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Steered molecular dynamidSMD) permits efficient investigations of molecular processes by
focusing on selected degrees of freedom. We explain how one can, in the framework of SMD,
employ Jarzynski's equalitfalso known as the nonequilibrium work relatjdn calculate potentials

of mean forc PMF). We outline the theory that serves this purpose and connects nonequilibrium
processegsuch as SMD simulationsvith equilibrium propertiegsuch as the PMEWe review the
derivation of Jarzynski's equality, generalize it to isobaric—isothermal processes, and discuss its
implications in relation to the second law of thermodynamics and computer simulations. In the
relevant regime of steering by means of stiff springs, we demonstrate that the work on the system
is Gaussian-distributed regardless of the speed of the process simulated. In this case, the cumulant
expansion of Jarzynski’'s equality can be safely terminated at second order. We illustrate the PMF
calculation method for an exemplary simulation and demonstrate the Gaussian nature of the
resulting work distribution. ©2004 American Institute of Physic§DOI: 10.1063/1.1651473

I. INTRODUCTION PMFs. However, a SMD simulation isrnequilibriumpro-
cess, whereas PMF is aquilibrium property. Therefore a
A key goal of the study of biomolecular systems is totheory is needed that connects equilibrium and nonequilib-
identify the physical mechanisms establishing their funcvium. Such a theory has become available through recent
tions. In a typical investigation of a respective molecularadyances in nonequilibrium statistical mechanics, especially
process, theeaction path along which the process proceeds through the discovery of Jarzynski's equalityThese ad-
in the configuration space, is identified or hypothesized anggpces permit one to extract equilibrium properties from

the progress of the process is described by rction — oneqyilibrium processes, but in practice efficient and con-
coordinate” The potential of mean forcdPMF) plays an | anient methods are required.

important role in such investigations. PMF is basically the Jarzynski's equality is an exact relation between free en-

free energy profile along the reaction coordinate and is deﬁrgy differences and the work done through nonequilibrium

termined through the Boltzmann-weighted average over al rocesses. Since its first report in 1987 Jarzynski's

degrees of freedom other than the reaction coordinate. PMequaIity has been a subject of intensive study. The relation

not pnly succinctly cgptures the energe tics (.)f the PTOCESRith the fluctuation theorems was elucidated by Crdoks
studied, but also provides an essential ingredient for further 3 )

) = and by Jarzynski® Hatano and Sadhgeneralized Jarzyns-
modeling of the process; with all the other degrees of free-

dom averaged out, the motion along the reaction coordinat@s equality to transformations between steady states based

is well approximated as a diffusive motion on the e1‘fectiveg\n (;he stealdyLs_ta;;[e :jhermﬁtﬁjynam(ljci of Oonkc_), and Pall_rﬁ Epm.
potential identified as the PMF. nd recently Liphardtet al.™ tested Jarzynski's equality in

Molecular dynamics is a simulation method widely ap-a" €xPeriment of RNA stretching.

plied to biomolecular systenfsHowever, today’s molecular Jarzynski's equality finds a natural application in the cal-
dynamics simulations are limited to the nanosecond timé&ulation of fre;ezgznergy or PMF from computer simulations or
scale which is seldom long enough to observe relevant proexperlmenté_ ~“ Particularly, it provides the basis for the
cessesSteered molecular dynami¢SMD) therefore applies methoq presgnted in this article for calculat|_ng PMFs .from
external steering forces in the right direction to accelerateoMD simulations. The method has been applied to the inves-
processes that otherwise, due to energy barriers, are too sloigations of protein functions such as glycerol conduction
SMD, reviewed in Refs. 3 and 4, has been widely used tdhrough the membrane channel Glfffef. 23 and ammonia
investigate mechanical functions of proteins such as stretcttonduction through His# In a benchmark study using the
ing of extracellular matrix or muscle proteméand binding/  helix—coil transition of deca-alanine as an exemplary system,
unbinding of protein—substrate complexes or adhesiofihe accuracy of the approximations based on the cumulant
proteins®® A typical SMD simulation steers a system by ap- expansion was examined and compared to the traditional
plying a constraintie.g., a harmonic potentiathat moves method of umbrella samplirfg.
along a prescribed path in the configuration space. This article is concerned with theoretical and practical
As SMD is an effective method to explore molecular issues regarding the method of PMF calculation from SMD
processes, it is desirable to calculate within its frameworksimulations. Section Il reviews and discusses the theoretical
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background. In Sec. Ill the method is presented and relatedf a system in contact with a heat bath at temperature T, the
practical issues are discussed, in particular the efficiency andork W done on the system during the transformation and
convenience of the method. In Sec. IV the method is illusthe Helmholtz free energy differendg= between the two
trated with an exemplary SMD simulation and the Gaussiarequilibrium states satisfy Eq. (1)

nature of the work distribution is demonstrated. As shown in Secs. IIB and Il C, Jarzynski's equality
applies to a broad range of processes. The system under con-

1I. THEORY OE SYSTEMS DRIVEN AWAY sideration may be microscopic or macroscopic, and the pa-

FROM EQUILIBRIUM rameterA may be, but is not limited to, a thermodynamic

ariable (intensive or extensive In particular, Jarzynski's
t f i bet th Statistical hani tart uality does apply to traditional thermodynamic processes
ranstormations between them. Statistical mechanics Stareg, ., 55 the isothermal expansion of an ideal gas. In the latter

with the aim of explaining the laws of thermodynam|csc se the parametaris the volume of the gas. Most remark-

based on the atomic picture of matter. It has been successfyf 55,y nskis equality holds regardiess of the speed of the
with systems at equilibrium, but not quite so with noneqw-process

librium ones. Most of the development in statistical mechan-
ics for nonequilibrium states has been limited to near-
equilibrium (linear responseregimes. However, recently
there has been some further progress through the proof of Jarzynski's equality was first derived for Hamiltonian
theorems concerning far-from-equilibrium states: the transystems; as outlined in the following. Consider a classical
sient fluctuation theorerdf, the steady-state fluctuation mechanical system in contact with a heat bath of constant
theoren?’ and Jarzynski's equality also known as the non-temperaturd. Let us label the systeis, the bath3, and the
equilibrium work relation? compound of the twaSB. The compoundSB is thermally
This section deals with Jarzynski's equality, which is theisolated and evolves according to Hamiltonian dynamics. As-
basis of the PMF calculation featured in this article. Twosuming that the surface energgr the interaction energy
different derivations, one for Hamiltonian systems and thébetweenS and2 is negligible, the Hamiltonian a3 can be
other for stochastic systems, are presented. Jarzynski's equalivided into the Hamiltonians of and 5.
ity is generalized to isobaric—isothermal processes, and the | ,s5 S B
relationship with the second law of thermodynamics is dis- H(,0)=H(I) +HX(O), @
cussed. Finally, it is demonstrated that Jarzynski's equalityherel’ and® denote phasegositions and momentaf S
can be applied to computer simulations, in particular theand B, respectively, and the Hamiltonian &fdepends on a
isobaric—isothermal molecular dynamics simulation usingoarametei. The partition function, therefore, is factorized,
the Langevin piston methdd.

