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a b s t r a c t

The Higgs naturalness principle served as the basis for the so far failed prediction that signatures of physics
beyond the Standard Model (SM) would be discovered at the LHC. One influential formulation of the
principle, which prohibits fine tuning of bare Standard Model (SM) parameters, rests on the assumption
that a particular set of values for these parameters constitute the “fundamental parameters” of the theory,
and serve to mathematically define the theory. On the other hand, an old argument byWetterich suggests
that fine tuning of bare parameters merely reflects an arbitrary, inconvenient choice of expansion pa-
rameters and that the choice of parameters in an EFT is therefore arbitrary. We argue that these two in-
terpretations of Higgs fine tuning reflect distinct ways of formulating and interpreting effective field
theories (EFTs) within the Wilsonian framework: the first takes an EFT to be defined by a single set of
physical, fundamental bare parameters, while the second takes aWilsonian EFT to be defined instead by a
whole Wilsonian renormalization group (RG) trajectory, associated with a one-parameter class of physi-
cally equivalent parametrizations. From this latter perspective, no single parametrization constitutes the
physically correct, fundamental parametrization of the theory, and the delicate cancellation between bare
Higgsmass andquantum corrections appears as an eliminable artifact of the arbitrary, unphysical reference
scale with respect to which the physical amplitudes of the theory are parametrized. While the notion of
fundamental parameters iswellmotivated in the context of condensedmatterfield theory, we explainwhy
it may be superfluous in the context of high energy physics.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The naturalness principle has served as an extremely influential
guide to model building in high-energy physics for the past several
decades, notably functioning as the basis for theoretical arguments
in favor of supersymmetry, and for the expectation of discovering
signatures of physics Beyond the Standard Model (BSM) at the
Large Hadron Collider (LHC). The principle has been formulated
variously as a prohibition against “unlikely” fine-tuning of Standard
Model (SM) parameters, a prohibition on delicate sensitivity be-
tween physics at different energy scales, and as the requirement
that all dimensionless parameters in an effective field theory be of
order one unless protected by a symmetry.

The continuing absence of BSM physics up to ever higher en-
ergies, combined with the notorious quadratic dependence of the
physical Higgs mass on heavy scales, entails increasingly strong
violations of naturalness in all of these formulations. There remains
an important open question concerning what to make of this fact.
One possibility is to regard failure of naturalness as “crying out for
explanation” by some deeper theory. 1 Another is to simply accept
failure of naturalness as a brute fact. Still another is to abandon the
Higgs naturalness principle entirely.

In favor of the first view, that failure of naturalness in the SM
remains a special puzzle to be resolved by BSM theories, Giudice
writes, “If the LHC rules out dynamical solutions to Higgs natural-
ness at the weak scale, it does not eradicate the problem: a doctor
who is unable to find the right diagnosis cannot simply declare the
patient healed. Even in post-natural times, the concept of natural-
ness cannot simply be ignored … One way or another, naturalness
will still play a role in the post-naturalness era” (Giudice, 2017).
Thus, on Giudice's view, although we are entering a “post-natu-
ralness” era, failure of Higgs naturalness remains as much a prob-
lem as ever. On the other hand, several voices have urged
1 This characterization of the naturalness problem, in which the Higgs mass is
said in some sense to “cry out” or “scream” for explanation, has been recently
examined at length in (Hossenfelder, 2018).
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abandonment of the naturalness principle itself - at least, as it has
been applied in the cases of the Higgs and of the cosmological
constant, which are closely analogous (Woit, 2014), (Hossenfelder,
2018). Since our discussion below inclines toward this latter point
of view, we wish to acknowledge at the outset that from one
perspective, it may seem all too easy, now that failure of natural-
ness in the Standard Model has been increasingly empirically
confirmed, to join the chorus of voices decrying naturalness.
However, we emphasize that the status of the naturalness principle
itself is far from settled by existing evidence: violation of natural-
ness by the Standard Model 2 does not in and of itself imply that the
fault lies with the naturalness principle since it may be the case, as
Giudice suggests, that failure of naturalness in the SM is simply a
puzzle to be resolved by some BSM theory.

Nevertheless, the naturalness principle's so far failed prediction
of new physics at the LHC motivates careful re-examination of the
arguments that have been advanced in its favor. Here, we probe a
possible point of weakness in the rationale for one influential
formulation of the naturalness principle, which precludes “un-
likely” or “contrived” tuning of the Standard Model's bare param-
eters. 3 We show how this rationale, advanced by some of the
original advocates of the naturalness principle, is grounded in the
notion that there exists a single physically correct, “fundamental”
parametrization for a given Wilsonian effective field theory (EFTs)
in particle physics, such as the Standard Model or quantum elec-
trodynamics. We then revisit an alternative but relatively little-
discussed argument suggesting that fine tuning of bare parame-
ters is unproblematic because it merely reflects an inconvenient
choice of expansion parameters rather than an unlikely coincidence
in need of explanation. We emphasize that this view of fine tuning
appears implicitly to do without the notion of a fundamental
parametrization, and thus to reflect an alternative understanding of
theWilsonian approach to effective field theory. In an effort to flesh
out the details of this alternative view more explicitly, we sketch
one possible interpretation of Wilsonian EFTs and the Wilsonian
renormalization group (RG), according to which no single param-
etrization of the theory counts asmore fundamental than any other,
or as the “true” parametrization of the theory. In this view, a Wil-
sonian EFT is not specified by any single parametrization, but
instead by an entireWilsonian RG trajectory, which specifies a one-
parameter class of physically equivalent parametrizations. Since the
mathematical apparatus of Wilsonian renormalization permits one
to calculate correlation functions, and any observables constructed
from them, using any one of this continuous infinity of parame-
trizations, we argue that the notion of fundamental parameters
may constitute an idle metaphysical supposition. This view reflects
a different formulation and physical interpretation of Wilsonian
EFTs from the one based on fundamental parameters, in that it
differs on the question of how a Wilsonian EFT is mathematically
defined and onwhich parts of the theory's formalism represent real
physical features in theworld. However, we also underscore several
respects in which this approach requires further development
2 As is sometimes noted, there is no sharp division between “natural” and “un-
natural” theories; naturalness is a matter of degree, often associated with the de-
gree of fine tuning or sensitivity to a theory's “fundamental parameters.” Thus, it is
to some degree a matter of taste at precisely what point one takes the SM to have
violated the naturalness criterion.

3 In this discussion, we do not explicitly address alternative formulations of the
naturalness criterion, such as those that preclude delicate sensitivity between
physics at different scales, and those that require dimensionless parameters to be of
order one. For extended philosophical analysis of naturalness in the first sense, see
Williams' (Williams, 2015); for a physicist's perspective on naturalness in this
sense, see Giudice's (Giudice, 2013). For discussion of naturalness in the second
sense, see for example the original article by ’t Hooft, (’t Hooft, 1980), and Wells'
(Wells, 2015).
before it can be said to constitute a mathematically rigorous defi-
nition of quantum field theory.

In our discussion, we emphasize that one way of motivating the
concept of fundamental parameters in high energy physics (HEP)
has been by analogies with condensedmatter physics (CMP), where
the notion of a single fundamental set of parameters associated
with the physical cutoff scale of the theory is more obviously
appropriate. Indeed, this analogy served as a major source of
inspiration for Wilson in the development of his approach to
renormalization. Employing D. Fraser's distinction between
“formal” and “physical” analogies, we argue that the strategy of
motivating naturalness and the concept of fundamental parameters
by analogies with condensed matter theory rests on what may be
an overly physical interpretation of this analogy. On the other hand,
we emphasize that several formulations of naturalness invoking
the concept of fundamental parameters, including Susskind's
original 1979 paper on naturalness, make no reference to the high-
energy/condensed-matter analogy, and that our discussion there-
fore addresses just one possible motivation for the notion of
fundamental parameters in QFT.

Our discussion is outlined as follows. Section 2 establishes several
foundational assumptions about the formal definition of Wilsonian
effectivefield theories thatwill serve to groundour later discussionof
naturalness. Section 3 introduces the formulation of the Higgs natu-
ralness problem as arising from the need for a delicate cancellation
between the bare Higgs mass and its quantum corrections, and in-
troduces two conflicting views of this cancellation: the first view
takes this cancellation as an instance ofmysteriousfine tuning, while
the other sees it as an unphysical and unproblematic artifact of
convention. Section 4 reviews thehistoricalmotivations for imposing
naturalness cited by original proponents of the naturalness principle,
underscoring the reliance of these formulations on the notion of
fundamental parameters. We attempt to state explicitly the core
features of the interpretation of Wilsonian EFTs based on funda-
mental parameters, and consider the status of Higgs fine tuning from
this perspective. Section 5 sketches one interpretation of Wilsonian
EFTs in the absence of fundamental parameters, exploring the notion
that an EFT is specified by its whole Wilsonian RG trajectory, points
along which correspond to physically equivalent parametrizations of
a single model rather than parametrizations of distinct models. We
offer several arguments in support of this alternative view, and
identify points where it requires further development.We show that
from this perspective, Higgs fine tuning is an eliminable artifact
associated with one conventional choice of bare parametrization,
rather than a physical coincidence urgently demanding explanation
by deeper theories. Finally, we consider the implications of this view
for debates about the physical interpretation of quantum field theory.
In Section 6, we review D. Fraser's distinction between “formal” and
“physical” analogies, and specifically between “formal” and “phys-
ical” interpretations of the HEP/CMP analogy, which helps to char-
acterize the difference between the two views of Wilsonian EFT's
considered here. Section 7 is the Conclusion.

2. Foundational assumptions

How is a quantum field theorymathematically defined? This is a
notoriously difficult and controversial question, with the diffi-
culties arising in large part as a consequence of the infinite number
of degrees of freedom described by the theory, and the resulting
infinities that occur in perturbative expansions of QFT amplitudes.
There exist multiple rival research programs, including the alge-
braic and constructive approaches to quantum field theory, that
have attempted in different ways to place QFT on firm mathemat-
ical foundations. However, continuum approaches such as the
algebraic approach are only known to work in contrived and
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unphysical settings - for example, in which the number of space-
time dimensions is less than four - and thus far have had difficulty
incorporating any of the physically realistic QFT's, such as the
Standard Model or quantum electrodynamics, used to describe the
phenomenology observed in accelerators like the LHC. Largely for
this reason, we consider here the alternative approach based on
Wilson's effective field theory approach to renormalization and
quantum field theory, which takes quantum field theories such as
the Standard Model and quantum electrodynamics to be defined
with a finite cutoff, and thereby avoids the problematic infinities
that occur in axiomatic continuum approaches. 4

Beyond the infinities that occur in perturbative expansions,
there is the closely related problem of how to define a quantum
field theory outside the context of perturbation theory. 5 Such
problems are especially salient in the context of low-energy QCD
calculations, where perturbation theory breaks down. To address
both problems, the Wilsonian strategy of defining a QFT with a
finite cutoff is often employed; see for example (Collins, 1984) and
(Montvay & Münster, 1997). As is often emphasized, this strategy
permits one to numerically define the amplitudes of a QFT in a way
that is completely finite and does not rely on the assumption of
small coupling; perturbative expansions are then understood as
generating approximations to these non-perturbatively defined
quantities. In our discussion of naturalness below, we likewise
understand QFT amplitudes to be non-perturbatively defined in
this manner. Since QFTs so defined are generally understood to be
empirically valid only up to some finite physical cutoff scale Lphys,
they are often designated as “effective field theories” (EFT's).
However, as we discuss in later sections, there may be more than
one way to interpret the Wilsonian formalism, and to make use of
this formalism in efforts to give a rigorous definition of QFT - one
based on the assumption that there exists a set of “fundamental
parameters” that serve to uniquely define the EFT, and another that
treats different finite parametrizations on equal footing.

2.1. Wilsonian path integral approach to non-perturbative
calculation of QFT observables

In practice, generating predictions from an EFT proceeds via the
calculation of n-point correlation functions, which can be defined
non-perturbatively via the imposition of a finite cutoff L in the
expression for the path integral. S-matrix elements, cross sections,
pole masses, and other physical quantities can then be constructed
from the correlation functions. The cutoff helps to ensure that all
such quantities are mathematically well-defined, in the sense that
it is possible to assign a definite numerical value to them.

