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Steered molecular dynamics~SMD! permits efficient investigations of molecular processes by
focusing on selected degrees of freedom. We explain how one can, in the framework of SMD,
employ Jarzynski’s equality~also known as the nonequilibrium work relation! to calculate potentials
of mean force~PMF!. We outline the theory that serves this purpose and connects nonequilibrium
processes~such as SMD simulations! with equilibrium properties~such as the PMF!. We review the
derivation of Jarzynski’s equality, generalize it to isobaric–isothermal processes, and discuss its
implications in relation to the second law of thermodynamics and computer simulations. In the
relevant regime of steering by means of stiff springs, we demonstrate that the work on the system
is Gaussian-distributed regardless of the speed of the process simulated. In this case, the cumulant
expansion of Jarzynski’s equality can be safely terminated at second order. We illustrate the PMF
calculation method for an exemplary simulation and demonstrate the Gaussian nature of the
resulting work distribution. ©2004 American Institute of Physics.@DOI: 10.1063/1.1651473#

I. INTRODUCTION

A key goal of the study of biomolecular systems is to
identify the physical mechanisms establishing their func-
tions. In a typical investigation of a respective molecular
process, thereaction path, along which the process proceeds
in the configuration space, is identified or hypothesized and
the progress of the process is described by thereaction
coordinate.1 The potential of mean force~PMF! plays an
important role in such investigations. PMF is basically the
free energy profile along the reaction coordinate and is de-
termined through the Boltzmann-weighted average over all
degrees of freedom other than the reaction coordinate. PMF
not only succinctly captures the energetics of the process
studied, but also provides an essential ingredient for further
modeling of the process; with all the other degrees of free-
dom averaged out, the motion along the reaction coordinate
is well approximated as a diffusive motion on the effective
potential identified as the PMF.

Molecular dynamics is a simulation method widely ap-
plied to biomolecular systems.2 However, today’s molecular
dynamics simulations are limited to the nanosecond time
scale which is seldom long enough to observe relevant pro-
cesses.Steered molecular dynamics~SMD! therefore applies
external steering forces in the right direction to accelerate
processes that otherwise, due to energy barriers, are too slow.
SMD, reviewed in Refs. 3 and 4, has been widely used to
investigate mechanical functions of proteins such as stretch-
ing of extracellular matrix or muscle proteins5–7 and binding/
unbinding of protein–substrate complexes or adhesion
proteins.8,9 A typical SMD simulation steers a system by ap-
plying a constraint~e.g., a harmonic potential! that moves
along a prescribed path in the configuration space.

As SMD is an effective method to explore molecular
processes, it is desirable to calculate within its framework

PMFs. However, a SMD simulation is anonequilibriumpro-
cess, whereas PMF is anequilibrium property. Therefore a
theory is needed that connects equilibrium and nonequilib-
rium. Such a theory has become available through recent
advances in nonequilibrium statistical mechanics, especially
through the discovery of Jarzynski’s equality.10 These ad-
vances permit one to extract equilibrium properties from
nonequilibrium processes, but in practice efficient and con-
venient methods are required.

Jarzynski’s equality is an exact relation between free en-
ergy differences and the work done through nonequilibrium
processes. Since its first report in 1997,10,11 Jarzynski’s
equality has been a subject of intensive study. The relation
with the fluctuation theorems was elucidated by Crooks12

and by Jarzynski.13 Hatano and Sasa14 generalized Jarzyns-
ki’s equality to transformations between steady states based
on the steady state thermodynamics of Oono and Paniconi.15

And recently Liphardtet al.16 tested Jarzynski’s equality in
an experiment of RNA stretching.

Jarzynski’s equality finds a natural application in the cal-
culation of free energy or PMF from computer simulations or
experiments.17–22 Particularly, it provides the basis for the
method presented in this article for calculating PMFs from
SMD simulations. The method has been applied to the inves-
tigations of protein functions such as glycerol conduction
through the membrane channel GlpF~Ref. 23! and ammonia
conduction through HisF.24 In a benchmark study using the
helix–coil transition of deca-alanine as an exemplary system,
the accuracy of the approximations based on the cumulant
expansion was examined and compared to the traditional
method of umbrella sampling.25

This article is concerned with theoretical and practical
issues regarding the method of PMF calculation from SMD
simulations. Section II reviews and discusses the theoretical
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background. In Sec. III the method is presented and related
practical issues are discussed, in particular the efficiency and
convenience of the method. In Sec. IV the method is illus-
trated with an exemplary SMD simulation and the Gaussian
nature of the work distribution is demonstrated.

II. THEORY OF SYSTEMS DRIVEN AWAY
FROM EQUILIBRIUM

Thermodynamics is concerned with states of matter and
transformations between them. Statistical mechanics started
with the aim of explaining the laws of thermodynamics
based on the atomic picture of matter. It has been successful
with systems at equilibrium, but not quite so with nonequi-
librium ones. Most of the development in statistical mechan-
ics for nonequilibrium states has been limited to near-
equilibrium ~linear response! regimes. However, recently
there has been some further progress through the proof of
theorems concerning far-from-equilibrium states: the tran-
sient fluctuation theorem,26 the steady-state fluctuation
theorem,27 and Jarzynski’s equality also known as the non-
equilibrium work relation.10

This section deals with Jarzynski’s equality, which is the
basis of the PMF calculation featured in this article. Two
different derivations, one for Hamiltonian systems and the
other for stochastic systems, are presented. Jarzynski’s equal-
ity is generalized to isobaric–isothermal processes, and the
relationship with the second law of thermodynamics is dis-
cussed. Finally, it is demonstrated that Jarzynski’s equality
can be applied to computer simulations, in particular the
isobaric–isothermal molecular dynamics simulation using
the Langevin piston method.28

A. Jarzynski’s equality

Jarzynski’s equality is concerned with thermostated~in
contact with heat baths! systems that begin in equilibrium
and subsequently are driven away from equilibrium. Let us
consider a system in contact with a heat bath at temperature
T. Suppose the equilibrium states of the system are specified
by (T,l), where l is a parameter that can be controlled
externally. Initially l is, say, zero and the system is in the
equilibrium state (T,0). The parameterl is then changed,
say, up toL. Over the entire course of this process, the
system is kept in contact with the heat bath. LetW be the
external work done on the system during the process of in-
creasingl. We imagine to repeat the process many times.
Jarzynski10 discovered that the Helmholtz free energy differ-
enceDF between the equilibrium states, (T,L) and (T,0), is
related to the workW as

^e2bW&5e2bDF, ~1!

where b51/kBT is the inverse temperature andkB is the
Boltzmann constant. The average^•& is over repeated real-
izations of the process.

Although in general final states of the system will not be
in equilibrium, one can fixl at L and wait for the system to
relax to the equilibrium state (T,L). During the relaxation,
no external work is done. Therefore, Jarzynski’s equality can
be stated in terms of transformations between equilibrium
states:for a transformation between two equilibrium states

of a system in contact with a heat bath at temperature T, the
work W done on the system during the transformation and
the Helmholtz free energy differenceDF between the two
equilibrium states satisfy Eq. (1).

As shown in Secs. II B and II C, Jarzynski’s equality
applies to a broad range of processes. The system under con-
sideration may be microscopic or macroscopic, and the pa-
rameterl may be, but is not limited to, a thermodynamic
variable ~intensive or extensive!. In particular, Jarzynski’s
equality does apply to traditional thermodynamic processes
such as the isothermal expansion of an ideal gas. In the latter
case the parameterl is the volume of the gas. Most remark-
ably, Jarzynski’s equality holds regardless of the speed of the
process.

B. Jarzynski’s equality for Hamiltonian systems

Jarzynski’s equality was first derived for Hamiltonian
systems,10 as outlined in the following. Consider a classical
mechanical system in contact with a heat bath of constant
temperatureT. Let us label the systemS, the bathB, and the
compound of the twoSB. The compoundSB is thermally
isolated and evolves according to Hamiltonian dynamics. As-
suming that the surface energy~or the interaction energy!
betweenS andB is negligible, the Hamiltonian ofSB can be
divided into the Hamiltonians ofS andB:

Hl
SB~G,Q!5Hl

S~G!1HB~Q!, ~2!

whereG andQ denote phases~positions and momenta! of S
andB, respectively, and the Hamiltonian ofS depends on a
parameterl. The partition function, therefore, is factorized,

Zl
SB5E dGdQ exp@2bHl

SB~G,Q!#

5E dG exp@2bHl
S~G!#E dQ exp@2bHB~Q!#

5Zl
SZB. ~3!