Thermodynamics is concerned with states of matter ané

B. Jarzynski's equality for Hamiltonian systems

SB_ _ pySB
A. Jarzynski's equality VAN _J dI'd® exd — BH(T",0) ]

Jarzynski's equality is concerned with thermostatied
contact with heat bathssystems that begin in equilibrium =f dr ex;{—BHf(I’)]f de exq - BHE(0)]
and subsequently are driven away from equilibrium. Let us
consider a system in contact with a heat bath at temperature =Z375. (©)

T. Suppose the equilibrium states of the system are specified Now consider a process in which the syst&tis initially

by (T,A), whereX is a parameter that can be controlled i, oqilibrium with the bath3 and subsequently the param-
externally. Initially \ is, say, zero and the system is in the eter is changed from 0 at time O tb at time = The time
equilibrium state T,0). The parametek is then changed, g,y tion ofSB is determined by the time-dependent Hamil-

say, up toA. Over the entire course of this process, they,nianS5(1 @), where the explicit time dependence solely
system is kept in contact with the heat bath. Métbe the ;05 from the dependence anlLet us denote the initial

exterr_1a| work dpne on the system r(ljuring the process.of inénd final states byI{y,0,) and (,,0.), respectively.
creasing, We imagine to repeat the process many imesg;nce 53 s thermally isolated, the distribution of its initial
Jarzynski® discovered tha't.thfa Helmholtz free energy d_'ﬁer' states would be best represented by a microcanonical en-
enceAF between the equilibrium state§],(A) and (T.0), IS gemple. However, asB is a macroscopic systerteven

related to the workV as whenS is nob), it is permissible to use a canonical ensemble

(e PWy=g PAF, (1)  instead. Accordingly,I(y,0,) may be sampled from the dis-
where B=1/kgT is the inverse temperature amkg is the tribution
Boltzmann constant. The average is over repeated real- 1 -
izations of the process. 55 XA —BHG (I'0,00)]. (4)
Although in general final states of the system will not be 0

in equilibrium, one can fix at A and wait for the system to Because of energy conservation, the work done during the
relax to the equilibrium stateT(A). During the relaxation, process must be equal to the increase in the enerdBof

no external work is done. Therefore, Jarzynski's equality can 8B 8B

be stated in terms of transformations between equilibrium W=HT,0,) = Ho (o, O0). ®)
states:for a transformation between two equilibrium states Thus the average of exponential work is written as
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the value ofE that satisfies Eq(10) is equal to the equilib-

1
(e*ﬁW)=j dF0d®0§exq—,8HgB(Fo,®o)] rium energy of SB corresponding to the temperatufie
2y let us denote this energy bg. From Eq.(9), using Z5°
X exp{— BHSE(T .0 ) —H5(Ty,00) ]} =exf — BE+S°(E)/kg], we find
(e PM)EF"=(e )" (1)

:f dFOdOZ—%exq—BHfB(FT,®T)]. 6) The use of the canonical ensemble instead of the microca-
0 nonical ensemble is therefore justified.

The initial phase [[(,0,) and the final phasel(,,0,) are We have just derived Jarzynski's equality based on
related by a one-to-one map: the final phase can be obtainggamiltonian dynamics. The derivation is surprisingly simple
from the initial phase by the forward time evolution of the and depends only on fundamental properties of Hamiltonian
Hamiltonian system, and the initial from the final by the dynamics, namely, energy conservation and Liouville’s theo-
backward time evolution. Therefore the integration variablerem. In the following we derive Jarzynski’s equality in a
can be transformed td(.,® ,), and according to Liouville’s different fashion.
theorem the Jacobian of the transformation is unity,

1 SB
<87BW>:J drfd(%ﬁ exg — BHE(T,,0,)]= 2—23- (7)  C. Jarzynski's equality for stochastic systems
0 0

_ _ _ _ _ The dynamics of a system in contact with a heat bath is
Finally, using Eq.(3), we obtain Jarzynski's equality be- often described stochastically, without explicitly accounting
tween the workW and the Helmholtz free energy difference for the degrees of freedom of the bath. Jarzynski's equality

AF® of the systems, can be derived in this framework under two common as-
7S sumptions, the Markov property and the balance condition.
(e AWy = —/;=exp(—,8AFS). (8) (In fact, in this framework Jarzynski’s e_quallty dlrectly fol-
o lows from the Feynman-Kac formu)aThis type of deriva-

. . _ tion was first given in Ref. 11.

. The use of the (_:anomcal ensembliy. (4)] is a crucial When the bath degrees of freedom are not explicitly
pomtﬂ of the derlvat|on. JarzynskRef. 13,.p. 109 argueés  taken into account, the dynamics of the system can be de-
that “the canonical ensemble should be viewed primarily as; e only probabilistically, i.e., in terms of the probability
a computational convenience.” This is justified as fOHOWS'distributionf(F,t) for the microscopic statéor the phasel’

Th? canqmcal averagéEg. 6)] can be expressed as a of the system at timé We assume that the time evolution of
weighted integral over microcanonical averages, £(I",t) is aMarkov processlescribed through

af (I, 1) =Ly f(T,1). (12

The time evolution operatof, depends on a parameter
xext — BHSE(T . @) ]e AW We no Ior!ger need labels lik€ or B because we are now

= AHg (To.00)] dealing with the systens only. We also assume that the
equilibrium distribution

1
—BW
(e7? >%an=z—ggf dl'od®,

1 SB
:ﬁ drod®0 dEﬁ(HO (F0,®O)_E) 1
’ W\(I) = -ex — BH\(I)] (13
xexd — BHp (I',®)Je™ *
is stationary under the time evolution

1 B
_Z—ggf dEexd — BE+S5P(E)/kg L,¥,(I')=0. (14)
) This is a weak form of detailed balance and, hence, will be
+ |09<97B W>E'C]a 9 referred to as thbalance conditionThe balance condition is

where(e‘ﬁw)ga“ denotes the canonical average at temperaf’1 necessary condition fé(I",t) to relax tow, (I') whenh is

ture T=1/kgB, (e #V)'® the microcanonical average at en- Ze:)dngi%nsigfio-r?i system is initially in equilibrium corre-
ergy E, andS;°(E) the entropy ofSB at energyE and\=0. P g SR
The integral oveE in Eg. (9) is dominated by the value & f(I',0)=wyI), (15

that maximizes the integrand, namely that satisfies which provides an initial condition that accompanies Eq.

19 d . (12.
- B+ kg ﬁ—ESgB(EH S log(e A E=0. (10 For each realization of the process changinfgom 0 to
A, a trajectoryl’(t) is obtained. From a trajectory(t) we
Since the workW is done through the manipulation of the can calculate the work done on the system,
systemS which is much smaller than the ba the workwW
m_ust be m_uch smaller than_the energy s_caIS Bf Thus the WT(t)]= f At aHy (T Ir—r o - (16)
third term in the left-hand side of EqL0) is negligible, and 0
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b —> I Fha—> T Cma—> Im that given its statd’,,_, att,_, the system makes a transi-
b cen P ces oo tion to I',, att,. The probability to observe a certain dis-
o —> M Ao An A= A cretized trajectoryI(,,...,I"y) is then
M
P(Ig,....'m)=", (' Ry (I'p|Thq)- 21
f —> T Fi— T Fr—> T (To,- Pa) =Wy, (To) L1 Ry (TolTn-) (20)
;io Y ;:m 'y 7:M_1 'y o Thus, in the discretized framework EQ.7) becomes
FIG. 1. Discretization schemes. Two schemes lead to the same final result. —BW\ _ .
The scheme at the top is used here. (e )= f dlo drM\P)‘o(FO)
M
The workW s a functional that depends on the entire trajec- x| 11 Ry ('nTh_1) e AW (22)
tory I'(t) for 0<t<7. This expression will be made clear n=1

when we discretize the process. The avergge®") is then

written as the path integral with W given as in Eq(18). While the time evolution of the

probability f(I',t) is described in Eq(12) in terms of the
operatorL, ), in the discretized framework it is described in

—BWy — —BWIT(1)]
(&) fDF(t)P[F(t)]e ' terms of the transition probability,

17
where the functionaP[T'(t)] represents the probability for
observing the trajectord/(t). As the time evolution operator
L, and the initial probability¥" (I") completely determine
the stochastic dynamics of the system, they must also detefhe balance conditiofEq. (14)] means that the equilibrium
mine P[I'(t)]. This will also be made clear in the discreti- distribution is stationary, which in the discretized framework
zation. implies

The discretization scheme used is illustrated at the top of
Fig. 1. Shown at the bottom of the figure is an alternative
scheme. Both schemes lead to the same final result. Time is
discretized ad,=nét (n=0,1,...M), with an infinitesimal Now we are ready to derive Jarzynski's equality. We
interval 5t=7/M. I'(t) and\(t) are discretized accordingly:  start by writinge™#" in terms of the equilibrium distribution