All correlation functions, and any observables built from them,
can be calculated from the Feynman path integral, which is math-
ematically defined via the imposition of a cutoff regulator - e.g., a
hardmomentum cutoff, a smoothmomentum cutoff, or a real space
lattice - and Wick rotation to Euclidean spacetime. Adopting a
4 The virtues and shortcomings of such a cutoff-based approach, as contrasted
with axiomatic, continuum-based approaches such as algebraic quantum field
theory (AQFT) and constructive field theory, have been debated extensively by
Wallace and Fraser in (Wallace, 2006), (Wallace, 2011), (Fraser, 2009), (Fraser, 2011).
Largely for the reasons articulated by Wallace - in particular, the difficulty in
axiomatic approaches of making contact with the empirical success of the Standard
Model - we choose to ground our discussion in a Wilsonian cutoff-based rather
than an axiomatic approach to the formulation of quantum field theory. For tech-
nical discussion of constructive approaches to defining QFT on the continuum, see
for example (Rivasseau, 2014). For philosophical discussion of constructive QFT see
Hancox-Li (Hancox-Li, 2017).

5 For philosophical analysis of approaches to the foundations of QFT based on
perturbation theory, see, for example, the recent work of Miller and J. Fraser (Miller,
2016), (Fraser, 2017).
lattice spacing a for concreteness, which imposes an effective
momentum cutoff L of order 2p

a , the path integral Z ½J� for a theory
with Lagrangian L ðfðxÞÞ in the presence of a classical external
source field JðxÞ is

Z ½J� ¼
ðL
D f e

i

ð
d4x½L ðfðxÞÞ þ JðxÞfðxÞ�

≡
ðYM

i¼1
dfi e

ia4
PM

i¼1
½L ðfiÞþJifi� ;

(1)

where L ðfðxÞÞ is the “bare” Lagrangian of the theory,M ¼ ðL=aÞ4, a
is the lattice spacing on a hypercubic 4-D lattice (note that the time
dimension has now been discretized as well), L is the length of each
edge of the lattice, Ji≡JðxiÞ is a background source field, fi≡fðxiÞ,
and xi≡ðn0a;n1a;n2a;n3aÞ for na2ℤ and � L

2a � na � L
2a, a ¼

0;1;2;3. The lengths a and L function, respectively, as a UV regu-
lator associated with an upper momentum cutoff of L ¼ 2p

a and an
IR regulator associated with lower momentum cutoff 2p

L .
6

In keeping with the Wilsonian approach, the bare Lagrangian L
is taken to consist of all terms consistent with a given choice of
fields f and symmetries; in the casewheref is a scalar field and the
theory possesses f/ - f symmetry,

L ¼
X
n
gnO n

¼ g1
�
vmf

�2 þ g2f
2 þ g3f

4 þ g4f
6 þ g5

�
vmf

�2
f2 þ g6f

8 þ… ;

(2)

where the bare parameters gi can be any real numbers. Here, we
use the term “bare” to refer to any parametrization of the theory of
the form given by the path integral (1) and Lagrangian (2); that is, a
“bare” parameter on our usage is a parameter appearing in the
Lagrangian of the path integral, whatever the chosen value of L. 7

The calculation of physical quantities such as pole masses and
cross sections from Z ½J� is mediated via the calculation of n-point
Green's functions GðnÞðx1;…;xnÞ, which encode the full dynamics of
the QFT:

GðnÞðx1;…; xnÞ≡

ðL
D f fðx1Þ… fðxnÞ e

i

ð
d4x

X
n
gnO n

ðL
D f e

i

ð
d4x

X
n
gnO n

¼ ð�iÞn
Z ½0�

dn

dJðx1Þ … dJðxnÞjJ¼0Z ½J�:

(3)

For example, the physical or “pole” mass mp is calculated from
the bare parameters as the lowest-lying pole of the Fourier trans-
form of the two-point function,
6 For the purposes of our discussion, only the UV regulator awill be relevant; the
IR regulator L will not play a role.

7 We should acknowledge here a distinct use of the term “bare” within the
context of Wilsonian renormalization, in which it is only the path integral
parametrization for some particular choice of cutoff L0, associated with the physical
cutoff scale of the theory, that constitutes the “bare” parametrization. Parametri-
zations related to this parametrization via Wilsonian RG transformations are
designated on this usage as “renormalized.” This usage reflects the presence in
statistical mechanical or condensed matter applications of a sharply defined
physical cutoff and fundamental bare parameters associated with a real physical
lattice. By contrast, the usage of “bare” employed here, in which bare parameters
absorb theL dependence of Z½J�without being attached to any particular value of L,
is consistent with perturbative renormalization schemes, in which the bare pa-
rameters are also not uniquely attached to any single value of L.



10 There is a second popular approach to non-perturbative renormalization, which
we do not discuss here, based on variation of an IR rather than a UV cutoff, and
describing the scale dependence of parameters in the so-called effective average
action, which is governed by the Wetterich equation (Wetterich, 1991), (Wetterich,
1993), (Berges, Tetradis, & Wetterich, 2002), (Delamotte, 2012).
11 See, e.g., (Srednicki, 2007), Ch. 29., or (Peskin & Schroeder, 1996), Ch. 12 for
details of this perturbative analysis.
12 We note that there exists a separate formulation of the Higgs fine tuning that
concerns the running MS Higgs mass rather than the bare Higgs mass. While the
formulation considered here concerns the relationship between the Higgs bare
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Gð2Þðx1; x2Þ ¼
ðL

d4p

ð2pÞ4
eipðx1�x2Þ

2664 iZðg;LÞ
p2 �m2

pðg;LÞ

þ
ðL

�4m2
p

dm
rðmÞ

p2 � m2

3775; (4)

where rðmÞ is the so-called spectral density function, g≡ðg1; g2; g3;
…:Þ; the symbol� in the lower limit� 4m2

p of the second integral is
intended to signal the possibility of bound states below the
threshold energy-squared for multi-particle production ð2mpÞ2.
The field renormalization Zðg;LÞ is defined as Zðg;
LÞ≡

���hlð0Þ���bfð0Þ���Uij2, where jlð0Þ〉 is a one-particle energy eigen-
state of the full interacting theory with zero spatial momentum.
The S-matrix element for 2 / n� 2 particle scattering can be
calculated from Green's functions via the LSZ reduction formula:

Sðp1;…; pn; g;LÞ ¼ ~G
ðnÞðp1;…; pn; g;LÞ ~G

ð2Þ;�1

ðp1; g;LÞ…~G
ð2Þ;�1ðpn; g;LÞ: (5)

This in turn can be used to infer the differential and total cross
section of the process in question. Note that the above relations are
non-perturbative, and that all quantities defined are finite and in
principle calculable from first principles.

2.2. The Wilsonian renormalization group

The Wilsonian renormalization group (RG) is a set of trans-
formations on the parameters g and L of Z ½J�, that leave the value
of Z ½J� exactly unchanged. From this it follows that the values of
physical quantities such as pole masses and (mod-squared) S-ma-
trix elements computed from Z ½J� remain exactly unchanged un-
der these transformations. 8 Thus, theWilsonian RG determines the
cutoff dependence gðLÞ that must be ascribed to bare Lagrangian
parameters g in order that Z ½J� remain invariant. The process of
transforming from a bare parametrization ðgðLÞ;LÞ at one cutoff
scale to another bare parametrization ðgðL0Þ;L0Þ at a slightly lower
cutoff scale is implemented by splitting the path integral into an
integration over field modes fL0 with momenta less than or equal
to some lowered cutoff L0 ¼ L� dL, and an integration over field
modes fdL ¼ fL � fL0 with momenta greater than L0 but less than
L, and then explicitly performing the latter integral:

Z ½0� ¼
ð
D fL e

i

ð
d4x L ðfL; gðLÞÞ

¼
ð
D fL0

0B@ð
D fdLe

i

ð
d4x L ðfL þ fdL; gðLÞÞ

1CA
¼

ð
D fL0e

i

ð
d4x L ðfL0 ; gðL0ÞÞ

(6)
8 The “mod-squared” in parentheses is intended to signal that S-matrix elements
possess an unphysical global phase, so are likely not themselves directly physical.
However, squared S-matrix elements, which are used to compute the cross sections
measured in accelerators, do not depend on this global phase.

9 Here we have assumed that in the expressions L ðfL0 ; gðL0ÞÞ and L ðfL; gðLÞÞ,
L ðfL; gÞ is the most general function of f allowed by the symmetries of the theory;
thus, changes to the Lagrangian induced by the Wilsonian RG flow are determined
entirely by changes in the coefficients g specified by the RG trajectory gðLÞ.
where ei
R
d4x L ðfL0 ;gðL0ÞÞ≡

R
D fdLe

i
R
d4x L ðfL0 þfdL;gðLÞÞ. 9 The effect of

integrating over the field modes fdL is to alter the values of co-
efficients of the Lagrangian, yielding a new bare Lagrangian
L ðfL0 ; gðL0ÞÞ, which is a function of the fields with lowered cutoff
L0 with altered bare coefficients gðL0Þ. Iterating this procedure by
successively integrating over infinitesimal momentum shells, one
obtains the continuous functional dependence gðLÞ of the infinite
set of bare parameters on the adjustable cutoff parameter L, where
gðLÞ ¼ ðg1ðLÞ; g2ðLÞ; g3ðLÞ; …:Þ. This functional dependence is
determined by an infinite set of coupled first-order differential
equations,

L
dgiðLÞ
dL

¼ biðgðLÞ;LÞ (7)

and in initial conditions gðL0Þ≡ðg1ðL0Þ; g2ðL0Þ; g3ðL0Þ;…:Þ speci-
fying the values of all bare parameters at some particular scale L0.
The beta functions bi can in principle be calculated from the path
integral exactly by solving the Wilson-Polchinski equation, which
serves as the basis for one approach to the non-perturbative or
“exact” renormalization group (Polchinski, 1984), (Rosten, 2012). 10

Assuming that the bare couplings are sufficiently small, one may
also calculate the functions bi perturbatively, Taylor expanding the
exponential of the interaction term in the Lagrangian and then
using Wick's Theorem (or its path integral equivalent) to perform
the integration over the high-energy field modes fdL, treating the
low-energy modes fL0 as external fields. 11

3. The Higgs fine tuning naturalness problem

The original and perhaps most cited formulation of the Higgs
fine tuning naturalness problem 12 rests on the observation that the
leading contribution to the perturbative one-loop expansion of the
(squared) Higgs polemassm2

p in terms of bare SM parameters gives,

m2
p ¼ m2

0 þ dm2

¼ m2
0 �

y2t
8p2L

2
SM þ…

¼ L2
SM

�
~m0 �

y2t
8p2

�
þ…

(8)

where yt is the top quark Yukawa coupling, LSM the Standard
Model's physical cutoff (that is, the scale at which it ceases to be
empirically valid), 13 m2

0 is the bare Higgs mass, and ~m2
0≡

~m
2
0

L2
SM

is the
dimensionless bare Higgs mass in units of LSM . 14 The corrections
mass (in a cutoff-based scheme) and the Higgs pole mass, the MS formulation
concerns the relationship between the MS scalar mass in an EFT where fields much
heavier than the scalar have been integrated out, and the MS scalar in an EFT where
these fields occur explicitly in the Lagrangian; see, e.g., (Skiba, 2010). We defer
detailed consideration of this formulation to future work.
13 At leading non-trivial order perturbation theory, one can take yt to be either a
bare coupling or a renormalized coupling, since the corresponding expressions only
differ at higher orders in perturbation theory.
14 See, for example, (Martin, 2010), for a formulation of the Higgs naturalness
problem along these lines.
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dm2 also receive smaller contributions from lighter quarks, which
can be neglected in the approximation where only the dominant
correction to the Higgs bare mass is considered. By contrast with all
other particle masses in the Standard Model, whose quantum
corrections depend logarithmically on the cutoff, the Higgs mass
undergoes quantum corrections that depend quadratically on the
cutoff. Measurements at the LHC have further determined that
m2

p ¼ ð125 GeVÞ2, and that ð1� 103 GeVÞ2(L2
SM(ð1019 GeVÞ2.