Now consider a process in which the systemS is initially
in equilibrium with the bathB and subsequently the param-
eter is changed from 0 at time 0 toL at time t. The time
evolution ofSB is determined by the time-dependent Hamil-
tonianHl

SB(G,Q), where the explicit time dependence solely
comes from the dependence onl. Let us denote the initial
and final states by (G0 ,Q0) and (Gt ,Qt), respectively.
SinceSB is thermally isolated, the distribution of its initial
states would be best represented by a microcanonical en-
semble. However, asSB is a macroscopic system~even
whenS is not!, it is permissible to use a canonical ensemble
instead. Accordingly, (G0 ,Q0) may be sampled from the dis-
tribution

1

Z0
SB exp@2bH0

SB~G0 ,Q0!#. ~4!

Because of energy conservation, the work done during the
process must be equal to the increase in the energy ofSB,

W5HL
SB~Gt ,Qt!2H0

SB~G0 ,Q0!. ~5!

Thus the average of exponential work is written as
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^e2bW&5E dG0dQ0

1

Z0
SB exp@2bH0

SB~G0 ,Q0!#

3exp$2b@HL
SB~Gt ,Qt!2H0

SB~G0 ,Q0!#%

5E dG0dQ0

1

Z0
SB exp@2bHL

SB~Gt ,Qt!#. ~6!

The initial phase (G0 ,Q0) and the final phase (Gt ,Qt) are
related by a one-to-one map: the final phase can be obtained
from the initial phase by the forward time evolution of the
Hamiltonian system, and the initial from the final by the
backward time evolution. Therefore the integration variable
can be transformed to (Gt ,Qt), and according to Liouville’s
theorem the Jacobian of the transformation is unity,

^e2bW&5E dGtdQt

1

Z0
SB exp@2bHL

SB~Gt ,Qt!#5
ZL

SB

Z0
SB . ~7!

Finally, using Eq.~3!, we obtain Jarzynski’s equality be-
tween the workW and the Helmholtz free energy difference
DFS of the systemS,

^e2bW&5
ZL

S

Z0
S 5exp~2bDFS!. ~8!

The use of the canonical ensemble@Eq. ~4!# is a crucial
point of the derivation. Jarzynski~Ref. 13, p. 100! argues
that ‘‘the canonical ensemble should be viewed primarily as
a computational convenience.’’ This is justified as follows.
The canonical average@Eq. ~6!# can be expressed as a
weighted integral over microcanonical averages,

^e2bW&b
can5

1

Z0
SB E dG0dQ0

3exp@2bH0
SB~G0 ,Q0!#e2bW

5
1

Z0
SB E dG0dQ0E dEd~H0

SB~G0 ,Q0!2E!

3exp@2bH0
SB~G0 ,Q0!#e2bW

5
1

Z0
SB E dE exp@2bE1S0

SB~E!/kB

1 log^e2bW&E
mic#, ~9!

where^e2bW&b
can denotes the canonical average at tempera-

tureT51/kBb, ^e2bW&E
mic the microcanonical average at en-

ergyE, andS0
SB(E) the entropy ofSB at energyE andl50.

The integral overE in Eq. ~9! is dominated by the value ofE
that maximizes the integrand, namely that satisfies

2b1
1

kB

]

]E
S0

SB~E!1
]

]E
log^e2bW&E

mic50. ~10!

Since the workW is done through the manipulation of the
systemSwhich is much smaller than the bathB, the workW
must be much smaller than the energy scale ofSB. Thus the
third term in the left-hand side of Eq.~10! is negligible, and

the value ofE that satisfies Eq.~10! is equal to the equilib-
rium energy of SB corresponding to the temperatureT;
let us denote this energy byẼ. From Eq. ~9!, using Z0

SB

5exp@2bẼ1S0
SB(Ẽ)/kB#, we find

^e2bW&b
can5^e2bW&E

mic . ~11!

The use of the canonical ensemble instead of the microca-
nonical ensemble is therefore justified.

We have just derived Jarzynski’s equality based on
Hamiltonian dynamics. The derivation is surprisingly simple
and depends only on fundamental properties of Hamiltonian
dynamics, namely, energy conservation and Liouville’s theo-
rem. In the following we derive Jarzynski’s equality in a
different fashion.

C. Jarzynski’s equality for stochastic systems

The dynamics of a system in contact with a heat bath is
often described stochastically, without explicitly accounting
for the degrees of freedom of the bath. Jarzynski’s equality
can be derived in this framework under two common as-
sumptions, the Markov property and the balance condition.
~In fact, in this framework Jarzynski’s equality directly fol-
lows from the Feynman-Kac formula.! This type of deriva-
tion was first given in Ref. 11.

When the bath degrees of freedom are not explicitly
taken into account, the dynamics of the system can be de-
scribed only probabilistically, i.e., in terms of the probability
distribution f (G,t) for the microscopic state~or the phase! G
of the system at timet. We assume that the time evolution of
f (G,t) is a Markov processdescribed through

] t f ~G,t !5Ll~ t ! f ~G,t !. ~12!

The time evolution operatorLl depends on a parameterl.
We no longer need labels likeS or B because we are now
dealing with the systemS only. We also assume that the
equilibrium distribution

Cl~G!5
1

Zl
exp@2bHl~G!# ~13!

is stationary under the time evolution

LlCl~G!50. ~14!

This is a weak form of detailed balance and, hence, will be
referred to as thebalance condition. The balance condition is
a necessary condition forf (G,t) to relax toCl(G) whenl is
held constant. The system is initially in equilibrium corre-
sponding tol50, i.e.,

f ~G,0!5C0~G!, ~15!

which provides an initial condition that accompanies Eq.
~12!.

For each realization of the process changingl from 0 to
L, a trajectoryG(t) is obtained. From a trajectoryG(t) we
can calculate the work done on the system,

W@G~ t !#5E
0

t

dt@] tHl~ t !~G!#G5G~ t ! . ~16!
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The workW is a functional that depends on the entire trajec-
tory G(t) for 0,t,t. This expression will be made clear
when we discretize the process. The average^e2bW& is then
written as the path integral

^e2bW&5E DG~ t !P@G~ t !#e2bW@G~ t !#, ~17!

where the functionalP@G(t)# represents the probability for
observing the trajectoryG(t). As the time evolution operator
Ll(t) and the initial probabilityC0(G) completely determine
the stochastic dynamics of the system, they must also deter-
mine P@G(t)#. This will also be made clear in the discreti-
zation.

The discretization scheme used is illustrated at the top of
Fig. 1. Shown at the bottom of the figure is an alternative
scheme. Both schemes lead to the same final result. Time is
discretized astn5ndt (n50,1,...,M ), with an infinitesimal
intervaldt5t/M . G(t) andl(t) are discretized accordingly:
Gn5G(tn) and ln5l(tn), with l050 and lM5L. As
shown in Fig. 1 the discretized process involves two alter-
nating steps:

~1! The parameterl is externally changed fromln21 to ln

while the system resides atGn21 . During this step the
amount of work,Hln

(Gn21)2Hln21
(Gn21), is done on

the system. The total amount of work done during the
entire process is given as

W5(
n51

M

@Hln
~Gn21!2Hln21

~Gn21!#, ~18!

which converges to Eq.~16! in the continuum limit
(M→`).

~2! With l fixed atln , the system makes a transition from
Gn21 to Gn due to its internal dynamics described
through Eq.~12!. No external work is done during this
step. The change in the system energy,Hln

(Gn)
2Hln

(Gn21), can be attributed to the heat absorbed
from the bath. During the entire process the system ab-
sorbs heat of the amount

Q5 (
n51

M

@Hln
~Gn!2Hln

~Gn21!#. ~19!

We can easily check energy conservation,

W1Q5HlM
~GM !2Hl0

~G0!. ~20!

For each transition, Gn21→Gn , we denote by
Rln

(GnuGn21) the transition probability, i.e., the probability

that given its stateGn21 at tn21 the system makes a transi-
tion to Gn at tn . The probability to observe a certain dis-
cretized trajectory (G0 ,...,GM) is then

P~G0 ,...,GM !5Cl0
~G0!)

n51

M

Rln
~GnuGn21!. ~21!

Thus, in the discretized framework Eq.~17! becomes

^e2bW&5E dG0¯dGMCl0
~G0!

3F )
n51

M

Rln
~GnuGn21!Ge2bW, ~22!

with W given as in Eq.~18!. While the time evolution of the
probability f (G,t) is described in Eq.~12! in terms of the
operatorLl(t) , in the discretized framework it is described in
terms of the transition probability,

f ~Gn ,tn!5E dGn21Rln
~GnuGn21! f ~Gn21 ,tn21!. ~23!

