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ABSTRACT
Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct
the free energy landscape ∆G(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations,
it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical
averages employed in PCA as well as the relation between the equilibrium free energy landscape ∆G(x) and the energy landscapes ∆G(x)
obtained from nonequilibrium MD. As an example for a nonequilibrium method, “targeted MD” is considered which employs a moving
distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function
P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA
on nonequilibrium data. While the resulting distribution P(x) and energy ∆G ∝ lnP will not reflect the equilibrium state of the system, the
nonequilibrium energy landscape ∆G(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the
unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways.
Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should
account for a naturally occurring motion between two well-defined end-states of the system.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5089636

I. INTRODUCTION
The calculation of the free energy landscape of a molecu-

lar system along some reaction coordinate x represents a central
task of in silico modeling. Employing unbiased molecular dynamics
(MD) simulations, the free energy landscape ∆G(x) can be directly
calculated from the probability distribution P(x) via

β∆G(x) = − ln[P(x)/P(x0)], (1)

where β = 1/kBT is the inverse temperature and x0 refers to some
reference state. Given a suitable choice of x, the free energy land-
scape reveals the relevant regions of low energy (corresponding to
metastable states) as well as the barriers (accounting for transi-
tion states) between these regions and may therefore visualize the
pathways of a biomolecular process.1–3 To identify optimal reac-
tion coordinates x = (x1, . . ., xd), often referred to as collective
variables xi, various dimensionality reduction methods have been
developed,4–7 a popular example being principal component analysis
(PCA).8,9

Standard unbiased MD simulations become impractical if
the states are separated by high energy barriers such that tran-
sitions between them occur only rarely. To this end, a number
of enhanced sampling techniques10–21 have been proposed, includ-
ing, e.g., replica-exchange MD,14 conformational flooding,15 meta-
dynamics,17 and adaptive biasing force sampling.18 To enforce
rare transitions, in particular, one may employ some external
force to pull the molecule along some—usually one-dimensional—
coordinate s. Various versions of this nonequilibrium technique
exist, including simulations using moving harmonic restraints19

along s such as steered MD20,21 or constrained simulations22–24 such
as targeted MD (TMD) simulations,25–27 which employ moving dis-
tance constraints. While our study in principle applies to all these
methods, to be specific, we here focus on TMD.28

From these externally driven nonequilibrium simulations, the
free energy profile ∆G(s) can be calculated in various ways. In the
quasistatic limit of very slow pulling, we may perform equilibrium
calculations of the free energy for selected values of s. This is the
basis of thermodynamic integration, which calculates the free energy

J. Chem. Phys. 150, 204110 (2019); doi: 10.1063/1.5089636 150, 204110-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5089636
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5089636
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5089636&domain=aip.scitation.org&date_stamp=2019-May-28
https://doi.org/10.1063/1.5089636
https://orcid.org/0000-0001-7804-2604
https://orcid.org/0000-0003-1752-6175
https://orcid.org/0000-0002-3302-3044
mailto:stock@physik.uni-freiburg.de
https://doi.org/10.1063/1.5089636


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

difference ∆G(s) = G(s) − G(s0) via the potential of mean force29

∆G(s) = ∫
s

s0

ds′
dG
ds′

= ∫

s

s0

ds′⟨ fc(s′)⟩eq, (2)

where ⟨fc(s)⟩eq represents an equilibrium average of the pulling
force f c at point s. While representing a straightforward and well-
established approach to compute ∆G, thermodynamic integration is
in practice quite demanding because it typically requires numerous
and relatively long MD simulations to converge to equilibrium.

Alternatively, we may calculate the free energy directly from
the nonequilibrium pulling trajectories by employing Jarzynski’s
equality30

e−β∆G(s) = ⟨e−βW(s)⟩
neq

. (3)

Here, ⟨⋅⟩neq denotes an ensemble average over independent realiza-
tions of the pulling process starting from an equilibrium distribution
at s = s0 and

W(s) = ∫
s

s0

ds′ fc(s′) (4)

represents the work performed on the system by external pulling.
Since the pulling coordinate s represents the control parameter of a
constrained simulation, for TMD, Jarzynski’s identity directly yields
the free energy profile.31 Note that this equivalence does not hold
for restrained simulations, where the system is allowed to fluctuate
around the value of s and the free energy has to be recovered by
other means.32–34 Various ways to compute the exponential aver-
age in Jarzynski’s identity have been suggested,21,35–38 including a
“fast growth” implementation35 and a cumulant expansion21,35,38 of
Eq. (3)

∆G(s) = ⟨W(s)⟩neq −
β
2
⟨(W(s)−⟨W(s)⟩neq)

2
⟩
neq

, (5)

which approximates the dissipated energy by the variance of the
work.

