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Outline
• The Folding Path problem

• Langevin dynamics  and Path integral 
representation 

• Dominant paths

• Hamilton-Jacobi representation

• Langevin Bridges

• short time approximation

• exact numerical solution
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1. What is a Protein

Biological Polymers (biopolymers):  Proteins, Nucleic Acids

(DNA and RNA), Polysaccharides

! catalytic activity: enzymes

!  transport of ions: hemoglobin (O2), ion channels

! motor protein

! shell of viruses (influenza, HIV, etc...)

! prions

! food, etc…

Polymers built with amino-acids

! 20 types of amino acids

! all left-handed

! Ala, Ile, Leu, Met, Phe, Pro, Trp, Val, Asn, Cys,

  Gln, Gly, Ser, Thr, Tyr, Arg, His, Lys, Asp, Glu

! 10 ! Number of Monomers ! 500

H H O

N C C

H OH

R residue
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Proteins exist under 2 forms

• Folded or Native: globular unique 
conformation, biologically active

• Unfolded: random coil, biologically inactive

• Note that a globular polymer has an 
extensive entropy

4

N = µN
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HIV protease (199 residues)

mardi 13 mai 14



The Protein Folding 
problem

• A sequence of amino-acids is given by the 
biologists. 

• What is the 3d shape of the corresponding 
protein?

• To study this problem, try Molecular 
Dynamics: Karplus, Levitt and Warschel, 
Nobel prize in Chemistry 2013
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Energy Scales

1 eV = 23 kCal/mole = 10000! K

300! K = 0.6 kCal /mole

" Covalent bond: 50-150 kCal /mole

" Sulfur Bridge: 51 kCal/mole

" Hydrogen bonds: 5-8 kCal/mole (non polar solvent)

 1-2 kCal/mole (polar solvent)

" Van der Waals: 1 kCal/mole

" Coulomb: 1-2 kCal/mole

Denaturation temperature ! 1 kCal/mole

Chemical sequence is frozen and only non-covalent interactions

drive the folding.

Parametrization (CHARMM, AMBER, OPLS, …)
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Use Newton or Langevin dynamics

where !i(t) is a Gaussian noise satisfying the fluctuation-dissipation

theorem:

Then, it is well known that

T o d iscretize , one  m ust u se  "t ~  10
-15  

–  10
-1 3

 s

N um ber o f degrees  o f freedom : N  # 1000

L ongest ava ilab le  runs (w ith  w ater) t ~  10
-8  

s

W e see  that t < <  fo ld ing  tim e.

R eason: system  is  trapped  in  an  exponentia l num ber o f m etastab le  traps.
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Why it does not work 
(yet?)?

• To discretize the equations, one must use time 
steps of the order of 

•  Large number of degrees of freedom (a few 
thousand) plus few thousand water molecules

• Force fields not necessarily adapted to folding

• Longest runs: around 1  s << folding time 1 ms- 1s

• Recently, runs of 1ms on short proteins

• Many metastable states and high barriers

10�15s

µ
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The problem of protein 
structure prediction is too 

complicated

Simpler problem: How do 
proteins fold? How do they go 
from Unfolded to Native State?

mardi 13 mai 14



• In given denaturant conditions, a protein 
spends a fraction of its time in the native 
state and a fraction of its time in the 
denatured state.

!

!

Experimental determination of upper bound for transition path 
times in protein folding from single molecule photon-by-photon 
trajectories 
!
Hoi Sung Chung*, John M. Louis, and William A. Eaton* 

!

"#$%&#'%&(!%)!*+,-./#0!1+(2./23!4#'.%5#0!652'.'7',!%)!8.9,2'.:,!#5;!8.#$,',2!#5;!<.;5,(!8.2,#2,23!4#'.%5#0!652'.'7',2!%)!=,#0'+3!>,'+,2;#3!?83!
@ABC@DAE@A3!F#57#&(!GA3!@AAC!!

