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In light of the increasingly strong violations of the Higgs naturalness principle re-
vealed at the LHC, we examine the assumptions underlying one influential argument
for naturalness in the sense that prohibits fine-tuning of bare Standard Model (SM)
parameters. We highlight the dependence of this argument on the interpretation of
these bare parameters as “fundamental parameters,” by direct physical analogy with
the interpretation of microscopic lattice parameters in condensed matter physics. We
emphasize that while the notion of fundamental parameters is appropriate to some
applications in condensed matter physics, it plays no essential role in the effective field
theories (EFT’s) of high-energy physics. We distinguish two ways of understanding
high-energy EFT’s within the Wilsonian framework, the first of which takes an EFT
to be uniquely defined by a single set of physical, fundamental bare parameters, and
the second of which dispenses entirely with the notion of fundamental parameters.
In this latter view, an EFT is instead defined by a one-parameter class of physically
equivalent parametrizations related by Wilsonian renormalization group flows. From
this perspective, the delicate cancellation between bare Higgs mass and quantum cor-
rections appears as an eliminable artifact of mathematical convention, rather than as
a physical coincidence calling out for explanation by a deeper theory. Thus, we aim
to clarify the distinction between two physical interpretations of Wilsonian EFT’s and
bare parameters in high energy physics, and to show in light of this distinction how one
formulation of the naturalness requirement, based on the notion that bare parameters
at an EFT’s physical cutoff constitute “fundamental parameters,” may be rooted in an
excessively literal reading of the high-energy/condensed-matter analogy.

1 Introduction

The naturalness principle has served as an extremely influential guide to model building
in high-energy physics for the past several decades, notably functioning as the basis for
theoretical arguments in favor of supersymmetry, and for the expectation of discovering
signatures of Beyond the Standard Model (BSM) physics at the Large Hadron Collider
(LHC). The principle has been formulated variously as a prohibition against “unlikely” fine-
tuning of Standard Model (SM) parameters, a prohibition on delicate sensitivity between
physics at different energy scales, and as the requirement that all dimensionless parameters
in an effective field theory be of order one unless protected by a symmetry. The continuing
absence of BSM physics up to ever higher energies, combined with the notorious quadratic
dependence of the physical Higgs mass on heavy scales, entails increasingly strong violations
of naturalness in all of these formulations (suitably interpreted). There remains an important
open question concerning what to make of this fact. Should failure of naturalness be regarded
as posing an especially urgent demand for explanation of the Higgs mass over other SM
parameters? Should failure of naturalness be accepted as a brute fact, so that we simply
forgo demand for such further explanation? Or should the Higgs naturalness principle itself
be abandoned, and specifically the notion that the quadratic sensitivities of the Higgs mass
pose a special problem not posed by other Standard Model parameters?

In favor of the first view, that failure of naturalness remains a special puzzle to be
resolved by BSM theories, Giudice writes, “If the LHC rules out dynamical solutions to Higgs
naturalness at the weak scale, it does not eradicate the problem: a doctor who is unable to
find the right diagnosis cannot simply declare the patient healed. Even in post-natural times,
the concept of naturalness cannot simply be ignored ... One way or another, naturalness
will still play a role in the post-naturalness era” (Giudice, 2017). Thus, on Giudice’s view,
although we are entering a “post-naturalness” era, failure of Higgs naturalness remains as

2



much a problem as ever. On the other hand, several voices have urged abandonment of the
naturalness principle itself - at least, as it has been applied in the cases of the Higgs and of
the cosmological constant, which are closely analogous (Woit, 2014), (Hossenfelder). Since
our discussion below inclines toward this latter point of view, we wish to acknowledge at the
outset that from one perspective, it may seem all too easy, now that failure of naturalness in
the Standard Model has been increasingly empirically confirmed, to join the chorus of voices
decrying naturalness. However, we emphasize that the status of the naturalness principle
itself is far from settled by existing evidence: violation of naturalness by the Standard Model
1 does not in and of itself imply that the fault lies with the naturalness principle since it
may be the case, as Giudice suggests, that the fault instead lies with the Standard Model
description of the Higgs.

Nevertheless, failure of predictions for new physics at the LHC based on naturalness mo-
tivates careful re-examination of the arguments that have been advanced in support of the
naturalness principle. Here, we probe a possible point of weakness in one specific but highly
influential rationale for naturalness in the sense that precludes “unlikely” or “contrived”
tuning of the Standard Model’s bare parameters at its physical cutoff scale. 2 We show how
this rationale, advanced by some of the original advocates of the naturalness principle, is
grounded in the physical interpretation of bare parameters at a Wilsonian effective field the-
ory’s physical cutoff as “fundamental parameters,” by analogy with the physical, microscopic
lattice parameters that are employed in certain condensed matter models. We argue that
in the Wilsonian approach to the non-perturbative definition of EFT’s, based on assuming
finite values for the cutoff and bare parameters, the notion that there exists a single, physi-
cally preferred set of fundamental parameters functions as an idle metaphysical supposition
in generating the EFT’s successful empirical predictions. Moreover, this assumption is not
necessary to ensure that all quantities calculated in the EFT are finite and mathematically
well-defined. Instead, we argue, one may interpret the formalism of Wilsonian renormaliza-
tion without assuming the existence of a single physically preferred bare parametrization,
instead understanding an EFT to be defined by a one-parameter class of physically equiva-
lent parametrizations that describe one and the same set of physical amplitudes, where no
single parametrization is regarded as more “physical” or “fundamental” than any other. We
argue that in the absence of fundamental parameters, the delicate cancellation between bare
Higgs mass and quantum corrections thought to produce the naturalness problem may be
regarded as an eliminable artifact of mathematical convention. This undermines the notion
that such cancellations depend on cosmically unlikely coincidences, and that the value of
the bare Higgs mass therefore stands in more urgent need of explanation by BSM theories
than do other SM parameters. From this perspective, the notion that a high-energy EFT’s
bare parameters at its physical cutoff constitute “fundamental parameters” appears to be
rooted in an excessively literal, excessively “physical” interpretation of the analogy between
high-energy and condensed matter field theories. 3 To make this point, we employ Doreen

1As is sometimes noted, there is no sharp division between “natural” and “unnatural” theories; natu-
ralness is a matter of degree, often associated with the degree of fine tuning or sensitivity to a theory’s
“fundamental parameters.” Thus, it is to some a degree a matter of taste at precisely what point one takes
the SM to have violated the naturalness criterion.

2In this discussion, we do not explicitly address alternative formulations of the naturalness criterion,
such as those that preclude delicate sensitivity between physics at different scales, and those that require
dimensionless parameters to be of order one. For extended philosophical analysis of naturalness in the first
sense, see Williams’ (Williams, 2015); for a physicist’s perspective on naturalness in this sense, see Giudice’s
(Giudice, 2013). For discussion of naturalness in the second sense, see for example the original article by ’t
Hooft, (’t Hooft, 1980), and Wells’ (Wells, 2015).

3By “high-energy EFT,” we mean to designate an EFT used in the description of elementary particles,
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Fraser’s distinction between “formal” and “physical” analogies in physics, and build on her
use of this distinction in the specific context of the high-energy/condensed-matter analogy.

Our discussion is outlined as follows. Section 2 establishes several foundational assump-
tions about the formal definition of Wilsonian effective field theories that will serve to ground
our later discussion of naturalness. Section 3 introduces the formulation of the Higgs natu-
ralness problem as arising from the need for a delicate cancellation between the bare Higgs
mass and its quantum corrections, and introduces two conflicting views of this cancellation:
the first view takes this cancellation as an instance of mysterious fine tuning, while the other
adopts a more deflationary interpretation. Section 4 reviews the historical motivations for
imposing naturalness cited by original proponents of the naturalness principle, underscoring
the reliance of these formulations on the notion of “fundamental parameters.” We attempt
to state explicitly the core features of the interpretation of Wilsonian EFT’s based on fun-
damental parameters, and consider the status of Higgs fine tuning from this perspective.
In Section 5, we review D. Fraser’s distinction between “formal” and “physical” analogies,
and specifically between “formal” and “physical” interpretations of the HEP/CMP analogy,
which provides a useful characterization of the distinction between the two views of Wilso-
nian EFT’s considered here. Section 6 clarifies one interpretation of Wilsonian EFT’s in the
absence of fundamental parameters, highlighting the main points of contrast with interpre-
tations based on fundamental parameters, and offering several arguments in support of this
alternative view. We conclude that in the absence of fundamental parameters, Higgs fine
tuning is an eliminable artifact associated with one conventional choice of bare parametriza-
tion, rather than a physical coincidence urgently demanding explanation by deeper theories.
Section 7 is the Conclusion.

2 Foundational Assumptions

How is a quantum field theory mathematically defined? This is a notoriously difficult and
controversial question, with the difficulties resulting in large part as a consequence of the
infinities that occur in perturbative expansions of QFT amplitudes. There exist multiple
rival research programs, including the algebraic and constructive approaches to quantum
field theory, that have attempted in different ways to place QFT on firm mathematical foun-
dations. However, continuum approaches such as the algebraic approach are only known
to work in contrived and unphysical settings - for example, which the number of space-
time dimensions is less than four - and thus far have had difficulty incorporating any of
the physically realistic QFT’s, such as the Standard Model or quantum electrodynamics,
used to describe the phenomenology observed in accelerators like the LHC. Largely for this
reason, we adopt the alternative strategy based on Wilson’s effective field theory approach
to renormalization and quantum field theory, which takes quantum field theories such as
the Standard Model and quantum electrodynamics to be defined with a finite cutoff, and
thereby avoids the problematic infinities that occur in continuum approaches. 4

rather than an EFT employed in the description of condensed matter systems. Thus, on this usage, a
“high-energy EFT” may also describe the behavior of elementary particles at low energies.

4The virtues and shortcomings of such a cutoff-based approach, as contrasted with axiomatic, continuum-
based approaches such as algebraic quantum field theory (AQFT) and constructive field theory, have been
debated extensively by Wallace and Fraser in (Wallace, 2006), (Wallace, 2011), (Fraser, 2009), (Fraser,
2011). Largely for the reasons articulated by Wallace - in particular, the difficulty in axiomatic approaches
of making contact with the empirical success of the Standard Model - we choose to ground our discussion
in a Wilsonian cutoff-based rather than an axiomatic approach to the formulation of quantum field theory.
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Beyond the infinities that occur in perturbative expansions, there is the closely related
problem of how to define a quantum field theory outside the context of perturbation theory.
5 Such problems are especially salient in the context of low-energy QCD calculations,
where perturbation theory breaks down. To address both problems, the Wilsonian strategy
of defining a QFT with a finite cutoff is often employed; see for example (Collins, 1984)
and (Montvay and Münster, 1997). As is often emphasized, this strategy permits one to
numerically define the amplitudes of a QFT in a way that is completely finite and does not
rely on the assumption of small coupling; perturbative expansions are then understood as
generating approximations to these non-perturbatively defined quantities. In our discussion
of naturalness below, we likewise understand QFT’s to be non-perturbatively defined in this
manner. Since QFT’s so defined are generally understood to be empirically valid only up to
some finite physical cutoff scale Λphys, they are often designated as “effective field theories”
(EFT’s). However, as we discuss in later sections, there are at least two distinct ways of
interpreting the Wilsonian formalism, one based on the assumption that there exists a set of
“fundamental parameters” that serve to uniquely define the theory, and another that treats
different finite parametrizations on equal footing.