Given an optimal choice of the pulling coordinate that is simi-
lar to the motion in the unbiased process, the one-dimensional free
energy profile ∆G(s) may already describe the biomolecular reac-
tion correctly and in desired detail. By constraining only a single
coordinate, however, the system is free to move in the remaining
degrees of freedom and may, e.g., sample important intermediate
states. For example, when we pull a ligand out of a protein binding
pocket, several unbinding pathways may occur, whose description
requires additional coordinates. Similar as in the case of unbiased
MD simulations, it is therefore desirable to employ some dimension-
ality reduction approach such as PCA in order to describe the energy
landscape along an appropriate reaction coordinate x. While PCA is
routinely applied to unbiased equilibrium MD simulations, the situ-
ation is less obvious for biased nonequilibrium techniques such as
TMD. This includes, e.g., the definition of the statistical averages
employed in the PCA as well as the relation of the free energy land-
scape obtained from equilibrium simulations and energy landscapes
obtained from nonequilibrium MD.

In this work, we consider the calculation of multidimensional
energy landscapes from TMD simulations. In particular, we demon-
strate the application and interpretation of PCA of nonequilibrium
data. Adopting decaalanine in vacuo as a well-established model

problem to test TMD,36,39–42 we compare and analyze unbiased MD
and TMD data.

II. THEORY AND METHODS
A. Free energy landscapes from constrained dynamics

In general, the probability distribution of a variable is obtained
by inserting a δ-function into the partition function. In the case of
unbiased MD simulations in the canonical ensemble, for example,
the probability distribution of reaction coordinate x used in Eq. (1)
is given by

P(x) = Q−1
eq ∫ dqdp e−βH(q,p) δ(x−x(q)) ≡ ⟨δ(x−x(q))⟩eq, (6)

where (q, p) denote the phase-space coordinates of the system’s
microstate, H represents its Hamiltonian, and Qeq = ∫dqdp e−βH (q ,p)

is its partition function.
In the case of TMD simulations, on the other hand, we com-

monly calculate the one-dimensional free energy profile ∆G(s) ∝ ln
P(s) along the pulling coordinate s. To derive an expression for the
reaction coordinate probability P(x) from TMD, we first consider
the quasistatic limit adopted in thermodynamic integration [Eq. (2)],
which conducts an equilibrium simulation for each value of s = s(q).
In direct analogy to Eq. (6), we obtain43,44

P(x, s) = Q−1
eq ∫ dqdp e−βH(q,p) δ(x−x(q))δ(s−s(q))

= P(s)P(x∣s) ≡ P(s)⟨δ(x−x(q∣s))⟩eq, (7)

where the conditional probability P(x|s) represents the distribution
of x for a given s. Likewise, x(q|s) represents the collective variable
x(q) restricted to a given value of s. Integration over s readily yields
the desired probability density of coordinate x

P(x) = ∫ ds P(x∣s)P(s) = ∫ ds P(x, s). (8)

By multiplying P(x|s) with the TMD weighting P(s), the distribu-
tion P(x) and associated free energy ∆G(x) ∝ ln P(x) represent the
correct equilibrium results.

The situation becomes more involved if we consider an explic-
itly time-dependent Hamiltonian H(q, p, t). In TMD simulations,
for example, s(t) = s0 + vct accounts for moving distance constraints,
with vc denoting the constant pulling velocity. In other words, the
pulling coordinate s∝ t directly corresponds to the time-dependent
control parameter in constrained TMD simulations. As a conse-
quence of the external driving, the resulting nonequilibrium phase-
space density will deviate from a Boltzmann equilibrium distribution
and Eq. (7) does not hold any more. Hence, we want to resort to a
nonequilibrium formulation, such as Jarzynski’s identity in Eq. (3).
In fact, Hummer and Szabo33,34 showed that Jarzynski’s formulation
can be extended to calculate equilibrium averages of any phase-space
function from a set of nonequilibrium trajectories.

To show this, we employ Jarzynski’s identity, ⟨e−βW(s)⟩neq

= e−β∆G(s) Eq.(1)
= P(s)/P(s0), and express the nonequilibrium
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average as an integral over all trajectories starting from Boltzmann-
weighted initial conditions (q0, p0, s0)

P(s)
P(s0)

= ⟨e−βW(s)⟩
neq

= Q−1
s0 ∫ dq0dp0 e−βH(q0 ,p0 ,s0)e−βW(s), (9)

where Qs0 = ∫dq0dp0 e−βH(q0 ,p0 ,s0). By inserting δ-functions in the
definition of P(s) [analogous to Eq. (6)] and the nonequilibrium
average, we obtain the joint probability

P(x, s)
P(s0)

= ⟨δ(x−x(q∣s)) e−βW(s)⟩
neq

, (10)

from which the reaction coordinate probability P(x) is obtained via
Eq. (8). In this way, the equilibrium free energy landscape

β∆G(x) = − ln

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫ ds⟨δ(x−x(q∣s)) e−βW(s)⟩
neq

∫ ds′ ⟨e−βW(s′)⟩neq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)

can be directly calculated from nonequilibrium TMD simulations.
The above derivation is readily generalized to obtain equilib-

rium averages of some phase-space function A via33,34,45

⟨A(q∣s)⟩eq
P(s)
P(s0)

= ⟨A(q∣s) e−βW(s)⟩
neq

, (12)

which leads to

⟨A⟩eq = ∫ ds P(s)⟨A(q∣s)⟩eq =
∫ ds ⟨A(q∣s) e−βW(s)⟩

neq

∫ ds′ ⟨e−βW(s′)⟩neq

, (13)

where the normalization factor P(s0) is obtained by integrating
Eq. (9) over s. While this formulation is in principle exact, its practi-
cal use depends on how well observable A is sampled by nonequi-
librium simulations along pulling coordinate s. In particular, this
includes the sampling of rare events that affect the estimation of P(s)
and ⟨A(q∣s)⟩eq.