While the lower limit ð1� 103 GeVÞ2 has been set on the basis of
LHC measurements, the upper limit, equal to the Planck scale, is set
by theoretical expectations regarding the scales at which quantum
gravitational effects can no longer be ignored. Together, these facts
imply that the bare Higgs mass m2

0 must be “fine tuned” in order to
recover the measured value of the physical, pole mass of the Higgs.
The minimal degree of fine tuning required to recover the
measured pole mass m2

p � O ð104Þ increases with the empirically
established lower bound on L2

SM . At the lower limit of the allowed
range for LSM, LSM ¼ 1� 103 GeV, the relation (8) gives,

O
�
104

�
¼ O

�
106

�
� O

�
106

�
while at the upper end of this range, LSM ¼ 1019 GeV, it gives

O
�
104

�
¼ O

�
1038

�
� O

�
1038

�
:

That is, the “best-case” scenario, where LSM ¼ 1� 103 GeV,
requires that m2

0 and dm2 cancel to one part in 102 to 103. The
“worst-case” scenario, where LSM ¼ 1019 GeV, requires that m2

0
and dm2 cancel to one part in 1034. For many physicists, cancella-
tion to one part in 102 - 103 already begins to be problematic.

There exist two conflicting attitudes toward the delicate
cancellation betweenm2

0 and dm2 required to recover themeasured
value of m2

p for large values of LSM:

� This cancellation requires an “unlikely” “conspiracy” between
the bare Higgs mass and the bare parameters that enter into the
calculation of dm2. The fine tuning problem can be understood
as the need to explain the origin of this cancellation in terms of
deeper physical theories beyond the Standard Model.

� Neitherm0 nor dm2 is directly measurable even in principle and
these quantities are therefore not physical. This opens the pos-
sibility that the delicate cancellations are mere artifacts of
mathematical representation, suggesting that the appearance of
a coincidence in urgent need of explanation may therefore be
illusory.

We review arguments in favor of the first view in more detail in
Section 4, which served to establish naturalness as guide to model
building in particle physics. The second view has had substantially
fewer proponents in the literature on naturalness, but has been
advanced in the work of Wetterich and Bianchi/Rovelli (Bianchi &
Rovelli, 2010), (Wetterich, 1984), (Wetterich, 2012). Within the
philosophical literature, Williams has more recently adopted this
deflationary view of fine tuning formulations of the Higgs natu-
ralness as grounds for characterizing naturalness in terms of inter-
scale autonomy rather than fine tuning (Williams, 2015). Our dis-
cussion here will aim to show how the tension between these two
views hinges on whether one physically interprets high-energy
EFT's such as the Standard Model as coming equipped with a
unique set of “fundamental parameters.”
4. Motivating naturalness: Wilsonian effective field theories
(EFTs) and “fundamental parameters”

In this section, we examine the role of the concept of funda-
mental parameters in motivating the introduction of the natural-
ness principle. This notion reflects a particular understanding of the
Wilsonian approach to renormalization, which takes a Wilsonian
EFT to be mathematically defined with a cutoff given by its physical
cutoff, and with a specific set of values for its bare parameters,
which are understood to be the unique, physically correct param-
eters of the theory. Below, we will discuss several quotations that
reveal the essential aspects of this approach to defining Wilsonian
EFTs. In Section 5, we will sketch one alternative possible inter-
pretation of the formalism of Wilsonian renormalization, in which
an EFT is not defined uniquely by any single set of values for its bare
parameters, or with a single value of the cutoff parameter L, but
instead by an entire equivalence class of parametrizations associ-
ated with different points along the theory's Wilsonian RG trajec-
tory and different values of L.
4.1. Naturalness and fundamental parameters

In his seminal 1979 article on naturalness, Susskind explicitly
introduces the notion of “fundamental parameters.” He writes,

The need for fundamental scalar fields in the theory of weak and
electromagnetic forces is a serious flaw. Aside from the subjec-
tive aesthetic argument, there exists a real difficulty connected
with the quadratic mass divergences which always accompany
scalar fields. These divergences violate a concept of naturalness
which requires the observable properties of a theory to be stable
against minute variations of the fundamental parameters …

[emphasis ours]
The basic underlying framework of discussion of naturalness
assumes the existence of a fundamental length scale k�1, which
serves as a real cutoff. Many authors have speculated that k

should be of order 1019 GeV corresponding to the Planck grav-
itational length. The basic parameters of such a theory are some
set of dimensionless bare couplings g0 and masses … m0 ¼ m0

k . The
principle of naturalness requires the physical properties of the
output at low energy to be stable against very small variations of g0
and m0. [emphasis ours] (Susskind, 1979).

In identifying a single set of values for the bare parameters as
fundamental, Susskind appears to regard these parameters as
serving to define aWilsonian effective field theory, and to regard all
other parametrizations of the theory's amplitudes as derived from
this underlying parametrization, and as less fundamental in this
sense. Here, the physical cutoff k of the Standard Model is under-
stood to be an essential part of the mathematical specification of
the theory.

Schwartz's recent popular textbook on quantum field theory
interprets Susskind as suggesting that the fundamental bare pa-
rameters of the Standard Model are physical, and states that “much
of our intuition for fine-tuning and naturalness comes from
condensed matter physics.” Adopting a Wilsonian formulation of
the Standard Model, he writes,

Suppose the theory were finite, for example if it were UV
completed into string theory, or more simply if it were the
effective description of some condensed matter system (in
which case L might represent some parameter of the micro-
scopic description, such as the inverse atomic spacing). Then the
baremassm and cutoffLwould be physical. In this situation, we



J. Rosaler, R. Harlander / Studies in History and Philosophy of Modern Physics 66 (2019) 118e134 123
could take theL2 divergence… literally.… If the scalar were the
Higgs whose pole mass ismpz125 GeV, andLwere of the order
of the Planck scale, L � Mpl � 1019 GeV, we would need m2 ¼
ð1þ 10�34ÞL2. This is called fine-tuning. Fine-tuning is a
sensitivity of physical observables (the pole mass) to variation of
parameters in the theory (Schwartz, 2014), Ch. 22.

According to Schwartz's reading of Susskind, bare parameters at
the Standard Model's physical cutoff are physical in a sense analo-
gous to the sense inwhich theparameters of certain latticemodels of
condensed matter systems, which characterize the interactions
between adjacent atoms or molecules in the lattice, are physical.
Moreover, these bare parameters are taken to be fundamental in the
sense that the theory's predictions follow from them, just as
macroscopic behavior of a condensedmatter system follows from its
microscopic dynamics. However, it is important to emphasize here
that Susskind himself makes no reference to analogies with
condensedmatter theory inhis original article introducing theHiggs
naturalness principle. It is possible that Schwartz's reading of Sus-
skind, in its emphasis on the role of analogies with condensed
matter theory in motivating naturalness, may be injecting an
element that Susskind himself did not intend. More careful analysis
is needed to fully assess the historical importance of analogies to
condensed matter theory in motivating the naturalness principle.

’t Hooft adopts a concept of fine tuning that explicitly empha-
sizes the “unlikeliness” of the cancellation necessary to recover
observable values in the presence of a fundamental scalar field,
which brings with it the notorious quadratic divergences. He likens
the relationship between high- and low-energy parameters in a
quantum field theory to the relationship between macroscopic and
microscopic descriptions of a liquid or solid:

The concept of causality requires that macroscopic phenomena
follow frommicroscopic equations. Thus the properties of liquids
and solids follow from the microscopic properties of molecules
andatoms.Onemayeither consider thesemicroscopicproperties
to have been chosen at random by Nature, or attempt to deduce
these from even more fundamental equations at still smaller
length and time scales. In either case, it is unlikely that the
microscopic equations contain various free parameters that are
carefully adjusted by Nature to give cancelling effects such that the
macroscopic systemshave some special properties [emphasis ours].
This is a philosophy which we would like to apply to unified
gauge theories: the effective interactions at a large length scale,
corresponding to a low energy scale m1, should follow from the
properties at a much smaller length scale, or higher energy scale
m2, without the requirement that various different parameters at
the energy scalem2 matchwith an accuracyof the orderof m1

m2
. That

would be unnatural (’t Hooft, 1980).

The naturalness requirement as ’t Hooft formulates it is moti-
vated by the intuition that the fundamental, microscopic, high-
energy parameters do not “conspire” to give particular macro-
scopic, low-energy results. Here, it is the high-energy parameters of
a given EFT that are fundamental, in the sense that the values of
low-energy parameters follow from them, but not the reverse.

The understanding of fine tuning as sensitivity to variations of
fundamental parameters articulated by Susskind is closely tied to
the understanding of fine tuning as relying on an “unlikely” choice
15 Fine tuning is also associated with sensitivity of observables to fundamental
parameters in the work of Barbieri and Giudice, in which they propose quantitative
measures of fine tuning that quantify the rate of change of observables with respect
to these parameters (Barbieri & Giudice, 1988).
of these parameters. 15 This can be seen by expressing the Higgs
pole mass m2

p in terms of the dimensionless bare Higgs mass and
top quark Yukawa coupling yt (which is already dimensionless):

m2
pzL2

SM

�
~m2
0 � y2t

8p2

�
. Taking LSM ¼ 1019 GeV and mp ¼ 102 GeV,

we see that a small change in either ~m2
0 or y2t of order, say, 10�9

leads the value of the physical, pole mass m2
p to jump by a factor of

1027. The notion that an “unlikely” delicate cancellation between

~m2
0 and y2t

8p2 is needed to recover the measured value of m2
p rests on

the fact that
m2

p

L2
SM
is many orders of magnitude smaller than either ~m2

0

or y2t
8p2; this, in turn, entails that slight changes in either of these

dimensionless bare parameters will increase m2
p by many orders of

magnitude. In short: the presence of delicate (and therefore “un-
likely”) cancellations in recovering the pole mass implies delicate
sensitivity of the pole mass to slight changes in the values of
dimensionless bare parameters.

A final important feature of the understanding of effective field
theories in terms of fundamental parameters is that an EFT is
defined fundamentally with a cutoff that is equal to its physical
cutoff - that is, the UV limit of the energy scales over which the EFT
is empirically valid and mathematically defined. Emphasizing this
point, Peskin and Schroeder write 16:

Wilson's analysis takes … the … point of view … that any
quantum field theory is defined fundamentally with a cutoff
that has some physical significance. In statistical mechanical
applications, this momentum scale is the inverse atomic
spacing. In QED and other quantum field theories appropriate to
elementary particle physics, the cutoff would have to be asso-
ciated with some fundamental graininess of spacetime, perhaps
a result of quantum fluctuations in gravity (Peskin & Schroeder,
1996) Ch. 12, p. 402.

On the interpretation of Wilsonian EFT's suggested by Schwartz,
it is specifically the fundamental bare parameters defined with
respect to this physical cutoff scale that uniquely serve to define the
EFT, much as the parameters governing inter-atomic interactions in
a condensed matter system define a field-theoretic lattice model of
that system, whose physical cutoff scale is equal to the scale asso-
ciated with the physical inter-atomic lattice spacing.
4.2. Defining Wilsonian EFTs in terms of fundamental parameters

Here, we collect and briefly elaborate on several core features of
the interpretation of Wilsonian EFT's reflected in the above quo-
tations, which rests on the notion of fundamental parameters.

An EFT is mathematically defined with a cutoff equal to its physical
cutoff. In Section 2, we saw that an EFT can be non-perturbatively
defined in the Wilsonian picture with a finite cutoff L and finite
values for the bare parameters g. The particular understanding of
EFT's suggested by the above quotations (but especially by the
quotation from Peskin and Schroeder) states that in defining an EFT
mathematically, we should take L ¼ Lph, where Lph is the
empirical scale at which the EFT in question ceases to be empiri-
cally valid - associated, for example, with the pole mass of a heavy
field not included in the EFT Lagrangian, or with some fundamental
graininess of spacetime associated with the onset of quantum
gravitational effects. For example, QED should by this prescription
16 Thanks to Doreen Fraser for drawing our attention to this quotation.
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be defined with a cutoff equal to the mass of the W or Z boson,
beyond which the more complete description provided by elec-
troweak theory is needed.