2.1 Cutoff-Based Approach to Defining Effective Quantum Field
Theories

The most common approach to the non-perturbative definition of EFTs starts from the
Feynman path integral, then deriving correlation functions, S-matrix elements, pole masses
and other physical quantities from these; see, e.g. (Montvay and Münster, 1997). 6 The path
integral is mathematically defined via imposition of a cutoff regulator (e.g., hard momentum
cutoff, smooth momentum cutoff, real space lattice) and Wick rotation to Euclidean space-
time. Adopting a lattice spacing a for concreteness - which imposes an effective momentum
cutoff of order 2π

a - the path integral Z[J ] for a theory with Lagrangian L(x) in the presence
of a classical external source field J(x) is

Z[J ] =

∫ Λ

Dφ ei
∫
d4x[L(φ(x)) + J(x)φ(x)] (1)

≡
∫

ΠM
i=1dφi e

ia4 ∑M
i=1[L(φi)+Jiφi],

where L(φ(x)) is the “bare” Lagrangian of the theory, M = (bL/ac)4, a is the lattice spacing
on a hypercubic 4-D lattice (note that the time dimension has now been discretized as well),
L is the length of each edge of the lattice, Ji ≡ J(xi) is a background source field, φi ≡ φ(xi),
and xi ≡ (n0a, n1a, n2a, n3a) for nα ∈ Z and − L

2a ≤ nα ≤ L
2a , α = 0, 1, 2, 3. The lengths a

and L function, respectively, as a UV regulator associated with an upper momentum cutoff

For technical discussion of constructive approaches to defining QFT on the continuum, see for example
(Rivasseau, 2014). For philosophical discussion of constructive QFT see Hancox-Li (Hancox-Li, 2017).

5For philosophical analysis of approaches to the foundations of QFT based on perturbation theory, see,
for example, the recent work of Miller and J. Fraser (Miller, 2016), (Fraser, 2017).

6The correlation functions of a quantum field theory contain sufficient information to reconstruct the
field dynamics and entire Hilbert space of the theory; this result is encoded formally in the Wightman
Reconstruction Theorem; see (Streater and Wightman, 2016), Ch. 3. Since this theorem is proven in
the context of axiomatic formulations of QFT, it is possible that significant work remains to be done in
determining whether and how it can be modified to accommodate EFT’s defined in the Wilsonian framework.
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of Λ = 2π
a and an IR regulator associated with lower momentum cutoff 2π

L . 7

In keeping with the Wilsonian approach, the bare Lagrangian L is taken to consist of all
terms consistent with a given choice of fields φ and symmetries:

L =
∑
n

gnOn

= g1 (∂µφ)
2

+ g2φ
2 + g3φ

4 + g4φ
6 + g5(∂µφ)2φ2 + g6φ

8 + ... , (2)

where the bare parameters gi can be any real numbers. Here, we use the term “bare” to
refer to any parametrization of the theory of the form given by the path integral (1) and
Lagrangian (2); that is, a “bare” parameter on our usage is a parameter appearing in the
Lagrangian of the path integral, whatever the chosen value of Λ. 8 The calculation of
physical quantities such as pole masses and cross sections from Z[J ] is mediated via the
calculation of n-point Green’s functions G(n)(x1, ..., xn), which encode the full dynamics of
the QFT:

G(n)(x1, ..., xn) ≡
∫ ΛDφ φ(x1) ... φ(xn) ei

∫
d4x

∑
n gnOn∫ ΛDφ ei

∫
d4x

∑
n gnOn

(3)

=
(−i)n

Z[0]

δn

δJ(x1) ... δJ(xn)

∣∣∣∣
J=0

Z[J ].

For example, the physical or “pole” mass mp is calculated from the bare parameters as the
lowest-lying pole of the Fourier transform of the two-point function,

G(2)(x1, x2) =

∫ Λ d4p

(2π)4
eip(x1−x2)

[
iZ(g,Λ)

p2 −m2
p(g,Λ)

+

∫ Λ

∼4m2
p

dµ
ρ(µ)

p2 − µ2

]
, (4)

where ρ(µ) is the so-called spectral density function, g ≡ (g1, g2, g3, ....); the symbol ∼ in
the lower limit ∼ 4m2

p of the second integral is intended to signal the possibility of bound
states below the threshold energy-squared for multi-particle production (2mp)

2. The field

renormalization Z(g,Λ) is defined as Z(g,Λ) ≡ |〈λ(0)|φ̂(0)|Ω〉|2, where |λ(0)〉 is a one-
particle energy eigenstate of the full interacting theory with zero spatial momentum. The
S-matrix element for 2 → n− 2 particle scattering can be calculated from Green’s functions
via the LSZ reduction formula:

S(p1, ..., pn; g,Λ) = G̃(n)(p1, ..., pn; g,Λ) G̃(2),−1(p1; g,Λ)...G̃(2),−1(pn; g,Λ). (5)

7For the purposes of our discussion, only the UV regulator a will be relevant; the IR regulator L will not
play a role.

8We should acknowledge here a distinct use of the term “bare” within the context of Wilsonian renormal-
ization, in which it is only the path integral parametrization for some particular choice of cutoff Λ0, associ-
ated with the physical cutoff scale of the theory, that constitutes the “bare” parametrization. Parametriza-
tions related to this parametrization via Wilsonian RG transformations are designated as “renormalized.”
This usage reflects the presence in statistical mechanical or condensed matter applications of a sharply de-
fined physical cutoff and bare parameters associated associated with a real physical lattice. By contrast, the
usage of “bare” employed here, in which bare parameters absorb the Λ dependence of Z[J ] without being
attached to any particular value of Λ, is consistent with perturbative renormalization schemes in which the
bare parameters likewise depend on Λ, without being uniquely attached to any single finite value of Λ.

6



This in turn can be used to infer the differential and total cross section of the process in
question. Note that the above relations are non-perturbative, and that all quantities defined
are finite and in principle calculable from first principles.

2.2 The Wilsonian Renormalization Group

The Wilsonian renormalization group (RG) consists is a set of transformations on the param-
eters g and Λ of Z[J ], that leave the value of Z[J ] exactly unchanged. From this it follows
that the values of physical quantities such as pole masses and (mod-squared) S-matrix ele-
ments computed from Z[J ] remain exactly unchanged under these transformations. 9 Thus,
the Wilsonian RG determines the cutoff dependence g(Λ) that must be ascribed to bare La-
grangian parameters g in order that Z[J ] remain invariant. The process of transforming
from a bare parametrization (g(Λ),Λ) at one cutoff scale to another bare parametrization
(g(Λ′),Λ′) at a slightly lower cutoff scale is implemented by splitting the path integral into
an integration over field modes φΛ′ with momenta less than or equal to some lowered cutoff
Λ′ = Λ − δΛ, and an integration over field modes φδΛ = φΛ − φΛ′ with momenta greater
than Λ′ but less than Λ, and then explicitly performing the latter integral:

Z[0] =

∫
DφΛ ei

∫
d4x L(φΛ;g(Λ))

=

∫
DφΛ′

(∫
DφδΛei

∫
d4x L(φΛ+φδΛ;g(Λ))

)
=

∫
DφΛ′ei

∫
d4x L(φΛ′ ;g(Λ′)) (6)

where ei
∫
d4x L(φΛ′ ;g(Λ′)) ≡

∫
DφδΛei

∫
d4x L(φΛ′+φδΛ;g(Λ)). 10 The effect of integrating over

the field modes φδΛ is to alter the values of coefficients of the Lagrangian, yielding a new
bare Lagrangian L(φΛ′ ; g(Λ′)), which is a function of the fields with lowered cutoff Λ′ with
altered bare coefficients g(Λ′). Iterating this procedure by successively integrating over
infinitesimal momentum shells, one obtains the continuous functional dependence g(Λ) of
the infinite set of bare parameters on the adjustable cutoff parameter Λ, where g(Λ) =
(g1(Λ), g2(Λ), g3(Λ), ....). This functional dependence is encoded in an infinite set of coupled
first-order differential equations,

Λ
dgi(Λ)

dΛ
= βi(g(Λ),Λ) (7)

and in initial conditions g(Λ0) ≡ (g1(Λ0), g2(Λ0), g3(Λ0), ....) specifying the values of all bare
parameters at some particular scale Λ0. The beta functions βi can in principle be calculated
from the path integral exactly by solving the Wilson-Polchinski equation, which serves as the
basis for one approach to the non-perturbative or “exact” renormalization group (Polchinski,

9The “mod-squared” in parentheses is intended to signal that S-matrix elements possess an unphysical
global phase, so are likely not themselves directly physical. However, squared S-matrix elements, which are
used to compute the cross sections measured in accelerators, do not depend on this global phase.

10Here we have assumed that in the expressions L(φΛ′ ; g(Λ′)) and L(φΛ; g(Λ)), L(φΛ; g) is the most
general function of φ allowed by the symmetries of the theory; thus, changes to the Lagrangian induced by
the Wilsonian RG flow are determined entirely by changes in the coefficients g specified by the RG trajectory
g(Λ).
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1984), (Rosten, 2012). 11 Assuming that the bare couplings are sufficiently small, one
may also calculate the functions βi perturbatively, Taylor expanding the exponential of the
interaction term in the Lagrangian and then using Wick’s Theorem (or its path integral
equivalent) to perform the integration over the high-energy field modes φδΛ, treating the
low-energy modes φΛ′ as external fields. 12

3 The Higgs Fine Tuning Naturalness Problem

The original and perhaps most cited formulation of the Higgs fine tuning naturalness prob-
lem 13 rests on the observation that the leading contribution to the perturbative one-loop
expansion of the (squared) Higgs pole mass m2

p in terms of bare SM parameters gives,

m2
p = m2

0 + δm2

= m2
0 −

y2
t

8π2
Λ2
SM + ...

