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Abstract 

Tools and techniques to analyze the dielectric properties of proteins are described. Microscopic dielectric properties are 
determined by a susceptibility tensor of order 3n, where n is the number of protein atoms. For perturbing charges not 
too close to the protein, the dielectric relaxation free energy is directly related to the dipole-dipole correlation matrix of 
the unperturbed protein, or equivalently to the covariance matrix of its atomic displacements. These are straightforward to 
obtain from existing molecular dynamics packages such as CHARMM or X-PLOR. 

Macroscopic dielectric properties can be derived from the dipolar fluctuations of the protein, by idealizing the protein 
as one or more spherical media. The dipolar fluctuations are again directly related to the covariance matrix of the atomic 
displacements. An interesting consequence is that the quasiharmonic approximation, which by definition exactly reproduces 
this covariance matrix, gives the protein dielectric constant exactly. 

Finally a technique is reviewed to obtain normal or quasinormal modes of vibration of symmetric protein assemblies. 
Using elementary group theory, and eliminating the high-frequency modes of vibration of each monomer, the limiting step 
in terms of memory and computation is finding the normal modes of a single monomer, with the other monomers held 
fixed. This technique was used to study the dielectric properties of the Tobacco Mosaic Virus protein disk. 
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1. Introduction 

Dielectric properties of  proteins play a crucial role 
in folding and stability, binding and recognition, as 
well as charge transfer and enzyme kinetics [ 1-3] .  
Theoretical tools and computational techniques have 
been developed and tested for computing these prop- 
erties, using simple linear response theory to analyze 
molecular dynamics simulations of  proteins. Macro- 
scopic and microscopic properties have been analyzed, 
including the protein dielectric constant and its spa- 
tial variation within the protein [4] ,  the microscopic 

susceptibility in response to perturbing test charges, 
deviations from the linear response (i.e. dielectric sat- 
uration), and the separate contributions of  electronic 
and dipolar relaxation to the dielectric response [ 2,3 ]. 

We briefly review the theory that underlies the cal- 
culation of protein dielectric properties, and the com- 
putational techniques that are used. The first section 
deals with microscopic dielectric properties. The sec- 
ond section deals with macroscopic dielectric proper- 
ties, primarily the protein dielectric constant and its 
spatial variation. The third section reviews a technique 
to calculate the harmonic or quasiharmonic modes of  

0010-4655/95/$09.50 (~) 1995 Elsevier Science B.V. All rights reserved 
SSDI 00 1 0-4655 (95)00054-2 



292 T. Simonson, D. Perahia / Computer Physics Communications 91 (1995) 291-303 

vibration of symmetric assemblies of proteins, which 
in turn give access to some of the dielectric properties 
of these assemblies. 

If the perturbing charge density p is distant from 
the protein atoms, then the susceptibility operator has 
the simple form [2] 

2. Microscopic dielectric properties 

2.1. Theory 

Consider a set of nondiffusive charges such as a 
folded protein in vacuo, and a fixed perturbing charge 
density p. The perturbing Hamiltonian Vtot contains a 
'static' term gstatic and a relaxation term Vrlx, 

Vtot = ~tatic + Vrlx. ( 1 )  

The first term is associated with introducing the per- 
turbation while constraining the system to retain its 
unperturbed structure. The second term is associated 
with the structural relaxation after the constraints are 
removed. The perturbation free energy also has a static 
and a relaxation component, 

Atot = Astatic -k- Arlx. (2) 

If  p is sufficiently small, we are in the linear response 
regime, and V~lx is proportional to the perturbing field, 

V~,x = -z-f. (3) 

f denotes the 3n-vector, 

_f = ( f l ,  f 2  . . . . .  f,___z)' (4) 

where f i  is the perturbing field on atom i, and n is 
the number of atoms in the system; x is a 3n-vector, 
and measures the structural relaxation of the system. 
This relaxation can be characterized by a generalized 
susceptibility operator _a, 

(x) =o~f .  (5) 

The brackets represent an ensemble average. Thus 

(l/rtx) = - ' f a f .  (6) 

The raised t indicates vector transposition. Using a 
simple charging process it can be shown [3] that 

It  
Arlx = - - 7  f ~ f "  (7) 

1 
= ~ M  (8) 

where k is Boltzmann's constant, T is the temperature, 
and M is the dipole-dipole correlation matrix of the 
unperturbed protein, 

Uia,jfl = qiqj (~u7 ~u~)o. (9 )  

The brackets ( )0 indicate an ensemble average in the 
absence of the perturbation, qi is the partial charge on 
atom i, and 6u~ is its instantaneous displacement from 
its average position along the Cartesian axis a (= x, 
y or z).  A sufficient condition for (8) to hold is that 
the minimum distance d between p and the protein 
is large with respect to the fluctuations of the protein 
atoms. Corrections to (8) are of the second order with 
respect to 

(6u_~)o/d 2. 

