
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gmos20

Molecular Simulation

ISSN: 0892-7022 (Print) 1029-0435 (Online) Journal homepage: https://www.tandfonline.com/loi/gmos20

Molecular Dynamics as a Mathematical Mapping.
III. Efficient Evaluation of the Differentiable Force
Functions and Their Derivatives

Jelena Stefanović & Constantinos C. Pantelides

To cite this article: Jelena Stefanović & Constantinos C. Pantelides (2001) Molecular Dynamics
as a Mathematical Mapping. III. Efficient Evaluation of the Differentiable Force Functions and Their
Derivatives, Molecular Simulation, 26:5, 323-352, DOI: 10.1080/08927020108023017

To link to this article:  https://doi.org/10.1080/08927020108023017

Published online: 23 Sep 2006.

Submit your article to this journal 

Article views: 14

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=gmos20
https://www.tandfonline.com/loi/gmos20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08927020108023017
https://doi.org/10.1080/08927020108023017
https://www.tandfonline.com/action/authorSubmission?journalCode=gmos20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gmos20&show=instructions
https://www.tandfonline.com/doi/citedby/10.1080/08927020108023017#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08927020108023017#tabModule


Molecular Simulafion, 2001, Vol. 26, pp. 323-352 
Reprints available directly from the publisher 
Photocopying permitted by license only 

0 2001 OPA (Overseas Publishers Association) N.V. 
Published by license under 

the Gordon and Breach Science 
Publishers imprint. 

MOLECULAR DYNAMICS 
AS A MATHEMATICAL MAPPING. 

111. EFFICIENT EVALUATION 
OF THE DIFFERENTIABLE FORCE 

FUNCTIONS AND THEIR DERIVATIVES 

JELENA STEFANOVIC and CONSTANTINOS C. PANTELIDES* 

Centre for Process Systems Engineering, Imperial College of Science, Technology 
and Medicine, London SW7 2BY. United Kingdom 

(Received May 2000; accepted May 2000) 

The fully continuous and differentiable framework for performing molecular dynamics 
calculations introduced in parts I and I1 of this paper [1,2] requires the evaluation of rather 
complex force functions and their spatial partial derivatives. This paper presents an efficient 
interpolation scheme for the evaluation of these quantities over a finite spatial domain. 

The modified force function is approximated by a linear combination of Hermite cubic basis 
functions such that both the interpolant of the force and its spatial derivatives are continuous 
across the grid boundaries. In order to achieve better accuracy for a given grid size, a non- 
uniform rectilinear grid is constructed via iterative refinement procedure. The latter guarantees 
the accuracy of the force computed by interpolation within any specified tolerance E > 0. 

For many potential functions of practical interest, it is possible for polynomial interpolants to 
be constructed for parts of the force functions which are independent of the potential 
parameters and system density (the so-called “separable force functions”). In such cases, a 
single interpolation grid which is applicable for a wide range of potential parameters and system 
densities can be constructed a priori. 

Keywords: Molecular dynamics; Force evaluation; Interpolation; Adaptive grids 

1. INTRODUCTION 

Part I of this paper [l] advocated the use of a modified interparticle force 
function that is almost everywhere continuous and differentiable with 

*Corresponding author. 
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respect to particle positions. As demonstrated in part I1 of this paper [2] ,  one 
advantage of the differentiability of this function is that it permits the 
accurate computation of partial derivatives of quantities computed by mo- 
lecular dynamics with respect to input quantities and potential parameters. 
However, a significant disadvantage of the force function is its complexity. 
This is particularly important since typical molecular dynamics computa- 
tions involve very large numbers of force evaluations. 

The generalized form of the modified force function in the x-direction is: 

V(X, Y ,  2) E R3 \ NI31 (1) 

where UNB is a general form of the non-bonded potential, which is a 
continuous and differentiable function of potential parameters and 
interparticle distance; L is the reference box size, and X ,  Y, 2 are the 
normalized coordinate components of interparticle distance defined as: 

21 - zj , Z E -  X - -  , Y E -  xi - xj Y I  - Y j  

L L L 

The corresponding normalized interparticle distance R k k ~ k ~ ~  is given by: 

Rkkfk" d ( x  - k)2  + ( Y  - k')* + (2 - k")2 (3) 

In our modified framework, arguments X ,  Y and 2 can, in principle, take 
any real value since particles are allowed to move freely in space. However, 
as shown in part I of this paper [I]  (Section 4, Properties I - 111), the force at 
uny point ( X ,  Y , Z )  E R3 can be obtained from the value of the force at  a 
point in the cube [0, 0.513. Moreover, the values of the forces in the y and z- 
directions can be computed using F"(.) (Section 4, Property IV). 

Section 2 of this paper considers the computation of the modified force 
functions by direct evaluation of the triple summations in (1). The large 
computational requirements of such a task lead us to consider the use of 
interpolation methods. Section 3 examines the interpolation of functions in 
3-dimensional space using Hermite cubic basis functions that ensure 
continuity of both the function interpolant and its partial derivatives at 
the interpolation grid boundaries. Section 4 presents practical algorithms for 
the construction and usage of non-uniform interpolation grids that can 
rigorously guarantee the accuracy of the interpolant within a specified 
tolerance error. Section 5 describes in detail our approach for the efficient 
computation of modified force functions and their derivatives, introducing 
the concept of separable force functions and examining the issue of the 
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required accuracy of interpolation. Section 6 presents some numerical 
results illustrating our approach. Finally, Section 7 concludes with some 
remarks both on the work presented here and, more generally, on the 
molecular dynamics framework established by this paper and its compa- 
nions [ I ,  21. 

