’s activity. We will now see that this semantic drift indeed 

operates in current theories of brain function. 

 

2.2. The overwise neuron and its ideal observer 

To understand how the neural coding metaphor unfolds, I will discuss one particular example in detail 

(but another one could have been chosen). In mammals, the major cue for sound localization in the 

horizontal plane is the difference in arrival times of the sound wave at the two ears (interaural time 

difference or ITD) (Fig. 3A). Neurons in the medial superior olive (MSO) (in the auditory brainstem) are 

sensitive to this cue (Joris et al., 1998): when a sound is played through earphones and the ITD is varied, 

the firing rate of those neurons changes (Fig. 3B). These neurons project to neurons in the inferior 

colliculus (IC), which also have diverse ITD tuning properties. Electrical stimulation in the cat’s IC triggers 

an orienting response towards a particular contralateral direction, with stronger stimulations resulting in 

responses with a larger part of the body (one pinna, both pinnae, and eyes), by a pathway involving the 

superior colliculus (Syka and Straschill, 1970). Unilateral lesions in the MSO or IC result in sound 

localization deficits in the contralateral field (Jenkins and Masterton, 1982). Thus, neurons in the IC have a 

critical role in localizing sounds in the contralateral field. 
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Figure 3. Encoding sound location. A, A major cue for sound localization is the interaural time difference or 

ITD, dR - dL. B, Number of spikes in response to two binaural tones (950 Hz and 800 Hz) as a function of ITD, 

for the same neuron in the medial superior olive of a cat (digitized from (Yin and Chan, 1990), Fig. 10). It is 

possible to infer ITD from spike count if the experimental configuration (presented tone) is known, not if the 

sound is a priori unknown. C, If the organism lived in a world with a single sound played at different ITDs, 

then the best way to encode ITD would be with a neuron tuned to an ITD outside the range of natural sounds 

(shaded), so that the selectivity curve is steep inside that range. However, the response of a single neuron is 

fundamentally ambiguous when sounds are diverse, irrespective of the steepness of the curve (selectivity 

curve for another sound shown in grey). 

How does the activity of these neurons contribute to sound localization behavior? One way is consider the 

entire pathway and try to build a model of how neuron responses in various structures combine to 

produce an orientation reflex to a localized sound, and compare with the diverse experimental 

observations mentioned above. Another way is to ask how neurons encode sound location (McAlpine et 

al., 2001). It has been claimed for example that “there is sufficient information in the firing rates of 

individual neurons to produce ITD just-noticeable-differences that are comparable with those of humans 

psychophysically” (Skottun, 1998; Shackleton et al., 2003). What does this mean, and how significant is this 

fact? 

The neuron of Fig. 3B encodes ITD, in the technical sense that one can estimate the ITD with some 

accuracy from the observation of the number of spikes, by inverting the tuning curve (i.e., decoding the 

neuron’s response). It turns out that this accuracy is similar to the accuracy of sound localization by the 
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animal. But the neuron’s response is also sensitive to various aspects of sound (e.g. frequency, intensity), 

so our decoder would give totally inaccurate results in any other context. Thus, the performance of this 

decoder is unrelated to our general ability to localize sounds. Yet, although the problem of ambiguities 

was acknowledged, it was concluded that “it might not be necessary to pool the outputs from many neurons 

to account for the high accuracy with which human observers can localize sounds” (Skottun, 1998). This 

conclusion is unwarranted because tuning curves address the exactly orthogonal problem (sensitivity to 

ITD vs. insensitivity to other dimensions). 

This incorrect conclusion is about localization, but what about discrimination? The first quote compared 

the tuning curve to discrimination performance, i.e., psychophysical measurements of the ability to 

discriminate between two sounds that differ only by their ITD. This is a more restricted situation, but how 

can the responses of a single neuron be compared to the behavior of an organism, without making any 

reference to the mechanisms that might link this neuron’s activity to behavior? (e.g. the pathway 

mentioned above). More generally, how can a neural code be about behavior, when it is technically only 

about stimulus-response properties? This requires what Teller (1984) called a “linking proposition”, an 

implicit postulate that directly relates neural activity to behavior. The linking proposition here, as in many 

neural coding studies, is that the brain implements an “ideal observer” (Macmillan and Creelman, 2005). 

This is the representational sense of the metaphor, namely the idea that neural responses are messages 

for a reader. The empirical question, then, is how plausible is this linking proposition? 

Let us spell it out. The ideal observer reads the activity of the neuron. When the first stimulus is presented, 

it stores the number of spikes produced by the neuron in a window of a given duration (chosen by the 

experimenter) after the stimulus. It ignores all spikes produced before and after that window, until the 

second stimulus is presented, upon which it stores again the number of spikes produced by the neuron. 

Then it retrieves the two stored numbers, compares them (and not others, e.g. the activity of other 

neurons), and decides to push one of two buttons. It is not so obvious how this ideal observer can be 

mapped to the pathway described above, for example how the number of spikes of an arbitrary neuron in 

the brainstem, produced during several predefined time windows, can be stored in working memory for 

later comparison. 

The ideal observer is ideal in the sense that it makes the best use of all available information. This includes 

the neural activity itself, but most importantly all the information that is available to the experimenter: 
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when exactly the activity corresponds to the stimulus, what stimulus has been presented, the knowledge 

that the exact same sounds are played twice, which parts of the activity should be stored. On the other 

hand, the observer is not ideal in the sense that it uses nothing more than the information available to the 

experimenter. For example, if it also used the information available in other neurons (not recorded), then 

discrimination performance would be much better than psychophysical measurements. In other words, 

the ideal observer is not the best thing that the brain can do; it is the best thing that the experimenter can 

do. 

Thus, by implying that the brain reads the neural code, we manage to make claims about perception and 

behavior while totally ignoring the mechanisms by which behavior is produced, as well as the constraints 

that the organism must face in ecological situations (e.g. not knowing the sound presentation protocol in 

advance). These claims rely on implicit linking propositions based on abstract constructs, where neural 

activity is likened to a processor register that the brain manages to store, retrieve and manipulate, 

wherever it is in the brain and whenever it occurs. It would seem that empirical evidence or 

argumentation should be required to support such questionable hypotheses, since all conclusions are 

based on them. Why is it that no such justification is ever provided when “ideal observers” are 

introduced? The reason, it seems, is the semantic drift from the technical sense of code to the 

representational sense of code, which is logically flawed. The same flaw appears to underlie leading 

theories of neural population coding. 

 

2.3. Populations of overwise neurons 

2.3.1. Slope coding 

What is the optimal way to encode ITD in the activity of neural populations? If all confounding dimensions 

(level, frequency, etc) are neglected, then the best way to encode ITD is to have a steep monotonous 

relation between ITD and firing rate, that is, to maximize neural sensitivity to ITD (Fig. 3C). Thus, the 

neuron’s preferred ITD should lie outside the range of natural sounds (around 800 µs for humans 

(Benichoux et al., 2016)) while the steepest slope of the selectivity curve should be inside. This is the 

concept of “slope coding”. Thus, it has been argued that the optimal way to encode ITD is with two 

homogeneous populations of neurons with symmetrical tuning curves, peaking at ITDs that are not 
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normally experienced (Harper and McAlpine, 2004). Unfortunately, this conclusion is entirely based on 

the fallacy of the overwise neuron. If confounding dimensions are not neglected, then the opposite 

conclusion follows: as in the case of cones, heterogeneity of ITD tunings is crucial to resolve the 

ambiguities due to non-spatial dimensions of sounds (Brette, 2010; Goodman et al., 2013). 