!
Transition paths are a uniquely single molecule property not yet 
observed for any molecular process in solution. The duration of 
transition paths is the tiny fraction of the time in a single mole-
cule trajectory when the process actually happens. Here we re-
port the determination of an upper bound for the transition path 
time for protein folding from photon-by-photon trajectories. FRET 
trajectories were measured on single molecules of the dye-
labeled, 56-residue two-state protein GB1, immobilized on a glass 
surface via a biotin-streptavidin-biotin linkage. Characterization 
of individual emitted photons by their wavelength, polarization, 
and absolute and relative time of arrival following picosecond 
excitation allowed the determination of distributions of FRET 
efficiencies, donor and acceptor lifetimes, steady state polariza-
tions, and waiting times in the folded and unfolded states. Acqui-
sition of single molecule spectra enabled a clear distinction be-
tween jumps in the FRET efficiency due to folding or unfolding 
transitions of the polypeptide and those corresponding to a pre-
viously unknown photophysical change of the commonly-used 
donor dye, Alexa 488.  Comparison with the results for freely 
diffusing molecules showed that immobilization has no detect-
able effect on the structure or dynamics of the unfolded protein 
and only a small effect on the folding/unfolding kinetics. Statisti-
cal analysis of the photon-by-photon trajectories yields a transi-

tion path time less than 200 !s, more than 10,000 times shorter 
than the mean waiting time in the unfolded state (the inverse of 
the folding rate coefficient). The theory of diffusive barrier cross-
ings shows that this upper bound for the transition path time is 
consistent with previous estimates of the Kramers pre-
exponential factor for the rate coefficient. The theory also pre-
dicts that for smooth free energy barriers the transition path time 
is remarkably insensitive to the folding rate, with only a 2-fold 
difference for rate coefficients that differ by 10

5
-fold.   

A detailed description and understanding of mechanisms of protein 

folding has been one of the great challenges to biophysical science. 

The simplest system to study, and the one that has produced the most 

insights, is a protein exhibiting two-state behavior (1-7). A two-state 

protein has only two-populations of molecules in equilibrium and at 

all times in kinetic experiments – folded and unfolded. In ensemble 

folding experiments kinetics are studied by rapidly changing solution 

conditions, e.g. the temperature or denaturant concentration, and 

monitoring the relaxation of the two populations to their new equi-

librium ratio with probes such as fluorescence, circular dichroism or 

infrared spectroscopy. Single molecule kinetics, on the other hand, 

can be studied at equilibrium. As can be seen from the schematic of 

a trajectory in Fig. 1, the dynamical nature of equilibrium is dramati-

cally demonstrated when observing F!rster resonance energy trans-

fer (FRET) in a single molecule fluorescence experiment. There are 

fluctuations due to shot noise about a mean value in each state, inter-

rupted by what appear to be instantaneous jumps in FRET efficiency 

signaling folding or unfolding. The residence or waiting times in 

each state are exponentially distributed, with the mean time in the 

unfolded and folded segments of the trajectories corresponding to the 

inverse of the folding and unfolding rate coefficients, respectively. 

Rate coefficients can, albeit with assumptions, be much more eas-

ily obtained from a combination of ensemble kinetic and equilibrium 

time
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experiments, where the former measure the sum of the rate coeffi-

cients and the latter their ratio. The unique information in a single 

molecule experiment is contained in the very rapid transitions be-

tween the two states when the protein is either folding or unfolding.  

Indeed, all mechanistic information about folding and unfolding is 

contained in these so-called transition paths (Fig. 1), which can only 

be observed for single molecules. The duration of the transition path 

is the tiny fraction of the time in a trajectory that it takes for a protein 

to fold or unfold when it actually happens (8). With the possible 

exception of one study of RNA folding (9), transition path times 

have not been measured for any molecular process in solution.  

A realistic goal for single molecule FRET experiments is to meas-

ure transition path times for protein folding and unfolding and, ulti-

mately, to obtain distance versus time trajectories during the transi-

tion paths. The distribution of transition path times and of distance 

versus time trajectories will be totally new kinds of demanding tests 

for atomistic molecular dynamics simulations of folding (10), which, 

if accurate, contain everything one would ever want to know about a 

protein folding mechanism. If more than one distance could be 

measured simultaneously, e.g. by using 3 or more dyes (11-13), 

model-independent information on the width of the microscopic 

pathway distribution could be derived from correlations among the 

distances (14).  