(Tt = [ @l 4Ry (oIl Ty 1ty o). (29

‘I’xn(Fn)=f dla- 1Ry (Pa[Th-n) Wy (Ta-n). (24

I',=I(t,) and \,=\(t,), with A\y=0 and A\y=A. As

\II"

shown in Fig. 1 the discretized process involves two alter-

nating steps:

(1) The parametek is externally changed from,_; to A,
while the system resides &t, ;. During this step the
amount of Work,H}\n(Fn,l)—Hxn_l(l“n,l), is done on

the system. The total amount of work done during the

entire process is given as

M
W= 2, [Hy (Th-)=Hh, (-0, (18)

which converges to Eq(16) in the continuum limit
(M — ).

through Eq.(12). No external work is done during this
step. The change in the system energyxn(l"n)

—Hxn(l“n_l), can be attributed to the heat absorbed
from the bath. During the entire process the system ab-

sorbs heat of the amount

M
Q=2 [y (T =Hy ()], (19

We can easily check energy conservation,

W+Q=H, (I'm)—H, (I'o). (20)

With \ fixed at\,, the system makes a transition from
I'h_, to I', due to its internal dynamics described

IM[ ex —BH\ (To-1)]

n=1 EXF[ _IBH)\nfl(Fn—l)]
2, ¥, (Th1)

Z, ¥, (T,

e7BW:

11

n=1

Z,, M W, (Toy)

= || —————. 25
Zy, a ¥y (T ) (29
Substituting this expression into E®2), we obtain

Z)
<e7BW>:_Mf dlg --dly W,y (To)
Zy,

MRy (Tl Fae )Wy (Tos)
T, (Toy)

By using the balance conditidiEq. (24)], the integrals can
be carried out one by one—starting wildI, thenS dI'y,
and so forth. For example, the integral oV&y is calculated
as

X
n=1

(26)

n-1

Ry, (T1|To) W, (o)
‘PAO(FO) :\P}\l(rl)-

| drow, o (@7

For each transition,I',_;—I,, we denote by After carrying out all the integrals, we obtain Jarzynski's
Rkn(I‘n|Fn,1) the transition probability, i.e., the probability equality,
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N Zs scribed by stochastic dynamics, without explicitly account-
e AW = M _ "R _ o BAF 28) ing for the degrees of freedom of the bath. Again two as-
z z
A 0 sumptions are made: the Markov property
D. Jarzynski's equality for isobaric—isothermal af (X, 1) =Ly f(X,D) 3D

systems and the balance condition

It is a natural attempt to generalize Jarzynski's equality, LW, (X)=0 (32)
which was originally derived for isothernfalprocessesi.e., M '
for the canonical ensembleto other statistical ensembles. Based on the same discretization scheme as in Sec. I C, the
Inspecting the derivation of Jarzynski’s equality, one realizesvork done on the system is given as
that it is based on the same exponential form shareel 5" M

—BH

and the Boltzmann facta 'B . Thergfore, for any'en.semble W= E [Hy (Xo_1)—Hy  (Xa_1)]. (33)
described by an exponential weighting factor a similar equal- n=1 n n-1
ity is expected. In particular, if a system is in contact with a
heat—volume bath at constant temperafliiend pressur®,
its equilibrium states are distributed according to MET
(constant number, pressure, and temperatweasemble
which has the exponential weighting facer?H+PV)  with <37BW>:J dXo - d Xy ¥, (Xo)
V being the volume of the system. In this section we prove
the following: For a transformation between two equilibrium
states of a system in contact with a heatlume bath at
temperature T and pressure P, the work W done on the sys-
tem during the transformation and the Gibbs free energylhe balance condition takes the form
differenceAG between the two equilibrium states satisfy

(e~ AWy — g BAG, (29) ‘I’An(xn):f dXn- 1Ry, (XalXp-1) Wy (Xp-1). (35

The averagge V) can be written in terms of transition
probabilities,

M

X L1 Ry, (XalXq 1) | €72, (34)

The equality here is the same as the original Jarzynski'®Ve can writee #" in terms of the equilibrium probability
equality except that the Helmholtz free energy is replaced by,
the Gibbs free energy. This is a useful result, as experi-

. e . M exd —BH\ (Xn_1)]
ments and computer simulations in biophysics are often per- __gw_ H Ap/in—1
formed at constant temperature and pressure. We will call n=1 exdl—BHy  (Xn-1)]
Eq. (29) the isobaric-isothermal Jarzynski equalitgnd the "
original Jarzynski's equality thisothermal Jarzynski equal- 1 exd — BH, (Xn-1)— BPV]
Ity. _ _ _ a1 exd—BH, _ (Xq-1)—BPV]
The difference from the isothermal case is that the vol-
umeV of the system fluctuates and hence needs to be speci- Y, M \Ifxn(Xn,l)

fied, in addition to the phasE, in order to determine a mi- (36)

croscopic state of the system. The Hamiltonka(T",V), a

function of bothl” andV in general, is assumed to depend on Upon substitution of Eq(36) into Eq. (34) and completion
some parametex which is controlled externally. For each of the integrals, fromf dX, up to f dXy, we obtain the
value of A, the NPT partition functionY)\, the Gibbs free isobaric—isothermal Jarzynski equa”ty’

energy G,, and the equilibrium probability distribution
¥, (I',V) are given as

TV Uy (Xep)

— BW YAM —BAG
(e™)=g—=e """ (37)
Ao

Yx:f deVdF exd — BH,(I',V)— BPV], (309

E. Jarzynski’'s equality and the second law of

1 thermodynamics
B From Jarzynski's equalitjEq. (1)] and Jensen’s inequal-
1 ity ((€)=e™)) follows
\P)\(Flv):Y_}\exn:_BH)\(FYV)_BPV]Y (3009 <W>>AF, (38)

where [\, dI" denotes an integral over all possible atomicwhere the equality sign holds if and only if all the sampled
positions contained in volumé and all possible atomic mo- work values are equal, i.e., if and only if the variance of the
menta. Hereafter we denot& (V) by X. work W vanishes.

To prove the isobaric—isothermal Jarzynski equality, we  The following is a direct implication of the second law
follow the approach in Sec. Il C. Since it is a rather straight-of thermodynamics for isothermal proces¢&ef. 31, Sec.
forward generalization, only a sketch of the basic steps of th&3): for a transformation between two equilibrium states of a
derivation will be given. The dynamics of the system is de-system in contact with a heat bath at a constant temperature,
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the work done on the system during the transformation is notvhich vanishes ag—0.

smaller than the Helmholtz free energy difference between In summary, for isothermal processes the second law of

the two equilibrium states, namely thermodynamics is derived from Jarzynski's equality. A simi-
W= AE (39) lar argument applies to isobaric—isothermal processes, with

' the Gibbs free energy playing the role of the Helmholtz free

where the equality sign holds if and only if the transforma-energy. Another class of processes studied in thermodynam-

tion is reversible Jarzynski’s equality tells us that this is true jcs are those in which thermally isolatedsystem undergoes

on average For a single realization Eq39) might well be  an external operatiofby changing some paramexetf the

violated. The chance of violation, however, is very small. Letprocess is reversible, the entropy of the system remains con-

P(W) be the probability distribution for the work/. Then  stant:; if irreversible, the entropy increases. It is an interesting

the probability for observing a violation by the amount®f  question whether one can find for such processes an equality
or larger isf27 " PdWP(W). As shown in Ref. 32, from the sjmilar to Jarzynski's.

inequality chain ) ) ) ]
F. Jarzynski’s equality and computer simulations

e‘ﬁAF=f dWPR(W)e AW Computer simulations cannot explicitly include baths of
- infinite size (or much larger than the systems of inteyest

AF-D However, it is possible to simulate theffectof baths, and

Bf ) dwPRw)e AW various algorithms have been developed in this regtd.

