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I. DERIVATION OF GAUSSIAN DYNAMICS

Here we derive Eq. 3 in the main text, and show that the flow, temperature, and geometry constraints separate
completely. Consider a system of N particles with masses {m} at positions {r}. We follow the prescription for Gauss’s
principal of least constraint found in Ref. [1]. In the main text, we discuss the “Evans-Morriss” constraint, GEM [1–6].
Here, we split this into its two components, the temperature constraint, GT, and the geometry (molecular) constraint,
Gm. The Gaussian cost function is

C
(
{r̈}
)

=
1

2

N∑
i=1

mi

(
r̈i −

Fi

mi

)2

+ λTGT + λmGm + λf ·Gf , (1)

where mi is the mass of the i-th particle and Fi is the total force on the i-th particle. We use a dot to indicate a
time derivative. The λs are the Gaussian multipliers. We could treat the geometry constraint explicitly here, but it
is well known, and its use in conjunction with a temperature constraint is also well known [5–8]. Here, we need only
show that the solutions for λf and λm separate completely. This is apparent from the result (Eq. 13), which shows
that the flow constraint applies a uniform acceleration to all particles. It is clear that a uniform acceleration cannot
distort any bonds or angles. So, from here on out, we only consider Gf and GT.

A capital G denotes the form of the constraint that depends on the accelerations. These are derived from the
physically motivated constraints, g,
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ṙi − u(ri)

)
= 0, (3)

where u(r) is the local streaming velocity of the fluid, kB is Boltzmann’s constant, and T is the temperature.
Equation 2 is an isokinetic thermostat, but can easily be generalized to a Nosé-Hoover thermostat [1], which is what
we use in our simulations. Equation 3 is the flow constraint. These are both nonholonomic constraints, since they
depend on the velocities, so to find the functions G we take one time derivative:

GT =
∂

∂t
gT =

N∑
i=1

mi

(
ṙi − u(ri)

)
· r̈i = 0 (4)

Gf =
∂

∂t
gf =

N∑
i=1

mir̈i = 0. (5)

We have used the fact that at steady state, the streaming velocity is time-independent. The Gaussian cost function
is now
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We find the accelerations that minimize this cost function:

∂
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This gives the equation of motion

mir̈i = Fi − λTmi

(
ṙi − u(ri)

)
− λfmi. (8)

To solve for the temperature multiplier, λT, we take the scalar product of Eq. 8 with
(
ṙi−u(ri)

)
, and then sum over

all particles:
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The term on the left hand side is zero, due to Eq. 4, and the λf term on the right is zero due to Eq. 3. We can now
solve for λT, and the result is

λT =

∑N
i=1

(
ṙi − u(ri)

)
· Fi∑N

i=1mi

(
ṙi − u(ri)

)2 . (10)

This is the well known result for the Gaussian isokinetic thermostat [1–4]. It is profile-unbiased, meaning that it is
applied on the peculiar velocities of the system, with the local streaming velocity removed [9].

We now solve for the flow multiplier, λf , by summing Eq. 8 over all particles:

N∑
i=1

mir̈i =

N∑
i=1

Fi − λT

N∑
i=1

mi

(
ṙi − u(ri)

)
− λf

N∑
i=1

mi. (11)

The term on the left hand side is zero due to Eq. 5, and the λT term on the right hand side is zero due to Eq. 3. So,
we can solve for λf :

λf =
1

M

N∑
i=1

Fi, (12)

where we have defined M ≡
∑N

i=1mi as the total mass of the system. The resulting equation of motion is

mir̈i = Fi −miI−miξ(ṙi − u(ri)), (13)

where we have made the definitions

I ≡ λf =
1

M

N∑
i=1

Fi, (14)

ξ ≡ λT =

∑N
i=1

(
ṙi − u(ri)

)
· Fi∑N

i=1mi

(
ṙi − u(ri)

)2 . (15)

Including the geometry constraints would simply add another term to the equation, fi [1, 5, 6]:

mir̈i = Fi −miI−miξ(ṙi − u(ri)) + fi, (16)

We were able to solve for the temperature and flow Gaussian multipliers independently, so we have shown that these
constraints separate completely. We argued that the geometry constraint separates because the uniform acceleration
applied by the flow constraint cannot change any relative geometries.

a. Properties of the Applied Field, I

The applied acceleration field I is fluctuating and weak. For reference, at the Reynolds numbers we discuss in
the main text, the average applied force on a single particle is on the order of the force between two Lennard-Jones
particles separated by 3 σ. The fluctuations have a standard deviation that is on the order of twice the mean. The
exact quantities depend on the particular simulation geometry and flow rate.