2. DIRECT EVALUATION OF SUMMATIONS 
IN THE MODIFIED FORCE FUNCTIONS 

Let us first consider the computation of the force function by directly 
evaluating the triple summation in Eq. (1). More specifically, we study the 
K-restricted modified force function that includes only a finite number of 
terms in the summation: 

qx, Y ,  2) E R3 \ Nl3I (4) 

We evaluate this interparticle force for bulk argon at a number of 
( X ,  Y,  Z) points between 0 and 0.5 for different values of K. The non-bonded 
interaction potential is given by the Lennard-Jones model, and the box size 
L is taken to be 10a. In Figure 1, we plot log lol 1 - F ~ / F ~ o o l  against K. 

We note the following: 

1. All sums tend to the true limit as we include an increasing number of 
terms in the partial sum.' 

2. The rate at which the summations converge depends on the values of X ,  
Y and 2. Generally, convergence is faster for small values of X ,  Y, 2 (i.e., 
at small interparticle distances). In such cases, the first term of the 
summation (with k = k' = k") is a strong repulsive contribution which 
dominates the other terms. On the other hand, as X ,  Y, 2 approach the 
value of 0.5, we are in the region of the long attractive tail of the 
Lennard - Jones potential and the contributions of the higher order terms 
become more significant. 

3. The rate at which the summations converge is generally fast, with the first 
2-3 terms in each of the three summations usually being enough to 
achieve a relatively high accuracy. If more terms had to be included, 
techniques which improve the convergence of the series such as the 

'We take the values with K= 100 to be the "true" values of the force function given by 
Eq. (1). 
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4. 

F(006.0.06.006) 

FIGURE 1 Modified force as a function of the summation range. 

Shanks transformation or Richardson extrapolation could be applied 
[3,4]. However, the scope of benefiting from such techniques over 2 - 3  
terms is very limited. 
Even for K = 2, the direct computation of the K-restricted force in Eq. (4) 
involves the evaluation of 125 (=  53) terms. This makes the modified 
force function much more expensive than the corresponding conven- 
tional one which evaluates only one term per ( X ,  Y,  2) component. 

Overall, then, direct evaluation of partial sums of the form (4) is 
computationally unattractive. We are, therefore, led to consider interpola- 
tion schemes for the evaluation of force functions (1). 

A number of interpolation schemes that aim to reduce the computa- 
tional expense has been applied in work dealing with long-range (e.g., 
polarization or Coulomb) forces in classical simulations [5 ,6 ]  and in work 
combining quantum mechanical with classical simulations [7,8]. In our 
approach we develop a rigorous interpolation algorithm with the following 
objectives: 

1. to preserve the continuous nature of the force and its partial spatial 

2. to achieve high accuracy for a given grid size; 
3. to construct the interpolation grid in an efficient manner so that it can be 

used repeatedly for a wide range of potential parameters and system 
densities. 

derivatives; 
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FIGURE 2 Potential energy as a function of coordinate axes orientation. 

A peculiarity that needs to be addressed within the molecular dynamics 
framework developed in this series of papers is that the potential energy 
describing the interaction between a pair of particles is a function of the 
distance between the two particles along the 3 coordinate axes x, y and z 
rather than merely a function of their Cartesian distance r .  This point is 
illustrated in Figures 2(a) and (b), which show two particles i and j .  
The positions of the particles i a n d j  with respect to the origin 0 are iden- 
tical in both figures. However, the positions of the images of j (and, 
consequently, their interactions with i) depend on the orientation of the x 
and y axes, and the periodic partitioning that this orientation induces on the 
domain. 

This property also implies that there is no advantage in constructing 
interpolants for potential energy functions U(.) rather than force functions 
F(+) since both depend on three independent variables X ,  Y,  Z. Therefore, 
we prefer to interpolate F(.) since this is the quantity of direct interest to 
molecular dynamics computations. 

3. INTERPOLATION OF FUNCTIONS IN 3-DIMENSIONAL 
SPACE USING HERMITE CUBIC BASIS FUNCTIONS 

Interpolation methods attempt to strike a balance between accuracy on one 
hand, and speed of evaluation and storage requirements on the other. 
Generally, higher accuracy may be achieved by employing more complex 
approximating functions over finer grids. However, increasing function 
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complexity increases the computational cost, while increasing grid resolu- 
tion leads to higher storage requirements - a trade-off that is dependent 
on the size of the system and the objective of the molecular dynamics 
computation. 

Let us consider a general function AX, Y,Z)  defined over a finite, 
rectangular domain: 

D f {(X,Y,Z)~X€[X~,X~],Y€[Y~,Y"],Z€[Z~,Z"]~ ( 5 )  

We wish to approximate this by an interpolantj(X, Y ,  Z) over a rectilinear 3- 
dimensional grid G of M, x ny x n, points defined as the Cartesian product 
of three 1-dimensional grids in X ,  Y and Z respectively: 

where: 

As an illustration, Figure 3 shows an example of a similar 2-dimensional 
non-uniform grid in X and Y with H , ~  = 8 and ny = 10. 

