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Abstract
A recently popular formulation of the Higgs naturalness principle prohibits delicate
cancellations between running renormalized Higgs mass parameters and EFT match-
ing corrections, by contrast with the principle’s original formulation, which prohibits
delicate cancellations between the bare Higgs mass parameter and its quantum correc-
tions.While the need for this latter cancellation is sometimes viewed as unproblematic
since bare parameters are thought by some to be divergent and unphysical, renormal-
ized parameters are finite and measurable, and the need for delicate cancellations
between the renormalized Higgs mass parameter and EFT matching corrections is
therefore considered by some to constitute a more salient formulation of the Higgs
naturalness problem. Here, we argue that to the contrary, the need for fine tuning of
the renormalized Higgs mass parameter is an eliminable, unphysical artifact of renor-
malization scheme, and that this severely weakens the grounds for regarding it as a
problematic instance of fine tuning. In doing so, we highlight what we take to be a
number of important conceptual lessons about the physical interpretation of model
parameters in QFT.

Keywords Higgs · Naturalness · Fine tuning · Renormalization · Effective field
theory

1 Introduction

The Higgs naturalness principle, which was used to justify the expectation that the
Large Hadron Collider (LHC) would turn up hints of new physics beyond the Standard
Model (SM), is often understood as the requirement that free parameters of the SM
should not be fine tuned. In the case of the Higgs, the fine-tuning allegation often refers
to delicate cancellations between the bare Higgs mass and its quantum corrections.
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Foundations of Physics

Assuming that the SM has a physical cutoff of orderΛ � mH , wheremH ≈ 125GeV
is the measured value of the Higgs pole mass, this cancellation is of the order of
m2

H/Λ2. The absence of new physics up to scales above 1 TeV suggests that the
naturalness principle in this sense is violated to at least some degree by the SM.

More precisely, this formulation of the Higgs fine-tuning naturalness problem rests
on the observation that the leading contribution to the perturbative one-loop expansion
of the (squared) Higgs pole mass m2

p in terms of bare SM parameters gives

m2
p = m2

0 + δm2

= m2
0 − y2t0

8π2Λ2
SM + · · ·

= Λ2
SM

(
m̃0 − y2t0

8π2

)
+ · · · (1)

where yt0 is the bare top quark Yukawa coupling, ΛSM the SM’s physical cutoff (that
is, the scale at which it ceases to be empirically valid),1 m2

0 is the bare Higgs mass, and

m̃2
0 ≡ m̃2

0
Λ2

SM
is the dimensionless bare Higgs mass in units of ΛSM.2 Measurements at

the LHC have further determined that m2
p = (125 GeV)2, and that (1× 103 GeV)2 �

Λ2
SM � (1019 GeV)2. While the lower limit (1 × 103 GeV)2 has been set on the

basis of LHC measurements, the upper limit, equal to the Planck scale, is set by
theoretical expectations regarding the scales at which quantum gravitational effects
can no longer be ignored. Together, these facts imply that the bare Higgs mass m2

0
must be “fine tuned” in order to recover the measured value of the physical, pole mass
of the Higgs. The minimal degree of fine tuning required to recover the measured pole
mass m2

p ∼ O(104) increases with the empirically established lower bound on Λ2
SM.

At the lower limit of the allowed range forΛSM,ΛSM = 1×103 GeV, the relation (1)
gives O(104) = O(106) − O(106) while at the upper end of this range, ΛSM = 1019

GeV, it gives O(104) = O(1038) −O(1038). That is, the “best-case” scenario, where
ΛSM = 1 × 103 GeV, requires that m2

0 and δm2 cancel to one part in 102 to 103. The
“worst-case” scenario, where ΛSM = 1019 GeV, requires that m2

0 and δm2 cancel to
one part in 1034. For many physicists, cancellation to one part in 102–103 already
begins to be problematic.

There exist two conflicting attitudes toward the delicate cancellation between m2
0

and δm2 required to recover the measured value of m2
p for large values of ΛSM. The

first view is that this cancellation requires an unlikely coincidence between the bare
Higgs mass and the bare parameters that enter into the calculation of δm2. This point
of view, advocated by Susskind, ’t Hooft, and Giudice, rests on the interpretation of the
bare Higgs mass and other bare parameters of the SM as fundamental parameters—
i.e., the single, physically correct, underlying parametrization of the Standard Model.

1 At leading non-trivial order perturbation theory, one can take yt0 to be either a bare coupling or a
renormalized coupling, since the corresponding expressions only differ at higher orders in perturbation
theory.
2 See, for example, Martin [4] for a formulation of the Higgs naturalness problem along these lines.
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If m2
0, Λ, and yt0 are all independent parameters of the SM, then for large Λ it seems

like an odd coincidence that m2
0 and

y2t0
8π2 Λ

2 should agree so precisely since these
quantities are calculated from independent parameters of the model. The fine tuning
problem can be understood as the need either to avoid the such a cancellation—e.g.,
through a small cutoff Λ—or to explain the origin of this cancellation in terms of
deeper physical theories beyond the SM (BSM).

The second view is that this original formulation of the naturalness principle, as a
prohibition against fine tuning of bare parameters, is not a well-motivated constraint
on SM. Rationales supporting this claim differ, but are rooted in the belief that the
values of bare parameters at the SM’s physical cutoff are not to be taken seriously as
representing real physical features of the world, but are in some sense mere artifacts
of our mathematical description. For this reason, delicate cancellations between bare
parameters and quantum corrections do not constitute a mysterious coincidence in
urgent need of the special attention that they have received. Perhaps the first articulation
of this view was by Wetterich [10]:

fine tuning of bare parameters is not really the relevant problem: we do not need
to know the exact formal relation between physical and bare parameters (which
furthermore depends on the regularization scheme), and it is not important if
some particular expansion method needs fine-tuning in the bare parameters or
not. The relevant parameters are the physical parameters, since any predictions
of a model must finally be expressed in terms of these.