In this work we take a major step toward these important goals by 

determining an upper bound for the transition path time from single 

molecule FRET trajectories of the 56 residue two-state protein GB1, 

immobilized on a glass surface by a biotin-streptavidin-biotin link-

age (Fig. 2). Although the idea that much could be learned about 

protein folding mechanisms from such trajectories has been apparent 

since the very early days of single molecule spectroscopy, an indica-

tion of the difficulty in measuring reliable trajectories is evidenced 

by the fact that there have only been 3 additional studies since the 

first measurements on single immobilized proteins by Hochstrasser 

and coworkers almost 10 years ago (15-18). The practical problem!
!
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In given denaturant conditions, a fraction of the 
proteins are native, and the rest are denatured

Denaturation curves
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• The problem: Assume a protein can go 
from state A to state B. Which pathway (or 
family of pathways) does the protein take? 
How are the trajectories from A to B? 

The Folding Pathway 
Problem
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• Examples: 

• from denatured to native in native conditions 

• Allosteric transition between A and B

Motivation from single molecule experiments

Can one describe these reactions in terms of a small 
set of dominant trajectories with fluctuations around?

Difficulty: looking for rare events
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U(x)
T

m
d2x

dt2
+ �

dx

dt
+

⇤U

⇤x
= ⇥(t)

� �(t)

Langevin dynamics

• The case of one particle in a potential         
at temperature     

• Use Langevin dynamics

• where    is the friction and        is a 
random noise

< ⇣(t)⇣(t0) >= 2kBT��(t� t0)
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Overdamped Langevin 
dynamics

• At large enough time scale, mass term 
negligible

m⇥2 � �⇥

⇤ � 2⇥
m

�

� =
kBT

D

� � 10�13s
D = 10�5cm2/s m � 5.10�26kg
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• Take overdamped Langevin (Brownian) 
dynamics

• with Gaussian noise: 

•     is the friction coefficient: 

dx

dt

= � 1
�

@U

@x

+ ⌘(t)

� D =
kBT

�

Diffusion coefficient

< ⇣(t)⇣(t0) >=
2kBT

�
�(t� t0)
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• Equation of motion is a stochastic equation

• The Probability to find the particle at point x 
at time t is given by a Fokker-Planck equation

⇤

⇤t
P (x, t) = D

⇤

⇤x

�
1

kBT

⇤U

⇤x
P (x, t) +

⇤P (x, t)
⇤x

⇥

with
P (x, 0) = �(x� xi)
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�Q

�t
= HQ

Q(x, t)

• Fokker-Planck equation looks very much like a 
Schrödinger equation, except for 1st order 
derivative. Define

• The function           satisfies an imaginary time 
Schrödinger equation with a Hamiltonian H

P (x, t) = e�
�U(x)

2 Q(x, t)

�
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• where H is a “quantum” Hamiltonian given by

• Spectral decomposition

P (xf , tf |xi, ti) = e�
U(xf )�U(xi)

2kBT < xf |e�(tf�ti)H |xi >

< xf |e�(tf�ti)H |xi >=
�

�

e�(tf�ti)E���(xf )��(xi)

H��(x) = E���(x)

H =
1
�

⇣
�r2 +

1
4
(rU)2 � kBT

2
r2U

⌘
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• At large time, the matrix element is 
dominated by the ground state

H�0 = 0
with

so that

P (xf , tf |xi, ti) �
e��U(x)

Z
+ e��

U(xf )�U(xi)
2 e�(tf�ti)E1�1(xf )�1(xi)