We refer to this limiting situation as the distant-p limit. 
In this limit, the structural relaxation x is simply 

2 = qiSu__,.. (10) 

Thus x is the vector of instantaneous dipoles on each 
atom. When f is applied, the average of these instan- 
taneous dipoles becomes non-zero and proportional to 

f .  
In the general case, p may be close to the protein, 

or even located on protein atoms. Then the analytical 
approximation (8) to the susceptibility operator no 
longer holds. The expression of the relaxation free 
energy is given by [2] 

arlx = - k T  In[ (exp( -Vto t /kT))o]  - (Vtot)0. ( 1 1 ) 

This is a general expression, valid beyond the linear re- 
sponse regime. Equating this to (7) gives a functional 
relationship between p and a. This relationship can be 
inverted to give the complete susceptibility operator. 
In practice, one can consider a perturbing point charge 
q, and consider 3n distinct locations of this charge. 
For each location one obtains an equation relating Vtot 
to the 3n components of a.  The resulting system of 
equations is linear and can be inverted to obtain 2" 
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A simpler, partial, characterization of the dielectric 
properties is obtained by considering a single perturb- 
ing point charge q, and calculating the relaxation free 
energy as a function of its position. Dividing the re- 
laxation free energy by the square of the perturbing 
field, gives a scalar susceptibility ot(~/), 

Arlx = - ~ a ( ~ ) f  2. (12) 

The scalar susceptibility is a function of the posi- 
tion ~ of the perturbing charge. It represents a one- 
dimensional contraction of the full susceptibility op- 
erator. 

The relaxation free energy can always be expanded 
with respect to Vtot, giving 

Ar, x = - ~1-~ ({Vt2ot}O - (Vtot}o 2) + O( [ Vtot/kT]3). 
(13) 

Terms of order 3 and higher correspond to a nonlinear 
response of the system, and therefore measure dielec- 
tric saturation. 

Two particular situations are of interest. In the first, 
the 'protein' is actually a dielectric continuum, with 
fixed partial charges imbedded at discrete positions, 
surrounded by a vacuum. When p is introduced, the 
protein atoms remain fixed, but the dielectric relax- 
ation is expressed by rearrangement of induced vol- 
ume and surface charge. The relaxation free energy 
can be calculated by considering two processes: in the 
first, the perturbing charge distribution p is introduced 
into the system, giving a free energy change AAtot(P). 
In the second, the same perturbing charge distribu- 
tion, but with the opposite sign, is introduced into the 
(unperturbed) system, giving a free energy change 
A A t o t ( - - p ) .  The relaxation free energy is simply 

I Arlx = ~ (AAtot(P) + AAtot(-p)).  (14) 

This can be rewritten in terms of the induced charge at 
the protein surface. If ~Orin d is the shift in the induced 
surface charge due to the perturbation, then 

Arlx = 1 / ~OVindV(p)d2r. (15) 

The integral is over the protein surface, and V(p) is 
the perturbing potential at the surface element d2r l 

I Ref. 121 gave the relaxation energy (p. 871), but with the 
incorrect sign due to a typographical error. 

In the second particular situation, the protein atoms 
are fixed, but bear point polarizabilities, which could 
represent the electronic polarizability of the system 
[2]. When p is introduced, dielectric relaxation cor- 
responds to a change in the induced dipoles on each 
atom. To calculate the relaxation free energy, we use 
the same two processes as in the previous paragraph. 
The initial energy is 

UO = ~ qiqj I rij - "~ ~ mi " Ep' (16) 

where m i is the induced dipole on atom i, and E~? is 
the field of the protein partial charges at atom i. In the 
presence of +p the energy is 

U+ = Z qiqj 1 
i<j rij 2 Z(-~ii + am---i)" E[' 

+ Z  qiVi(p) - Z (-~-i+~3mi) " f i '  (17) 
i i 

where ~m i is the shift in the induced dipole on atom i 
due to p, and V/(p) is the perturbing potential at atom 
i. In the presence of - p  the energy is 

U_ = Z qiqj _ 1 Z (mi - ~mi) " E~ 
i<j rij 2 i 

- - Z  qiVi(p) + Z (-~-i --ami)" fi" (18) 
i i 

The relaxation energy is given by 

2(Vrlx) =U+ +U_ -2U0 = - 2  Z 6_~ / "f~. (19) 
i 

From Eqs. (6),(7),  the relaxation free energy is 
(V~lx}/2. Thus we have finally 

Ar,x = -½ Z ami "fi" (20) 
i 

In this case, the quantity x conjugate to the perturbing 
field (Eq. (3)) is just the list of induced dipole shifts, 
{6mi}. 

If the protein atoms are mobile, and simultaneously 
carry a point polarizability, then electronic polariza- 
tion and dipolar polarization (i.e. polarization due to 
atomic motions) coexist. A coupling then arises be- 
tween the two. An analytical expression is available 
for the coupling energy [2] in the form of a series 
expansion with respect to the dipole-dipole tensor of 
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the system. Because this tensor is small, the coupling 
represents a corrective effect compared to the main 
electronic and dipolar contributions. 

The well-known quasiharmonic approximation to 
the full protein dynamics views the protein as vibrating 
along effective, 'quasinormal', modes [5,6]. These 
modes are determined by requiring that they repro- 
duce, collectively, the exact covariance matrix o- of 
atomic displacements of the system. They are obtained 
in practice by diagonalizing an effective Hessian ma- 
trix H, given by 

H = kT~r -~ . (21) 

o" is usually taken from a molecular dynamics simu- 
lation. A correlary of this definition is that the quasi- 
normal modes reproduce the exact dipole-dipole cor- 
relation matrix M of the system. In the distant-p limit 
defined above, this matrix gives the generalized sus- 
ceptibility of the system. This means that when con- 
sidering perturbing charges at a sufficient distance d 
from the protein, such that 

Vi, ( 8 g } / d  2 << 1, 

the quasiharmonic approximation gives an essentially 
exact  description of the protein's dielectric response. 

