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Coarse-graining of fully atomistic molecular dynamics simulations is a long-standing goal in order to allow
the description of processes occurring on biologically relevant timescales. For example, the prediction of
pathways, rates and rate-limiting steps in protein-ligand unbinding is crucial for modern drug discovery. To
achieve the enhanced sampling necessary for coarse-graining, we first perform dissipation-corrected targeted
molecular dynamics simulations, which yield free energy and friction profiles of the molecular process under
consideration. In a second step, we use these fields to perform Langevin simulations which account for the
desired molecular kinetics. By introducing the concept of ’temperature boosting’ of the Langevin simulations,
this combination of methods allows simulation of biomolecular processes occurring on multisecond timescales
and beyond. Adopting the dissociation of solvated sodium chloride as well as trypsin-benzamidine and
Hsp90-inhibitor protein-ligand complexes as test problems, we are able to reproduce the rates from atomistic
molecular dynamics simulation and experiments within a factor of 1.5–4 for unbinding times up to the range
of milliseconds and of 1.2–10 in the range of seconds. Analysis of the friction profiles reveals that binding and
unbinding dynamics are mediated by changes of the surrounding hydration shells in all investigated systems.

I. INTRODUCTION

Classical molecular dynamics (MD) simulations in
principle allow us to describe biomolecular processes in
atomistic detail1. Prime examples include the study of
protein complex formation2 and protein-ligand binding
and unbinding3,4, which constitute key steps in biomolec-
ular function. Apart from structural analysis, the predic-
tion of kinetic properties has recently become of interest,
since optimized ligand binding and unbinding kinetics
have been linked to better drug efficacies5–7. Since these
processes typically occur on timescales from milliseconds
to hours, however, they are out of reach for unbiased all-
atom MD simulations which currently reach microsecond
timescales. To account for rare biomolecular processes, a
number of enhanced sampling techniques8–16 have been
proposed. These approaches all entail the application of
a bias to the system in order to enforce motion along a
usually one-dimensional reaction coordinate x, such as
the protein-ligand distance.

While the majority of the above methods focuses on
the calculation of the free energy profile ∆G(x), several
approaches have recently been suggested that combine
enhanced sampling with a reconstruction of the dynam-
ics of the process17–19. In this vein, we recently proposed
dissipation-corrected targeted MD (dcTMD), which ex-
erts a pulling force on the system along reaction coordi-
nate x via a moving distance constraint20. By combining
a Langevin equation analysis with a cumulant expansion
of Jarzynski’s equality21. dcTMD yields both ∆G(x) and
the friction field Γ(x). The latter reflects interactions of
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the system with degrees of freedom orthogonal to those
which define the free energy. In this work, we go one
step further and use ∆G(x) and Γ(x) to run Langevin
simulations, which describe the coarse-grained dynam-
ics along the reaction coordinate and reveal timescales
and mechanisms of the considered process. Moreover,
we introduce the concept of ”temperature boosting” of
the Langevin equation, which allows us –without further
approximations– to speed up the calculations by several
orders of magnitude.

II. THEORY

A. Dissipation-corrected targeted molecular dynamics

To set the stage, we briefly review the working equa-
tions of dcTMD derived in Ref. 20. TMD as developed
by Schlitter22 uses a constraint force fc that results in a
moving distance constraint x = x0 + vct with a constant
velocity vc. The main assumption underlying dcTMD is
that this nonequilibrium process can be described by a
memory-free Langevin equation1,

mẍ(t) = −dG

dx
− Γ(x)ẋ+

√
2kBTΓ(x) ξ(t) + fc(t), (1)

which contains the Newtonian force −dG/dx, the friction
force −Γ(x)ẋ, as well as a stochastic force with white
noise ξ(t), that is assumed to be of zero mean, 〈ξ〉 = 0,
delta-correlated, 〈ξ(t)ξ(t′)〉 = δ(t− t′), and Gaussian dis-
tributed. Since the constraint force fc imposes a constant
velocity on the system (ẋ = vc), the total force mẍ van-
ishes. Performing an ensemble average 〈. . .〉 of Eq. (1)
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FIG. 1. Dissociation of NaCl in water. (A) Free energy profiles ∆G(x) along the interion distance x, obtained from a 1µs long
unbiased MD trajectory at 293 K (dashed green line) and 1000 × 1 ns TMD runs (full blue line). Also shown is the average
work 〈W (x)〉 calculated from the TMD simulations (black). (B) Friction profile Γ(x) obtained from TMD (red) together with
the average number of water molecules (black), that connect the Na+ and Cl− ions in a common hydration shell.28

over many TMD runs, we thus obtain the relation20

∆G(x) = 〈W (x)〉 − vc

∫ x

x0

Γ(x′) dx′. (2)

Here the first term 〈W (x)〉 =
∫ x
x0
〈fc(x′)〉dx′ represents

the averaged external work performed on the system,
and the second term corresponds to the dissipated work
Wdiss(x) of the process expressed in terms of the friction
Γ(x).

