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Abstract

STRANDS are thin elastic solids that are visually well approximated as smooth curves, and yet possess essential
physical behaviors characteristic of solid objects such as twisting. Common examples in computer graphics in-
clude: sutures, catheters, and tendons in surgical simulation; hairs, ropes, and vegetation in animation. Physical
models based on spring meshes or 3D finite elements for such thin solids are either inaccurate or inefficient for
interactive simulation. In this paper we show that models based on the Cosserat theory of elastic rods are very
well suited for interactive simulation of these objects. The physical model reduces to a system of spatial ordinary
differential equations that can be solved efficiently for typical boundary conditions. The model handles the impor-
tant geometric non-linearity due to large changes in shape. We introduce Cosserat-type physical models, describe
efficient numerical methods for interactive simulation of these models, and implementation results.

1. Introduction

Modeling deformable objects is one of the most challeng-
ing problems in physically-based computer graphics. In re-
cent years there has been considerable progress on two
fronts. Deformable models based on networks of masses and
springs are now widely used. More recently, the principles
of 3D elasticity and their numerical solution using the fi-
nite element method (FEM) or the boundary element method
(BEM) are now well understood by the graphics community.

Our goal is to develop a general modeling primitive that
is well suited for thin deformable objects. Examples of
such objects are abundant: in computer animation, for ex-
ample, they include wires, hairs, telephone cables, ropes,
grape vines, and willow branches. Barzel 5 describes many
uses of these types of thin objects in computer animation
in general and the movie Toy Story, in particular. In feature
films, animator control of the thin objects within a traditional
keyframe animation pipeline is more important than physi-
cal simulation. However, in interactive applications such as
surgical simulation and games, simulation can provide major
benefits.

Our own motivation is in surgical simulation, particularly
simulation of surgical sutures — the ubiquitous “threads”

used in surgery for sewing, cutting, and tying. See Fig. 1.
Skilled use of sutures is a fundamental manipulation that
is taught to all surgeons 18. Learning to handle sutures be-
comes particularly important in minimally invasive surgery
using laparoscopic tools inserted inside the body, since the
surgeon has to perform delicate operations while looking at
a computer monitor. Sutures exhibit a variety of complex
behaviors characteristic of solid deformable objects includ-
ing global twisting and bending deformation as a result of
local forces. Therefore simulating the realistic behavior of
sutures is an important part of any surgical simulation sys-
tem. Other surgically significant thin elastic objects include
wires, catheters, nerves, tendons, and blood vessels.

Unfortunately, none of the techniques for physically-
based modeling currently used in graphics is particularly
well suited for modeling thin deformable objects. Modeling
these as 3D elastic solids requires very fine FEM meshes
to correctly capture the global twisting behavior that is ob-
served when torques are applied along the axis of the strand
(you can try this by rolling a mouse cable or dental floss be-
tween your fingers). BEM is well known to be inappropriate
for modeling thin objects. Models using meshes of mass par-
ticles and springs have similar problems since they require a
large number of particles and springs to correctly reproduce
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Figure 1: A simulated strand of surgical suture that can twist
and curl during manipulation of the needle during laparo-
scopic surgery.

the twisting behavior and to prevent the mesh from collaps-
ing during twisting. Models based on rigid bodies connected
by torsional springs are more robust but still suffer from hav-
ing a fixed, arbitrary discretization into rigid bodies: for ex-
ample it is difficult to reproduce high curvature bending un-
less a very fine chain is used. It is also not clear how to relate
the spring constants to elastic material parameters. In this
paper we propose an alternative model, which is based on a
solid theoretical footing, and yet quite efficient and suitable
for interactive simulation.

The purpose of this article is two fold. First, we introduce
Cosserat elasticity as a useful, accurate, physical model for
simulating thin deformable objects. Second, we show how
the physical models can be discretized and solved efficiently
for many applications in computer graphics. This combina-
tion of physical model and numerical solution, which we call
a STRAND, forms a useful modeling primitive in computer
graphics for a wide variety of thin deformable objects. We
also briefly describe a specific application to the simulation
of surgical sutures; however our purpose is not to describe a
complete system which would require addressing other im-
portant issues such as rendering and interaction.