= Λ2
SM (m̃0 −

y2
t

8π2
) + . . . (8)

where yt is the top quark Yukawa coupling, ΛSM the Standard Model’s physical cutoff (that
is, the scale at which it ceases to be empirically valid), 14 m2

0 is the bare Higgs mass, and

m̃2
0 ≡

m̃2
0

Λ2
SM

is the dimensionless bare Higgs mass in units of ΛSM . 15 The corrections

δm2 also receive smaller contributions from lighter quarks, which can be neglected in the
approximation where only the dominant correction to the Higgs bare mass is considered. By
contrast with all other particle masses in the Standard Model, whose quantum corrections
depend logarithmically on the cutoff, the Higgs mass undergoes quantum corrections that
depend quadratically on the cutoff. Measurements at the LHC have further determined that
m2
p = (125 GeV)2, and that (1 × 103 GeV)2 . Λ2

SM . (1019 GeV)2. While the lower limit
(1 × 103 GeV)2 has been set on the basis of LHC measurements, the upper limit, equal to
the Planck scale, is set by theoretical expectations regarding the scales at which quantum
gravitational effects can no longer be ignored. Together, these facts imply that the bare
Higgs mass m2

0 must be “fine tuned” in order to recover the measured value of the physical,
pole mass of the Higgs. The minimal degree of fine tuning required to recover the measured

11There is a second popular approach to non-perturbative renormalization, which we do not discuss here,
based on variation of an IR rather than a UV cutoff, and describing the scale dependence of parameters
in the so-called effective average action, which is governed by the Wetterich equation (Wetterich, 1991),
(Wetterich, 1993), (Berges et al., 2002), (Delamotte, 2012).

12See, e.g., (Srednicki, 2007), Ch. 29., or (Peskin and Schroeder, 1996), Ch. 12 for details of this
perturbative analysis.

13We note that there exists a separate formulation of the Higgs fine tuning that concerns the running
MS Higgs mass rather than the bare Higgs mass. While the formulation considered here concerns the
relationship between the Higgs bare mass (in a cutoff-based scheme) and the Higgs pole mass, the MS
formulation concerns the relationship between the MS scalar mass in an EFT where fields much heavier
than the scalar have been integrated out, and the MS scalar in an EFT where these fields occur explicitly in
the Lagrangian; see, e.g., (Skiba, 2010). We defer detailed consideration of this formulation to future work.

14At leading non-trivial order perturbation theory, one can take yt to be either a bare coupling or a
renormalized coupling, since the corresponding expressions only differ at higher orders in perturbation
theory.

15See, for example, (Martin, 2010), for a formulation of the Higgs naturalness problem along these lines.
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pole mass m2
p ∼ O(104) increases with the empirically established lower bound on Λ2

SM . At
the lower limit of the allowed range for ΛSM , ΛSM = 1× 103 GeV, the relation (8) gives,

O(104) = O(106)−O(106)

while at the upper end of this range, ΛSM = 1019 GeV, it gives

O(104) = O(1038)−O(1038).

That is, the “best-case” scenario, where ΛSM = 1 × 103 GeV, 16 requires that m2
0 and

δm2 cancel to one part in 102 to 103. The “worst-case” scenario, where ΛSM = 1019 GeV,
requires that m2

0 and δm2 cancel to one part in 1034. For many physicists, cancellation to
one part in 102 - 103 already begins to be problematic.

There exist two conflicting attitudes toward the delicate cancellation between m2
0 and

δm2 required to recover the measured value of m2
p for large values of ΛSM :

• This cancellation requires an “unlikely” “conspiracy” between the bare Higgs mass and
the bare parameters that enter into the calculation of δm2. The fine tuning problem
can be understood as the need to explain the origin of this cancellation in terms of
deeper physical theories beyond the Standard Model.

• Neither m0 nor δm2 is directly measurable and these quantities are therefore not
physical. This opens the possibility that the delicate cancellations purported to lie
at the root of the fine tuning naturalness problem are mere artifacts of mathematical
representation, suggesting that the appearance of a coincidence in urgent need of
explanation may therefore be illusory.

We review arguments in favor of the first view in more detail in Section 4, which served
to establish naturalness as guide to model building in particle physics. The second view
has had substantially fewer proponents in the literature on naturalness, but has been ad-
vanced in the work of Wetterich and Bianchi/Rovelli (Bianchi and Rovelli, 2010), (Wet-
terich, 1984), (Wetterich, 2012). Within the philosophical literature, Williams has more
recently adopted this deflationary view of fine tuning formulations of the Higgs naturalness
as grounds for characterizing naturalness in terms of inter-scale autonomy rather than fine
tuning (Williams, 2015). Our discussion here will aim to show how the tension between
these two views hinges on whether one physically interprets high-energy EFT’s such as the
Standard Model as coming equipped with a unique set of “fundamental parameters.” We
argue that this interpretation is motivated at least in part by a strongly literal interpreta-
tion of the well-known analogies between condensed matter field theory and the relativistic
quantum field theories of high energy physics. Using Doreen Fraser’s distinction, it depends
on the extent to which one interprets this analogy as a “physical” analogy rather than as
a merely “formal” one. Our discussion aims to develop the foundations of the deflationary
view by showing how it is possible to understand EFT’s in the Wilsonian picture without
assuming the existence of fundamental parameters.

16Current estimates place the physical cutoff of the Standard Model somewhere above 1 TeV, although pre-
cise quotes of this figure vary somewhat. For details, see http://cms-results.web.cern.ch/cms-results/

public-results/publications/EXO/index.html and https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/

CombinedSummaryPlots/EXOTICS/.
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4 Motivating Naturalness: “Fundamental Parameters”
and the High-Energy/Condensed-Matter Analogy

In this section, we examine the role of analogies between high energy and condensed matter
physics, and of the notion of “fundamental parameters,” in generating one set of intuitions
that motivated introduction of the naturalness principle. We emphasize that the physical
interpretation of certain Standard Model bare parameters as fundamental parameters closely
resembles the physical interpretation of microscopic lattice parameters in certain models of
condensed matter systems.

4.1 Naturalness and Fundamental Parameters

In his seminal 1979 article on naturalness, Susskind explicitly introduces the notion of
“fundamental parameters.” He writes,

The need for fundamental scalar fields in the theory of weak and electromagnetic
forces is a serious flaw. Aside from the subjective aesthetic argument, there exists
a real difficulty connected with the quadratic mass divergences which always
accompany scalar fields. These divergences violate a concept of naturalness
which requires the observable properties of a theory to be stable against minute
variations of the fundamental parameters ... [emphasis ours]

The basic underlying framework of discussion of naturalness assumes the exis-
tence of a fundamental length scale κ−1, which serves as a real cutoff. Many
authors have speculated that κ should be of order 1019 GeV corresponding to
the Planck gravitational length. The basic parameters of such a theory are some
set of dimensionless bare couplings g0 and masses ... µ0 = m0

κ . The principle
of naturalness requires the physical properties of the output at low energy to be
stable against very small variations of g0 and µ0. [emphasis ours] (Susskind,
1979).

While Susskind does rely explicitly on analogies with condensed matter physics, the bare
parameters of an effective field theory (and specifically the Standard Model) at its physical
cutoff are taken as fundamental in the sense that they constitute the unique, preferred
parametrization of the EFT from which the EFT’s predictions follow.

Schwartz’s recent popular textbook on quantum field theory, which draws on the formu-
lation of Susskind, is more explicit about the connection between naturalness and analogies
to condensed matter physics. He states that “much of our intuition for fine-tuning and nat-
uralness comes from condensed matter physics.” Adopting a Wilsonian (i.e., finite-cutoff)
interpretation the Standard Model, he writes,

Suppose the theory were finite, for example if it were UV completed into string
theory, or more simply if it were the effective description of some condensed mat-
ter system (in which case Λ might represent some parameter of the microscopic
description, such as the inverse atomic spacing). Then the bare mass m and
cutoff Λ would be physical. In this situation, we could take the Λ2 divergence ...
literally. ... If the scalar were the Higgs whose pole mass is mp ≈ 125 GeV, and
Λ were of the order of the Planck scale, Λ ∼ Mpl ∼ 1019 GeV, we would need
m2 = (1 + 10−34)Λ2. This is called fine-tuning. Fine-tuning is a sensitivity
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of physical observables (the pole mass) to variation of parameters in the theory
(Schwartz, 2014), Ch. 22.

On Schwartz’s presentation, bare parameters at the Standard Model’s physical cutoff are
physical in a sense analogous to the sense in which the parameters of certain lattice models
of condensed matter systems, which characterize the interactions between adjacent atoms
or molecules in the lattice, are physical. Moreover, these bare parameters are taken to be
fundamental in the sense that the theory’s predictions follow from them, just as macroscopic
behavior of a condensed matter system follows from its microscopic dynamics. The under-
standing of fine tuning as sensitivity of physical observables to the variation of parameters
such as the bare mass is closely tied to the understanding of fine tuning described above as
relying on an “unlikely” choice of bare parameters. 17 This can be seen by expressing the
Higgs pole mass m2

p in terms of the dimensionless bare Higgs mass and top quark Yukawa

coupling yt (which is already dimensionless): m2
p ≈ Λ2

SM (m̃2
0 −

y2
t

8π2 ). Taking ΛSM = 1019

GeV and mp = 102 GeV, we see that a small change in either m̃2
0 or y2

t of order, say, 10−9

leads the value of the physical, pole mass m2
p to jump by a factor of 1027. The notion that

an “unlikely” delicate cancellation between m̃2
0 and

y2
t

8π2 is needed to recover the measured

value of m2
p rests on the fact that

m2
p

Λ2
SM

is many orders of magnitude smaller than either m̃2
0

or
y2
t

8π2 ; this, in turn, entails that slight changes in either of these dimensionless bare param-
eters will increase m2

p by many orders of magnitude. In short: the presence of delicate (and
therefore “unlikely”) cancellations in recovering the pole mass implies delicate sensitivity of
the pole mass to slight changes in the values of dimensionless bare parameters.

’t Hooft adopts a similar concept of fine tuning, and emphasizes the “unlikeliness” of the
cancellation necessary to recover observable values in the presence of a fundamental scalar
field, which brings with it the notorious quadratic divergences. He likens the relationship
between high- and low-energy parameters in a quantum field theory to the relationship
between macroscopic and microscopic descriptions of a liquid or solid:

The concept of causality requires that macroscopic phenomena follow from mi-
croscopic equations. Thus the properties of liquids and solids follow from the
microscopic properties of molecules and atoms. One may either consider these
microscopic properties to have been chosen at random by Nature, or attempt to
deduce these from even more fundamental equations at still smaller length and
time scales. In either case, it is unlikely that the microscopic equations contain
various free parameters that are carefully adjusted by Nature to give cancelling
effects such that the macroscopic systems have some special properties [empha-
sis ours]. This is a philosophy which we would like to apply to unified gauge
theories: the effective interactions at a large length scale, corresponding to a
low energy scale µ1, should follow from the properties at a much smaller length
scale, or higher energy scale µ2, without the requirement that various different
parameters at the energy scale µ2 match with an accuracy of the order of µ1

µ2
.