Instead of reweighting the nonequilibrium data to obtain equi-
librium averages, it may be advantageous to focus on the nonequi-
librium distribution generated by the TMD simulations pulling in
the total range ∆s = smax − smin

P(x) =
1
∆s ∫

smax

smin

ds ⟨δ(x−x(q∣s))⟩neq , (14)

which provides equal weighting of all data points (in contrast to
the equilibrium probability density). This allows us to define the
corresponding “nonequilibrium energy landscape”

β∆G(x) = − ln[
1
∆s ∫

smax

smin

ds ⟨δ(x−x(q∣s))⟩neq]. (15)

To avoid confusion, we refrain to refer to ∆G as “nonequilibrium free
energy,” although this term is used in information theory.46

B. Principal component analysis
As explained in the Introduction, PCA is a popular method

to construct low-dimensional reaction coordinates x, which can be
used to represent the free energy landscape ∆G(x). While the pro-
cedure is straightforward to apply to equilibrium simulations, sev-
eral possibilities exist in the nonequilibrium case. To introduce the
basic idea, we first consider the case of an unbiased equilibrium MD
simulation with coordinates q = {qi} and the covariance matrix

σij = ⟨δqiδqj⟩eq, (16)

where δqi = qi−⟨qi⟩eq. PCA represents a linear transformation that
diagonalizes σ and thus removes the instantaneous linear correla-
tions among the variables. Ordering the eigenvalues of eigenvectors
eeq
k decreasingly, the first principal components

Veq
k = eeq

k ⋅ δq (17)

account for the directions of the largest variance of the data and are
therefore often used as reaction coordinates.6–9,47

We next consider TMD simulations in the quasistatic limit
[Eq. (2)], which conduct an equilibrium simulation for each value
of s. In obvious generalization of Eq. (16), we define an s-dependent
covariance matrix

σij(s) = ⟨δqi(s)δqj(s)⟩eq, (18)

where again δqi(s) = qi(s)−⟨qi⟩eq.48 Averaging over s results in

σij = ∫ ds P(s)σij(s). (19)

Assuming that the correct equilibrium weighting P(s) is used (and
that the constrained simulations are converged), this covariance
matrix is equivalent to the equilibrium result in Eq. (16) and there-
fore also yields the same eigenvectors eeq

k . In a second step, we
calculate the conditional probability P(x|s) from the constrained
simulations, using xk = eeq

k ⋅ δq. By averaging P(x|s) over s with
the correct weighting P(s), we obtain reaction coordinate proba-
bility P(x) and thus the desired equilibrium free energy landscape
∆G(x). We note that the above procedure uses the weighting P(s)
of the constrained simulations twice: First to calculate the equi-
librium covariance matrix from the conditional covariance matrix
[Eq. (19)] and second to calculate the equilibrium distribution P(x)
from the conditional probability P(x|s) [Eq. (8)]. The former results
in adjusted principal components which represent the data, and the
latter corresponds to a reweighting of the data itself.

The above considerations are readily extended to the case
of general time-dependent pulling by replacing Eq. (18) by the
Jarzynski-type relation (12), yielding

σij(s) =
⟨δqi(s)δqj(s) e−βW(s)⟩

neq

⟨e−βW(s)⟩neq

. (20)

Combined with Eq. (19), we get

σij =
∫ds⟨δqi(s)δqj(s) e−βW(s)⟩

neq

∫ds′⟨e−βW(s′)⟩neq

. (21)
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Alternatively, it may be desirable to only reweight the data but use
equally weighted covariances. As discussed above [Eq. (14)], this
leads to

σneq
ij =

1
∆s ∫

smax

smin

ds ⟨δqi(s)δqj(s)⟩neq, (22)

where fluctuations δqi are referenced with respect to the mean of the
concatenated data. The covariance matrix results in principal com-
ponents Vneq

i that map out an energy landscape associated with the
nonequilibrium distribution generated by TMD.

As a last—arguably most straightforward—possibility, we may
refrain from any reweighting and use nonequilibrium principal
components Vneq

i to directly represent the nonequilibrium data via
∆G. In practice, this simply means to perform a PCA of the con-
catenated TMD trajectories. While that approach may seem some-
what ad hoc at first sight, it is in fact well defined since we know
from the above discussion how nonequilibrium principal compo-
nents and nonequilibrium data are connected to their equilibrium
counterparts.