II. HAGEN-POISEUILLE LAW

a. Assumptions

The Hagen-Poiseuille (HP) law assumes the following: [10–13]:

1. The fluid is incompressible.

2. The flow is at low Re.
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3. The flow is at steady state.
4. The fluid is Newtonian.
5. The fluid acts as a continuum.
6. There is no-slip at the walls.
7. The channel is long enough that the flow profile is well developed.

Some of these are good assumptions:

1. The fluid is relatively incompressible; the density only changes by a few percent in our simulations (§ VII).
2. We are at low enough Re that the flow is not turbulent (Re . 10).
3. We ensure steady-state as discussed in § V.

But some are bad assumptions:

4. Lennard-Jones fluids are Newtonian at low shear rates, but non-Newtonian at high shear rates. We do not know
where our 2D system falls in this regime [14–16].

5. An atomic system is not a continuum.
6. No-slip boundary conditions are impossible in an atomic simulation.
7. The channels are at most 100 σ long: very short relative to the engineering applications for which the HP law

was intended.

Clearly, we would not expect the HP law to hold in this application; if it were quantitative, all the points in Fig. 1d in
the main text would lie on the same point. However, it does provide a means by which to compare the relationship of
the flux to the pressure drop for a variety of channel geometries. Note that in Fig. 1d in the main text, the effective
viscosity appears to be converging to some value as Re increases. This is probably because Re is proportional to
L, and as L increases, the HP law becomes more accurate. This is not meaningful, since we are not interested in
quantitative accuracy of the HP law.

b. Derivation of Hagen-Poiseuille law in 2D

We now derive the HP law in 2D for the channel geometry shown in Fig. 1a in the main text. The continuity
equation is

∂ρ(r, t)

∂t
+∇ · J(r, t) = 0. (17)

Both the assumptions of steady state and incompressibility give

∂ρ(r, t)

∂t
= 0. (18)

Equations 17 and 18 combine to give

∂ux
∂x

+
∂uy
∂y

= 0, (19)

where ux and uy are the components of the velocity field. We know that uy = 0, so ∂uy/∂y = 0, and therefore
∂ux/∂x = 0 as well. The Navier-Stokes equation for an incompressible fluid at low Reynolds number is

ρ
∂u

∂t
= −∇P + ρg + η∇2u. (20)

From here on out, we ignore the gravity term. Since the flow is at steady state, ∂u/∂t = 0, so the left-hand-side of
the equation is zero. There is only a pressure drop along the direction of flow, so only the x-component of ∇P is
non-zero. The x-component of Eq. 20 is

∂P

∂x
=η

(
∂2ux
∂x2

+
∂2ux
∂y2

)
(21)

=η
∂2ux
∂y2

, (22)
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where we used the fact that ∂ux/∂x = 0. Since ux is not a function of x, we can easily integrate both sides with
respect to x:

P (x) = c1x+ c2. (23)

We now use the boundary conditions at the ends of the channel: P (0) = P1 and P (L) = P2, with ∆P ≡ P1 − P2,

P (x) = P1 −
∆P

L
x. (24)

We now plug this back in to Eq. (22):

−∆P

ηL
=
∂2ux
∂y2

. (25)

We integrate both sides of the equation with respect to y twice:

ux(y) = −∆P

2ηL
y2 + k1y + k2. (26)

We use no-slip boundary conditions: ux(−d/2) = ux(d/2) = 0:

ux(y) =
∆P

2ηL

[(d
2

)2

− y2

]
. (27)

To get the flow rate, Q, we integrate the product of the density and the velocity profile over the width of the pore.
For an incompressible fluid, the density is not a function of y:

Q ≡ρ
∫ d/2

−d/2

ux(y)dy (28)

=ρ

∫ d/2

−d/2

∆P

2ηL

[(d
2

)2

− y2

]
dy (29)

=
∆Pρd3

12ηL
. (30)

We can now define the mass flux, J , as the flow rate through a cross-sectional area (length in 2D),

J =
Q

d
. (31)

The result is

J =
∆Pρd2

12ηL
. (32)

This is the Hagen-Poiseuille law in 2D. Note that it is identical to the Hagen-Poiseuille law in 3D [13]. This would not
be the case if we expressed it in terms of Q instead of J ; normalization by the cross-sectional area/length is different
in 2D/3D.