Within the quasiharmonic approximation, the ele- 
ments of the atomic covariance matrix take the form 
of a sum over the normal modes, 

(Su'Tau~)=2kr~_7_~,-f28u'7(k).Su~(k), (22) 
k 

where 8u'~'(k) is the a component (= x, y or z) cor- 
responding to atom i in the normalized displacement 
vector of normal mode k, and oak is the frequency 
of the mode. Thus the susceptibility operator, in the 
distant-p limit, also takes the form of a sum over the 
normal modes. 

2.2. Computa t ional  procedures  

2.2.1. Suscept ibi l i t ies  f r o m  molecu lar  dynamics  

s imulat ions  
It is straightforward to calculate the scalar suscep- 

tibility from a molecular dynamics simulation. The 
distant-p approximation is obtained directly from the 
dipole-dipole correlation matrix (Eq. (8) ) ,  while the 
exact susceptibility is obtained from the time-series of 

the perturbation energy (Eq. (11)) .  Fig. 1 shows a 
script file for the program X-PLOR that reads a trajec- 
tory file and writes out the latter time series. 

The susceptibilities can be also decomposed over 
the quasinormal modes of the system (Eq. (22)) .  
These can be obtained directly from the programs 
CHARMM [ 7 ] or X-PLOR [ 8 ]. 

2.2.2. Case o f  a macroscopic  med ium 

In the particular case where the 'protein' is con- 
sidered to be a macroscopic continuum with embed- 
ded point charges, the relaxation free energies can be 
obtained in two different ways. The shift in surface 
charge induced by the perturbation p can be calculated 
directly, or the free energies for introducing and sub- 
tracting p can be calculated and averaged (Eq. (14) ). 
We consider each of these methods below. 

The shift in surface charge due to p is given by [9] 

( 1 - c K ) S z =  cf .  (23) 

This equation assumes the protein surface has been 
broken down into n small, discrete elements. 80- is 
an n-vector giving the surface charge shift at each 
element; f is an n-vector giving the perturbing field 
at each element; / is the unit tensor of order n, and 
the elements of K are 

gi j  = 8 S j ( r  i - r j )  • ~ i / ( ~  - r-j )3" (24) 

8Sj is the surface area of element j ,  rj  its position, 
a n d  n i is a unit vector normal to surface element i. Fi- 
nally c is a constant, c = ( 1 - e)/27r( 1 + e),  where 
e is the protein dielectric constant. To obtain the sur- 
face charge shift, we must invert (23). Two methods 
can be used: direct matrix inversion [9], or a self- 
consistent iterative method [2]. The iterative method 
is equivalent to summing the series ~---0 (cK) n, which 
converges if the eigenvalues of cK are strictly smaller 
than 1 in magnitude. While this holds for some cases, 
it does not hold for large molecules with modest num- 
bers of surface elements (Simonson & Perahia, un- 
published results). For a sphere of radius R, for ex- 
ample, assuming the N surface elements all have the 
same area, the elements of K are just 

Kij = 2~rcR/Nri j ,  (25) 
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remarks Interaction between a test charge on the Calpha of 
remarks residue 1 with the rest of the protein. 

{read structural information, including atom types, charges, 
and covalent connectivity} 

structure @<name of structure file> end 

{read empirical energy parameters and specify electrostatic cutoff) 
parameters 

@<name of parameter file 
nbonds 

cdie eps=l, el4fac=l, shift 
cutnb=12, ctonnb i0. ctofnb 11.5 

end 
end 

(set charge of Calpha of residue 1 to one) 
vector do (charge=l.) (name ca and resid I) 

{only compute interactions between Calpha 1 and the rest of protein} 
constraints 
interaction=(name ca and resid i) (all) 
weights * 0. elec i. end 
end 

{initialize loop for reading trajectory) 
evaluate ($M=I) 
evaluate ($status="READ") 

{loop over trajectory frames) 
while ($status = "READ") loop main ! .......... 

if ($M=I) then {read ist trajecroy frame} 
read dynamics 

ascii=true 
input=<name of trajectory file> 
begin=100 skip=100 stop=120000 

end 
evaluate ($M=$M+I) 
else {read other trajectory frames) 
read dynamics next end 
end if 

energy end {calculate perturbation energy for current frame) 

display $ELEC {write out perturbation energy) 

end loop main ! ............................. 

stop 

~g.l.X-PLORscfiptfile ~ extmctthetime ~desofpe~u~ationene~iesfrom a~ajecto~,~rape~u~ing ~stchargeononeoftheCa's. 

ri) being the distance between surface elements i and j. 
The largest matrix elements are between neighboring 
surface elements, such that rii+l ' ~  21rR/N 1/2, and 

Kii+l ~ c / N  I/2. (26)  

Thus when N increases, the largest matrix elements 
scale as 1 /N 1/2. This may not be sufficient to ensure 
convergence in all cases. 