C. Computational methods
1. MD details

A 20 µs long unbiased MD simulation of decaalanine (Ala10)
in vacuo was performed using the GROMACS 2016.3 software
package49 and the CHARMM37 force field.50 Employing uncharged
protonation states for terminal residues, Ala10 was set in a dodeca-
hedral box with an image distance of 11 nm. Following the steepest
decent minimization, the initial helical structure was equilibrated
under NVT at T = 293.5 K for 10 ns using the Bussi thermostat (the
v-rescale option in GROMACS)51 with a coupling time constant of
0.2 ps. The integration time step was set to 1 fs, and MD frames
were saved every picosecond. Covalent bonds including hydrogen
were constrained by the LINCS algorithm,52 and electrostatics were
described by the particle mesh Ewald (PME) method,53 using a direct
space cutoff of 1.2 nm. van der Waals forces were calculated with a
cutoff of 1.2 nm. Visualization of molecular data was performed with
VMD54 and PyMOL.55

2. Targeted molecular dynamics
TMD simulations of Ala10 in vacuo were performed employ-

ing the PULL code as implemented in GROMACS 2016.3, using the
“constraint” mode based on the SHAKE algorithm.56 The pulling
coordinate s was chosen as the distance between the N-terminal
nitrogen atom and the C-terminal carbonyl oxygen atom. Other
choices such as a linear combination of contact distances as pro-
vided from contact PCA57 yielded overall quite similar results
(data not shown). All simulations started from the equilibrated
system structure after an initial 10 ns NVT run, using the same
thermostat scheme as given above. Translation and rotation of
the center of mass were removed (“comm-mode angular” option)
to prevent spinning of Ala10 due to pulling of the asymmetric
peptide backbone. Two sets of simulations with constant veloc-
ity vc = 1 m/s were performed: 10 000 trajectories from s = 1.1
–2.1 nm and 100 trajectories from s = 1.5–3.5 nm. Constraint forces
were saved each time step (1 fs) and Cartesian coordinates every
0.1 ps.

3. Dihedral angle principal component analysis
Since Cartesian coordinates unavoidably result in a mixing

of overall rotation and internal motion,58 internal coordinates are
used for PCA. Here, we employ (�i, ψi) backbone dihedral angles,
which have been shown to be well suited to describe the dynam-
ics of peptides and small proteins.7,9,57,59 To take the periodicity of
the dihedral angles into account, we shift the periodic boundary
of the circular data to the region of the lowest point density. This
“maximal gap shifting” approach was incorporated into the new ver-
sion of the dihedral angle principal component analysis (dPCA+),60

which represents a significant improvement to the previously advo-
cated sine/cosine-transformed variables used in dPCA.9,59 It avoids
artificial doubling of coordinates and distortion errors due to the
nonlinearity of the sine and cosine transformations. In the case of
Ala10, dPCA+ was performed on the (�i, ψi) dihedral angles of the
eight inner residues. While the first six equilibrium principal com-
ponents show multipeaked distributions, the first two components
already cover ≈70% of the overall variance [Figs. S1(a) and S1(b)].
Since the maximal gap shifts may differ for unbiased and biased data
[Fig. S1(c)], for consistency, we used in all cases the shifts obtained
from the reweighted nonequilibrium data (which are equivalent to
shifts obtained from the equilibrium simulation).

4. Free energy calculations
To evaluate the free energy landscape ∆G(x) via the Jarzynski-

type expression in Eq. (11), the probability density P(x) is estimated
from the TMD data by a weighted histogram. Defining δk ,s(x) as a
counting function in some bin size ∆x

δk,s(x) = {
1 if x − ∆x

2 ≥ xk(s) > x + ∆x
2

0 else (23)

and utilizing all concatenated trajectories with in total N data points,
the estimator of the free energy reads

β∆G(x) = − ln[∑
N
n e−βWn δn(x)
∑

N
n e−βWn

]. (24)

In a similar way, the expectation value of a general observable A is
estimated via

⟨A⟩ = ∑
N
n e−βWn An

∑
N
n e−βWn

. (25)

Using Gaussian smoothing, we avoid sharp edges in the histogram
due to low-work trajectories contributing to almost empty bins.

Apart from the direct evaluation of Jarzynski’s identity via
Eq. (24), we also consider the recently proposed dissipation cor-
rected TMD approach.38 Employing Langevin theory, the dissipated
energy Wdiss = ⟨W⟩ − ∆G can be expressed as

Wdiss(s) = vc ∫
s

s0

ds′ Γ(s′), (26)

where Γ(s) represents the position-dependent friction coefficient
of the system. Using a second-order cumulant approximation, this
friction is estimated as38

Γ(s) =
β
vc
∫

s

s0

ds′ ⟨δfc(s)δfc(s′)⟩neq, (27)
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which may be calculated on-the-fly from constraint force fluctu-
ations δfc(s) = fc(s) − ⟨fc(s)⟩neq. In cases where the underlying
assumption of a Gaussian work distribution is roughly fulfilled,
Eq. (26) was shown to converge significantly faster than the direct
evaluation [Eq. (3)]. As a bonus, the approach also provides the
friction profile Γ(s), which presents a microscopic picture of the
system-bath coupling.