Based on the slope coding idea, a leading theory of sound localization (Grothe et al., 2010) proposes that 

sound location is encoded in the relative average activity of the two populations of neurons. It was initially 

meant to explain why many neurons are tuned to large ITDs that are not normally experienced2 (McAlpine 

et al., 2001). Although using the relative activity of two populations somewhat reduces the ambiguity due 

to sound level, the fact that sounds have more than two dimensions again means that this model is 

unlikely to work in practice unless the auditory world consists of pure tones (Goodman et al., 2013). In 

any case, what needs to be demonstrated to support this theory is not that tuning curves have a steep 

slope, but that the relative average activity of the two neural populations is insensitive to other properties 

than ITD (e.g. the sound at the source). 

Thus the application of the coding metaphor to tuning curve experiments leads to a confusion between 

parameter sensitivity and information about the corresponding property in a broader context. It could be 

argued that information in a broad context at least requires sensitivity, but this is also technically 

incorrect3 (see e.g. Zylberberg (2018)). 

 

2.3.2. Encoding visual stimuli 

In visual neuroscience, theories of neural coding are rather based on heterogeneous tunings. There are 

several theories of population coding of stimulus properties in the visual cortex (Pouget et al., 2003; 

Jazayeri and Movshon, 2006). One influential theory, the “Bayesian brain” hypothesis (Knill and Pouget, 

2004), postulates that neural activity represents the probability distribution of the stimulus property, 

                                                                 
2
 A similar number of neurons are also tuned to small ITDs, especially in larger mammals such as cats 

(Goodman et al., 2013, Fig. 1a). 
3
 Suppose for example that we observe the activity A of a neuron, whose firing rate varies with parameter 

X as follows: A = X + Z, where Z is an uncontrolled variable. If Z has large variance, A might be hardly 
correlated with X. But if we simultaneously observe B = Z, then we can recover X exactly (B-A), even 
though B is not correlated at all with X. There is no direct relation between parameter sensitivity assessed 
by a tuning curve and information in a broader context. 
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which the brain can manipulate to perform statistical inference. A key assumption in this and other coding 

theories is that the firing rate of neurons is a context-free function of stimulus properties. This assumption 

appears explicitly in the models, and in the way the brain is proposed to compute with those 

representations. For example, one variation of this theory proposes that the brain computes the log 

likelihood of a stimulus property by summing the activity of neurons weighted by the logarithm of each 

neuron’s tuning curve (Jazayeri and Movshon, 2006). This operation is described as a “simple neural 

readout strategy”, because it only involves summation and multiplication by fixed weights. As already 

discussed, the problem is that in reality, tuning curves are defined for a specific experimental condition; 

they are not context-free. Therefore, either the computation of the log likelihood will be systematically 

incorrect for all other conditions, or the weights used in the readout must be adapted to correspond to the 

tuning curve of each condition by an undescribed mechanism, in which case the readout cannot possibly 

be described as a “simple neural readout”. 

To what extent do tuning curves depend on context? As it turns out, to a large extent. It has been known 

for a long time that properties of sensory neurons adapt to input statistics (Barlow et al., n.d.; Hosoya et 

al., 2005). In the primary visual cortex, responses to local orientation depend on the surrounding context 

(Hubel and Wiesel, 1968; Bolz and Gilbert, 1986). Tuning properties of visual cortical neurons (not just 

the gain) depend on cognitive context, including the task the animal is doing (Gilbert and Li, 2013), 

locomotion (Pakan et al., 2018) and prior presentation of sounds (Chanauria et al., 2018). Thus, current 

evidence indicates that the activity of neurons is sensitive to stimulus properties (the technical sense of 

coding) but cannot be considered as context-free symbols that stand for the corresponding properties (the 

representational sense of coding). Can neural coding theories of perception accommodate for this fact? It 

would require that in every context, changes in encoding (stimulus-response properties) are exactly 

mirrored by changes in decoding (computations performed on neural activity, e.g. the “simple neural 

readout”). No mechanism has been proposed to achieve this (see also next section). 

Theories of neural coding have the ambition to explain some aspects of perceptual behavior, namely 

results of psychophysical experiments. Again, this requires that a link is made between the neural code 

and behavior. This link involves ideal observers: for each possible task there is an optimal way to decode 

neural activity into the variable of interest, which uses detailed elements of the experimental design. 

Critically, this link with behavior is not considered part of the model because it is assumed that it belongs 
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to the reader of the neural codes4. Thus, the behavioral predictions of the coding theories critically rely on 

linking propositions whose validity or plausibility is not addressed. To be clear, the questionable 

assumption is not so much whether behavior or perception is optimal in some way (Rahnev and Denison, 

2018), but whether the activity of a neuron is something that is read and manipulated as if it were a 

register of a processor, and not just something that the neuron is doing at a particular time (acting on 

other neurons). 

When the brain is engaged in solving a particular visual task, the activity of neurons depends specifically 

on object properties relevant to that task (Gilbert and Li, 2013). This seems entirely logical if we see 

neurons as collaborating to solve a task. In contrast, it is surprising if we see the visual cortex as encoding 

the world, and the rest of the brain as dealing with this representation to guide actions. Thus, thinking in 

terms of coding seems to obscure rather than clarify understanding. 

 

2.4. Can neurons encode variables? 

It could be objected that the problem of contextual dependence of tuning curves only calls for a minor 

amendment to the mainstream neural coding theories, which is to consider that contextual variables are 

encoded too. This would require more complicated decoding schemes, but not fundamentally different 

theories. 

For example, one could propose that populations of cones jointly encode wavelength and intensity, and 

both can be decoded from the joint activity of cones. But to decode cone activity into wavelength, one 

must know that a monochromatic light is being presented. In natural experience, light is not 

monochromatic, it has a continuous spectrum, and the transduced current depends on the convolution of 

the spectrum of incident light with the absorption spectrum of the photoreceptor. In those cases, cones 

cannot possibly encode wavelength, even jointly, because there is no such thing as the wavelength of a 

patch of visual scene. Thus, the activity of cones is not sufficient to infer wavelength. A critical element of 

context that also needs to be encoded is the fact that a monochromatic light is being presented. 

                                                                 
4
 For example, Jazayeri and Movshon (2006) argue that the representation of the probability distribution 

of stimulus property (rather than just the most likely property), allows the same code to perform different 
tasks, and comment: “In contrast, previous models of sensory decoding were for the most part designed to 
account for a particular task.”. But the new proposition still requires a specific decoder for each task. 
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Similarly, a cat’s neuron may encode the orientation of a bar only in conjunction with the information that 

a bar is being presented. That information does not take the form of a variable, but perhaps of a model of 

the experiment. But models are not variables, rather, they define variables. Thus, a perceptual scene 

cannot be represented by a set of variables, because this leaves out what defines variables. This missing 

aspect corresponds to object formation and scene analysis, two fundamental aspects of perception that 

are not addressed by coding: there is no object property to be encoded if there is no object. 

Consider the Bayesian brain hypothesis: “the brain represents information probabilistically, by coding and 

computing with probability density functions” (Knill and Pouget, 2004). This presupposes that there is a set 

of predefined variables to which probability is attributed – examples of variables are the position of an 

object, the orientation of a visual grating. If neurons encode variables, then what encodes the definition of 

those variables, and what do neurons encode in situations where those variables are not defined? We can 

imagine that such theories might apply to the representation of eye position, for example, because the eye 

is always there and its position is always defined. This is not the case of objects of perception in general. 

Similarly, influential models of working memory propose that memory items are stored and encoded in 

the persistent activity of neurons tuned to the underlying stimulus property, for example the spatial 

position of an object (Constantinidis and Klingberg, 2016). This provides a way to store graded properties, 

like the position of a visual target or the pitch of a musical note. But suppose there is a neural network in 

my brain that is storing the number 100. What have I memorized? Clearly not the same piece of 

information if this number is the area of my apartment in square meters or the height of my son in 

centimeters. To store the information, one needs not only the number but also what it refers to. Can the 

persistent activity of tuned neurons store that information? It can if there is a network of neurons tuned to 

the area of my apartment and another tuned to the height of my son. 