III. HYDROSTATIC CORRECTION TO THE PRESSURE PROFILE

The applied force in GD, miI, fluctuates, but has a non-zero mean. So, there is an overall uniform applied force,
which induces a hydrostatic pressure gradient. The GD pressure profile is the sum of the hydrostatic part and the
pressure drop part, resulting from the presence of the channel (Fig. 1),

P (x) = Pdrop(x) + Phydrostatic(x). (33)

In all of our calculations here, we use only the pressure drop part of the profile (Pdrop), which we calculate by removing
the theoretical hydrostatic gradient that is induced by the applied acceleration,

Phydrostatic(x) = −Ixρ(x)x. (34)
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FIG. 1. Representative pressure profiles from GD (black) and the pump method (blue). The solid lines show the raw data
from the simulations. The pressure profile in the pump method is flat on both sides of the channel, while the pressure profile
in GD is linearly increasing due to the hydrostatic part. We remove the hydrostatic part to get the pressure drop purely due
to the channel (dashed black line), as discussed in the text. The gaps in the profiles are at the edges of the channel, where the
pressure is poorly defined because the length of the channel is poorly defined.

Here, Ix is the time average of the applied acceleration in the x-direction, and ρ(x) is the mass density profile of the
fluid. This density is computed using the volume that the fluid occupies, not the full volume of the simulation box,
such that

1

Lx

∫ Lx/2

−Lx/2

ρ(x) dx = ρ0. (35)

Note that the ρ0 used here is the same as the ρ used in the main text. This is done to distinguish ρ0 from ρ(x).

IV. EFFECTIVE VISCOSITY CALCULATION

The calculation of the effective viscosity in the 2D simulations is done in several steps: 1) calculate the pressure
drop, 2) calculate the flux, and 3) fit these points to a line to estimate the slope of ∆P versus J .

a. Pressure Drop

The pressure drop is calculated as follows:

1. Bootstrap over the 96 trials (§ IX).
2. Average the pressure profile over each bootstrap sample.
3. For each averaged profile, fit two lines to the flat parts of the profile.
4. Extrapolate these lines to the edges of the pore, as defined by L, from Eq. 53 (or Eq. 55 for the water-graphene

simulations).
5. The pressure drop is the difference between these extrapolated values.
6. The mean is the average of the bootstrap samples. The standard error is the standard deviation of the bootstrap

samples, multiplied by
√
Ntrial, where Ntrial is the number of trials (96).

This procedure is used because each of the 96 individual pressure profiles are too noisy to reliably fit and calculate
a pressure drop independently, so an averaged pressure drop must be used. However, if one simply averages all the
pressure profiles, and uses a point-by-point standard deviation of the pressure profile to estimate the error of the
pressure drop, the error is deceptively low. This is because the fitting procedure masks the variation between trials.
We use the bootstrap procedure so that we can fit to an averaged pressure profile, but still retain information about
the variation between trials.
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b. Flux

The mass flux is defined as

J = ρtu, (36)

where u is the total center-of-mass velocity, and ρt is the total density of the fluid in the simulation,

ρt =
N

LxLy
. (37)

Note that N is the number of fluid particles only and does not include the wall particles. Also, LxLy is the area of the
entire simulation box, and does not account for the excluded area due to the channel. So, ρt is not equal to the bulk
fluid density, ρ0; ρt is related to ρ0 via the dimensions of the channel and simulation box. Note that the ρ0 used here
is the same as the ρ used in the main text. This is done to distinguish ρ0 from ρ(x). We always use the magnitude
of the flux vector, J = |J|, and in practice, since the only significant flux is in the x-direction, we calculate the flux
using

J = Jx = ρtux, (38)

with

ux =

∑N
i=1mivx,i∑N

i=1mi

, (39)

where vx,i is the velocity of the i-th particle in the x-direction. We calculate the flux mean and error as a simple
mean and standard deviation over the 96 trials.