That would be unnatural. (’t Hooft, 1980)

The naturalness requirement as ’t Hooft formulates it is motivated by the intuition that
the fundamental, microscopic, high-energy parameters do not “conspire” to give particular

17Fine tuning is also associated with sensitivity of observables to fundamental parameters in the work of
Barbieri and Giudice, in which they propose quantitative measures of fine tuning that quantify the rate of
change of observables with respect to these parameters (Barbieri and Giudice, 1988).
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macroscopic, low-energy results. Here, it is the high-energy parameters of a given EFT that
are fundamental, in the sense that the values of low-energy parameters follow from them,
but not the reverse.

A final important feature of the understanding of effective field theories in terms of
fundamental parameters is that an effective field theory is defined fundamentally with a
cutoff that is equal to its physical cutoff - that is, the UV limit of the energy scales over
which the EFT is empirically valid and mathematically defined. Emphasizing this point,
Peskin and Schroeder write 18 :

Wilson’s analysis takes ... the ... point of view ... that any quantum field theory
is defined fundamentally with a cutoff that has some physical significance. In
statistical mechanical applications, this momentum scale is the inverse atomic
spacing. In QED and other quantum field theories appropriate to elementary
particle physics, the cutoff would have to be associated with some fundamental
graininess of spacetime, perhaps a result of quantum fluctuations in gravity
(Peskin and Schroeder, 1996) Ch. 12, p. 402.

On the interpretation of Wilsonian EFT’s suggested by Schwartz, it is specifically the funda-
mental bare parameters defined with respect to this physical cutoff scale that uniquely serve
to define the EFT, much as the direct inter-atomic interactions in some condensed matter
system are sometimes modeled on a lattice with spacing equal to the physical inter-atomic
distance, which comprises the physical cutoff of the material’s field theoretic description.

4.2 Interpreting Wilsonian EFT’s in Terms of Fundamental Param-
eters

Here, we collect and briefly elaborate on several core features of the interpretation of Wilso-
nian EFT’s reflected in the above quotations, which rests on the notion of fundamental
parameters and (in a sense to be clarified in Section 5) a strongly “physical” reading of the
analogy between high-energy and condensed-matter field theory.

An EFT is mathematically defined with a cutoff equal to its physical cutoff. In Section 2,
we saw that an EFT can be non-perturbatively defined in the Wilsonian picture with a
finite cutoff Λ and finite values for the bare parameters g. The particular understanding
of EFT’s suggested by the above quotations (but especially by the quotation from Peskin
and Schroeder) states that in defining an EFT mathematically, we should take Λ = Λph,
where Λph is the empirical scale at which the EFT in question ceases to be empirically
valid - associated, for example, with the pole mass of a heavy field not included in the EFT
Lagrangian, or with some fundamental graininess of spacetime associated with the onset of
quantum gravitational effects. For example, QED should by this prescription be defined
with a cutoff equal to the mass of the W or Z boson, beyond which the more complete
description provided by electroweak theory is needed.

An EFT is defined by a single, physical, “fundamental” bare parametrization. What does it
mean for a set of bare parameters to be “physical” on this view? Given Schwartz’s empha-
sis on analogies with condensed matter systems, one reasonable interpretation is that this

18Thanks to Doreen Fraser for drawing our attention to this quotation.
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notion of “physical” requires that it be possible at least in principle to directly, indepen-
dently measure the values of these parameters, just as one can in principle directly measure
the parameters governing inter-atomic or inter-molecular interactions in a condensed mat-
ter system, without simply “working backwards” from the measured values of correlation
functions. This physical set of bare parameters gph, together with the cutoff Λph, are then
taken as the unique parameters used to define the EFT in the manner described in Section
2.

Wilsonian RG transformations are coarse grainings of the “fundamental” bare parametriza-
tion. An EFT defined using the physical parameters gph and Λph describes degrees of free-
dom up to the scale Λph, but not above this scale. Wilsonian RG transformations, whereby
one integrates out degrees of freedom from Λph down to some lower scale Λ of interest, are
then interpreted as coarse graining transformations, which throw away information about
physics above the scale Λ. Thus, along the Wilsonian RG trajectory parametrized by g(Λ),
there exists one special point g(Λph) = gph reflecting the true, physical, “microscopic” values
of the bare parameters.

Different points along a single Wilsonian RG trajectory parametrize distinct EFT’s. The
process of integrating out high-energy modes from Λph to Λ generates a separate, less
encompassing EFT, defined only up to the lowered momentum cutoff Λ, and parametrized
by g(Λ). Such an EFT makes no predictions above the scale Λ at which the parametrization
g(Λ) is defined. The coarse grained parameters g(Λ) are related to the parameters gph of the
more fundamental EFT by coarse graining associated with the Wilsonian RG flow to lower
momenta. Since the parametrizations (g(Λ),Λ) associated with different Λ are understood
to have distinct domains of empirical validity, they are associated with distinct EFT’s.

More formally, the understanding of Wilsonian EFT’s in terms of fundamental param-
eters takes the physical amplitudes and pole masses predicted by the EFT to be uniquely
defined by the fundamental, physical bare parameters gph ≡ (g1,ph, g2,ph, ...) and physical
cutoff Λph:

Z[J ] =

∫ Λph

Dφ ei
∫
d4x[

∑
n gn,phOn + Jφ]

G(n)(x1, ..., xn; gph,Λph) =
(−i)n

Z[0]

δn

δJ(x1) ... δJ(xn)

∣∣∣∣
J=0

Z[J ]

G(2)(x1, x2; gph,Λph) =

∫ Λph d4p

(2π)4
eip(x1−x2)

[
iZ(gph,Λph)

p2 −m2
p(gph,Λph)

+

∫ Λph

∼4m2
p

dµ
ρ(µ)

p2 − µ2

]
S(p1, ..., pn; gph,Λph) = G̃(n)(p1, ..., pn; gph,Λph) G̃(2),−1(p1; gph,Λph)...G̃(2),−1(pn; gph,Λph)

(9)

All other parametrizations (g,Λ), including those related to the fundamental parametriza-
tion (gph,Λph) by Wilsonian RG flows, are derived and less fundamental. Note moreover that
on this picture, bare parameters are not a mathematically illicit crutch to be swept under the
rug, but are mathematically well-defined and in fact constitute the defining parametrization
of the EFT.
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The interpretation of Wilsonian QFT’s in terms of fundamental parameters has several
important virtues by comparison with the pre-Wilsonian understanding of perturbative
renormalization, according to which bare parameters were formally infinite and therefore
unphysical.

First, it has the advantage of making the theory mathematically well-defined and avoid-
ing the divergences that arose in older approaches to perturbative renormalization. Every
quantity calculated in the theory can in principle be associated with a finite number. Thus,
one avoids the conceptual and mathematical obscurity that arises in attempting to deal with
the infinite quantities that arise on pre-Wilsonian approaches.

Second, beyond the question of mathematical well-defined-ness, there may be something
deeply intuitively appealing about the view of bare parameters as fundamental parameters,
and more generally with the strategy of interpreting quantum field theories in high energy
physics by direct analogy with condensed matter systems, where one has a relatively clear
physical picture of the relationship between macroscopic phenomenology and microscopic
degrees of freedom. By transplanting this intuitive condensed matter picture into the context
of elementary particle physics, one similarly gains a clear (although not necessarily wholly
accurate) picture of the underlying physical degrees of freedom, and of the manner in which
the phenomenology of elementary particle physics emerges from them at a coarse grained
level.

4.3 Higgs Fine Tuning and Fundamental Parameters

On the view just described, an EFT is fundamentally specified by a particular set of bare
parameters gph and a particular cutoff Λph, while quantities such as pole masses, scattering
amplitudes, and bare parameters g(Λ) for Λ < Λph are all understood as deriving from
these. The cutoff and bare parameters gph are thus taken mutually independent inputs into
the mathematical formalism of an EFT model on this view. Assume that the fundamental
parameters are “chosen by nature” via sampling from a reasonably smooth probability
measure over the fundamental bare parameter space. Then the relation m2

p ≈ Λ2
SM (m̃2

0 −
y2
t

8π2 ) suggests that it is overwhelmingly likely, given a large value of the physical cutoff
ΛSM , that a random sampling of m̃2

0 and yt will yield a pole mass m2
p of order Λ2

SM . That
is, “natural” values for m2

p are on the order of Λ2
SM . Only for an extremely atypical and

unlikely subset of the bare parameter space of values for m̃0 and yt do there arise the delicate
cancellations necessary to recover m2

p << Λ2
SM . Recalling the micro/macro analogy of ’t

Hooft, the sheer unlikeliness of such a choice, as viewed from the perspective of Standard
Model effective field theory (SMEFT), suggests a sort of deeper underlying “conspiracy”
between the “microscopic” bare parameters m̃2

0 and yt to yield a particular value for the
“macroscopic” quantity m2

p. Put differently, the unlikeliness of the coincidence that must
occur for m̃2

0 and yt to give small values for the pole mass demands explanation in terms
of a deeper, more encompassing BSM theory. The absence of such an explanation within
the Standard Model is the feature that is perhaps most often associated with the Higgs
naturalness problem. 19

19Building on earlier arguments by Anderson and Castaño in (Anderson and Castano, 1995), Hossenfelder
has recently argued in (Hossenfelder, 2018) that the need to assume a smooth probability distribution over
the SM parameter space constitutes a weak link in naturalness-based reasoning: what could justify the
choice of such a probability distribution, given that the universe appears to sample only one set of values
from this space? While we regard this as an important source of skepticism about fine tuning arguments,
we focus here on a separate source of concern as to whether there even exists a unique space of fundamental
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5 “Formal” vs. “Physical” Views of the High-Energy/Condensed-
Matter Analogy

Previously, we described the notion of fundamental parameters as resting on an especially
“literal” or “physical” interpretation of the analogy between condensed matter theory and
high energy physics. To clarify our meaning, and to underscore the contrast with the
alternative view of Wilsonian EFT’s described in the next section, it will be useful to
employ a distinction between “formal” and “physical” analogies, which has recently been
developed in the work of D. Fraser and of D. Fraser & A. Koberinski (Fraser, 2018), (Fraser
and Koberinski, 2016).

According to Fraser, a “formal” analogy occurs when the same mathematical formalism
can be applied in physically distinct contexts. For example, one can apply the wave equation
to the description of sound waves and electromagnetic waves, which constitute strongly phys-
ically distinct domains of application. The formal analogy between high-energy physics and
condensed matter physics is evidenced by the fact that in both contexts, one finds the ap-
plication of path integrals, Feynman diagrams, the renormalization group, and spontaneous
symmetry breaking (SSB), to name a few of the main points of structural commonality.