Jarzynski's equality is obeyed by most of those algorithms.
D This is not surprising becauge most simulation algorithms
dWR(W) (40 are history-independent and hence represent Markov pro-
cesses(ii) the balance condition is a minimal effect of baths,
it follows and accordingly any operative algorithm that simulates a
AF-D bath is expected to satisfy the balance condition.
f dWP(W)<e AP, (41 Monte Carlo and molecular dynamics are two major
variants of molecular simulation methods. Monte Carlo is
If D is a macroscopic quantite #P is extremely small; obviously a Markov process since it is history-independent.
macroscopic violations of the second law are prohibited. ~And Monte Carlo simulations, either isothermal or isobaric—
The equality sign in the second lajq. (39)] holds isothermal, satisfy the balance condition because they are
when the transformation is reversible. On the other hand, thenplemented based on detailed balance which is an even
equality sign in Eq.38) holds when the work distribution stronger condition. As such, Monte Carlo satisfies the two
has a vanishing varianc&Vhen the variance is zero, all the conditions for Jarzynski's equality.
sampled work values are the same and therefore the equality One way to incorporate the effect of baths in molecular
sign in Jensen’s inequality holdisSenerally, the variance of dynamics simulations is to include additional terasually
work decreases as the transformation slows down, anftiction and random noigan the equation of motion in such
reaches zero in the reversible limit. This can be established way that the resulting trajectories sample the appropriate
using the discretized framework of Sec. Il C. When the transstatistical ensemble. The Langevin dynamics method for iso-
formation is sufficiently slow, the tota¥ steps(Fig. 1) can  thermal simulations and the Langevin piston meffiddr
be divided intol intervals, each containing steps M isobaric—isothermal simulations belong to this category. The
=1S) such that(i) Sét is much longer than the correlation resulting equation of motion is a stochastic differential equa-
time of the stochastic dynamics ariil) the Hamiltonian tion due to the random noise term and can be converted to a
changes negligibly oveB steps. Lek be the increment of the Fokker—Planck equation which is of the form of Ed2)
parametei over Ssteps:e=So\. The total workW can be  (Ref. 35, Sec. 4.3)4Then one only needs to check the bal-

F
Ze—ﬁ(AF—D)f

— o0

—o0

written as the sum of the work done in each interval, ance condition, i.e., whether the equilibrium distribution is
I stationary under the Fokker—Planck equation. Jarzyhdid
WIE Wi, exactly this for Langevin dynamics and confirmed that it
i=1 satisfies the balance condition. We will show in Sec. Il G that
Si (42 the Langevin piston method, too, satisfies the balance condi-
= — tion.
W n:&iz—zl)ﬂ P To-2)=Fh, ,(Tn-o)l- Another way to incorporate the effect of baths in mo-

As e—0, which is approached as the transformation slowdecular dynamics simulations is to introduce additional de-
down, w; satisfies grees of freedom while retaining the deterministic nature of

the dynamics® The resulting trajectories, when projected

wi~e,  varw) - e’. (43 onto the space of the original degrees of freedom, are sup-
Since w;'s at differenti’s are uncorrelated st is much  posed to sample the appropriate ensemble.” Ndsever
longer than the correlation timewe find thermostat’*8for isothermal molecular dynamics is a typical
| | example. Even when the dynamics is deterministic, an equa-
var(W):E var(wi)~2 e~e, (44) ti_on of the form of Eq.(12) can s_tiII be v_vritten if one con-.
i=1 i=1 siders ensembles; an example is provided by the Liouville
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equation in classical mechani¢Ref. 39, Sec. 9)8 Again, 9 N, P b

one only needs to check whether the equilibrium distribution —f=-— > || =+ —r;|f

. . . L . ot =1 ori[\m 3wV

is stationary under the resulting Liouville-type equation.

Jarzynski®!! confirmed that the NoseHoover thermostat N1 b ”

. . . . I

indeed satisfies this. +i§l (y—pi[(é—rluA p(r)+ mpﬁ' Epi)f}
Jd (b & a

G. The Langevin piston method T vlw of B(r.,p,V,t)—P— Wb f

for isobaric—isothermal molecular dynamics

w
=z
N

o . . o [92 2 g2
The Langevin piston methdd is widely used for ) Sl P (50)
isobaric-isothermal molecular dynamics simulations. With =2 apz 7 db?

the Hamiltonian . . .
After some tedious but straightforward algebra, it can be

p; shown that the equilibrium distributiow, (r,p,V,b) given

A(r,p)= E 2_m,+U 45 g
the Langevin piston method involves the following stochas- 1 )
tic differential equations: W\(r,p,V,b)= Y—AeXF[—BHx(r,p)—BPV— pbeI2w],
ri= + 3wy (469
Y,= fdbfdvfdpf dr exd — BH,(r,p)— BPV
= — U ()= = py— Lip+ (46b) Y
= ——Di— = pito,
Pi ar; INGY) 3wV Pi m, P; i 7i —IBbZ/ZW] (51
\'/:E, (460 is a stationary solution of the Fokker—Planck equation.
w Therefore we conclude that if the initial states are sampled
) o from ¥y(r,p,V,b), the isobaric—isothermal Jarzynski equal-
b=B(r,p,V,t)—P— Wb+p,u. (464 ity [Eq. (29)] holds. Notice that the Gibbs free ener@y

= —kgT logY, in this case has an additional term due to the
Herer;, p;, and m; are atomic positions, momenta, and additional degree of freedonhy [compare Eqgs(309 and
masses, respectivelyy and w are the effective momentum (51b)]. This additional term, however, is canceled out in the
and mass, respectively, associated with the volomeAt  differenceAG.
each instant, pressure is estimated through the virial equation On an additional note, the stationarity of the equilibrium

(see Appendix distribution turns out to be sensitive to the form of the virial
0? P equation. Oftenp?/m; in the virial equation[Eq. (47)] is
_ = replaced by its thermal averadg T, and the following form
B(r,p,V,t)= 3v. o uw(r)} (49 repaced

and is controlled towardP, the imposed pressure. For tem- Nk.T 1 3N
perature control, white noise variables and u are used, B(r,p,V,t)= VB - _E ri(g_u)\(t)(r)' (52

(mi(t) my(t")) =g o(t—t"),
PN sy g _ Sy (48)  With this alternative form, however, the equilibrium distribu-
{(pOu))=ot-t), (m(®u))=0. tion is no longer stationary.
The parameters;, o, a, andp that represent the strengths
of friction and noise are chosen such that they obey the

fluctuation—dissipation relations IIl. CALCULATING POTENTIALS OF MEAN FORCE
02=2yksT, p?=2aksT. (49) FROM STEERED MOLECULAR DYNAMICS

o ) o SIMULATIONS
In the original formulation of the Langevin piston methdd,

only the volume degree of freedom is used for temperature In this section we present a method for calculating PMFs
control; in other wordsy; and o; are set to zero. However, from SMD simulations and discuss related issues. The
the additional temperature control leads to faster relaxatiomethod is based on Jarzynski's equality and the choice of a
of energy. The following arguments apply to either case. large spring constant for the guiding potential. Since the ex-
The stochastic differential equatiofiEg. (46)] govern  ponential average appearing in Jarzynski's equality is diffi-
the time evolution of the microscopic statef,V,b). No-  cult to evaluate, the cumulant expansion is employed as an
tice thatb, the momentum associated with the volume, isapproximation. We discuss the possibility that SMD simula-
included. From these stochastic differential equations foltions through the use of stiff springs can be made to conform
lows the Fokker—Planck equation for the probability distri-to Gaussian work distributions for which the cumulant ex-
bution f(r,p,V,b,t), pansion for PMFs can be safely terminated at second order.
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A. PMF, SMD, and Jarzynski's equality The averag€-) in Eq. (58) is taken over the ensemble of
trajectories the initial statgs(0),p(0)) of which are sampled