More recently, a similar view has been taken up by Bianchi and Rovelli [2] in the
context of the cosmological constant problem, which is structurally very similar to the
Higgs naturalness problem. Citing reasons provided by Wetterich, Williams [11] also
says that fine tuning of bare parameters is not really a problem. Most recently, Rosaler
and Harlander [6] attempt to provide a more detailed elaboration of the assumptions
underlying Wetterich’s claim that fine tuning is an artifact of a particular expansion
method, arguing that Wetterich’s claim carries important implications for the mathe-
matical formulation and physical interpretation of Wilsonian effective field theories
(EFTs).

Within the literature on high energy effective field theory, an alternative formulation
of the naturalness principle, which precludes fine tuning of renormalized Higgs mass
parameters, has become prevalent. Ostensibly, this alternative formulation provides
a way of rescuing the naturalness principle from worries about the legitimacy of
formulations in terms of bare parameters. For example, Barbieri [1] writes,

After all—one says sometimes—aren’t we supposed to talk only of physical
renormalized quantities, with all divergences suitably reabsorbed? … Indeed
a neater way to state the naturalness problem is in terms of the renormalized
running Higgs boson mass. … The quadratic divergence of the Higgs mass is
not the problem per se, but the sign of the sensitivity of the Higgs mass to any
threshold encountered at higher energy scales.

Thus, Barbieri appears to regard formulations of the naturalness problem in terms of
renormalized parameters as more salient. After dismissing “bare” formulations of the
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naturalness principle, Wetterich [10] explains that “A second, more serious possibility
of a fine-tuning problem involves the relation between physical parameters at short
and long distances.” He writes further,

It is the beauty of renormalizable quantum field theories that the model can
be completely parametrized by an appropriate set of quantities which can, in
principle, bemeasured.Wewill call these the physical parameters. Predictions on
physical quantities can then be given in terms of measured physical parameters.
... For our case of interest—spontaneous symmetry breaking in a scalar field
theory—the relevant physical parameters are scalar mass termsμ2(M2) and self
couplings λ(M2) normalized at some given energy scale M .

It seems clear here thatWetterich’s “physical parameters” can be understood to include
a running renormalized Higgs mass parameter, as in Barbieri’s discussion.

Several of the more recent presentations of the Higgs naturalness problem adopt
just such a formulation, which concerns the matching corrections to the running renor-
malized scalar mass of a light scalar field when a heavy particle is integrated out of
a theory including both the light scalar and the heavy particle; see e.g., Barbieri [1],
Skiba [8], Schwartz [7], Craig [3]. It is such formulations of the Higgs naturalness
principle that we primarily consider here.

Our central goal in this article is to provide one strong reason for skepticism about
the claim that delicate cancelations relating renormalized scalar mass parameters con-
stitute a problematic instance of fine tuning in need of special attention. The argument
rests on the fact that the need for such cancellations depends entirely on one’s choice of
renormalization scheme,which is purely amatter of arbitrarymathematical convention
(similar in some respects to a choice of coordinate system). Unlike the presentations of
the “renormalized” formulation of the Higgs naturalness principle, we explain how the
delicate cancellations in the relationship between renormalized scalarmass parameters
can be removed entirely through a change of renormalization scheme, without altering
the physical contents of the theory.3 The fact that the choice of renormalization scheme
is merely a matter of convention, and the fact that the delicate cancellations occur only
in some renormalization schemes but not others, undermine the notion that these
delicate cancellations rest on a mysterious physical coincidence demanding special
attention in the search for new theories beyond the StandardModel. However, we stress
that our aim here is not to dismiss all fine tuning problems as pseudo problems, and
offer examples of other fine tuning thatwe do regard as genuinely problematic.Our aim
is only to explain why the particular cancellation between renormalized running scalar
masses examined here, like the cancellation between bare scalar masses and quantum
corrections, does not itself fall into the category of genuine fine tuning problems.

A running theme throughout the discussion is that caremust be taken in the physical
interpretation of model parameters; one must be wary of ascribing too much physical

3 On some usages of the term “renormalization scheme,” different renormalization schemes are associated
with different choices of renormalization scaleμ, and the difference between on-shell, minimal subtraction,
off-shell momentum subtraction, etc. is a difference between different families of renormalization scheme.
On the usage we adopt here, on-shell, minimal subtraction, off-shell momentum subtraction etc. are them-
selves referred to as different renormalization schemes; variation of the parameter μ within such a scheme
does not constitute a change of renormalization scheme, but only a change of renormalization scale.
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significance to the numerical values of these parameters, particularlywhen these values
depend on arbitrary, unphysical choices of mathematical convention. We describe
various grades of physical interpretability of model parameter values, emphasizing
a distinctive feature of model parameters in QFT—namely that many numerically
distinct values for model parameters in an EFT generate exactly physically equivalent
predictions for physical quantities/observables.

The discussion is outlined as follows. In Sect. 2, we distinguish a number of differ-
ent types of scenario that arise in the physical interpretation of model parameter values
in physics. In Sect. 3, we emphasize a distinctive feature of the relationship between
parameters and observables in QFT models, which bears heavily on our interpreta-
tion of delicate cancellations associated with the Higgs mass. In Sect. 4, we explain
why worries about delicate cancellations involving renormalized running Higgs mass
parameters are subject to much the same fate as worries about delicate cancellations
involving the bare Higgs mass parameter—namely, that these cancellations reflect an
arbitrary choice of mathematical convention and can be eliminated through a different,
physically equivalent choice of convention. Section 5 is the Conclusion.

2 Physical Interpretation of Model Parameters

It is at the core of physics that the infinite number of observables and the relations
among them can be parametrized by a finite (and relatively small) number of param-
eters. Typically, one associates these parameters with certain “physical properties”
(mass, charge) of the underlying objects. QFT, however, teaches us that such asso-
ciations may sometimes be misguided, as we will describe in this and the following
section.