An EFT is defined by a single, physical, “fundamental” bare
parametrization. What does it mean for a set of bare parameters to
be “physical” on this view?Given Schwartz's emphasis on analogies
with condensed matter systems, one reasonable interpretation is
that this notion of “physical” requires that it be possible at least in
principle to directly, independently measure the values of these
parameters, just as one can in principle directly measure the pa-
rameters governing inter-atomic or inter-molecular interactions in
a condensed matter system, without simply inferring them from
the measured values of correlation functions. This physical set of
bare parameters gph, together with the cutoff Lph, are then taken as
the unique parameters used to define the EFT in the manner
described in Section 2.

Wilsonian RG transformations are coarse grainings of the “funda-
mental” bare parametrization. An EFT defined using the physical pa-
rameters gph and Lph describes degrees of freedom up to the scale
Lph, butnot above this scale.WilsonianRG transformations,whereby
one integrates out degrees of freedom fromLph down to some lower
scale L of interest, are then interpreted as coarse graining trans-
formations, which throw away information about physics above the
scale L. Thus, along the Wilsonian RG trajectory parametrized by
gðLÞ, there exists one special point gðLphÞ ¼ gph reflecting the true,
physical, “microscopic” values of the bare parameters.

Different points along a single Wilsonian RG trajectory parametrize
distinct EFTs. The process of integrating out high-energy modes
fromLph toL generates a separate, less encompassing EFT, defined
only up to the lowered momentum cutoff L, and parametrized by
gðLÞ. Such an EFT makes no predictions above the scale L at which
the parametrization gðLÞ is defined. The coarse grained parameters
gðLÞ are related to the parameters gph of the more fundamental EFT
by coarse graining associated with the Wilsonian RG flow to lower
momenta. Since the parametrizations ðgðLÞ;LÞ associated with
different L are understood to have distinct domains of empirical
validity, they are associated with distinct EFTs.

More formally, the understanding of Wilsonian EFTs in terms of
fundamental parameters takes the physical amplitudes and pole
masses predicted by the EFT to be uniquely defined by the funda-
mental, physical bare parameters gph≡ðg1;ph; g2;ph;…Þ and physical
cutoff Lph:
Z ½J� ¼
ðLph
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(9)
All other parametrizations ðg;LÞ, including those related to the
fundamental parametrization ðgph;LphÞ byWilsonian RG flows, are
derived and less fundamental. Note moreover that on this picture,
bare parameters are not a mathematically illicit crutch to be swept
under the rug, but are mathematically well-defined and in fact
constitute the defining parametrization of the EFT.

A mathematically rigorous, non-perturbative definition of a QFT
is often taken to require specification of its Hilbert space and
Hamiltonian. If one is willing to relax the requirement of exact
Lorentz covariance, there are multiple ways to rigorously define the
Hilbert space and Hamiltonian by setting a fixed value for the cutoff
and Hamiltonian parameters of the theory. Onemethod is to choose
a foliation of spacetime and then place the field degrees of freedom
of the theory on a spatial lattice, where the energy scale associated
with the inverse lattice spacing a corresponds to the physical cutoff
scale of the theory. The Hilbert space of the theory is then the
tensor product 5

x!H
x! of Hilbert spaces H

x! associated with
different lattice points; the Hamiltonian is a discretized, quantized
version of the usual classical field Hamiltonian, with finite values
for its coefficients. Alternatively, one can define the Hilbert space as
the space of functionals J½~fð k!Þ� over classical field configurations
containing modes only below the physical cutoff scale; the
Hamiltonian of the cutoff theory can be obtained from the con-
tinuum Hamiltonian by defining field operators to include only
modes below thewave vector associatedwith the physical cutoff. In
both cases, the field operators and parameters defining the
Hamiltonian are defined specifically with reference to the physical
cutoff scale, as is the Hilbert space. For further discussion of this
approach to defining EFTs, see for example (Wallace, 2006) and
(Ranard, 2015).

The interpretation of Wilsonian QFT's in terms of fundamental
parameters has several important virtues by comparison with the
pre-Wilsonian understanding of perturbative renormalization, ac-
cording to which bare parameters were formally infinite and
therefore unphysical.

First, it has the advantage of making the theory mathematically
well-defined and avoiding the divergences that arose in older ap-
proaches to perturbative renormalization. Every quantity calcu-
lated in the theory can in principle be associated with a finite
number. Thus, one avoids the conceptual and mathematical
obscurity that arises in attempting to deal with the infinite quan-
tities that arise on pre-Wilsonian approaches.

Second, beyond the question of mathematical well-defined-
ness, there may be something deeply intuitively appealing about
the viewof bare parameters as fundamental parameters, where one
has a relatively clear physical picture of the relationship between
macroscopic phenomenology and the underlying degrees of
freedom described by the theory, as one does in condensed matter
applications. By transplanting this intuitive condensed matter
picture into the context of elementary particle physics, one
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similarly gains a sharp (although not necessarily wholly accurate)
picture of the underlying physical field degrees of freedom, and of
the manner in which the phenomenology of elementary particles
emerges from them at a coarse grained level.

4.3. Higgs fine tuning and fundamental parameters

On the view just described, an EFT is fundamentally specified by
a particular set of bare parameters gph and a particular cutoff Lph,
while quantities such as pole masses, scattering amplitudes, and
bare parameters gðLÞ for L<Lph are all understood as deriving
from these. The cutoff and bare parameters gph are thus taken as
mutually independent parameters into the mathematical definition
of an EFT model on this view. Assume that the fundamental pa-
rameters are “chosen by nature” via sampling from a reasonably
smooth probability measure over the fundamental bare parameter
space. Then the relation m2

pzL2
SM

�
~m2
0 � y2t

8p2

�
suggests that it is

overwhelmingly likely, given a large value of the physical cutoff
LSM , that a random sampling of ~m2

0 and yt will yield a pole massm2
p

of order L2
SM. That is, “natural” values for m2

p are on the order of
L2

SM . Only for an extremely atypical and unlikely subset of the bare
parameter space of values for ~m0 and yt do there arise the delicate
cancellations necessary to recover m2

p <<L2
SM. Recalling the micro/

macro analogy of ’t Hooft, the sheer unlikeliness of such a choice, as
viewed from the perspective of Standard Model effective field
theory (SMEFT), suggests a sort of deeper underlying “conspiracy”
between the “microscopic” bare parameters ~m2

0 and yt to yield a
particular value for the “macroscopic” quantity m2

p. Put differently,
the unlikeliness of the coincidence that must occur for ~m2

0 and yt to
give small values for the pole mass demands explanation in
terms of a deeper, more encompassing BSM theory. The absence of
such an explanation within the Standard Model is the feature that
is perhaps most often associated with the Higgs naturalness
problem. 17

5. Deflating naturalness: Wilsonian EFTs without
fundamental parameters

We now turn to consider the second, deflationary view of Higgs
fine tuning described in Section 3, which regards fine tuning of bare
parameters as unproblematic.

(Wetterich, 1984) states that “fine tuning of bare parameters is
not really the relevant problem: we do not need to know the exact
formal relation between physical and bare parameters (which
furthermore depends on the regularization scheme), and it is not
important if some particular expansion method needs fine tuning
in the bare parameters or not.” Bianchi and Rovelli express a similar
point of view in the context of the cosmological constant problem,
which is structurally similar to the Higgs naturalness problem, but
more severe in that it arises from a delicate cancellation between
quartically (rather than quadratically) divergent quantities. They
write, “simple physical arguments indicate that the vacuum energy
itself cannot be ‘real’ in the sense of gravitating: if it did, any empty
box containing a quantum field would have a huge mass, and we
could not move it with a force, since gravitational mass is also
17 Building on earlier arguments by Anderson and Casta~no in (Anderson &
Castano, 1995), Hossenfelder has recently argued in (Hossenfelder, 2018) that the
need to assume a smooth probability distribution over the SM parameter space
constitutes a weak link in naturalness-based reasoning: what could justify the
choice of such a probability distribution, given that the universe appears to sample
only one set of values from this space? While we regard this as an important source
of skepticism about fine tuning arguments, we focus here on a separate source of
concern as to whether there even exists a unique space of fundamental parameters
over which to define this probability distribution.
inertial mass. On physical grounds, vacuum energy does not grav-
itate … A shift in the vacuum energy does gravitate.” (Bianchi &
Rovelli, 2010) deny that we should ascribe direct physical signifi-
cance to the value of a bare parameter - in this case, the bare vac-
uum energy. For this reason, they claim that contrary to the dictates
of naturalness, “there is no great mystery” in the smallness of the
cosmological constant. Drawing on Wetterich, (Williams, 2015) has
argued against the formulation of naturalness as a prohibition
against fine tuning of bare parameters as follows: “stuck with an
effective theory, one is free to arrange the values of free parameters
at high energy - those appearing in the original Lagrangian at the
original cutoff scale - however is needed to make accurate pre-
dictions for empirically accessible low energy physics, which is all
the EFT can reasonably purport to describe anyway. The only
concern in doing this is that one isn't fooled into thinking that by
being forced to make specific choices for the values of the high-
energy parameters, they have thereby learned something mean-
ingful about physics near the cutoff scale.” 18

In characterizing fine tuning of bare parameters as unprob-
lematic, these authors seem implicitly to regard arguments based
on the notion of fundamental bare parameters as unconvincing. In
particular, Wetterich's claim that fine tuning is attached to a
particular expansion method suggests that it is an artifact of arbi-
trary, unphysical conventions chosen for the purpose of facilitating
calculation, akin to a choice of coordinate axes or gauge. In this
section, we seek to clarify one possible set of foundations for this
view. Specifically, we sketch one way of formulating and inter-
preting Wilsonian effective field theories that does not require
specification of a single preferred set of fundamental parameters,
and that clarifies more precisely the sense in which fine tuning is
merely an artifact of mathematical convention.

In this way of understanding Wilsonian EFTs, an EFT is specified
by an entireWilsonian RG trajectory rather than by any single point
on such a trajectory, and points along the RG trajectory are un-
derstood as physically equivalent parametrizations of the same set
of physical quantities. Onemajor motivation for such an approach is
the fact that correlation functions, from which the observables
measured in particle accelerators are calculated, are exactly
invariant under re-parametrization by Wilsonian RG flows. This
entails that many different parametrizations ðgðLÞ;LÞ associated
with different values of L generate exactly the same physical pre-
dictions within this context, and that the calculational procedure
for generating these predictions therefore does not require that any
particular set of parameters be singled out as fundamental, or as the
physically correct parametrization of the theory. This in turn sug-
gests that the notion of a single, physically preferred, fundamental
bare parametrization may constitute an idle posit in the generation
of an EFT's successful empirical predictions, and that it may be
possible to go without this assumption in the mathematical
formulation of Wilsonian EFTs. Specification of a QFT's correlation
functions is often said to encode the full dynamics of the QFT;
“textbook” QFT, including derivations of the Feynman graph
expansion, relies essentially on the calculation of correlation
18 As Williams observes, Wetterich does not deny that naturalness problems exist,
but only that, in order to be seen as genuine problems, they should be formulated in
terms of physical, renormalized parameters. It is worth noting on this point that
renormalized parameters need not always be physical parameters. For example, while
the pole mass and renormalizedMSmass are both renormalized parameters (albeit in
different schemes), it is reasonable to question whether the running MS mass is
genuinely physical in the same sense that the pole mass is: while calculations of the
pole mass must yield the same results irrespective of one's chosen renormalization
scheme, and across different effective field theories, the MS mass is specific to a
particular scheme and its value is not generally preserved across matching between
different EFT's.
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functions. To the extent that all physically relevant dynamical in-
formation and structural information about an EFT's state space are
encoded in that EFT's RG-invariant correlation functions, it may be
possible - by analogy with Wightman's strategy in the context of
axiomatic QFT - to build the Hilbert space and Hamiltonian using
these correlation functions, and thereby avoid singling out any
particular parametrization as fundamental in the mathematical
formulation of the EFT.

We now sketch some important features of this way of under-
standingWilsonian effective field theory, and then consider several
possible objections.

5.1. Wilsonian EFT's without fundamental parameters

In this subsection, we describe several core features of this
approach to interpreting the Wilsonian RG formalism without
singling out any particular set of bare parameter values as
fundamental.