III. RESULTS AND DISCUSSION
To investigate the applicability of the above developed formu-

lation, we adopt Ala10 in vacuo, which has been used by several
groups to study the enforced unfolding of the α-helix.36,39–42 This
process, though, virtually does not occur in equilibrium simulations
at room temperature. Vice versa, unbiased MD is found to sam-
ple conformational states that are difficult to come by with TMD.
By comparing unbiased MD and nonequilibrium TMD simulations
in several regimes of the pulling coordinate s, in the following, we
study the virtues and shortcomings of TMD and discuss PCA of
nonequilibrium data.

A. Unbiased MD simulations
We first consider the 20 µs long unbiased MD trajectory of

Ala10 in vacuo, which was analyzed using dPCA+ (see Sec. II).
Figure 1(a) shows the resulting free energy landscape along the
first two principal components Veq

1 and Veq
2 , which represent about

FIG. 1. Unbiased MD simulation of Ala10. (a) Free energy landscape
∆G(Veq

1 ,Veq
2 ) (in units of kBT) along the first two principal components obtained

from dPCA+. (b) Free energy profile ∆G(s) with respect to the pulling coordinate.
(c) Molecular structures of the main metastable conformational states.

70% of the overall variance of the system. The energy landscape
clearly reveals the main metastable conformational states of Ala10,
including a hairpinlike conformation HP (populated by 39%), the
α-helix A (23%), and a helical state B (20%) that is broken at the
C-terminus. Moreover, we find several “pretzel-shaped” conforma-
tions, here termed P (2%), C (3%), and CH (2%), while extended
conformations U are not sampled in unbiased MD.

Projecting the unbiased data onto pulling coordinate s (which
here represents an unconstrained stochastic variable), the free
energy profile ∆G(s) only reveals the main conformational states HP,
A, B, and P [Fig. 1(b)]. In particular, we note that the connectivity is
not preserved in the one-dimensional representation since state HP
(instead of P) is now a direct neighbor of state B. In fact, when we
plot the free energy as a function of s andVeq

1 orVeq
2 (Fig. S2), we find

that for s ≲ 1 nm, several conformational states may coexist for the
same value of s. As a consequence, the time evolution of s(t) exhibits
jumps between s ≈ 0.4 and 1.1 nm (Fig. S2), reflecting that the system
directly transits from P to B [as suggested in Fig. 1(a)]. Hence, for
s ≲ 1 nm, the pulling coordinate s represents a poor choice of a
reaction coordinate.

B. Comparison of unbiased and constrained
simulations

The discussion above indicates that TMD simulations are diffi-
cult to interpret for s ≲ 1 nm since several free energy minima may
occur for the same value of pulling coordinate s. On the other hand,
we noticed that the sampling of the unbiased simulation is restricted
to s ≲ 2 nm [Fig. 1(b)], although TMD simulations may be extended
to study the unfolding of Ala10 (s ≈ 3 nm; see below). To achieve
a meaningful comparison of MD and TMD simulations, in the fol-
lowing, we therefore restrict ourselves to the range of 1.1 nm ≤ s
≤ 2.1 nm, which enables us to describe transitions between states B
and A. In particular, the comparison allows us to validate the theory
developed above.

In order to characterize the nonequilibrium simulations, we
recall that ∆G = ⟨W⟩ −Wdiss, stating that the free energy difference
results from the work performed on the system minus the dissi-
pated energy. To begin with the performed work, Fig. 2(a) shows
that the work distribution reveals a complicated structure, includ-
ing two prominent maxima and several smaller contributions due
to rare and wide-spread trajectories. The associated free energy
profile ∆G(s) obtained from Jarzynski’s identity [Fig. 2(b)] shows
two minima reflecting states B and A. This result agrees well with
the outcome of the unbiased simulations, while the second-order
cumulant approximation [Eq. (26)] fails to reproduce ∆G(s) due to
the non-Gaussian structure of the work distribution. Owing to the
complicated structure of the work distribution, we needed to run
10 000 short nonequilibrium trajectories to achieve satisfactory
agreement of TMD and unbiased simulations [see Figs. S3(a) and
S3(b) for a study of the convergence behavior]. This is a conse-
quence of the exponential average, e−β∆G(s) = ⟨e−βW(s)⟩neq, where
mainly rare low-W trajectories dominate the free energy estimate.
Since ∆G(s) is considerably lower than the average work ⟨W(s)⟩, the
stretching of state B into helix A with velocity vc = 1 m/s generates
considerable irreversible heat via intramolecular friction.61–65