Perception and memory cannot just be about encoding stimulus properties because this leaves out the 

very definition of those properties and of the objects they attach to. But could it be that neurons encode 

more abstract “internal variables” that somehow describe the external world? Such is the claim of 

predictive coding (Rao and Ballard, 1999) and related propositions such as the free energy principle 

(Friston, 2009; Clark, 2013). In these theories, neural coding is described as a statistical inference process, 

where neurons encode the inferred value of internal variables of a generative model of the inputs, e.g. the 

retinal image. Technically, this essentially means that the code is a parametric description of the image 
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(like a Fourier transform for example). Described at this technical level, the theory seems to have little to 

say about perception or behavior. But the intended scope extends as these internal variables are 

described as the “causes” of the sensory input, and the process of encoding is referred to as “inferring the 

hidden causes”. The sensory input is caused by things in the world, so an internal variable can only be 

considered a cause if it is assumed to encode properties of objects in the world just like in the Bayesian 

brain hypothesis. Again, this is incoherent because no perceptual scene can be fully specified by the 

properties of its objects; one needs first to define objects and their properties, and these definitions are 

not conveyed by the variables. “Cause” must then be understood in the strict technical sense of variable of 

a statistical function, which has little to do with the usual sense of “cause”. Thus, this use of the term 

“cause” appears to be another case of a metaphoric extension of the technical vocabulary. Quoting 

Chomsky (1959): “This creates the illusion of a rigorous scientific theory with a very broad scope, although 

in fact the terms […] [have] at most a vague similarity of meaning”. We will come back to predictive coding 

theory in the next part. 

Neurons encode stimulus properties according to the technical sense of the metaphor. To acquire a broad 

scope, the metaphor drifts into the representational sense, according to which neurons convey 

information about the said properties to the rest of the brain. But neural activity can only be interpreted 

as properties once the interpretative framework is provided. Critically, this framework is not contained in 

the coding variables. In what sense do neural codes constitute information for the brain, if their meaning 

lies outside the encoded messages and varies depending on situations? Where do ideal observers obtain 

the information necessary to decode the messages? In the next section, I will argue that the coding 

metaphor conveys a very particular notion of information, which is information by reference, and that this 

is not the kind of information relevant to perception and behavior. 

 

3. Do neural codes constitute information about the world? 

3.1. Codes as information by reference 

The coding metaphor assumes that neural codes represent information about the world, which the brain 

uses to produce adapted behavior. This sense is implied by the use of ideal observers in the neural coding 

literature, and more generally by the presumption that the brain “decodes” neural responses or “extracts 
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information” from them. In what sense is the neural code “information” about objective properties of the 

world? According to the technical sense of coding, it is information in the sense that these properties can 

be inferred from neural activity. Methodologically, this inference is done by the experimenter, who 

confronts these properties with measurements of neural activity. But by using the terms “neural code”, 

and by comparing the output of ideal observers to psychophysical measurements, we imply that the brain 

must also do this inference. 

This raises the issue of “the view from inside the box” (Clark, 2013): how is it possible for the nervous 

system to infer external properties from neural activity, if all that it ever gets to observe is that activity? In 

fact, what does it even mean that a neural network infers external properties (e.g. the direction of a sound 

source), given that those properties do not belong to the domain of neural activity? This is related to the 

symbol grounding problem (Harnad, 1990): how do spikes, the symbols of the neural code, make sense for 

the organism? 

A fundamental issue with the coding metaphor, as it applies to the brain, is that it conveys a very 

particular notion of information, information by reference: the meaning of the encoded message is that of 

the original message to which it refers. Shannon made this very clear when he defined his mathematical 

notion of information (Shannon, 1948): 

“The fundamental problem of communication is that of reproducing at one point either exactly or 

approximately a message selected at another point. Frequently the messages have meaning; that is 

they refer to or are correlated according to some system with certain physical or conceptual entities. 

These semantic aspects of communication are irrelevant to the engineering problem.” 

But the semantic aspects are precisely what is relevant to the biological problem: how does the brain 

know what the codes refer to? 

One possibility is that the meaning of neural codes is implicit in the structure of the brain that reads them: 

the brain understands neural codes because it has evolved to do so. There are at least two objections that 

makes this proposition implausible. First, there is considerable plasticity, including developmental 

plasticity, both in the nervous system and in the body, which makes the idea of a fixed code implausible. 

An impressive example is the case of a patient born with a single brain hemisphere, who has normal vision 

in both hemifields, with a complete reorganization of brain structure (Muckli et al., 2009). This plasticity 
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implies that the “reader” of neural codes must learn their meaning, at least to some extent. Second, one 

might imagine that the meaning of a neural code for eye position might be fixed by evolution, for example 

that there are fixed motor circuits that control the eye based on that fixed neural code. But how could this 

be true of a neural code for the memory item “my apartment is 100 meters square”? 

To see that Shannon information cannot be the relevant notion of information to understand perception, 

consider the following experiment of thought, which I shall call the paradox of efficient coding. Suppose 

that all information about the world (including efferent copies) is encoded by a set of neurons. From the 

heuristic that biological organisms tend to be efficient, we now postulate that neurons transform their 

inputs in such a way as to transmit the maximum amount of information about the world, in the sense of 

Shannon; this is the efficient coding hypothesis (Barlow, 1961; Olshausen and Field, 2004). This means 

that all redundancy is removed from the original signals. If this is done perfectly, then encoded messages 

are undistinguishable from random by the organism. Therefore the perfectly efficient code cannot be 

understood by its reader. 

It is indeed paradoxical that when we maximize the amount of information carried by code, we find 

something that provides no information at all to the reader. This is because the notion of information 

implied by the phrase “neurons encode information” is information by reference to the inputs, a kind of 

information that is only accessible to an external observer. This is not the right way to address the 

representational problems faced by the organism. As Bickhard has argued (Bickhard and Terveen, 1996; 

Bickhard, 2009), “encodingism” fails to provide an adequate notion of representation because it does not 

allow the possibility of system detectable error: there is no way for the system to know whether the 

representation is in error. 

Again, the coding metaphor appears to promote a semantic drift, from the technical sense of information 

as defined by Shannon, to a broader sense of information that might be useful for an organism. The neural 

coding metaphor is so prevalent in the neuroscience literature that the notion of information it carries 

seems to be the only possible one: “the abstract definition of information is well motivated, unique, and 

most certainly relevant to the brain” (Simoncelli, 2003). Next, I discuss alternative notions of information 

that are more relevant to the brain. 
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3.2. Information as subjective laws or internal models 

How can there be any information about the world without direct access to the world? John Eccles, a 

prominent neurophysiologist, expressed the problem in the following terms (Eccles, 1965): 

“In response to sensory stimulation, I experience a private perceptual world which must be regarded, 

neurophysiologically, as an interpretation of specific events in my brain. Hence I am confronted by 

the problem: how can these diverse cerebral patterns of activity give me valid pictures of the 

external world?” 

To him, the logical solution was a form of dualism, much like Cartesian dualism, except he did not believe 

that the interaction between mind and brain occurred at a single place (Descartes’ pineal gland). Dualism 

is a natural solution if neural activity is thought to encode information by reference to the external world, 

because the external world belongs to a different domain. 