�0(x) =
e��U(x)/2

�
Z

Z =
�

dxe��U(x)

is the reaction time� = E�1
1
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Dominant Pathways in Protein Folding
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We present a method to investigate the kinetics of protein folding on a long time-scale and the dynamics
underlying the formation of secondary and tertiary structures during the entire reaction. The approach is based
on the formal analogy between thermal and quantum diffusion: by writing the solution of the Fokker-Planck
equation for the time-evolution of a protein in a viscous heat-bath in terms of a path integral, we derive a
Hamilton-Jacobi variational principle from which we are able to compute the most probable pathway of folding.
The method is applied to the folding of the Villin Headpiece Subdomain, in the framework of a Go-model. We
have found that, in this model, the transition occurs through an initial collapsing phase driven by the starting
coil configuration and a later rearrangement phase, in which secondary structures are formed and all computed
paths display strong similarities. This method is completely general, does not require the prior knowledge of any
reaction coordinate and represents an efficient tool to perfom ab-initio simulations of the entire folding process
with available computers.

Understanding the kinetics of protein folding and the dy-
namical mechanisms involved in the formation of their struc-
tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):

∂x
∂t

= − D
kBT

∂U
∂x

+ η(t) (1)

where η(t) is a Gaussian noise with zero average and correla-
tion given by 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). In this equation, D is
the diffusion constant of the particle in the solvent, kB and T
are respectively the Boltzmann constant and the temperature.

The probability to find the particle at position x at time t
obeys the well-known Fokker-Planck Equation:

∂
∂t

P(x,t) = D
∂

∂x

(
1

kBT
∂U(x)

∂x
P(x,t)

)
+ D

∂2

∂x2 P(x,t),

(2)

It is well-known that the stationary solution of (2) is the
Boltzmann distribution P(x) ∼ exp(−U(x)/kBT ). The solu-
tion of (2), subject to the boundary conditions x(ti) = xi and
x(t f ) = x f can be expressed in terms of a path-integral:

P(x f ,t f |xi,ti) = e−
U(x f )−U(xi)

2kBT

Z x f

xi
Dx(τ)e−Se f f [x]/2D, (3)

where Se f f [x] =
R t

ti d τ
(

ẋ2(τ)
2 +Ve f f [x(τ)]

)
,

Ve f f (x) =
D2

2

(
1

kBT
∂U(x)

∂x

)2
− D2

kBT
∂2 U(x)

∂x2 . (4)
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underlying the formation of secondary and tertiary structures during the entire reaction. The approach is based
on the formal analogy between thermal and quantum diffusion: by writing the solution of the Fokker-Planck
equation for the time-evolution of a protein in a viscous heat-bath in terms of a path integral, we derive a
Hamilton-Jacobi variational principle from which we are able to compute the most probable pathway of folding.
The method is applied to the folding of the Villin Headpiece Subdomain, in the framework of a Go-model. We
have found that, in this model, the transition occurs through an initial collapsing phase driven by the starting
coil configuration and a later rearrangement phase, in which secondary structures are formed and all computed
paths display strong similarities. This method is completely general, does not require the prior knowledge of any
reaction coordinate and represents an efficient tool to perfom ab-initio simulations of the entire folding process
with available computers.

Understanding the kinetics of protein folding and the dy-
namical mechanisms involved in the formation of their struc-
tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):
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where η(t) is a Gaussian noise with zero average and correla-
tion given by 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). In this equation, D is
the diffusion constant of the particle in the solvent, kB and T
are respectively the Boltzmann constant and the temperature.

The probability to find the particle at position x at time t
obeys the well-known Fokker-Planck Equation:
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It is well-known that the stationary solution of (2) is the
Boltzmann distribution P(x) ∼ exp(−U(x)/kBT ). The solu-
tion of (2), subject to the boundary conditions x(ti) = xi and
x(t f ) = x f can be expressed in terms of a path-integral:
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tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.
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ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
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paths display strong similarities. This method is completely general, does not require the prior knowledge of any
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tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):

∂x
∂t

= − D
kBT

∂U
∂x
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where η(t) is a Gaussian noise with zero average and correla-
tion given by 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). In this equation, D is
the diffusion constant of the particle in the solvent, kB and T
are respectively the Boltzmann constant and the temperature.
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tion of (2), subject to the boundary conditions x(ti) = xi and
x(t f ) = x f can be expressed in terms of a path-integral:

P(x f ,t f |xi,ti) = e−
U(x f )−U(xi)

