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MOLECULAR DYNAMICS 
AS A MATHEMATICAL MAPPING. 

I. DIFFERENTIABLE FORCE FUNCTIONS 

JELENA STEFANOVIC and CONSTANTINOS C. PANTELIDES* 

Centre for Process Systems Engineering, Imperial College of Science, 
Technology and Medicine, London S W7 2BY, United Kingdom 

(Received May 2000; accepted May 2000) 

The molecular dynamics technique can be viewed as a deterministic mathematical mapping 
between, on one side, the force field parameters that describe the potential energy interactions 
and the input macroscopic conditions, and, on the other, the calculated macroscopic properties 
of the bulk molecular system. 

The differentiability of such a mapping in the conventional molecular dynamics calculations is 
affected by the discontinuities in particle positions introduced by the periodic boundary con- 
ditions and the discontinuities introduced by the minimum image convention and other methods 
commonly employed to approximate the calculation of interparticle potential and force. 

This paper proposes an alternative molecular dynamics framework based on modified force 
functions which are almost everywhere continuous and differentiable, and exhibit a natural 
periodicity. These characteristics obviate the need for both the periodic boundary conditions 
and the minimum image convention, as well as for any corrections for long-range interactions. 
They also make it possible to apply standard methods of variational calculus for the computa- 
tion of partial derivatives of the molecular dynamics mapping. 

The modified framework is first introduced for the case of simple monoatomic fluids where 
the nature of the forces exerted between any pair of two particles is identical. A more general 
model describing the interactions of flexible molecules is then developed. We describe the appli- 
cation of this approach to mixtures of alkane molecules interacting via the NERD force field. 

Keywords: Molecular dynamics; Force functions; Minimum image convention 

1. INTRODUCTION 

Much of the current use of molecular simulation techniques in practical 
applications [l - 31 is in the form of “computational experiments” used to 
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generate data points. Typically, one specifies some input conditions and 
parameters, and performs a simulation to obtain the output properties of 
interest. In this sense, the computations emulate traditional laboratory 
experiments performed under specified conditions. 

An alternative view of molecular simulation techniques is as a set of 
formal mathematical mappings (“functions”) relating certain (computed) 
macroscopic quantities of direct relevance to practical applications to other 
(specified) macroscopic quantities and also to a set of parameters describing 
molecular, atomic, or sub-atomic behavior. In principle, such a formalized 
view could lead to an improved understanding of the effects both of algo- 
rithmic decisions and of physical approximations on the accuracy of the 
results computed by these techniques. It may also allow a wider range of 
mathematical manipulations such as the computation of the gradients of 
the computed (“output”) quantities with respect to the specified (“input”) 
ones, as well as various forms of inversion of the mathematical mapping 
(e.g., for the estimation of molecular parameters from experimental data). 
Ultimately, representing computational chemistry techniques as formal 
mathematical functions is an essential prerequisite for embedding them 
within higher-level computations (e.g. ,  for engineering design purposes). 

This three-part paper focuses on molecular dynamics aiming to establish 
it as a formal mathematical mapping. Part I removes all discontinuities 
involved in the molecular dynamics computation by eliminating such well 
established devices as the periodic boundary conditions and the minimum 
image convention. The key to achieving this is the introduction of a modi- 
fied interparticle force function that is almost everywhere continuous and 
differentiable. This force can be derived from any continuous and differ- 
entiable interparticle potential function describing non-bonded pairwise 
interactions. The existence of chemical bonds is shown to result in only a 
minor modification to the overall approach. 

Molecular dynamics computations making use of the above modified 
force function establish a continuous and differentiable mapping between 
their input and output quantities. Part I1 [4] of this paper develops formal 
procedures for the computation of all partial derivatives of this mapping. 

A disadvantage of the modified force function is that it is much more 
complex than its conventional counterpart. Part I11 of this paper [5 ]  
demonstrates that the mathematical properties of this function are such 
that efficient interpolation schemes can be used for its computation. An 
algorithm for constructing interpolation grids of guaranteed accuracy is 
presented. Moreover, for many commonly used potential functions, including 
the Lennard - Jones and Coulomb ones, it is possible to construct a priori 
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interpolation grids that guarantee the accuracy of the computed force for any 
value of the potential parameters and system density over a specified 
range. 

Section 2 of this first part of the paper introduces the view of molecular 
dynamics as a formal mathematical mapping. Section 3 discusses the 
discontinuities introduced through the conventional molecular dynamics 
framework. Section 4 derives the modified molecular dynamics framework 
in terms of a general interparticle potential function operating in 3- 
dimensional space. Section 5 compares the modified framework with a con- 
ventional one employing periodic boundary conditions and the minimum 
image convention, and presents some numerical results. 

Throughout Sections 4 and 5, we assume that the nature of the force 
exerted between any pair of two particles is the same, irrespective of the 
identity of these two particles, as would be the case for a monoatomic fluid 
of a single species. We consider the more general case in which different 
groups of particles interact through forces of different types (e.g. ,  due to 
chemical bonding) in Section 6 .  

2. MOLECULAR DYNAMICS AS A MATHEMATICAL 
MAPPING 

A typical algorithm for molecular dynamics in the microcanonical ( N ,  V ,  E )  
ensemble can be outlined as follows [6]: 

1. Specify the macroscopic condition of a set of N particles in terms of their 
density p and specific internal energy E. 

2. Determine the simulation box size L consistent with the density p for the 
given number of particles N .  

3. Initialize the system by determining a vector of initial particle positions ro 
consistent with L, and a vector of velocities vo consistent with ro and the 
specified energy E. 