In constructing the interpolant f ,  we seek to ensure that both f and its 
partial derivatives 8f / ax ,  af JdY and 8f JaZ are continuous across the grid 
boundaries. This is essential in our case as the interparticle force and 
its spatial partial derivatives must be continuous functions of the inter- 
particle distance (cf. parts 1 and I1 of this work [l,  21). In order to achieve 
this continuity, we choose the interpolant so that it computes both force 
and its partial derivatives with respect to ( X ,  Y ,  Z )  exactly at each node of 
the grid: 

These conditions can be satisfied with relative ease if we approximate 
the force function in the kth element [sk, sk+ via a linear combination of 
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FIGURE 3 2-dimensional non-uniform grid. 

Hermite cubic basis functions. This leads to the following cubic interpolant: 
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defined on the rectilinear grid G (cf. Eq. (6)). Here u, v, w denote normalized 
positions within a cell in the grid: 

where 

The functions Hi(&), i=  1 , .  . . ,4, cy = u, v, w are the cubic Hermitian 
polynomials: 

H 1 ( a )  si ( 1  -a)2(1 +2a)  (12) 

H2(Ly) = a( 1 - a) 2 (13) 

The quantities fk,,ky,ks and ft!ky,k, denote values of the exact function being 
interpolated and its partial derivatives at the grid nodes: 

It can be shown [9] that the interpolant defined by Eqs. (9)-(16) is 
continuous at the grid boundaries, i.e., on the faces that separate adjacent 



MOLECULAR DYNAMICS I11 331 

k ,  +1 

f 

FIGURE 4 Continuity of interpolant and its derivatives on grid boundaries. 

partitions defined by the grid G. Consider, for example, the two grid cells 
shown in Figure 4 and the interface separating them (shown as the shaded 
area). Then, iffL andjR denote the interpolants in, respectively, the left and 
right cells of Figure 4, the following relations hold: 

Therefore, the partial derivatives of the interpolant with respect to X ,  Y and 
Z are continuous everywhere at the interface. 

4. GRID CONSTRUCTION AND USAGE 

The previous section has considered how a functionflX, Y, 2) defined over a 
finite rectangular domain D can be approximated by a cubic Hermitian 
interpolant f(X, Y ,  Z )  defined over a given rectilinear grid 6. The accuracy 
of interpolation at any point ( X ,  Y, Z) in the domain under consideration 
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can be measured in terms of the approximation error E defined as: 

A question of practical importance is how to construct a grid such that the 
above error does not exceed a specified tolerance Pax at any point in the 
domain of interest, i.e., 

E ( X ,  Y ,  Z )  5 Emax, V(X, Y ,  2) E D (19) 

4.1. Iterative Grid Refinement 

We consider an iterative procedure that starts with an initial grid and refines 
it repeatedly until condition (19) is satisfied. The basic idea of this procedure 
is that, given a grid 6, it searches for a point ( X * ,  Y * , Z * )  E D at which the 
error E is maximum. If E(F, Y,Z*) does not exceed the tolerance E ~ ~ ~ ,  

the algorithm terminates as condition ( 5 )  is already satisfied. Otherwise, 
the point (A?, P, Z') is inserted in the current grid to derive a new grid 6. 
The procedure is then repeated. 

In practice, the exact determination of the point (X' ,  Y* ,Z*)  E D that 
maximizes E is, in itself, a difficult mathematical problem especially since we 
require the global maximum of E in the domain D. Consequently, here we 
prefer to obtain only an approximate solution by "sampling", i.e., by 
evaluating E at a (relatively large) number of points in D and simply 
selecting the point that corresponds to the largest value of E .  

More specifically, we choose N, sampling points (us, v,, w,), s = 1 ,  . . . , N, in 
the unit cube (i.e., u,, v,, W,E [0, 11). We then evaluate E at the following 
points: 

where hix ,  hiY and h i  are given by Eq. (1 l ) ,  for k, = 1, . . . , n,, ky = 1, . . . , ny, 
k, = 1, . . . , n,. As the grid generation procedure is executed once only, we 
can afford to use a large number of sampling points to ensure that the 
condition (19) is indeed satisfied by the final grid that will be employed by 
our molecular dynamics computations. 

We now present our grid generation procedure as a formal algorithm. The 
key operations of the algorithm are also illustrated schematically in Figure 5 
for the case of a 2-dimensional domain. 
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Given 

a finite domain D c R3 defined by Eq. (5) 
a continuous and differentiable function f : [I3, -+ R 
a tolerance 
a set of normalized sampling points {(us, vs, ws), s = 1, . . . , N,} in the 
unit cube. 

Step 0 Grid initialization 

entire domain D as a single partition, i.e., 
Define an initial grid G = { X L , X u }  x {Y", Y u }  x { Z L , Z u }  covering the 

L U n, = 2 ,  X I  = X , X2 = X ; ny = 2 ,  y1 = y L ,  y2 = y U ;  

n, = 2 ,  ~1 = z , z2 = zU L 

Step 1 Approximately locate point of maximum error 
Set E* :=0 
FOR k,:= 1 TO n,- 1; ky:= 1 TO I t y -  1; k,:= 1 TO n,- 1 DO 

FOR s:= 1 TO N ,  DO 
Set x := x k x  + hixu,; Y := Yk, f hiyvs; z := z k z  + hi-w,  
Evaluate function AX, Y, Z) 
Evaluate interpolant f ( X ,  Y ,  Z )  using Eq. (9) 
Evaluate approximation error E = I f  -31 (cf. Eq. (18)) 
IF E > E* THEN 

Set E* := E 

SetX*:=X; Y * : = Y ; Z * : = Z  
Set k; := k,; k; := ky; k,' := k, 

END 
END 

END 

Step 2 Check for  termination 
IF E* 5 E~~~ THEN stop: grid G satisfies condition (5) 