The rest of the paper is organized as follows. After de-
scribing some related work in Sec. 1.1, we present an el-
ementary, self-contained introduction to Cosserat rods in
Sec. 2. We describe our simulation algorithm in Sec. 3 and
discuss how strands can be used in practice in Sec. 4.

1.1. Related Work

Thin strand-like solids have been modeled in computer
graphics for many specific applications. Barzel 5 provides
both the motivation for modeling ropes, springs, and other
strand-like objects and useful techniques for use in keyframe

animation. Perhaps the most common thin solid in computer
animation is hair. We refer the reader to the recent survey by
Magnenat-Thalmann et al. 15 The closest to the models pro-
posed here are the “explicit” hair dynamics models 10, 12, 1, 23

which model hair as series of rigid bodies or masses con-
nected by springs. These models are similar in spirit to the
models we describe, except that our model is based on a
sound theoretical footing and is more general, and therefore
allows more choices in numerical solution methods.

The computer graphics community does not appear to be
aware of Cosserat continua as models of thin objects, called
shells and rods, developed in the solid mechanics commu-
nity. There is a long history of these models, going back
to the work of Euler on modeling the “elastica,” Kirch-
hoff’s theory of rods, leading to the formulation of rods and
shells as curves and surfaces with directors, developed by
the Cosserat brothers at the beginning of the twentieth cen-
tury. Modern treatments of Cosserat models can be found
in books by Antman 2 and Rubin 24 (see also 17). Cosserat
models have been used for a variety of tasks such as mod-
eling utility cables (e.g., 13), but perhaps the most popular
use today is in modeling the mechanical behavior of DNA
strands (e.g., 16).

2. Strands as Cosserat Rods

We now describe the mathematical model of a Cosserat rod.
This model is a special case of a more general theory of
Cosserat continua which includes shells and points. More
exhaustive formulations can be found in 2, 24. In our descrip-
tion we borrow from the notation used for DNA modeling
by Maddocks and his co-workers 14, and from the multibody
robot dynamics literature 19. Since the graphics community
is familiar with multibody dynamics, we will try to show the
connections between the two.

2.1. Kinematics

The configuration of a strand is described by a space curve
r(s) and a coordinate frame of “directors” attached at each
point on the curve. See Fig. 2. Following the usual practice
in graphics and robotics, we will assemble these into a coor-
dinate frame E(s) = [e1 e2 e3 r] (s). This has the usual 4×4
matrix representation E if we express the vectors ei and the
point r in homogeneous coordinates with respect to any ref-
erence frame. Please notice the font convention used: a quan-
tity written as “a” is an abstract vector or tensor, while “a”
is a matrix of its coordinates. We note that frame E is not
the same as the Frenet frame of the curve, but provides extra
information about the twisting of the curve. We will assume,
however, that the frame is “adapted” to the curve, i.e., we
take the “Z” axis, e3 to be aligned with the tangent to the
curve, and we will assume that the parameter s is arc length
at rest.

Thus given the reference configuration of a strand, de-
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s=0

E(s)

s=L

Figure 2: A Cosserat Rod

scribing it in any other configuration in which it may be
twisted and bent is equivalent to describing the “motion” of
the frame E as a function of s. Therefore, there is a close
analogy between describing a Cosserat rod in space, and de-
scribing the motion of a rigid body (frame), if s was inter-
preted as time. Therefore, we can expect to find fast algo-
rithms for computing the configuration of a rod which are
similar to fast algorithms for dynamics 9, 4, 19. We explore
this in greater detail below and in Sec. 3.

As with rigid body motion, the s-derivative of the frame,
E′ = dE/ds, is best described in terms of “spatial deriva-

tives,”
(

uT , vT )T
. We can formally define these as fol-

lows. Let

E
−1

E
′ ≡

(

[u] v

0 0

)

. (1)

It is well known (and easy to show) that the 3×3 matrix [u]
is the skew-symmetric matrix of the cross product, u×. We
take these as the definitions of the “velocities” u and v. The
vector u is called the Darboux vector and is analogous to
the angular velocity, and v is analogous to the linear velocity
of a point at the origin. For a rod, however, these are the
rotational and translational strains, not velocities.