The balance condition@Eq. ~14!# means that the equilibrium
distribution is stationary, which in the discretized framework
implies

Cln
~Gn!5E dGn21Rln

~GnuGn21!Cln
~Gn21!. ~24!

Now we are ready to derive Jarzynski’s equality. We
start by writinge2bW in terms of the equilibrium distribution
C,

e2bW5 )
n51

M exp@2bHln
~Gn21!#

exp@2bHln21
~Gn21!#

5 )
n51

M Zln
Cln

~Gn21!

Zln21
Cln21

~Gn21!

5
ZlM

Zl0

)
n51

M Cln
~Gn21!

Cln21
~Gn21!

. ~25!

Substituting this expression into Eq.~22!, we obtain

^e2bW&5
ZlM

Zl0

E dG0¯dGMCl0
~G0!

3 )
n51

M Rln
~GnuGn21!Cln

~Gn21!

Cln21
~Gn21!

. ~26!

By using the balance condition@Eq. ~24!#, the integrals can
be carried out one by one—starting with* dG0 , then* dG1 ,
and so forth. For example, the integral overG0 is calculated
as

E dG0Cl0
~G0!

Rl1
~G1uG0!Cl1

~G0!

Cl0
~G0!

5Cl1
~G1!. ~27!

After carrying out all the integrals, we obtain Jarzynski’s
equality,

FIG. 1. Discretization schemes. Two schemes lead to the same final result.
The scheme at the top is used here.
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^e2bW&5
ZlM

Zl0

5
ZL

Z0
5e2bDF. ~28!

D. Jarzynski’s equality for isobaric–isothermal
systems

It is a natural attempt to generalize Jarzynski’s equality,
which was originally derived for isothermal29 processes~i.e.,
for the canonical ensemble!, to other statistical ensembles.
Inspecting the derivation of Jarzynski’s equality, one realizes
that it is based on the same exponential form shared bye2bW

and the Boltzmann factore2bH. Therefore, for any ensemble
described by an exponential weighting factor a similar equal-
ity is expected. In particular, if a system is in contact with a
heat–volume bath at constant temperatureT and pressureP,
its equilibrium states are distributed according to theNPT
~constant number, pressure, and temperature! ensemble
which has the exponential weighting factore2b(H1PV), with
V being the volume of the system. In this section we prove
the following:For a transformation between two equilibrium
states of a system in contact with a heat–volume bath at
temperature T and pressure P, the work W done on the sys-
tem during the transformation and the Gibbs free energy
differenceDG between the two equilibrium states satisfy

^e2bW&5e2bDG. ~29!

The equality here is the same as the original Jarzynski’s
equality except that the Helmholtz free energy is replaced by
the Gibbs free energy.30 This is a useful result, as experi-
ments and computer simulations in biophysics are often per-
formed at constant temperature and pressure. We will call
Eq. ~29! the isobaric–isothermal Jarzynski equalityand the
original Jarzynski’s equality theisothermal Jarzynski equal-
ity.

The difference from the isothermal case is that the vol-
umeV of the system fluctuates and hence needs to be speci-
fied, in addition to the phaseG, in order to determine a mi-
croscopic state of the system. The HamiltonianHl(G,V), a
function of bothG andV in general, is assumed to depend on
some parameterl which is controlled externally. For each
value of l, the NPT partition functionYl , the Gibbs free
energy Gl , and the equilibrium probability distribution
Cl(G,V) are given as

Yl5E dVE
V
dG exp@2bHl~G,V!2bPV#, ~30a!

Gl52
1

b
logYl , ~30b!

Cl~G,V!5
1

Yl
exp@2bHl~G,V!2bPV#, ~30c!

where *VdG denotes an integral over all possible atomic
positions contained in volumeV and all possible atomic mo-
menta. Hereafter we denote (G,V) by X.

To prove the isobaric–isothermal Jarzynski equality, we
follow the approach in Sec. II C. Since it is a rather straight-
forward generalization, only a sketch of the basic steps of the
derivation will be given. The dynamics of the system is de-

scribed by stochastic dynamics, without explicitly account-
ing for the degrees of freedom of the bath. Again two as-
sumptions are made: the Markov property

] t f ~X,t !5Ll~ t ! f ~X,t ! ~31!

and the balance condition

LlCl~X!50. ~32!

Based on the same discretization scheme as in Sec. II C, the
work done on the system is given as

W5 (
n51

M

@Hln
~Xn21!2Hln21

~Xn21!#. ~33!

The averagê e2bW& can be written in terms of transition
probabilities,

^e2bW&5E dX0¯dXMCl0
~X0!

3F )
n51

M

Rln
~XnuXn21!Ge2bW. ~34!

The balance condition takes the form

Cln
~Xn!5E dXn21Rln

~XnuXn21!Cln
~Xn21!. ~35!

We can writee2bW in terms of the equilibrium probability
C,

e2bW5 )
n51

M exp@2bHln
~Xn21!#

exp@2bHln21
~Xn21!#

5 )
n51

M exp@2bHln
~Xn21!2bPV#

exp@2bHln21
~Xn21!2bPV#

5
YlM

Yl0

)
n51

M Cln
~Xn21!

Cln21
~Xn21!

. ~36!

Upon substitution of Eq.~36! into Eq. ~34! and completion
of the integrals, from* dX0 up to * dXM , we obtain the
isobaric–isothermal Jarzynski equality,

^e2bW&5
YlM

Yl0

5e2bDG. ~37!

E. Jarzynski’s equality and the second law of
thermodynamics

From Jarzynski’s equality@Eq. ~1!# and Jensen’s inequal-
ity ( ^ex&>e^x&) follows

^W&>DF, ~38!

where the equality sign holds if and only if all the sampled
work values are equal, i.e., if and only if the variance of the
work W vanishes.

The following is a direct implication of the second law
of thermodynamics for isothermal processes~Ref. 31, Sec.
13!: for a transformation between two equilibrium states of a
system in contact with a heat bath at a constant temperature,
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the work done on the system during the transformation is not
smaller than the Helmholtz free energy difference between
the two equilibrium states, namely,

W>DF, ~39!

where the equality sign holds if and only if the transforma-
tion is reversible. Jarzynski’s equality tells us that this is true
on average. For a single realization Eq.~39! might well be
violated. The chance of violation, however, is very small. Let
P(W) be the probability distribution for the workW. Then
the probability for observing a violation by the amount ofD
or larger is*2`

DF2DdWP(W). As shown in Ref. 32, from the
inequality chain

e2bDF5E
2`

`

dWP~W!e2bW

>E
2`

DF2D

dWP~W!e2bW

>e2b~DF2D !E
2`

DF2D

dWP~W! ~40!

it follows

E
2`

DF2D

dWP~W!<e2bD. ~41!

If D is a macroscopic quantity,e2bD is extremely small;
macroscopic violations of the second law are prohibited.

The equality sign in the second law@Eq. ~39!# holds
when the transformation is reversible. On the other hand, the
equality sign in Eq.~38! holds when the work distribution
has a vanishing variance.~When the variance is zero, all the
sampled work values are the same and therefore the equality
sign in Jensen’s inequality holds.! Generally, the variance of
work decreases as the transformation slows down, and
reaches zero in the reversible limit. This can be established
using the discretized framework of Sec. II C. When the trans-
formation is sufficiently slow, the totalM steps~Fig. 1! can
be divided into I intervals, each containingS steps (M
5IS) such that~i! Sdt is much longer than the correlation
time of the stochastic dynamics and~ii ! the Hamiltonian
changes negligibly overSsteps. Lete be the increment of the
parameterl over S steps:e5Sdl. The total workW can be
written as the sum of the work done in each interval,

W5(
i 51

I

wi ,

~42!

wi5 (
n5S~ i 21!11

Si

@Hln
~Gn21!2Hln21

~Gn21!#.

As e→0, which is approached as the transformation slows
down,wi satisfies

wi;e, var~wi !;e2. ~43!

Since wi ’s at different i’s are uncorrelated (Sdt is much
longer than the correlation time!, we find

var~W!5(
i 51

I

var~wi !;(
i 51

I

e2;e, ~44!

which vanishes ase→0.
In summary, for isothermal processes the second law of

thermodynamics is derived from Jarzynski’s equality. A simi-
lar argument applies to isobaric–isothermal processes, with
the Gibbs free energy playing the role of the Helmholtz free
energy. Another class of processes studied in thermodynam-
ics are those in which athermally isolatedsystem undergoes
an external operation~by changing some parameter!. If the
process is reversible, the entropy of the system remains con-
stant; if irreversible, the entropy increases. It is an interesting
question whether one can find for such processes an equality
similar to Jarzynski’s.