4. Integrate Newton's equations of motion: 

i= 1, ..., N v. - Fi(r) 
1 -- 

mi 

subject to the initial conditions r(0) = Yo, v(0) =yo, from the initial time 
t = 0 to a final time t = rp Here, the forces Fj are functions of the positions 
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5 .  

r and are given by: 

Fi(r) = -Orill, i = 1,.  . . ! N (2) 

where U is the overall potential energy of the system, usually appro- 
ximated as a sum of effective pairwise potentials: 

i<j 

where rij  represents the distance between particles i and j ,  and 6 is a set 
of potential parameters. 
The instantaneous system properties of interest (e.g., temperature, 
pressure) are functions cp(r, v) of the particle positions r and velocities v. 
For any such instantaneous property, the corresponding observable 
property p can be determined as follows: 

The integral in Eq. (4) is evaluated over a final period of length T of the 
entire time horizon tf . The choice of 7 is such as to allow the system to 
reach equilibrium over the initial period of length t f -  T (the equilibration 
period). 

The molecular dynamics algorithm as described above can be viewed as 
the computation of a function of the form: 

Here q denotes the vector of macroscopic input quantities, the values of 
which are specified (e.g., p, E ) ,  6 is a vector of microscopic parameters (e.g., 
the Lennard-Jones potential constants E ,  0) and p denotes one or more 
macroscopic properties (e.g., temperature, pressure, diffusion coefficients 
etc.) that are obtained by the molecular dynamics computation. 

Since the molecular dynamics computation involves the solution of an 
initial value problem, the above function is, in principle, well-defined pro- 
vided the same deterministic procedure for generating the initial condition 
of the system, and the same time horizon tf  and the equilibration period T 

are always used. 
It is interesting to ask whether the mapping (5) possesses other 

mathematical properties, such as continuity and differentiability. From a 
practical point of view, such properties would be highly desirable if, for 



MOLECULAR DYNAMICS I 24 1 

instance, the function ( 5 )  is to be embedded within higher level computa- 
tions (e.g. ,  for designing chemical processes or new materials exhibiting 
certain desirable properties), or if it is somehow to be inverted (e.g. ,  in order 
to estimate values of the parameters I9 from a set of experimental values qLkl, 
pLkl, k = 1,2, . . . , N E ) .  In many of these applications, it is important to be 
able to compute not only the values of p for given values of q and 19, but also 
the values of the partial derivatives dp/dq and ap/aI9 - assuming, of course, 
that these derivatives exist. 

Consider the solution of x ( t )  of a set of ordinary differential equations 
dxjdt =f(x, a)  subject to initial conditions x(0)  = xo(a), where t denotes the 
independent variable (“time”) and a is a set of parameters. Then, the values 
of variables x at some final time t,-are a function X of the parameters a, i.e., 

4 t f )  = X ( a >  ( 6 )  

Moreover, if A,,.) and xo(.) are continuous and differentiable functions 
of their arguments, X (a) is a continuous and differentiable function of a. 
In fact, the values of the partial derivatives ax/& can be evaluated using 
standard techniques from variational calculus [7]. 

However, in the case of molecular dynamics, the differentiability of 
mapping (5) is affected by the occurrence of a large number of disconti- 
nuities. These are caused by two different aspects of the conventional 
implementation of the molecular dynamics technique. We consider these 
below. 

3. DISCONTINUITIES IN MOLECULAR DYNAMICS 
CALCULATIONS 

The concept of periodic partitioning of the spatial domain under 
consideration is central to most molecular dynamics computations used to 
study physical systems by considering only a relatively small number, N ,  of 
particles placed in a (usually cubic) reference box of size L. In such cases, the 
reference box is replicated infinitely in all three spatial directions of interest 
(as shown in Fig. l), so that every particle in this box has its exact image in 
the surrounding boxes, moving at the same velocity and experiencing the 
same forces as the original particle. One great advantage of the periodicity 
assumption is that surface effects, which would otherwise be very large for 
small number of particles, are avoided [8]. 

The periodic partitioning of the domain is reflected in most conventional 
molecular dynamics simulations through the implementations of periodic 
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Referenc 
Box 

FIGURE 1 Periodic domain partitioning. 

boundary conditions and the minimum image convention. As discussed 
below, these introduce a large number of discontinuities in molecular 
dynamics computations. 

3.1. Discontinuities in Particle Positions 

The system of differential equations (1) is subject to periodic boundary con- 
ditions [9]. Thus, whenever a particle reaches a face of the reference box and 
is moving outwards, it is instantaneously transposed to the corresponding 
position on the opposite face, moving inwards with the same velocity vector. 
In practical terms, the aim of these conditions is to maintain a constant 
number N of particles within the reference box. However, they also introduce 
discontinuities in the positions of the N particles under consideration. 

3.2. Discontinuities in Interparticle Potential 
and its Derivatives 

The calculation of interparticle forces -V,U in Eq. (2) in a system that is 
subject to periodic boundary conditions should, in principle, take account of 
interactions of each particle in the reference box with the images of all the 
particles in all boxes in the system. However, in order to limit the amount of 
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required computation, a minimum image convention [ 101 is often introduced, 
according to which a particle i interacts with the single image of each other 
particlej that is nearest to it. 

The minimum image convention reduces the computational cost of 
molecular dynamics by limiting the total number of interparticle interac- 
tions that needs to be considered to N(N-1)/2.  It also preserves the 
continuity of the interparticle potential energy. However, it gives rise to a 
discontinuity in the force exerted on a particle i by a particle j .  The dis- 
continuity occurs at the point at which the identity of the image of j that is 
nearest to i changes. This happens when the particles are at a distance 
L/2 apart (as measured along any one of the coordinate axes) and moving 
away from each other (cf. Fig. 2). 

As a result of this discontinuity, the force instantaneously changes sign 
and, in most cases (unless particle i happens to be on the straight line 
between the two images of j involved in this discontinuity), direction. Of 
course, this change is completely fictitious: in reality, the force exerted on 
particle i is a continuous function of time. In order to mitigate this effect, the 
size L of the box must be chosen to be large enough for the force between 
two particles at a distance L/2  apart to be practically zero. 