A number of philosophers and psychologists have proposed alternative solutions. O’Regan and Noë 

(2001) proposed the analogy of the “villainous monster”. Imagine you are exploring the sea with an 

underwater vessel. But a villainous monster mixes all the cables and so all the sensors and actuators are 

now related to the external world in a new way. How can you know anything about the world? The only 

way is to analyze the structure of sensor data and their relationships with actions that you can perform. If 

dualism is rejected, then this is the kind of information that is available to the nervous system. A salient 

feature of this notion of information is that, in contrast with Shannon’s information, it is defined as 

relations or logical propositions: if I do action A, then sensory property B happens; if sensory property A 

happens, then another property B will happen next; if I do action A in sensory context B, then C happens. 

James Gibson previously developed a related psychological theory (Gibson, 1979). While criticizing the 

information-processing view of perception, he argued that there is information about the world present in 

the invariant structure of sensory signals: “A great many properties of the [optical] array are lawfully or 

regularly variant with change of observation point, and this means that in each case a property defined by 

the law is invariant”. Clearly, he did not mean information in the sense of communication theory, but 

rather in the sense of scientific knowledge. A set of observations and experiments provides information 

about the world, in the form of laws that relate observables (sensory signals) between them and with 

possible actions. This form of information is intrinsic; I proposed to call this set of laws the subjective 
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physics of the world (Brette, 2016); this is related to von Uexküll’s Umwelt (Uexküll, 1909). A related 

view, formalized by theoretical biologist Robert Rosen (Rosen, 1985), is that biological organisms build an 

internal model of the world, in which the variables are sensory signals. This view addresses the symbol 

grounding problem by mapping sensory signals to elements of an internal model. The signals make sense 

in reference to that model; they are not mapped to externally defined properties. In Bickhard’s 

interactivist model (Bickhard, 2009, 2015), representations are based on anticipatory relations between 

internal processes. 

Crucially, relations between observables are precisely what neural coding theory considers as 

redundancy, which ideally should be eliminated. In contrast, in the alternative view discussed here, 

relations constitute information. This point was made by Thompson (1968). “It is our subjective habit to 

organize the individual elements of our experience, to cross-correlate these elements to others distant in 

space and time, and it is only after this process of imposing organization that we feel informed”. The number 

100 does not really constitute information; it is only once I have inserted it into my internal model of the 

world by saying that it is the area of my apartment in square meters that it becomes information. 

 

3.3. Subjective physics of the Martian iguana 

To make this point more concrete, I will discuss an example adapted from Brette (2016). Consider a 

fictional organism with two ears – let us call it a Martian iguana in reference to Dennett (1978) (Fig. 4A). 

The iguana is fixed on the ground, and there is another organism – let us call it a frog – which produces 

sounds. The frog is usually still and produces some random sounds repeatedly, but occasionally it jumps 

to a new position. The question is: what kind of information can the iguana have access to, based on the 

acoustical signals at the two ears? 

When a source produces a sound, two sound waves SL and SR arrive at the two ears, and these two sound 

waves have a particular property: they are delayed versions of each other (SL(t) = SR(t-)) (Fig. 4B). In 

Gibsonian terminology, there is “invariant structure” in the sensory flow, which is to say that the signals 

obey a particular law. Thus, the sensory world of the iguana is made of random pairs of signals which 

follow particular laws that the iguana can identify. This identification is what Gibson called the “pick-up of 

information”. Evidently, “information” is not meant in the sense of Shannon but in the sense of laws or 
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models of the sensory input. Note that the model in question is not a generative model as in predictive 

coding, but relations between observables, like the models of physics. 

A first interesting aspect of this alternative notion of information is that the topology of the world projects 

to the topology of sensory laws. By this, I mean that two different sounds produced by the frog at the same 

position will produce pairs of signals (SL, SR) that share the same property (the sensory law). This can be 

assessed without knowing what this property corresponds to in the world (i.e., the frog’s position). 

Thus, the iguana can observe sensory laws that have some particular properties, but do these laws convey 

any information about where the frog is? For an external observer, they certainly do, since the delay  is 

lawfully related to the frog’s position. For the iguana, however, they do not because that lawful relation 

cannot be inferred from just observing the acoustical signals. Thus, this organism cannot have any sense 

of space, even though neural coding theories would pretend that it does, based on the correspondence 

between frog position and the activity of the iguana’s auditory neurons. 

Let us now consider in addition that the iguana can turn its head (Fig. 4C). It can then observe a lawful 

relation between a proprioceptive signal (related to the head’s position) and the observed delay , which 

holds for some time (until the frog jumps to another position). Now when the iguana observes sounds 

with a particular delay, it can infer that if it were to move its head, then the delay would change in a 

particular predictable way. For the iguana, the relation between acoustical delay and proprioception 

defines the spatial position of the frog. We note that the perceptual inference involved here does not refer 

to a property in the external world (frog position), but to manipulations of an internal sensorimotor 

model. 

Thus, the kind of information available to an organism is not Shannon information (correspondence to 

external properties of the world), but internal sensorimotor models. The interest of such models for the 

animal is that they can be manipulated so as to predict the effect of hypothetical actions. 
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Figure 4. Subjective physics of a fictional iguana. A, The (blind) iguana listens to sounds produced by the 

frog, which occasionally jumps to a new position. B, When there is a sound, the iguana can notice that the 

acoustical signals at its two ears follow a particular law: SR(t) = SL(t-) for all t. C, If the iguana can move its 

head, it can also notice that the delay  changes in a lawful way with the proprioceptive signal p. This 

relation defines the frog’s position for the iguana. When a sound is heard, the iguana can infer the frog’s 

position, i.e., it can infer how  would change if it were to move its head. 

 

3.4. Predictive coding and generative models 

Predictive coding theory and its derivatives (Rao and Ballard, 1999; Friston, 2010; Clark, 2013) propose 

that the brain encodes an internal model, which predicts the sensory inputs5. This seems to resemble the 

proposition of the previous section. More precisely, neurons are thought to encode the variables of a 

hierarchical model of the inputs, in which higher order neurons encode their prediction of the activity of 

neurons lower in the hierarchy, down to the sensory inputs. This prediction is subtracted from the input 

of lower-order neurons, so only the prediction error remains. This leads to a compressed representation 

of the inputs, and in this sense it is a type of efficient coding theory. 

                                                                 
5
 Not to be confused with predictive information, which is the mutual (Shannon) information between the 

past and future of a signal (Bialek et al., 2001; Palmer et al., 2015). 
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This particular kind of model is called a generative model because its maps internal variables to the 

observables (sensory inputs), in contrast with the models of physics which take the form of relations 

between observables (e.g. the ideal gas law, PV =  nRT). Generative models are not the kind of internal 

models described in the previous section. 

Consider the iguana with a fixed head. A generative model of the sensory inputs would map two internal 

variables S (sound) and  (interaural delay) to the two acoustical inputs SL and SR, as : SL(t) = S(t), SR(t) = 

S(t-). Neural activity encodes not the model itself but the coding variables  and S. In particular, neurons 

encode the entire sound S, even though it carries no information for the iguana (S is, by construction, 

random). This appears to contradict the claims of predicting coding theory: “To successfully represent the 

world in perception […] depends crucially upon cancelling out sensory prediction error” (Clark, 2013). 

Indeed the success of a predictive code is evaluated by its ability to represent the input in a pictorial sense 

(as if it were a painting), but in this example, the numerical value of the signals provides no useful 

information beyond the relations they obey. 

Consider now the case when the iguana can move its head. The internal model discussed in the previous 

section is: SR(t) = SL(t-x(p)) for all t, where x is the frog position (Fig. 4C). The usefulness of this model 

stems from the fact that it can be manipulated, that is, upon hearing a sound, the iguana can infer that, if it 

were to move its head to a new position p, then the relation obeyed by the auditory signals would change 

in a predictable way. For example, the iguana can move its head so that SR = SL (“the frog is in front”). 