While the friction in principle can be calculated in var-
ious ways23,24, it proves advantageous to calculate Γ(x)
directly from TMD simulations. To this end, we invoke
Jarzynski’s identity21, e−∆G(x)/kBT = 〈e−W (x)/kBT 〉, the
second-order cumulant expansion of which gives Eq. (2)
with Wdiss(x) =

〈
δW 2(x)

〉
/kBT . Expressing work fluc-

tuations δW in terms of the fluctuating force δfc, we
obtain for the friction20

Γ(x) =
1

kBT

∫ t(x)

t0

〈δfc(t)δfc(t′)〉dt′, (3)

which is readily evaluated directly from the TMD simu-
lations.

As discussed in Ref. 20, the derivation of Langevin
equation (1) assumes that the pulling speed vc is slow
compared to the timescale of the bath fluctuations, such
that the effect of fc can be considered as a slow adiabatic
change25, which leaves the system virtually at equilib-
rium at all times. This means that the free energy (2) and
the friction (3) determined by the nonequilibrium TMD
simulations correspond to their equilibrium results. As
a consequence, we can use ∆G(x) and Γ(x) to describe
the unbiased motion of the system via Langevin equation
(1) for fc = 0. Numerical propagation of the unbiased
Langevin equation then accounts for the coarse grained
dynamics of the system, and yields the timescales of the
considered process.

The theory developed above rests on two main assump-
tions. For one, we have assumed that Langevin equation
(1) provides an appropriate description of nonequilibrium
TMD simulations, and applies as well to the unbiased
motion (fc = 0) of the system. This means that, due

to a timescale separation of slow pulling speed and fast
bath fluctuations, the constraint force fc enters this equa-
tion merely as an additive term. Secondly, we have in-
voked a cumulant expansion to derive friction coefficient
(3), which is valid under the assumption that the dis-
tribution of W within the ensemble is Gaussian. While
this assumption may break down if the system of interest
follows multiple reaction paths, we have recently shown
that we can systematically perform a separation of an
ensemble of dcTMD trajectories into classes, each corre-
sponding to a pathway26. To identify these pathways, a
nonequilibrium principal component analysis of protein-
ligand distances may be performed26. Alternatively, path
separation can be based on geometric distances between
individual trajectories, making use of the NeighborNet
algorithm27 to cluster trajectories into classes (and thus
pathways) according to these distances.

B. T -boosting

The speed-up of Langevin equation (1) compared to
an unbiased all-atom MD simulation is due to the drastic
coarse graining of the Langevin model (one instead of 3N
degrees of freedom, N being the number of all atoms).
Since the numerical integration of the Langevin equation
typically requires a time step of a few femtoseconds (see
Table S1), however, we still need to propagate Eq. (1)
for & 100 · 1015 steps to sufficiently sample a process
occurring on a timescale of seconds, which is prohibitive
for standard computing resources.

As a further way to speed up calculations, we note
that the temperature T enters Eq. (1) via the stochastic
force, indicating that temperature is the driving force of
the Langevin dynamics. That is, when we consider a
process described by a transition rate k and increase the
temperature from T1 to T2, the corresponding rates k1

and k2 are related by the transition state expression

k2 = k1e
−∆G 6=(β2−β1), (4)

where ∆G6= denotes the transition state energy and
βi = 1/kBTi is the inverse temperature. That is, by in-
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creasing the temperature we also increase the number n
of observed transition events according to n2/n1 = k2/k1.

To exploit this relationship for dcTMD, we proceed
as follows. First we employ dcTMD to calculate the
Langevin fields ∆G(x) and Γ(x) at a temperature of in-
terest T1. Using these fields, we then run a Langevin
simulation at some higher temperature T2, which results
in an increased transition rate k2 and number of events
n2. In particular, we choose a temperature high enough
to sample a sufficient number of events (N & 100) for
some given simulation length. In the final step, we use
Eq. (4) to calculate the transition rate k1 at the desired
temperature T1.

It should be noted that the above described proce-
dure, henceforth termed “T -boosting,” involves no as-
sumptions or approximations. It exploits the fact that
we calculate fields ∆G(x) and Γ(x) at the same temper-
ature for which we eventually want to calculate the rate.
On the other hand, we wish to stress that a Langevin sim-
ulation run at T2 using fields obtained at T1 in general
does not reflect the coarse-grained dynamics of an MD
simulation run at T2, but can only be used to recover
k1 from k2, because the fields ∆G(x) and Γ(x) obtained
from MD do depend on temperature.

In practice, we perform T -boosting calculations at sev-
eral temperatures T2 in increments of 25 K to 50 K and
choose the smallest T2 such that N & 100 transitions
occur. In the Supporting Information we derive an ana-
lytic expression of the extrapolation error as a function
of boosting temperatures and achieved number of tran-
sitions, from which the necessary length of the individ-
ual Langevin simulations can be estimated, in order to
achieve a desired extrapolation error. One-dimensional
Langevin simulations require little computational effort
(1 ms of simulation time at a 5 fs time step take ∼6
hours of wall-clock time on a single CPU) and are triv-
ial to parallelize in the form of independent short runs.
Hence the extrapolation error due to boosting can easily
be pushed below 10% and is thus negligible in compar-
ison to systematic errors coming from the dcTMD field
estimates.