For short-range potentials, the number of interactions that needs to be 
considered is often further reduced by employing a spherical potential 
cutoff, i.e., by setting the pair potential to zero at some cutoff distance rc, 
where r, 5 L/2 (for consistency with the minimum image convention): 

FIGURE 2 Minimum image convention. 
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In molecular dynamics calculations, the discontinuity in the truncated 
potential leads to a Dirac delta function in the interparticle force, which 
introduces instability in the equations of motion and difficulties with energy 
conservation [ 1 1,2]. It is, therefore, common to introduce a truncated and 
shifted potential which vanishes at the cutoff radius: 

The above form of potential still exhibits a discontinuity in aU/dr (and 
hence in the interparticle force) at rc. The discontinuity in the force can 
be removed by using a shifted force potential [12], obtained by shifting the 
force (rather than the potential) between the particle pairs: 

The modified force defined by Eq. (9) is continuous at r = r c ;  the step 
discontinuity has then been shifted to the next higher derivative of the 
potential ( i e . ,  a 2 U / a r 2  at r = rc). If required, the corresponding pair 
potential U’ can be obtained by integrating the above expression for dU’/dr 
over r .  

We note that neither the shifted potential (8) nor the shifted force 
potential (9) correspond to the original potential model U(r); the thermo- 
dynamic properties for the original potential are normally obtained through 
simple perturbation schemes [12,13]. 

The properties obtained by simulation based on the truncated, pertur- 
bation-corrected shifted and shifted force potential need to be further 
corrected for the long-range tail of the potential for r > rc. This is normally 
done by assuming that the pair correlation function of homogeneous fluids 
is equal to unity for r > r,, which, however, may lead to an overestimation of 
properties such as pressure and can lead to large errors in calculations of 
phase equilibria [13,14]. On the other hand, the minimum image conven- 
tion is not radially truncated and this form of correction cannot be applied 
to it. 

In summary, all of the above computational devices introduce artificial 
discontinuities (see Tab. I). A key characteristic of the modified molecular 
dynamics framework described in the following section is that it removes all 
these discontinuities. 
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TABLE I Continuitv imolications of common modifications of interoarticle ootentials 

Continuity Continuity Continuity 
in potential in force in force derivative 

Minimum image convention J X X 

Shifted potential J X X 
Shifted force potential J J X 

Potential truncation X X X 

4. MODIFIED MOLECULAR DYNAMICS FRAMEWORK 

In this section, we develop an alternative framework for molecular dyna- 
mics which eliminates the discontinuities inherent in the conventional simu- 
lation techniques. In particular, we shall demonstrate that the definition 
of appropriate force functions that exhibit certain spatial continuity and 
periodicity properties obviates the need for both the periodic boundary 
conditions and the force approximation schemes in molecular dynamics. 

Consider a system of N identical particles whose pairwise interactions 
are described by a continuous and differentiable potential function U(r). In 
general, the force exerted on particle i by particle j ( j #  i) is given by the 
gradient of the potential, -Vr,U(r). If we define the interparticle distance 
rij  as: 

(10) 
2 2 2 r . .  rJ = - J(xi  - xj) + (Yi - Y j )  + (zi - zj> 

then the force exerted on particle i by a particle j in the x-direction is given 
by: 

(11) 

Now, let us consider the combined force exerted on particle i by all images 
of particle i, as well as by particles j ( j #  i) and all their images in an 
infinitely replicated system: 
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where we have defined the new interparticle distance rijkk'k" as: 

2 
rijkklkll 5 d ( x i  - xj - kL) + ( y i  - yj - k'L)2 + (zi - zj - k"L)2 (13) 

The second half of the right hand side of Eq. (12) represents the forces 
exerted on particle i by its images in the surrounding boxes. This term can 
be shown to be zero: 

-kL 

k= I (-kL)2 + (k /L)2  + (krtL)2 

By virtue of (13), 

= d ( - k L ) 2  + (k'L)2 + (k"L)2 = rii,-k,k',k" 

Therefore, the two summations within the square brackets in Eq. (14) cancel 
each other, and Eq. (12) simplifies to: 

If we define the normalized coordinate distance components as: 
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and the normalized distance Rqkktkti as: 

then Eq. (1 5) becomes: 

This can be written as: 

where the mod$ed force function 3'(.) is defined as: 

Similarly, we can show that the total forces exerted on particle i in the y 
and z directions can be written as: 

where the modified force functions F(.) and P(.) are defined as: 



248 J. STEFANOVIC AND c. c. PANTELIDES 

The main implication of Eqs. (19), (22) and (23) is that the infinite set of 
particles and the consequently infinite set of pairwise interactions can be 
represented exactly by a finite set of N ( N -  1)/2 interactions provided one 
adopts the modijied force functions given by Eqs. (20), (24) and (25) to 
describe the forces between two particles at a normalized distance ( X ,  Y,  Z) 
apart, instead of their conventional counterparts: 

FX(X,  Y ,  Z )  = - 
LRooo aR ROOO 

Moreover, just like their conventional counterpart, 
functions are well-defined functions of X ,  Y and 2 

(26) 

(27) 

(28) 

the modified force 
provided the triple 

infinite summations appearing on the right hand sides of Eqs. (20), (24) and 
(25) converge to a finite result. This is clearly not the case if X ,  Y, 2 all take 
integer values: if X = k,, Y = ky and Z = k, where k,, ky and k, are given 
integers, then Rk,,k,,k, = 0 (cf. Eq. (21)). Now, for all physically realistic 
potential functions V ( . ) ,  both the potential energy U(R) and the force 
aU/aR tend to infinity as R -+ 0; consequently, the term for k = k,, k' = ky 
and K' = k, in each of the summations in Eqs. (20), (24) and (25) also goes 
to infinity. Since all other terms of these summations continue to be finite, 
the overall result is a singularity in the force components FX,  F y  and F'. 
In physical terms, this singularity is simply caused by one of the particles 
spatially overlapping with the image of a second particle situated k,, ky and 
k,  boxes away in the x, y and z directions respectively. This corresponds 
to the case of two particles overlapping in space, which is physically 
impossible. 