Thus, the kind of prediction that this model can produce is about relations between signals, and not about 

the numerical value of the signals. 

On the other hand, a generative model would map the coding variables S, x and p to the sensory inputs 

SL(t) = S(t) and SR(t) = S(t-x(p)). This mapping is referred to as “prediction”, and is instantiated by the 

feedback from higher-order neurons to lower-order neurons. This is not the same sense as predicting 

what action would make the two signals SL and SR match. This brings us to a discussion of the term 

“predictive” in predictive coding. The appeal of predictive processing is that making predictions seems to 

be a prerequisite to goal-directed behavior, and thus a fundamental aspect of behavior. In fact, several 

authors have argued that anticipation is not just a property of nervous systems, but even a fundamental 

property of life (Maturana and Varela, 1973; Rosen, 1985). For example, the iguana can predict how some 
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properties of its sensory inputs should change if it were to turn its head. Consider this other example in 

human behavior: when someone is facing a cliff, she tends to slightly lean backwards, because this posture 

makes it easier to move backwards if necessary (Le Mouel and Brette, 2017). But this is not at all the 

technical sense of “prediction” in predictive coding, as remarked by Anderson and Chemero (2013). A 

neuron “predicts” the sensory inputs in the sense that its firing correlates with them; more specifically, a 

spike produced by a neuron leads to a subtraction of the expected input of a target neuron, which is the 

input happening now, or possibly if we incorporate conduction delays, what will be happening after a 

fixed delay. This is not the kind of prediction implied by an anticipatory postural adjustment: if I change 

my posture in this way, then it will be easier to move backwards in the hypothetical event that my balance 

is challenged. 

In fact, what is useful for the organism is not literally to predict what will happen next, but rather what 

might happen next, conditionally on the actions I can do, so that I can select the appropriate action. But 

this requires to manipulate the model. For example, to select an action requires instantiating the internal 

model with several possible values of action, then to calculate the expected sensory variables. But this 

contradicts the proposition that neurons encode the “causes” of current sensory signals: to manipulate the 

model, encoding neurons would then have to be somehow disconnected from the sensory stream. 

Technical work on predictive coding has focused exclusively on the technical senses of prediction and 

coding (correspondence), and thus there is no empirical evidence that such codes might allow the 

organism to form predictions in a broader sense, nor is there any indication of how a theory based on 

neural coding might in principle explain anticipatory behavior. 

 

3.5. Can neural codes represent structure? 

Thus, the kind of representation of the world useful for adapted behavior is a structured internal model. 

Can neural codes possibly represent that structure? Memories and percepts are thought to be encoded by 

cell assemblies. In its basic and most popular form, a cell assembly is simply a specific subset of all 

neurons. When neurons of a cell assembly activate, the corresponding percept is formed (possibly 

indirectly by the activation of target neurons). This is the basic assumption of associative neural models of 

memory (Tonegawa et al., 2015): retrieving a memory consists in triggering activity in part of the 
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memory-specific cell assembly (or “engram cells”), which then leads to the activation of all neurons in the 

assembly. 

One problem with cell assemblies, in this simple form, is that they are unstructured, and therefore they 

cannot represent structured internal models. The cell assembly model is analog to the “bag of words” 

model in text retrieval, where a text is represented by its set of words and all syntax is discarded. In 

essence, a cell assembly is a “bag of neurons”. This causes a problem to represent not just the lawful 

structure of the world, but also the structure of any given perceptual scene. Consider for example the 

simple visual scene depicted in Fig. 5. There is Paul, a person I know, wearing a new shirt, driving a car 

(Fig. 5). What is important here is that a scene is not just a “bag of objects”: objects have relationships with 

each other, and there are many possible different relationships. For example there is a car and there is 

Paul, and Paul is in a specific relationship with the car, both a physical relationship (a particular posture 

within the car) and a functional relationship (driving it). Some of my behavior depends on identifying 

these relations, since for example I can talk about them, and so if behavior relies on neural codes, then 

those codes should represent relations, not just the pixels of the image. 

But cell assemblies cannot represent these relations. Suppose there is a cell assembly that encodes “Paul” 

and another one that encodes “car”. To encode the driving relation between Paul and the car, one would 

need a cell assembly that encodes “driving”, but that assembly should also somehow refer to the two 

assemblies representing Paul and the car, and this is something that cannot be done with an unstructured 

bag of neurons (mathematically, one would need a labeled graph and not just a subset of nodes). 
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Figure 5. Perceptual scenes are highly structured. For example, there is Paul (person I know), driving a car, 

and wearing a new shirt. Representing this scene by the firing of neural assemblies raises two issues: 1) it 

may be difficult to split active neurons into the correct assemblies (superposition catastrophe), and more 

importantly 2) the structure of the scene (relations shown by arrows) cannot be represented in this way. 

This is related to the “binding problem”, although broader. If it is true that any given object is represented 

by the firing of a given assembly of neurons, then several objects should be represented by the firing of a 

bigger assembly of neurons, the union of all assemblies, one for each object. Several authors have noted 

that this may lead to the “superposition catastrophe” (von der Malsburg, 1999), i.e., there may be different 

sets of objects whose representations are fused into the same big assembly. One proposition is that the 

binding problem could be solved using retinotopic position as an object label, i.e., neurons do not encode 

features but the conjunction of feature and retinotopic position (Kawato, 1997). However, this objection 

does not address the broader point, which is that cell assemblies encode objects or features to be related, 

but not the relations between them. In fact, it is known that current connectionist models, which are 

designed to optimally implement the idea that features are represented by the activity of one or several 

cells, cannot be trained to detect very simple relations between shapes in an image (Ricci et al., 2018). 

The binding problem has led several authors to postulate that synchrony is used to bind the features of an 

object represented by neural firing6 (Singer, 1999; von der Malsburg, 1999). This avoids the superposition 

catastrophe because at a given time, only one object is represented by neural firing. Synchrony is indeed a 

relation between neurons (mathematically, an equivalence relation). There are a few other examples in 

the neuroscience literature where synchrony is used to represent relations, although they are not usually 

cast in this way. One is the Jeffress model of ITD coding (Jeffress, 1948) (Figure 6A). In that model, 

neurons receive inputs from monaural neurons on the two sides, with different conduction delays. When 

input spikes arrive simultaneously, the neuron spikes. Thus, the neuron spikes when the two acoustical 

signals at the two ears are such that SL(t) = SR(t-d), where d is the conduction delay mismatch between the 

two ears. Physically, this corresponds to a sound source placed at a position such that it produces an ITD 

equal to d. In this model, the neuron’s firing indicates whether signals satisfy a particular sensory law. 

                                                                 
6
 This proposition remains controversial, because it is unclear whether synchronous firing across distant 

brain areas has causal powers (Merker, 2013) (see next part). 
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Figure 5. Neural representation of structure (adapted from Brette (2012)). A, The Jeffress model of sound 

localization. The sound arrives at the two ears with delays dL and dR. It is then transduced into spike trains 

that arrive at a binaural neuron with delays L and R. Synchrony occurs when dR - dL =L - R, making the 

neuron fire. B, The synchrony receptive field. The response of a neuron to a stimulus is described as filtering 

of the sensory signal S through the receptive field N, followed by spiking. The synchrony receptive field of two 

neurons A and B with different receptive fields NA and NB is defined as the set of stimuli that elicit 

synchronous responses in these neurons. 