O O  n An analytical continuation of the series ~ , = 0  (cK) 

can be used to extend convergence to cases where the 
eigenvalues of  cK are larger than 1 in absolute mag- 
nitude. Consider first the numerical case: let g(x)  = 
1/(  1 - x) ,  where x is a real number. The usual series 
form of  g can be generalized: given a real number a, 

x + a  
< 1 ==> g(x)  = 

l + a  

1 , ~ - - , ( x + a ' ~ "  
l + a  / " 

(27) 
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Choosing a large positive a, we can shift the conver- 
gence of the series form towards negative x; choosing 
a large negative a, we can shift the convergence to- 
wards positive x. The same idea can be applied to the 
matrix series above. We simply add to K the unit ten- 
s o r / ,  multiplied by a real number a. Since K and / 
commute, we have the same series expansion as in the 
scalar case, 

l Z ( c K +  al_)"l(1 + a)",  ( l - c K ) - I  - l + a  = - 

n=O 
(28) 

as long as the eigenvalues of c K +  a l  are smaller than 
] 1 + a I in absolute magnitude. Choosing a by trial 
and error, we can apply the iterative method to systems 
that would not otherwise converge. 

The question of whether a suitable choice of a can 
always be made remains open. The constraint that the 
relaxation free energy in response to p is always neg- 
ative, however, constrains the structure of the matrix 
1 - cK. It appears that there is a universal upper bound 
for the eigenvalues of this matrix. This would imply 
that a suitable value of a can be found in all cases, 
and the iterative method can always be used. 

The second approach to calculating susceptibilities 
for a macroscopic system is to calculate the free en- 
ergies for introducing and subtracting p (Eq. (14)) .  
This can be done using the finite difference method 
to solve the Poisson equation, as implemented in pro- 
grams such as Delphi [ 10]. A complicated protocol 
must be used in order to subtract out numerically the 
lattice energy associated with distributing the perturb- 
ing charge density p over a three-dimensional grid 
[ 11 ]. This protocol is illustrated in Fig. 2. 

\ ©  
I Aana 

I .Ann a 

Fig. 2. Thermodynamic cycle to calculate the relax- 
ation free energy for adding a single perturbing charge 
to a macroscopic system. The relaxation free energy is 
A = ½(AA(+q)+AA(-q))  = ½(Aw(+q)+Aw(-q)-2Aw(O)) .  
The left-hand medium has the same dielectric constant as the pro- 
tein, ~ = ep. The right-hand medium has a different dielectric 
constant, corresponding to a surrounding vacuum or solvent. The 
left-to-right transfer processes can be calculated with a finite dif- 
ference Poisson-Boltzmann package [ 10]. The vertical processes 
on the left cancel out. 

2.2.3. Atomic point  polarizabilities and induced 

dipoles 
The shift in induced dipoles due to the perturbing 

charge density p is given by [2] 

( I  - a,,t T)  6m = aa___t.t f , (29) 

where a~..__.tt is the diagonal matrix of order 3n formed 

by the list of atomic polarizabilities (each repeated 3 
times), T is the dipole-dipole matrix of the system, 
f is the 3n-vector giving the perturbing field at each 
atom, and 6m is the list of induced dipole shifts at each 
atom. As in the previous section, this equation can be 

solved by direct matrix inversion, or by an iterative 
procedure, which is equivalent to summing the ma- 

c~ i trix ser ies  Zi=o(Olat T )  . This sum converges if a~t T 

has no eigenvalues greater than 1 in absolute magni- 
tude. For the moderate point polarizabilities present 
in proteins, this appears to be usually the case. This 
is because the elements of T are of order 1/r3j, and 
decrease rapidly with atomic separations. If  interac- 
tions between bonded atoms are included in T, how- 
ever, the series will sometimes diverge [2]. Damping 
of the dipole-dipole interaction at short range can be 
used to ensure convergence [ 12]. 
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3. Macroscopic  dielectric properties 

The macroscopic dielectric properties are deter- 
mined by the protein dielectric constant. For an 
isotropic medium this is a number; for an anisotropic 
medium it is a 3x3 matrix. For an inhomogeneous 
medium, the dielectric constant may vary throughout 
the system. The definition of a dielectric constant 
assumes that a large portion of the protein responds 
as a homogeneous medium. Thus spatial variation 
of the dielectric constant is only meaningful on a 
scale that is large compared to the atom-atom sep- 
aration. We calculate the protein dielectric constant 
from Fr6hlich-Kirkwood theory [ 13], by idealizing 
the protein as a homogeneous spherical medium. We 
summarize below the general theory derived in [2] 
and [4]. 

3.1. Theory 

Consider a system made of n concentric spheri- 
cal regions, of dielectric constants el, e2 . . . . .  en. The 
outer radius of region i is ri; the outermost region n is 
infinite. 