On the other hand, the triple sums on the right hand sides of (20), (24), 
(25)  converge' for all values of X, Y, 2 that are not all integer, provided 
aU/aR is of order R - S  for some s 2 2, i.e., the conventional force decays 

'This is a consequence of Properties I1 and I11 (cf: Sections 4.2 and 4.3) and the fact that the 
sum EL:, C;p"=, (l/(k2 + KZ +I?')) is bounded. 
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faster than 1/R2 with distance R. Thus, the domain of definition of the modi- 
fied force function is: 

D = { (X, Y, 2) 1 (x, Y ,  Z) E R3\ NI3'} (29) 

where N[31 is the set of all integer triplets. Moreover, these functions are 
continuous and infinitely differentiable over this domain. 

As functions varying over 3-dimensional spaces are rather difficult to 
visualize, we illustrate the above ideas for the case of a 1-dimensional 
Lennard- Jones potential. In this case, the force acting on particle i is given 
by the following expression: 

The above can be expressed more conveniently by normalizing the 
interparticle distances via division by L, and using sums involving only 
non-negative k terms: 

1 1 ] + 4 8 ( - l ) " E  [ 1 
( ( ( x i - x j ) / ~ ) - k ) ' ~  L13 k=O (1 - ( (x i -x j ) /L ) -k )13  

#i 

which can then be written as: 

[ p y x . . )  - p31(1 -x..)I - - 24 [pi(X..) - p ( 1  - 
e L7 r/ 

j =  1 
Zi 

(32) 

Here [["'(s) represents the generalized Riemann (or Hunvitz) zeta function 
[I51 of order n defined as: 

1 +m 
p ( s )  = c-- 

k=O (k  + s)" (33) 
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7. 5-1012 

5 * 1OI2 

2.5~10'~ 

0 

-2.5~10'~ 

-5 * 10l2 

-7.5*1012 

x 
f4 

which is a well-defined function for all n > 1. The modified force function 
between two particles at a relative distance X apart is then given by: 

" I ' . .  

I 

/ 
I 

0 
0 

I 
I 0 ,  

I / 
0 + L-\ + ' + d * Y  - ' 

' 

' 

' 

r 

which is illustrated graphically in Figure 3. The singularities in this function 
at all integer values of X are clearly visible. On the other hand, the function 
is continuous and differentiable everywhere else - including the point X =  0.5 
(i.e., an interparticle distance of 0.515) unlike the force computed by the 
minimum image convention which exhibits a discontinuity at this point. 
Finally, we note that unlike conventional force functions, this function 
does not tend to zero as the interparticle distance tends to & 00; instead, 
it exhibits a natural periodicity. The physical reason for this behavior is 
simple: if particles i a n d j  are at a distance of, say, 25.1L apart, then there is 
an image of j at a distance 0.1 L from i;2 consequently, the combined force 

/ 
0 

/ 
0 

0 
0 

/ 

X 

FIGURE 3 1-dimensional interparticle force function (L = 1). 

2As well as several other images at distances shorter than 25.1L on either side of i. 
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exerted on i by j and all its images is still substantial. Moreover, it is 
immaterial which of the particles is considered to be the "real" j and which 
the "images" of this j .  

We now proceed to prove formally a number of properties of the modified 
force functions defined by Eqs. (20), (24), and (25). 

4.1. Property I: Invariance Under Integral Shifts 

S x ( X  - k,, Y - ky,Z - k,) = F ( X ,  Y , Z ) ,  V k,, ky,  k, E Z ( 3 5 )  

Proof From the definition (20): 

Rk+k, ,k~+k, ,k~~+k,  = d ( X  - k - k,)2 + ( Y  - k' - ky)2 + ( Z  - k" - kZ)2  ( 3 7 )  

By defining the shifted summation indices: 

k = k + k ,  ( 3 8 )  

..I 
k = k' + ky (39) 

we can rewrite (36)  as: 

F ( X  - k,, Y - ky,Z - k,) 

= F ( X ,  Y , Z )  (41) 

The main implication of Property I is that the force function F ( X ,  Y , Z )  
is naturally periodic in the X ,  Y and 2 directions with a period of 1. There is, 
therefore, no need for explicitly enforced periodicity conditions designed to 
keep particles i and j within the reference box. In other words, the particles 
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may be allowed to move freely in space, leaving the reference box within 
which they were originally positioned. Moreover, the effective force exerted 
between two particles is not a monotonically decreasing function of their 
distance as the latter goes to infinity. The physical reason for this is that, 
even if particle j is arbitrarily far away from i, there is still an image of j 
within distance not exceeding L/2 from i. 

4.2. Property 11: Computation Over a Limited Domain 

where the operator @ ( X )  is defined as: 

qx) = x - 1x1 (43) 

where 1x1 is the largest integer number that does not exceed X .  

Proof This property is a direct consequence of Property I since LXJ , 1 Yl 

The main implication of Property I1 is that, to compute P ( X ,  Y , Z )  for 
any X ,  Y and Z ,  it is sufficient to be able to compute the function Fx(X, Y ,  Z )  
efficiently over the limited domain XE [0, I], Y E  [0, 11, ZE [0, l].3 

and LZ] are all integers. 

4.3. Property 111: Further Reduction of the Computational Domain 

FX( 1 - x, Y , Z )  = - F ( X ,  Y , Z )  (44) 

F ( X ,  1 - Y , Z )  = F ( X ,  Y , Z )  (45) 

FX(X, Y ,  1 - Z )  = F ( X ,  Y ,  Z )  (46) 

Proof Using the definition of the modified force function (20) and the 
following shifted summation indices: 

(47) 
..I ..I' 

k = 1 - k;  k = k'; k 3 k" 

3Excluding the eight points where X ,  Y and Z are all integer, at which the function Fx is 
singular. 
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we can show that Fx( 1 - X ,  Y , Z )  is given by: 

F"(1 - X , Y , Z )  

Similarly, by defining the following shifted summation indices: 
- 1  ,. N 

k E k ;  k E 1 - k ' ;  k Ek" 

we can show that F ( X ,  1 - Y , Z )  is given by: 

F ( X ,  1 - Y , Z )  

and the same can be shown for F x ( X ,  Y ,  1 - Z ) .  