III. RESULTS AND DISCUSSION

A. Ion dissociation of NaCl in water

To illustrate the above developed theoretical concepts
and test the validity of the underlying approximations,
we first consider sodium chloride in water as a simple
yet nontrivial model system. For this system, detailed
dcTMD as well as long unbiased MD simulations are
available20, making it a suitable benchmark system for
our approach.

To start with, Fig. 1A shows the free energy pro-
files ∆G(x) along the interionic distance x, whose first
maximum at x ≈ 0.4 nm corresponds to the binding-
unbinding transition of the two ions, i.e., the loss of di-

rect van der Waals contact and the formation of a com-
mon hydration shell. The second smaller maximum at
x ≈ 0.6 nm reflects the transition from a common to
two separate hydration shells28. We find that results
for ∆G(x) obtained from a 1µs long unbiased MD tra-
jectory and from dcTMD simulations (1000 × 1 ns runs
with vc =1 m/s) match perfectly. Since the average work
〈W (x)〉 of the nonequilibrium simulations is seen to sig-
nificantly overestimate the free energy at large distances,
the dissipation correction Wdiss in Eq. (2) is obviously of
importance. Figure 1B shows the underlying friction pro-
file Γ(x) obtained from dcTMD, which in part deviates
from the lineshape of the free energy. While we also find
a maximum at x ≈ 0.4 nm, the behavior of Γ(x) is re-
markably different for larger distances 0.5 . x . 0.7 nm,
where a region of elevated friction can be found before
dropping to lower values at x & 0.8 nm. Interestingly,
these features of Γ(x) match well the changes of the av-
erage number of water molecules bridging both ions28.
This indicates that the increased friction in Eq. (3) is
mainly caused by force fluctuations associated with the
build-up of a hydration shell20.

The dynamics of ion dissociation and association can
be described by their mean waiting times (or the respec-
tive rates) shown in Figure 2A. For the chosen ion con-
centration and resulting effective simulation box size (see
SI), the unbiased MD simulation at 293 K yields mean
dissociation and association times of τD = 1/kD = 120 ps
and τA = 1/kA = 850 ps, respectively. Using fields
∆G(x) and Γ(x) obtained from TMD, the numerical in-
tegration of Langevin equation (1) for 1 µs results in
τD = 420 ps and τA = 3040 ps. That is, the Langevin
predictions overestimate the true values by a factor of
about four, which may be caused by various issues. For
one, to be of practical use, the Langevin model was delib-
erately kept quite simple. It includes neither an explicit
solvent coordinate to account for the complex dynamics
of the solvent28, nor does it account for non-Markovian
memory effects as in a generalized Langevin equation1.
Moreover, we note that the calculation of the friction
Γ(x) via Eq. (3) uses constraints, which move with a
pulling velocity vc that is small compared to the transi-
tion timescale. Unlike unbiased simulations, where ions
and water molecules move with comparable velocities, in
TMD simulations the ions are therefore artificially held
in place. This causes additional interactions with water
molecules, which have the effect of increasing the effec-
tive friction31. This finding is supported by calculations
using the data-driven Langevin approach32, which esti-
mates friction coefficients based on unbiased MD simula-
tions that are smaller than the ones obtained from TMD
for x . 0.7 nm (Fig. S1). Considering the simplicity of
the Langevin model and the approximate calculation of
the friction coefficient by TMD, overall we are content
with a factor 4 deviation of the predicted kinetics.

Waiting times on a nanosecond timescale as found for
solvated NaCl are readily sampled by microsecond long
Langevin trajectories at room temperature. Nonetheless,
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FIG. 2. Mean binding (red) and unbinding (blue) times, drawn as a function of the inverse temperature, obtained from T -
boosted Langevin simulations of (A) solvated NaCl, (B) the trypsin-benzamidine complex and (C) the Hsp90 inhibitor complex.
Dashed lines represent fits (R2 = 0.91− 0.99) to Eq. (4), crosses (binding in grey, unbinding in black) indicate reference results
from (A) unbiased MD simulation20 and (B), (C) experiment29,30. Bars represent the standard error of the mean. Tables below
comprise corresponding rates with M being the molarity, i.e., mol/l, and reference values. For trypsin-benzamidine and Hsp90,
rate constants were fitted according to Eq. (4) at 290 K and 300 K, respectively.

to illustrate the validity of the T -boosting approach sug-
gested above, we performed a series of Langevin simula-
tions for eight temperatures ranging from 290 to 420 K
and plotted the resulting dissociation and association
times as a function of the inverse temperature (Fig. 2).
A fit to Eq. (4) yields transition state free energies ∆G6=

of 13 kJ/mol and 12 kJ/mol for ion dissociation and
association, respectively, which agree well with barrier
heights of the free energy profile in Fig. 1A extracted
from both biased and unbiased simulations. Moreover,
dissociation and association times obtained from the ex-
trapolated T -boosted Langevin simulations (τD = 370 ps,
τA = 3050 ps) agree excellently with the directly calcu-
lated values (see Table S1). This indicates that high-
temperature Langevin simulations can indeed be extrap-
olated to obtain low-temperature transition rates.