The Higgs naturalness problem is often characterized as arising from an “unlikely”
cancellation between parameters, or quantities calculated from these parameters, that
urgently demands explanation by BSMmodels. However, it is important to emphasize
that in physics one always wants a deeper explanation of the parameter values in one’s
models, irrespective of whether there exist conspicuous similarities between values
of these parameters, or whether these parameters are “natural” and “typical” of the
model’s parameter space. In the case of the Higgs naturalness principle, we would like
BSM theories to explain not only the value of the Higgs mass, but the values of all
SM parameters. What is supposed to distinguish fine tuning problems is not that they
require explanation of a theory’s parameters, but the special urgency with which fine
tuned parameters appear to demand such explanation, and the special clues that fine
tuned parameters are thought to give as to the nature of new physics. The naturalness
principle encourages special focus on the explanation of fine tuned parameters over
non-fine-tuned parameters, ostensibly because they provide hints of BSM physics that
are not contained in other SM parameters.

Given that we expect the values of all SM parameters to be explained by some
deeper theory anyway, does it make sense to think that the need to explain the val-
ues of certain parameters is somehow more urgent than the need to explain others?
Although we argue here against the notion that the Higgs mass poses an especially
glaring demand for explanation that other SM parameters do not, there exist less con-
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troversial cases in the history of physics where it seems clear that the choice to focus
on explaining certain parameters in particular was justified. For example, it was rea-
sonable from the vantage point of early atomic theory to inquire as to the origin of the
approximate equality between the proton and neutron masses, or the equality of the
electron and proton charges, which were independent free parameters in early models
of the atom. Such mysterious confluences spoke to the existence of deeper, as yet
unknown mechanisms that served to explain them, which were ultimately revealed
by more fundamental descriptions of these particles. The smallness of the observed
SM Higgs mass is thought to rest on a similarly glaring and unexplained confluence
between independent model parameters. However, we argue below that the need for
delicate cancellations involving renormalized scalar mass parameters does not consti-
tute the sort of conspicuous feature of model parameters that the approximate equality
of proton and neutron masses once did.

The notion that that there is something problematic or coincidental-seeming in the
delicate cancellations associated with the Higgs mass rests in part on the association of
concrete physical properties to the values of these parameters—why did nature choose
these properties, which are ostensibly independent of one another in the framework
of our existing theories, to be so close in value? Here, we underscore several general
lessons about the interpretationofmodel parameters, both in general and inQFTspecif-
ically, that undermine this interpretation of these cancellations. From the alternative
perspective outlined here, these cancellations do not reflect nature’s choices, but rather
our own arbitrary choices of convention in the mathematical description of nature.

In the remainder of this section and in the next, we distinguish three categories of
physical interpretability of model parameters, illustrating each with an example. The
first category consists of model parameters whose relationship to physical, measurable
quantities—what are sometimes referred to as the model’s observables—is relatively
simple, enabling one to attach an intuitive physical interpretation to these parameters.
The second category consists of model parameters who relationship to observables is
highly complicated and non-linear, making it difficult to attach any simple or intuitive
physical interpretation to the parameter values. The boundary between the first and
second categories is not intended to be sharp: in general, the physical meaning of a
model parameter is determined by its place in the mathematical structure of the model
and its relationship to the model’s observables; the intuitiveness of the parameter’s
physical interpretation will vary with the complexity of its relationship to observ-
ables. The third category of interpretability consists of cases in which the relationship
between model parameters and observables is non-unique in that there exist multiple,
and perhaps infinite, parametrizations of the model that generate exactly the same
physical predictions. In this case, the numerical values of the parameters are attached
to a certain arbitrary and physically irrelevant choice of convention, akin to a choice
of coordinates or gauge. This third category is discussed in detail in Sect. 3.

2.1 Physically Interpretable Model Parameters: The Classical Harmonic Oscillator

Let us consider a classical harmonic oscillator. Its Lagrangian can be written as
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L = m

2
ẋ2 − mω2

2
x2. (2)

In the following, we assume that the units for time, length, and energy have been
set by systems independent from the one above. The Lagrangian thus depends on
two parameters, m and ω, and one function x(t), where t is the time variable. The
parameter m drops out of the equations of motion, but it is still not irrelevant since it
determines the energy scale of the system. If we assume it to be of dimension mass,
then x is measured in units of length. Thus, the Euler–Lagrange equation

ẍ + ω2x = 0 (3)

describes general trajectories for the system. The solution of Eq. (3) tells us that the
corresponding movement is periodic, and the independent parameter ω determines
the frequency.4 The parameter ω has a clear, intuitive physical interpretation: it is
the proportion of a single cycle (measured in radians) that the object traverses in a
single unit of time. Its simple mathematical relationship, ω = 2π

T to a measurable
quantity—i.e., the period T of the oscillator—is what allows for this intuitive physical
interpretation.

2.2 Opacity in the Physical Interpretation of Model Parameters: Complex Systems

The intuitive interpretation of model parameters in terms of physical observables may
be much more difficult, if not impossible in cases where the relationship between
the parameter and the observable is highly complicated and non-linear. This already
happens in classical physics in so-called “complex systems” involving non-linear inter-
actions, for example, possibly among many different components. This also includes
so-called emergent phenomena which should in principle be determined by funda-
mental properties of the system, but are too intricate to be accessible through realistic
calculations. In many cases, such systems can be described through effective theories
which introduce a new, effective set of degrees of freedom and associated parameters.
But again, the relation between the effective and the fundamental description remains
obscure. Popular examples of such systems from classical physics is the formation of
hurricanes, the specific form of snow-flakes, or the dynamics of sand dunes.

We list these examples merely to show that in general one should not expect to be
able to associate parameters of a theory to observables in an immediate way.