Within Fraser’s view, not all formal analogies are physical analogies. She and Koberin-
ski describe the difference by saying that “formal analogies map similar elements of the
mathematical formalism of the models; physical analogies map elements of the models with
similar physical interpretations” (Fraser and Koberinski, 2016). Naturally, this raises the
question of what constitutes similarity of physical interpretation. For our purposes here, it
will be sufficient to illustrate the core idea of the distinction by way of example, beginning
with a case discussed by Fraser and Koberinski.

As an example of an analogy that is formal but not physical, Fraser and Koberin-
ski consider the analogy between SSB in the SM Higgs mechanism and in the BCS and
Ginzburg-Landau theories of superconductivity. Here, they note that while in condensed
matter systems, SSB is a process that can occur through time, in the framework of the
Standard Model (in ordinary rather than finite-temperature quantum field theory), the pa-
rameters are fixed for all time so that symmetry breaking may not be understood as a
temporal process. 20 Thus, while similar mathematical formalisms are employed across the
analogy, the physical interpretation of this formalism differs dramatically between the two
contexts.

A second example of an analogy that might be taken as formal but not physical is the
analogy between the theory of electromagnetic waves and the theory of mechanical waves
(e.g., sound waves). Whereas sound waves propagate in a mechanical medium and their
behavior can often be derived on the basis of classical mechanical models of this medium,
electromagnetic waves do not arise as disturbances within such a mechanical medium. Nev-
ertheless, the thought that electromagnetic waves might arise as disturbances in such a
medium inspired the unsuccessful attempts in the nineteenth century to formulate an ether
theory of light. Thus, efforts to formulate such an ether theory could be characterized in
Fraser’s terms as falsely supposing the analogy between sound waves and electromagnetic
waves to be a physical rather than merely formal analogy.

In regard to the Higgs naturalness problem, the interpretation of bare SM parameters

parameters over which to define this probability distribution.
20On the other hand, their claim may not extend to SSB in the more general framework of finite-

temperature quantum field theory.
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as fundamental parameters may reasonably be characterized as extending the established
formal analogy between high energy and condensed matter physics - characterized by the
common formalism of path integrals, Feynman diagrams, renormalization group, and SSB -
to a physical analogy. It does so by supposing the existence of a physically preferred, “fun-
damental” bare parametrization at the SM’s physical cutoff, just as in certain condensed
matter systems there exists an underlying microscopic lattice description that directly char-
acterizes the microscopic interactions of the atoms in the lattice. The notion that there is
a single, true, “microscopic,” fundamental bare parametrization for any given high-energy
EFT goes beyond recognition of the mathematical similarities between high energy and
condensed matter theory to attribute analogous physical interpretations to the bare param-
eters that occur in field theories across both contexts. In (Fraser, 2018), Fraser provides a
detailed, systematic investigation of the analogy between condensed matter field theory and
relativistic quantum field theory in Wilson’s work on the renormalization group; she argues
that this analogy is merely formal, including with regard to the interpretation of parameters
such as the bare mass. One of our central goals here is to clarify the implications of this view
- that the high-energy/condensed-matter analogy is merely formal - for the Higgs natural-
ness principle, and more generally for the interpretation of bare parameters and Wilsonian
renormalization group transformations in the context of high-energy physics. 21

Where the physical interpretation of bare parameters between high energy and con-
densed matter field theory is concerned, it is important to note that bare parameters in
condensed matter models are not always taken to directly represent the microscopic inter-
actions between adjacent atoms and molecules in the material being described. In many
cases, the bare parameters are artificially tuned to fit measurements of correlation functions
characterizing the material’s coarse grained macroscopic behavior, and are not taken to
represent the microscopic dynamics of the material. Nevertheless, the particular cases from
condensed matter physics that appear to inform Schwartz’s physical interpretation of bare
parameters in high energy physics are the cases in which the parameters of a condensed
matter lattice model do directly represent the microscopic, inter-atomic interactions of the
system; for examples of such cases, see e.g. (Kittel et al., 1996), Ch.’s 1-4.

6 Deflating Naturalness: Absence of Fundamental Pa-
rameters

We now turn to consider the second, deflationary view of Higgs fine tuning described in
Section 3, which has been advocated by Wetterich, Bianchi/Rovelli, and Williams, and
which regards fine tuning of bare parameters as unproblematic.

Wetterich writes in (Wetterich, 1984) that “fine tuning of bare parameters is not really
the relevant problem: we do not need to know the exact formal relation between physical
and bare parameters (which furthermore depends on the regularization scheme), and it is
not important if some particular expansion method needs fine tuning in the bare parameters
or not.” Bianchi and Rovelli express a similar point of view in the context of the cosmolog-
ical constant problem, which is structurally similar to the Higgs naturalness problem, but

21Nevertheless, we wish to highlight as a potential caveat that the formal/physical distinction may not
be sharply defined. All pairs of physical systems must be physically disanalogous in some sense - otherwise,
they would be the same system. Thus, as a qualifification to Fraser’s distinction, we adopt the view that
no analogy is physical simpliciter, but rather only physical with respect to particular aspects of the analogy,
such as (in our case), the status of bare parameters.
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more severe in that it arises from a delicate cancellation between quartically (rather than
quadratically) divergent quantities. They write, “simple physical arguments indicate that
the vacuum energy itself cannot be ‘real’ in the sense of gravitating: if it did, any empty
box containing a quantum field would have a huge mass, and we could not move it with a
force, since gravitational mass is also inertial mass. On physical grounds, vacuum energy
does not gravitate ... A shift in the vacuum energy does gravitate.” (Bianchi and Rovelli,
2010). Bianchi and Rovelli deny that we should ascribe direct physical significance to the
value of a bare parameter - in this case, the bare vacuum energy. For this reason, they claim
that contrary to the dictates of naturalness, “there is no great mystery” in the smallness
of the cosmological constant. More recently, Williams has argued against the formulation
of naturalness as a prohibition against fine tuning of bare parameters as follows: “stuck
with an effective theory, one is free to arrange the values of free parameters at high energy
- those appearing in the original Lagrangian at the original cutoff scale - however is needed
to make accurate predictions for empirically accessible low energy physics, which is all the
EFT can reasonably purport to describe anyway. The only concern in doing this is that
one isn’t fooled into thinking that by being forced to make specific choices for the values of
the high-energy parameters, they have thereby learned something meaningful about physics
near the cutoff scale” (Williams, 2015). 22

In characterizing fine tuning of bare parameters as unproblematic, these authors seem
implicitly to regard arguments based on the notion of fundamental bare parameters as
unconvincing. In this section, we seek to clarify one possible set of foundations for this view
- in particular, we describe one way of formulating and interpreting Wilsonian effective field
theories that goes entirely without the notion of fundamental parameters.

6.1 Wilsonian EFT’s without Fundamental Parameters

We have seen that quantities such as S-matrix elements and pole masses are left exactly
invariant under re-parametrization by Wilsonian RG transformations. Thus, many choices
of the parameters (g(Λ),Λ) yield the same values for these quantities. This suggests that the
notion of a unique, physically preferred, “fundamental” bare parametrization constitutes an
idle, dispensable posit in the definition of a Wilsonian EFT - both from the perspective of
generating the EFT’s successful empirical predictions and from the perspective of ensuring
that the EFT is finite and mathematically well defined. This hypothesis suggests one way
of formulating Wilsonian EFT’s without fundamental parameters. We now review the main
features of this formulation.

Physical quantities as Wilsonian RG invariants: The only quantities calculated within a
given EFT that may represent physical quantities - as opposed to quantities that depend on
an arbitrary mathematical convention, such as choice of gauge or renormalization scheme

22As Williams observes, Wetterich does not deny that naturalness problems exist, but only that, in order
to be seen as genuine problems, they should be formulated in terms of “physical,” renormalized parameters.
However, we think it worth noting on this point that renormalized parameters need not always be physical
parameters. For example, while the pole mass and renormalized MS mass are both renormalized parameters
(albeit in different schemes), it is reasonable to question whether the running MS mass is genuinely physical
in the same sense that pole mass is: while calculations of the pole mass must yield the same results
irrespective of renormalization scheme, and across different effective field theories, the MS mass is specific
to a particular scheme and its value is not generally preserved across matching between different EFT’s.
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- are invariant under re-parametrization by Wilsonian RG transformations. For example,
the pole mass and S-matrix elements are admitted as candidates for physicality since they
possess this invariance:

Λ
d

dΛ
S(p1, ..., pN ; g(Λ),Λ) = 0

Λ
d

dΛ
m2
p(g(Λ),Λ) = 0

The invariance of these quantities follows from the Wilsonian RG invariance of the n-point
Green’s functions:

Λ
d

dΛ
G̃(p1, ..., pN ; g(Λ),Λ) = 0 (10)

which in turn follows from the invariance of the partition function: Λ d
dΛZ[J ; g(Λ),Λ] = 0.

23 However, we should note that since S-matrix elements contain an arbitrary global phase,
it is rather mod-square S-matrix elements that one might choose to regard as physical.
Thus, in the view of Wilsonian EFT’s sketched here, Wilsonian RG invariance constitutes
a necessary but not sufficient condition for physicality. By contrast, on the “fundamental
parameters” interpretation of Wilsonian EFT models, a single set of values for the cutoff
and bare parameters, which are manifestly not invariant under Wilsonian RG flow, are also
regarded as physical - i.e., in principle, one could measure them directly and independently,
rather than “working backwards” to their values from measured values of pole masses and
cross sections.

Wilsonian RG transformations as invertible re-parametrizations: In the absence of funda-
mental parameters, Wilsonian RG transformations are regarded as re-parametrizations that
transform between physically equivalent, finite representations of the same physics, rather
than as coarse grainings of a single “microscopic,” high-energy description, associated with
the physical-cutoff bare parametrization g(Λph) = gph. A change of scale Λ and parameters
g(Λ) associated with the Wilsonian RG flow does not signal passage to a more or less fun-
damental EFT, but merely passage to a different finite parametrization of the same EFT.
Thus, within a single EFT, one may represent S-matrix elements and pole masses using a
low value Λl of the unphysical reference scale Λ, or a high value Λh:

S(p1, ..., pn; g(Λl),Λl) = S(p1, ..., pn; g(Λh),Λh) ≡ S(p1, ..., pn)

m2
p(g(Λl),Λl) = m2

p(g(Λh),Λh) ≡ m2
p.