Having verified that the TMD simulations correctly reproduce
the free energy profile ∆G(s), we are in a position to consider to
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FIG. 2. Comparison of unbiased MD and nonequilibrium TMD simulations for the
interval 1.1 nm ≤ s ≤ 2.1 nm, describing transitions between states B and A of
Ala10. (a) Distribution of work performed on the system by external pulling along
coordinate s. On the right, the cut P(W ) at s = 1.77 nm reveals the non-Gaussian
structure. (b) Comparison of free energy profiles ∆G(s) obtained from unbiased
MD simulation (black curve), Jarzynski’s identity (red curve), and second-order
cumulant approximation (blue curve). [(c)–(e)] Energy landscapes (in units of kBT)
as a function of the first two principal components obtained from dPCA+ performed
for 1.1 nm ≤ s ≤ 2.1 nm. Compared are (c) results from unbiased MD, (d) TMD,
and (e) reweighted TMD.

what extent TMD allows us to predict the free energy along a gen-
eral reaction coordinate x. As suitable coordinates, we choose the
first two principal components Veq,B→A

1 and Veq,B→A
2 obtained from

dPCA+, which was performed for all unbiased trajectory points
that lie in the interval 1.1 nm ≤ s ≤ 2.1 nm. Figure 2(c) shows the
resulting free energy landscape obtained from unbiased MD data.
Compared to the energy landscape pertaining to the complete data
set [Fig. 1(a)], we note that only the adjacent minima of B and
A are included since all other states are associated with values of
s ≤ 1.1 nm. The two-dimensional representation∆G(Veq,B→A

1 ,Veq,B→A
2 )

can be employed to explain the prominent features of the work dis-
tribution [Fig. 2(a)] in terms of pathways on the free energy sur-
face. Roughly speaking, high-W trajectories mostly transfer directly
between states B and A, while low-W trajectories typically do not
reach state A at s = 2.1 nm since several populated regions coexist
for this value of s (Fig. S4). We note that in general there is no direct
correspondence between routes in work space and paths in real
space.

Using the same coordinates, Fig. 2(d) shows the energy land-
scape associated with the nonequilibrium distribution generated by

the TMD simulations [Eq. (15)]. Overall, nonequilibrium results and
unbiased results [Fig. 2(c)] appear quite similar because the free
energy ∆G(s) [and thus the weighting P(s)] pertaining to states B
and A is alike. In detail, however, the nonequilibrium energy land-
scape shows a population shift from state A to some side minima
at lower values of Veq,B→A

2 . Moreover, the TMD simulations affect
a sampling of high-energy regions (shown in orange) that are not
accessible to the unbiased simulation. Finally, Fig. 2(e) shows the
energy landscape associated with the reweighted nonequilibrium
data [Eq. (11)]. As expected, this energy landscape is indeed quite
similar to the unbiased equilibrium result in Fig. 2(c). Considering
the high amount of dissipated work, this similarity appears quite
remarkable.

To compare equilibrium, nonequilibrium, and reweighted
nonequilibrium data [Figs. 2(c)–2(e)], we have so far employed prin-
cipal components generated from unbiased equilibrium MD. Alter-
natively, these data may be also examined using principal compo-
nents generated from nonequilibrium data; see Eq. (22). Owing to
the similar weighting P(s) of states B and A, the resulting energy
landscapes [Fig. S5(a)] are again quite similar and hardly yield new
information. The difference between principal components gener-
ated from equilibrium or nonequilibrium data can also be directly
studied by comparing the respective covariance matrices. Since the
B → A transition mainly involves the folding of the C-terminus
residues, TMD simulations that enforce this transition are found
to result in enhanced correlations between the last three residues
[Fig. S5(b)]. Upon reweighting, the covariance matrix again resumes
the structure of the unbiased equilibrium MD.

To summarize, we have shown that the B → A transition of
Ala10 can be viewed using principal components generated from
equilibrium data [Eq. (19)] or nonequilibrium data [Eq. (22)]. Both
representations are well defined as they are simply related via the
weighting function P(s). Independent of this choice of representa-
tion, we may consider equilibrium, nonequilibrium, or reweighted
nonequilibrium data to represent the energy landscapes of the sys-
tem; see Figs. 2(c)–2(e). Due to the similar weighting P(s) of states B
and A, so far, the resulting energy landscapes exhibited only minor
differences (but see below).