3 Non-uniqueness of Parameter Values in QFT

At the current level of understanding, the deepest level of explanation of non-
gravitational phenomena is given by QFT, or more specifically, the Standard Model

4 Note that, in order to measure anything about the system, it needs to couple to something else. For
example, the oscillating mass(es) could carry electric charge, which lets us access the frequency ω of the
system by the electromagnetic radiation it emits.
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of elementary particle physics (SM), which is based on QFT. The SM itself has 19
parameters which are not explained, just like ω is not explained by the Lagrangian
in Eq. (2). Of course, the majority of physicists expects that the SM parameters will
at some point be explained by a deeper theory. In this section, we examine some of
the important conceptual and mathematical differences between the relationship that
holds between parameters and observables in QFT and this relationship in the con-
text of other theories like classical and quantum mechanics. These differences impose
important qualifications on the sense in which parameters of a QFT can be attached
to intuitive physical properties of a system.

3.1 Renormalizable QFTsWithout Cutoff

There is a severe qualitative difference between a classical Lagrangian and one that is
formulated within QFT. The latter is usually formulated in terms of “bare” parameters,
which cannot be assigned finite numerical values if finite predictions are to be extracted
from the theory and the theory is defined on a 4-dimensional spacetime continuum.
This is the case, for example, if we assume the SM to be the ultimate theory of the
world so that it holds to arbitrarily high energies. We hasten to add that this does not
correspond to the real world, first and foremost because the SM does not describe
gravitational interactions. However, for the sake of the argument, let us assume for
the moment that there is a renormalizable QFT which includes all possible observable
phenomena up to arbitrarily high energies.

If one attempts to calculate the values of observables using finite values for the
parameters, the theory generates non-sensical infinite predictions. It was one of the
most remarkable achievements of twentieth century physics to understand that this
does not prevent the theory from making sensible, and in fact extremely accurate
predictions for physical observables (or rather, relations among them). The crucial
step was to realize that the parameters of a theory (QFT or other) may simply play the
role of book-keeping devices in the sense that they allow one to relate observables to
one another, without directly measuring the parameters themselves. The intricacies of
QFT will make sure that any relation between the observables is well-defined, even
though the “bare” parameters of the Lagrangian are not.

In practical calculations, one typically deals with these infinities by introducing a
regulator in order to allow for the formal manipulation of finite rather than infinite
quantities. Let us denote this regulator by ε and assume that ε = 0 corresponds to the
original theory. For ε �= 0 one can formally assign finite values to auxiliary, so-called
renormalized parameters, which are obtained by subtracting divergent terms (in the
limit ε → 0) off the actual, “bare” parameters of the Lagrangian. Since divergent terms
remain divergent when adding finite terms to them, this subtraction procedure has a
great deal of arbitrariness, meaning that the numerical values assigned to “renormal-
ized” parameters are highly arbitrary, which makes it difficult to assign any physical
interpretation to them.

The differences among the various subtraction terms is what results in different
“renormalization schemes”. Some of these schemes are defined in a purely theoretical
way, meaning that one devises a (theoretical) regulator, and defines the subtraction
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scheme solely in terms of this regulator, without reference to physical observables. One
example of this is the “minimal subtraction (MS)” scheme, where the regulator ε is a
deviation from four-dimensional space-time, and the subtraction terms are simply the
poles in ε. Other renormalization schemes do refer to physical quantities by requiring
that Green’s functions assume specific functional forms in certain kinematical regions.
For example, in the on-shell scheme of QED, the two-point function of the electron is
required to have a pole at the physical mass of the electron, which leads to a specific
subtraction term of the parameter me in the Lagrangian.

As we have just argued, the choice of the subtraction term is in principle arbitrary.
The fact that in practice certain renormalization schemes are preferred over others
has a purely technical origin—i.e., it is rooted in the fact that some schemes are
more convenient for the purposes of performing certain calculations. For example,
the perturbative series may be better behaved in one renormalization scheme than in
the other. However, even if the MS scheme (or rather its more popular variant, the
“modified MS”, or MS scheme) has become most widely used in this context, it turns
out that in certain cases, for example in specifickinematical regions, other schemesmay
yield a seemingly better perturbative expansion. But again, these are purely technical
reasons; a truly “all-order” result will not depend on the renormalization scheme.
That is, it is not the case that one renormalization scheme constitutes a more accurate
representation of physical phenomena than the others; all schemes are physically
equivalent.

To parametrize observables in theMS scheme, for example, one is obliged to choose
a value for the unphysical scale parameter μ relative to which the values of renormal-
ized parameters are specified. Changing the arbitrary reference pointμ necessitates an
adjustment in some finite set of renormalized parameters gr (μ), given by the contin-
uumRG flow, in order to maintain the values of observables. There exist other types of
renormalized parametrization, associated with on-shell schemes, off-shell momentum
subtraction schemes, and regulator-independent schemes, each of which generates a
one-parameter continuum of parametrizations of the QFT’s observables. In all cases,
the invariance of observables Oi (gr (μ);μ) under changes of renormalization scale μ

follows from the corresponding invariance of Green’s functions,

μ
d

dμ
G(x1, . . . , xn; gr (μ), μ) = 0. (4)

Thus, when expressed in terms of renormalized parameters, physical amplitudes are
subject to two kinds of invariance: invariance under the change of renormalization
scheme (MS , on-shell, etc.), and invariance under change of scaleμwithin a particular
renormalization scheme. These changes merely constitute a change in how we choose
to represent and calculate physical quantities, and do not reflect any difference in the
actual physics.

Note that, by contrast with the Wilsonian RG flow, which takes place in an infinite-
dimensional space of bare parameters g(Λ), as we discuss shortly, the continuum RG
flow involves only a finite set of renormalized parameters gr (μ). No single set of values
for the parameters gr (μ), associated with any particular choice of scale μ, constitutes
the “true” or “physically correct” parametrization of the theory’s amplitudes; all such
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parametrizations constitute physically equivalent representations of the same physical
state of affairs. To be sure, some parametrizations are more convenient for the purpose
of ensuring more rapid convergence of perturbation expansions; however, nature itself
does not recognize the difference between different orders of perturbation theory
(which is an artifact of our calculations) but only the value of the expanded amplitude
itself.