Property 111, in conjunction with Properties I and 11, implies that the 
domain over which the function F " ( X ,  Y ,  Z )  needs to be evaluated can now 
be further reduced to XE [0,0.5], Y E  [0,0.5], 2 E [0, 0.5].4 For instance, 

0.2), where we have invoked successively Properties I1 (Eq. (42)) and I11 
(Eqs. (44) and (45)). In part I11 of this series of papers, we will exploit this 
property to develop an efficient scheme for computation of the modified 
force functions using Hermitian cubic interpolation on an adaptive grid over 
a finite spatial domain [5]. 

Properties 1-111 can also be shown to hold for F(.) and F'(.). In 
addition to the properties that Fx( . ) ,  P( . )  and F(.) have on their own, we 
can also prove some symmetry relations between them, as shown below. 

F"(2.9, -3.4,0.2) = Fx(0.9,0.6, 0.2) = -3"(0.1,0.6,0.2) = -F"(O.l, 0.4, 

4.4. Property IV: Symmetry Relations Between Fx(*), P o )  and Fzc)  

F " ( X ,  Y ,  Z )  = F ( X ,  z ,  Y )  (51) 

= F Y ( Y , X , Z )  (52) 

4Excluding the point X =  Y = Z = O  at which the function F* is singular. 
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= 3'(2, Y , X )  (54) 

= F ' ( Z , X ,  Y )  ( 5 5 )  

Proof By the definition (20), 

Equations (53) and (55) can be proven in an analogous manner, showing 
that similar properties hold for FY and F'. Overall, the value of the force 
in any one of the three coordinates remains unchanged if the interparticle 
distances in the other two coordinates are transposed. 

Also, from the definition of P( . )  (Eq. (24)), we can write: 

which proves Eq. (52) above. Equation (54) can be proved in a manner 
analogous to Eq. (52). 

The main practical implication of these relations is that, if an efficient 
procedure is available for the computation of Y x ( . ) ,  it can also be used for 
the computation of .Fy( . )  and F'(.). 

5. COMPARISON OF CONVENTIONAL AND MODIFIED 
MOLECULAR DYNAMICS FRAMEWORKS 

The previous section has introduced modified functions for the computation 
of pairwise interparticle forces for any continuous and differentiable 
function U(r)  used in the context of molecular dynamics under periodic 
domain partitioning. These forces have the desirable characteristic that, 
while considering explicitly only N ( N -  1)/2 interparticle interactions, they 
take account of an infinite number of such interactions, as is fundamentally 
consistent with the concept of periodic domain partitioning. Of course, it 
would appear from Eqs. (20), (24) and (25), that each of these functions 
would entail an infinite amount of computation. However, it should be 
remembered that Eqs.. (20), (24) and (25) are merely the definitions of the 
force functions and do not necessarily represent the most efficient way of 
computing them. We shall return to this point in part 111 of this paper [5].  
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The previous section has also proved certain mathematical properties of 
the modified force functions. It is interesting to note that these properties 
have strong similarities with some aspects of the conventional molecular 
dynamics technique. 

Conventional framework Modified framework 

Periodic boundary conditions + Naturally periodic force function 

Minimum image convention 
(Property I) 

-+ Force evaluation over a limited domain [0, O.5Ll3 
(Properties I1 and 111) 

In this section, we seek to elucidate the precise relation between the two 
frameworks through a more formal discussion and also some numerical 
results. 

5.1. The K-restricted Modified Molecular Dynamics 
Framework MOD-K 

We start by defining a K-restricted modified force function as follows: 

We note that, in the limit K +  00, Eq. (58 )  is equivalent to the modified force 
function (20): 

K-CC lim F ~ ~ ~ ( x ,  Y ,  Z )  = P(x, Y ,  Z) (59)  

We now consider a modified molecular dynamics framework with the 
following characteristics: 

1 .  We use the K-restricted modified force function to compute interparticle 
forces. 

2. We allow the particles to move freely in 3-dimensional space without 
enforcing any periodic boundary conditions. 

3. We employ the following properties of the modified force function to 
express the force between the two particles at any distance ( X ,  Y , Z )  in 
terms of a force computed in the domain [0, 0.513: 
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3"(1 - X , Y , Z )  = - F " ( X , Y , Z )  

P ( X ,  1 - r,z> = P ( X ,  Y , Z )  

P ( X ,  Y ,  1 - Z )  = P ( X ,  Y ,  Z )  

and similarly for 3y and 3'. 

We call this type of molecular dynamics computation the MOD-K 
framework. 

5.2. Equivalence Between the Conventional and MOD-0 
Molecular Dynamics Frameworks 

Consider now a system of two particles i and j as illustrated in Figure 4. 
Figure 4(a) represents the conventional molecular dynamics framework 
(CON framework) according to which, if either of the particles reaches a 
face of the central box moving outwards, then it is immediately transposed 
to the corresponding position on the opposite face (periodic boundary 
conditions). Moreover, if the distance between i and j in any coordinate 
y E { x , y ,  z} exceeds L/2 (i.e., Iyi-y,l > L/2), then the force exerted on i b y j  
in this coordinate is that which would be exerted on i by an image of j at a 
distance L - [yi- -yjl in the opposite direction (minimum image convention). 

Consider now the special case of the MOD-K framework with K =  0. In 
this case, the particles are still allowed to move freely in space (as shown in 
Fig. 4(b)), and the force between them is computed via Eq. (58) ,  which now 
simply becomes: 

after we have applied properties (60)-(63) to ensure that ( X ,  P,Z) E [0,0.5]'. 
We call this type of molecular dynamics computation the MOD-0 
framework. 