Thus, it is not the case that bare parameterizations g(Λh) referenced to a high cutoff pa-
rameter scale Λh are more fundamental than bare parametrizations g(Λl) referenced to a
low cutoff parameter scale Λl, if greater fundamentality is understood to require that the
more fundamental description strictly contain the range of phenomena described by the
less fundamental description, and describe these phenomena in greater accuracy and/or
detail. Contrary to the suppositions of the “fundamental parameters” view, the low-scale

23Note that the Callan-Symanzik equation follows directly from (10) via application of the Chain Rule.
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parametrization (g(Λl),Λl) captures precisely the same set of physical phenomena as the
high-scale parametrization (g(Λh),Λh), and is no less physically encompassing. This feature
is explained further in subsections 6.2 and 6.3.

An EFT is associated with an entire Wilsonian RG trajectory, not just a single point on
such a trajectory: On the understanding of Wilsonian RG transformations as mere changes
of parametrization within a single EFT, it is more appropriate to associate a given EFT
not with any single parametrization, but with the entire continuum of physically equivalent,
finite parametrizations that lie along the EFT’s Wilsonian RG trajectory. Thus, the EFT
is not uniquely associated with any single point along a Wilsonian RG trajectory, but
with the entire trajectory itself, which represents the one-parameter equivalence class of
mathematically well-defined parametrizations, all of which yield exactly the same set of
physical amplitudes. While any single point along a Wilsonian RG trajectory serves to define
the whole trajectory via the Wilsonian RG equations, it is unneccessary for the purpose
of generating the EFT’s successful empirical predictions to single out any particular such
point as providing the unique physically correct “microscopic” parametrization of the theory.
Thus, the approach to EFT’s without fundamental parameters retains the advantage that
the EFT as defined in this manner is finite (since it is defined by an equivalence class of finite
parametrizations), but relinquishes the assumption that any single finite parametrization is
physically preferred or fundamental.

What then is the physical significance of the Wilsonian RG flow, given that it merely
represents a mere change of parametrization? In part, the answer lies in the implications
of this flow for the variation of S-matrix elements as the physical, external momenta pi are
scaled uniformly by some real number s:

S(sp1, ..., spN ; g(Λ),Λ) =

[
s2−d Z(Λ)

Z(sΛ)

]−N/2
S(p1, ..., pN ; g(sΛ), sΛ), (11)

where Z(Λ) ≡ g1(Λ). Thus, given the Wilsonian RG trajectory g(Λ), the predictions of the
theory for S(p1, ..., pN ) are defined up to scales for which the RG trajectory is mathemati-
cally defined. Note that, in cases where the Wilsonian RG trajectories of two theories agree
approximately at small Λ, but diverge for large Λ, the predictions for S(p1, ..., pN ) should
be approximately equal for small values of the physical scales pi but differ substantially for
large pi.

The physical cutoff of an EFT does not occur in the mathematical definition of that EFT:
It is important to note that in defining an EFT by a one-parameter equivalence class of
finite parametrizations (g(Λ),Λ), the physical cutoff Λph of an EFT appears nowhere in the
mathematical definition of that EFT. Without assuming the existence of a preferred set of
fundamental parameters, one still obtains the same predictions for physical quantities for
any parametrization (g(Λ),Λ) for which the RG trajectory is defined. Certainly, one is free
as a matter of arbitrary convention to set Λ = Λphys, but nothing is gained in terms of scope
or accuracy of the EFT by doing so. The scale Λph is purely a reflection of the fit between
the EFT model and the world; Λphys must be determined empirically. While it is an oft-
repeated claim that EFT’s predict their own breakdown in the UV, this is true only in the
attenuated sense that the Wilsonian RG trajectory may cease to be mathematically defined
at some upper limit Λ∗ for Λ, as in cases where the theory possess a Landau pole. Beyond
the relatively weak requirement that Λph < Λ∗, nothing about the intrinsic mathematical
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definition of the EFT tells us the precise value of Λph. While one is free to define an EFT
with cutoff Λph, in doing so one must insert this value of the cutoff by hand. Moreover, it
is relevant to note that the scale Λph at which the EFT ceases to be empirically valid is
not even defined until one fixes the parameters g(Λ) at some Λ (thus fixing the predictions
of the EFT) and until one sets the margin of error within which the EFT’s predictions are
considered empirically valid. On this view, the physical cutoff Λphys of an EFT is no more
intrinsic to the mathematical definition of that EFT than the speed of light c is intrinsic to
the mathematical definition of models in Newtonian mechanics.

Perhaps the strongest motivation for adopting this view of EFT’s is that it sheds an idle
assumption of the view based on fundamental parameters - namely, the very existence of
a physically preferred bare parametrization. As we have seen, the assumption that there
exists a single physically preferred set of values for the bare parameters is neither necessary
for generating the theory’s empirical predictions, nor for defining the theory in a way that
is finite and mathematically consistent. The act of nevertheless positing such a unique set
of fundamental parameters thus carries a strongly ad hoc character. 24 By contrast, in
the physical setting of condensed matter systems, the assumption that there exists a single,
physically fundamental microscopic parametrization, is supported by independent evidence
and is not ad hoc, since these parameters can be measured directly (i.e., without simply
tuning them to measured values correlation functions).

A second argument for shedding the notion of fundamental parameters is that even in
cases where it is possible in practice to experimentally probe physics at or above the scale of
an EFT’s physical cutoff, we do not directly measure the bare parameters at this cutoff. For
example, although it is possible to probe physics near the physical cutoff of QED - around
the pole mass of the W boson - one does not directly measure the bare parameters of QED;
one only ever tunes these parameters to possess whatever values are necessary to recover
the measured values of cross sections and pole masses. This an important point of physical
dis-analogy with the case of condensed matter systems, where it is possible to directly probe
the microscopic interactions between adjacent lattice sites that ultimately underwrite the
success of condensed matter models in describing the system’s collective behavior. 25

A third point in favor of shedding the notion of fundamental parameters applies in certain
conceivable scenarios for physics beyond the Standard Model, in which the Higgs pole mass
enters as a basic input to the fundamental theory - let us call it Tnew. In such cases, it cannot
be true that the bare parameters g(Λphys) of the Standard Model at its physical cutoff are
physically more fundamental than the Higgs pole mass. It makes little sense to countenance
m2
p as fundamental in Tnew but as non-fundamental in SMEFT, given that SMEFT is only

a low-energy approximation to Tnew. In this case, it is clear that the bare Higgs mass
m2(ΛSM ) is not fundamental or directly physical, but is artificially tuned to whatever value

24For recent philosophical analysis of ad hoc’ness in science with a focus on cases in elementary particle
physics, see Friederich, Harlander, and Karaca’s (Friederich et al., 2014)

25We emphasize, however, that in many cases bare parameters occurring the field theoretic description
of condensed matter systems are NOT understood to directly represent the microscopic interactions in
the material. Rather, one simply “works backward” from the measured values of correlation functions
and macroscopic quantities to the values of bare parameters in one’s chosen renormalization scheme; in such
schemes, the bare parameters do not have the physical interpretation as representing microscopic interactions
in the material. Even in such cases, one nevertheless understands the success of the condensed matter model
as rooted in an underlying microscopic lattice description (at least, in the case of solids), from which the
values of macroscopic variables describing the material’s collective behavior are derived. The parameters
governing such microscopic interactions are fundamental parameters. Thanks to an anonymous referee for
emphasizing this point.

20



it must possess to recover the measured values of genuinely physical quantities such as the
Higgs pole mass.

A final weaker argument, which is nevertheless worth noting briefly, is that since the
“fundamental parameters” view takes the state space and dynamics of an EFT to be trun-
cated in the UV by Λphys, the EFT makes no predictions about phenomena above the scale
of Λphys. The state space simply does not possess the states to describe scattering processes
at physical scales (e.g. center-of-mass energy, momentum transfer) above Λphys. For this
reason, the “fundamental parameters” view seems inconsistent with the conventional notion
that QED is also capable of making predictions (albeit not empirically correct ones) about
phenomena above the scale of its physical cutoff. By contrast, the view of EFT’s as defined
by an entire Wilsonian RG trajectory g(Λ), rather than the single point g(Λphys), accom-
modates this fact naturally, since the EFT’s Hilbert space (which can be constructed from
the correlation functions) is defined up to all scales for which the RG trajectory is defined,
and not just up to the physical cutoff scale.

We now consider two closely related objections to the view of Wilsonian EFT’s without
fundamental parameters that we have just sketched.

6.2 Objection 1: Aren’t Wilsonian RG Transformations Coarse
Graining Transformations?

The Wilsonian RG flow from high to low scales is often regarded as a coarse graining
transformation. However, this point requires some care, since the Wilsonian RG equations,

Λ
d

dΛ
gi(Λ) = βi(g(Λ),Λ) (12)

are first-order in Λ and therefore invertible. As Morris has emphasized, there is no “loss
of information” in the Wilsonian RG flow from a parametrization g(Λh) defined at some
high scale Λh to the corresponding parametrization g(Λl) at a low scale Λl (Morris, 1994),
(Morris, 1998). One can run the parameters g(Λ) up as well as down in Λ.

What then of the notion that the Wilsonian RG explains why theories differing in their
description of physics at high-energies all converge to the same renormalizable theory at low
energies? Surely information about the details of physics at high energies is lost in transition
to describing low-energy phenomena by a renormalizable theory, so that the Wilsonian RG
flow can be regarded as coarse graining. Reconciliation can be found in the fact that
information is lost only in the approximation where small coefficients of irrelevant operators
are ignored, which entails a change to a distinct RG trajectory. Thus, it is not the Wilsonian
RG flow in itself that constitutes coarse graining, but this flow combined with the added
step of throwing away information about these small coefficients. Prior to performing this
second step, the Wilsonian RG flow can be regarded as an invertible re-parametrization of
a fixed set of physical amplitudes.

It is worth noting here that while the process of integrating out infinitesimal momentum
shells for a single fixed field or set of fields is invertible in the absence of approximations,
the process of integrating out an entire field from the path integral in order to obtain the
path integral for an EFT describing some smaller set of fields is not generally invertible and
so can be regarded as a coarse graining. Starting from a theory of two fields, one light field
φ and one heavy field ψ - where “light” and “heavy” are understood in terms of the pole
masses of the fields - one can define an EFT describing the behavior of only the light field
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at low energies (where particles of the heavy field are not created), by “integrating out” the
heavy field ψ from the path integral of the full theory. The full theory describing both fields
φ and ψ - which may itself be a low-energy approximation to some still more encompassing
theory - is more fundamental than the EFT describing only the light field φ in the sense
that the full theory circumscribes the domain of empirical validity of the light field EFT;
the light field EFT thus “reduces to” the full theory. 26 Consequently, the parameters
gφ(Λ), gφψ(Λ), gψ(Λ) of the full theory (where gφψ(Λ) correspond to operators that couple
φ and ψ) do constitute a more fundamental parametrization of light-field amplitudes than
do the parameters g′φ(Λ) of the light field EFT. 27 Thus, the progression from a more to a
less fundamental parametrization occurs not in the flow to smaller values of Λ, but in the
projection of the RG flow of the full theory onto the RG flow of the light field EFT, which
in principle can be performed at arbitrary Λ.