F. Jarzynski’s equality and computer simulations

Computer simulations cannot explicitly include baths of
infinite size ~or much larger than the systems of interest!.
However, it is possible to simulate theeffectof baths, and
various algorithms have been developed in this regard.33,34

Jarzynski’s equality is obeyed by most of those algorithms.
This is not surprising because~i! most simulation algorithms
are history-independent and hence represent Markov pro-
cesses;~ii ! the balance condition is a minimal effect of baths,
and accordingly any operative algorithm that simulates a
bath is expected to satisfy the balance condition.

Monte Carlo and molecular dynamics are two major
variants of molecular simulation methods. Monte Carlo is
obviously a Markov process since it is history-independent.
And Monte Carlo simulations, either isothermal or isobaric–
isothermal, satisfy the balance condition because they are
implemented based on detailed balance which is an even
stronger condition. As such, Monte Carlo satisfies the two
conditions for Jarzynski’s equality.11

One way to incorporate the effect of baths in molecular
dynamics simulations is to include additional terms~usually
friction and random noise! in the equation of motion in such
a way that the resulting trajectories sample the appropriate
statistical ensemble. The Langevin dynamics method for iso-
thermal simulations and the Langevin piston method28 for
isobaric–isothermal simulations belong to this category. The
resulting equation of motion is a stochastic differential equa-
tion due to the random noise term and can be converted to a
Fokker–Planck equation which is of the form of Eq.~12!
~Ref. 35, Sec. 4.3.4!. Then one only needs to check the bal-
ance condition, i.e., whether the equilibrium distribution is
stationary under the Fokker–Planck equation. Jarzynski11 did
exactly this for Langevin dynamics and confirmed that it
satisfies the balance condition. We will show in Sec. II G that
the Langevin piston method, too, satisfies the balance condi-
tion.

Another way to incorporate the effect of baths in mo-
lecular dynamics simulations is to introduce additional de-
grees of freedom while retaining the deterministic nature of
the dynamics.36 The resulting trajectories, when projected
onto the space of the original degrees of freedom, are sup-
posed to sample the appropriate ensemble. Nose´–Hoover
thermostat37,38for isothermal molecular dynamics is a typical
example. Even when the dynamics is deterministic, an equa-
tion of the form of Eq.~12! can still be written if one con-
siders ensembles; an example is provided by the Liouville
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equation in classical mechanics~Ref. 39, Sec. 9.8!. Again,
one only needs to check whether the equilibrium distribution
is stationary under the resulting Liouville-type equation.
Jarzynski10,11 confirmed that the Nose´–Hoover thermostat
indeed satisfies this.

G. The Langevin piston method
for isobaric–isothermal molecular dynamics

The Langevin piston method28 is widely used for
isobaric-isothermal molecular dynamics simulations. With
the Hamiltonian

Hl~r ,p!5(
i 51

3N pi
2

2mi
1Ul~r !, ~45!

the Langevin piston method involves the following stochas-
tic differential equations:

ṙ i5
pi

mi
1

b

3wV
r i , ~46a!

ṗi52
]

]r i
Ul~ t !~r !2

b

3wV
pi2

g i

mi
pi1s ih i , ~46b!

V̇5
b

w
, ~46c!

ḃ5B~r ,p,V,t !2P2
a

w
b1rm. ~46d!

Here r i , pi , and mi are atomic positions, momenta, and
masses, respectively;b and w are the effective momentum
and mass, respectively, associated with the volumeV. At
each instant, pressure is estimated through the virial equation
~see Appendix!

B~r ,p,V,t !5
1

3V (
i 51

3N F pi
2

mi
2r i

]

]r i
Ul~ t !~r !G ~47!

and is controlled towardP, the imposed pressure. For tem-
perature control, white noise variablesh i andm are used,

^h i~ t !h j~ t8!&5d i j d~ t2t8!,
~48!

^m~ t !m~ t8!&5d~ t2t8!, ^h i~ t !m~ t8!&50.

The parametersg i , s i , a, andr that represent the strengths
of friction and noise are chosen such that they obey the
fluctuation–dissipation relations

s i
252g ikBT, r252akBT. ~49!

In the original formulation of the Langevin piston method,28

only the volume degree of freedom is used for temperature
control; in other words,g i ands i are set to zero. However,
the additional temperature control leads to faster relaxation
of energy. The following arguments apply to either case.

The stochastic differential equations@Eq. ~46!# govern
the time evolution of the microscopic state (r ,p,V,b). No-
tice that b, the momentum associated with the volume, is
included. From these stochastic differential equations fol-
lows the Fokker–Planck equation for the probability distri-
bution f (r ,p,V,b,t),

]

]t
f 52(

i 51

3N
]

]r i
F S pi

mi
1

b

3wV
r i D f G

1(
i 51

3N
]

]pi
F S ]

]r i
Ul~ t !~r !1

b

3wV
pi1

g i

mi
pi D f G

2
]

]V S b

w
f D2

]

]b F S B~r ,p,V,t !2P2
a

w
bD f G

1(
i 51

3N s i
2

2

]2

]pi
2

f 1
r2

2

]2

]b2
f . ~50!

After some tedious but straightforward algebra, it can be
shown that the equilibrium distributionCl(r ,p,V,b) given
as

Cl~r ,p,V,b!5
1

Yl
exp@2bHl~r ,p!2bPV2bb2/2w# ,

~51a!

Yl5EdbEdVEdpE
V
dr exp@2bHl~r ,p!2bPV

2bb2/2w# ~51b!

is a stationary solution of the Fokker–Planck equation.
Therefore we conclude that if the initial states are sampled
from C0(r ,p,V,b), the isobaric–isothermal Jarzynski equal-
ity @Eq. ~29!# holds. Notice that the Gibbs free energyGl

52kBT logYl in this case has an additional term due to the
additional degree of freedom,b @compare Eqs.~30a! and
~51b!#. This additional term, however, is canceled out in the
differenceDG.

On an additional note, the stationarity of the equilibrium
distribution turns out to be sensitive to the form of the virial
equation. Often,pi

2/mi in the virial equation@Eq. ~47!# is
replaced by its thermal average,kBT, and the following form
is used:33

B~r ,p,V,t !5
NkBT

V
2

1

3V (
i 51

3N

r i

]

]r i
Ul~ t !~r !. ~52!

With this alternative form, however, the equilibrium distribu-
tion is no longer stationary.

III. CALCULATING POTENTIALS OF MEAN FORCE
FROM STEERED MOLECULAR DYNAMICS
SIMULATIONS

In this section we present a method for calculating PMFs
from SMD simulations and discuss related issues. The
method is based on Jarzynski’s equality and the choice of a
large spring constant for the guiding potential. Since the ex-
ponential average appearing in Jarzynski’s equality is diffi-
cult to evaluate, the cumulant expansion is employed as an
approximation. We discuss the possibility that SMD simula-
tions through the use of stiff springs can be made to conform
to Gaussian work distributions for which the cumulant ex-
pansion for PMFs can be safely terminated at second order.
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A. PMF, SMD, and Jarzynski’s equality

Consider a classical mechanical system ofN particles in
contact with a heat bath at constant temperatureT. A micro-
scopic state is specified by 3N-dimensional positionr and
momentump. Suppose that we have identified a reaction
coordinatej~r !. The PMFF~j! alongj is defined by

exp@2bF~j8!#5E drdpd~j~r !2j8!exp@2bH~r ,p!#,

~53!

where b51/kBT is the inverse temperature andH is the
Hamiltonian. The PMFF~j! is the Helmholtz free energy
profile along the reaction coordinatej; the probability of
observing the reaction coordinate atj is proportional to
exp@2bF~j!#. If the system is in contact with a heat–volume
bath at constant temperatureT and pressureP, the corre-
sponding PMF is defined by

exp@2bF~j8!#5E dVE dpE
V
drd~j~r !2j8!

3exp@2bH~r ,p,V!2bPV#, ~54!

where*Vdr denotes an integral over positions contained in
the volumeV. In this case the PMF is the Gibbs free energy
profile along the reaction coordinate. For the sake of simplic-
ity, we will work within the isothermal framework. The gen-
eralization to the isobaric–isothermal framework is straight-
forward.