Physical quantities as Wilsonian RG invariants: The only quanti-
ties calculated within a given EFT that may represent physical
quantities - as opposed to quantities that depend on an arbitrary
mathematical convention, such as choice of gauge or renormali-
zation scheme - are invariant under re-parametrization by Wilso-
nian RG transformations. For example, the pole mass and S-matrix
elements are admitted as candidates for physicality since they
possess this invariance:

L
d
dL

Sðp1;…; pN; gðLÞ;LÞ ¼ 0

L
d
dL

m2
pðgðLÞ;LÞ ¼ 0

The invariance of these quantities follows from the Wilsonian
RG invariance of the n-point Green's functions:

L
d
dL

~Gðp1;…; pn; gðLÞ;LÞ ¼ 0 (10)

which in turn follows from the invariance of the partition function:
L d

dL Z½J; gðLÞ; L� ¼ 0. 19 However, we should note that since S-
matrix elements contain an arbitrary global phase, it is rather mod-
square S-matrix elements that one might choose to regard as
physical. Thus, in the view of Wilsonian EFT's sketched here, Wil-
sonian RG invariance constitutes a necessary but not sufficient
condition for physicality. By contrast, on the “fundamental pa-
rameters” interpretation of Wilsonian EFT models, a single set of
values for the cutoff and bare parameters, which are manifestly not
invariant under Wilsonian RG flow, are also regarded as physical -
i.e., in principle, one could measure them directly and indepen-
dently, rather than inferring their values from measured values of
pole masses and cross sections.

Wilsonian RG transformations as invertible re-parametrizations:
In the absence of fundamental parameters, Wilsonian RG trans-
formations are regarded as re-parametrizations that transform
between physically equivalent, finite representations of the same
physics, rather than as coarse grainings of a single “microscopic,”
high-energy description, associated with the physical-cutoff bare
parametrization gðLphÞ ¼ gph. A change of scale L and parameters
gðLÞ associated with the Wilsonian RG flow does not signal pas-
sage to a more or less fundamental EFT, but merely passage to a
different finite parametrization of the same EFT. Thus, within a
19 Note that the Callan-Symanzik equation follows directly from (10) via appli-
cation of the Chain Rule.
single EFT, one may represent S-matrix elements and pole masses
using a low value Ll of the unphysical reference scale L, or a high
value Lh:

Sðp1;…; pn; gðLlÞ;LlÞ ¼ Sðp1;…;pn; gðLhÞ;LhÞ≡Sðp1;…; pnÞ

m2
pðgðLlÞ;LlÞ ¼ m2

pðgðLhÞ;LhÞ≡m2
p:

Thus, it is not the case that bare parameterizations gðLhÞ
referenced to a high cutoff parameter scale Lh are more funda-
mental than bare parametrizations gðLlÞ referenced to a low
cutoff parameter scale Ll, if greater fundamentality is understood
to require that the more fundamental description strictly contain
the range of phenomena described by the less fundamental
description, and describe these phenomena in greater accuracy
and/or detail. Contrary to the suppositions of the “fundamental
parameters” view, the low-scale parametrization ðgðLlÞ;LlÞ cap-
tures precisely the same set of physical phenomena as the high-
scale parametrization ðgðLhÞ; LhÞ, and is no less physically
encompassing. This feature is explained further in subsections
5.2 and 5.4.

An EFT is specified by an entire Wilsonian RG trajectory, not any
single point on such a trajectory: On the understanding of Wilso-
nian RG transformations as mere changes of parametrization
within a single EFT, it is more appropriate to associate a given EFT
not with any single parametrization, but with the entire contin-
uum of physically equivalent, finite parametrizations that lie along
the EFT's Wilsonian RG trajectory. Thus, the EFT is not uniquely
associated with any single point along a Wilsonian RG trajectory,
but with the entire trajectory itself, which represents a one-
parameter equivalence class of mathematically well-defined pa-
rametrizations, all of which yield exactly the same set of physical
amplitudes. While any single point along a Wilsonian RG trajec-
tory serves to define the whole trajectory via the Wilsonian RG
equations, it is unnecessary for the purpose of generating the EFT's
successful empirical predictions to single out any particular such
point as providing the unique physically correct “microscopic”
parametrization of the theory. Thus, the approach to EFT's without
fundamental parameters retains the advantage that the EFT as
defined in this manner is finite (since it is defined by an equiva-
lence class of finite parametrizations), but relinquishes the
assumption that any single finite parametrization is physically
preferred or fundamental.

What then is the physical significance of the Wilsonian RG flow,
given that it merely represents a change of parametrization? In
part, the answer lies in the implications of this flow for the variation
of S-matrix elements as the physical, external momenta pi are
scaled uniformly by some real number s:

Sðsp1;…; spN; gðLÞ;LÞ ¼
	
s2�d ZðLÞ

ZðsLÞ

�N=2

Sðp1;…; pN; gðsLÞ; sLÞ;

(11)

where ZðLÞ≡g1ðLÞ. Thus, given the Wilsonian RG trajectory gðLÞ,
the predictions of the theory for Sðp1;…;pNÞ are defined up to
scales for which the RG trajectory is mathematically defined (e.g.,
up to the Landau pole, if one exists). Note that, in cases where the
Wilsonian RG trajectories of two theories agree approximately at
small L, but diverge for large L, the predictions for Sðp1;…;pNÞ
should be approximately equal for small values of the physical
scales pi but differ substantially for large pi.

The physical cutoff of an EFT does not occur in the mathematical
definition of that EFT: It is important to note that in defining an EFT
by a one-parameter equivalence class of finite parametrizations
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ðgðLÞ;LÞ, the physical cutoff Lph of an EFT appears nowhere in the
mathematical definition of that EFT. Without assuming the exis-
tence of a preferred set of fundamental parameters, one still obtains
the same predictions for physical quantities for any parametriza-
tion ðgðLÞ;LÞ for which the RG trajectory is defined. Certainly, one
is free as a matter of arbitrary convention to set L ¼ Lph, but
nothing is gained in terms of scope or accuracy of the EFT by doing
so. The scale Lph is purely a reflection of the fit between the EFT
model and the world, not part of the definition of the EFT; Lphys
must be determined empirically. While it is an oft-repeated claim
that EFTs predict their own breakdown in the UV, this is true only in
the attenuated sense that the Wilsonian RG trajectory may cease to
be mathematically defined at some upper limit L�, as in cases
where the theory possess a Landau pole. Beyond the relatively
weak requirement that Lph <L�, nothing about the intrinsic
mathematical definition of the EFT implies a specific value for Lph.
Indeed, before one can establishLph as the physical cutoff of an EFT,
one must be able to generate predictions from that EFT that can be
compared against experiment. This suggests that the mathematical
procedure used to generate the predictions can be defined without
reference to Lph. The view of EFTs as specified by an entire RG
trajectory rather than by any particular point along that trajectory
offers one way of understanding EFTs along these lines. On this
view, the physical cutoff Lph of an EFT is no more intrinsic to the
mathematical definition of that EFT than the speed of light c is
intrinsic to the mathematical definition of models in Newtonian
mechanics.

Perhaps the strongest motivation for adopting this view of EFTs
is that it sheds what appears to be an idle assumption of the view
based on fundamental parameters - namely, the very notion that
there exists a single, physically preferred bare parametrization. As
we have seen, the assumption that there exists a single physically
preferred set of values for the bare parameters is not necessary to
compute the values of observables like cross sections and pole
masses from the Wilsonian path integral expression for correlation
functions, since Wilsonian RG invariance of correlation functions
entails that many values for these parameters generate exactly the
same predictions.

A second argument for shedding the notion of fundamental
parameters is that even in cases where it is currently possible in
practice to experimentally probe physics at or above the scale of an
EFT's physical cutoff, one does not gain the ability to directly
measure the theory's bare parameters independently of tuning
their values to measured values of correlation functions or ob-
servables constructed from correlation functions. Recall that we
understand bare parameters here as the coefficients gðLÞ of the
Lagrangian density in the L-cutoff path integral exponent 20; as
such, they are not observables in themselves, since their numerical
values are mediated by an arbitrary choice of L along the RG tra-
jectory. Since many different values of gðLÞ for many different
values of L along the same RG trajectory give exactly the same
values for all observables predicted by the EFT, measurements of
these observables cannot even in principle determine the values of
the parameters g uniquely without first specifying an arbitrary
value for the scale L. Where the calculation of these observables is
concerned, the values of gðLÞ are imbued with an element of
mathematical conventionality associated with the arbitrariness of
L; this is similar to the sense in which the numerical coordinate
values of an object are imbued with the conventionality of a choice
20 Note that it is these parameters that occur in the fine tuning relation 8, as can
be seen by carrying out a perturbative calculation of the two-point correlation
function, which serves to define the pole mass, in the path integral picture.
of origin. Unlike the microscopic parameters of a solid state system,
which can be determined either by direct probing of inter-atomic
interactions or by fitting correlation functions derived from these
parameters, the bare parameters of a particle physics EFT can only
be determined by fitting to quantities built from correlation func-
tions, such as cross sections. Thus, there is no independent
empirical basis for identifying any particular point along the EFT's
RG trajectory as the physically correct, fundamental parametriza-
tion of the theory.

To illustrate more explicitly why one cannot directly measure
the bare parameters of an EFT even when one is able to experi-
mentally probe physics near its physical cutoff, imagine EFT1
describing a light field f with pole mass mf, and another more
encompassing EFT2 that describes f as well as a much heavier field
j with pole mass Mj[mf. The heavy particle pole mass Mj

functions as a physical cutoff for EFT1 in that it describes the energy
scales at which the predictions of EFT1 cease to be empirically valid
(since, for example, EFT1 does not describe production of a j par-
ticle). The observables of EFT1 include mf and f field scattering
cross sections. The observables of EFT2 include all of the observ-
ables of EFT1, as well as the j pole massMj, j field scattering cross
sections, and fj scattering cross sections. The observables of EFT1
are functions O fðgfðLÞ;LÞ, calculated by differentiation of EFT1's
path integral Z 1½Jf; gfðLÞ;L�with respect to Jf. Within EFT2, these
very same quantities are calculated as functions
O fðg0fðLÞ; g0jðLÞ; g0

fjðLÞ;LÞ of the EFT2 parameters by differentia-
tion of the EFT2 path integral Z 2½Jf; Jj; g0fðLÞ; g0jðLÞ; g0

fjðLÞ;L�
with respect to Jf. For the observables O of either EFT1 and EFT2,
L d

dLO ðgðLÞ; LÞ ¼ 0, so that any bare parametrization along the
Wilsonian RG trajectory of either EFT constitutes a viable parame-
trization of the EFT's observables.

It is not the case that some particular point along the Wilsonian
RG trajectory reveals itself as the true physical parametrization of
EFT1 when we begin to probe energies around and beyond EFT1's
physical cutoff Mj. Rather, what happens at this energy scale is
that in addition to the observables O f, we begin to probe new
observables O j and O fj, for which EFT1 is inadequate and the
more encompassing EFT2 is needed. To describe this larger set of
observables, a new set of parameters ðg0fðLÞ; g0jðLÞ; g0

fjðLÞÞ is
needed, where the EFT2 coefficients g0fðLÞ of pure f field opera-
tors include a bare mass parameter m0

fðLÞ. The f field bare mass
m0

fðLÞ in EFT2 will in general not be equal to the f field bare mass
mfðLÞ in EFT1, although the f field pole mass mf will be equal
between the two theories. It is precisely in order to keep the
values of observables like the pole mass mf fixed that it is
necessary to perform “matching corrections” that relate the bare
masses in EFT1 and EFT2 m0

fðLÞ ¼ mfðLÞþ dmfðLÞ. Thus, the
value of the f field bare mass depends both on the model being
used - EFT1 or EFT2 - and on the arbitrary choice of L within that
model, by contrast with the pole mass mf, which depends on
neither. The dependence of the bare mass on such arbitrary
modeling choices provides one reason to take the bare mass less
physically seriously than the pole mass.