We now introduce certain definitions that will facilitate the comparison 
between the CON and MOD-0 frameworks. 

DEFINITION 1 Projection onto the central box. 
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0 1 

(a) Conventional 

(b) Modified 

FIGURE 4 Conventional vs. modified molecular dynamics frameworks. 

Given the position (x, y ,  z )  E R3 of a particle, the projected positions of 
the particle onto the central box is given by (II(x), 11( y ) ,  II(z)) where the 
projection operator 11( . ) is defined as: 
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DEFINITION 2 Conformance of particle configurations in the CON and 
MOD-0 frameworks. 

Let the positions of particles i and j in the CON framework be defined 
by (xk ,yk ,zk) ,  k = i , j  and their velocities by ( v $ , v i , v i ) ,  k = i , j .  Let the 
corresponding positions and velocities in the MOD-0 framework be denoted 
by, respectively, (&,jk,Zk) and (i;,i$,i$), k = i , j .  Then the two configu- 
rations are said to be conformant if the following conditions hold: 

For example, it can be verified that the configurations in Figures 4(a) and 
(b) are conformant: if we project the particles i a n d j  in Figure 4(b) onto the 
central box (i.e.,  the one whose bottom left corner is at the origin (0, 0)), we 
will find that the projections are at identical positions to those shown in 
Figure 4(a). Moreover, the velocities of i and j are the same in both Figures 
4(a) and (b). 

With the above definitions in place, it is possible to prove [16] the 
following theorems: 

THEOREM 1 If the particle conjigurations in the CON and MOD-0 frame- 
works are conformant, then the interparticle forces in the two frameworks 
are equal. 

THEOREM 2 Suppose that the particle conjigurations in the CON and MOD-0 
frameworks are conformant at time t = 0. Then, they will be conformant at all 
subsequent times t > 0. 

Theorem 2 is interesting in that it shows that conventional molecular 
dynamics simulations with periodic boundary conditions and the minimum 
image convention can, in fact, be derived from our modified molecular 
dynamics framework using the K-restricted force with K= 0. However, 
it is worth noting that the manipulations defined by Eqs. (60)-(63) for the 
computation of forces are not actually mathematically valid properties of 
the K-restricted modified force function defined by Eq. ( 5 8 )  for any finite K: 
their derivation in Sections 4.1 - 4.4 made use of the infinite nature of 
the summations in the force definition (20). Hence, leaving aside any 
computational issues, the theoretical basis of the conventional framework is 
not as sound as that of the modified framework. 
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5.3. Numerical Experiments 

Here we consider the molecular dynamics of a system of 256 argon atoms 
at a density of 39,960mol/m3 and energy of -3397J/mol. The standard 
Lennard- Jones potential, with E = 119.8 K and o= 3.405w, was used for 
these computations. The simulation was performed over a period of 22ps, 
and the averaging of system properties was carried out during the second 
half of the run. A Verlet leap-frog integration method 1171 with a fixed time 
step of 2 fs was used for the solution of the equations of motion. The energy 
of the system was conserved within f 2 x A typical set of results 
obtained is shown in Table 11. 

As expected from the theoretical analysis of Section 5.2, the MOD-0 
framework yields results that are identical to those of CON. 

It is also interesting to assess the effect of the system size on the 
calculation of the system properties. Table I11 indicates that the MOD-10 
framework with 256 particles can achieve the same quality of results as the 
conventional framework with 10976 particles. In fact, results of the correct 
order of magnitude are also obtained by the MOD-10 framework even 
with 108 particles; this is certainly not the case with the conventional ap- 
proach. Of course, these observations are of rather theoretical interest: 
the computations of the K-restricted modified force function using the 
expression given by Eq. (58) for K =  10 involves the evaluation and 
summation of 9261( = (2 x 10+ 1)3) terms as opposed to the single term in 
the conventional force function (cf. Eq. (26)). Therefore, assuming that the 
complexity of molecular dynamics computations increases proportionally 
to the square of the number of particles in the system, it would then be fairer 
to compare the MOD-10 framework with a conventional one involving 
about 100 (E  &%l) times more particles. We will return to address 
these concerns in part I11 of this paper [5].  

Table 111 also lists the difference between the CON and MOD-K 
predictions for various properties of interest. We note that this difference 

TABLE I1 Simulation results in the modified framework 

Svsrern groperties: U (Jlrnol) P (MPa) 

CON framework 
MOD-0 framework 
MOD-I framework 
MOD-2 framework 
MOD-3 framework 
MOD-4 framework 
MOD-5 framework 
MOD-I0 framework 

- 5553.0 
- 5553.0 
-5616.1 
- 5600.3 
-5611.7 
-5611.4 
- 5617.9 
- 5606.3 

172.8 
172.8 
177.9 
176.7 
177.6 
177.6 
178.1 
177.2 

351.8 
351.8 
356.7 
362.1 
360.0 
360.1 
358.5 
359.8 



TABLE 111 Comparison of effects of system size in the conventional and modified frameworks 

lJ (JlmoO T(K) P(MPa) 

N LL'Q CON MOD-10 Difference CON MOD-1 0 Difference CON MOD-10 Difference ~ ~~ ~ ~ ~ ~~~~~~~ ~~ 

256 22 - 5553.0 - 5606.3 - 53.3 172.8 171.2 4.4 351.8 359.8 8.0 
108 16 - 5499.5 - 5634.7 - 135.2 168.5 179.4 10.9 333.1 353.4 19.7 
32 11 - 5259.8 - 5922.3 - 662.5 149.2 202.5 53.3 255.7 291.9 36.2 
10976 71 - 561 3.0 177.6 359.0 
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decreases with increasing number of particles and, consequently, increasing 
box size L. This is to be expected: as L becomes larger, the contributions to 
the force function (58) of interactions between particles that are in dzferent 
boxes becomes less significant. Hence, the central term (i.e., the one 
corresponding to k = k’ = k” = 0) becomes the dominant one, and Eq. (58) 
effectively reduces to the conventional force function. 