Consider a classical mechanical systeniNgfarticles in . .
from the canonical ensemble corresponding to

contact with a heat bath at constant temperafur& micro-

scopic state is specified byNdimensional positior and T ©)(r(0),p(0)). _ _ _

momentump. Suppose that we have identified a reaction !N the following section we use the so-called stiff-spring

coordinate&(r). The PMF®(&) along ¢ is defined by approximation in order to extrady(¢), the PMF of the origi-
nal H-system, fromF, , the free energy of thél-system.

exr[—ﬁfb(f’)]=J drdpds(&(r)—€")exd — BH(r,p)],
(53 B. The stiff-spring approximation

where 8=1/kgT is the inverse temperature ardi is the At a certain instant, the value of the parameter is
Hamiltonian. The PMFD() is the Helmholtz free energy fixed at\(t)=A(0)+wvt. The reaction coordinaté(r(t)),
profile along the reaction coordinat the probability of  on the other hand, may take any value, though the guiding
observing the reaction coordinate &tis proportional to  potential[Eq. (55)] holds it near\(t). The idea of the stiff-
exd —BP(é)]. If the system is in contact with a heat—volume spring approximation is to minimize the fluctuation of the
bath at constant temperatufleand pressuré®, the corre-  reaction coordinate among different trajectories by choosing
sponding PMF is defined by a sufficiently large spring constaktfor the guiding poten-
tial.
ex;{—ﬂd)(§’)]=f dvf dpf dré(&(r)—¢&") The free energy-, can be expressed in terms of the
v PMF ®(¢) as follows:

xXexd — BH(r,p,V)— BPV], (54) Bk
eXK_BF)\):J’ drdp exp[ —BH(r,p)—- 7[5(0—)\]2]

where [\ dr denotes an integral over positions contained in
the volumeV. In this case the PMF is the Gibbs free energy
profile along the reaction coordinate. For the sake of simplic- :f drdpf de' S(&(r)—¢&')
ity, we will work within the isothermal framework. The gen-
eralization to the isobaric—isothermal framework is straight- Bk
forward. ><exp[—,8H(r,p)—7[§(r)—)\]2]

SMD is an efficient way to explore the system along the
reaction coordinate. In a SMD simulation a guiding potential Bk

=f dfem[ —B(§)~ S (6-1)?

(61)
k
_ 12
()= 2[5(0 M (59 When k is large, most of the contribution to this integral
comes from the region arourié=\. Thus we take the Taylor

is added to the original HamiltoniaH. We write the total series of exp-BP(£)] abouth,

Hamiltonian as

~ DN
H(r,p)=H(r,p)+hy(r). (56) exfg — BD(&)]=exd — BP(N)] a; )
The parametek is changed typically with a constant veloc-
ity, B| FD(N\) (&(D()\))Z (En)?
A(t)=\(0)+ut, (57) A 2
covering the relevant region @ Atomic force microscopy
experiments can be accounted for by the same procéfure. + , (62)
Applying Jarzynski's equality to thél-system, we ob-
tain and then obtain the expansion of E§l) aboutk=« by
1 calculating the integral for each term,
F)\(T)_F)\(O)z_ EIOQ(GXH:—EW(T):D (58) (92@()\)
_ exp(— BF,) =ex — BO(M)] —
HereF, is the Helmholtz free energy of the-system, IN
~ ab(N)\2
exp(— BF)) = f drdp ex — BH(r,p)], (59 =Bl 5| [roand);. (63

andW() is the work done on thel-system during the time  Upon taking the logarithm and dropping the irrelevant terms
interval between zero and calculated for each trajectory that are independent of, we find

(r(t),p(t)) as

CD()\)) 1 ach()
2

CI)()\)— (
W(7)= fdt[ Hm)(r p)} . (60) 2 Bk
(r,p)=(r(t),p(t)) (64)

+0(1Kk?),

Downloaded 27 Mar 2004 to 192.17.16.162. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5954 J. Chem. Phys., Vol. 120, No. 13, 1 April 2004 S. Park and K. Schulten

shift P(W)e AW is another(unnormalizedl Gaussian with the
N same width, but with its peak shifted toward the leftBy?.
When the shift is much larger than the width, there is little
overlap betweerP(W) and P(W)e AWV, which makes the
estimate of the exponential average impractical; it is practi-
cal only when the shift-to-width ratigBo is not too large,
namely when the work fluctuatiom is not much larger than
the temperaturé&gT.

Because of the difficulty in estimating the exponential
average, the cumulant expansion is often empld{&d?®
The logarithm of an exponential average can be expanded in
terms of cumulants,

log(e*) = (x)+ 3((X*) = (x)%) +--, (66)
- where the first and second cumulants are shown. Marcink-
P(W) W iewicz's theorerfi* states that eithefi) all but the first two
FIG. 2. Difficulty of estimating the exponential average. Typically, the peakcumUIa_mtS vanish ofii) ther_e are an infinite nu_mber of no_n'
of P(W)e W is shifted from that of the work distributioP(W). This  vanishing cumulants. The first case happens if and only if the
makes(e A"} difficult to estimate. On the other hanfi) and(W?) are  variable x is sampled from a Gaussian distribution. Using

easier to estimate becauBéW)W and P(W)W? are centered around the this expansion in Ec(58), we obtain the cumulant expansion
peak of P(W). formula for the free energy,

o F)\(T)_F)\(O):<W(T)>_§(<W(7)2>_<W(7)>2)+”'- (67)
which is inverted to

1/9E\2 1 #2F An approximate formula is obtained by terminating the se-
DN)=F,+ — h) o thO(l/kz). (65) ries at a certain order. In fact, the second order formula is
2k | N 2Bk g\2 identical with the near-equilibrium formfa*® predating

Higher order terms can be obtained in a similar way. Jarz\i/vnhskls equality. imate f la based on th
In a practical application, one chooses the spring con- en we use an approximate formula based on the cu-

stantk large enough that the fluctuation of the reaction coorTUlaNt expansion, two kinds of error are involved: the error

dinate among different trajectories is minimized, or smallerdu? o the' truncatlon. of higher order terms and the error due
o insufficient sampling. If we use the exact form{iE&g.

than the resolution one seeks. A number of trajectories ar . ) : .
8)], we will have no truncation error, but will have possi-

generated by repeating the SMD simulation with initial con- v 2 bi i b f the difficulty i imat
ditions sampled from the initial canonical ensemble, and thé)y a big sampiing error because of the diticulty In estimat-

work W( ) is calculated as a function of the final timdor ing the exponential average. On the other hand, low order
each trajectoryEq. (60)]. The free energf, is then calcu cumulants are relatively easier to estimate from limited sam-
. . )\ =

. . ling. Figure 2 illustrates this showing that the curves
lated as a function ok by using Eq.(58) or the cumulant P >
expansion[Eq. (67)] which will be explained shortly. The P(W)W and P(W)W" are centered around the peak of

. 7BW . . .
PMF @ is obtained from Eq(65) up to a certain order in &/ P(W) while the curveP(W)e is shifted away from it

the next order can be used for checking the validity of theThUS’ for limited sampling an approximate formula may

stiff-spring approximation. In the simplest case the PMF iSWork better than the exact formula. Especially the second

calculated from the leading ordeb,(\)=F, , which is jus- %rCiSethEu;?#JSIr:tii);%%g%mn formula has proven to be effective
tified if the first order term turns out to be small. ' . L
The most fortunate case arises when the work distribu-
C. Cumulant expansion tion is Gaussian, for which the second order formula can be
used without the penalty of a truncation error. For slow pro-
that the exponential average™ #") is dominated by small cesses, the work distributi_o.n is expected ?:[o be Gaussian as
work values that arise only rarely. An accurate estimate ofu99ested by the near-equilibrium formﬁ?é. For processes
PMF hence requires proper sampling of those rare trajectd?f arbltrary speeds, in gengral, the work distribution may not
ries that result in small work values. This point is illustrated be Gaussian. In t.he foIIqwmg we argue that a SM[,) simula-
in Fig. 2. Let P(W) be the probability distribution of the t|9n _performed with a stiff spring leads to a Gaus&an_work
work, which is typically of a bell shape. The(W)e™ AW is dlstr|put|on regardless of the speed of the process; this may
another bell-shaped function, but with its peak shifted toward®*Plain the success of the second order formula in previous
the left from that ofP(W). Most work values are sampled 2Pplications.
around the peak oP(W), whereas the exponential average
JdwP(W)e AW cannot be estimated accurately without
properly sampling the region around the peak of
P(W)e PV, For example, assume thR{W) is a Gaussian Consider a SMD simulation performed along a reaction
with a width (defined as the standard deviati@f . Then coordinate ¢ with a moving guiding potential k/2)(¢