B. Trypsin-benzamidine

Let us now consider the prediction of free energies,
friction profiles and kinetics in protein-ligand systems.
With binding and unbinding times on a range between
milliseconds and hours, these systems cannot generally be
studied by sufficent sampling using unbiased simulations,
owing to the limited capabilities of current computational
hardware. The first system we focus on is the inhibitor
benzamidine bound to trypsin29,33,34, which represents
a well-established model problem to test enhanced sam-
pling techniques19,35–40. The slowest dynamics in this
system is found in the unbinding process, which occurs
on a scale of milliseconds29. To capture the kinetics of
the unbinding process, so far Markov state models35,36,
metadynamics37. Brownian dynamics38 and adaptive en-
hanced sampling methods19,39,40 have been employed.

Here we combined dcTMD simulations and a subse-
quent nonequilibrium principal component analysis26 to

identify the dominant dissociation pathways of ligands
during unbinding from their host proteins (see SI Meth-
ods). Figure 3 shows TMD snapshots of the structural
evolution along this pathway of benzamidine, its free
energy profile ∆G(x), and the associated friction Γ(x).
Starting from the bound state (x1 = 0 nm), ∆G(x)
exhibits a single maximum at x2 ≈ 0.46 nm, before it
reaches the dissociated state for x & x4 = 0.75 nm. The
calculated binding free energy of ∼ 27 kJ/mol compares
well to the experimental value of 28.0± 0.2 kJ/mol29. In
line with the findings of Tiwary et al.37. the maximum
of ∆G(x) reflects the rupture of the Asp189-benzamidine
salt bridge, which represents the most important contact
of the bound ligand. Following right after, the friction
profile Γ(x) reaches its maximum at x3 ≈ 0.54 nm, where
the charged side chain of benzamidine becomes hydrated
with water molecules. Similarly to NaCl, the friction
peak coincides with the increase in the average number
of hydrogen bonds between benzamidine and bulk water.
Being a ligand-binding system, however, the peak in fric-
tion is slightly shifted to higher x, because the ligand acts
as a ”plug” for the binding site, and first needs to be (at
least partially) removed in order to allow water flowing
in. As for the dissociation of NaCl in water, enhanced
friction during unbinding appears to be directly linked to
a rearrangement of the host hydration shell.

To calculate rates kon and koff describing the bind-
ing and unbinding of benzamidine from trypsin, we per-
formed 5 ms long Langevin simulations along the domi-
nant pathways at thirteen temperatures per system rang-
ing from 380–900 K. As shown in Fig. 2B, the resulting
rates are well fitted (R2 ≥ 0.91) by T -boosting expres-
sion (4). For trypsin-benzamidine, the fit yields energy

barriers ∆G6=off = 39 kJ/mol and ∆G6=on = 15 kJ/mol,
which agree well with the corresponding values ∼ 44 and
17 kJ/mol obtained from Fig. 3B. Representing the re-
sulting number of transitions as a function of the inverse
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FIG. 3. Unbinding of benzamidine from trypsin. (A) TMD snapshots of the structural evolution in trypsin along the dominant
dissociation pathway, showing protein surface in gray, benzamidine as van der Waals spheres, Asp189 and water molecules as
sticks. Benzamidine is bound to the protein in a cleft of the protein surface via a bidental salt bridge to Asp189. dcTMD
calculations of (B) free energy ∆G(x) and (C) friction Γ(x) together with the mean number of hydrogen bonds between
benzamidine and water.

temperature, we find that at 380 K only ∼ 13 events
happen during a millisecond. That is, to obtain statisti-
cally converged rates at 290 K would require Langevin
simulations at 290 K on a timescale of seconds. Us-
ing temperature boosting with Eq. (4), on the other
hand, our high-temperature millisecond Langevin sim-
ulations readily yield converged transition rates at 290
K (see Figure 2), that is, kon = 1.9 · 107 s-1M-1 and
koff = 5.3 ·102 s-1, which underestimate the experimental
values29 kon = 2.9 · 107 s-1M-1 and koff = 6.0 · 102 s-1

by a factor of 1.2–1.5. We note that the experimental
value of koff is given as 6.0 ± 3.0 · 102 M-1s-1 in some
publications19,37. While we could not find the source of
this error estimate, it would imply a direct match of our
calculations and the experiment.

As the extrapolation error due to T -boosting is negli-
gible (see SI), the observed error is mainly caused by the
approximate calculation of free energy and friction fields
by dcTMD. In the case of NaCl, we have shown that reli-
able estimates of the fields (with errors . 1 kBT ) require
an ensemble of at least 500 simulations20, although the
means of ∆G and Γ appear to converge already for ∼100
trajectories. In a similar vein, by performing a Jackknife
”leave-one-out” analysis41, for trypsin-benzamidine, we
obtain an error of ∼ 2 kBT for 150 trajectories (Fig. S2).
Interestingly, the error of the main free energy barrier is
typically comparatively small, because the friction and
thus variance of W increase directly after the barrier. As
a consequence, the sampling error of koff is small com-
pared to that of kon and the binding free energy. We note
that if the experimental binding affinity KD = koff/kon

is known, it can be used as a further constraint on the

error of the free energy and friction fields.