The above observations suggest an alternative view of the force 
modifications introduced in this paper as a theoretically rigorous and 
consistent “long-range correction” [6]  applied to the conventional molecular 
dynamics framework. 

6. FLEXIBLE MOLECULES 

So far in this paper, we have assumed that a single functional form can be 
used to describe the forces exerted on a particle i by a particle j and all the 
images of j ,  this force function being derived from a single interparticle 
potential function U which solely depends on an interparticle distance r.  
These assumptions can be justified for systems involving monoatomic 
molecules of a single species. However, for molecules involving multiple 
atoms, the existence of chemical bonds may imply that the force exerted on 
a particle i by a particlej within the same molecule may be of a different 
nature to that exerted on i by an image ofj .  Moreover, if the system under 
consideration involves a mixture of different molecules and/or if the atoms 
in a molecule are not all identical, then the interactions between different 
atom pairs may be different. Here we extend the methodology developed 
in previous sections to consider mixtures of general flexible molecules, 
and illustrate the ideas presented on the example of the NERD force 
field [18]. 

Consider a set of N interacting particles. The nature of the interaction 
between two particles in the same molecule may be different to that between 
particles in different molecules. For example, as illustrated in Figure 5, such 
interactions may be ascribed to bond stretching, bending or torsion. We call 
these bonded interactions. 

Let the subset of particles in the system that are involved in bonded 
interactions with particle i be denoted by Bi. We note’ that Bi does not 
necessarily include all particles in the same molecule as particle i: some of these 
particles may be too far removed from i for bonding to exert any influence. 
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(a)Bond stretching (b) Bond bending 

(c) Bond torsion 

FIGURE 5 Different types of bonded interactions. 

The force exerted on particle i comprises three distinct contributions: 

1. The force exerted on i due to its bonded interactions with particles j E Bi 

2. The force exerted on i due to non-bonded interactions with all the images 

3. The force exerted on particle i due to non-bonded interactions with 

within the same molecule. 

of particles j E Bi. 

particles j @ Bi and all their images5 

This is expressed mathematically as: 

where the three terms on the right hand side correspond to the three 
contributions listed above. In particular, FB,7 is the force exerted on particle 
i in coordinate direction y E {x, y ,  z }  due to bonded interactions. The above 

'Although strictly speaking i$&, it is not necessary to account for the influence on i by its 
own images since these always cancel out (cf. Section 4). 
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equations makes use of the summation operator definition: 

where w(k, k’, k“) denotes any function of the indices k, k’, k”. 

6.1. Bonded Interaction Forces 

The force F;ly is a function of the position of i and the positions of all 
particles j E Bi. In general, it cannot be expressed as a sum of independent 
interactions between i and each of the particles j .  Moreover, the exact form 
of this force function may depend on the identity of i (e.g., its position 
within the molecule). 

The bonded interaction force also depends on the set of potential 
parameters dB. In principle, one could assume that there is a different set of 
such parameters for each particle i. However, more realistically, the bonded 
interactions experienced by all particles at identical positions in identical 
molecules will be the same. In fact, even wider generalizations are often 
made: for instance, the NERD force field (see Section 6.4) assumes that the 
bonded interactions experienced by all methylene and methyl groups in 
all linear alkane molecules can be described by a single set of potential 
parameters. In order to take the above consideration into account, we 
introduce the notion of a category T of bonded interactions. 

In general, a category r of bonded interactions is a collection of various 
forms of such interactions (e.g., stretching, bending, torsion) described by 
a set of parameters 29:. Each particle i in the system belongs to one such 
category, denoted by ri. The number of distinct categories r of bonded 
interactions in any particular system under consideration will usually be 
much smaller than the number of particles, N .  For instance, in the case of 
the NERD framework, there is just one category of interactions that 
adequately describes all linear alkane molecules. 

6.2. Non-bonded Interaction Forces 

The second type of force function appearing in Eq. (68) is the non-bonded 
force FNB. More specifically, F Y ” ( x i  - x j , y i  - y j ,  zi - z,) is the force 
exerted on particle i in coordinate direction y by another particle j due to 
non-bonded interactions. The subscripts i j  on FNB indicate the fact that the 
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form of the force function may depend on the type of particles i a n d j  under 
consideration. In particular, FP may be obtained from a potential energy 
function Uy describing non-bonded interactions between particles i and j :  

6.3. The Bond Correction Function 

If we compare the form of Eq. (68) for polyatomic molecules with that for 
monoatomic ones (cf. Eq. (15)), we can see that the two can be made more 
consistent if we rewrite Eq. (68) in the form: 

Here we have introduced the quantity AFB1’ defined as: 

Thus, AF;,? is the force exerted on particle i due to its bonded interactions 
with particles j E Bi reduced by the forces that particles j would have exerted 
on i, had they interacted in a non-bonded fashion with it. In other words, 
AF;,? can be viewed as a correction applied to the effective force exerted on 
particle i to take account of the effects of chemical bonding. 

The function q(.) appearing in (70) is essentially the modified force 
function (cf. Eqs. (20), (24), (25)) given by: 

Thus, the advantage of (70) over (68) is that the former is expressed in terms 
of force functions that possess all the theoretical properties proven in 
Section 4, which has important implications regarding the efficiency of their 
computation [5 ] .  
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6.4. The NERD Potential Framework 

To illustrate the ideas presented in this section, we consider the dynamics of 
systems of flexible molecules involving bond stretching, bending and torsion 
in addition to other non-bonded interactions. In particular, we examine the 
case of flexible alkane molecules interacting via the NERD force field [18]. 
The potential energy functions are given by the following expressions: 

Bond stretching potential 

(73) 
kd U s ( d )  = kb- ( d  - do)2 
2 

where kb is Boltzmann’s constant, kd is the bond stretching parameter, d is 
the distance between the two bonded particles, and do is the corresponding 
equilibrium bond length. 