2kBT

Z x f

xi
Dx(τ)e−Se f f [x]/2D, (3)

where Se f f [x] =
R t

ti d τ
(
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Saddle-Point method: WKB approximation

To compute the path integral, look for paths which have 
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FIG. 1: Ribbon representation of the Villin Headpiece Subdomain,
drawn using Raster3D[12]

This result shows that the problem of studying the diffu-
sion of a classical particle at temperature T in a medium with
diffusion constant D can be mapped into the problem of de-
termining its quantum-mechanical propagation in imaginary
time, subject to the effective potential Ve f f (x). This approach
has substantial differences from the one introduced in Ref. [6],
where the second derivative of eq.(4) is neglected. Such an ap-
proximation is not consistent with the Fokker-Planck equation
(2), and it leads, at large times, to a distribution which is not
the Boltzmann distribution [7]. Our approach also differs from
the one introduced in Ref. [8] where thermal fluctuations were
neglected and friction effects were partially accounted for by
choosing large discretization steps to filter-out high-frequency
modes.

The most probable path contributing to (3) is the one for
which the exponential weight e−Se f f /2D is maximum, hence
for which Se f f is minimum. A trajectory which connects
configurations that are not classically accessible in the ab-
sence of thermal fluctuations corresponds to an instanton in
the quantum-mechanical language.

The same framework can be applied to study the protein
folding, in which the one-instanton solutions represent the
most probable folding trajectories (which we shall refer to
as Dominant Folding Pathway, DFP). Determining the DFP
for realistic proteins using conventional methods —such as
Molecular Dynamics— is extremely challenging from the
computational point of view. In addition to the numerical dif-
ficulties associated with the existence of very different time
scales, one has also to face the solution of boundary-value
problems, which are considerably harder than initial-value
problems.

Fortunately, a dramatic simplification is obtained upon ob-
serving that the dynamics described by the effective action
Se f f is energy-conserving and time-reversible. This property
allows us to switch from the time-dependent Newtonian de-
scription to the energy-dependent Hamilton-Jacobi (HJ) de-
scription. We note that this could not be done at the level
of the Langevin equations (or adopting the Onsager-Machlup
action). In the HJ framework, the Dominant Folding Path-
way connecting given initial and final positions is obtained
by minimizing — not just extremizing— the target function
(HJ functional)

SHJ =
Z x f

xi
dl

√
2(Ee f f +Ve f f [x(l)]), (5)
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FIG. 2: The evolution of the radius of gyration as a function of the
fraction of the total displacement covered during the folding transi-
tions in 6 paths corresponding to different initial random coil config-
urations.

where dl is an infinitesimal displacement along the path tra-
jectory. Ee f f is a free parameter which determines the total
time elapsed during the transition, according to:

t f − ti =
Z x f

xi
dl

√
1

2(Ee f f +Ve f f [x(l)])
. (6)

It should be stressed that the conserved quantity Ee f f does
not correspond to the physical energy of the folding transi-
tion (which is not conserved in the presence of random forces
and friction). In principle, a statistical distribution of folding
times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
ergy were first pointed-out in [8]. In this work, we show that
comparable computational advantages can also be achieved

determine folding time

• The method: minimize the Hamilton-Jacobi 
action

• over all paths joining      to 

• The total time is determined by
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the Boltzmann distribution [7]. Our approach also differs from
the one introduced in Ref. [8] where thermal fluctuations were
neglected and friction effects were partially accounted for by
choosing large discretization steps to filter-out high-frequency
modes.

The most probable path contributing to (3) is the one for
which the exponential weight e−Se f f /2D is maximum, hence
for which Se f f is minimum. A trajectory which connects
configurations that are not classically accessible in the ab-
sence of thermal fluctuations corresponds to an instanton in
the quantum-mechanical language.

The same framework can be applied to study the protein
folding, in which the one-instanton solutions represent the
most probable folding trajectories (which we shall refer to
as Dominant Folding Pathway, DFP). Determining the DFP
for realistic proteins using conventional methods —such as
Molecular Dynamics— is extremely challenging from the
computational point of view. In addition to the numerical dif-
ficulties associated with the existence of very different time
scales, one has also to face the solution of boundary-value
problems, which are considerably harder than initial-value
problems.