c. Slope

For each channel geometry, we performed simulations at three different fluxes. At each of these three data points,
we have a value of J and ∆P , and associated errors. We calculate the average slope by simply finding the least-squares
estimate for the slope; the intercept of the line is fixed to zero. We calculate the error on the slope by finding the
least-squares fits for the data plus and minus their respective error. This is best illustrated by the following equations,
where we use an underbar to denote the vectors of data that contain the three data points at varying fluxes:

Jm =∆P (40)

(J + σJ)m− =(∆P − σ∆P ) (41)

(J − σJ)m+ =(∆P + σ∆P ). (42)

We solve these linear equations for the least-squares slope, m, and the error, m− and m+. Using Eq. 5 in the main
text, the effective viscosity is

ηeff =
d2ρ

12L
m. (43)

V. CONVERGENCE AND VALIDATION OF SIMULATIONS

The nonequilibrium simulations must be validated in two ways. First, the simulations must be at steady state. The
continuity equation for fluid dynamics,

∂ρ(r, t)

∂t
+∇ · J(r, t) = 0, (44)

says that at steady state, the flux profile is flat. So, we verify that our simulations are at steady state by testing that
the flux profile is flat within noise.

Second, we must verify that the reservoirs on each side of the channel are large enough. Here, “large enough” means
that once a particle exits the channel, diffusive motion should dissipate the high velocity before the particle wraps
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back around to the channel again. We run simulations at varying box lengths and look for convergence of the effective
viscosity. This is not as straight-forward as it sounds, because longer boxes require longer time to reach steady state.
This is because the density profile is longer ranged and requires more time to develop. So, one must simultaneously
increase the box length and make sure that the simulations are still at steady state.

Due to computation time, this is not feasible in the water simulations. Instead we performed a few simulations at
twice the box length, and found no changes in the results.

VI. MODIFIED PUMP METHOD AND STANDARD ERRORS

FIG. 2. Panel (a) shows the effective viscosity calculated with the pump method modified to use a profile-unbiased thermostat.
This figure looks almost identical to Fig. 1d in the main text. The agreement between the two methods is better at Re > 5,
but there is still disagreement, especially for the narrowest channel (5). Panel (b) shows the relative error on the values of
the effective viscosity plotted in Fig. 1d in the main text. For a given channel diameter (symbol shape), Gaussian dynamics
always has smaller error than the pump method. The symbols used here correspond to channel diameter in the same way as
described in Fig. 1d in the main text.

VII. DENSITY PROFILE

FIG. 3. The density profiles for the pump method and
GD are shown in blue and black, respectively. This is the
same figure as shown inset in Fig. 1c in the main text.
The purpose of this figure is to clarify which part of the
simulation box is shown here. This plot is centred around
the edge of the box, i.e., the pump region, not the pore.
The pore is centred at x = 0 σ, and there is a periodic
replica of the pore at x = 400 σ. The density profile for
the pump method is discontinuous in the pump region,
and this represents a disadvantage of that method (§ XII).
The density profile inside the pore is not shown, because
the density is higher inside the pore and is off the scale
of this plot.



S9

VIII. PERMEABILITY CALCULATIONS

The calculation of the permeability in the water-graphene simulations is similar to the calculation of the effective
viscosity in the 2D Lennard-Jones calculations. The permeability serves the same purpose as the effective viscosity: to
compare the results of different calculations. The permeability is a more intuitive quantity than the effective viscosity,
but the effective viscosity “normalizes” for different size channels. The 2D simulations involve channels which vary
significantly in size. Clearly the permeability of a channel which is 18 σ wide will be much larger than the permeability
of a channel which is 4 σ wide. In the water-graphene simulations, however, we only consider one size channel, so
we can use the more intuitive permeability. Here, we follow the discussion in Ref. [17]. The osmotic permeability is
defined as

qn = p∆C, (45)

where qn is the molar flow rate of water (mol/time), p is the osmotic permeability (volume/time), and ∆C is the
solute concentration difference (mol/volume). We can now use the Van’t Hoff equation,

∆P = kBTNA∆C, (46)

where kB is Boltzmann’s constant, T is the temperature, NA is Avogadro’s number, and ∆P is the osmotic pressure
drop. Equations 45 and 46 yield

p = kBTNA
qn

∆P
. (47)