SMD is an efficient way to explore the system along the
reaction coordinate. In a SMD simulation a guiding potential

hl~r !5
k

2
@j~r !2l#2 ~55!

is added to the original HamiltonianH. We write the total
Hamiltonian as

H̃l~r ,p!5H~r ,p!1hl~r !. ~56!

The parameterl is changed typically with a constant veloc-
ity,

l~ t !5l~0!1vt, ~57!

covering the relevant region ofj. Atomic force microscopy
experiments can be accounted for by the same procedure.40

Applying Jarzynski’s equality to theH̃-system, we ob-
tain

Fl~t!2Fl~0!52
1

b
log^exp@2bW~t!#&. ~58!

HereFl is the Helmholtz free energy of theH̃-system,

exp~2bFl!5E drdp exp@2bH̃l~r ,p!#, ~59!

andW(t) is the work done on theH̃-system during the time
interval between zero andt, calculated for each trajectory
(r (t),p(t)) as

W~t!5E
0

t

dtF ]

]t
H̃l~ t !~r ,p!G

~r ,p!5~r ~ t !,p~ t !!

. ~60!

The averagê•& in Eq. ~58! is taken over the ensemble of
trajectories the initial states~r ~0!,p~0!! of which are sampled
from the canonical ensemble corresponding to
H̃l(0)(r (0),p(0)).

In the following section we use the so-called stiff-spring
approximation in order to extractF~j!, the PMF of the origi-
nal H-system, fromFl , the free energy of theH̃-system.

B. The stiff-spring approximation

At a certain instantt, the value of the parameterl is
fixed at l(t)5l(0)1vt. The reaction coordinatej(r (t)),
on the other hand, may take any value, though the guiding
potential@Eq. ~55!# holds it nearl(t). The idea of the stiff-
spring approximation is to minimize the fluctuation of the
reaction coordinate among different trajectories by choosing
a sufficiently large spring constantk for the guiding poten-
tial.

The free energyFl can be expressed in terms of the
PMF F~j! as follows:

exp~2bFl!5E drdp expH 2bH~r ,p!2
bk

2
@j~r !2l#2J

5E drdpE dj8d~j~r !2j8!

3expH 2bH~r ,p!2
bk

2
@j~r !2l#2J

5E dj expF2bF~j!2
bk

2
~j2l!2G . ~61!

When k is large, most of the contribution to this integral
comes from the region aroundj5l. Thus we take the Taylor
series of exp@2bF~j!# aboutl,

exp@2bF~j!#5exp@2bF~l!#H 12b
]F~l!

]l
~j2l!

2
b

2 F ]2F~l!

]l2
2bS ]F~l!

]l D 2G ~j2l!2

1¯J , ~62!

and then obtain the expansion of Eq.~61! about k5` by
calculating the integral for each term,

exp~2bFl!5exp@2bF~l!#A2p

bk H 12
1

2k F ]2F~l!

]l2

2bS ]F~l!

]l D 2G1O~1/k2!J . ~63!

Upon taking the logarithm and dropping the irrelevant terms
that are independent ofl, we find

Fl5F~l!2
1

2k S ]F~l!

]l D 2

1
1

2bk

]2F~l!

]l2
1O~1/k2!,

~64!
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which is inverted to

F~l!5Fl1
1

2k S ]Fl

]l D 2

2
1

2bk

]2Fl

]l2
1O~1/k2!. ~65!

Higher order terms can be obtained in a similar way.
In a practical application, one chooses the spring con-

stantk large enough that the fluctuation of the reaction coor-
dinate among different trajectories is minimized, or smaller
than the resolution one seeks. A number of trajectories are
generated by repeating the SMD simulation with initial con-
ditions sampled from the initial canonical ensemble, and the
work W(t) is calculated as a function of the final timet for
each trajectory@Eq. ~60!#. The free energyFl is then calcu-
lated as a function ofl by using Eq.~58! or the cumulant
expansion@Eq. ~67!# which will be explained shortly. The
PMF F is obtained from Eq.~65! up to a certain order in 1/k;
the next order can be used for checking the validity of the
stiff-spring approximation. In the simplest case the PMF is
calculated from the leading order,F(l)5Fl , which is jus-
tified if the first order term turns out to be small.

C. Cumulant expansion

The major difficulty in the use of Jarzynski’s equality is
that the exponential average^e2bW& is dominated by small
work values that arise only rarely. An accurate estimate of
PMF hence requires proper sampling of those rare trajecto-
ries that result in small work values. This point is illustrated
in Fig. 2. Let P(W) be the probability distribution of the
work, which is typically of a bell shape. ThenP(W)e2bW is
another bell-shaped function, but with its peak shifted toward
the left from that ofP(W). Most work values are sampled
around the peak ofP(W), whereas the exponential average
* dWP(W)e2bW cannot be estimated accurately without
properly sampling the region around the peak of
P(W)e2bW. For example, assume thatP(W) is a Gaussian
with a width ~defined as the standard deviation! of s. Then

P(W)e2bW is another ~unnormalized! Gaussian with the
same width, but with its peak shifted toward the left bybs2.
When the shift is much larger than the width, there is little
overlap betweenP(W) and P(W)e2bW, which makes the
estimate of the exponential average impractical; it is practi-
cal only when the shift-to-width ratiobs is not too large,
namely when the work fluctuations is not much larger than
the temperaturekBT.

Because of the difficulty in estimating the exponential
average, the cumulant expansion is often employed.10,19,25

The logarithm of an exponential average can be expanded in
terms of cumulants,

log^ex&5^x&1 1
2~^x

2&2^x&2!1¯, ~66!

where the first and second cumulants are shown. Marcink-
iewicz’s theorem41 states that either~i! all but the first two
cumulants vanish or~ii ! there are an infinite number of non-
vanishing cumulants. The first case happens if and only if the
variable x is sampled from a Gaussian distribution. Using
this expansion in Eq.~58!, we obtain the cumulant expansion
formula for the free energy,

Fl~t!2Fl~0!5^W~t!&2
b

2
~^W~t!2&2^W~t!&2!1¯. ~67!

An approximate formula is obtained by terminating the se-
ries at a certain order. In fact, the second order formula is
identical with the near-equilibrium formula42,43 predating
Jarzynski’s equality.

When we use an approximate formula based on the cu-
mulant expansion, two kinds of error are involved: the error
due to the truncation of higher order terms and the error due
to insufficient sampling. If we use the exact formula@Eq.
~58!#, we will have no truncation error, but will have possi-
bly a big sampling error because of the difficulty in estimat-
ing the exponential average. On the other hand, low order
cumulants are relatively easier to estimate from limited sam-
pling. Figure 2 illustrates this showing that the curves
P(W)W and P(W)W2 are centered around the peak of
P(W) while the curveP(W)e2bW is shifted away from it.
Thus, for limited sampling an approximate formula may
work better than the exact formula. Especially the second
order cumulant expansion formula has proven to be effective
in SMD simulations.23,25

The most fortunate case arises when the work distribu-
tion is Gaussian, for which the second order formula can be
used without the penalty of a truncation error. For slow pro-
cesses, the work distribution is expected to be Gaussian as
suggested by the near-equilibrium formula.42,43For processes
of arbitrary speeds, in general, the work distribution may not
be Gaussian. In the following we argue that a SMD simula-
tion performed with a stiff spring leads to a Gaussian work
distribution regardless of the speed of the process; this may
explain the success of the second order formula in previous
applications.

D. The Gaussian nature of the work distribution

Consider a SMD simulation performed along a reaction
coordinate j with a moving guiding potential (k/2)(j

FIG. 2. Difficulty of estimating the exponential average. Typically, the peak
of P(W)e2bW is shifted from that of the work distributionP(W). This
makes^e2bW& difficult to estimate. On the other hand,^W& and ^W2& are
easier to estimate becauseP(W)W and P(W)W2 are centered around the
peak ofP(W).
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2vt)2. @For simplicity we setl~0!50 in Eq.~57!, which can
be done by shifting the origin of the reaction coordinate.# Let
us assume that the motion along the reaction coordinate can
be described by the overdamped Langevin equation, which is
frequently used for modeling biomolecular processes,

dj

dt
52bD~j!

]

]j
U~j,t !1A2D~j!h, ~68!

with a white noise variableh,

^h~ t !h~ t8!&5d~ t2t8!. ~69!

The diffusion coefficientD, in general, isj-dependent. The
potential U(j,t) is the sum of the PMF and the moving
guiding potential,

U~j,t !5F~j!1
k

2
~j2vt !2. ~70!