3.2 Effective Field Theories with Finite Cutoff

While our discussion here primarily concerns formulations of the naturalness prob-
lem in terms of renormalized parameters, it is worthwhile to draw a connection
here to earlier formulations of the naturalness problem in terms of finite-cutoff bare
parametrizations, and also to our analysis of this formulation in [6]. However, in
doing so we digress somewhat from the main thread of our discussion, which con-
cerns “renormalized” formulations of the naturalness problem, and the reader may
skip to Sect. 4 without disrupting the flow of the argument. This digression does how-
ever provide a second useful illustration of the manner in which the correspondence
between the numerical values of a QFT’s parameters and that QFT’s observables is
many-to-one.

Recall that up to now we have assumed that the QFT under consideration, as
understood from the perspective of perturbation theory, is defined without a cutoff
regulator. However, mathematical difficulties associated with the continuum limit of
non-perturbative QFT, combined with the knowledge that all known realistic QFTs
only describe phenomena up to some finite energy scale, motivate the introduction
of a cutoff, resulting in what is called an effective field theory (EFT). Such a cutoff
acts as a regulator, and therefore the bare parameters can be assigned finite numerical
values in an EFT.

In fact, multiple distinct notions of “cutoff” exist within the context of EFT, and
are often conflated. It is possible to distinguish between the “physical cutoff” of an
EFT, and various types of “theoretical” cutoff that do not relate directly to the physical
cutoff. The physical cutoff is the empirically determined, physical scale at which an
EFT ceases to give accurate predictions—corresponding for example to the mass of
a heavy particle not contained in the theory or to some fundamental granularity of
spacetime. The empirically determined physical cutoff of an EFT is distinct from the
parameter Λ that is employed as a variable cutoff regulator in path integral or loop
integral expressions. This cutoff regulator is the same Λ that parametrizes Wilsonian
renormalization group (RG) flows; its value is arbitrary and chosen as a matter of
convention. Yet another notion of cutoff is the upper scale at which Wilsonian RG
flows (and also renormalized RG flows) cease being mathematically well-defined.
This occurs, for example, in the case where the theory possesses a Landau pole; in
such cases, the coupling of the theory diverges at a finite value of the parameterΛ, and
the theory is simply not mathematically defined above this scale. However, the scale
at which the RG flows cease to be mathematically defined is unrelated to the physical
cutoff, apart from the obvious requirement that the physical cutoff of an EFT lie below

123



Foundations of Physics

this theoretical cutoff. For more detailed discussion of the difference between these
various notions of cutoff see [6].

In the EFT framework, the naturalness requirement can be formulated as a pro-
hibition against fine tuning of bare parameters, or by saying that dimensional bare
parameters should be given by the appropriate power of the physical cutoff, times a
number of order one. Pole masses can then be “evaluated” by adding quantum correc-
tions to the bare parameters of the theory. For fermions and gauge bosons, symmetry
requirements determine the “appropriate power” of the cutoff to vanish, so that the
dependence of the quantum corrections can be at most logarithmic. For the bare Higgs
mass parameter, however, no such symmetry arguments apply, and we would expect a
number of orderΛ2. AssumingΛ to be of the order of the PlanckmassMPlanck ∼ 1019

GeV, this means that the quantum corrections must balance the bare Higgs mass to a
level of 10−34 in order to arrive at the observed physical mass of 125GeV.

However, we should not forget that the assumption of a cutoff only postpones the
previous discussion to a higher energy scale; in particular, the quest for an explanation
of the nature and origin of the cutoff itself arises. As we argue here and in Sect. 4, the
viability of naturalness-based arguments rests to a large extent on the nature of BSM
physics, and on the precise physical origins of the SM’s physical cutoff. Our main
point in this article is that the existence of delicate cancellations involving the Higgs
mass parameters does not in and of itself imply the existence of a coincidence or fine
tuning problem.

For example, as we discuss in more detail in Sect. 4, the cutoff could be due to
the existence of a heavy particle with mass M ∼ Λ, which is not part of the original
theory. If the new theory has no cutoff, the discussion above repeats itself: its bare
parameters cannot be assigned finite numerical values, and thus do not allow for a
physical interpretation. The bare Higgs mass of the EFT, on the other hand, would just
be an intermediate, auxiliary parameter without any intuitive physical interpretation.
From this point of view, the quantumeffects to theHiggsmass should not be considered
as being added to the bare Higgs mass of the EFT to arrive at the pole mass, but
the other way around: the quantum corrections (which are then understood with an
opposite sign) are added to the Higgs pole mass. Since the former are very large, and
the latter is comparatively tiny, it is not surprising that the resulting bare Higgs mass
in the EFT is so extremely close to the contribution of the quantum effects. It would
be the same as being surprised about the fact that an elephant with an ant on its back
is almost exactly as heavy as the same elephant without the ant.5

Let us consider a situation where the cutoff is not directly associated with the
mass of a new heavy particle, but due to some other kind of new physics, such as a
granularity of space-time etc. This would still raise the question for the underlying
physics, because obviously, a QFT with a cutoff cannot describe physics of the cutoff
itself. For example, in solid-state physics, one can derive a quantum theory of the
lattice modes, but the physics of the individual components of the lattice itself (the
atoms or molecules and their interactions outside the lattice) is not described by this
theory.

5 This line of argument is further developed in (see [6]).
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So far,we have argued that, by nomeans do bare parameters need to be considered as
more fundamental in any sense than renormalized parameters or physical observables.
There is one point where bare parameters stand out of the rest of the parametrizations
of a QFT. Consider the custodial symmetry of the SM which manifests itself in the
following simple relation:

ρ ≡ g21 + g22
g22

M2
W

M2
Z

= 1, (5)

where MW and MZ are the bare gauge boson masses, and g1 and g2 the bare couplings
of SU(2) and U(1), respectively. Of course, this relation propagates also to the renor-
malized parameters, but it is affected by quantum corrections. However, we can apply
the same view on this observation as before: the bare parameters are abstract objects
(book-keeping devices) which allow us to reduce complicated relations among observ-
ables to an efficient formalism, and relations like Eq. (5) are just part of this formalism.
There is no need to ascribe to any reality content of the bare parameters.