We note that Eq. 1 is a differential equation which defines
the evolution of the director frame E. It is particularly conve-
nient to integrate this in relative coordinates, since E is then
the identity matrix, and

E
′ =

(

[u] v

0 0

)

, (2)

which we call the kinematic differential equation.

2.2. Force Balance

We can similarly define a stress differential equation. Let

ξ =
(

mT , nT )T
be the stresses at s, i.e., the transmit-

ted torque and force per cross-section area of the rod. The
change in stresses at s must be due to the applied torque and

force per unit length, η =
(

τT , fT )T
, at s (e.g., due to

gravity, inertia, or contact):

d
ds ξ = η. (3)

As with the kinematic differential equation, we would like to
compute this in relative coordinates, but there is the standard
complication of differentiating a spatial force in “moving co-
ordinates” (e.g., see 9, 19). If we use “′” solely to denote dif-
ferentiation in relative coordinates, we have the well known
identity

d
ds ξ = ξ′ +

(

[u] [v]
0 [u]

)

ξ. (4)

We can now combine these into the stress differential equa-
tion:

ξ′ = η−

(

[u] [v]
0 [u]

)

ξ. (5)

2.3. Constitutive Laws

The relationship between the stress and strain is a material
property, usually specified using an empirical constitutive
law. For many materials, linear constitutive laws are ade-
quate. It is important to note that a Cosserat rod can undergo
a large global deformation while still having small strains at
each point. Thus important nonlinear effects due to changes
in shape are fully accounted for, even if the material behavior
is linear.

For many applications in graphics, it is sufficient to as-
sume the following simple constitute law:

m = K(u− û), (6a)

n = L(v− v̂). (6b)

where û and v̂ are the strains at rest. Note that the rest strains
could correspond to twisted coil, for instance a telephone
cord or spring.

More general laws (e.g.,“hyperelastic” materials) are rel-
atively easy to incorporate. Dynamics can be incorporated
here as well by relating stress to deriviates of strain (see 2).
We focus on quasistatic models here which are good approx-
imations for highly dissipative systems.

One common assumption is that the rod is inextensible
and unshearable, which is a good model of typical stiff ma-
terials like surgical sutures whose shape changes mainly due
to bending and twisting. This corresponds formally to an in-
finite stiffness L, but it is better to view this simply as fixing
v = v̂.

3. Simulating Strands

Equations 2 and 5, together with Eq. 6, form a system of
coupled differential equations which must be solved to deter-
mine the configuration of a strand. The important fact about
these equations is that they form a set of Ordinary Differ-
ential Equations (ODE) in one independent variable, rather
than a system of partial differential equations that would re-
sult from full 3D elasticity. This is probably the most signif-
icant benefit of modeling strands as Cosserat rods.
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However, it is still a boundary value ODE, and typically
boundary conditions are specified not just at one end (which
would lead to an initial value ODE, similar to those encoun-
tered in rigid body dynamics simulation). Depending on the
type of boundary conditions, it can be considerably more
difficult to solve. We first consider a particular type of two-
point boundary condition, which we call the Standard BVP.
These are as easy to solve as initial value problems using a
fast algorithm closely related to linear time dynamics algo-
rithms for rigid body dynamics 9, 4, 19. Then we discuss how
more general boundary value problems could be handled.

In the Standard BVP we specify the position and orienta-
tion at one end, and the stresses at the other. That is, for a
rod of normalized length 1, we want

E(s = 0) = E0 (7)

ξ(s = 1) = ξ1 (8)

We further assume that the rod is inextensible and unshear-
able.

We can discretize the differential equations as follows. For
simplicity, we show a first-order accurate (Euler) discretiza-
tion here; higher order methods are similar. We use a no-
tation from robotics 19 to keep track of local coordinates at
mesh points. We will denote a value y at mesh point j as y j .
The step size between mesh points is denoted h j = s j+1−s j .
The homogeneous coordinates of frame i, relative to another

frame j, is given by the 4 × 4 matrix
j

iE. We will always
use leading subscripts and superscripts to indicate frames.
The coordinates of a vector y, in frame i, are given by the

column matrix
i
y. We convert it to frame j coordinates this

way:
j
y =

j

iE
i
y.