Fortunately, a dramatic simplification is obtained upon ob-
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Se f f is energy-conserving and time-reversible. This property
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scription. We note that this could not be done at the level
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where dl is an infinitesimal displacement along the path tra-
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time elapsed during the transition, according to:
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It should be stressed that the conserved quantity Ee f f does
not correspond to the physical energy of the folding transi-
tion (which is not conserved in the presence of random forces
and friction). In principle, a statistical distribution of folding
times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
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This result shows that the problem of studying the diffu-
sion of a classical particle at temperature T in a medium with
diffusion constant D can be mapped into the problem of de-
termining its quantum-mechanical propagation in imaginary
time, subject to the effective potential Ve f f (x). This approach
has substantial differences from the one introduced in Ref. [6],
where the second derivative of eq.(4) is neglected. Such an ap-
proximation is not consistent with the Fokker-Planck equation
(2), and it leads, at large times, to a distribution which is not
the Boltzmann distribution [7]. Our approach also differs from
the one introduced in Ref. [8] where thermal fluctuations were
neglected and friction effects were partially accounted for by
choosing large discretization steps to filter-out high-frequency
modes.

The most probable path contributing to (3) is the one for
which the exponential weight e−Se f f /2D is maximum, hence
for which Se f f is minimum. A trajectory which connects
configurations that are not classically accessible in the ab-
sence of thermal fluctuations corresponds to an instanton in
the quantum-mechanical language.

The same framework can be applied to study the protein
folding, in which the one-instanton solutions represent the
most probable folding trajectories (which we shall refer to
as Dominant Folding Pathway, DFP). Determining the DFP
for realistic proteins using conventional methods —such as
Molecular Dynamics— is extremely challenging from the
computational point of view. In addition to the numerical dif-
ficulties associated with the existence of very different time
scales, one has also to face the solution of boundary-value
problems, which are considerably harder than initial-value
problems.

Fortunately, a dramatic simplification is obtained upon ob-
serving that the dynamics described by the effective action
Se f f is energy-conserving and time-reversible. This property
allows us to switch from the time-dependent Newtonian de-
scription to the energy-dependent Hamilton-Jacobi (HJ) de-
scription. We note that this could not be done at the level
of the Langevin equations (or adopting the Onsager-Machlup
action). In the HJ framework, the Dominant Folding Path-
way connecting given initial and final positions is obtained
by minimizing — not just extremizing— the target function
(HJ functional)

SHJ =
Z x f
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dl

√
2(Ee f f +Ve f f [x(l)]), (5)
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tions in 6 paths corresponding to different initial random coil config-
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where dl is an infinitesimal displacement along the path tra-
jectory. Ee f f is a free parameter which determines the total
time elapsed during the transition, according to:
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It should be stressed that the conserved quantity Ee f f does
not correspond to the physical energy of the folding transi-
tion (which is not conserved in the presence of random forces
and friction). In principle, a statistical distribution of folding
times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
ergy were first pointed-out in [8]. In this work, we show that
comparable computational advantages can also be achieved
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jectory. Ee f f is a free parameter which determines the total
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It should be stressed that the conserved quantity Ee f f does
not correspond to the physical energy of the folding transi-
tion (which is not conserved in the presence of random forces
and friction). In principle, a statistical distribution of folding
times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
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sence of thermal fluctuations corresponds to an instanton in
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where dl is an infinitesimal displacement along the path tra-
jectory. Ee f f is a free parameter which determines the total
time elapsed during the transition, according to:
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It should be stressed that the conserved quantity Ee f f does
not correspond to the physical energy of the folding transi-
tion (which is not conserved in the presence of random forces
and friction). In principle, a statistical distribution of folding
times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
ergy were first pointed-out in [8]. In this work, we show that
comparable computational advantages can also be achieved
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(2), and it leads, at large times, to a distribution which is not
the Boltzmann distribution [7]. Our approach also differs from
the one introduced in Ref. [8] where thermal fluctuations were
neglected and friction effects were partially accounted for by
choosing large discretization steps to filter-out high-frequency
modes.