So, to calculate the permeability, we need to measure the flux (or flow rate) and the pressure drop in the simulations.
Note that this nonequilibrium formulation does not require knowledge of the volume of a single water molecule, unlike
the procedure described in Ref. [17]. Also note that the sign of this equation trivially depends on whether the pressure
drop is defined as a positive or negative quantity. We can define a molecular flux (molecules/time) to replace the
molar flux,

q = qnNA. (48)

The permeability is

p = kBT
q

∆P
. (49)

We calculate the pressure drop and flux as described in § IV. Because these simulations are more expensive than
the 2D simulations, we only perform simulations at two different flow rates for each applied voltage. We calculate the
slope of q vs. ∆P using the same procedure as § IV c. Note, however, that this is the inverse of the slope used in
§ IV c. We then use Eq. 49 to calculate the permeability.

a. Steady State

The fluxes involved in these simulations are much smaller than those in the 2D simulations; the Reynolds number
for the water-graphene flow is about 0.001 (§ XI). Because the flow is so slow, the flux profile is too noisy to determine
whether the simulations are at steady state. So, to test for steady state, we compare the global flux (J = ρtu) to a
measure of the local flux inside the pore. The local flux is measured by counting the number of net passage events
through the pore, using the collective variable defined in Ref. [17] (Eq. 51). This gives a molecular flow rate, q, which
can be converted to a flux using

J =
qMR

NALyLz
, (50)

where MR is the molar mass of water, NA is the Avogadro constant, and Ly and Lz are the dimensions of the
simulation box perpendicular to the flow.
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b. Equilibrium Method

We also calculate the permeability using an equilibrium linear response method, developed in Ref. [17]. This method
uses a collective variable n(t). The definition of n(t) and the derivation of the method can be found in Ref. [17]. We
also use the collective variable n(t) to calculate the local flux, as discussed above. At steady state, n(t) is linearly
increasing, and the slope is equal to the flow rate [17],

q =
〈n(t)〉
t

. (51)

We estimate q by fitting n(t) to a line.

IX. SIMULATION DETAILS

In the pump method, the pressure drop is given by the total force applied to the simulation divided by the cross-
sectional area (length in 2D) over which it is applied:

∆P =
F

A
. (52)

In 2D, A = Ly, and in 3D, A = LyLz, where the flow is in the x-direction. Since A is constant, in order to fix the
pressure drop, the total force on the simulation is also constant [18, 19]. The number of particles in the pump region
fluctuations, so the force on each particle fluctuates by a small amount.

In GD, the fluid is initially given a uniformly distributed center-of-mass momentum. The GD constraint simply
keeps the total center-of-mass momentum fixed, allowing the flow profile to relax into a natural one.

a. Two-Dimensional Lennard-Jones Simulations

The Lennard-Jones particles have σ = 1 and ε = 1. The interactions between the fluid particles are cutoff at 2.5 σ;
the fluid-wall interactions are cutoff at 21/6σ [20–22]. The bulk fluid density is 0.8 σ−2. The lattice spacing between
wall particles is 1 σ. We use a timestep of 0.001 τ . The simulations are equilibrated for 10 τ at equilibrium, and
then run for another 1000 τ to achieve a nonequilibrium steady state. We then collect data for 1000 τ . We average
results over 96 trials. Some of the especially long and skinny channels require longer time to reach steady state (see
Table I). The simulation box is usually 400 × 40 σ2, where the flow is along the first dimension (x). In cases with
longer channels, sometimes longer boxes are required to ensure that the results are converged with respect to the box
length (see Table I). The center of the channel is located at the center of the box. The temperature is thermostatted
at 2 ε/kB using a Nosé-Hoover thermostat [7, 8] with a 0.1 τ damping time. With Gaussian dynamics (GD), we
use a profile-unbiased thermostat with bins that contain an average of 8 particles [9]. With the pump method, the
thermostat does not correct for the flow profile, because this is how the method is usually implemented [18, 19, 23–26].
In our simulations, the pump region is 5 σ thick and is centered at the box edge.