We first discretize the stress differential equation, Eq. 5.
Since the stress boundary condition is specified at the end
(s = 1) we start there and propagate stresses to s = 0. The
translational stress is as follows:

j
n j−1 =

j
n j +h j−1

(

[
j
u j]

j
n j −

j
f j

)

, (9a)

j-1
n j−1 =

j

j-1E
T j

n j−1. (9b)

The last equation merely transforms the stress coordinates
from frame j to j-1, and we use the inverse transpose because
the stresses are covariant vectors (and therefore transform
differently from contravariant vectors like strains).

Instead of integrating the rotational stress m, we eliminate
it using the constitutive law Eq. 6 and integrate the rotational
strain u instead.

j
u j−1 =

j
u j − (

j
û j −

j
û j−1)+h j−1K−1 ×

(

[
j
u j]K(

j
u j −

j
û j)+ [

j
v j]

j
n j −

jτ j

)

, (10a)

j-1
u j−1 =

j-1

j E
j
u j−1. (10b)

If K is a scalar, then Eq. 10a simplifies to

j
u j−1 =

j
u j − (

j
û j −

j
û j−1)+

h j−1

(

[
j
û j]

j
u j +K−1

(

[
j
v j]

j
n j −

jτ j

))

.(11)

Thus we propagate u and n from end to start. For an in-
extensible, unshearable rod, v = v̂ = e3; the last equality is
due to our use of an adapted frame. Since we now know all
the strains in the strand, we can integrate the positions from
start to end.

Integrating Eq. 2 is more complicated. One way is to con-
vert the rotational part of the differential equation into one
involving derivatives of unit quaternions (also known as Eu-
ler parameters), but integration requires enforcing a con-
straint on the magnitude of the quaternion. Instead we ob-
serve that

E = exp

[(

[u] v

0 0

)

(s− s j)

]

(12)

satisfies the kinematic differential equation Eq. 2 at s j . This
can be directly discretized and written in a more convenient
form as

j

j+1E = exp

[(

[ω] ν
0 0

)

t

]

(13)

Where ω =
j
u j/|

j
u j|, ν =

j
v j/|

j
u j|, and t = |

j
u j|h j . The

matrix exponential in this form can be separated into rota-
tional and translational parts as 6

j

j+1E =

(

e[ω]t (I − e[ω]t)[ω]ν+ωωT νt
0 1

)

. (14)

We can compute the rotational part of Eq. 14 efficiently us-
ing Rodrigues’ formula

e[ω]t = I +[ω]sin t +[ω]2(1− cos t). (15)

Evaluation of the translational part of Eq. 14 is simpli-
fied for an inextensible rod with an adapted frame, since

v = e3 =
(

0 0 1
)T

. Together,
j

j+1E, gives the frame at
the next mesh point. It can be expressed relative to any coor-
dinate frame k (including the world frame) as

k

j+1E =
k

j E
j

j+1E (16)

Therefore the Standard BVP can be solved very efficiently
by two sweeps of the strand, from end to start to compute
the stresses and strains, and from start to end to compute the
position and orientation at each mesh node. This algorithm
is entirely analogous to linear time dynamics algorithms for
articulated rigid bodies connected by joints 9, 4, 22, 19 where
instead of stresses, joint forces and torques are propagated
in the first sweep. Similar algorithms are used in other areas
where the Standard BVP arises, such as optimal state esti-
mation using Kalman filters 21. We note that unlike in articu-
lated rigid body systems, the mesh points are not chosen by
the physical model but for numerical convenience. Therefore
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whe have more flexibility in chosing the step size h j; for in-
stance we could adaptively select h j based on the curvature
of the strand or error estimates in the numerical integration.
In addition, by using a multistep discretization, we can also
incorporate the influence of several neighbours to regularize
the solution.

4. Modeling with Strands

We now describe how the strand model, i.e., a Cosserat rod
model discretized as shown in Sec. 3, can be used to model
thin objects that arise in computer graphics.