The initial conditionj~0! is sampled from the equilibrium
distribution corresponding to the initial potentialU(j,0) at
temperatureT. If both D and F are constant, Eq.~68! de-
scribes the diffusion on a moving harmonic potential, for
which the work distribution is Gaussian.44 In the following
we show that if the spring constantk is sufficiently large, the
dynamics~after a change of variables! is governed by essen-
tially the same equation as the diffusion on a moving har-
monic potential and therefore the work distribution is Gauss-
ian.

Let us assume thatk is chosen so large that the reaction
coordinatej is always close to the center of the guiding
potential,vt. Then the potentialU can be approximated as

U~j,t !'F~vt !1F8~vt !~j2vt !1
k

2
~j2vt !2, ~71!

and the overdamped Langevin equation@Eq. ~68!# as

dj

dt
'2bD~vt !@k~j2vt !1F8~vt !#1A2D~vt !h. ~72!

The external work done between time zero andt is given by
Eq. ~60!, with H̃ replaced byU(j,t) in Eq. ~70!,

W~ t !52vkE
0

t

dt8@j~ t8!2vt8#. ~73!

Taking the derivative, we obtain

dW

dt
52vk~j2vt !. ~74!

Equations~72! and ~74! constitute a system of stochastic
differential equations.

The following change of variables, (j,W)→(z,V),
proves to be useful:

z5j2vt1
1

k
F8~vt ! , ~75a!

V5W2@F~vt !2F~0!#. ~75b!

The new variablez is the deviation of the reaction coordinate
from the instantaneous minimum of the potentialU, andV is

the irreversible~dissipative! work. ~The reversible work is
the same as the change in the PMFF.! This change of vari-
ables leads to, using Eqs.~72! and ~74!,

dz

dt
5

dj

dt
2v1

v
k

F9~vt !

'
dj

dt
2v52bkD~vt !z2v1A2D~vt !h , ~76a!

dV

dt
5

dW

dt
2vF8~vt !52vkz. ~76b!

From these stochastic differential equations follows the
Fokker–Planck equation for the probability distribution
P(z,V,t),

]P

]t
5LP5H bkD~vt !1@v1bkD~vt !z#

]

]z

1D~vt !
]2

]z2
1vkz

]

]VJ P. ~77!

The adjoint of the operatorL is

L†52@v1bkD~vt !z#
]

]z
1D~vt !

]2

]z2
2vkz

]

]V
. ~78!

The initial distribution

P~z,V,0!5Abk

2p
expS 2

bk

2
z2D d~V!, ~79!

which is Gaussian, serves as the initial condition for the
Fokker–Planck equation.

It proves to be more effective to work with thecumulant
generating function

Q~s,u,t !5 log E
2`

`

dzE
2`

`

dV exp~ isz1 iuV!P~z,V,t !

~80!

than dealing with the probability distributionP directly. No-
tice that P is completely determined byQ through the in-
verse Fourier transform

P~z,V,t !5
1

~2p!2 E2`

`

dsE
2`

`

du

3exp~2 isz2 iuV!expQ~s,u,t !. ~81!

WhenQ is expanded as a power series in (s,u), the coeffi-
cients give cumulants~Ref. 35, Sec. 2.7!,

Q~s,u,t !5 i^z~ t !&s1 i^V~ t !&u2^z~ t !V~ t !&csu

2 1
2^z~ t !2&cs

22 1
2^V~ t !2&cu

21¯. ~82!

Cumulants can be expressed in terms of moments

^zV&c5^zV&2^z&^V&, ^z2&c5^z2&2^z&2, ~83!

and so on. By Marcinkiewicz’s theorem,41 the degree of the
power series@Eq. ~82!# is either two~for Gaussian distribu-
tions! or infinity.
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Using Eqs.~77! and ~80!, we obtain a differential equa-
tion governing the time evolution of the cumulant generating
function,

]Q

]t
5e2QE dzdV exp~ isz1 iuV!

]P

]t

5e2QE dzdV exp~ isz1 iuV!LP

5e2QE dzdVPL† exp~ isz1 iuV!

5e2QE dzdVP$2 ivs2D~vt !s2

2@ ibkD~vt !s1 ivku#z%exp~ isz1 iuV!

5e2QH 2 ivs2D~vt !s22@bkD~vt !s1vku#
]

]sJ eQ

52 ivs2D~vt !s22@bkD~vt !s1vku#
]Q

]s
. ~84!

An important property of this differential equation is that if
Q at some instant happens to be a second degree polynomial,
then]Q/]t is also a second degree polynomial andQ at any
later ~or earlier! instant remains to be a second degree poly-
nomial. Therefore,once P is Gaussian, it is always Gauss-
ian.

The general Gaussian distribution for two variables
~z,V! can be written in terms of a positive definite correlation
matrix C,

P5
1

2pAuCu
expS 2

1

2
ZTC21ZD , ~85a!

Z5S z2^z&
V2^V& D , C5S ^z2&c ^zV&c

^zV&c ^V2&c
D . ~85b!

Integrating outz gives the probability distribution forV,

E dzP5
1

A2p^V2&c

expF2
~V2^V&!2

2^V2&c
G , ~86!

which is Gaussian. The probability for the total workW is
also Gaussian becauseW is linearly related toV @Eq. ~75b!#.

In summary, under the assumption that the overdamped
Langevin equation is a good approximation, SMD simula-
tions with stiff springs result in Gaussian work distributions,
for which the second order formula of Jarzynski’s equality
can be used without any truncation error. The idea of using a
stiff spring was originally motivated by the need to extract a
PMF as a function of a reaction coordinate from a free en-
ergy as a function of an external parameter.23,25The use of a
stiff spring seems to have another important advantage,
namely keeping the work distribution Gaussian.

E. Time evolution of cumulants

The Gaussian distributionP @Eq. ~85!# is completely de-
termined by the cumulants,̂z&, ^V&, ^zV&c , ^z2&c , and

^V2&c . Therefore, the time evolution ofP is determined by
the time evolution of the cumulants.45 Substituting the cumu-
lant generating function

Q5 i^z&s1 i^V&u2^zV&csu2 1
2^z

2&cs
22 1

2^V
2&cu

2

~87!

into Eq.~84! we find the differential equations governing the
time evolution of the cumulants,

d^z&
dt

52bkD~vt !^z&2v, ~88a!

d^V&
dt

52vk^z&, ~88b!

d^zV&c

dt
52vk^z2&c2bkD~vt !^zV&c , ~88c!

d^z2&c

dt
522bkD~vt !^z2&c12D~vt !, ~88d!

d^V2&c

dt
522vk^zV&c . ~88e!

The accompanying initial condition is obtained from Eq.
~79!,

^z~0!&50, ^V~0!&50, ^z~0!V~0!&c50,
~89!

^z~0!2&c5
1

bk
, ^V~0!2&c50.

Equation~88! is a system of first-order linear ordinary
differential equations, and the general solution can be easily
written in terms of integrations. However, here we seek sim-
pler approximate solutions. In solving Eq.~88!, ^z&, ^zV&c ,
and ^z2&c will feature relaxations~exponential decays! with
the time scale of 1/bkD. We assume that these relaxations
are much faster than the change in the diffusion coefficient
D(vt). In other words, we assume

v
bkD

! l , ~90!

where l is some characteristic length scale over which the
diffusion coefficient changes considerably. This assumption,
which is likely to be valid because we are using stiff springs,
can be checked once the diffusion coefficient is estimated.
Under this assumption, we neglect the relaxations and find
an approximate solution to Eq.~88!,

^z~ t !&52
v

bkD~vt !
, ~91a!

^V~ t !&5E
0

t

dt8
v2

bD~vt8!
, ~91b!

^z~ t !V~ t !&c52
v

b2kD~vt !
, ~91c!

^z~ t !2&c5
1

bk
, ~91d!
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^V~ t !2&c5E
0

t

dt8
2v2

b2D~vt !
. ~91e!

Let us explore implications of this solution. For this pur-
pose, we rewrite Eq.~91! into the following equivalent equa-
tions. ~In doing so, we return to the original variables,j and
W.!

^W~ t !&52vkE
0

t

dt8@^j~ t8!&2vt8#, ~92a!

^W~ t !&2
b

2
^W~ t !2&c5F~vt !2F~0!, ~92b!

^W~ t !2&c522vkE
0

t

dt8^j~ t8!W~ t8!&c , ~92c!

^j~ t !2&c5
1

bk
, ~92d!

D~vt !5
2v2

b2 S d^W2&c

dt D 21

. ~92e!

