
Physica A 533 (2019) 122053

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Forecasting the upper bound free energy difference between
protein native-like structures
Jorge A. Vila ∗

Instituto de Matemática Aplicada San Luis-CONICET, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San
Luis, Argentina
Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA

h i g h l i g h t s

• The origin of the protein marginal stability is revisit.
• The existence of an upper bound to the protein marginal stability is proved.
• The determined upper bound value is robust to molecular weight changes.
• The determined upper bound value is valid for any protein fold-class.
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a b s t r a c t

Using a combination of statistical thermodynamics and the Gershgorin theorem we
computed, in the thermodynamic limit, a plausible value for the upper bound of the
free energy difference between native-like structures of monomeric globular proteins.
The validity of our result is discussed herein in terms of both the observed free-energy
change between the native and denatured states and the micro stability free-energy val-
ues obtained from the observed micro-unfolding tendency of nine monomeric globular
proteins.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

An accurate determination of the free energy difference between native-like conformers of any protein is a daunting
task. Indeed, the studies of ubiquitin folding through state of the art equilibrium atomistic simulations [1] predicted,
at the melting temperature, a folding enthalpy (∼14 kcal/mol) which is several times lower than the observed value
(∼84 kcal/mol) [2]. Another case in point is the longstanding evidence [3] showing that the range of microstability free
energy values of native-like conformers of globular proteins is very narrow (2.5 to 7.1 kcal/mol), although, to be best
of our knowledge, no theoretical proof supporting this assessment had been provided, yet. How to tackle the latter is
illustrated here by analyzing the fluctuation around the native-state of monomeric globular proteins. For this purpose we
made use of the following fact: the Gibbs free energy of any protein state is given, in the thermodynamic limit, by the
maximum eigenvalue of the partition function. Hereafter, an upper bound to the Gibbs free energy difference between

∗ Correspondence to: Instituto de Matemática Aplicada San Luis-CONICET, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San
Luis, Argentina.

E-mail address: jv84@cornell.edu.

https://doi.org/10.1016/j.physa.2019.122053
0378-4371/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2019.122053
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2019.122053&domain=pdf
mailto:jv84@cornell.edu
https://doi.org/10.1016/j.physa.2019.122053


2 J.A. Vila / Physica A 533 (2019) 122053

native-like states can be determined by using both the Gershgorin (circle) theorem [4] and a heuristic argument. Finally,
the result is judged against both the observed free energy change between the native and denatured states and the range
of microstability free energy values obtained from the observed micro-unfolding tendency of nine monomeric globular
proteins [5].

2. Materials and methods

It is well known that all the thermodynamics properties of any system/problem, including biomolecular ones [6], such
as the helix–coil transition (induced by temperature or pH changes), loop entropy in RNA/DNA, etc., can be derived from
the partition function (Q ). Thus, in particular, the Gibbs free energy (G) will be given by:

G = −RT lnQ (1)

After a proper assignment of statistical weights the partition function (Q ) can be written in terms of a matrix (C )
where the elements are, indeed, Boltzmann factors [6]. It is well known that [7], in the thermodynamic limit, the following
equality hold:

Limj→∞(1/j)lnQ = Limj→∞(1/j)lnCkl(j) = lnλmax (2)

where Ckl(j) is any element of the iterate matrix C j; j is the number of residues in the chain and λmax is the maximum eigen-
value of the matrix C . Although derivation of Eq. (2) can be found in the literature [7] their deduction is straightforward
after taking into account that: (i) the matrix C is diagonazible and, hence, its eigenvalues λ are solution of det|C−λI)| = 0,
where I is the identity matrix; (ii) the partition function can be written as Q = UC jV =

∑n
p
∑n

r u1pCpr (j) vr1, where U

and V appropriate end vectors and n the matrix order; and (iii) C = Π∆Π−1, where ∆ =

⎛⎜⎝λ1 · · · 0
...

. . .
...

0 · · · λn

⎞⎟⎠ with λ the

eigenvalues of the matrix C , and Π a matrix that satisfy ΠΠ−1
= I; therefore, any element of the iterate matrix C j is

given by: Ckl (j) =
∑n

s t
s
k,lλ

j
s, where t are coefficients. Then, after arranging the eigenvalues as λ1≥λ2≥ . . . ≥λn and using

that Limj→∞|λi/λmax|
j
→ 0 or 1 ∀ i, Eq. (2) is obtained effortlessly.