The most probable path contributing to (3) is the one for
which the exponential weight e−Se f f /2D is maximum, hence
for which Se f f is minimum. A trajectory which connects
configurations that are not classically accessible in the ab-
sence of thermal fluctuations corresponds to an instanton in
the quantum-mechanical language.

The same framework can be applied to study the protein
folding, in which the one-instanton solutions represent the
most probable folding trajectories (which we shall refer to
as Dominant Folding Pathway, DFP). Determining the DFP
for realistic proteins using conventional methods —such as
Molecular Dynamics— is extremely challenging from the
computational point of view. In addition to the numerical dif-
ficulties associated with the existence of very different time
scales, one has also to face the solution of boundary-value
problems, which are considerably harder than initial-value
problems.

Fortunately, a dramatic simplification is obtained upon ob-
serving that the dynamics described by the effective action
Se f f is energy-conserving and time-reversible. This property
allows us to switch from the time-dependent Newtonian de-
scription to the energy-dependent Hamilton-Jacobi (HJ) de-
scription. We note that this could not be done at the level
of the Langevin equations (or adopting the Onsager-Machlup
action). In the HJ framework, the Dominant Folding Path-
way connecting given initial and final positions is obtained
by minimizing — not just extremizing— the target function
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where dl is an infinitesimal displacement along the path tra-
jectory. Ee f f is a free parameter which determines the total
time elapsed during the transition, according to:
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It should be stressed that the conserved quantity Ee f f does
not correspond to the physical energy of the folding transi-
tion (which is not conserved in the presence of random forces
and friction). In principle, a statistical distribution of folding
times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
ergy were first pointed-out in [8]. In this work, we show that
comparable computational advantages can also be achieved
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is called the effective potential. This quantity measures the

tendency of a configuration to evolve under Langevin diffu-

sion. In fact, the probability for the system to remain in the

same configuration x under an infinitesimal time interval is

given by

P(x,dt|x,0) = e−Ve f f (x)dt (5)

Hence, points of large effective potential are highly unstable

under Langevin diffusion.

There is an obvious sum rule:
R

dx f P(x f ,t f |xi,ti) = 1,

which can be written as

1= e
U(xi)
2kBT

Z

dx f

Z x f

xi

Dx(τ)e
−
U(x f )

2kBT
−Se f f [x] (6)

From a saddle-point analysis of this sum-rule, it follows that

given the initial condition (xi,ti), the most probable paths con-
tributing to (6) satisfy the Euler-Lagrange equations derived

from the effective Lagrangian Le f f = ẋ2/4D+Ve f f (x) with
proper boundary conditions

d2x

dt2
= 2D

∂Ve f f

∂x
(7)

ẋ f = −
D

kBT
U ′(x f ) (8)

x(ti) = xi (9)

The saddle-point equation (8), which comes from the variation

of the exponent in (6) with respect to the final point x f , tells

us which final points dominantly contribute to the sum rule,

that is which conformations are most likely to be visited at the

final time, t f .

The numerical advantage in determining the DFP comes

from the fact that Le f f is a Lagrangian describing an energy

conserving dynamics, and therefore it is possible to use the

Hamilton-Jacobi (HJ) description. With this change of frame-

work, the total computational cost of the simulation now de-

pends on the length of the path, rather than on the folding time.

In the HJ framework, the most probable pathway is obtained

by minimizing — not just extremizing — the functional

SHJ([x];xi,x f ) =
Z x f

xi

dl

√

1/D(Ee f f +Ve f f [x(l)]), (10)

where dl =
√

(dx)2 is an infinitesimal conformational change
along the path and the effective energy is given by

Ee f f =
ẋ2

4D
−Ve f f (x). (11)

Since the effective energy is conserved along the DFP, using

equation (8) we have

Ee f f =
D

2kBT
U ′′(x f ). (12)

Note that, since the diffusion coefficient drops exponentially

at low temperatures, D = D(T ) ∼ D0 exp[−Ea/kBT ], the ef-
fective energy vanishes in this limit. In the long time limit,

t f → ∞, we know that P(x f ,t f |xi,ti) converges to the Boltz-
mann distribution

P(x f ,t f |xi,ti) →t f→∞

e−U(x f )/kBT

Z
(13)

where Z is the partition function of the system. If the reaction

takes place at a temperature below the folding temperature,

at large times the system will sample configurations x f close

to the global minimum-potential-energy configuration xn, for

whichU ′(xn) = 0.