The most direct application arises in simulation with hap-
tic force feedback. Haptic devices apply forces on a rigid
manipulandum (e.g., a stylus or laparoscope held in the
user’s hand) based on the motion of the manipulandum.
Examples include the PHANToM from Sensable Technolo-
gies 20 and the Laparoscopic Impulse Engine from Immer-
sion Corporation 8.

Since haptic devices exchange energy with the human
hand, and not just information, stability is a major concern.
An obvious way to use a haptic device held in a user’s hand
would be to impose displacement boundary conditions on a
strand based on the position of the hand, and apply the com-
puted forces to the hand. However, this obvious approach
has several problems. Real haptic devices can generate rela-
tively small forces and emulate only finite stiffnesses, which
are actually quite small compared to the stiffnesses of real
objects. Therefore one can easily overcome the maximum
forces imposed by the haptic device to extend the strand be-
yond its maximum length. Also a directly coupled system
like this could become unstable due to lags in the simulation.
A popular way to overcome these difficulties is to use what
has been dubbed a Virtual Coupling by Colgate and cowork-
ers 7. This was generalized to elastostatic contact simulation
by James and Pai 11.

For strands, the real position of the hand can be coupled to
the end of the strand through a generalized (3D) spring and
damper. Thus the boundary conditions imposed on the strand
due to the haptic device are forces and torques produced by
this virtual coupling and not positions. The strand could be
attached at the other end to the environment and therefore
have the position and orientation satisfied. For example, in
a laparoscopic simulation (e.g., see Fig. 1) the haptic device
imposes forces at the needle end of the surgical suture, while
the opposite end is inserted in human tissue. Interacting with
human hair or a telephone cord modeled as a strand is simi-
lar. All these models reduce to the Standard BVP and there-
fore can be efficiently solved using the algorithm described
in Sec. 3.

It is significantly more difficult to solve the ODEs if po-
sitions are specified at both ends, or at multiple points along
the length of the strand. In this case we can use “shooting”
techniques 3. In single shooting, we search for the stresses ξ

at one end such that the computed position E matches the
boundary condition E1. The strand integration effectively
computes the nonlinear residual twist ρ(ξ) extracted from
E(ξ)−1E1, whose roots are found using Newton’s method.
Multiple boundary conditions are treated similarly, but re-
sult in a larger non-linear system. It may also be numeri-
cally advantageous to introduce intermediate nodes; this is
the method of multiple shooting 3. These are well studied
techniques but nevertheless are significantly less easy to use
and less robust than the simple strand model.

We have implemented the strand model described in
Secs. 2 and 3 in Java, in the context of simulation of surgical
sutures. The suture is attached rigidly at one end to the envi-
ronment. We simulated both a straightforward strand model
with the user imposing stress boundary conditions at the
other end and the more complex boundary constraint where
the user imposes the position and orientation of one end.
In the latter case, we solve for the resulting position using
Newton iterations as described above, with backtracking line
search. The Jacobian matrix of the residual ρ(ξ) is numeri-
cally estimated using several invocations of the strand algo-
rithm; therefore efficient integration of the Standard BVP is
important even for non-standard BVPs.

Fig. 1 shows a screen shot of the simulation and the ac-
companying video shows the resulting motions for the more
difficult case where we specify the position and orientation
at the needle. The simulation is extremely fast, easily sim-
ulating sutures discretized with hundreds of mesh points at
30Hz on 700MHz PIII computer, in Java.

5. Conclusions and Future Work

We have proposed a modeling primitive, called a strand,
which is useful for modeling thin elastic objects in com-
puter graphics. The physics of a strand is based on the the-
ory of Cosserat rods. This results in a spatial ordinary dif-
ferential equation that can be efficiently integrated for com-
mon boundary conditions and is therefore suitable for in-
teractive applications in surgical simulation and games. In
future work, we plan to develop fast collision detection al-
gorithms for strands, and to incorporate contact constraints
more explicitly. Other extensions briefly touched upon in
this paper but which have not been described in detail due
to space limitations include modeling with Cosserat shells
and points, and incorporating time-stepping methods for dy-
namic strands. We also plan to explore other applications of
strands in animation, including animation of vegetation, hair,
and cloth.
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