Following Fr6hlich [13], we can derive an expres- 
sion for the dielectric constant of the innermost region 
(1) by introducing an applied field E, uniform far 
from the center of symmetry. A uniform cavity field 
F then reigns in region (1).  F is obtained from ele- 
mentary electrostatics [ 13], and has the form [ 14] 

F =  f ( e l , e 2  . . . . .  e , )E .  (30) 

The average polarization (AM) in region ( 1 ) is along 
E, and is given by 

el - 1 el - 1 
(AM)/V= 4 - - - - ~ F -  47r f ( e l , e 2  . . . . .  en)EE_, 

(31) 

where V is the volume of region ( 1 ). 
We now view region ( 1 ) microscopically. The cav- 

ity field in region (1) is now F = f (  1, e2 . . . . .  en)E. 
The microscopic degrees of freedom {X} give rise to 
an instantaneous dipole moment AM(X). The inter- 
action with E adds a term AM(X) • F to the potential 
energy. The Boltzmann average of AM(X), for small 
E, turns out to be 

(AM) = (AM2)0 
3kT f ( l , e 2  . . . . .  En)E. (32) 

( )0 indicates a Boltzmann average with E = 0. In all 
that follows we drop the subscript '0' for simplicity. 
From (31-32) we obtain finally 

(AM 2) = f ( e l , e 2  . . . . .  e n ) ( e l -  1) 
(33) 

kTr 3 f (  1, e2 . . . . .  en) 

If the inner region ( 1 ) contains permanent charges, 
the previous derivation is only slightly modified. AM 
has simply to be interpreted as the deviation of the 
dipole moment from its mean. 

A slightly more general derivation allows for the 
possibility that region ( 1 ) may have electronic polar- 
izability, which can be treated as an underlying con- 
tinuum. A fluctuation formula is obtained that gives 
the dielectric constant as a function of the fluctuations 
of only the low frequency (non-electronic) degrees of 
freedom [ 4 ]. 

(AM 2) is determined by the correlations between 
all pairs i, j of protein atoms, 

(AM2) = Z qiqJ(c~ui "¢~Uj) (34) 
i,j 

(qi is the partial charge of atom i, 6u~. its instantaneous 
displacement from its mean position). It follows that 
the quasiharmonic approximation, which preserves 
the atomic covariance matrix, exactly reproduces 
the mean square dipole moment (AM2). This means 
that the mean square dipole moment can be rigor- 
ously decomposed into a sum over the quasinormal 
modes, and the contributions of individual modes or 
frequency ranges rigorously defined and calculated. 

3.2. Practical calculation of  the dielectric constant 

The first ingredient required in the calculation is 
the analytical expression of the cavity field in region 
(1), or equivalently, the function f (Eq. (30)) .  Its 
calculation is as follows. The potential in region i, in 
spherical coordinates, has the form [ 13] 

~)i = - (  A i / r  3 + Bir) cos 0, (35)  

where Ai and Bi are constants determined by the 
boundary conditions. The boundary conditions in- 
elude the continuity of Eo = - ( 1 / r ) 8 ~ / O 0 ,  the 
continuity of Dr = eOqJ/Or, and the conditions Al = 0 
and B, = E. Together these give a linear system of 
n - 2 equations, which can be written in matrix form, 
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Table I 
Boundary equations for n spherical media in a uniform field 

1 2 3 4 . . .  2i-3 2i-2 2i-1 2i 2i+1 2i+2 . . .  2n-5 2n-4 2n-3 2n-2 

Bl A2 . .. Bi-i  Ai Bi Ai+l Bi+l Ai+2 
0 0 .. 

X B2 A3 
v o o 

L I I - I / r  3 - I  0 

L 2 El 2et/r~ --e2 0 

• . .  Bn -2  A n - I  B n - I  An 

0 0 E enE 

0 0 0 0 

0 0 0 0 

L2i_ I 0 0 0 0 . . .  0 l/r~ 1 -1/r3i -1  0 . . .  0 0 0 0 
L2i 0 0 0 0 . . .  0 - 2 e i / r  3 ei 2ei+l/r 3 -fii+l 0 . , .  0 0 0 0 

L2,,_ 3 0 0 0 0 
__L2n_ 2 0 0 0 0 

0 l i r a _  1 1 - - I / r~_ ,  
0 - -2 , . - , / ,L l  , ._, 2,./,~_, 

L i is the ith line of the matrix L. 

L___XX= E, (36) 

where 

X =  ( B I , A 2 , B 2 , A 3 , B 3  . . . . .  A n - I , B n - 1 , A , ) ,  (37) 

V =  ( 0 , 0  . . . . .  O , E ,  e n E ) ,  (38) 

and L is an (n - 2 )  x ( n - 2 )  matrix listed in Table 1. 
The formal matrix inversion of L is easily done with a 
symbolic mathematics program such as Mathematica 
[15]. 

The cavity field in region ( 1 ) is uniform, and equal 
to Bt. The function f (Eq. (30))  is just 

f(~l, e 2  . . . . .  en)  = B I / E  = XI (E  = 1). (39) 

In the case n = 3, for example, we obtain 

f ( • l ,  e2, e3) = 
9~2~3 

(40) 
(~l+2~2)(~2+2~3)_2(rl/r2)3(~3_~2)(~l_~2) " 

Having determined f ,  we make an assumption 
about the protein radius rl, which could be chosen 
such that the sphere of radius rl has the same radius 
of gyration as the actual protein. Fig. 3 illustrates 
the spherical idealization of a protein, cytochrome c. 
There are n = 3 dielectric regions in this particular ap- 
plication: the protein forms region 1, a shell of water 
forms region 2, the surrounding vacuum forms region 

3. Finally, the mean square dipole moment (M 2) is 
estimated from a molecular dynamics simulation, and 
the protein dielectric constant el is calculated from 
Eq. (33). Some results are summarized in Table 2. 
Fig. 4 is a Mathematica script to analyze the sensitiv- 
ity of the calculated dielectric constant to the exact 
value assumed for the protein radius r~. 