C. Hsp90-inhibitor

The second protein complex of interest is the N-
terminal domain of heat shock protein 90 (Hsp90) bound
to a resorcinol scaffold-based inhibitor (compound 1j in
Ref. 42). This protein has recently been established as a
test system for investigating the molecular effects influ-
encing binding kinetics30,42–44, and the selected inhibitor
unbinds on a scale of half a minute. From the overall
appearance of free energy and friction profiles (Fig. 4),
this protein-ligand complex exhibits clear similarities to
the case of trypsin-benzamidine. That is, the main tran-
sition barrier is also found at x2 ≈ 0.5 nm, which stems
from the ligand pushing between two helices at this point
in order to escape the binding site. Moreover, the fric-
tion peaks at x2 ≈ 0.6 nm with a side maximum at
x3 ≈ 0.8 nm, which again coincides with the establish-
ment of a hydration sphere. We note that the ligand
is again bound to the protein via a hydrogen bond to
an aspartate (Asp93) and at a position that is open to
the bulk water. The free energy in the unbound state of
∼ 45 kJ/mol compares well to the experimental value of
40.7± 0.2 kJ/mol30.

To calculate rates kon and koff describing the binding
and unbinding of the resorcinol inhibitor from Hsp90, we
again performed 5 ms long Langevin simulations along
the dissociation pathway at fourteen different tempera-
tures ranging from 700–1350 K. Fits result in energy bar-

riers of ∆G6=off = 71 kJ/mol and ∆G6=on = 24 kJ/mol. The
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Color code as in Fig. 3.

agreement with the ∆G 6=off ≈ 71 kJ/mol and ∆G6=on ≈
26 kJ/mol from dcTMD simulation is good, as are the
predictions at 300 K (see Fig. 2C), which yield kon =
2.3 · 105 s-1M-1 and koff = 3.6 · 10−3 s-1. The pre-
dictions again underestimate the experimental30 values
kon = 4.8± 0.2 · 105 s-1M-1 and koff = 3.4± 0.2 · 10−2 s-1

by a factor of 2–10, which is a fair agreement considering
that we attempt to predict unbinding times on a time
scale of half a minute from sub-µs MD simulations. We
attribute the larger deviation in comparison to trypsin to
issues with the sampling of the correct unbinding path-
ways: especially unbinding rates in the range of minutes
to hours fall into the same timescale as slow conforma-
tional dynamics of host proteins30, requiring a sufficient
sampling of the conformational space of the protein as a
prerequisite for dcTMD pulling simulations.

IV. CONCLUSIONS

Using free energy and friction profiles from dcTMD, we
have shown that T -boosted Langevin simulations yield
binding and unbinding rates which are comparable to re-
sults from atomistic equilibrium MD and experiments.
Adopting solvated sodium chloride, trypsin-benzamidine
and Hsp90-inhibitor as test systems, the method under-
estimates the correct rates by a factor of 1.2–10. Consid-
ering that only sub-µs MD runs and comparatively inex-
pensive Langevin simulations are required, this is com-
parable to the best accuracies currently achieved by en-
hanced sampling methods3. As the extrapolation error
due to T -boosting is negligible, the error is mainly caused

by the approximate calculation of free energy and friction
fields by dcTMD. In particular, the identification of the
correct unbinding pathways of protein-ligand complexes
can be challenging and requires further investigation. We
have shown that friction profiles may yield additional in-
sight into molecular mechanisms of unbinding processes,
which are not reflected in the free energies. Although the
three investigated molecular systems differ significantly,
in all cases friction was found to be governed by the dy-
namics of solvation shells.

V. METHODS

Detailed information on system preparation, ligand pa-
rameterization, MD and Langevin simulations and path-
way separation can be found in the SI.

A. MD simulations

All simulations employed Gromacs v2018 (Ref. 45)
in a CPU/GPU hybrid implementation, using the Am-
ber99SB force field46,47 and the TIP3P water model48.
For each system, 102-103 dcTMD calculations20 at
pulling velocity vc = 1 m/s were performed to calculate
free energy ∆G(x) and friction Γ(x). For the NaCl-water
system, dcTMD as well as unbiased MD simulations were
taken from Ref. 20. Trypsin-benzamidin complex simu-
lations are based on the 1.7 Å X-ray crystal structure
with PDB ID 3PTB (Ref. 33). Simulation systems of
the Hsp90-inhibitor complex were taken from Ref. 42.
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B. Langevin simulations

Langevin simulations employed the integration scheme
by Bussi and Parrinello49, using a time step of 5 fs. As
system mass m, the reduced mass of the NaCl dimer
(13.88 g/mol), the trypsin-benzamidin (120.15 g/mol)
and Hsp90-inhibitor (288.73 g/mol) complexes were used.

Supporting Information (SI)

Computational details on simulations, simulation sys-
tem preparations, pathway separation and Langevin dy-
namics; waiting time distribution of NaCl dissociation
and association; uncertainty for prediction of rates with
T -boosting; friction estimate by data-driven Langevin
equation; two Supporting Figures; one Supporting Ta-
ble.

Data availability

Python scripts for dcTMD calculations, the fastpca
program package for nonequilibrium principal component
analysis, the data-driven Langevin package, the Langevin
simulation code and a Jupyter notebook for Langevin
simulation sampling error estimation are available at
our website https://www.moldyn.uni-freiburg.de/
software/software.html. Further data is available
from the authors upon request.
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state of Baden-Württemberg through bwHPC and the
German Research Foundation (DFG) through grant No.
INST 37/935-1 FUGG.