Bond bending potential 

(74) 
uB(e) = kbz ke (e  - eo) 2 

where ke is the bond bending parameter, 6 is the angle formed by three 
successive atom sites, and 0, is the equilibrium covalent angle. 

Torsional potential 

UT(4) = kb(V0 + Vi(1 + C O S 4 )  + v2(1 - COS24) + v3(1 +COs34)) (75) 

where Vo, V,,  V2, V3 are the torsional interaction parameters and 4 is the 
torsional angle formed by four successive atoms. 

Non-bonded potential 
This is given by a standard Lennard- Jones potential of the form: 

U N B ( r )  = 4 k b & [ ( : ) 1 2 -  (5,1 
where E and 0 are the energy and distance parameters respectively. The 
parameters describing the interactions between unlike sites in different 
molecules are obtained using the Lorentz - Berthelot mixing rules. 

We start with the example of ethane (see Fig. 6(a)) where the only bonded 
interaction is that due to the bond stretching potential, Us. The non-bonded 
interactions UNB are described by the Lennard- Jones potential. 
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(a)  Ethane (b) Propane 

(c) Ethane and propane 

FIGURE 6 Interacting alkane molecules. 

Considering particle 1 in Figure 6(a), we identify that the set of particles 
with which it has bonded interactions is simply: 

The force on particle 1 due to bond stretching is given by: 
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where d I 2  is the distance between particles 1 and 2.  The bonding correction 
function (c$ Eq. (71)) is given by the difference of Eq. (78) and the 
corresponding non-bonded force: 

In the case of propane (see Fig. 6(b)), the bonded interactions are due 
both to the bond stretching potential, U s ,  and to the bond bending poten- 
tial, UB. Considering particle 1 (one of the methyl groups) in Figure 6(b), 
we identify the set of particles with which it has bonded interactions 
to be: 

The force exerted on particle 1 due to bonding interactions is given by: 

where we have defined: 

and the angle 6 is given by: 

Hence, the bonding correction function for particle 1 is given by: 
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Expressions for particle 3 are exactly symmetrical to those of particle 1, 
where the set of bonded particles is t33 = {1,2}. On the other hand, 
considering particle 2 (one of the methylene groups) in Figure 6(b), we 
identify the following: 

and, consequently: 

d23 - do 
(71 - 72)  - - 

d23 
= kbkd [ 

Figures 6(a) and (b) show the types of interactions involved in the 
simulation of pure component ethane and propane fluids respectively. The 
mixtures of these fluids also need to account for interactions between 
molecules of ethane and propane, as illustrated in Figure 6(c). 
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We note that, as far as bonded interactions are concerned, the forces 
exerted on the individual particles in the mixture are exactly the same as 
those exerted on them in the pure component cases. Thus, the bonding 
correction function for methyl groups in ethane and propane molecules is 
given by Eqs. (79) and (84) respectively. For methylene groups in propane 
molecules, the bonding correction function is still given by Eq. (87). As far 
as non-bonded interactions are concerned, the interactions between two 
groups in different molecules depend both on the nature of the two groups 
(i.e., methyl or methylene) and on that of the molecules (i.e.,  ethane and 
propane), which can be accounted for by applying suitable mixing rules 
(e.g. ,  Lorentz- Berthelot). 

Similar expressions can be derived [ 161 for butane and higher order 
alkanes that additionally exhibit torsional effects. 

7. CONCLUDING REMARKS 

The molecular dynamics framework presented in this paper takes account of 
interactions of each particle in a reference box with all the particles in all the 
boxes surrounding it. In this sense, it is similar to the Ewald summation 
technique [19] which has been used to deal with long-range (Coulomb) 
electrostatic interactions. In this case, the infinite summation of the force 
interactions is expressed as the sum of two rapidly converging series in real 
(direct) and reciprocal (Fourier) space form [20]. Here, we have considered 
general potential functions for non-bonded interactions, showing that it is 
possible to describe an infinitely replicated system in terms of a finite 
number of pairwise interactions, each involving modified interparticle force 
functions. 

The key point is that, given any two particles, the forces between 
them are well-defined, finite mathematical functions that, just like the 
forces in conventional molecular dynamics, depend only on the relative 
particle positions. However, unlike the case of conventional molecular 
dynamics, these force functions are continuous and differentiable for all 
interparticle distances except for a set of values corresponding to physi- 
cally impossible situations ( ie . ,  the two particles essentially occupying 
the same position in space). Finally, the force functions are naturally 
periodic. Therefore, the force between two particles is identical to that 
between any two images of these particles; thus, there is no need to 
confine the N particles under consideration to remain within any given 
spatial boundary via the imposition of artificial periodic boundary 
conditions. 
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The modified force functions (20), (24) and (25) are more complex than 
their conventional counterparts which effectively correspond to just the 
central term (i.e., for k = k’ = k” = 0) of the triple summations in these 
expressions. However, the properties of the modified force functions imply 
that efficient and accurate evaluation procedures are necessary only over a 
cube with side length 0.5, irrespective of the actual values that their 
arguments X, Y , Z  may take during a simulation. We can exploit this to 
develop an efficient scheme for computation of the modified force functions 
using Hermitian cubic interpolation on an adaptive grid over a finite spatial 
domain, as described in part I11 of this paper [ 5 ] .  

By introducing the notion of a category of bonded interactions and 
suitable non-bonded parameter mixing rules, we can describe flexible 
molecules and their interactions in a rigorous and compact manner. It has 
been shown that only a minor modification to the modified molecular 
dynamics framework introduced in Section 4 is required to account for the 
existence of chemical bonds; this is achieved by applying a bond correction 
function to the modified force function 3. 

The Newtonian equations of motion (Eq. (1)) making use of these 
modified force functions define a continuous system of ordinary differential 
equations. It is now feasible to consider rigorous ways for the computation 
of the gradients of the mapping P ( q , d )  (cf. Eq. (5)) with respect to the 
variables q and the parameters 19. We present these formulations in part I1 
of this paper [4]. 
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