6.3 Objection 2: Doesn’t Larger Λ Imply a More Encompassing
Theory?

One assumption of the interpretation of Wilsonian EFT’s based on fundamental parameters
is that a theory parametrized at scale Λ only describes phenomena at physical scales below
Λ. Thus, parametrizations g(Λh) with respect to a high cutoff Λh describe a distinct, more
fundamental theory than do parametrizations g(Λl) with respect to a lower cutoff Λl. While
nothing prevents one from defining EFT’s in this manner, such an interpretation is not
necessitated by the mathematical formalism of the Wilsonian RG. Other interpretations of
this formalism are also possible. In particular, in the interpretation sketched in subsection
6.1, any point g(Λ) along the Wilsonian RG trajectory can be used to parametrize the full
set of physical amplitudes predicted by that EFT. The unphysical scale parameter Λ is
independent of the physical scales of the problem (e.g., pole masses, external momenta pi),
and there is no special need for Λ to lie above (or below) these physical scales.

One can see this by noting that

Λ
d

dΛ
Z[J ; g(Λ),Λ] = 0,

where g(Λ) is a solution to the Wilsonian RG equations (12), so that we can write Z[J ; g(Λ),Λ] =
Z[J ]. That is, Z[J ; g(Λ),Λ] is the same function of J irrespective of the value chosen for Λ.
In particular, the functional derivatives of Z[J ] with respect to J do not depend on Λ.

G̃(n)(p1, ..., pn) =
(−i)n

Z[0]

δn

δJ̃(p1) ... δJ̃(pn)

∣∣∣∣
J=0

Z[J ].

From this it follows that

26Within the philosophical literature, the subjects of reduction and emergence as they relate to renor-
malization and effective field theory have been examined at length in the work of Butterfield, Hart-
mann, Castellani, Bain, Crowther, Huggett, Williams, Franklin, and others (Butterfield, 2014), (Hartmann,
2001), (Castellani, 2002), (Bain, 2013), (Crowther, 2015), (Huggett and Weingard, 1995), (Williams, 2017),
(Franklin, 2017). Recent discussion concerning the general methodology of reduction in physics can be found
in Butterfield, Crowther, Fletcher, and Rosaler (Butterfield, 2011a), (Butterfield, 2011b), (Butterfield and
Bouatta, 2012), (Butterfield, 2014), (Fletcher, 2015), (Crowther, 2015), (Crowther, 2017), (Rosaler, 2015),
(Rosaler, 2017), (Rosaler, 2013).

27Note that the parameters g′φ(Λ) of the light field EFT differ from the light field parameters gφ(Λ) of

the full theory since they are subject to so-called “matching corrections” that reflect the influence of heavy
fields that have been integrated out.
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Λ
d

dΛ
G(p1, ..., pN ;g(Λ),Λ) = 0

⇓

G(p1, ..., pN ; g(Λ),Λ) = G(p1, ..., pN )

S(p1, ..., pN ; g(Λ),Λ) = S(p1, ..., pN )

m2
p(g(Λ),Λ) = m2

p.

As Wilsonian RG invariants, the quantities G(p1, ..., pN ), S(p1, ..., pN ), and m2
p belong to

the set of quantities that may potentially be regarded on this interpretation as “physical.”
These equations illustrate a sense of cutoff independence that does not require the existence
of a continuum limit, where Λ is taken to infinity - rather, the explicit cutoff dependence of
quantities such as S-matrix elements and pole masses is removed at finite Λ by the cutoff
dependence of the parameters g(Λ).

The parameter Λ can be interpreted as an unphysical reference scale, which sets the
boundary between those modes φ̃(k) in the path integral that have been explicitly integrated
over, with their influence absorbed into the Lagrangian parameters g(Λ), and those that have
not been explicitly integrated over, so that they appear explicitly in the Lagrangian of the
path integral. One can understand Λ’s role in partial analogy to the simple case of bivariate
integration:

F [j] ≡
∫
dx dy f(x, y; j) =

∫
dx g(x; j) (13)

where g(x; j) ≡
∫
dy f(x, y; j). The function F [j] and its derivatives with respect to j

are unchanged by whether we write F [j] as the integral over dx dy of f(x, y; j) or as the
integral over dx of g(x; j). Likewise, the functional Z[J ] and its derivatives with respect to
J are unchanged by whether we write Z[J ] as a functional integral over modes below Λ1 of
eiS(g(Λ1)) or as a functional integral over modes below Λ2 of eiS(g(Λ2)) (where Λ1 6= Λ2). The
parameter Λ, which simply reflects how we choose to write down the expression for the path
integral, is thus unrelated to the physical scale set by the external momenta pi, and may lie
above or below them. For this reason, parametrizations associated with larger Λ need not be
identified with distinct, more encompassing theories. It is reasonable to regard them instead
as alternative parametrizations of a single EFT, since all such parametrizations represent
one and the same set of physical amplitudes, derived from the same cutoff-independent
function Z[J ]. On this interpretation, the parameter Λ should therefore not be understood
as a cutoff in the particular sense that it truncates the Hilbert space or the set of field modes
over which the dynamics of the theory are defined.

From the above considerations, it follows that we can use any parameters g(Λ) along
the Wilsonian RG flow - not just g(Λphys), and not just g(Λ) for Λ > pi,mp, etc. - to
parametrize correlation functions and physical quantities derived from them. More formally,
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the equations that define an EFT’s correlation functions and S-matrix elements in the
absence of fundamental parameters take the form,

Z[J ] =

∫ Λ

Dφ ei
∫
d4x[

∑
n gn(Λ)On + Jφ]

G(n)(x1, ..., xn; g(Λ),Λ) =
(−i)n

Z[0]

δn

δJ(x1) ... δJ(xn)

∣∣∣∣
J=0

Z[J ]

G(2)(x1, x2; g(Λ),Λ) =

∫ Λ d4p

(2π)4
eip(x1−x2)

[
iZ(g(Λ),Λ)

p2 −m2
p(g(Λ),Λ)

+

∫ Λ

∼4m2
p

dµ
ρ(µ)

p2 − µ2

]
S(p1, ..., pn; g(Λ),Λ) = G̃(n)(p1, ..., pn; g(Λ),Λ) G̃(2),−1(p1; g(Λ),Λ)...G̃(2),−1(pn; g(Λ),Λ),

(14)

where any Λ for which the Wilsonian RG flow is defined may be used to parametrize the
theory. As Morris has noted, one can even take Λ → 0 without changing the values of the
correlation functions, or any of the quantities derived from them. By contrast with the
formulation given in (9), no single parametrization is “fundamental.”

6.4 Higgs Fine Tuning without Fundamental Parameters

On shedding the assumption that a single set of values of the parameters g constitute a
physically preferred set of fundamental parameters, the bare parameters at a given scale are
no longer mutually independent. Instead, they are constrained to lie within a one-parameter
class of physically equivalent finite parametrizations, each associated with a different value
of the unphysical scale parameter Λ, all of which give the same values for the Higgs pole mass
and correlation functions. Noting that the bare Higgs mass m2

0(Λ) and Yukawa coupling
yt(Λ) can be interpreted as two of the parameters g(Λ) in the cutoff path integral Lagrangian
for the Standard Model, the leading contribution to the one-loop expansion of the pole mass
at Λ gives:

m2
p = m2

0(Λ) + δm2(Λ)

= m2
0(Λ)− y2

t (Λ)

8π2
Λ2 + . . .

= Λ2

(
m̃2

0(Λ)− y2
t (Λ)

8π2

)
+ . . . (15)

where m̃2
0 =

m2
0

Λ2 . The scale parameter Λ is chosen as a matter of convention. Large choices

of Λ require more delicate cancellations between m2
0(Λ) and

y2
t (Λ)
8π2 , while smaller values

require less delicate cancellations. Thus, the delicateness of the cancellation is entirely an
artifact of convention as well. In particular, the choice in (8) to set Λ to the physical cutoff
scale ΛSM of the Standard Model reflects an arbitrary (and not particularly convenient)
choice of convention that has no bearing on the scope of the Standard Model effective
field theory. The delicate cancellations can be eliminated by re-parametrizing the theory
in terms of smaller values of Λ, which entails no loss of information or scope of the theory
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- at least, not from the perspective of the full, non-perturbatively defined theory. In the
absence of fundamental parameters, the claim that the bare parameters g(ΛSM ) at the SM’s
physical cutoff are more fundamental than those at lower cutoff is severely weakened, since
both parametrizations describe exactly the same physics, and each can be inferred from the
other. In particular, SMEFT as described by the bare parameterization (m̃2

0(mp), y
2
t (mp)),

where mp is the Higgs pole mass, is no less fundamental than SMEFT as described by the
bare parametrization (m̃2

0(ΛSM ), y2
t (ΛSM )), even though ΛSM > mp.

On the view of bare parameters as conventional, regarding the delicate cancellations

between m̃2
0(ΛSM ) and

y2
t (ΛSM )

8π2 as coincidence is akin to finding coincidence in the following
delicate cancellations:

• We wish to determine the mass of an ant by first measuring the mass of the system
(ant + X), then measuring the mass of the system (X) alone, and finally subtracting
the latter from the former. Taking X=earth, we find that the mass of the system (ant
+ earth) agrees with the mass of the system (earth) to one part in 1030.

• We wish to measure the distance from the Aachen Dom (Cathedral) to the Aachen
Rathaus (Town Hall). We do so by measuring the magnitude of the difference between
vectors x̂dom and x̂rat describing the locations of these two buildings, where the vector
components are specified relative to a coordinate system whose origin lies at the center
of the Milky Way, and whose x-axis lies along the line joining the center of the Milky
Way to central Aachen. We find that the x-components of x̂dom and x̂rat agree to one
part in 1018 (see Figure 1).

In both cases, the delicate agreement between the quantities in question results from an
inconvenient, conventional choice of reference point, not a mysterious physical coincidence.
In the first example, we might have chosen chose instead to measure the ant’s mass instead
by subtracting the mass of (pencil) from the mass of (ant + pencil), which would have
exhibited a much less severe cancellation. The choice of reference system (pencil) or (earth)
is arbitrary and conventional, while the quantity of interest - the mass of the ant - is
invariant across different choices of reference system. Likewise, in the case of the Higgs, we
might express the invariant Higgs pole mass as a difference between bare mass and quantum
corrections defined with respect to different conventionally chosen values of Λ.