4. N o r m a l  m o d e s  o f  s y m m e t r i c  p r o t e i n  a s s e m b l i e s  

Because the quasiharmonic approximation gives ex- 
act dielectric properties when perturbing charges are 
not too close to the protein (distant-p limit), methods 
to compute protein normal modes are of interest here. 
One method was specifically developed to treat large 
symmetric protein assemblies [ 17]. This method is 
summarized below. 

Consider a symmetric assembly of asymmetric pro- 
tein monomers. Let G be the symmetry group of the 
multimer. Let nc be the order of G, which is also equal 
to the number of monomers. Let N be the number of 
degrees of freedom of one monomer. By symmetry, 
the normal mode calculation of the multimer can be 
reduced from a problem of order n o N  to a series of 
problems of order at most 2N, using elementary group 
theory [ 18,19]. 

L e t  { T p ; p  = 1,pc} be the irreducible representa- 
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£3 

protocol surroundings a treatment of  charged groups b el 

normal modes c vacuum 2.9 
normal modes c vacuum scaled by 0.3 2.5 
molecular dynamics a vacuum 3.5 
molecular dynamics d vacuum scaled by 0.3 2.8 
molecular dynamics e water 25 
molecular dynamics e water omitted 3.6 
experiment f protein powder 3.6 

aRegion 2. 
~'Treatment of  charged groups (such as carboxylate and ammonium groups) in the analysis only. No special treatment is used in the 
simulations. 
':Ref. [21. 
'lRef. 13], 120 ps of  MD. 
eRef. 14], 1000 ps of  MD with 1400 explicit waters. 
l'Ref. [ 161. 
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Table 2 
Dielectric constant of  cytochrome c from simulations 

Fig. 3. Spherical idealization of cytochrome c (region 1) and 
~rrounding water (region 2) as two concentric dielectric media 
surrounded by a vacuum (region 3). 

tions of G of dimension st,. For g E G, let f f  (g) be the 
(complex) matrix representing g in the representation 
T v. Let {u_~; k = 1, N} be an orthonormal basis of the 
configuration space of monomer 1. A basis of sym- 
metrical coordinates is obtained by symmetrizing the 
~ .  Denoting gi the symmetry element that transforms 
monomer 1 into monomer i, the symmetrical coordi- 
nate _q~S corresponds to a displacement of monomer i 
of the form 

P * (41) Ei = rss (g i )  giUk. 

Let H be the mass-weighted Hessian matrix of the 
potential energy function of the multimer, expressed 
in the basis of Cartesian displacements. Let H C/j) be 
the block in H corresponding to the interaction of 
monomers i and j.  Let ~ be the Hessian matrix in the 
basis of symmetric coordinates q~S. We find [ 17] 

nG 

wps,~ro- n a  U--k f~-~rss (gJ)  = _ _  t p (l j) g j } ~  Ss~6p=. 
' ~k,x Sp j=l - -  

(42) 

In the basis of symmetrical coordinates, the Hes- 
sian matrix is thus reduced to a series of blocks of 
order N. If the irreducible representation p is not one- 
dimensional, each line in the matrix _rp contributes one 
block, giving sl + s2 + . . .  + Spc = na in all. The s t, 
blocks corresponding to _r p are all identical, so that 
there is an Sp-fold degeneracy of the spectrum for each 
irreducible representation Tp. 

If the irreducible representation Tp is complex, then 
the complex, symmetric, subspaces corresponding to 
Tp and Tp must be combined to give a physically 
meaningful symmetric subspace of double the dimen- 
sion. The basis vectors qpS and ~-kaPs* are replaced by 
their real and imaginary parts, and the complex blocks 
7~ m'ps and 7~ ps'ps*, of order N, combine to form a real 
block of order 2N. 

In the quasiharmonic approximation, the effective 
Hessian matrix is related to the covariance matrix by 
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kT : 0.59 ; e3 : i. ; 

parameters : { e2 -> 80, r2 -> 

f[ol ,02_,e3_] :: 

9 02 03 / ((01+202) (2o3+02) - 

lhs = 332 m2 / (kT rl^3) ; 

rhs : f[01,02,03] (el-l) / f[l,e2,e3]; 

lhsN = lhs /. parameters ; 

rhsN = rhs /. parameters ; 

rule : Solve[ lhsN =: rhsN, el] ; 

01 = 01 /. rule[Ill] 

0ut[1671= 

- 1 . 0 6 2 9 5  109  + 5 9 4 5 7 . 1  r l  3 + 1 .  r l  6 

6.64344 106 - 13695.4 rl 3 + i. rl 6 

24., m2 -> 130.} ; 

2(rllr2)^3 (03-e2)(01-02)); 

Plot[el, {ri,14,18), AxesLabel -> {"rl 

el 

35 

30 

25 

rl (A) 
15 16 17 8 

( A ) " , " o l " }  ] ;  

Fig. 4. Mathematica [ 15] file to analyze the sensitivity of the protein dielectric constant to the choice of protein radius. Numerical values 
are typical of cytochrome c. 