The major difficulty in the use of Jarzynski's equality is

D. The Gaussian nature of the work distribution
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—ot)?. [For simplicity we set(0)=0 in Eq.(57), which can  the irreversible(dissipativé work. (The reversible work is
be done by shifting the origin of the reaction coordinptet  the same as the change in the PEB This change of vari-
us assume that the motion along the reaction coordinate caables leads to, using Eq&’2) and (74),

be described by the overdamped Langevin equation, which is

frequently used for modeling biomolecular processes, ?: ¥_v+ %(p"(vt)
t t
dé d
g1~ BD(&) V(&) + V2D (&) 7, (68) dé
& ~a—v=—[3kD(vt)§—v+ 2D(vt) n, (769
with a white noise variable;,
) , dQ dw
<7](t)7](t )>=5(t—t ) (69) EZE—UQ/(Ut)Z_Uké’. (76b)

The diffusion coefficienD, in general, is¢-dependent. The
potential U(¢,t) is the sum of the PMF and the moving
guiding potential,

From these stochastic differential equations follows the
Fokker—Planck equation for the probability distribution
P({,Q,1),

k

U(ED=D(E)+ 5 (é—vt)2 70

(&0 © 2(5 ) b %=EP= ,BkD(vt)+[v+,8kD(vt)§](%
The initial condition£(0) is sampled from the equilibrium
distribution corresponding to the initial potentidi(£,0) at 92
temperatureT. If both D and ® are constant, Eq68) de- +D(t) —Z Fvki—q
scribes the diffusion on a moving harmonic potential, for 9
which the work distribution is Gaussidfiin the following  The adjoint of the operatof is
we show that if the spring constakis sufficiently large, the
dynamics(after a change of variables governed by essen-
tially the same equation as the diffusion on a moving har-
monic potential and therefore the work distribution is Gauss-

P. (77)

‘ J 52 d
L'=—[v+BkD(vt){] &_§+D(vt) a—gz—vkga—ﬂ. (78

ian. The initial distribution
Let us assume tha&tis chosen so large that the reaction
: . o Bk Bk
coordinate¢ is always close to the center of the guiding P(£,Q,00=\/=—exp — = ?|8(Q), (79
potential,vt. Then the potential can be approximated as 2m 2

K which is Gaussian, serves as the initial condition for the
U(ED)=D(vt)+D'(vt)(E—vt)+ E(f—vt)z, (71 Fokker—Planck equation.
It proves to be more effective to work with tleeimulant
and the overdamped Langevin equatj&u. (68)] as generating function

g~—/3[)(ut)[k(g—vt)+c1>'(vt)]+Jmn. (72) Q(s,u,t)=logf:dzfldﬂexp(isz+iuQ)P(§,Q,t)

dt
. o (80)
The external work done between time zero amslgiven by
Eq. (60), with H replaced byU(&,t) in Eq. (70) than dealing with the probability distributiod directly. No-
’ ’ ’ tice thatP is completely determined b through the in-

t .
W(t)= _ka dt[£(t) —ot']. (73 verse Fourier transform
0
1 o0 o
Taking the derivative, we obtain P({Q.0)= (2m)? f_mdsf_mdu
dd_VtV: —vk(&—vt). (74) Xexp(—is{—iuQ)expQ(s,u,t). (81

WhenQ is expanded as a power series s)U), the coeffi-
Equations(72) and (74) constitute a system of stochastic cients give cumulantéRef. 35, Sec. 2)7

differential equations.

The following change of variables,&W)—(Z,Q), Q(s,u,t) =i(£(1))s+i{Q(t) ) u—(L(1) (1)) sU
proves to be useful: — X (1)) 2= HO(1)2) U2+ - (82)
1 .
l=éE—vt+ Fq),(vt) ' (759 Cumulants can be expressed in terms of moments

(CQ)=(LQ)= (), (P)=(A)—(D)? (83

and so on. By Marcinkiewicz’s theoreththe degree of the
The new variabl€ is the deviation of the reaction coordinate power serie3Eq. (82)] is either two(for Gaussian distribu-
from the instantaneous minimum of the potentialand() is  tions) or infinity.

Q=W—-[D(vt)—P(0)]. (75b)
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Using Egs.(77) and(80), we obtain a differential equa- (Q2).. Therefore, the time evolution &% is determined by
tion governing the time evolution of the cumulant generatingihe time evolution of the cumulant8 Substituting the cumu-

function, lant generating function
B e [ acan exprise+ive 2 Q=KL+ QU= (£0)esU-KP)eS~ HO2)ou?
5 ) . into Eq.(84) we find the differential equations governing the
=e f dZdQ exp(is{ +iuQd) LP time evolution of the cumulants,
4
=e—Qf dZdQPL expliss +iuQ) « >=—BkD vt)($)—v, (883
a0 el 2 aqQ)
=e dZdQP{—ivs—D(vt)s T vk(2), (88b
—[iBkD(vt)s+ivku]}exp(is¢ +iuQ) d(zQ),
J =—vk({%)c= BkD(v1)(LQ)c, (880
=eQ[—ivS—D(vt)Sz—[ﬁkD(vt)S-i-vku]a—s e ,
50 <§t>° —2BKD(vt)(£%)¢+2D(vt), (880)
—ivs—D(vt)s>—[BkD(vt)s+vku]—. (84
Js d<Qz>c
An important property of this differential equation is that if dt ~20k{£2)c. (889

Q at some instant happens to be a second degree polynomial,
thenaQ/4t is also a second degree polynomial @Det any The accompanying initial condition is obtained from Eq.
later (or earliep instant remains to be a second degree poly-(7 9,
ir;lonm|al Thereforepnce P is Gaussian, it is always Gauss-  (£(0))=0, (Q(0))=0, (Z(0)Q(0)).=0,
: 89
The general Gaussian distribution for two variables n Q012 = ®9
(£,Q) can be written in terms of a positive definite correlation (¢(0) >C_ﬁ1 (Q(0)%) =

matrix C, . . ' . .
Equation(88) is a system of first-order linear ordinary
1 1 .. differential equations, and the general solution can be easily
= Zw\/ﬂex —5 L 0L, (858 \ritten in terms of integrations. However, here we seek sim-

pler approximate solutions. In solving E@8), (£), ({Q).,
—(0) [P (L9 and(?). will feature relaxationgexponential decayswith
1= ( <Q>) oy, (03 (85D the time scale of BkD. We assume that these relaxations
¢ ¢ are much faster than the change in the diffusion coefficient
Integrating out gives the probability distribution fof), D(vt). In other words, we assume

f 4 exp[_ (Q—(Q))?
27T<Q )e 2<Qz>c

which is Gaussian. The probability for the total workis  wherel is some characteristic length scale over which the

also Gaussian becau¥eis linearly related td) [Eq.(75b)].  diffusion coefficient changes considerably. This assumption,
In summary, under the assumption that the overdampewhich is likely to be valid because we are using stiff springs,

Langevin equation is a good approximation, SMD simula-can be checked once the diffusion coefficient is estimated.

tions with stiff springs result in Gaussian work distributions, Under this assumption, we neglect the relaxations and find

for which the second order formula of Jarzynski's equalityan approximate solution to E¢88),

can be used without any truncation error. The idea of using a

, (86) BE—D <, (90)

stiff spring was originally motivated by the need to extract a (L(t))y=— (919
PMF as a function of a reaction coordinate from a free en- BkD(v1)
ergy as a function of an external paraméter The use of a
stiff spring seems to have another important advantage, (Q(t))= f dt'— 5 (91b)
namely keeping the work distribution Gaussian. B ( )’
(LOQ))e=— — (919