C. TMD simulation of helix unfolding
As a well-established application of pulling simulations,36,39–42

we consider in Fig. 3 the unfolding of the α-helical state of Ala10.
Since the free energy difference between helical state A and extended
state U is quite large (≈28 kBT), this process does not virtually occur
in the 20 µs long unbiased MD trajectory which only samples up
to s ≲ 2.2 nm. In our TMD simulations, all trajectories start at
s = 1.5 nm in α-helical structure A, run into a local energy minimum
(corresponding to a more favorable helical structure), and succes-
sively unfold until they reach the extended state U at s ≈ 3.1 nm.
Unlike the case of the above studied B → A transition, the work
distribution of the A→U transition is monomodal and well approx-
imated by a Gaussian [Fig. 3(a)]. As a consequence, the free energy
profile ∆G(s) obtained from Jarzynski’s identity and of its second-
order cumulant approximation [Eq. (26)] are in perfect agreement
[Fig. 3(b)]. Moreover, we find that the free energy rapidly converges
for already 100 TMD runs [Fig. S3(c)]. This is a consequence of the
fact that states A and U are connected by only two well-defined and
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FIG. 3. Unfolding of the α-helical state A of Ala10. (a) Distribution of work per-
formed on the system by external pulling along coordinate s and a cut P(W ) at
s = 3.1 nm. (b) Comparison of free energy profiles ∆G(s) obtained from unbiased
MD simulation (black curve), Jarzynski’s identity (red curve), and second-order
cumulant approximation (blue curve). [(c)–(e)] Energy landscapes (in units of kBT)
as a function of the first two principal components obtained from dPCA+ performed
for 1.5 nm ≤ s ≤ 3.5 nm. Compared are (c) results from unbiased equilibrium MD,
(d) nonequilibrium TMD, and (e) reweighted TMD.

well-accessible paths that require a minimum number of contact
changes (see below).

Due to the large free energy difference of states A and U
[and the associated different weighting P(s)], we expect large dif-
ferences when we perform a PCA of unbiased equilibrium and
constrained nonequilibrium simulations, respectively. This can be
illustrated by the associated covariance matrices which are com-
pared in Fig. 4(a). While in the equilibrium case (using all data with
s > 1.5 nm) [Eq. (16)] we find moderate correlations of mostly neigh-
boring residues, virtually, all residues are correlated in the nonequi-
librium covariance matrix [Eq. (22)]. This is a consequence of the
fact that upon unfolding, all backbone dihedral angles change from
α-helical to extended structures. Upon reweighting the nonequilib-
rium covariances [Eq. (19)], we recover the equilibrium result, as
expected.

Let us consider the resulting equilibrium and nonequilibrium
principal components Veq,A→U

k and Vneq,A→U

k , respectively. To eluci-
date which coordinates are better suited to describe the A → U
unfolding process, it is instructive to study the eigenvectors pertain-
ing to the first two components, which account for 50% (eq) and
90% (neq) of the total variance, respectively. As shown in Fig. 4(b),
the eigenvectors of equilibrium components Veq,A→U

1 and Veq,A→U
2

FIG. 4. PCA of the A → U unfolding of Ala10. (a) Correlation matrices (i.e.,
normalized covariances) obtained from (left) unbiased equilibrium MD, (middle)
nonequilibrium TMD, and (right) reweighted TMD. (b) Eigenvectors pertaining to
the first two principal components, obtained from (left) equilibrium MD and (right)
nonequilibrium TMD. (c) Energy landscapes (in units of kBT) as a function of
pulling coordinate s and Veq,A→U

1 or Vneq,A→U
1 .

report exclusively on local motions at the C- and N-terminus,
respectively (which is mainly what happens at equilibrium). On
the other hand, the eigenvectors of nonequilibrium components
Vneq,A→U

1 and Vneq,A→U
2 are found to account for the global motion

of all residues and thus report directly on the A → U unfolding
process.66 As a further illustration, we plot the energy landscape per-
taining to the nonequilibrium data as a function of s and Veq,A→U

1
or Vneq,A→U

1 [Fig. 4(c)]. Since the pulling coordinate evidently corre-
sponds to the direction of maximal variance, we find a direct corre-
lation between s and Vneq,A→U

1 . The second component, on the other
hand, is found to split up in two pathways along s, thus provid-
ing important information beyond the one-dimensional free energy
profile ∆G(s).

We are now in a position to illustrate the A → U unfolding
of Ala10 by a multidimensional energy landscape. Using the first
two nonequilibrium principal components Vneq,A→U

k , Fig. 3 shows
energy landscapes constructed from (c) unbiased equilibrium MD,
(d) nonequilibrium simulations, and (e) reweighted nonequilibrium
data. As expected, the unbiased free energy landscape [Fig. 3(c)]
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only samples initial state A together with a neighboring state that
reflects the breaking of the helix at the N-terminus. The results for
the reweighted nonequilibrium data [Fig. 3(e)] are quite similar but
also show enhanced sampling of high-energy regions. Notably, the
energy landscape obtained from the nonequilibrium data [Fig. 3(d)]
is the most informative as it shows the entire conformational space
sampled by the TMD simulation including initial state A and final
state U.

The nonequilibrium energy landscape ∆G [Eq. (15)] indicates
two main unfolding pathways, which are discriminated by the sec-
ond principal component. The upper half circle connecting states A
and U reflects trajectories that start unfolding at the N-terminus and
continue to the C-terminus, while the lower half circle corresponds
to unfolding trajectories proceeding the opposite way. Followed by
75% of all trajectories, the C → N path clearly represents the main
unfolding route. This may be a consequence of the fact that the
C-terminus is able to form hydrogen bonds with both of its oxy-
gen atoms (while the N-terminus can only form a single hydrogen
bond) and therefore exhibits larger fluctuations and structural desta-
bilization. Trajectories that initially proceed opposite the N → C
path mostly do not complete this route but return to the helical
state A.