Author contributions

S.W. and G.S. designed and supervised research. S.W.
performed TMD and Langevin simulations and nonequi-
librium path separation of Trypsin trajectories. B.L. per-
formed dLE analysis and implemented Langevin simula-
tions. S.B. performed nonequilibrium path separation of
Hsp90 trajectories. All authors wrote the paper.

REFERENCES

1H. J. C. Berendsen, Simulating the Physical World, Cambridge
University Press, Cambridge, 2007.

2A. C. Pan, D. Jacobson, K. Yatsenko, D. Sritharan, T. M. Wein-
reich, and D. E. Shaw, Atomic-level characterization of pro-
tein–protein association, Proc. Natl. Acad. Sci. USA 116, 4244
(2019).

3N. J. Bruce, G. K. Ganotra, D. B. Kokh, S. K. Sadiq, and R. C.
Wade, New approaches for computing ligand-receptor binding
kinetics., Curr. Opin. Struct. Biol. 49, 1 (2018).

4F. Rico, A. Russek, L. González, H. Grubmüller, and S. Scheur-
ing, Heterogeneous and rate-dependent streptavidin–biotin un-
binding revealed by high-speed force spectroscopy and atomistic
simulations, Proc. Natl. Acad. Sci. USA 116, 6594 (2019).

5D. C. Swinney, Applications of Binding Kinetics to Drug Dis-
covery, Pharmaceut. Med. 22, 23 (2012).

6A. C. Pan, D. W. Borhani, R. O. Dror, and D. E. Shaw, Molec-
ular determinants of drug–receptor binding kinetics, Drug dis-
covery today 18, 667 (2013).

7G. Klebe, The Use of Thermodynamic and Kinetic Data in
Drug Discovery: Decisive Insight or Increasing the Puzzlement?,
ChemMedChem 10, 229 (2014).

8C. Chipot and A. Pohorille, Free Energy Calculations, Springer,
Berlin, 2007.

9C. D. Christ, A. E. Mark, and W. F. van Gunsteren, Basic
Ingredients of Free Energy Calculations: A Review, J. Comput.
Chem. 31, 1569 (2010).

10A. Mitsutake, Y. Sugita, and Y. Okamoto, Generalized-ensemble
algorithms for molecular simulations of biopolymers, Biopoly-
mers 60, 96 (2001).
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SUPPORTING INFORMATION

Supporting Methods

MD simulation details

Protein and ion interactions were described by the Amber99SB force field1,2, water molecules with the TIP3P
model3. Simulations were carried out using Gromacs v20184 in a CPU/GPU hybrid implementation. Protein pro-
tonation states were evaluated with propka5. Van der Waals interactions were calculated with a cut-off of 1 nm,
electrostatic interactions using the particle mesh Ewald method6 with a minimal real-space cut-off of 1 nm. All
covalent bonds with hydrogen atoms were constrained using LINCS7. After an initial steepest descent minimization
with positional restraints of protein and ligand heavy atoms, an initial 0.1 ns equilibration MD simulation in the
NPT ensemble was performed with a 1 fs time step and positional restraints of protein and ligand heavy atoms. A
temperature of 290.15 K was kept constant using the Bussi (v-rescale) thermostat8 (coupling time constant of 0.2 ps),
the pressure was kept constant at 1 bar using the Berendsen barostat9 (coupling time constant of 0.5 ps), followed
by a second steepest descent minimization without restraints and a short 0.1 ns equilibration MD simulation in the
NPT ensemble.

dcTMD calculations10 were carried out using the PULL code implemented in Gromacs using the ”constraint”
option employing a SHAKE implementation11. In both protein-ligand complexes, the distance constraint employed
was defined as the center of mass (COM) distance between the COMs of the Cα atom of the central β-sheet of
the respective protein and of the ligand heavy atoms. 400 statistically independent start points of simulations were
obtained by generating different atomic velocity distributions after the 10 ns unbiased simulations, all corresponding
to a temperature of 290.15 K. After a 0.1 ns preequilibration using parameters as described above with positional
restraints on protein and ligand heavy atoms and a constant distance constraint of all 400 simulation systems, constant
velocity calculations were carried out with vc = 1 m/s covering a distance of 2 nm, switching the barostat to the
Parrinello-Rahman barostat12. The constraint pseudo-force fc was written out each time step.

NaCl

Free energy ∆G(x) and friction profiles Γ(x) were obtained from 1000 trajectories of previous dcTMD calculations10

at pulling velocity vc = 1 m/s. For a better sampling, we continued the unbiased fully atomistic simulations described
in10 and extended them to a full microsecond of simulated time. As these simulations used a cubic simulation box,
binding and unbinding waiting times cannot directly be compared to the results of our Langevin simulation with
”reflective” borders (see below), which represent radial dynamics. To obtain data sets that allow such a comparison,
we removed all time steps with x < 0.265 nm and x > 1.265 nm from MD trajectories, and calculated mean waiting
times for the resulting cut x(t) trajectories.