Step 3 Refine grid by introducing new point ( X * ,  Y* ,  Z * )  
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This is equivalent to: 

- increasing n,, ny,  n, by 1 
- shifting all grid points for which k, > k:, k, > k;, k, > kZ one 

position to the right: 

x k ,  := &,-I from k, := n, down to k, := k: + 2 

Yk,  := Yk,-l  from ky := ny down to k, := ky* + 2 

z k ,  := from k, := n, down to k, := k,* + 2 

- inserting the new point ( X * ,  Y*,  z*) in the grid 
&,+I := x*; Yk,+l := Y*;  &,+I := z* 

Step 4 Repeat from step I 

We note that the above algorithm takes direct account of the 
approximation error in locating the grid points. Consequently, the final 
grid is likely to be much more accurate than a uniform rectilinear grid 
with the same number of points. On the other hand, the grid is not 
necessarily optimal in the sense of being able to satisfy condition ( 5 )  with 
the minimum number of points. However, with the increasing availability 
of computer memory, obtaining the absolutely minimal number of grid 
points is not crucial, at least as far as storage demands are concerned. Of 
course, one also has to consider the efficiency of the utilization of the grid 
during the molecular dynamics computations. This issue is considered 
below. 

4.2. Efficient Evaluation of the Interpolant 

Section 4.1 has demonstrated how a rectilinear non-uniform grid G can be 
constructed over a finite domain D c R3 so that a continuous and 
differentiable function f : D + Iw can be approximated using a restricted 
Hermitian interpolant to within an arbitrarily small positive tolerance E ~ ~ ~ .  

For the class of applications of interest to this work, the interpolant will be 
evaluated a very large number of times; it is, therefore, important for each 
such evaluation to be as efficient as possible. 

The evaluation of the interpolant p(X, Y ,  Z )  at a given point (X, Y ,  Z )  E D 
involves two steps. These are described below. 
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(a) Grid at start of step 1 of a certain it- 
eration sampling (step 2) 

(b) Evaluation of approximation error by 
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x 2  Xke xkx*+l xnx.l 'nZ x2 Xkx .  xkz*+l xk,.+2 xnx Xfi+l 

X L  X" XL X U  

(c) Approximate location of maximum er- 
ror (end of step 2) 

(d) Grid refinement (step 3) 

FIGURE 5 Iterative grid construction algorithm. 

4.2.1. Location of Point in Grid 

In order to apply the correct interpolant function (Eq. (9)), the partition of 
the domain which contains a point ( X ,  Y,Z) must be determined. This is 
equivalent to determining k,, ky, k, such that: 

X E  [Xk,,Xkx+ll; Y E  PLY, Yky+ll; ZE [ z k , , ~ k , + l ]  

An efficient procedure for achieving this for a non-uniform grid is binary 
search. This exploits the fact that the grid points in each coordinate are 
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sorted in strictly ascending order (cf. Eq. (7)). The procedure is illustrated 
for the case of the X coordinate. 

Given X: 
1 Set kL:= 1 
2 Set ku:=nx 

4 Set k,:= L(kL+ku)/2J 

6 Set k L : = k ,  
7 ELSE 
8 Set kU:= k ,  
9 END 
10 END 

3 WHILE k U -  kL > 1 DO 

5 IF X > Xk, THEN 

The procedure maintains throughout two indices kL and k U  such that: 

These indices are initialized to 1 and n, respectively (Steps 1 and 2). The 
algorithm then undertakes an iterative reduction of the interval of indices 
[kL, ku] until k u =  kL+ 1 (Step 3). The interval reduction procedure bisects 
the index interval [kL,  ku] to obtain the index k ,  (Step 4).2 Depending on the 
value of Xkx  in relation to X, k,  is then used to replace either kL or k U  (Steps 

Since the above search procedure bisects the index interval [kL, kU] at each 
iteration, terminating when it becomes of length 1, the number of iterations 
required to locate any X within the given grid is Llog2n,J, the cost per 
iteration being primarily one of an integer division (Step 4) and a real 
number comparison (Step 5). Since the procedures for the other coordinate 
directions are entirely analogous, the total number of iterations is simply: 

5-9) .  

It should be noted that even for an exceedingly fine grid of n, = ny = n, = 
1000 (Le., lo9 grid points), the above number is just 27. 

'Note that if ka > k L +  1, then k,  will always be different to both krJ and kU. 
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4.2.2. Evaluation of the Znterpolant Function 

Once we determine the partition of the domain D which contains the point 
of interest (X, Y,  Z), we need to evaluate the interpolant f(X, Y ,  2) for this 
particular partition (cf. Eq. (9)). This requires a sequence of operations as 
shown above. 

Floating point arithmetic operations 

Addlsubtract Multiply Divide 

Evaluate normalized coordinates u, v, w 

Evaluate Hermitian polynomials H I ,  Hz, H3,  H4 
at u, v ,  w (cf: Eqs. (12)-(15)) 12 18 
Evaluate the interpolant f (cf. Eq. (9)) 31 62 

(4 Eq. (10)) 3 3 

Total arithmetic operations 46 80 3 

Although the total number of arithmetic operations may appear to be 
large, it has to be remembered that this number is independent both of the 
complexity of the original functionf(X, Y, Z) and of the degree of accuracy 
of approximation required. Consider, for example, the modified force 
function of interest to this work. The evaluation of even the K-partial form 
of this function described by Eq. (4) involves the computation of (2K+ 1)' 
terms, each one of which can be quite complex, Even for quite modest K 
(e.g., K =  l), this is likely to be more expensive than evaluating the 
interpolant (9). 