To illustrate the C→N unfolding pathway, Fig. S6(a) shows the
evolution of the peptide’s backbone dihedral angles ψn. As expected,
the dihedral angles change sequentially from an α-helical (ψ ≈ −40○)
to an extended (ψ ≈ 160○) conformation. Using DSSP67 to charac-
terize the secondary structure of Ala10, however, we find that the
helix does not unfold directly but first changes to a 310-helix for
s ≳ 2 nm [Fig. S6(b)]. In the course of the unfolding process, the
310-helix may temporarily turn into a shortened α-helix in com-
bination with turn/coil structures. This can occur anywhere in the
peptide sequence, thus allowing the helix to break at its weakest end.

As a further characterization of the unfolding mechanism, it
is instructive to consider the friction profile Γ(s) obtained from
dissipation-corrected TMD38 [Fig. S6(c)]. Reflecting the fluctuations
of the constraint force [Eq. (27)], Γ(s) is not necessarily related to
the form of the free energy profile ∆G(s). As in the previously stud-
ied NaCl/water system,39 the friction profile may therefore provide
new microscopic information on the unfolding process. At the onset
of unfolding at s ≳ 2.0 nm, Γ(s) starts to increase and comes to a
maximum at full extension at s ≈ 2.8 nm. We attribute this rise in
friction to the loose C-terminal chain, which can fluctuate more with
increasing length. The sharp minimum of Γ(s) at s ≈ 3.0 nm coin-
cides with a shallow minimum of the ∆G(s) profile, pointing to a
structural relaxation of the chain in the extended conformation. For
s ≳ 3.0 nm, the friction increases again, which most likely results
from over-stretching the peptide chain.

IV. CONCLUSIONS
Aiming to describe nonequilibrium phenomena in terms of a

multidimensional energy landscape, we have studied the application
of dimensionality reduction techniques to nonequilibrium MD data.
To be specific, we have focused on principal component analysis
(PCA) of targeted MD (TMD) simulations25–27 that are constrained
along some biasing coordinate s. We have found that it is gener-
ally valid to simply perform PCA on the concatenated nonequilib-
rium trajectories. While the resulting distribution P(x) and energy

landscape ∆G(x) ∝ lnP(x) will not reflect the equilibrium state
of the system, the nonequilibrium energy landscape may directly
reveal the molecular reaction mechanism. Applied to the unfolding
of the α-helical state of Ala10, for example, we have identified two
unfolding pathways starting from the C- and N-terminus, respec-
tively. Notably, this information is not available from the commonly
calculated free energy profile ∆G(s) ∝ ln P(s).

The nonequilibrium energy landscape ∆G(x) is well defined
because it is related to the equilibrium free energy landscape through
weighting function P(s) accounting for the bias introduced by TMD.
That is, by reweighting the TMD conditional probability P(x|s) by
P(s) and subsequently integrating over s [Eq. (8)], we obtain the
correct equilibrium distribution P(x). The same holds for PCA,
where we construct principal components from nonequilibrium
data which are associated with equilibrium principal components
constructed from the reweighted data [Eq. (19)]. Although this for-
mulation is in principle exact, its practical use depends on how well
the conformational distribution of interest is sampled by nonequilib-
rium simulations along biasing coordinate s. Moreover, it is impor-
tant that coordinate s accounts for a naturally occurring motion
between two well-defined end-states of the system. This is the case
for the example of the A → U unfolding reaction of Ala10 (Fig. 3)
but less so for the B→ A transition (Fig. 2), where the start and end
states split up in various metastable states.

While we have focused the discussion on TMD, the above
described approach is readily applied to various types of nonequi-
librium simulations. In particular, this implies enhanced sampling
methods that are described by a continuous and sufficiently slow
development along some control parameter s and provide a weight-
ing function P(s), such as umbrella sampling19 and steered MD,20,21

conformational flooding,15 metadynamics,17 and adaptive biasing
force sampling.18 Moreover, besides PCA, alternative dimensionality
reduction techniques may be employed including nonlinear tech-
niques4,68 and various kinds of machine learning approaches.69–72 In
ongoing work, we use nonequilibrium PCA to study conformational
changes of T4 lysozyme73 and to analyze unbinding simulations
of small organic molecules from proteins such as the N-terminal
domain of Hsp9074 and the β2 adrenergic receptor.75

SUPPLEMENTARY MATERIAL

See supplementary material for details of dPCA+, energy land-
scapes as a function of s and various principal components, evolu-
tion of the pulling coordinate, dihedral angles, secondary structure
content and friction content, and convergence tests of free energy
estimators.
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The dPCA+ method60 was implemented in the open source
software FastPCA. Dissipation-corrected TMD38 was implemented
using Python3. All programs are freely available at https://github.
com/moldyn.
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