On the other hand, it is true that once one has ascertained the
parameter values for EFT2 by fitting to the observables O f, O j, and
O fj, one can then derive the values of the parameters of EFT1 on
the assumption that EFT1 yields the same values for the observ-
ables O f as those predicted by EFT2. Thus, it may appear that there
are indeed two independent ways of measuring the gfðLÞ: onemay
either fit the parameters gfðLÞ of EFT1 directly to the measured
values of the observables O f, or one may fit the parameters of EFT2
to the set O f, O j, and O fj, and then derive the EFT1 parameters via
the matching requirement that they approximately recover the
predictions of EFT2 for O f. However, these twoways of ascertaining
gfðLÞ are not independent, since both ultimately involve fitting the
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same set of parameters gfðLÞ to the same set of measurements of
O f. The latter method is simply a more roundabout way of fitting
gfðLÞ to measurements of O f.

We can if we like set L ¼ Mj in EFT1, which may seem a natural
move since bothMj andL are identified as the “cutoff” of EFT1. But
there is no particular advantage to doing so; we do not arrive at a
more encompassing theory with a more encompassing set of ob-
servables, or at a more accurate prediction of these observables, by
virtue of this choice of L rather than smaller values. Although both
are called the “cutoff” of EFT1, the parameterL in EFT1 and the pole
mass Mj in EFT2 are entirely distinct types of quantity and should
not be conflated: the second is a concrete physical quantity,
invariant under Wilsonian RG transformations of the bare param-
eters in EFT2; the first is an unphysical parameter that sets the
arbitrary scale relative to which the parametrization gfðLÞ of EFT1
is defined. Particularly in cases where we can probe physics at and
above Mj, the bare parameters gfðL ¼ MjÞ along the defining RG
trajectory of EFT1 do not represent new physics beyond EFT1, even
though they are sometimes interpreted this way. The gfðMjÞ are
just another parametrization of EFT1 observables, among a
continuous infinity of physically equivalent parametrizations gfðLÞ.
They give us no more (or less) information about physics beyond
the realm of EFT1 - for example, about the observables O fj and O j

of EFT2 - than do the EFT1 bare parameters gfðLÞ at any other value
of L(even L ¼ 0).

It is worth noting that the case of matching between EFT1 and
EFT2 just described does not reflect the most general type of rela-
tionship between two EFTs, since there are cases where the fields
described by the low-energy EFT1 do not occur in the more
encompassing EFT2's Lagrangian, but are instantiated by combi-
nations of the fields and degrees of freedom of EFT2. This occurs for
example in the relationship between chiral perturbation theory
and QCD. However, the grounds for our argument that the bare
parameters cannot be measured even when it is possible to probe
physics near the scale of the low-energy EFT's physical cutoff is not
altered in this case. In this case, as in the case just discussed, the
Lagrangian coefficients that appear in the finite-cutoff path integral
expression for each EFT depend on an arbitrary choice of L, and are
not themselves observables.

However, forgetting for themoment about bare parameters, this
type of case does present the possibility of genuinely problematic
fine tuning - for example, in the case where the Higgs scalar turns
out to be a composite particle made up of much heavier particles
described by some BSM theory. In this case, a light Higgs pole mass
requires delicate cancellation between themuch larger polemasses
of its constituents and their binding energy. Unlike the cancellation
between the bare Higgs mass and quantum corrections, which we
argue is an artifact of a certain conventionally chosen parametri-
zation scheme, such a cancellation would involve quantities that
are genuinely physical. However, to date there is no evidence to
suggest that the Higgs scalar is a composite of heavy particles
described by some deeper BSM theory.

A third point in favor of shedding the notion of fundamental
parameters would hold in scenarios for physics beyond the Stan-
dardModel where the Higgs pole mass enters as a basic rather than
derived input to the fundamental theory - let us call it Tnew. In such
cases, it cannot be true that the bare parameters gðLphysÞ of the
Standard Model at its physical cutoff are physically more funda-
mental than the Higgs pole mass. It makes little sense to counte-
nancem2

p as fundamental in Tnew but as non-fundamental in SMEFT,
given that SMEFT is only a low-energy approximation to Tnew. In
this case, it is clear that the bare Higgs mass m2ðLSMÞ is not
fundamental or physical, but is artificially tuned to whatever value
it must possess to recover the measured values of genuinely
physical quantities such as the Higgs pole mass.

A fourth argument is that since the view of EFTs based on
fundamental parameters takes the state space and dynamics of an
EFT to be truncated in the UV by Lph, the EFT makes no predictions
about phenomena above the scale of Lph. The state space simply
does not possess the states to describe scattering processes at
physical scales (e.g. center-of-mass energy, momentum transfer)
above Lph. For this reason, the view of EFTs based on fundamental
parameters seems inconsistent with the conventional notion that
QED is also capable of making predictions (albeit not empirically
correct ones) about phenomena above the scale of its physical
cutoff. The physical cutoff is determined by comparison of the EFT's
predictions with experiment, suggesting that the EFT is capable of
generating predictions independently of our knowledge of the
physical cutoff, and that it may therefore be possible to define the
EFT in a way that does not make essential reference to the physical
cutoff. The view of EFTs as defined by an entire Wilsonian RG tra-
jectory gðLÞ for arbitrary L, rather than by the single point gðLphÞ,
fits more naturally with the notion that it should be possible to
define the theory in a way that does not reference its physical
cutoff, since an EFT in this formulation makes predictions for
scattering amplitudes at all scales for which the RG trajectory is
defined, and not just up to the physical cutoff scale.

We nowconsider several possible concerns about the viability of
the interpretation of Wilsonian EFTs just sketched.
5.2. Objection 1: Aren't Wilsonian RG transformations coarse
graining transformations?

TheWilsonian RG flow from high to low scales is often regarded
as a coarse graining transformation. However, this point requires
some care, since the Wilsonian RG equations,

L
d
dL

giðLÞ ¼ biðgðLÞ;LÞ (12)

are first-order in L and therefore invertible. As Morris has
emphasized, there is no “loss of information” in the Wilsonian RG
flow from a parametrization gðLhÞ defined at some high scaleLh to
the corresponding parametrization gðLlÞ at a low scale Ll (Morris,
1994), (Morris, 1998). One can run the parameters gðLÞ up as well
as down in L.

What then of the notion that the Wilsonian RG explains why
theories differing in their description of physics at high-energies all
converge to the same renormalizable theory at low energies? Surely
information about the details of physics at high energies is lost in
transition to describing low-energy phenomena by a renormalizable
theory, so that the Wilsonian RG flow can be regarded as coarse
graining. Reconciliation can be found in the fact that information is
lost only in the approximation where small coefficients of irrelevant
operators are ignored, which entails a change to a distinct RG trajec-
tory. Thus, it is not the Wilsonian RG flow in itself that constitutes
coarse graining, but this flow combined with the added step of
throwing away information about these small coefficients. Prior to
performing this secondstep, theWilsonianRGflowcanbe regardedas
an invertible re-parametrization of a fixed set of physical amplitudes.

It is worth noting here that while the process of integrating out
infinitesimal momentum shells for a single fixed field or set of fields
is invertible in the absence of approximations, the process of
integrating out an entire field from the path integral in order to
obtain the path integral for an EFT describing some smaller set of
fields is not generally invertible and so can be regarded as a coarse
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graining. Starting from a theory of two fields, one light field f and
one heavy field j - where “light” and “heavy” are understood in
terms of the pole masses of the fields - one can define an EFT
describing the behavior of only the light field at low energies
(where particles of the heavy field are not created), by “integrating
out” the heavy field j from the path integral of the full theory. The
full theory describing both fields f and j - which may itself be a
low-energy approximation to some still more encompassing theory
- is more fundamental than the EFT describing only the light field f

in the sense that the full theory circumscribes the domain of
empirical validity of the light field EFT; the light field EFT thus
“reduces to” the full theory. 21 Consequently, the parameters gfðLÞ;
gfjðLÞ; gjðLÞ of the full theory (where gfjðLÞ correspond to op-
erators that couple f and j) do constitute a more fundamental
parametrization of light-field amplitudes than do the parameters
g0fðLÞ of the light field EFT. 22 Thus, the progression from a more to
a less fundamental parametrization occurs not in the flow to
smaller values of L, but in the projection of the RG flow of the full
theory onto the RG flow of the light field EFT, which in principle can
be performed at arbitrary L.
5.3. Objection 2: Doesn't larger L imply a more encompassing
theory?

One assumption of the interpretation of Wilsonian EFT's based
on fundamental parameters is that a theory parametrized at scale
L only describes phenomena at physical scales below L. Thus,
parametrizations gðLhÞ with respect to a high cutoff Lh describe a
distinct, more fundamental theory than do parametrizations gðLlÞ
with respect to a lower cutoff Ll. While nothing prevents one from
defining EFT's in this manner, such an interpretation is not
necessitated by the mathematical formalism of the Wilsonian RG.
Other interpretations of this formalism are also possible. In
particular, in the interpretation sketched in subsection 5.1, any
point gðLÞ along the Wilsonian RG trajectory can be used to
parametrize the full set of physical amplitudes predicted by that
EFT. The unphysical scale parameter L is independent of the
physical scales of the problem (e.g., pole masses, external
momenta pi), and there is no special need for L to lie above (or
below) these physical scales.

One can see this by noting that

L
d
dL

Z ½J; gðLÞ;L� ¼ 0;

where gðLÞ is a solution to the Wilsonian RG equation (12), so that
we can write Z ½J; gðLÞ;L� ¼ Z ½J�. That is, Z ½J; gðLÞ;L� is the same
function of J irrespective of the value chosen forL. In particular, the
functional derivatives of Z ½J� with respect to J,
21 Within the philosophical literature, the subjects of reduction and emergence as
they relate to renormalization and effective field theory have been examined at
length in the work of Butterfield, Hartmann, Castellani, Bain, Crowther, Huggett,
Williams, Franklin, and others (Butterfield, 2014), (Hartmann, 2001), (Castellani,
2002), (Bain, 2013), (Crowther, 2015), (Huggett & Weingard, 1995), (Williams,
2017), (Franklin, 2017). Recent discussion concerning the general methodology of
reduction in physics can be found in Butterfield, Crowther, Fletcher, and Rosaler
(Butterfield, 2011a), (Butterfield, 2011b), (Butterfield & Bouatta, 2012), (Butterfield,
2014), (Fletcher, 2015), (Crowther, 2015), (Crowther, 2017), (Rosaler, 2015), (Rosaler,
2017), (Rosaler, 2013), (Rosaler, 2018).
22 Note that the parameters g0fðLÞ of the light field EFT differ from the light field
parameters gfðLÞ of the full theory since they are subject to so-called “matching
corrections” that reflect the influence of heavy fields that have been integrated out.
~G
ðnÞðp1;…;pnÞ ¼ ð�iÞn

Z ½0�
dn

d~Jðp1Þ… d~JðpnÞ

�����
J¼0

Z ½J�;

do not depend on L:

L
d
dL

Gðp1;…;pN; gðLÞ;LÞ ¼ 0:

so that one can write;

Gðp1;…; pN; gðLÞ;LÞ ¼ Gðp1;…;pNÞ
Sðp1;…; pN; gðLÞ;LÞ ¼ Sðp1;…; pNÞ

m2
pðgðLÞ;LÞ ¼ m2

p:

As Wilsonian RG invariants, the quantities Gðp1;…;pNÞ, Sðp1;…;

pNÞ, and m2
p belong to the set of quantities that may potentially be

regarded on this interpretation as “physical.” These equations
illustrate a sense of cutoff independence that does not require the
existence of a continuum limit, whereL is taken to infinity - rather,
the explicit cutoff dependence of quantities such as S-matrix ele-
ments and pole masses is removed at finite L by the cutoff
dependence of the parameters gðLÞ.