5. INTERPOLATION OF MODIFIED FORCE FUNCTIONS 

Sections 3 and 4 have presented a general approach for constructing and 
using efficient interpolants of functions f ( X ,  Y,  Z) defined over finite 3- 
dimensional domains D. The approach is applicable to the modified force 
function F(X, Y ,  Z) since we have shown [l] that, irrespectively of the values 
that X, Y, 2 take during a molecular dynamics computation, the force 
function needs to be evaluated only in the domain D = [0, 0.513. Moreover, 
the force components in the y- and z-directions can be computed in terms of 
the force component in the x-direction. Consequently, the interpolation grid 
needs to be constructed only for the function Fx(X, Y, 2) defined by Eq. (1). 

Overall, then, it is possible to apply the generic methodology of Sections 3 
and 4 directly to the force function Fx(X, Y ,  Z). However, some additional 
issues that are specific to this function and the types of application for which 
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molecular dynamics computations may be used or within which they can be 
embedded can be identified. These issues pertain to the frequency with 
which the interpolation grid needs to be computed. 

More specifically, in addition to the particle positions, the modified force 
function .F‘”(.) also depends on the reference box size, L,  and the non- 
bonded potential parameters, 6. In the context of a “one-off” molecular 
dynamics simulation in the microcanonical ensemble, both L and 6 are just 
constants and can, therefore, be ignored as far as the construction of an 
appropriate interpolant is concerned. However, such a simplification may 

be possible in more complex situations. Examples include: 

The computation of partial derivatives of molecular dynamics mappings 
(cf. part I1 of this work [2]) requires the partial derivatives of the force 
function with respect to 6 and/or L. Consequently, the dependence of 
the interpolant on these quantities needs to be made explicit. 
The molecular dynamics computation may be embedded within a 
procedure that attempts to estimate the parameters 6 by matching the 
molecular dynamics predictions with actual experimental data. In this 
case, the molecular dynamics computation will have to be executed 
many times, each with a different set of values of 6. To generate an 
accurate interpolation grid at the start of each such computation is 
undesirable from the point of view of both computational efficiency and 
mathematical con~istency.~ 
In the context of molecular dynamics computations in the ( N ,  P, T )  
ensemble, the reference box size L is actually a function of time; hence, it 
cannot be assumed to be a constant for the purposes of constructing the 
force function interpolant. 

Ideally, we would like to be able to construct the polynomial interpolant 
for parts of the force function that are independent of both fl and L. This 
construction would be done once and for all, and the interpolants would be 
stored for future use by any application making use of this potential. In fact, 
as shown below, this is possible for some commonly used potential 
functions. 

5.1. Interpolation of Separable Force Functions 

In this section, we consider non-bonded potential functions UNB(r, 6) 
of such form that the quantity aUNB/dR that appears in Eq. (1) can be 

3For example, the use of a different grid at each invocation of the molecular dynamics 
computation may prevent the results of the latter from being a well-defined function of the value 
of 29. 
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written as: 

i.e., as the sum of one or more terms K = 1,2,. . . , each of which can be 
expressed as the product of two factors; the first factor AJL,  6) is exclusively 
a function of the reference box size L and potential parameters 6 ,  while the 
second factor B,(R) is exclusively a function of the normalized interparticle 
distance R. 

The modified force function corresponding to (21) is given by: 

where f K ( X ,  Y ,  Z) is defined as: 

Each of the functions f n ( X ,  Y,Z)  can be approximated by a separate 
interpolant f K ,  Thus, an overall interpolant Fx for the modified force 
function can be obtained from: 

5.1.1. Practical Examples of Separable Force Functions 

As an example, consider the Lennard - Jones potential: 

12 

UNB(r, 6) = 4kbt [ (4) - (4) ‘1 
In this case, the quantity dUNB/dR can be written in the following form 
consistent with Eq. (21): 

dUNB 48kb6aI2 1 24kbtd 1 
R7 

- x -+- x -  
d R  L’2 RI3 L6 
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In particular, we can see that there are two distinct terms ( K  = 1 and K = 2), 
with: 

24kh t g6 

L6 A2(L, 29)  = ~ ; &(R) = l/R7 

By inserting the above expressions for Bl(R) and &(I?) in Eq. (23), we 
obtain the two functions for which interpolants need to be constructed, 
defined as: 

Another example of a separable force function is provided by the 
Coulomb potential of the form: 

44‘ U ( r )  = - 
Dr 

where q and q’ are the charges on the interacting particles, and D is the 
dielectric constant. In this case, 

5.1.2. Error Control for Interpolation of Separable Force Functions 

Returning to the general form of the interpolant (24), we note that the 
interpolants f,(X, Y ,  Z )  can be constructed by applying the procedure of 
Section 3 individually to each one of the functions f, ( X ,  Y,  Z) defined by Eq. 
(23). In this case, each interpolant?,(.) will have its own interpolation grid 
which will generally be different to that of any other interpolant f:, k’ # k .  
This may make it difficult to control the error in the overall interpolant (24). 
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Moreover, the amount of computer memory required for storing the 
interpoknts will be proportional to the number of terms in Eq. (21). Also, 
there will be increased costs during the simulation as each evaluation of the 
force function at a given point ( X ,  Y,z> will involve locating this point in 
several different grids (cf. Section 4.2.1) and evaluating the Hermite 
polynomials at a different set of normalized positions u, v, w for each grid 
(cf. Section 4.2.2). 