E. Time evolution of cumulants A7KD(Y)

The Gaussian distributioR [Eq. (85)] is completely de- («®? :i (919
termined by the cumulantgd), (Q), (£Q)., ({%)., and ¢ Bk’
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2
—_. (91e
B°D(vt) 20}

Let us explore implications of this solution. For this pur-
pose, we rewrite Eq91) into the following equivalent equa-
tions. (In doing so, we return to the original variablésand
W.)

t
(Q(1)%) = fodt'

PMF (kcal/mol)
>

t
(W(t)):—kaodt’[(g(t’»—vt’], (929
B 2 ot
(W(D) = 5 (W())e=D(ut) —D(0), (92b)
t 1 1 Tt = = n
2\ ’ ’ ’ 10 15 20 25 30 35
<W(t) >C_ kaJOdt <§(t )W(t )>C’ (92C) end-to-end distance (A)
1 FIG. 3. The PMF of deca-alanine with respect to its end-to-end distance
(f(t)2> - (92d) A typical helical structure af=15.2 A and a typical coil structure &=33
¢ Bk’ A are shown. The backbones are represented as ribbons. The end-to-end
distance is measured between the N atom of the first residue and the capping
202 d<W2>c -1 N atom at the C-terminus. Figure made with VMRef. 47).
D(vt)= —| —— 2
(vt) 32( n ) (928

Equation (929 follows directly from the definition of the
work W [Eq. (73)]; it does not depend on the assumption of
the overdamped Langevin equatidi&qg. (68)]. Equation
(920 also follows directly from the definition oV,

(nonequilibrium stretching simulations through various or-
ders of the cumulant expansi¢iqg. (67)] and through the
exponential averaggEqg. (58)]. The accuracy of the calcu-
lated PMFs was assessed compared to the exact PMF ob-
T L L , ) , , tained from reversibléquasiequilibrium stretching simula-
(W(t)F)c=0v"k fodt fodt (L&) —ot' JLE(") —vt"])e tions. Shown in Fig. 3 is the exact PMF obtained from
reversible simulations along with two typical configurations
vttt , , Y " of deca-alanine, a helix and a coil.

:szszodt fo dr(L&(t)) —ot JLE(") —vt"])e Here we stretch deca-alanine in an irreversible manner
and examine the resulting distribution of work. In the simu-
lation, one end of the moleculéghe N atom of the first resi-
due is fixed at the origin and the other effthe capping N

. . . atom at the C-terminyss constrained to move only along
Equation(92b) is nothing but the second order formula of the z axis. The guiding potentiah, (r)=(K/2)[ £(r)—\ ]2,

Jarzynski's equality. Equation®2d) and (929 are conse- with the spring constank=500 pN/A, is added to control
guences of the overdamped Langevin equation and the fas[ﬁﬂe end-to-end distance. The molécule is stretched by
relaxation conditionEq. (90]. Equation(926, which is a changing the parametarf.rom 13 to 33 A with a constant
rearrangement of Eq91e, can be used to estimate the dif- speed. Two different speeds, 10 and 100 A/ns, are used.
fu5|o_n coefficienD, which in tu_rn can bgi%l;r?ed to check the These speeds are, respectively, 100 and 1000 times higher
consistency of the fast-relaxation conditioh. than the reversible speédFor the sampling of trajectories,
we select initial coordinates from a pool of 10 ns equilibrium
IV. THE HELIX—COIL TRANSITION OF DECA-ALANINE simulation(with \ fixed at 1_3 ,5) apd initial momepta from
the Maxwell-Boltzmann distribution. All simulations were
In this section, through an exemplary SMD simulation, done at constant temperatuf@0 K) with the temperature

t
=—2ka0dt'<g(t')wa')>c. (93)

we illustrate the PMF calculation method of Sec. Ill, andcontrolled by Langevin dynamics. The integration time step
demonstrate the Gaussian nature of the resulting work distrisf 2 fs was used. The molecular dynamics progmasvip
bution. (Ref. 48 was used with theHARMM22 force field?®

We choose as an exemplary system the helix—coil tran-  The spring constant of 500 pN/A is large enough to en-
sition of deca-alanine in vacuum. Deca-alanine is an olisure that the end-to-end distanéelosely follows the con-
gopeptide composed of ten alanine residues. In vacuum atraint centeir.?® For the PMF calculation, we use the lead-
room temperature a molecule of deca-alanine folds into @ng order,®(\)=F, , in the stiff-spring approximatiofEq.
helix. When it is stretched by an external force, the moleculg65)]. The next order is found to be smaH0.5 kcal/mo)
makes a gradual transition to a random coil. For this systergompared to the overall scale of the PMF.
the relevant PMF is the free energy profile as a function of o .
the end-to-end distance of the molecule. In an earlier $tudy A. The work distribution and the PMF calculation
this system was used to assess the accuracy of PMF calcula- Figures 4 and 5 show analyses of the simulationsvfor
tion methods. The PMF was estimated from irreversible=10 and 100 A/ns, respectively. For each speed, 10 000 tra-
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FIG. 4. The PMF calculation and the work distribution from the irreversible FIG. 5. The PMF calculation and the work distribution from the irreversible
stretching simulations with the speed=10 A/ns. (a) Plotted against the  stretching simulations with the speeer 100 A/ns. See the caption of Fig. 4
end-to-end distance are the average wofW/)), the variance of work for details.

((W?),), the PMF estimated with the exponential averade,), and the

PMF estimated with the second order cumulant expansioy).(The exact

PMF &, is shown as a dashed liné) Five normalized histograms of Recall that there are two kinds of error involved in the
work at five different end-to-end distances=17, 21, 25, 29, and 33 A as

marked by triangles ita), are compared with the Gaussian curggashed ~MF calculation: the truncation error and the sampling error
lines) determined from the meafW) and the variancéw?), . (Sec. I Q. As illustrated in Fig. 2 and discussed in Sec.
111 C, the sampling error generally increases with the work
fluctuation V{W?)., which in this example grows up to 1.9
jectories were generated. For each trajectory, the Wétlk  kcal/mol (3.kzT) for v=10A/ns and 4.2 kcal/mol
calculated as in Eq(73). The distribution of work indeed (7.0kgT) for v=100A/ns. In the ideal case in which the
seems to be Gaussian throughout the entire course of thgork distribution is perfectly Gaussian and the sampling is
process, as can be seen from Figb) 4nd 3b) in which five  perfect, both®,,, and @, should be equal tabq,q. The
histograms at five different end-to-end distanpgmarked by result for v = 10 A/ns [Fig. 4@)] seems to be very close to

triangles in Figs. ) and 3a)] are compared with the s e situation. However, the result fior- 100 A/ns[Fig.