Equation ~92a! follows directly from the definition of the
work W @Eq. ~73!#; it does not depend on the assumption of
the overdamped Langevin equation@Eq. ~68!#. Equation
~92c! also follows directly from the definition ofW,

^W~ t !2&c5v2k2E
0

t

dt8E
0

t

dt9^@j~ t8!2vt8#@j~ t9!2vt9#&c

52v2k2E
0

t

dt8E
0

t8
dt9^@j~ t8!2vt8#@j~ t9!2vt9#&c

522vkE
0

t

dt8^j~ t8!W~ t8!&c . ~93!

Equation~92b! is nothing but the second order formula of
Jarzynski’s equality. Equations~92d! and ~92e! are conse-
quences of the overdamped Langevin equation and the fast-
relaxation condition@Eq. ~90#. Equation~92e!, which is a
rearrangement of Eq.~91e!, can be used to estimate the dif-
fusion coefficientD, which in turn can be used to check the
consistency of the fast-relaxation condition.46

IV. THE HELIX–COIL TRANSITION OF DECA-ALANINE

In this section, through an exemplary SMD simulation,
we illustrate the PMF calculation method of Sec. III, and
demonstrate the Gaussian nature of the resulting work distri-
bution.

We choose as an exemplary system the helix–coil tran-
sition of deca-alanine in vacuum. Deca-alanine is an oli-
gopeptide composed of ten alanine residues. In vacuum at
room temperature a molecule of deca-alanine folds into a
helix. When it is stretched by an external force, the molecule
makes a gradual transition to a random coil. For this system
the relevant PMF is the free energy profile as a function of
the end-to-end distance of the molecule. In an earlier study25

this system was used to assess the accuracy of PMF calcula-
tion methods. The PMF was estimated from irreversible

~nonequilibrium! stretching simulations through various or-
ders of the cumulant expansion@Eq. ~67!# and through the
exponential average@Eq. ~58!#. The accuracy of the calcu-
lated PMFs was assessed compared to the exact PMF ob-
tained from reversible~quasiequilibrium! stretching simula-
tions. Shown in Fig. 3 is the exact PMF obtained from
reversible simulations along with two typical configurations
of deca-alanine, a helix and a coil.

Here we stretch deca-alanine in an irreversible manner
and examine the resulting distribution of work. In the simu-
lation, one end of the molecule~the N atom of the first resi-
due! is fixed at the origin and the other end~the capping N
atom at the C-terminus! is constrained to move only along
the z axis. The guiding potentialhl(r )5(k/2)@j(r )2l#2,
with the spring constantk5500 pN/Å, is added to control
the end-to-end distancej. The molecule is stretched by
changing the parameterl from 13 to 33 Å with a constant
speed. Two different speeds, 10 and 100 Å/ns, are used.
These speeds are, respectively, 100 and 1000 times higher
than the reversible speed.25 For the sampling of trajectories,
we select initial coordinates from a pool of 10 ns equilibrium
simulation~with l fixed at 13 Å! and initial momenta from
the Maxwell–Boltzmann distribution. All simulations were
done at constant temperature~300 K! with the temperature
controlled by Langevin dynamics. The integration time step
of 2 fs was used. The molecular dynamics programNAMD

~Ref. 48! was used with theCHARMM22 force field.49

The spring constant of 500 pN/Å is large enough to en-
sure that the end-to-end distancej closely follows the con-
straint centerl.25 For the PMF calculation, we use the lead-
ing order,F(l)5Fl , in the stiff-spring approximation@Eq.
~65!#. The next order is found to be small~,0.5 kcal/mol!
compared to the overall scale of the PMF.

A. The work distribution and the PMF calculation

Figures 4 and 5 show analyses of the simulations forv
510 and 100 Å/ns, respectively. For each speed, 10 000 tra-

FIG. 3. The PMF of deca-alanine with respect to its end-to-end distancej.
A typical helical structure atj515.2 Å and a typical coil structure atj533
Å are shown. The backbones are represented as ribbons. The end-to-end
distance is measured between the N atom of the first residue and the capping
N atom at the C-terminus. Figure made with VMD~Ref. 47!.
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jectories were generated. For each trajectory, the workW is
calculated as in Eq.~73!. The distribution of work indeed
seems to be Gaussian throughout the entire course of the
process, as can be seen from Figs. 4~b! and 5~b! in which five
histograms at five different end-to-end distances@marked by
triangles in Figs. 4~a! and 5~a!# are compared with the
Gaussian curves determined from the mean^W& and the
variance^W2&c . The average work̂W& includes the irre-
versible work, which is discounted by Jarzynski’s equality. In
Figs. 4~a! and 5~a!, estimates of the PMF (Fexp from the
exponential average estimator andF2 from the second order
cumulant estimator! are compared with the exact PMFFexact

obtained in Ref. 25. Forv510 Å/ns, bothFexp andF2 give
excellent estimates for the PMF in the entire region; they are
almost indistinguishable fromFexact. For v5100 Å/ns, on
the other hand, the estimates are good up toj'25 Å, but
afterward start to diverge fromFexact; Fexp is slightly better
for 0&j&21 Å andF2 is better for the rest of the region.

Recall that there are two kinds of error involved in the
PMF calculation: the truncation error and the sampling error
~Sec. III C!. As illustrated in Fig. 2 and discussed in Sec.
III C, the sampling error generally increases with the work
fluctuationA^W2&c, which in this example grows up to 1.9
kcal/mol (3.1kBT) for v510 Å/ns and 4.2 kcal/mol
(7.0kBT) for v5100 Å/ns. In the ideal case in which the
work distribution is perfectly Gaussian and the sampling is
perfect, bothFexp and F2 should be equal toFexact. The

result for v510 Å/ns @Fig. 4~a!# seems to be very close to
this ideal situation. However, the result forv5100 Å/ns@Fig.
5~a!# shows some discrepancy. The discrepancy between
Fexp and Fexact can be attributed entirely to the sampling
error; it would require more trajectories to makeFexp accu-
rate in the entire region. The discrepancy betweenF2 and
Fexact is possibly due to both truncation error50 and sampling
error.

B. Error analysis of the PMF calculation
from finite sampling

We needed as many as 10 000 trajectories~for each
stretching speed! in order to examine the work distribution.

FIG. 4. The PMF calculation and the work distribution from the irreversible
stretching simulations with the speedv510 Å/ns. ~a! Plotted against the
end-to-end distance are the average work (^W&), the variance of work
(^W2&c), the PMF estimated with the exponential average (Fexp), and the
PMF estimated with the second order cumulant expansion (F2). The exact
PMF Fexact is shown as a dashed line.~b! Five normalized histograms of
work at five different end-to-end distances,j517, 21, 25, 29, and 33 Å as
marked by triangles in~a!, are compared with the Gaussian curves~dashed
lines! determined from the mean̂W& and the variancêW2&c .

FIG. 5. The PMF calculation and the work distribution from the irreversible
stretching simulations with the speedv5100 Å/ns. See the caption of Fig. 4
for details.
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It was possible to generate such a large number of trajecto-
ries because our system is fairly small~104 atoms!. In usual
SMD simulations of proteins ~typically involving
;105 atoms), however, current computational technology
only permits much fewer trajectories. Therefore, it is impor-
tant to study the accuracy of the PMF calculation method in
the case of small sampling sizes.

Using the 10 000 trajectories generated, we examine the
accuracy of the estimated PMFs for various sampling sizes.
Since the accuracy generally decreases with the stretching
distance, we use as a measure of accuracy the relative root-
mean-square~RMS! error for the end-point difference in the
PMF,DF[F~33 Å!2F~13 Å!. Four different sampling sizes
are considered: 10, 102, 103, and 104. For each sampling
size, all 10 000 trajectories are used. For example, for the
sampling size 10, we divide the 10 000 trajectories into 1000
sets of 10 trajectories, estimateDF from each set with the
exponential average estimator (DFexp) or with the second
order cumulant estimator (DF2), calculate for each set the
relative RMS error from the exact valueDFexact

521.4 kcal/mol, and take the average of the 1000 errors cal-
culated.

The result is shown in Fig. 6. Forv510 Å/ns, there is
only a small difference between the accuracies ofDFexp and
DF2 ; for the sampling size 10 the former is slightly better,
and for the other sampling sizes considered the latter is
slightly better. Forv5100 Å/ns, on the other hand,DF2

gives substantially better estimates; the error ofDF2 is only
one half of that ofDFexp. Overall, the second order cumu-
lant estimator yields the more robust estimate. This finding is
somewhat contradictory to the conclusion of Ref. 22.