Trypsin-benzamidine

Benzamidine parameters were obtained using Antechamber13 and Acpype14 with atomic parameters derived from
GAFF parameters15. Atomic charges were obtained as RESP charges16 based on QM calculations at the HF/6-31G*
level using Orca17 and Multiwfn18. Trypsin (PDB ID 3PTB19) was placed into a dodecahedral box with dimensions
of 7.5 x 7.5 x 5.3 nm3 side length and solvated with 8971 water molecules. 16 sodium and 25 chloride ions were
added to yield a charge neutral box with a salt concentration of 0.1 M20. After the initial equilibration, we added an
additional 10.0 ns unbiased MD simulation to yield a converged protein structure.

Hsp90-inhibitor

Parameters of the resorcinol inhibitor were taken from Ref.21: here, inhibitor parameters were generated using
Antechamber13 and Acpype14 with atomic parameters derived from GAFF parameters15 and AM1-BCC atomic
charges22,23. Solvated simulation boxes of the Hsp90-inhibitor complex were taken from21 (compound 1j), which in
turn are based on the 2.5 Å X-ray crystal structure with PDB ID 6FCJ24.
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Pathway separation

In the case of trypsin-benzamidine, pathway separation was performed by employing nonequilibrium principal
component analysis25 using a protein-ligand distance covariance matrix26. Trajectories were projected onto the first
two principal components and sorted according to pathways by visual inspection. The dcTMD correction was then
carried out separately for such bundles of trajectories. Performing 200 pulling simulations, we found 84 trajectories
to constiture the major unbinding pathway, for which free energy and friction profiles were converged, and whose free
energy difference between bound and unbound state matches well the value known from experiment (see Fig. S2).

For the Hsp90-inhibitor complex, we employed a path separation based on geometric distances between individual
trajectories27. After aligning trajectories with the protein’s Cα atoms as fit reference, we calculated the matrix of
means over time of the root mean square distance between individual trajectories. We then applied the NeighborNet
algorithm28 to the matrix to cluster trajectories according to distances. From the considered 400 trajectories, the
cluster that gave a free energy difference that was in best agreement with experiment (see Fig. S2) was taken by 93
single trajectories.

Langevin simulations

Langevin simulations used the integration scheme by Bussi and Parrinello8. Simulations were carried out with
integrator step sizes ∆t = 1, 2, 5 and 10 fs at a constant temperature of 300 K, or at 5 fs integrator step size and
temperatures between 293.15 K to 420 K for NaCl, 380 K to 900 K for trypsin-benzamidine and 700 K to 1350 K for
the Hsp90-inhibitor complex. See Table S1 for the convergence of binding and unbinding times of NaCl with respect
to the time step. Simulations were run for 1 µs of simulated time for NaCl and 5 milliseconds for protein-ligand
systems. System coordinates were written out each 1 ps for NaCl and each 1 ns for protein-ligand systems.

The gradient of the potential of mean force was approximated as

dG(x)

dx
≈ [∆G(x+ ∆x)−∆G(x)] + [∆G(x)−∆G(x−∆x)]

2∆x
(S05)

Input free energy and fiction profiles obtained from dcTMD were smoothed with a Gauss filter (σ = 10 and 40 ps,
respectively). As friction fields in some cases still exhibited negative friction values after smoothing, we used the
absolute values |Γ(x)| as input for simulations. For x, we used a resolution of 1 pm. For compensation of data
borders, we employed ”fully reflective” boundary conditions: If the system jumped over a boundary xmax at any time
step by a distance a, it was put back to x = xmax − a, and its velocity sign reversed.

Mean waiting times were calculated by defining geometric cores29: For NaCl, the free energy surface was separated
into the bound state x < 0.31 nm and unbound state x > 0.43. For trypsin-benzamidine, we used a bound state
x < 0.3 nm and unbound state x > 0.6 nm, while for the Hsp90-inhibitor complex, we applied cores of x < 0.3 nm
and x > 0.9 nm. As the native units of kon are s−1M−1, all according rates were scaled by the ”concentration” of
ion or protein-ligand pairs in an effective volume of 4

3πx
3
end, amounting to a molarity of 0.2 M for NaCl Langevin

simulations and 50 mM for protein-ligand Langevin simulations.

Data evaluation

Minimal distance evaluation was performed using the MDanalysis Python library30, nonequilibrium principal com-
ponent analysis was carried out using the fastpca program31. Data evaluation was carried out using a Jupyter
notebook? employing the numpy33, scipy34 and astropy35 Python libraries. Graphs were plotted using the
matplotlib36 Python library, molecular structures were displayed via PyMOL37.