It will be useful at this point to briefly review the argument of [6] for the case of
a theory with a cutoff, because the renormalized parameters in such a theory share a
number of featureswhich occur also in a continuum theory. In aWilsonian parametriza-
tion of an EFT, where one specifies the theory by some set of bare parameters g and
regulates the theory with a finite cutoff Λ, one may calculate observables O as func-
tions O(g;Λ) of bare parameters g, understood as the coefficients in the path integral
Lagrangian. Furthermore, one may adjust the value of Λ, and perform compensat-
ing adjustments to the parameters g (which thereby acquire a Λ dependence) so that
the values of all observables Oi are left exactly unchanged. From this it follows
that there exists a continuous range of finite parametrizations of the theory’s observ-
ables Oi (g(Λ);Λ), related by the Wilsonian RG flow. The invariance of observables
under such reparametrizations, Λ d

dΛ
O(g(Λ),Λ) = 0, follows from the associated

invariance of Green’s functions G(x1, . . . , xn; g(Λ),Λ) from which observables are
calculated,

Λ
d

dΛ
G(x1, . . . , xn; g(Λ),Λ) = 0, (6)

which in turn follows from the invariance of the path integral under these
reparametrizations, Λ d

dΛ
Z [J = 0; g(Λ),Λ] = 0, which is the defining criterion

for Wilsonian RG flows. It is important to keep in mind that Eq. (6) concerns an RG
flow in an infinite-dimensional parameter space, while (4) describes an RG flow in a
finite-dimensional parameter space.

The relation (6) illustrates in the context of finite-cutoff bare parametrizations the
same lesson that (4) serves to illustrate in the context of renormalized parametrizations:
that the association between parameter values and observables in QFT is many-to-one.
The association between values of QFT model parameters and a given physical state
of affairs is therefore non-unique, and the choice of any single parametrization is
imbued with a significant element of arbitrary convention. One must therefore be
wary of ascribing too much physical significance to the numerical values of these
parameters, and to mathematical relations (e.g., delicate cancellations) that occur in

123



Foundations of Physics

some parametrizations but not others, whichmay reveal more about howwe’ve chosen
to describe a physical system than about the system itself. The implications of this
freedom for the interpretation of fine tuning of bare parameters are examined in detail
in Ref. [6], where, elaborating a suggestion by Wetterich [10], we argue that the
fine tuned cancellation between bare Higgs mass and quantum corrections may be
interpreted as artificial by product of an arbitrarily chosen parametrization, associated
with an arbitrary choice of the unphysical scale parameter Λ.

3.3 Summary

Let us summarize the discussion up to this point. A common formulation of the
naturalness principle is in terms of a constraint on the allowed values for the bare
parameters of a QFT such as the SM, which limits the amount of fine tuning that
these parameters may exhibit. We emphasize that while model parameters in classical
physics and quantum mechanics often have natural, straightforward interpretations as
physical features of the system being described, in QFT this is less the case due to the
specific and highly non-unique relation between the parameters (bare or renormalized)
and observables. In a renormalizable QFT without cutoff, the bare parameters cannot
even be associated with any finite numerical values. However, also in an EFT, there is
no compelling reason to associate any physical interpretationwith the bare parameters.
This is suggested by the fact that there exists a vast space of physically equivalent bare
parametrizations associated with different values of the scale Λ that generate exactly
the same values for observables such as pole masses and cross sections.6 The large
element of conventionality that enters the values of these parameters makes their
physical interpretation less immediate, and for this reason one must be careful in
ascribing too much physical significance to their numerical values.

The physically salient quantities in any physical theory are the observables, where
we understand an “observable” to be any physical quantitymeasurements of which can
be used to fit the parameters of the theory that does not depend on arbitrary choices of
mathematical convention such as choice of gauge, coordinate axes, or renormalization
scheme. An observable is thus any quantity in the model that represents some feature
in the physical world whose numerical value can in principle be determined through
experiment and is not tied to any particular such choice of convention.

Given the wide range of parametrizations that exist for a QFT’s observables, the
assumption that a single set of values is distinguished as fundamental or as physically
real imposes an additional element of metaphysical interpretation that is not strictly
speaking needed to recover the empirical successes of QFT, or to make the process
of generating QFT predictions mathematically well-defined within the Wilsonian for-
malism. The assumption that there are such matters of fact is analogous in this respect
to the assumption prior to relativity theory that there are matters of fact about which
objects are at rest and which are inmotion, since these also are not necessary to explain
the phenomenology associated with relativity theory. On the view that one should take
physically seriously only those elements of a theory that are necessary to generating its
successful empirical predictions—which, in the case of QFT, always proceed via the

6 See Rosaler and Harlander [6] for a more detailed defense of this claim.
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calculation of correlation functions—it is possible that one may dispense altogether
with the notion that any particular parametrization of a QFT or EFT is singled out by
nature uniquely physical or fundamental.

4 Higgs Naturalness and Renormalized Parameters

In this section, we review the formulation of the Higgs naturalness problem in terms
of renormalized running mass parameters (Sect. 4.1), and then explain why the prob-
lematic cancellations are an artifact of renormalization scheme rather than a genuinely
physical effect (Sect. 4.2). Therefore, the delicate cancellations involving renormal-
ized running mass parameters possess much the same status that Wetterich and others
have ascribed to the delicate cancellations involving bare mass parameters, in that they
reflect our choices of mathematical convention more than they reflect a mysterious
feature of the natural world.

4.1 Fine Tuning of Renormalized Higgs Mass in EFTMatching Calculations

A formulation of the Higgs fine-tuning problem that is frequently cited in the literature
on EFT underscores the need for fine tuning of renormalized parameters in matching
calculations for scalar running masses in the MS scheme; see for example the work of
Skiba [8], Craig [3], Schwartz [7], Williams [11]. Let us see how this allegation can
be dismissed by following an analogous line of reasoning to that given for the case of
bare parameters in Rosaler and Harlander [6].