The parameter L can be interpreted as an unphysical reference
scale, which sets the boundary between those modes ~fðkÞ in the
path integral that have been explicitly integrated over, with their
influence absorbed into the Lagrangian parameters gðLÞ, and those
that have not been explicitly integrated over, so that they appear
explicitly in the Lagrangian of the path integral. One can under-
stand L’s role in partial analogy to the simple case of bivariate
integration:

F½j�≡
ð
dx dy f ðx; y; jÞ ¼

ð
dx gðx; jÞ (13)

where gðx; jÞ≡R dy f ðx;y; jÞ. The function F½j� and its derivatives with
respect to j are unchanged by whether we write F½j� as the integral
over dx dy of f ðx; y; jÞ or as the integral over dx of gðx; jÞ. Likewise,
the functional Z½J� and its derivatives with respect to J are un-
changed by whether we write Z½J� as a functional integral over
modes below L1 of eiSðgðL1ÞÞ or as a functional integral over modes
below L2 of eiSðgðL2ÞÞ (where L1sL2Þ. The parameter L, which
simply reflects howwe choose towrite down the expression for the
path integral, is thus unrelated to the physical scale set by the
external momenta pi, and may lie above or below them. For this
reason, parametrizations associated with larger L need not be
identified with distinct, more encompassing theories. It is reason-
able to regard them instead as alternative parametrizations of a
single EFT, since all such parametrizations represent one and the
same set of physical amplitudes, derived from the same cutoff-
independent function Z½J�. On this interpretation, the parameter L
should therefore not be understood as a cutoff in the particular
sense that it truncates the Hilbert space or the set of Fourier modes
over which the dynamics of the theory are defined.

From the above considerations, it follows that we can use any
parameters gðLÞ along the Wilsonian RG flow - not just gðLphysÞ,
and not just gðLÞ for L>pi;mp; etc: - to parametrize correlation
functions and physical quantities derived from them. More
formally, the equations that define an EFT's correlation functions
and S-matrix elements in the absence of fundamental parameters
take the form,
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(14)
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where any L for which the Wilsonian RG flow is defined may be
used to parametrize the theory. As Morris has noted, one can even
takeL/0without changing the values of the correlation functions,
or any of the quantities derived from them. By contrast with the
formulation given in (4.2), no single parametrization is
“fundamental.”
5.4. Objection 3: what are the Hilbert space and Hamiltonian?

Perhaps the most salient criticism of the approach that we have
sketched is that it is under-formulated. A rigorous mathematical
definition of a QFT (including an EFT) is widely understood to
require specification of the theory's Hilbert space and unitary time
evolution via some Hamiltonian. Such a definition permits appli-
cation of the theory outside of the restricted context of scattering
experiments, as required for example in the context of quantum
cosmology (see, e.g. (Nelson & Riedel, 2017),). How are the Hilbert
space and Hamiltonian of an EFT specified on the approach just
described, in which all points along the RG trajectory constitute
physically equivalent parametrizations of observables and physical
amplitudes?

We do not currently have a well-developed answer to this
question. Thus, the understanding of Wilsonian EFTs sketched in
this section requires further development before it can be regarded
as an established alternative to the formulation based on funda-
mental parameters, where there do exist mathematically well-
defined ways to specify the Hilbert space and unitary dynamics of
the theory in a general, non-perturbative setting. On the other
hand, we know of no result that precludes the possibility of
defining a QFT by its full RG trajectory rather than by any particular
point or subset of points along it. Moreover, we think that there
exist good motivations for pursuing such a formulation. In partic-
ular, as we have emphasized, the actual practice of generating
predictions from a path integral Lagrangian - whether this
Lagrangian is renormalizable or non-renormalizable - does not
require one to specify any single set of parameter values as
fundamental since every point along the EFT's RG trajectory gen-
erates exactly the same predictions. This suggests that the specifi-
cation of a single preferred bare parametrization may be
superfluous to the theory's empirical success, and motivates the
search for a way of formalizing the theory that does not rely on the
assumption of such a preferred parametrization. In our view, the
absence of any need for fundamental parameters in generating the
theory's successful predictions constitutes compelling, but not
conclusive, evidence for the possibility of formulating EFTs in
manner that treats different parametrizations on more equal
footing.
5.5. Higgs fine tuning without fundamental parameters

On shedding the assumption that a single set of values of the
parameters g constitute a physically preferred set of fundamental
parameters, the bare parameters at a given scale are no longer
mutually independent. Instead, they are constrained to lie within a
one-parameter class of physically equivalent finite parametriza-
tions, each associated with a different value of the unphysical scale
parameter L, all of which give the same values for the Higgs pole
mass and correlation functions. Noting that the bare Higgs mass
m2

0ðLÞ and Yukawa coupling ytðLÞ can be interpreted as two of the
parameters gðLÞ in the cutoff path integral Lagrangian for the
Standard Model, the leading contribution to the one-loop expan-
sion of the pole mass at L gives:

m2
p ¼ m2

0ðLÞ þ dm2ðLÞ

¼ m2
0ðLÞ � y2t ðLÞ

8p2 L2 þ…

¼ L2
�
~m2
0ðLÞ � y2t ðLÞ

8p2

�
þ…

(15)

where ~m2
0 ¼ m2

0

L2 . The scale parameter L is chosen as a matter of
convention. Large choices of L require more delicate cancellations
between m2

0ðLÞ and y2t ðLÞ
8p2 , while smaller values require less delicate

cancellations. Thus, the delicateness of the cancellation is entirely
an artifact of convention as well. In particular, the choice in (3) to
setL to the physical cutoff scaleLSM of the Standard Model reflects
an arbitrary (and not particularly convenient) choice of convention
that has no bearing on the scope of the Standard Model. The deli-
cate cancellations can be eliminated by re-parametrizing the theory
in terms of smaller values of L, which entails no loss of information
or scope of the theory. In the absence of fundamental parameters,
the claim that the bare parameters gðLSMÞ at the SM's physical
cutoff are more fundamental than those at lower cutoff is severely
weakened, since both parametrizations describe exactly the same
physics, and each can be inferred from the other. In particular,
SMEFT as described by the bare parameterization ð ~m2

0ðmpÞ;y2t ðmpÞÞ,
where mp is the Higgs pole mass, is no less fundamental than
SMEFT as described by the bare parametrization ð ~m2

0ðLSMÞ;
y2t ðLSMÞÞ, even though LSM >mp.

On the view of bare parameters as conventional, regarding the
delicate cancellations between ~m2

0ðLSMÞ and y2t ðLSMÞ
8p2 as coincidence

is akin to finding coincidence in the following delicate
cancellations:



Fig. 1. With choice of origin at the center of the Milky Way (O2), there is an extremely
delicate cancellation - to roughly one part in 1018 - between vectors indicating the
locations of Aachen Dom (Cathedral) and Aachen Rathaus (Town Hall). However, this
cancellation can be dramatically reduced by moving the origin close to, say, the
midpoint between the two (O1). Likewise, the cancellation between the bare Higgs
mass and its quantum corrections is very delicate for large L (say, the Planck scale),
and much smaller for L on the order of the Higgs pole mass. Without fundamental
parameters, the choice of the unphysical reference scale L is purely conventional and
akin to a choice of origin; the delicate cancellation between bare Higgs mass and
quantum corrections is then an eliminable, unphysical artifact of convention.

23 The difference between realist and empiricist approaches to the interpretation
of scientific theories is often illustrated by reference to debates in the 19th century
concerning the existence of atoms - are atoms fictitious theoretical constructs that
are merely useful for describing the observable behavior of gases and other physical
systems, or do they really exist? The empiricist or instrumentalist view of atoms
(which has declined markedly in popularity) adopts the first view, while the realist
view adopts the latter. For more detailed analysis of this debate, see for example
Psillos' (Psillos, 2011).
24 Efforts to interpret effective field theories, and quantum field theories generally,
from an empiricist point of view can be found, for example, in Butterfield and
Bouatta's (Butterfield & Bouatta, 2015), Ruetsche's (Ruetsche, 2011), Fraser's (Fraser,
2011), and Halvorson's (Halvorson, 2013).
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� Wewish to determine the mass of an ant by first measuring the
mass of the system (ant þ X), then measuring the mass of the
system (X) alone, and finally subtracting the latter from the
former. Taking X ¼ earth, we find that the mass of the system
(ant þ earth) agrees with the mass of the system (earth) to one
part in 1030.

� We wish to measure the distance from the Aachen Dom
(Cathedral) to the Aachen Rathaus (Town Hall). We do so by
measuring the magnitude of the difference between vectorsbxdom and bxrat describing the locations of these two buildings,
where the vector components are specified relative to a coor-
dinate system whose origin lies at the center of the Milky Way,
and whose x-axis lies along the line joining the center of the
Milky Way to central Aachen. We find that the x-components ofbxdom and bxrat agree to one part in 1018 (see Fig. 1).

In both cases, the delicate agreement between the quantities in
question results from an inconvenient, conventional choice of
reference point, not a mysterious physical coincidence. In the first
example, we might have chosen instead to measure the ant's mass
by subtracting the mass of (pencil) from the mass of (ant þ pencil),
which would have exhibited a much less severe cancellation. The
choice of reference system (pencil) or (earth) is arbitrary and
conventional, while the quantity of interest - themass of the ant - is
invariant across different choices of reference system. Likewise, in
the case of the Higgs, we might express the invariant Higgs pole
mass as a difference between bare mass and quantum corrections
defined with respect to different conventionally chosen values ofL.

5.6. Scientific realism and Wilsonian EFT's

We have argued here that the validity of at least one set of
naturalness-based arguments turns critically on questions of
physical interpretation of effective field theories - that is, on
questions concerning which elements of the mathematical
formalism of an EFT may represent real features in the world, and
which reflect mere choices of mathematical convention or artifacts
of mathematical representation. Such questions are especially
salient in the context of efforts to formulate realist interpretations
of quantum field theory, which attempt to understand our theories
not merely as toolkits for prediction (as operationalist or empiricist
approaches tend to do), but as representing - if only in an
approximate and domain-restricted way - the structure of the
physical world beneath the surface of directly observable phe-
nomena. 23 Within efforts to give a realist interpretation of quan-
tum field theory, there is the further question of which particular
aspects of an EFT's formalism one should be realist about, given the
observed empirical success of the EFT. 24

Here, we wish to acknowledge one recent line of inquiry into
realist interpretations of EFT's in high energy physics, and to briefly
orient our own discussion with respect to the point of view
considered in this work. Williams, J. Fraser, and Ruetsche have
recently explored the notion that the renormalization group may
be used as a guide in attempting to uncover which mathematical
features of empirically successful EFT's to regard as representing
real features in theworld, which are likely to be preserved in future,
more fundamental theories. Invoking Wimsatt's criterion of
robustness for realist commitment, Williams writes, “What the RG
shows is that the ‘fundamental’ short-distance structure … is
largely irrelevant to the physical content of an EFT in the domain
where we have any reason to consider it empirically reliable … An
EFT at long distances is ‘robust’ in a way that the short distance
‘fundamental’ theory is demonstrably not: its entities and struc-
tures at that scale are ‘accessible (detectable, measurable, derivable,
definable, producible, or the like) in a variety of independent ways,’
and so are candidates for being included in the ontology of that
EFT” (Williams, 2017), (Wimsatt, 2007). In a similar vein, Fraser
writes, “in demonstrating that the large scale properties of a QFT
model are insensitive to the high energy dynamics, the renormal-
isation group is also telling us that these properties are essentially
independent of the details of future physical theories which
describe the dynamics of currently inaccessible high energy de-
grees of freedom. Thus the renormalisation group gives us a way of
identifying properties of our present theories which will be
embedded within future theories, in one way or another” (Fraser,
2016). Thus, both Fraser and Williams see the RG as facilitating
the interpretation of EFT's by identifying those low-energy features
that are robust against variations in the unknown high-energy
physics, and therefore likely to be preserved irrespective of what
this new physics turns out to be.

On the other hand, Ruetsche writes that the arguments offered
byWilliams and Fraser in support of this vieware “compromised by
a certain faux generality afflicting RG analyses.” She explains, “The
concern is that even explicit RG results are only as reassuring as the
space of theories onwhich the RG group acts is comprehensive. But
that space incorporates assumptions about what kinds of in-
teractions are possible and how to model them. And nature isn't
beholden to respect those assumptions” (Ruetsche, 2018). In
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particular, proofs based on the RG that many distinct theories with
different values of irrelevant operator coefficients are well
approximated at low energies by the same renormalizable theory
assume that both the fundamental high-energy theory and
approximate low-energy theory reside in the same parameter
space describing the same set of fields. On the other hand, Ruetsche
suggests, the space of possible high-energy theories may extend
even beyond the realm of quantum field theory, and so is much
larger than the set of possibilities represented by the parameter
space that hosts the Wilsonian RG flow.