= k T H  - ~  . (43) 

In symmetric coordinates, the Hessian ~ is made up of 
diagonal blocks ~t~pp of order N. Separating out the six 
external degrees of freedom, the remaining blocks are 
positive definite at the energy minimum, therefore in- 
vertible. The inverse ~__-1 has the same block-diagonal 
structure as 7/. It follows that the transformation (42) 

that reduces H to block-diagonal form reduces H - l ,  
and therefore o-, to the same block-diagonal form. In 
other words the method presented in the preceding 
paragraphs can be applied without modification to the 
quasiharmonic approximation. 

To reduce the computing burden, we seek to elim- 

inate the high-frequency modes of the system at an 
early stage of the calculation. The natural way to do 
this is to eliminate the high-frequency modes of the 
individual monomers. At this point, the basis {uk; k = 
1, N} is arbitrary. Let us now take the u k to be the 
N eigenvectors of the block H ~11~ of the Hessian H. 
This means that ~ is a normal mode of monomer 1, 
with its neighboring monomers artificially held rigid. 
Let us discard the high-frequency modes from this 
set, retaining the n lowest-frequency modes { ~ ;  k = 
1, n}. Constructing the corresponding symmetric co- 
ordinates, we reduce H to a series of diagonal blocks 
of order n or 2n. For large systems such as proteins, 



T. Simonson, D. Perahia / Computer Physics 301 

only the lowest fraction of the spectrum need be re- 
tained, so that n << N. Then the calculation is essen- 
tially reduced to the initial determination of the U k, a 
single problem of order N. 

The sequence of operations to obtain the normal 
modes of the multimer is the following: 

(i) Calculate the Hessian matrix of monomer 1 (or 
the covariance matrix in the quasiharmonic ap- 
proach) in the presence of its rigid neighbors, 
H(~I). 

(ii) Diagonalize this matrix, retaining only the n 
lowest-frequency modes, {u_t; k = 1, n}; 

(iii) Calculate the other blocks of the Hessian (or 
the covariance matrix in the quasiharmonic ap- 
proach), coupling monomer 1 to its neighbors, 
/ - t ( l , J )  ; 

(iv) Contract and symmetrize these blocks by apply- 
ing Eq. (42), to obtain small blocks of order 
< 2n, ['l"lPS'ps't" 
- -  x , t.k,t¢ / ,  

(v) Diagonalize these small blocks to obtain the nor- 
mal modes of the multimer, expressed in sym- 
metric coordinates; 

(vi) Convert these modes back to Cartesian coordi- 
nates. 

Each block H (l'j) contributes separately to ~(ps,ps) 
(Eq. (42)), so that each one can be calculated and pro- 
cessed separately, without the need to store more than 
one in computer memory at any time. Since ~(,s,ps) 
is typically much smaller than H ~ l,j), the memory re- 
quirements are essentially the same as for a normal 
mode calculation of a single monomer. C.p.u. require- 
ments are very small for any normal mode calcula- 
tion (<5 minutes for a TMV protein monomer on a 
Fujitsu VP200 supercomputer using highly vectorized 
subroutines). 

Communications 91 (1995) 291-303 

Table 3 
Irreducible representations of C17 

4.1. Computational procedures: application to the 
disk of TMV protein 

In the case of the disk of TMV protein, the sym- 
metry group is C17- The complex, one-dimensional, 
irreducible representations are listed in Table 3. The 
real, physically irreducible, representations are 

T1,T2 + TI7, T3 -F TI6, T4 + T15 . . . . .  T9 q" TIO. 

The complex symmetrical coordinate ~ has the form 

g I R R 2 R 3 . . .  R 16 

1 1 1 1 . . .  1 
T2 1 ~ ~2 ~3 . . .  ~16 

1 ~2  ~ 4  ~ 6  . . .  m32 

T4 1 ~3 ~6 ~9 . . .  ~48 

TI7 1 ~16 ~32 ~ . . .  ~ 1 6 x  16 

R represents the rotation of 2~r/17 around the axis of the disk, 
and to = exp(2ilr/17).  

Uk 
w(P-1)*Ru--k I 

-q~ = °)2(P-l)*R2u-k / " (44) 

! 
O)16(p- I)*RI6u_~ J 

R represents the rotation of 2~'/17 around the axis of 
the disk, and to = exp(2i~'/17). The real symmetric 
coordinates have the form 

1 

1 
R~ = 7~(_q~ -_q~*). (45) 

Routines to implement these equations for groups of 
the form Cn were included in the program CHARMM 
[7]. 

Fig. 5 shows the scalar susceptibilities of the TMV 
protein disk, in response to a test charge placed on a 
C,~, as a function of the residue number (reproduced 
from [ 17] ). The susceptibilities are calculated from 
the normal modes of the disk. The individual contri- 
butions of the nine symmetric subspaces are shown 
separately. 

5. Conclusion 

A variety of tools have been described for the anal- 
ysis of dielectric properties of proteins. The general 
theory of microscopic dielectric properties of proteins 
[2,3] has been reviewed. This theory is concerned 
with calculating relaxation free energies and general- 
ized susceptibilities of proteins in response to perturb- 
ing charges. Practical calculations are usually based 
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A-" 

tial variation of the dielectric constant going from the 
center of the protein to the outside can also be ana- 
lyzed. 