Assume that there is a theory T which contains all the SM degrees of freedom, plus
additional particles with masses of the order of M � v, where v is the Higgs field
vacuum expectation value. The Higgs mass renormalized within this theory in the MS
scheme will be denoted as m̃H (μ), where μ is the ’t Hooft mass (renormalization
scale). The SM is then an EFT which can be obtained from T by integrating out the
heavy particles. Renormalized parameters of the SM can be related to those of T by
requiring that the Green’s functions of SM fields evaluated in the two theories agree
in the limit M → ∞. For the Higgs mass, we write this relation as

m2
H (μ) = m̃2

H (μ) + δm2
H (μ), (7)

where mH (μ) is the MS Higgs mass renormalized within the SM, and δm2
H ∼ M2 is

a finite, calculable quantity. This shows that, except maybe for very specific choices
of μ (see the toy example below), the numerical value of the MS Higgs mass in the
full theory may differ by many orders of magnitude from its value in the SM.

Moreover, from experiment we know that the Higgs pole mass MH is of the same
order of magnitude as the SMMSmass, and thus also differs from theMSmass within
T by many orders of magnitude. We thus write

M2
H = m̃2

H (μ) + δm̂2
H (μ), (8)
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where δm̂2
H (μ) ∼ M2. This means that delicate cancellations between the large values

of m̃2
H (μ) and δm̂2

H (μ) are required in order to arrive at the observed small value for
the Higgs pole mass.

However, recall that the MS mass is defined through an auxiliary, unphysical regu-
larization parameter (the complex space-time dimension), and in this sense should be
considered unphysical. On the other hand, whether one uses the MS or the pole mass
in the calculation of an observable is in principle irrelevant; the reason to prefer one
over the other is usually determined from the convergence behavior of the perturbative
series. Due to this purely theoretical character of the MS mass, it seems untenable to
base any physical conclusion on its numerical value. Similar to the bare parameters
discussed above, the MS parameters should be considered as book-keeping devices
that allow one to relate different observables to one another.

To make this “renormalized” formulation of the Higgs naturalness principle more
concrete, consider its application within the context of a concrete model—specifically,
the often-cited case of a Lagrangian that couples a light scalar field to a heavy fermion
field7:

Lψ,φ = iψ̄ /∂ψ − Mψ̄ψ + 1

2
(∂μφ)2 − 1

2
m̃2φ2 − gψ̄ψφ (9)

where m̃ 	 M and the parameters are understood as renormalized parameters
employed in the calculation of tree level amplitudes. At low energies, heavy fermions
are not produced, and we can use an effective Lagrangian that describes only the
dynamics of the light scalar field:

Lφ = 1

2
A(∂μφ)2 − 1

2
Bφ2 + 1

4!Cφ4 + · · · , (10)

where A, B,C are coefficients to be determined bymatching to the full theory, and the
ellipsis designates non-renormalizable terms whose influence is negligible at energies
much less than M . Using Lψ,φ , the two-point function for the scalar φ at vanishing
external momentum reads

Ḡ2 = [−m̃2 + Π̄(0, m̃2)]−1, (11)

where

Π(0, m̃2) = 4g2

(4π)2
M2

(
1 + 3 ln

μ2

M2

)
+ O

(
m̃2

M2

)
, (12)

and m̃ is the scalar MS mass of the full theory. Requiring that this agrees with the
two-point function of the effective theory,

Ḡ ′
2 = [−m2]−1 + · · · , (13)

7 The detailed form of the heavy field is not important to the argument here, and the same general points—
which rest on the presence of matching corrections to the light scalar mass term that are quadratic in the
mass of the heavy field—can be illustrated in a model where the heavy field is a scalar rather than a fermion
field.
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where the ellipsis denotes terms of higher perturbative order, one finds

m2(μ) ≡ B(μ) = m̃2(μ) − 4g2

(4π)2
M2

(
1 + 3 ln

μ2

M2

)
≡ m̃2(μ) + δm2(μ), (14)

where μ is again the ’tHooft mass, and we have chosen the notation in analogy to
Eq. (7). Except for a delicate choice of μ one indeed finds a difference between the
scalar mass parameters in the full and the effective theory of order M2. To obtain a
small value for m2, there must be a delicate cancellation between the renormalized
parameter m̃2 of the full theory and the matching correction δm2. Thus, it appears on
one common interpretation as if the scalar mass term m̃2 and quantum corrections are
mysteriously conspiring to give a small value for the scalar MS mass term m2 in the
effective theory of Lφ . For completeness, we remark that, at the perturbative order we
are considering here, the MS and the pole mass coincide in the effective theory, and
thus one can replace the left-hand side of Eq. (14) also by the scalar particle’s pole
mass, thus arriving at Eq. (8) for that specific example.

The heavy field pole mass M sets the physical cutoff of the effective theory Lφ ,
since it is the scale aroundwhich it ceases to be empirically reliable in aworld governed
by the full theory Lψ,φ . One way to avoid the need for delicate cancellations is for
M to be small. Thus, in this example, Lφ is analogous to the SM, while the full
theory is analogous to a more encompassing BSM theory, in which the heavy fermion
is analogous to some as yet undiscovered heavy BSM particle. For more detailed
presentation of this example, see Skiba [8] or Schwartz [7].

4.2 Absence of Fine Tuning in the On-Shell Scheme

Our central thesis is that delicate cancellations relating renormalized scalar mass
parameters like the ones just considered need not, and probably should not, be
interpreted as a mysterious coincidence or fine tuning. The reason is simple: these
cancellations occur in some renormalization schemes but not others, and one’s choice
of renormalization scheme is a matter of arbitrary convention. The fact that the can-
cellations rest on any particular such choice of mathematical convention suggests
that we should, at the very least, be wary of endowing them with too much physical
significance.

We claim that the need for delicate cancellations relating renormalized scalar mass
parameters is an artifact of renormalization scheme. Matching calculations require
one to choose a renormalization scheme both for the full theory and for the low-
energy effective theory. In the calculation above, the parameters of both theories were
defined in the MS scheme. However, this choice of scheme is primarily a matter of
calculational convenience.In principle, one could choose to renormalize either theory
in any scheme that one wants.