A common question in computational studies using
Jarzynski’s equality is how to use optimally a given amount
of computing time. Is it advantageous to generate fewer
slower trajectories or more faster trajectories? In the present
example, we can make three comparisons based on equal
amounts of computing time:~i! 10 trajectories of 10 Å/ns
versus 100 trajectories of 100 Å/ns,~ii ! 100 trajectories of 10

Å/ns versus 1000 trajectories of 100 Å/ns, and~iii ! 1000
trajectories of 10 Å/ns versus 10 000 trajectories of 100 Å/ns.
As can be seen from Fig. 6, for all these three comparisons
fewer slower trajectories win.

C. Time evolution of cumulants
and the diffusion coefficient

Under the stiff-spring condition and the assumption of
the overdamped Langevin equation, time evolution of the
cumulants involving the reaction coordinatej and the work
W obeys the differential equations given in Eq.~88!. When
the fast-relaxation condition@Eq. ~90!# is satisfied, the solu-
tion to these differential equations is given by Eq.~91!, or
equivalently by Eq.~92!. As discussed in Sec. III E, Eqs.
~92a! and ~92c! are direct consequences of the definition of
the work W. Equation ~92b! is a statement of the second
order formula of Jarzynski’s equality, the validity of which
was already examined in Secs. IV A and IV B. Now we ex-
amine, in the present example of deca-alanine, Eqs.~92d!
and~92e! which are consequences of the overdamped Lange-
vin equation.

Figure 7 showŝj2&c , the variance of the reaction coor-
dinate, fluctuating around 1/bk, the value stated in Eq.~92d!.
Figure 8 shows two curves corresponding to the position-
dependent diffusion coefficient estimated with Eq.~92e!
from the data forv510 and 100 Å/ns, respectively. Although
the two curves do not completely coincide, their overall

FIG. 6. Error analysis. The relative root-mean-square~RMS! errors forDF,
the total change in the PMF, estimated with the exponential average estima-
tor ~squares! and with the second order cumulant estimator~circles!, are
shown for four different sampling sizes. The upper two curves correspond to
v5100 Å/ns, and the lower two curves tov510 Å/ns.

FIG. 7. The variance of the reaction coordinatej. ~a! v510 Å/ns. ~b! v
5100 Å/ns. The straight lines denote the value 1/bk.

FIG. 8. The position-dependent diffusion coefficient estimated with Eq.
~92e!. The solid line is from the data forv510 Å/ns, and the dashed line
v5100 Å/ns.
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shapes agree. As deca-alanine is stretched from its equilib-
rium length~j515.2 Å!, the diffusion coefficient increases,
reaches a peak atj'18 Å, and then decreases again. The
estimated diffusion coefficient is in the range of 0.01 Å2/ps
&D&0.27 Å2/ps. Accordingly we find 0.003 Å&v/bkD
&0.08 Å for v510 Å/ns and 0.03 Å&v/bkD&0.8 Å for v
5100 Å/ns. Thereforev/bkD is always small compared to
the length scale over which the diffusion coefficient changes
considerably, validating the fast-relaxation condition@Eq.
~90!#.

V. CONCLUDING REMARKS

We have discussed theoretical and practical issues con-
cerning the calculation of PMFs from SMD simulations. In
particular, we have noticed that, under the stiff-spring condi-
tion and the assumption of the overdamped Langevin equa-
tion, SMD simulations result in Gaussian work distributions.
We have demonstrated the Gaussian nature of work distribu-
tions for an exemplary simulation. This result supports the
use of the second order cumulant expansion in practical ap-
plications of Jarzynski’s equality in SMD simulations.

Our method of PMF calculation can be straightforwardly
transferred to atomic force microscopy experiments if suffi-
ciently stiff springs are chosen.
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APPENDIX: VIRIAL EQUATION FOR SYSTEMS
UNDER EXTERNAL FORCES

Pressure is the force per unit area exerted by a system on
the wall of a container. When the system is in equilibrium,
the interaction between the system and the container is bal-
anced with the internal interaction between the constituent
particles and the pressure leaves its trace in the internal de-
grees of freedom. Thus, pressure can be expressed in terms
of the internal degrees of freedom, which is the basic idea
behind the virial equation. The virial equation is most com-
monly written as

P5
NkBT

V
1

1

6V K (
iÞ j

r i j "f i j L , ~A1!

wherer i j 5r i2r j is the position of particlei relative to par-
ticle j andf i j is the force on particlei exerted by particlej. A
derivation can be found in Ref. 51, Sec. 7.1. The virial equa-
tion is particularly useful in computer simulations because it
provides a way to calculate pressure without explicitly mod-
eling the interaction between the system and the container.
One can also impose certain pressure and simulate the sys-
tem under that pressure.52

Is this virial equation valid for systems subject to exter-
nal forces, for example, in SMD simulations in which some

particles are harmonically constrained? Should one include
in this case the constraining forces in the calculation of pres-
sure? This question is best answered by tracing the deriva-
tion of the virial equation, bearing in mind the more general
situation~the presence of external forces!.

The virial equation is based on

d

dt K (
i 51

N

r i "pi L 50, ~A2!

wherer i andpi are the position and the momentum of par-
ticle i, respectively. This equation is true in equilibrium. In
fact, in equilibrium any relevant average is time-
independent. The average appearing in Eq.~A2! is just the
particular one that leads to the virial equation. An important
point is that it must be possible for the system to reach equi-
librium. Harmonic constraints applied to some particles will
certainly permit equilibrium. However, a uniform external
field with a periodic boundary condition will not; in this case
the virial equation loses its basis. Therefore we exclude from
discussion those cases in which equilibrium is impossible.

Distributing the time derivative, we obtain

K (
i

dr i

dt
•pi L 1K (

i
r i•

dpi

dt L 50. ~A3!

We write the force on particlei as the sum off i
wall ~the force

due to the interaction with the wall! and f i ~all the other
forces including the interparticle forces and external forces
such as constraining forces!:

dpi

dt
5f i1f i

wall , f i5 (
j ~Þ i !

f i j 1f i
ext. ~A4!

By using alsodr i /dt5pi /mi , Eq. ~A3! becomes

K (
i

pi
2

mi
L 1K (

i
r i "f i L 1K (

i
r i "f i

wallL 50. ~A5!

The third term on the left-hand side can be expressed in
terms of pressure as follows. The wall interacts with the
system only through the boundary of the system. Thusf i

wall is
zero unless particlei happens to be on the boundary, and
only those particles present on the boundary need to be in-
cluded in the sum( ir i "f i

wall . We divide the boundary into
infinitesimal patches~denoted bya!, collect the particles on
each patch, and collect all the patches

K (
i

r i "f i
wallL 5K (

a
(
i Pa

r i "f i
wallL

5(
a

r ~a!•K (
i Pa

f i
wallL , ~A6!

wherer (a) is the position of patcha. Let us denote the area
of patcha by a(a) and the outward normal vector byn(a).
The quantity^( i Paf i

wall&, i.e., the average force exerted on
the system by the wall through patcha, is equal to
2Pa(a)n(a). The minus sign means that the force is in-
ward. Substituting this in the preceding equation leads to

K (
i

r i "f i
wallL 52P(

a
a~a!r ~a!•n~a!52PE

]V
ds"r .

~A7!
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In the last step we converted the sum into a surface integral
over the boundary of the volumeV. From Gauss’ theorem
follows

E
]V

ds"r5E
V
dr3

“"r53V. ~A8!

Using these results in Eq.~A5!, we find

P5
1

3V K (
i

S pi
2

mi
1r i "f i D L . ~A9!

Recall thatf i includes external forces as well as the interpar-
ticle forces. This form of the virial equation is valid for sys-
tems under external forces as long as an equilibrium exists.
For pure systems free from external force, we recover the
common form @Eq. ~A1!# after using Newton’s third law
(f i j 52f j i ) and replacing^pi

2/mi& by its thermal average
3kBT.

The virial equation written as in Eq.~A1!, in terms of
relative positions rather than absolute positions, makes the
translational invariance transparent. Naturally, the question
arises whether Eq.~A9! is translationally invariant. Upon
replacingr i by r i1r0 , a new term appears

P5
1

3V K (
i

S pi
2

mi
1r i "f i D L 1

1

3V
r0•K (

i
f i L . ~A10!

In simulations, the quantitŷ( i f i& is the average total force
on the system because the force from the wall is not explic-
itly modeled. Since we assume the existence of equilibrium,
the average total force must be zero; otherwise there would
be a net acceleration. Thus, the additional term indeed van-
ishes and the virial equation in the form of Eq.~A9! is trans-
lationally invariant.
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