This interpretation of the model has been generalized with the concept of “synchrony receptive field” 

(Brette, 2012), which is the set of stimuli that elicit synchronous responses in a given group of neurons 

(Fig. 5B). One considers two neurons A and B which convert their time-varying inputs into precisely timed 

spike trains, where their inputs are seen as transformed versions NA(S) and NB(S) of the stimulus S (NA 

and NB are fixed and correspond to the receptive fields of the neurons). Synchrony between A and B then 

reflects (“encodes”) the sensory law NA(S) = NB(S). This framework has been applied to pitch perception 

(Laudanski et al., 2014) and to sound localization in realistic environments (Goodman and Brette, 2010; 

Benichoux et al., 2015). 

However, although synchrony can represent relations, neither binding by synchrony nor synchrony 

receptive fields solves the general problem (even theoretically), because only one type of relation can be 

represented by synchrony, and a symmetrical one: does Paul drive the car, or does the car run over Paul? 

The fact that sentences can represent relations motivates the idea that the temporal structure of neural 

activity (e.g. the sequence of activated neurons, much like a sequence of words) could perhaps provide the 
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adequate basis for structured neural representations (Buzsáki, 2010). But this possibility remains 

speculative, and in particular it remains to be demonstrated that such hypothetical structures have the 

quality of representations that the brain can manipulate. 

 

4. The causal structure of the coding metaphor 

In the previous parts, I have argued that neural coding theories generally relie on the representational 

sense of the metaphor, the idea that neural codes are symbols standing for properties that the brain 

manipulates, but no evidence has been provided that this sense is valid. Worse, there is empirical evidence 

and theoretical arguments to the contrary. 

Here I focus on a deeper problem with the neural coding metaphor. A striking characteristic of this 

metaphor is that it is a way to think about the brain independently of its causal structure. When we say for 

example that neurons encode the location of sounds, we talk about the activity of neurons without making 

any reference to the result of that activity, or to the system of which the neurons are a component. I now 

examine the implications of this fact. 

 

4.1. The dualistic structure of the coding metaphor 

The coding metaphor has a dualistic structure. It structures the function of the brain into two distinct and 

dual components: the component that encodes the world into the activity of neurons, and the dual 

component that decodes that activity into the world, or into actions in the world. For example: 

“Information that has been coded must at some point be decoded also; One suspects, then, that somewhere 

within the nervous system there is another interface, or boundary, but not necessarily a geometrical surface, 

where 'code' becomes 'image.'” (Somjen, 1972); “interpretation of the encoded information, typically 

consisting of its recoding by a higher-order set of neurons or of its "decoding" by an effector” (Perkel and 

Bullock, 1968); “A stimulus activates a population of neurons in various areas of the brain. To guide 

behavior, the brain must correctly decode this population response and extract the sensory information as 

reliably as possible.” (Jazayeri and Movshon, 2006); “the brain typically makes decisions […] by evaluating 
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the activity of large neuronal populations” (Quian Quiroga and Panzeri, 2009). “Ideal observers” used in 

many studies implement this dual decoding brain. 

Using the coding metaphor does not necessarily mean believing in dualism of body and mind7, but its 

dualistic structure has important consequences when it comes to understanding function. The two dual 

components (encoding/decoding) are indistinguishable in behavior, because no behavior involves just 

one of them. How then is it possible to attribute function to neural codes? How is it possible to draw 

conclusions about the neural basis of behavior from properties of neural codes, independently of the 

system in which the neurons are embedded? This is only possible by making an additional assumption, 

namely that the encoding component has a function by itself (representing the inputs), somehow 

assigning the status of organ to a part of the nervous system. But there is no indication that the brain can 

be functionally decoupled in this way: neuroanatomy rather seems to invalidate this hypothesis. 

To illustrate this point, I will now discuss a concrete biological example. Paramecium is a unicellular 

organism that swims in stagnant fresh water using cilia and feeds on bacteria. It uses different kinds of 

sensory signals, including mechanical signals to avoid obstacles and chemical signals to localize food 

(Jennings, 1906). To a first approximation, it alternates between straight courses and sudden random 

changes in direction (Fig. 7A). It turns out that each change in direction is triggered by a spike produced 

by voltage-gated calcium channels (Fig. 7B) (Eckert, 1972). To find a chemical source, Paramecium uses a 

simple method: when concentration decreases, the membrane is depolarized by chemical receptors and a 

spike is produced (with some stochasticity), triggering a change of direction (similar to chemotaxis in E. 

Coli) . This is of course a simplified description of Paramecium physiology and behavior, but for the sake 

of the argument we shall consider an organism that functions in this simple way. 

                                                                 
7
 Nonetheless, the resemblance with Cartesian dualism is hard to miss. Indeed, Cisek (1999) argues that 

this dualistic structure has been inherited from Cartesian dualism, specifically that computationalism has 
replaced the non-physical mind by a mechanistic cognition, while keeping the architecture unchanged 
(perception-cognition-action). 
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Figure 7. Spatial cognition in Paramecium, a “swimming neuron”. A, Paramecium finds a chemical source by 

switching to a new random direction when concentration decreases. B, Each direction change is triggered by 

an action potential, which transiently inverts cilia beating through a calcium pathway (adapted from (Eckert 

and Naitoh, 1970)). 

Thus, Paramecium is a sort of swimming neuron. Spiking activity varies lawfully with sensory signals 

(concentration), and therefore encodes them in the same sense as a visual cortical neuron encodes visual 

signals. Just as for sensory neurons of the brain, we may argue that if the organism can navigate efficiently 

in its environment, then the spikes must contain information about that environment. Thus, it seems that 

the coding metaphor applies equally well to this swimming neuron as to any typical case in neuroscience. 

Let us know think about functional questions. As an organism, Paramecium may have goals, for example 

to find food. We may hypothesize that it achieves this goal efficiently, for example by finding food as 

quickly as possible. To this end, sensory signals must be transformed into spikes in a specific way, which 

depends both on the goal (to move towards or away from a source, to look for food or to sleep, or to look 

for a mate) and on the effect of spikes on the organism’s actions. Thus, there is a way to organize this 

system so that it achieves its function appropriately, which determines the transformation of inputs into 

spikes, i.e., the neural code. 

But if we now think of the neural code independently of the organism and environment that host it, we 

draw different conclusions. If the function of this neuron is to encode its input, then we may hypothesize 

that it achieves this function efficiently. This prescription determines a neural code that is specified by the 

statistics of inputs. Here the code depends neither on the goals of the animals nor on the effect of spikes 

on the organism’s actions. It follows that this efficient code does not match, in general, the neural code 
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that is adapted for the organism’s goal. This mismatch occurs because function can be meaningfully 

ascribed to the organism as a system, but not necessarily to the components of this system. 

This sensorimotor system is arguably much simpler than the brain, nevertheless it demonstrates that the 

function of neurons cannot be meaningfully framed in terms of coding just because they respond to 

sensory stimuli. There is no indication that the brain is special in that it can be meaningfully separated 

into two dual components with independent functionality. 

 

4.2. Coding vs. causing 

The Paramecium example highlights the fact that the neural coding metaphor is a way to think about the 

brain that is disconnected from its causal structure. Yet by postulating that neural codes are 

representations, we imply that these codes have a causal impact on the brain. This is also the case when 

neural codes are considered simply as transformations of inputs rather than explicit representations, as in 

Perkel and Bullock (1968): “The problem of neural coding is defined as that of elucidating the 

transformations of information in the nervous system, from receptors through internuncials to motor 

neurons to effectors”. But does coding implies causing? 

Consider for example the BOLD signal, a property of blood used for functional brain imaging because it 

covaries with neural activity. Thus, the BOLD signal encodes visual signals in the same technical sense that 

the firing of neurons encodes visual signals. For example, one can “decode” the image from this signal 

(Naselaris et al., 2009). Yet, visual perception is not caused by the BOLD signal, which is why we do not 

consider that it is an internal representation used by the brain. Thus, not all coding variables have causal 

powers. 