We account for the excluded volume of the wall particles when we define the size of the channel:

L = Lc + 21/6σ (53)

d = dc − 21/6σ, (54)

where L is the length of the channel in the direction of the flow, d is the width of the channel, and the subscript c
indicates the distance measured from center to center of wall particles.

b. Water-Graphene Simulations

We use the SPC/E water model [27], with the bonds and angles held rigid using the SHAKE algorithm [28]. The
geometry of the pore in the graphene sheet is the same as the smaller of the two pores used by Suk and Aluru [29].
An image of the pore from our simulations can be seen in Fig. 4. The graphene-water potential is case 28 in Table 2
of Ref. [30]. This is the same potential that was used in Ref. [31], which showed that the hydrophobicity of graphene
is tunable. This potential reproduces the wetting angle of water on graphite (∼ 90◦), although now there is evidence
that the wetting angle of water on graphene is significantly higher [32].
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TABLE I. The exceptions to the general procedure presented in § IX, for especially long and/or skinny channels. The variables
Lc and dc are defined in the text. Lx is the length of the simulation box in the direction of the flow.

Lc (σ) dc (σ) Time to reach Lx (σ)
steady state (τ)

70 6 3000 600

70 10 1000 500

70 20 1000 500

80 16 1000 600

90 10 1000 600

90 20 1000 600

7.4 Å

FIG. 4. The geometry of
the pore in the graphene
sheet, generated by re-
moving all carbon atoms
within a 3 Å radius of the
center of a hexagonal cell.

We first equilibrate a block of water at 298 K and 1 atm using a Nosé-Hoover thermo-
stat [7, 8] and barostat [33] for 200 ps, with damping times of 0.2 ps and 2 ps, respectively.
We then introduce the porous graphene sheet, and equilibrate again for 200 ps, while
barostatting only in the dimension perpendicular to the graphene sheet. During this equi-
libration, we calculate the average box length. We then turn the barostat off and linearly
scale the box length to its average for 100 ps. We then fix the box size and run for 2 ns
to achieve a nonequilibrium steady state. During all nonequilibrium simulations, we use
a profile-unbiased thermostat with bins that contain 4 water molecules on average [9].
We then collect data for 5 ns. We average results over 96 trials. The timestep is 2 fs.

The simulation box is about 69 × 37 × 30 Å
3
, where the flow is along the first dimen-

sion. The length of the box in the direction of flow is not same in each trial due to the
constant pressure equilibration steps. The box contains over 2000 water molecules. The
coulomb interactions are computed using the PPPM method [34], optimized by the simu-
lation package so that the forces are accurate to one part in one million [35]. In the pump
method, the pump region is 8 Å thick and is centered at the edge of the simulation box.
The force applied in the pump method is mass-weighted, so that no torque is applied to
the molecules, and so that the rigidity of the molecules is maintained.

In order to calculate the pressure drop (§ IV a), we need to define the “length” of the pore. We define the edge of
the channel as the point where the density of water first reaches the average density within the pore. The length of
the pore is then defined as the distance between this point on either side of the pore. This works out to

L = 3.8 Å. (55)

In the equilibrium simulations, we follow the same scheme as for the nonequilibrium simulations, except that we
do not need to achieve steady state. We collect data for 5 ns. We average results over 96 trials.

We apply a voltage to the graphene sheet using the procedure described in [31]. The excess charge per carbon
atom, q, is

q = −aV 2 sgn(V ), (56)

where the constant a = 0.019336 e/volt2 [31].

X. MARKOV MODEL

We define the states of the Markov model by drawing a box on both sides of the pore (Fig. 5); when an oxygen
atom is inside a box, that box is occupied. The Markov states are defined using the occupation of these boxes: the
“full” state corresponds to both boxes being occupied, etc (see Fig. 3a in the main text). Since the length of the pore
is 3.8 Å (Eq. 55), each box extends 1.9 Å from the sheet (Fig. 5). The size of the boxes in the other dimensions is
irrelevant, because it is exceedingly rare for a molecule to come that close to the sheet if it is not inside the pore.
Since our Markov model assumes that each box can only be singly occupied or empty, the boxes must be small enough
so that double occupation is rare. Using boxes defined as described, the boxes are doubly occupied less than 0.3% of
the time.