In order to illustrate the above points, Figures 6 and 7 present the 
interpolation grids constructed for the repulsive (29) and attractive (30) 
components of the Lennard-Jones force4 for the same grid size of 
75 x 75 x 75. As can be seen by comparing these figures, the two grids are 
clearly different. Moreover, the accuracies of the corresponding interpolants 
are also different: the individual absolute interpolation errors are approxi- 
mately 1.219 and 1.616 x l op2  respectively. 

The alternative is to construct a common interpolation grid by considering 
all functions f K  ( X ,  Y, 2) simultaneously. This can be achieved by modifying 
the definition of the approximation error E (cf. Eq. (18)) to take account of 

(a) X-Y coordinate plane (b) Z-Y coordinate plane 

FIGURE 6 Interpolation grid for the repulsive Lennard- Jones force component. 

4The “exact” force and its partial derivatives were computed using the K-restricted forms of 
Eqs. (29) and (30) with K=  10 (cf. Eq. (4)). The grid was constructed using N, = 729 (= g3) 
sampling points placed at normalized positions u,=O.li, v,=O.li’, w,=O.li”, Vi, i’ E [l, .  . . ,9] 
(cf. Eq. (20)). For improved accuracy at very small interparticle distances, the central terms of 
the summations (ie., those for k = K = K‘ = 0) were omitted. Consequently, these terms will 
have to be computed separately during the molecular dynamics computations, to be added to 
the force values determined by the corresponding interpolants. This is similar to the approach 
used by Sangester and Dixon [6] in their work on interpolants for Ewald summation. 
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(a) X - Y  coordinate plane (b) 2-Y coordinate plane 

FIGURE 7 Interpolation grid for the attractive Lennard-- Jones force component. 

all parts of the force function. In particular, by subtracting Eq. (24) from 
Eq. (22), we obtain: 

P ( X ,  Y ,  z ,  L, 6 )  - F ( X ,  Y ,  2, L, 7 9 )  

Taking absolute values of the both sides of the above equation 

(33) 

yields: 

(34) 

where we have defined the overall error: 

& ( X , Y , Z 1 L , 2 9 )  3 I F X ( X , Y , Z 1 L , 6 )  - . F X ( X , Y , Z , L , I 9 ) 1  (35) 

G ( X ,  Y , Z )  = I f d X ,  Y , Z )  -"ml Y , Z ) I ,  

and the individual errors: 

6 = I , ? .  . . (36) 

Of course, both L and 6 may vary in a particular application, and we need 
to ensure that &(A', Y,  Z,  L, 79) remains acceptable for whatever value they 
may take. Therefore, we replace (34) by: 

'('7 y >  '3 L> ') 5 C C 6 E K ( X >  ', ') (37) 
K 
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where we have introduced constants C, such that: 

with the maximization being carried out over all allowable values of L and 
8. For example, in the case of the Lennard-Jones potential considered 
earlier in this section, the constants C, are given by: 

6 

(39) 
12 24kbcmaxo,aX 48kbEma.~flmax and C2 = c1 = 

‘:in ‘kin 

where t,,, and urnax are the maximum values of e and u, and Lmin the 
minimum value of L that are under consideration. 

The right hand side of Eq. (37) provides an upper bound on the overall 
error E .  If we employ this instead of Eq. (19) in the algorithm of Section 4, 
we can ensure that the value of the force function computed by Eq. (24) by 
combining the individual interpolants 1, (.) will always be accurate to (at 
least) the specified tolerance 

Figure 8 shows the combined interpolant grid of size 75 x 75 x 75 
constructed for a Lennard - Jones fluid in a manner analogous to the grids 
shown in Figures 6 and 7. The quantities tmax and umax appearing in Eq. 
(39) were set at 120K and 4A respectively, while Lmin was set at 20A. 
Interestingly in this case, the combined interpolant grid is very similar to 
that obtained by the consideration of the attractive force term alone 

> 

(a) X-Y coordinate plane (b) Z-Y coordinate plane 

FIGURE 8 Interpolation grid for the combined Lennard- Jones force components. 
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(cJ Fig. 7). This indicates that the dominant contribution (h., the one that 
determines the placement of the grid points) to the interpolant error (cf:  Eq. 
(37)) is that of the attractive term. This is a consequence of the fact that the 
central summation term (k  = k' = k" = 0) has been omitted from the 
computation of the interpolant (see footnote). Therefore, the longer range 
attractive forces dominate over the repulsive ones even for very small values 
of X ,  Y and Z .  

For a given potential function UNB(r), the interpolation grid and the 
interpolant coefficient (CJ Eq. (9)) for the individual functions .fn. can be 
computed once and for all and stored for future use. For example, the grid 
presented in Figure 8 ensures an interpolation error in the force function not 
exceeding 10 -6khtm,,/n,,, 2 4.142 x 10- "N. Moreover, its rigorous 
theoretical basis guarantees at /errst this level of accuracy for all 
Lennard- Jones fluids with c 5 cmax = 120 K and n 5 c,,,~~ = 4 A  in boxes 
of size L 1 L,,, =20A. Such systems include both argon (c = 119.8 K, 
0=3.405A) and all linear alkanes modeled according to the NERD 
potential [lo], as well as their  mixture^.^ The minimum box size of 
Lmin = 20A guarantees that, for a system of, say, 256 molecules, the above 
accuracy is obtained for densities up to: 