Uncertainty for prediction of rates with temperature boosting

To estimate the extrapolation error of T -boosting, we assume that the waiting time τ of an unbinding or binding
process is exponentially distributed,

P (τ) =
1

〈τ〉
e−

τ
〈τ〉 , (S06)
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where 〈τ〉 is a function of temperature T . Hence the expectation τ̄ is given by its mean 〈τ〉 plus/minus the error of
the mean

τ̄(T ) = 〈τ(T )〉 ± 〈τ(T )〉√
N(T )

, (S07)

where N(T ) denotes the number of simulated transitions. By changing to the dimensionless rate k = t0/〈τ〉 (with t0
being some timescale, e.g., ns) and employing Gaussian error propagation to lowest order38, we obtain accordingly

ln (k̄(T )) = ln (k(T ))± 1√
N(T )

. (S08)

Due to the rate expression k∝e−∆G/kBT with transition state energy ∆G, ln(k) depends linearly on 1/T , i.e.,

ln(k(T )) =
a

T
+ b. (S09)

Linear regression theory38 yields estimates for a and b as well as uncertainties

σb =

√∑
i
N(Ti)
T 2
i

∆
(S010)

and

σa =

√∑
iN(Ti)

∆
(S011)

with

∆ =
∑
i

N(Ti)
∑
i

N(Ti)

T 2
i

−

(∑
i

N(Ti)

Ti

)2

, (S012)

where Ti denotes a discrete set of temperatures at which simulations are performed. Employing error propagation,
we estimate the uncertainty of ln(k) at Tref = 300 K as

σln(k(Tref)) =

√(
σa
Tref

)2

+ σ2
b . (S013)

This yields for the desired relative uncertainty of the average waitingtime

τ̄(Tref) = 〈τ(Tref)〉 ± 〈τ(Tref)〉 · σln(k(Tref)). (S014)

To illustrate the typical magnitude of this uncertainty, we assume that we perform 10 Langevin simulations of
length tLE at different temperatures Ti (i = 0, ... , 9)

Ti = T0 + i

(
25

T0

Tref

)
K. (S015)

The first three temperatures (T0, T1 and T2) are chosen such that we observe ≈ 102 transitions during the simulation
time tLE. Similarly, we assume to observe 103 transitions at T3, T4 and T5, 104 transitions at T6, T7 and T8 and 105

transitions at T9. Using the case of T0 = Tref = 300 K, since we assumed 102 transitions at T0 = Tref during the
Langevin simulation time tLE, the observed rate at 300 K is k = 102/tLE. Chosing tLE = 5 ms, the corresponding
rate is k(300K) = 1/50µs, and we obtain for the error of the rate σln(k(Tref)) = 7.7%. Alternatively, when we assume

that we need to choose T0 ≈ 450 K in order to achieve 102 transitions, employing the boosting relation (4) in the
main text and tLE = 5 ms, the observed rate at 300 K is k(300K) = 0.063 ms−1 with an error of 10.6%.

Considering our Langevin simulations of trypsin described in the main text, where we used T -boosting at 13
temperatures from 380–900 K, the error at 300 K is estimated to be σln(k(Tref)) = 3.3%. For Hsp90, the system with
the highest considered barrier, we obtain σln(k(Tref)) = 11.0% at 300 K using Langevin simulations at 14 temperatures
from 700–1350 K. As the overestimation of friction factors due to usage of constraints (see main text) results in a
underestimation of rates by a factor of ∼ 4, and as the error of free energy profiles enters Eq. [4] in the exponent, the
extrapolation error due to T -boosting can easily be made negligible in all practical cases.



S12

SUPPORTING FIGURES

0

0.5

1

1.5

2

2.5

3

0.4 0.8 1.2

Γ
[(

k
J
 n

s
)/

(m
o

l n
m

2
)]

x1 [nm]

dcTMD
dLE

FIG. S5. Friction calculated from data-driven LE (dLE)39 in comparison to friction profiles from dcTMD.
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FIG. S6. Jackknife (”leave-one-out”) analysis40 of free energy profiles and friction for (A) trypsin-benzamidine and (B)
Hsp90-inhibitor complex. Error bars denote the Jackknife standard error obtained for various numbers of TMD trajectories
(”samples”). Color code in (A): 52 samples in black, 84 in blue, 117 in red, 148 in cyan. Color code in (B): 30 in black, 50 in
blue, 93 in red. The calculated binding free energies of ∼ 27 kJ/mol (Trypsin) and ∼ 45 kJ/mol (Hsp90) compare well to the
experimental values of 28.0± 0.2 kJ/mol20 and 40.7± 0.2 kJ/mol41, respectively.
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TABLE S1. Convergence of the Bussi-Parrinello Langevin equation integration scheme8 with respect to the integration time
step ∆t. Shown are dissociation and association times and corresponding number of transitions obtained for NaCl at T = 293 K,
as well as results from fully atomistic MD simulations (single trajectory of 1 µs, 1 fs step size). Errors denote the standard
error of the mean. A time step of 5 fs appears as the longest time step that results in suitable dissociation and association
times.

∆t (fs) dissociation time (ps) no. of transitions association time (ps) no. of transitions
0.1 406 ± 8 273 ± 4 3,248 ± 66 273 ± 4
0.2 404 ± 8 279 ± 4 3,174 ± 63 279 ± 4
0.5 411 ± 8 278 ± 5 3,166 ± 65 279 ± 5
1.0 428 ± 9 277 ± 4 3,157 ± 65 278 ± 4
2.0 403 ± 8 279 ± 5 3,162 ± 63 279 ± 5
5.0 420 ± 9 288 ± 4 3,035 ± 61 288 ± 4
10.0 345 ± 6 335 ± 6 2,631 ± 47 335 ± 6
MD 124 ± 6 1,023 848 ± 47 1,024
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