In particular, one could choose to renormalize both the full theory and the low-
energy EFT in an on-shell scheme. In this case, the value of the renormalized mass
parameters in both the low-energy EFT and the full theory are the same—namely,
both are equal to the light scalar pole mass. For this reason, matching in the on-shell
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scheme involves no large quadratic matching corrections, or any matching correc-
tions at all, to the renormalized mass parameter. The need for delicate cancellations
relating renormalized scalar mass parameters between the EFTs can be seen to reflect
our choice of mathematical convention, rather than a mysterious agreement between
genuinely physical quantities, which are renormalization scheme independent.8 It can
be eliminated entirely through an alternative choice of mathematical convention that
does not alter in any way the physical content of either EFT.

To be sure, the switch to the on-shell scheme does not eliminate the quadratic
corrections relating the scalar field baremass andpolemass in either theory; the counter
terms relating these quantities still diverge quadratically with the cutoff regulator Λ.
But recall that our discussion began from a point of skepticism about the formulations
of the fine tuning problem that rely on the relationship between bare parameters and
pole masses, a skepticism that has been justified in different ways by the sources
quoted in the introduction. Assuming that delicate cancellation between bare masses
and quantum corrections is not really the problem, the fact that quadratic counterterms
remain in the on-shell scheme is neither here nor there.

Admittedly, the observation that renormalized masses do not sustain matching cor-
rectionswhen both theories are renormalized in the on-shell scheme appears somewhat
trivial once it is made. One need not perform any detailed calculations to see that it
is true. It holds simply by virtue of how the on-shell scheme is defined. But the rel-
evance of this simple fact for the naturalness principle becomes manifest only once
one has stopped to explicitly frame the question—i.e., of whether the need for delicate
cancellations in the relationship between renormalized mass parameters is scheme
independent and in this sense physical. Perhaps somewhat strangely, presentations of
the above matching calculation make little of its dependence on a particular choice
of renormalization scheme, to the extent that they acknowledge this dependence at
all. However, inasmuch as one cares to go beyond a “shut up and calculate” attitude
toward the relations that occur in EFT calculations (as one must when evaluating
naturalness-based interpretations of relations like (8)), it seems a matter of common
sense that questions of scheme dependence versus independence of various quanti-
ties and relations should bear critically on their physical interpretation. In particular,
questions of scheme dependence bear heavily on questions about whether similarities
in the numerical values of different parameters constitute a mysterious coincidence
demanding special attention or an artifact of arbitrary choices that we have made in
our calculations.

We emphasize that neither our analysis of the EFT matching calculation above,
nor our similar conclusions about fine tuning of the Higgs bare mass, is intended to
suggest that all fine tuning problems, or indeed that all fine tuning problems potentially
associated with the Higgs, are pseudo-problems. For example, it was hypothesized
some time ago by the now-debunked theory known as Technicolor that the Higgs
scalar particle is in fact a bound state of two heavier unknown particles. If the pole
masses of these particles were many orders of magnitude larger than the pole mass
of the Higgs, recovering the much lighter Higgs pole mass as the mass of their bound

8 Indeed, the need for running, scale-dependent mass parameters at all is an artifact of renormalization
scheme, since one can in principle always take the pole mass, whose value remains fixed and does not run,
as the renormalized mass parameter.
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state would require a very delicate cancellation between the pole masses of these
particles and their (negative) binding energy. Were this to occur, it would constitute
a genuinely problematic and mysterious instance of fine tuning, since the delicate
cancellation required would be between quantities whose values do not depend on
an arbitrary choice of parametrization scale, renormalization scheme, or other such
choice of convention. Specifically, the cancellation would be between the pole masses
of the constituent heavy particles and their binding energywithin the composite Higgs,
both quantities that are invariant under one’s choice of renormalization scheme and
renormalization scale. However, this case of a genuine fine tuning problem rests on
specific assumptions about the form of physics beyond the Standard Model—namely,
that the Higgs scalar is a composite of heavier particles—that nature is not obliged to
respect.

By contrast, the example of the Yukawa model described provides a simple toy
model for another type of scenario for beyond the Standard Model physics, where the
StandardModelHiggs is not a composite, but rather occurs as one among awider range
of fundamental fields, including those that are heavier than our current experimental
capabilities allow us to probe. In this sort of scenario, where the Standard Model is
recovered as a low-energy approximation simply by integrating out the heavy fields,
we have argued that the delicate cancellation between the renormalized running Higgs
mass in theBSM theory and thematching corrections that arise from integrating out the
heavy BSM particle is merely an artifact of renormalization scheme. The cancellation
can be removed through an alternative (but less calculationally convenient) choice of
convention in which the renormalized Higgs mass in both theories is taken as the 125
Gev Higgs pole mass.

5 Conclusion

Because of the need for renormalization, and because of the role played by the RG,
parameters and observables are related very differently in QFT from how they are
related in models from classical physics and from quantummechanics. The vast space
of available parametrizations, related by changes of renormalization scale and renor-
malization scheme, introduces a large element of conventionality into the numerical
values of QFT parameters. As a result, one must be careful not to ascribe too much
physical significance to relationships that hold only in particular parametrizations and
not others. Elsewhere, we have defended this point in arguing against the notion that
fine tuning of the bare Higgs mass is problematic and calls out for explanation in the
same way that the equality of the proton and neutron masses once did.

Here, we have argued that similar lessons apply to fine tuning of renormalized MS
scalar mass parameters. Just as the need for fine tuning of the bare Higgs mass can
be interpreted as an artifact of an arbitrarily chosen parametrization associated with a
particular value of Λ, so the need for fine tuning of renormalized running scalar mass
parameters can be understood as an artifact of the fact that matching is performed
in a particular class of renormalization schemes. In both cases, the need for delicate
cancellations thought to reflect the presence of fine tuning can be eliminated by a
change of parametrization.
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