- 5.3 x lo4 mol/m3 
256 

Pmax = 6.023 x 1023 x (20 1 0 - - 1 0 ) ~  - 

It is worth pointing out that, for many applications, it will 
efficient to combine the individual interpolant coefficients into a 

be more 
sitzgktJ set 

according to Eq. (24) bcjore the start of the molecular dynamics 
computations. For example, in the case of molecular dynamics simulations 
in the ( N ,  V ,  E )  or ( N ,  V ,  T )  ensembles, both 19 and L are given constants. 
Hence, we can calculate the quantities A,(& d), and then use them to pre- 
compute the interpolation coefficients for the overall force function (c f .  Eq. 
(24)); this is straightforward since all interpolants j h ( . )  share the same 
interpolation grid. We can then use these combined interpolation 
coefficients during the subsequent molecular dynamics simulation. This is 
clearly more efficient than using (24) directly within the simulation. On the 
other hand, such a pre-combination of the interpolants is not possible for 
molecular dynamics computations in the ( N ,  P ,  T )  ensemble as, in this case, 
L varies with time. 

'This is true since the Lorentz- Herthelot combining rules always yield values for E and (r that 
lie between the corresponding values for the pure species. 
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5.2. Computation of Partial Derivatives 
of the Modified Force Functions 

As we have seen in part 11 of this work [2], in addition to the values of the 
modified force functions themselves, the computation of partial derivatives 
of molecular dynamics mappings also requires the values of the partial 
derivatives of the force function with respect to the positions X ,  Y, 2 and the 
potential parameters 0. These partial derivatives are themselves quite com- 
plex functions and can, therefore, benefit from the application of interpola- 
tion techniques of the type considered in this chapter. The corresponding 
interpolants can be obtained in two different ways: 

(a) by differentiating the interpolant of the modified force function with 

(b) by constructing new interpolants for each of these partial derivatives. 
respect to the corresponding quantities; or, 

Option (a) has the advantage that the values of derivatives obtained are 
exactly consistent with the values of the force functions used. It also implies 
that a single interpolation grid is sufficient for both the force function and its 
partial derivatives. 

Option (b) has the advantage that the partial derivatives have the same 
degree of differentiability as the force functions themselves- and not one less 
as is the case for option (a). On the other hand, the values obtained may not 
be entirely consistent with the values of the force function approximated via 
the corresponding interpolant. In other words, consider a function f ( w )  and 
its interpolant j(w), and also the partial derivatives af iaw and their inter- 
polants af/aw. Then, in general, interpolation and differentiation are not 
commutative operations, i.e.: 

- 

Another disadvantage of option (b) is that multiple interpolation grids may 
be required. 

In view of the above, we choose option (a). By differentiating (24) with 
respect to the required quantities ( X ,  Y,  2, L, S), we obtain the following 
expressions: 
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The partial derivatives d f K / @  appearing on the right hand side of Eq. (40) 
can be determined by differentiating the interpolant given by Eq. (9) with 
respect to X ,  Y or Z and making use of the chain rule: 

and similarly: 

In the specific example of the Lennard - Jones potential, the partial 
derivatives on the right hand side of Eqs. (41)-(42) take the following forms 
(cJ Eqs. (27)- (28)): 

5.3. Required Accuracy of Interpolation 

As we have seen in Section 4, we can always construct an interpolation grid 
such that the force can be computed within a specified tolerance emax > 0. 
An interesting question that arises in this context concerns the appropriate 
value for E ~ ~ ~ .  In fact, the same question arises more generally in the context 
of molecular dynamics whenever the force exerted on a particle is approxi- 
mated in some sense (e.g., via the use of cut-off distances). An answer can 
be obtained by considering the sensitivity of the computed outputs of the 
molecular dynamics computation with respect to this tolerance. 
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We consider a perturbed version of the Newton’s equations of motion 
written as: 

r i = v i  V i = l ,  ..., N (47) 

1 
mi 

ii = - ( F i ( r , a )  + E ~ ~ ~ )  Vi = 1, .  . . , N  

subject to: 

v ( 0 )  = vO(a) ( 5 0 )  

We note that (48) recognizes explicitly the fact that the force Fi is not 
computed exactly but may be subject to an error E ~ ~ ~ .  

The thermodynamic property p of interest is given by time-integral 
expressions of the form: 

P I r  

We note that the value of this property will also depend on the error in the 
force function since the particle positions and velocities will both be affected 
by E ~ ~ ~ .  To a first-order approximation, the prediction error Ap that is 
caused by E~~~ is given by: 

The error E~~~ in the force in Eq. (48) needs to be sufficiently small for 
property p to be within a specified acceptable predictive accuracy Ap*. 
Therefore, we obtain the following approximate expression for cmax: 

An estimate of the sensitivity ( ~ p / ~ ~ ~ ~ ~ ) ~ ~ ~ ~ ~ , ~  appearing in the above 
equation can be obtained by finite difference perturbations; this generally 
produces a result that is sufficiently accurate for the purposes of Eq. (53). 
Alternatively, the adjoint or sensitivity equations corresponding to (47) - 
(51) can be formulated and solved [9]. 
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6. NUMERICAL EXPERIMENTS 

In this section, we conduct numerical experiments aimed to study the effect 
of the force interpolation error on the accuracy of the quantities determined 
by molecular dynamics computations. To this end, we have constructed 
interpolation grids of different sizes for the combined Lennard - Jones force 
components using t,,ilx = 120K and onlnx=4A in the manner described in 
Section 5.1. Figures 9 and 10 show combined interpolant grids of size 
20 x 20 x 20 and 50 x 50 x 50 respectively. The combined interpolant grid 

(a) X-Y coordinate plane (b) Z-Y coordinate plane 

FIGURE 9 Interpolation grid of size 20 x 20 x 20. 