The interpretation of Wilsonian EFTs without fundamental pa-
rameters, which restricts realist commitment to Wilsonian RG in-
variants, is motivated by many of the considerations that drive the
realism of Williams and Fraser; however, there are several impor-
tant distinctions that we wish to draw here between the particular
realist approach to interpreting QFT's that is advocated by these
authors and the brand of realism that informs the view of EFT's
sketched in this section. We agree with Williams and Fraser, that in
the physical interpretation of EFT's, one must take care to distin-
guish between those aspects of an EFT's formalism that play a
central role in generating its successful empirical predictions and
those that do not. 25 As we have seen, it is precisely such consid-
erations that motivate the abandonment of fundamental parame-
ters in the physical interpretation of Wilsonian EFTs, since the
notion that there exists a single physically preferred parametriza-
tion of the theory at its physical cutoff plays no essential role in
generating the theory's successful predictions (or in making it
finite). 26

However, the precise sense inwhichWilliams and Fraser use the
Wilsonian RG to identify candidates for realist commitment differs
from the sense in which the interpretation of Wilsonian EFTs
sketched in this section does so. As discussed, Williams and Fraser
use the Wilsonian RG to identify elements of an EFT that are robust
to changes in the specification of a theory at large values of the
parameter L (typically, near the physical cutoff): since we are
ignorant as to the true nature of physics near the physical cutoff (at
least, in the case of the Standard Model effective field theory) we
should restrict our realism to quantities that do not depend on
these details.

We agree with this claim, and simply wish to note that there is a
distinct and compatible sense in which the Wilsonian RG may be
used to identify candidates for realist commitment in EFTs. By
restricting physical quantities in an EFT toWilsonian RG invariants,
the physical interpretation of EFTs sketched in this section ventures
a hypothesis about the semantic relationship between an EFT and
the physical world, rather than a claim about our epistemic rela-
tionship to the world. For example, given that there is some matter
of fact - albeit currently unknown to us - about the values of the
irrelevant operator coefficients that describe physics near the
Standard Model's physical cutoff scale, what features of that non-
25 This strategy constitutes a central component of what Psillos has labeled the
“divide and conquer” approach to scientific realism (Psillos, 2005). For a closely
related approach to the realist interpretation of quantum theories in general, see
Saatsi (Saatsi, 2017).
26 The situation is partly analogous to the distinction between the mechanical
ether theory of Lorentz, which predicted relativistic effects such as time dilation,
length contraction, and the like, assuming a physically preferred frame of reference,
and the relativity of Einstein, which recovered the same effects but relinquished the
idle assumption of a preferred frame (see, e.g. (Janssen, 2002).). Until it is possible
to independently measure the bare parameters of an EFT (rather than working
backwards from correlation functions), the notion of fundamental parameters ap-
pears to rest primarily on metaphysical speculation motivated by analogies with
condensed matter physics, much as intuitions motivating the introduction of an
ether in the 19th century rested in part on metaphysical speculation motivated by
analogies with the mechanical theory of elastic media.
renormalizable EFT's mathematical formalism represent real fea-
tures in the world, and which are mere artifacts of representation?
One possibility is that there really exist fundamental bare param-
eters that can in principle be directly measured (by analogy with
the microscopic parameters of a condensed matter system).
Another possibility is that the bare cutoff parameters of that EFT do
not represent real features in the world, and instead merely reflect
an arbitrary choice of parametrization of physical amplitudes, akin
to a choice of gauge or coordinate system. As we have argued, the
historical progression of EFTs to ever-higher energies appears to
support the latter view: in the case of the non-renormalizable 4-
Fermi theory of weak interactions, we possess empirical access to
physics near and beyond the physical cutoff, but do notmeasure the
bare cutoff parameters of this EFT directly; there does not appear to
be any empirical evidence for the notion that there are genuine
physical facts about the values of the bare parameters, even in cases
where we can probe physics near the cutoff. Things could be
different in the case of Standard Model effective field theory, since
we do not yet have access to physics near its cutoff; however, there
does not appear to much by way of empirical evidence that this is
the case, either. Thus, while the realism of Williams and Fraser
appears to be consistent with (if not explicitly to endorse) the
physical interpretation of Wilsonian EFTs in terms of fundamental
parameters, the interpretation sketched in this section explicitly
rejects this possibility on the grounds that these quantities are not
invariant under Wilsonian RG transformations.

6. “Formal” vs. “physical” views of the high-energy/
condensed-matter analogy

Previously, we saw that one way of understanding the motiva-
tion for the naturalness principle, articulated by Schwartz, is
through the analogy between high-energy and condensed matter
physics (Schwartz, 2014). In Schwartz’ reading, the bare parameters
of the Standard Model possess a physical interpretation closely
analogous to themicroscopic parameters that describe inter-atomic
or inter-molecular interactions in a solid state system. This inter-
pretation in turn reinforces the notion that the delicate sensitivity
of the Higgs pole mass to these bare parameters constitutes a
problematic instance of fine tuning. While it is unclear as a his-
torical and sociological matter just how prevalent this particular
reading of Susskind was among practicing particle physicists, from
a conceptual point of view, it is a position worth considering.

From the perspective described in the previous section, inwhich
Wilsonian EFTs do not have fundamental parameters, this partic-
ular justification for the naturalness principle appears to rest on an
excessively “literal” or “physical” interpretation of the analogy be-
tween condensed matter physics (CMP) and high energy physics
(HEP). To clarify our meaning, it will be useful to employ a
distinction between “formal” and “physical” interpretations of the
high-energy/condensed-matter analogy, which has recently been
developed in the work of D. Fraser and of D. Fraser & A. Koberinski
(Fraser, 2018), (Fraser & Koberinski, 2016).

According to Fraser, a “formal” analogy occurs when the same
mathematical formalism can be applied in physically distinct con-
texts. For example, one can apply the wave equation to the
description of sound waves and electromagnetic waves, which
constitute strongly physically distinct domains of application. The
formal analogy between high-energy physics and condensed
matter physics is evidenced by the fact that in both contexts, one
finds the application of path integrals, Feynman diagrams, the
renormalization group, and spontaneous symmetry breaking (SSB),
to name a few of the main points of structural commonality.

Within Fraser's view, not all formal analogies are physical
analogies. She and Koberinski describe the difference by saying that
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“formal analogies map similar elements of the mathematical
formalism of the models; physical analogies map elements of the
models with similar physical interpretations” (Fraser & Koberinski,
2016). Naturally, this raises the question of what constitutes simi-
larity of physical interpretation. For our purposes here, it will be
sufficient to illustrate the core idea of the distinction by way of
example, beginning with a case discussed by Fraser and Koberinski.

As an example of an analogy that is formal but not physical,
Fraser and Koberinski consider the analogy between SSB in the SM
Higgs mechanism and in the BCS and Ginzburg-Landau theories of
superconductivity. Here, they note that while in condensed matter
systems, SSB is a process that can occur through time, in the
framework of the Standard Model (in ordinary rather than finite-
temperature quantum field theory), the parameters are fixed for
all time so that symmetry breaking may not be understood as a
temporal process. 27 Thus, while similar mathematical formalisms
are employed across the analogy, the physical interpretation of this
formalism differs dramatically between the two contexts.

A second example of an analogy that might be taken as formal
but not physical is the analogy between the theory of electro-
magnetic waves and the theory of mechanical waves (e.g., sound
waves). Whereas sound waves propagate in a mechanical medium
and their behavior can often be derived on the basis of classical
mechanical models of this medium, electromagnetic waves do not
arise as disturbances within such a mechanical medium. Never-
theless, the thought that electromagnetic waves might arise as
disturbances in such a medium inspired the unsuccessful attempts
in the nineteenth century to formulate an ether theory of light.
Thus, efforts to formulate such an ether theory could be charac-
terized in Fraser's terms as falsely supposing the analogy between
sound waves and electromagnetic waves to be a physical rather
than merely formal analogy.

In regard to the Higgs naturalness problem, the interpretation of
bare SM parameters as fundamental parameters in the specific
sense articulated by Schwartz may reasonably be characterized as
extending the established formal analogy between high energy and
condensed matter physics - characterized by the common
formalism of path integrals, Feynman diagrams, renormalization
group, and SSB - to a physical analogy. It does so by supposing the
existence of a physically preferred, “fundamental” bare parame-
trization at the SM's physical cutoff, just as in certain condensed
matter systems there exists an underlying microscopic lattice
description that directly characterizes the microscopic interactions
of the atoms in the lattice. The notion that there is a single, true,
“microscopic,” fundamental bare parametrization for any given
HEP EFT goes beyond recognition of the mathematical similarities
between high energy and condensed matter theory to attribute
analogous physical interpretations to the bare parameters across
both contexts. Fraser (2018) provides a detailed, systematic inves-
tigation of the analogy between condensed matter field theory and
relativistic quantum field theory in the context of Wilson's work on
the renormalization group; she argues that this analogy is merely
formal, including with regard to the interpretation of parameters
such as the bare mass. 28 One way of interpreting the analogy as
merely formal (though perhaps not Fraser's) is to relinquish the
notion that there is a physical matter of fact as to which point along
27 On the other hand, their claim may not extend to SSB in the more general
framework of finite-temperature quantum field theory.
28 Nevertheless, we wish to highlight as a potential caveat that the formal/physical
distinction may not be sharply defined. All pairs of physical systems must be
physically disanalogous in some sense - otherwise, they would be the same system.
Thus, as a qualification to Fraser's distinction, we adopt the view that no analogy is
physical simpliciter, but rather only physical with respect to particular aspects of the
analogy, such as (in our case), the status of bare parameters.
the Wilsonian RG trajectory constitutes the physically correct
parametrization of the theory.
7. Conclusion

One influential motivation for the naturalness principle is based
on the notion of “fundamental parameters,” which are supposed to
constitute the physically correct, defining parametrization of an
EFT. We have suggested how it might be possible, and desirable, to
abandon this notion within the usual Wilsonian, path-integral-
based formalism for calculating correlation functions, without
sacrificing predictive power or the virtue of finiteness introduced
by the Wilsonian approach. This alternative view, in which a Wil-
sonian EFT does not have a single physically preferred parametri-
zation, and is defined instead by its entire RG trajectory, is
motivated primarily by the fact that a continuous infinity of
different parametrizations serve equally well to generate the EFT's
successful predictions through its correlation functions, and that
the notion of a single fundamental parametrization may therefore
be unnecessary to the formulation of the theory. We have argued
that this way of understanding Wilsonian EFTs also invites aban-
donment of several other traditional dogmas of Wilsonian effective
field theory, such as the notion that an EFT should be mathemati-
cally defined with a cutoff equal to its physical cutoff. However, we
emphasize that while the choice of a single preferred bare
parametrization is unnecessary to generating the successful pre-
dictions of an EFT from its correlation functions, the question of
how to specify the Hilbert space and Hamiltonian of such a theory
without relying on a fundamental parametrization remains
unanswered.

Within the alternative understanding of Wilsonian EFTs
sketched here, it is possible to understand the delicate cancellation
between Higgs bare mass and quantum corrections as an elimi-
nable artifact resulting from a particular choice of mathematical
convention, and the problem of explaining these cancellations
seems much less urgent, if not wholly misguided. Our discussion of
this view has been an attempt to explicitly draw out the implica-
tions for the formulation and interpretation of quantum field the-
ory of Wetterich's claim that Higgs fine tuning is merely an artifact
of a bad expansion method. We emphasize that this way of un-
derstanding EFTs does nothing to undermine the expectation that
the Standard Model as a whole should be embedded in a deeper
theory that includes gravity (which should explain why Standard
Model effective field theory is characterized by the particular RG
trajectory that it is, rather than the value of any specific point on it).
Rather, it only weakens the case that there is an especially urgent
need for explanation attached to the Higgs mass and not other SM
parameters.

There also exist other formulations of the naturalness principle
that we have not considered here, such as fine tuning formulations
in terms of renormalized parameters and formulations based on
the notion of inter-scale autonomy, each of which needs to be
examined in detail. We think it likely that similar concerns to those
that arise in the context of Higgs bare mass fine tuning will arise in
the context of these other formulations, as well as in the cosmo-
logical constant problem. However, in each of these instances, a
rigorous case remains to be made.
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