Consider the firing rate vs. spike timing debate (Kumar et al., 2010; Brette, 2015). This debate is generally 

formulated in the following way: “does the brain use a firing rate code or a spike timing code?”. As the 

previous example illustrates, this is a largely irrelevant question because it focuses on correlations 

between stimuli and observables. We may as well ask: “does the brain use the BOLD code?”. The relevant 

question is rather whether those observables have a causal role in the activity of the brain, and this 

involves a different set of arguments and answers (see Brette (2015) for a discussion). To see why, 
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consider a sensorimotor system whose function is well understood in relation to its electrical activity: the 

heart (Fig. 8). The heart operates like a pump to circulate blood in two phases: the two atria contract, 

pushing blood into the ventricles (diastole); then the two ventricles contract, pushing blood into the 

pulmonary arteries (systole). These contractions are triggered by excitable cells in atria and ventricles. 

For the heart to operate as a pump, cells in the two atria must spike synchronously, but out of phase with 

cells in the two ventricles. But the heart also responds to sensory stimulation. For example, the heart beats 

at a faster pace when we run. This means that the excitable cells of the heart encode running speed in 

their firing rate, in the technical sense. If we now look at coding properties of these cells, we find that: 1) 

firing rate is sensitive to running speed, 2) cells fire regularly, 3) spike timing is not reproducible between 

trials, 4) spike timing (absolute or relative) carries no information about the stimulus beyond the rate. 

Thus, we would conclude that the heart uses a rate code. Yet, the temporal coordination of spikes is 

critical in this system; in fact, it is life-critical. This paradox arises because the neural coding metaphor 

totally neglects the causal effect of spikes. 

 

Figure 8. Operation of the heart: atria simultaneously contract, triggered by synchronous firing of excitable 

cells, then ventricles simultaneously contract, pushing blood into the lungs. 

Thus, if we want to describe the operation of the brain in terms of neural coding, the relevant question is 

whether the causal structure of neural codes is congruent with the causal structure of the brain. 

 

4.3. Causal powers of coding variables 

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0140525X19000049
Downloaded from https://www.cambridge.org/core. Lawrence Livermore National Lab Library, on 13 Nov 2019 at 19:58:01, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0140525X19000049
https://www.cambridge.org/core


 33 

The causal structure of the brain is sketched on Figure 9A. At a coarse description level, the brain is a 

dynamical system coupled to the environment by circular causality. At a finer description level, the brain 

is itself made of neurons, which are themselves dynamical systems coupled together. To a first 

approximation, the coupling is mediated by spikes, which are timed events. 

 

Figure 9. Causal structure of brain and neural codes. A, The brain is a distributed dynamical system made of 

interacting neurons, which is coupled to the environment by circular causality. A coding variable is a 

property of neural activity, which is implicitly assumed to have a causal effect on the brain. B, Neural codes 

are linked together and with the world by linear causality. 

Consider the proposition “the firing rate of neuron A encodes the location of a sound source”, 

corresponding to some empirically observed correlation. The implication that this information is decoded 

by the brain relies on the presupposition that the coding variable “firing rate of neuron A” causally 

influences the future activity of the brain. Spikes, of course, have causal effects on the brain. But a neural 

coding variable (“firing rate of neuron A” or “relative activity of two neural populations”) is a particular 

measurement of spiking activity, and the question is whether that particular measurement has causal 

powers. 

Empirically, a coding variable is an aggregate variable based on measurements of spiking activity over 

some time, space and possibly trials. An example of integrating over trials (and time) is a neuron that 

responds specifically to pictures of Jennifer Anniston in various poses (Quiroga et al., 2005). But only on 

average: the coding variable is the median number of spikes across trials between 300 and 1,000 ms after 

stimulus onset. On a given trial, the neuron might not be firing at all. Unless the subject was not perceiving 
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the actress in those trials, this implies that this neuron cannot encode the percept “Jennifer Anniston” in 

the sense of causing the percept. Rather, its firing correlates (on average) with the presentation of Jennifer 

Anniston pictures – which is already a notable fact. Perceptual representations cannot be based on 

averages; percepts are experienced now, not on average. Neural codes based on averaging over trials do 

not have causal powers (see also (Gomez-Marin and Mainen, 2016)). In the same way, a firing probability 

(one abstract way to define a neuron’s firing rate) does not have causal powers8; only the occurrence of 

firing does. 

An example of integrating over space (and time) is when we propose that the position of a sound source is 

encoded by the difference in total activity between the two symmetrical inferior colliculi (Grothe et al., 

2010). This coding variable indeed varies when source position is changed (Thompson et al., 2006). Does 

it mean that it has causal powers, i.e., that it determines sound localization behavior? It seems implausible, 

first as previously discussed because it also varies with other properties of sounds, second because 

electrical stimulation in the inferior colliculus triggers orienting responses which vary with the place of 

stimulation, while stronger stimulation results in orienting responses that engage a larger part of the body 

(one pinna, both pinnae, and eyes, in order of recruitment) (Syka and Straschill, 1970). Thus, there is no 

guarantee that a coding variable obtained by integrating over neurons has causal powers. 

But the key difficulty is time. The course of a dynamical system is determined by its current state, which is 

characterized by state variables such as membrane potential and the state of ionic channels. Spikes, on the 

other hand, are events (something happening to the system) and not properties (some characteristic of 

the system). Thus, spiking activity is not something defined at any point in time, which could give it the 

causal role of a state variable, but something that is measured over some predefined period of time (in the 

first example, 300 to 1000 ms after stimulus onset). Empirically, a neural coding variable is necessarily 

anchored to the temporality of the experiment (some window of time after the onset of the stimulus). 

Once we have anchored variables in time, all possibility of physical interaction between coding variables 

disappears: if variables X and Y are defined over two different time windows T1 and T2, then there cannot 

be causal influence in both directions (XY and YX). But neurons mutually influence themselves over 

timescales of a few milliseconds, without waiting for the coding variable to be defined, or for a stimulus to 

                                                                 
8 Except if the law of large numbers is used. This requires a number of assumptions, see Brette (2015). 
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be presented. Neural codes abstract time away, but temporality is critical to the operation of a dynamical 

system. 

 

4.4. Causal structure of neural codes 

If neural coding variables are anchored in time, then the only possible causal structure linking coding 

variables is a linear sequence of transformations (Fig. 9B). This is implicit in Perkel and Bullock’s (1968) 

definition of neural coding (“transformations […] from receptors through internuncials to motor neurons to 

effectors”). This linear structure is also implicit in any claim that a stimulus is encoded, then decoded: 

cognition follows a linear causal flow9, from stimulus to perception to action (Hurley, 2001). In such 

descriptions, the temporality of the physical system has disappeared, and has been replaced by the 

discrete temporality of an algorithm, which is disconnected from physical time. In other words, this is an 

algorithmic description. But as van Gelder (1995) pointed out, dynamical systems cannot in general be 

mapped to algorithmic descriptions10.  

 

Figure 10. The causal structure of neural coding metaphor is that of dominoes (A), but the causal structure 

of the brain rather resembles that of a tent (B). 