(a) X-Y coordinate plane (b) 2-Y coordinate plane 

FIGURE 10 Interpolation grid of size 50 x 50 x SO. 
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TABLE I Maximum interDolant error as a function of grid size 

Grid size 
Ma.uimum interpolant error 

E,I1',.~(kbEnla.'l ) cmo 

20 x 20 x 20 
50 x 50 x 50 
75 x 75 x 75 

7.862 1 0 - ~  
1.139 

4.937 x 10-6 

TABLE I1 Interpolation of modified force functions 

Sirnulalion of argon.fluid ( N  = 256) 

T ( K )  ATwi ATm, P ( M P a )  Apmi Ape,, 
Interpolation over grid 
20 x 20 x 20 177.0 -0.2 - 0.7 359.1 -0.7 - 1.9 
50 x 50 x 50 177.3 0. I - 0.2 360.2 0.4 ~ 0.8 
75 x 75 x 15 177.2 0.0 0.1 359.8 0.0 - 0.2 
Direct summation 177.2 359.8 ~ - - - 

of size 75 x 75 x 75 has already been shown in Figure 8. Table I lists the 
maximum grid interpolation error &InaX attained by these grids. 

Table IT compares the results of the molecular dynamics computations 
obtained using the direct summation of the modified force functions' with 
those obtained using the interpolants on the above grids. The simulation 
involves 256 argon particles at a density of 39,960mol/m3 and energy of 
- 3397 J/mol. 

The differences between the temperature and pressure values calculated 
using the interpolants and the direct modified force summation are denoted 
as AT,,, and AP,,, respectively: 

As can be seen, these differences are quite small; they improve with 
increasing grid resolution and, indeed, vanish (to 4 significant digits for both 
T and P )  for the 75 x 75 x 75 grid. 

Table I1 also compares the actual errors, AT,,, and AP,,,, to the 
corresponding errors AT,,, and AP,,, estimated by the analysis presented in 
Section 5.3. These can be obtained from Eq. (52)  using the values of 

'Hcre the force was computed using the MOD-10 framework (cf. Eq. (4)); thus each 
cvalu;ition involves the summation of 9261 ( =213) distinct terms. 
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listed in Table I. The comparison indicates that the analysis of Section 5.3 
tends to provide an upper bound on the effects of the interpolation error, 
rather than a precise estimate. There are two reasons for this: first, the value 
of E~~~ is itself an upper bound to the error of the interpolant-indeed, the 
actual error over most of the interpolation domain is expected to be better 
than this. Secondly, Eq. (48) assumes that the immediate effect of the 
interpolation error is always to increase the force by zmax; in reality, this 
error could be negative as well as positive. Nevertheless, the value of E~~~ 

that can be obtained from such an analysis (cf. Eq. (53)) is a useful, albeit 
somewhat conservative, estimate that will guarantee the required accuracy 
in T and P. 

7. CONCLUDING REMARKS 

Interpolation of potential functions has been quite common in the 
molecular simulation literature, with forces being calculated by differentiat- 
ing these interpolants. Much of this work has been focused on specific types 
of potential, with the accuracy of interpolation being adjusted by trial-and- 
error. The continuity of the force across the grid boundaries was not always 
maintained. 

The interpolation scheme proposed in this paper can be applied to 
essentially any continuous and differentiable force function defined over a 
finite spatial domain. Obviously, it is of maximum benefit in the case of 
complex force functions of the type of interest to this work. The resulting 
interpolant is continuous and differentiable throughout the domain under 
consideration. Moreover, the grid generation procedure guarantees the 
accuracy of the computed force within a user-specified tolerance. 

It has also been shown that, for some forms of potential function, one can 
construct, once-and-for-all, interpolants of guaranteed accuracy over 
specified ranges of the density and of the parameters appearing in the 
potential. Such constructions are possible for some potential functions that 
are commonly used to describe non-bonded particle interactions, including 
the Lennard ~ Jones and Coulombic ones. 

It has also been argued that it is both desirable and feasible to relate the 
error tolerance in the force calculation to the required precision of the 
predictions of the molecular dynamics computations. The procedure 
proposed for achieving this is of general interest as it is applicable to any 
molecular dynamics computation which employs some approximation in the 
calculation of force (e.g., via the use of cut-off distances). 
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In conclusion, this paper and its companions represent an attempt to 
establish a formal framework for molecular dynamics that is consistent 
with, and depends on, two fundamental premises [ 11: 

(a) the physical system of interest exhibits a spatial periodicity expressed in 
terms of the infinite replication of a cube of given size; 

(b) the non-bonded interactions in the system of particles under considera- 
tion can be described in terms of a set of pairwise interactions, each char- 
acterized by a continuous and twice-differentiable potential function. 

No other assumptions or simplifications have been necessary. This allows 
molecular dynamics computations to be viewed as mathematical mappings 
that are continuous and differentiable functions of their arguments. It is also 
possible [2] to establish rigorous procedures for the computation of all 
partial derivatives of this mapping within the same degree of numerical 
accuracy as the results of the molecular dynamics computation itself; this 
information is likely to be valuable in a wide variety of practical 
applications. Finally, the rigorous and efficient force interpolation schemes 
proposed in this paper imply that there is little, if any, computational 
penalty associated with using the new molecular dynamics framework in 
comparison with its conventional counterparts. 
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