According to the Gershgorin (circle) theorem [4], for any eigenvalue λ of the matrix C the following inequality hold
|λ|≤ max{

∑n
l=1 |Ckl|} with 1 ≤ k ≤ n and n the matrix order. Taking into account that the maximum eigenvalue of C is

real and positive and that any element C , by definition, satisfies |Ckl|≡Ckl, then there is a k′ value such that the upper
bound of the maximum eigenvalue (λmax) is given by:

λmax≤{ΣlCk′ l} (3)

Assuming that the native-like conformers of a given ensemble coexist in fast dynamics equilibrium [8], then an upper
bound to the free energy difference, between conformers with the lowest and highest total free energy G, can be computed
from Eqs. (1) to (3), as:

∆G≤Limj→∞RT ln[ΣlCk′ l/ΣmCt ′m]
j (4)

where the term [ΣlCk′ l/ΣmCt ′m] is strictly larger than 1 because, according with the thermodynamic hypothesis [9],
the native-state is the lowest free-energy conformation, or conformations if this state is degenerated. Implicit in this
inequality is that all conformers in equilibrium with the native-state will possess higher, although comparable, free energy.
Indeed, if Eq. (4) were use to compute an upper bound to the free energy difference between native and non-native
(denaturated) states, then it is reasonable to assume that [ΣlCk′ l/ΣmCt ′m] >> 1. At this point is worth noting that the
protein denaturation analysis is out of the scope of this work. However, a mention to the average range of variation of
the denaturation free-energy, observed at 25 ◦C for nine monomeric globular proteins, will be done in the next section
only to illustrate the consistency of our prediction.

3. Results and discussion

There are two dominant interactions that contributed to the stability of native-like conformers in proteins regardless
of the fold class, sequence or size, namely, the interactions between (i) polar groups (hydrogen bonds) and (ii) non-
polar groups [10–13]. Consequently, the free energy changes between native-like conformers, given by Eq. (4), would
imply variations of either one, or both, interactions. In this analysis we have assumed that the total free-energy can be
computed as a sum of pairwise interactions. In other words, the many-body interactions were not included, among other
reasons, because we focus on the dominant interactions to the protein stability [11]. While we recognized there could be
many functional forms involving these two interactions it called our attention that the molecular weight (MW ), of nine
monomeric globular proteins [5], showed a good correlation with the total number of both the intramolecular hydrogen
bonds (R2

= 0.98) and the pairs of non-polar groups at distances < 4 Å(R2
= 0.83). Thus, from a heuristic point of view,

we conjectured that the term [ΣlCk′ l/ΣmCt ′m] j grows with j as the MW does. We can then rewrite Eq. (4) as:

∆G≤LimMW→∞RT lnMW (5)
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Considering that the largest known monomeric globular protein [14] possessed a MW = 2.7105, then, at T = 298 K,
Eq. (5) give us a ∆G ≤ 7.4 kcal/mol. This plausible value for ∆G, which is robust upon small MW changes, represents the
upper bound for the free energy difference between native-like structures of monomeric globular proteins. In addition,
because there is no condition on the protein other than being monomeric and globular our result for ∆G remain valid for
any fold-class, sequence or whether the protein contains, or could form, (quasi) independent domains.

At this point it is worth noting that the observed free energy values (at 25 ◦C) of microstability (micro-unfolding)
determined from nine monomeric globular proteins satisfy the inequality ∆G ≤ 7.1 kcal/mol5 and that the corresponding
average free energy of denaturation (macro-unfolding) is < ∆G > ∼=11 ± 3 Kcal/mol5. The plausible value for the upper
bound free energy difference (∆G ≤ 7.4 kcal/mol) is, certainly, in line with these results.

4. Conclusions

In summary, based on the use of simple statistical thermodynamics concepts, the Gershgorin theorem and a heuristic
argument we have been able to compute a plausible value for the largest free energy difference between coexistent native-
like structures of monomeric globular proteins. The computed value of 7.4 Kcal/mol is consistence with the experimentally
observed micro-unfolding free energy changes from a set of nine globular proteins.

Considerable attention has been dedicated, during the last 40 years, to develop methods with which to compute the
free energy of biological systems accurately. In this regard, the work proposed herein may spur significant progress for
the development of new methods for free energy calculations aimed at solving problems of paramount importance such
as an unambiguous characterization of the protein folding, misfolding and aggregation.
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