The coding metaphor tries to match the causal structure of dominoes to the causal structure of a tent, 

where the states of different elements are co-determined (Fig. 10). In addition to the coupling of neurons, 

the brain itself is coupled to its environment, i.e., there is circular and not linear causality (Fig. 9A). As 

Dewey (1896) pointed out more than a century ago: “the motor response determines the stimulus, just as 

truly as sensory stimulus determines the movement.”. Many other authors in biology, psychology, 

philosophy and robotics have argued that perception is not a one-way process but an interaction with the 

                                                                 
9
 Despite the explicit incorporation of feedback, hierarchical predictive coding still adheres to this general 

scheme, where stimulus is transformed into coding variables, which are then presumably used by some 
other process. 
10 A notable exception being, of course, a computer executing an algorithm. 
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environment (Powers, 1973; Gibson, 1979; Brooks, 1991; O’Regan and Noë, 2001; Ahissar and Assa, 

2016). This makes the proposition that neural activity encodes stimuli questionable. In fact, it makes the 

very notion of stimulus questionable, as it seems to give no role for spontaneous activity other than noise 

(Deco et al., 2011), when autonomous activity is central to the organization of behavior. As a theory of 

cognition, the neural coding metaphor seems to embrace the most basic form of behaviorism11. 

 

5. Conclusion 

5.1. Summary 

When I say that the heart is a pump, I propose a function for the heart (to circulate blood) and 

mechanisms by which blood is circulated; I propose specific ways in which elements of the heart interact 

by identification with elements of a pump. In effect, the pump is a model of the heart. A metaphor is not 

just words arbitrarily chosen to designate an object: it is a model of the object (Lakoff and Johnson, 1980), 

and as such it deserves scrutiny as any other model in science. Is coding a good model of brain function? 

There are three aspects of the coding metaphor: correspondence, representation and causality. Technical 

results are based on the first aspect, but their interpretation and claimed significance draw on the two 

other aspects which are not subject to the same scrutiny. Many neural coding theories rely on the idea that 

the brain manipulates neural representations of stimulus properties, as if the variable of a neural code 

were a processor register that the brain can store, retrieve and combine arbitrarily, while knowing what 

the variable refers to. But what is the evidence that such neural representations exist, and what is the 

evidence that the brain can manipulate spikes in this way? 

Technically, it is found that the activity of many neurons varies with stimulus parameter, but also with 

sensory, behavioral and cognitive context; neurons are also active in the absence of any particular 

stimulus. A tight correspondence between stimulus property and neural activity only exists within a 

highly constrained experimental situation. Thus, neural codes have much less representational power 

than generally claimed or implied. Behavioral significance is only obtained by making an implicit “linking 

proposition” (Teller, 1984) that relates coding variables and behavior, which takes the form of a “decoder”. 

                                                                 
11 A variation that Gomez-Marin calls “neuralism” (Gomez-Marin, 2017). 
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The decoder, often an “ideal observer”, is a hypothetical abstract construct whose biological basis is 

unspecified and whose existence is unquestioned, even though the decoder must incorporate key 

contextual aspects, including methodological details of the experiment which defines the coding variables. 

Critically, the contextual dependence of neural codes cannot be solved by incorporating contextual 

variables in a broader neural code, because context is precisely what defines the variables. A perceptual 

scene cannot be fully defined as a vector of properties; properties of what? 

The notion of information implied by the coding metaphor is inappropriate to understand perception and 

behavior, because it is information by reference to external symbols (Bickhard, 2009). A more appropriate 

notion is information as organization (Thompson, 1968), namely relations between sensory signals and 

actions, forming a structured internal model. The relation between such structured models of the world 

and neural activity is unclear, but what is clear is that no neural coding theory proposed so far seems 

adequate even in principle. 

Ultimately, the neural coding metaphor is a way to think about the brain that is disconnected from its 

causal structure. The brain is a dynamical system coupled to the environment, and is itself composed of 

coupled dynamical systems (neurons), whose interaction is mediated by spikes, which are timed events. 

The dualistic structure of the metaphor cuts through this organization and decides that one part of the 

brain can be understood independently of the way it interacts with the rest of the brain, and 

independently of the way the brain interacts with the world. More fundamentally, a causal role is 

attributed to coding variables, but this is incoherent because coding variables are extended measurements 

of activity linked to the temporality of experiments; they are not causal variables of the underlying 

dynamical system. In conclusion, the causal structure of neural coding metaphor is incongruent with the 

causal structure of the brain. If neural codes have no causal power, then they cannot form a valid basis of a 

theory of brain function. 

 

5.2. What else, if not coding? 

Since the coding metaphor is so ingrained in neuroscience, how could it be possible to abandon it? What 

could it be replaced with? 
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First of all, that there is no simple substitute for neural coding does not make it a viable option. The neural 

coding metaphor is attractive partly because it resonates with Cartesian philosophy, as pointed out by 

Cisek (1999), and partly because it seems to fit with the computational view of the mind, the idea that 

cognition is the manipulation of symbols that represent properties of objects in the world. But the 

symbols provided by neural codes are not context-free, they are unstructured and they have no causal 

powers. They do not have the quality required by the computational view. Thus, the appeal of the neural 

coding metaphor is illusory. Even if it were possible to map brain activity to computational descriptions, 

neural codes would not provide the adequate mapping. 

Similar arguments have been made against the idea of a genetic code (or genetic program), and the 

alternative route is to adopt a systemic approach (Noble, 2008). The brain is a system; or more accurately 

the brain, body and environment are a system. This approach is precisely what the coding metaphor 

forbids, since it cuts through the system and uncouples its different components. Since it is a dynamical 

system, this view is related to the dynamical view of cognition (Gelder, 1998). But the specific point here 

is not so much that cognition is dynamic, but rather that its neural basis is a dynamical system and must 

be understood as such. It is a special kind of dynamical system, in that it is composed of units (neurons) 

which are also dynamical systems. The causal role of spikes in this system is to mediate coupling between 

these dynamic units. They are transient events that are better understood as actions than as 

representations. A useful analogy then might be collective behavior: social insects are also dynamical 

systems coupled to each other by actions, and the collective behavior they display can be understood in 

terms of self-organization without resorting to the concept of coding (Bonabeau et al., 1997). This view 

should not be mistaken for an argument against representations in general, but more precisely against the 

classical view of representations as encodings. Bickhard (2015) in particular has made a case for 

representations as a form of normativity realized by anticipatory properties of internal processes. 

In terms of neural modeling, this requires considering sensorimotor systems. The necessity of this level of 

analysis has been stressed by a number of authors who have developed alternative views on cognition 

(Maturana and Varela, 1973; Powers, 1973; Gibson, 1979; Brooks, 1991; Bickhard and Terveen, 1996; 

Hurley, 2001; O’Regan and Noë, 2001; Ahissar and Assa, 2016; Pezzulo and Cisek, 2016). Paradoxically, it 

is customary in systems neuroscience to model perceptual abilities by considering only the corresponding 

sensory areas.  We speak for example of the visual system as a set of anatomical structures from the eye to 
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the visual cortex. But the visual system defined in this way is not actually a system, if it is disconnected 

from the elements without which it cannot have any function. It follows that models of perceptual systems 

are in effect not biological models, but chimaeras obtained by attaching a neural model of a sensory area 

to an abstract construct (“decoder”) that maps the activity of neurons to descriptors of behavior, and often 

to an even more problematic abstract construct (“encoder”) that maps stimulus parameters to model 

inputs. This methodology embraces both behaviorism (neural activity is only responses to stimuli) and 

dualism (something else makes sense of neural activity). Instead, I suggest developing models of the full 

sensorimotor loop, “models that behave” (Gomez-Marin, 2017). For example, instead of looking for neural 

codes of sound location, one could look for neural models of auditory orientation reflexes. Measurements 

of neural activity in stimulus-response experiments can be used to constrain and test such models, but 

they do not need to be the output of the model, nor do they need to be a causal variable in the model. To 

be clear, the issue is not about the amount of detail that needs to be incorporated. Models can be 

simplified or idealized, as any model needs to be. The issue is to respect the causal structure of brain and 

behavior, and to see neural activity as what it really is, activity. Action potentials are potentials that 

produce actions, they are not hieroglyphs to be deciphered. 
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