Gaussian curves determined from the meat) and the 541 shows some discrepancy. The discrepancy between
variance(W<).. The average worKW) includes the irre- @y and B e, can be atiributed entirely to the sampling

V(_arsible work, which is _discounted by Jarzynski’'s equality. I”error; it would require more trajectories to malke,, accu-
Figs. 4a) and 5a), estimates of the PMFdy, from the rate in the entire region. The discrepancy betwdenand

exponential average estimator athd _from the second order ® .S POSsibly due to both truncation eridand sampling
cumulant estimatgrare compared with the exact PMb, . error

obtained in Ref. 25. Fay =10 A/ns, both®,,, and®, give
excellent estimates for the PMF in the entire region; they are _ _

almost indistinguishable fron® ... For v=100A/ns, on B. Err_or_ anaIyS|s_of the PMF calculation

the other hand, the estimates are good ug#@5 A, but from finite sampling

afterward start to diverge from ¢, Peyp is slightly better We needed as many as 10000 trajectoriss each
for 0s¢<21 A and®d, is better for the rest of the region.  stretching spegdn order to examine the work distribution.
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FIG. 6. Error analysis. The relative root-mean-squ&®lS) errors forAd®, As can be seen from Fig. 6, for all these three comparisons
the total change in the PMF, estimated with the exponential average estimzll-ewer slower trajectories win

tor (squares and with the second order cumulant estimatarcles, are
shown for four different sampling sizes. The upper two curves correspond to ) )
v=100 A/ns, and the lower two curves ic=10 A/ns. C. Time evolution of cumulants

and the diffusion coefficient

Under the stiff-spring condition and the assumption of
It was possible to generate such a large number of trajectdhe overdamped Langevin equation, time evolution of the
ries because our system is fa|r|y smdln4 atoms In usual cumulants involving the reaction coordinaggend the work
SMD simulations of proteins (typically involving W obeys the differential equations given in E§8). When
~10° atoms), however, current computational technologythe fast-relaxation conditiofEq. (90)] is satisfied, the solu-
only permits much fewer trajectories. Therefore, it is impor-tion to these differential equations is given by E1), or
tant to study the accuracy of the PMF calculation method irfquivalently by Eq.(92). As discussed in Sec. IlIlE, Egs.
the case of small sampling sizes. (929 and(92¢ are direct consequences of the definition of

Using the 10 000 trajectories generated, we examine théhe work W. Equation(92b) is a statement of the second
accuracy of the estimated PMFs for various sampling sizerder formula of Jarzynski's equality, the validity of which
Since the accuracy generally decreases with the stretchijas already examined in Secs. IVA and IV B. Now we ex-
distance, we use as a measure of accuracy the relative rogmine, in the present example of deca-alanine, E8@d
mean-squaréRMS) error for the end-point difference in the and(92¢ which are consequences of the overdamped Lange-
PMF, Ab=d(33 A)—d(13 A). Four different sampling sizes Vin equation.
are considered: 10, $010%, and 10. For each sampling Figure 7 showg £%)., the variance of the reaction coor-
size, all 10000 trajectories are used. For example, for théinate, fluctuating around gk, the value stated in E¢92d).
sampling size 10, we divide the 10 000 trajectories into 100d-igure 8 shows two curves corresponding to the position-
sets of 10 trajectories, estimatab from each set with the dependent diffusion coefficient estimated with E§2¢
exponentia| average estimatm@exp) or with the second from the data fov =10 and 100 A/ns, respectively. Although
order cumulant estimatorA®,), calculate for each set the the two curves do not completely coincide, their overall
relatve RMS error from the exact valuRAd
=21.4kcal/mol, and take the average of the 1000 errors cal-
culated.

The result is shown in Fig. 6. Far=10A/ns, there is
only a small difference between the accuracied &f,,, and
Ad,; for the sampling size 10 the former is slightly better,
and for the other sampling sizes considered the latter is
slightly better. Foro=100A/ns, on the other handy®,
gives substantially better estimates; the erroAdf, is only
one half of that ofA®,,,. Overall, the second order cumu-
lant estimator yields the more robust estimate. This finding is
somewhat contradictory to the conclusion of Ref. 22.

A common question in computational studies using

e o
() w

diffusion coefficient D (A%/ps)
o

Jarzynski's equality is how to use optimally a given amount 0 . . . .
of computing time. Is it advantageous to generate fewer 10 20 30
slower trajectories or more faster trajectories? In the present end-to-end distance (A)

example, we can make,thr?e compgrlsons based on eql’l—é}b 8. The position-dependent diffusion coefficient estimated with Eg.
amounts of computing timei) 10 trajectories of 10 A/ns (924, The solid line is from the data far=10 A/ns, and the dashed line
versus 100 trajectories of 100 A/r&) 100 trajectories of 10  v=100 A/ns.
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shapes agree. As deca-alanine is stretched from its equilitparticles are harmonically constrained? Should one include
rium length(é=15.2 A), the diffusion coefficient increases, in this case the constraining forces in the calculation of pres-
reaches a peak at=18 A, and then decreases again. Thesure? This question is best answered by tracing the deriva-
estimated diffusion coefficient is in the range of 0.0I#s  tion of the virial equation, bearing in mind the more general
=D=0.27 R/ps. Accordingly we find 0.003&v/BkD situation(the presence of external forges

=<0.08 A for v=10A/ns and 0.03 Av/BkD=<0.8 A for v The virial equation is based on

=100 A/ns. Therefore//BkD is always small compared to q /N

the length scale over which the diffusion coefficient changes _< 2 ri.pi> =0, (A2)
considerably, validating the fast-relaxation conditifiaq. dt\ =

(90 wherer; andp; are the position and the momentum of par-

ticle i, respectively. This equation is true in equilibrium. In
V. CONCLUDING REMARKS fact, in equilibrium any relevant average is time-
We have discussed theoretical and practical issues coprdependent. The average appearing in &@) is just the
cerning the calculation of PMFs from SMD simulations. In particular one that leads to the virial equation. An important
particular, we have noticed that, under the stiff-spring condi{oint is that it must be possible for the system to reach equi-
tion and the assumption of the overdamped Langevin equdibrium. Harmonic constraints applied to some particles will
tion, SMD simulations result in Gaussian work distributions.certainly permit equilibrium. However, a uniform external
We have demonstrated the Gaussian nature of work distribuield with a periodic boundary condition will not; in this case
tions for an exemplary simulation. This result supports thethe virial equation loses its basis. Therefore we exclude from
use of the second order cumulant expansion in practical agliscussion those cases in which equilibrium is impossible.
plications of Jarzynski's equality in SMD simulations. Distributing the time derivative, we obtain
Our method of PMF calculation can be straightforwardly dr. dp;
transferred to atomic force microscopy experiments if suffi- <Z d_tl : pi> + < > d_tl> =0. (A3)
ciently stiff springs are chosen. ! :
We write the force on particleas the sum of}"’a” (the force
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APPENDIX: VIRIAL EQUATION FOR SYSTEMS T : |

UNDER EXTERNAL FORCES The third term on the left-hand side can be expressed in
Pressure is the force per unit area exerted by a system dgarms of rl)reisure hash fotl)lowsd The fV\r’]a” Interacts \é\,llgh the

the wall of a container. When the system is in equilibrium,SYStem Ionyt roggl_ the oun arybo the shystgm. T:}IY IS g

the interaction between the system and the container is beﬁ—elro l;]n ess part:c & happens to h ebon tde oun dary, l:?n'

anced with the internal interaction between the constituen?lnz td ose ﬁartlc es prﬁgnt on td'e'd OUE ak;y nec;e to be in-

particles and the pressure leaves its trace in the internal g§luded in the sum;r;-f=". We divide the boundary into

grees of freedom. Thus, pressure can be expressed in terﬁqglmtesmal patchegdenoted byw), collect the particles on

of the internal degrees of freedom, which is the basic ide£ach patch, and collect all the patches

behind the virial equation. The virial equation is most com- | I

monly written as <2| ref) = ; iga ri-f

 NkgT 1

v +6—V<; rij-fij>, (A1) -3 r(a)-<_2 f\i/vall>’ (A6)

lea

wherer;;=r;—r; is the position of particle relative to par- \yherer(q) is the position of patcl. Let us denote the area

ticle j andfj; is the force on particle exerted by particlg. A of patcha by a(«) and the outward normal vector Inf ).
derivation can be found in Ref. 51, Sec. 7.1. The virial equaThe quantity(s, fyvall> i.e., the average force exerted on
lea'l L

tion is particularly useful in computer simulations because itthe system by the wall through patch, is equal to
provides a way to calculate pressure without explicitly mod-_ Pa(a)n(«). The minus sign means that the force is in-

eling the interaction between the system and the containef,, .y - sypstituting this in the preceding equation leads to
One can also impose certain pressure and simulate the sys-

tem under that pressuré. wall
o . . . r-f" ) =—P2, a(a)r(a)-n(a)=—P | dsr.
Is this virial equation valid for systems subject to exter- 2. t 2 (@)r(e)-n(e) v
nal forces, for example, in SMD simulations in which some (A7)
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