6.5 Scientific Realism and Wilsonian EFT’s

We have argued here that the validity of at least one set of naturalness-based arguments
turn critically on questions of physical interpretation of effective field theories - that is,
on questions concerning which elements of the mathematical formalism of an EFT may
represent real features in the world, and which reflect mere choices of mathematical con-
vention or artifacts of mathematical representation. Such questions are especially salient
in the context of efforts to formulate realist interpretations of quantum field theory, which
attempt to understand our theories not merely as toolkits for prediction (as operationalist
or empiricist approaches tend to do), but as representing - if only in an approximate and
domain-restricted way - the structure of the physical world beneath the surface of directly
observable phenomena. 28 Within efforts to give a realist interpretation of quantum field

28The difference between realist and empiricist approaches to the interpretation of scientific theories is
often illustrated by reference to debates in the 19th century concerning the existence of atoms - are atoms
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Figure 1: With choice of origin at the center of the Milky Way (O2), there is an extremely
delicate cancellation - to roughly one part in 1018 - between vectors indicating the locations
of Aachen Dom (Cathedral) and Aachen Rathaus (Town Hall). However, this cancellation
can be dramatically reduced by moving the origin close to, say, the midpoint between the
two (O1). Likewise, the cancellation between the bare Higgs mass and its quantum correc-
tions is very delicate for large Λ (say, the Planck scale), and much smaller for Λ on the order
of the Higgs pole mass. Without fundamental parameters, the choice of the unphysical ref-
erence scale Λ is purely conventional and akin to a choice of origin; the delicate cancellation
between bare Higgs mass and quantum corrections is then an eliminable, unphysical artifact
of convention.
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theory, there is the further question of which particular aspects of an EFT’s formalism one
should be realist about, given the observed empirical success of the EFT. 29

Here, we wish to acknowledge one recent line of inquiry into realist interpretations of
EFT’s in high energy physics, and to briefly orient our own discussion with respect to the
point of view considered in this work. Williams, J. Fraser, and Ruetsche have recently
explored the notion that the renormalization group may be used as a guide in attempt-
ing to uncover which mathematical features of empirically successful EFT’s to regard as
representing real features in the world, which are likely to be preserved in future, more
fundamental theories. Invoking Wimsatt’s criterion of robustness for realist commitment,
Williams writes, “What the RG shows is that the ‘fundamental’ short-distance structure ...
is largely irrelevant to the physical content of an EFT in the domain where we have any
reason to consider it empirically reliable ... An EFT at long distances is ‘robust’ in a way
that the the short distance ‘fundamental’ theory is demonstrably not: its entities and struc-
tures at that scale are ‘accessible (detectable, measurable, derivable, definable, producible,
or the like) in a variety of independent ways,’ and so are candidates for being included in the
ontology of that EFT” (Williams, 2017), (Wimsatt, 2007). In a similar vein, Fraser writes,
“in demonstrating that the large scale properties of a QFT model are insensitive to the high
energy dynamics, the renormalisation group is also telling us that these properties are essen-
tially independent of the details of future physical theories which describe the dynamics of
currently inaccessible high energy degrees of freedom. Thus the renormalisation group gives
us a way of identifying properties of our present theories which will be embedded within
future theories, in one way or another” (Fraser, 2016). Thus, both Fraser and Williams see
the RG as facilitating the interpretation of EFT’s by identifying those low-energy features
that are robust against variations in the unknown high-energy physics, and therefore likely
to be preserved irrespective of what this new physics turns out to be.

On the other hand, Ruetsche writes that the arguments offered by Williams and Fraser
in support of this view are “compromised by a certain faux generality afflicting RG analy-
ses.” She explains, “The concern is that even explicit RG results are only as reassuring as
the space of theories on which the RG group acts is comprehensive. But that space incor-
porates assumptions about what kinds of interactions are possible and how to model them.
And nature isn’t beholden to respect those assumptions” (Ruetsche, Forthcoming 2018). In
particular, proofs based on the RG that many distinct theories with different values of irrel-
evant operator coefficients are well approximated at low energies by the same renormalizable
theory assume that both the fundamental high-energy theory and approximate low-energy
theory reside in the same parameter space describing the same set of fields. On the other
hand, Ruetsche suggests, the space of possible high-energy theories may extend even be-
yond the realm of quantum field theory, and so is much larger than the set of possibilities
represented by the parameter space that hosts the Wilsonian RG flow.

The interpretation of Wilsonian EFT’s without fundamental parameters, which restricts
realist commitment to Wilsonian RG invariants, is motivated by many of the considerations
that drive the realism of Williams and Fraser; however, there are several important dis-
tinctions that we wish to draw here between the particular realist approach to interpreting

fictitious theoretical constructs that are merely useful for describing the observable behavior of gases and
other physical systems, or do they really exist? The empiricist or instrumentalist view of atoms (which has
declined markedly in popularity) adopts the first view, while the realist view adopts the latter. For more
detailed analysis of this debate, see for example Psillos’ (Psillos, 2011).

29Efforts to interpret effective field theories, and quantum field theories generally, from an empiricist point
of view can be found, for example, in Butterfield and Bouatta’s (Butterfield and Bouatta, 2015), Ruetsche’s
(Ruetsche, 2011), Fraser’s (Fraser, 2011), and Halvorson and Müger’s (Halvorson, 2013).
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QFT’s that is advocated by these authors and the brand of realism that informs the view
of EFT’s sketched in this section. We agree with Williams and Fraser, that in the physi-
cal interpretation of EFT’s, one must take care to distinguish between those aspects of an
EFT’s formalism that play a central role in generating its successful empirical predictions
and those that do not. 30 As we have seen, it is precisely such considerations that motivate
the abandonment of fundamental parameters in the physical interpretation of Wilsonian
EFT’s, since the notion that there exists a single physically preferred parametrization of
the theory at its physical cutoff plays no essential role in generating the theory’s successful
predictions (or in making it mathematically well-defined). 31

However, the precise sense in which Williams and Fraser use the Wilsonian RG to identify
candidates for realist commitment differs from the sense in which the interpretation of
Wilsonian EFT’s sketched in this section does so. As discussed, Williams and Fraser use the
Wilsonian RG to identify elements of an EFT that are robust to changes in the specification
of a theory at large values of the parameter Λ (typically, near the physical cutoff): since we
are ignorant as to the true nature of physics near the physical cutoff (at least, in the case of
the Standard Model effective field theory) we should restrict our realism to quantities that
do not depend on these details.

We agree with this claim, and simply wish to note that there is a distinct and compatible
sense in which the Wilsonian RG may be used to identify candidates for realist commitment
in EFT’s. By restricting physical quantities in an EFT to Wilsonian RG invariants, the
physical interpretation of EFT’s sketched in this section ventures a hypothesis about the
semantic relationship between an EFT and the physical world, rather than a claim about
our epistemic relationship to the world. For example, given that there is some matter of fact
- albeit currently unknown to us - about the values of the irrelevant operator coefficients
that describe physics near the Standard Model’s physical cutoff scale, what features of that
non-renormalizable EFT’s mathematical formalism represent real features in the world,
and which are mere artifacts of representation? One possibility is that there really exist
fundamental bare parameters that can in principle be directly measured (by analogy with
the microscopic parameters of a condensed matter system). Another possibility is that the
bare cutoff parameters of that EFT do not represent real features in the world, and instead
merely reflect an arbitrary choice of parametrization of physical amplitudes, akin to a choice
of gauge or coordinate system. As we have argued, the historical progression of EFT’s to
ever-higher energies appears to support the latter view: in the case of the non-renormalizable
4-Fermi theory of weak interactions, we possess empirical access to physics near and beyond
the physical cutoff, but do not measure the bare cutoff parameters of this EFT directly;
there does not appear to be any empirical evidence for the notion that there are genuine
physical facts about the values of the bare parameters, even in cases where we can probe
physics near the cutoff. Things could be different in the case of Standard Model effective
field theory, since we do not yet have access to physics near its cutoff; however, there does

30This strategy constitutes a central component of what Psillos has labeled the “divide and conquer”
approach to scientific realism. (Psillos, 2005). For a closely related approach to the realist interpretation of
quantum theories in general, see Saatsi (Saatsi, 2017).

31The situation is partly analogous to the distinction between the mechanical theory of Lorentz, which
predicted relativistic effects such as time dilation, length contraction, and the like, assuming a physically
preferred frame of reference, and the relativity of Einstein, which recovered the same effects but relinquished
the idle assumption of a preferred frame. Until it is possible to independently measure the bare parameters of
an EFT (rather than working backwards from correlation functions), the notion of fundamental parameters
appears to rest primarily on metaphysical speculation motivated by analogies with condensed matter physics,
much as intuitions motivating the introduction of an ether in the 19th century rested in part on metaphysical
speculation motivated by analogies with the mechanical theory of elastic media.
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not appear to much by way of empirical evidence that this is the case, either. Thus, while the
realism of Williams and Fraser appears to be consistent with (if not explicitly to endorse)
the physical interpretation of Wilsonian EFT’s in terms of fundamental parameters, the
interpretation sketched in this section explicitly rejects this possibility on the grounds that
these quantities are not invariant under Wilsonian RG transformations.

7 Conclusion

One influential rationale for imposing naturalness is based on the notion of “fundamental
parameters.” We have argued that it is possible to abandon this notion in the mathematical
definition of Wilsonian EFT’s without sacrificing predictive power or the virtue of finite-
ness introduced by the Wilsonian approach. On the other hand, one way of understanding
Wilsonian EFT’s in the absence of fundamental parameters also invites abandonment of
several other traditional dogmas of Wilsonian effective field theory. From this alternative
point view, it becomes possible to understand the delicate cancellation between Higgs bare
mass and quantum corrections as an eliminable artifact resulting from a particular choice
of mathematical convention, and the problem of explaining these cancellations seems much
less urgent, if not wholly misguided. On the other hand, this way of understanding Wilso-
nian EFT’s without fundamental parameters does nothing to undermine the expectation
that the Standard Model as a whole should be embedded in a deeper theory that includes
gravity, which should explain why Standard Model effective field theory is characterized
by the particular RG trajectories that it is. Rather, it only weakens the case that there
is an especially urgent need for explanation attached to the Higgs mass but not other SM
parameters.

Of course, there also exist other formulations of the naturalness principle that we have
not considered here, such as fine tuning formulations based on matching between EFT’s
in the MS scheme, and formulations based on the notion of inter-scale autonomy, each of
which needs to be examined in detail. We think it likely that similar concerns to those that
arise in the context of Higgs bare mass fine tuning will arise in the context of these other
formulations, as well as in the cosmological constant problem. However, in each of these
instances, a rigorous case remains to be made.
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