We compute the Markov transition probabilities by simply counting the number of transitions between each state
and normalizing by the total number of transitions [36]. We calculate the steady-state populations of the Markov
process by diagonalizing the transition probability matrix and finding the eigenvector with unit eigenvalue. We then
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calculate the transition rates by converting the discrete Markov process into a continuous one using the sampling
timestep.

a. H-bond Survival Time

In the main text, we use the Markov model to calculate an approximate H-bond breaking rate, Wbreak,

Wbreak ≈Wfull→top +Wfull→bottom, (57)

One could argue that other processes should contribute to this:

Wbreak ≈Wfull→top +Wfull→bottom +Wfull→empty +Wtop→empty +Wbottom→empty. (58)

This is a moot point for two reasons: First, the empty state is rare, so the transition probabilities to it are negligibly
small. Second, these rates follow the same trend anyways.

To verify that Wbreak is a good proxy for the H-bond breaking rate, we calculate the survival time of an H-bond
between two molecules in the pore explicitly, by defining an H-bond as an O-O separation of 3.5 Å or less and a O-H-O
angle of 30◦ or less [37]. We then calculate the average time that an H-bond lasts between two molecules inside the
pore. We ignore H-bonds which “break” because one of the molecules leaves the pore. This gives a true estimate of
the H-bond survival time, which is not influenced by any transport events. We find that this survival time follows
the same trend as Wbreak, so we conclude that the Markov estimate of the H-bond breaking rate accurately captures
the H-bond dynamics. If the survival time is converted to a breaking rate (Wbreak = τ−1), we get the same order
of magnitude: this estimate ranges from about 2 to 3.5 ps−1, while the Markov estimate ranges from about 0.9 to
1.2 ps−1.

XI. REYNOLDS NUMBER CALCULATIONS

The Reynolds number (Re) is

Re =
uinLρ0

η
, (59)

where uin is the velocity of the fluid inside the pore, L is the length of the pore, ρ0 is the bulk density of the fluid,
and η is the bulk viscosity of the fluid. It is clear that the velocity of the fluid is higher inside the pore than in the

FIG. 5. The water density as a function of x, the direction of
flow, and y, one of the other two dimensions. The red boxes
are used to define the Markov states, as discussed in the text.

FIG. 6. The survival time of an H-bond between two water
molecules in the pore, calculated using an explicit definition of
an H-bond, as discussed in the text. The survival time is anti-
correlated with the permeability, meaning that the breaking
rate is correlated with the permeability. This supports the
data in Fig. 3b in the main text.
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bulk. Geometrical arguments suggest that

uin =
JLy

dρ0
, (60)

and this is supported empirically. Using Eq. 59, we have

Re =
JLyL

ηd
. (61)

To calculate Re, we need to know η. We measure the viscosity for a bulk 2D system with no channel at the relevant
conditions of T = 2 ε/kB , and ρ0 = 0.8 σ−2 using the Green-Kubo relation [38],

η =
1

V kBT

∫ ∞
0

dt 〈σxy(0)σxy(t)〉, (62)

where σxy is the off-diagonal element of the 2D stress tensor, and V is the volume of the system (area in 2D). We
find no evidence that this integral diverges as discussed in Refs. [39–41]; the autocorrelation function does not decay
as t−1, it decays as exp(−t). We also find no system size dependance of the viscosity for systems from 20× 20 σ2 to
100× 100 σ2. We find η = 2.2± 0.1

√
mε/σ.

In the water simulations, we measure uin explicitly in a GD simulation set at q = 11 molecules/ns,

uin ≈ 2× 10−5 Å/fs. (63)

We use values of ρ0 and η for SPC/E water from the literature: ρ0 = 0.998 g/cm3 [27]; η = 0.729 mPa·s [42]. The
“length” of the pore is described in Eq. 55. The result is Re ≈ 0.001.

XII. VERY HIGH REYNOLDS NUMBER

FIG. 7. Snapshots of Gaussian dynamics (top) and the pump method (bottom) at high Reynolds number. In Gaussian
dynamics the density is minimum just past the channel, as would be expected. In the pump method, the density minimum is
before the pump region. This is caused by the discontinuity in the density profile of the pump method (§ VII). This is simply
a more extreme example of the discontinuity shown in § VII. Note that we made no effort to ensure that these simulations are
at steady state or converged with respect to box length. This is purely illustrative. These results show that at high enough
Re, the density minimum can qualitatively shift location. This is because the pump method enforces a discontinuity in the
density at the onset of the pump region. It is possible that a long enough box would fix this issue, because the density would
have enough space to relax naturally before being subjected to the pump region. If there is no deeper issue, there is still the
practical point that the pump method requires longer boxes to equilibrate at high Re.
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