Finally a technique to calculate normal or quasinor- 
mal modes of symmetric protein assemblies was re- 
viewed. Since the quasiharmonic approximation pre- 
serves the atom-atom covariance matrix, it also pre- 
serves the susceptibility matrix in the distant-p limit, 
as well as the macroscopic dielectric constant. Thus 
an exact decomposition of these quantities over the 
quasinormal modes can be made, indicating the con- 
tributions of different frequency ranges to the dielec- 
tric response. 

Time-dependent dielectric properties were not 
treated here; they will be discussed elsewhere. 
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Fig. 5. TMV protein disk susceptibilities in symmetric subspaces 
[ 171. A test charge is placed successively on each Ca of subunit 
1 and the scalar susceptibility computed from the normal modes. 
Each panel corresponds to one symmetric subspace. 

on molecular dynamics simulations. Susceptibilities 
are obtained numerically either from the atom-atom 
covariance matrix (distant-p limit) or from the time 
series of perturbing energies. Two special models are 
also of interest: in the first the protein is treated as a 
continuum with embedded point charges; in the sec- 
ond, the protein atoms are fixed, but bear point polar- 
izabilities. In the continuum case, the relaxation free 
energy is related to the shift in induced surface charge 
due to the perturbation. Practical calculations can use 
either a self-consistent iterative procedure, or direct 
matrix inversion to obtain the surface charge shift. Al- 
ternatively programs can be used that solve the Pois- 
son equation with a finite-difference method. A simple 
thermodynamic cycle permits one to eliminate the lat- 
tice energy associated with distributing p over a grid. 

The macroscopic dielectric constant can be obtained 
from the protein dipolar fluctuations, if one idealizes 
the protein as a homogeneous spherical medium. Spa- 

References 

[ 1 ] A. Warshel and S. Russell, Calculations of electrostatic 
effects in biological systems and in solutions, Q. Rev. 
Biophys. 17 (1984) 283-342. 

[2] T. Simonson, D. Perahia and G. Bricogne, lntramolecular 
dielectric screening in proteins, J. Mol. Biol. 218 (1991) 
859-886. 

[3] T. Simonson, D. Perahia and A.T. Briinger, Microscopic 
theory of the dielectric properties of proteins, Biophys. J. 
59 (1991) 670-90. 

[4] T. Simonson and D. Perahia, Internal and interfacial 
dielectric properties of cytochrome c from molecular 
dynamics simulations in aqueous solution, Proc. Natl. Acad. 
Sci. USA 92 (1995) 1082-1086. 

[5] M. Karplus and J. Kushick, Method for estimating the 
configurational entropy of macromolecules, Macromolecules 
14 (1981) 325-332. 

[6] R. Levy, M. Karplus, J. Kushick and D. Perahia, 
Evaluation of the configurational entropy for proteins: 
application to molecular dynamics simulations of an a-helix, 
Macromolecules 17 (1984) 1370-1374. 

[7] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. 
Swaminathan and M. Karplus, Charmm: a program 
for macromolecular energy, minimization and molecular 
dynamics calculations, J. Comp. Chem. 4 (1983) 187-217. 

[8] A.T. BrOnger, X-plor version 3.1, A System for X-ray 
crystallography and NMR (Yale Univ. Press, New Haven, 
1992). 



7", Simo~on, D. Perahia / Computer Physics Communications 91 (1995) 291-303 303 

[91 R. Zauhar and R. Morgan, A new method for computing 
the macromolecular electric potential, J. Molec. Biol. 186 
(1985) 815. 

1101 K. Sharp, DelPhi, Version 3.0, Columbia University, New 
York (1988). 

I I 1 ] M. Gilson, K. Sharp and B. Honig, Calculating electrostatic 
interactions in bio-molecules: method and error assessment, 
J. Comp. Chem. 9 (1988) 327-335. 

121 B. Thole, Molecular polarizabilities calculated with a 
modified dipole interaction, Chem. Phys. 59 (1981) 341- 
350. 

[131 Fr6hlich, H., Theory of Dielectrics (Clarendon Press, 
Oxford, 1949). 

[ 141 J. Powles, R. Fowler and W. Evans, The dielectric constant 
of a polar liquid by the simulation of liquid drops, Chem. 

Phys. Lett. 107 (1984) 280-283. 
[ 15] S. Wolfram, Mathematica. A system for doing mathematics 

by computer. (Addison Wesley, New York, 1991 ). 
[ 16] S. Bone and R. Pethig, Dielectric studies of protein hydration 

and hydration-induced flexibility, J. Mol. Biol. 181 (1985) 
323-326. 

[ 17] T. Simonson and D. Perahia, Normal modes of symmetric 
protein assemblies, application to the tobacco mosaic virus 
protein disk, Biophys. J. 61 (1992) 410--427. 

[ 18 ] E. Wilson, J. Decius and E Cross, Molecular vibrations. The 
theory of infrared and Raman vibrational spectra (McGraw- 
Hill, New York, 1955). 

[ 19] G. Lyubarskii, The application of group theory in physics 
(Pergamon Press, New York, 1960). 