We shall define the native state as the region of configura-

tion space which is thermally accessible from the minimum-

energy conformation xn, i.e. for which energy differenceswith

respect toU(xn) are of the order of kBT . We can assume that,
for all configurations x f in the native state, the potential en-

ergy can be described in the harmonic approximation:

U(x f ) ≈U(xn)+
1

2
U ′′(xn)(x f − xn)

2 (14)

This equation together with equation (12) implies

Ee f f =
D(T )

2kBT
U ′′(xn) = −Ve f f (xn) (15)

This equation is quite powerful, since it shows that the effec-

tive energy does not depend on the specific conformation x f in

the native state, and is totally determined by the temperature

of the heat-bath and by the curvature of the potential energy

at the minimum-energy point xn. Stated differently, the native

state belong to a surface in configuration space of constant

effective energy Ee f f .

This parameter appears in the macroscopic quantities char-

acterizing the thermodynamics of the native state. As an ex-

ample, let us discuss the conformational entropy Scon f , which

measures the number of micro-states in the native state, i.e.

the contribution to the partition function of all the config-

urations for which U(x) −U(xn) <∼ kBT , where xn is the

minimum-energy configuration:

ZN(T ) =
Z

dxe
−U(x)

kBT θ(kBT − (U(x)−U(xn))) (16)

Scon f (T ) ≡ −
∂

∂T
kBT lnZN(T ) (17)

Expanding the potential energy quadratically around the

minimum-energy configuration xn we have

ZN ' e
−U(xn)

kBT

Z xn+
√
2kBT/U ′′(xn)

xn−
√
2kBT/U ′′(xn)

dx e
−U ′′(xn)

2kBT
(x−xn)2 , (18)

which gives

Scon f (T ) ' kB ln

[
√

2πkBT

U ′′(xn)
Erf(1)

]

(19)

' kB ln

[√

Dπ

Ee f f

]

+ const. (20)

E =
�

4
ẋ

2 � Veff (x)
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• The HJ method is much more efficient than 
Newtonian mechanics because proteins spend 
most of their time trying to overcome energy 
barriers.

• No waiting-times in HJ: work with fixed 
interval length dl
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• For a Protein, minimize

• where                                and    is a 
Lagrange multiplier to fix the interval length 
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FIG. 3: The evolution of the percentage of monomers in alpha-helix
conformation as a function of the fraction of the total displacement
covered during the folding transitions in 6 paths corresponding to
different initial random coil configurations.

for stochastic dynamics at fixed temperature, in which the ef-
fects associated with thermal fluctuations and dissipation are
consistently taken into account.

Let us now apply this formalism to the study of the kinetics
of the protein folding. Although the ultimate goal is to char-
acterize folding pathways using an all-atom description, in
this exploratory study we test our method on a very schematic
model in which the effective degrees of freedom (monomers)
are representative of amino-acids, and have a fixed mass. The
monomer-monomer interaction is chosen to be the sum of a
harmonic bond along the chain, supplemented by a repulsive
core between non-consecutive monomers and by an attractive
basin between monomers which are in contact in the native
state (Go-Model [9]). The detailed form of the potential used
is:

U = ∑
i< j

u(xi,x j) = ∑
i< j

(
1
2

Kb(|xi −x j|−a
)2

δ j,i+1

+ εσi, j

[(
R0

ri j

)1
2−

(
(2 R0)6

(ri j −R0)6 +(2R0)6)

)]
(7)

+ ε(1−σi, j)

(
Rr

ri j

)1
2,

where ri j = |xi − x j| and σi j = 1 if i and j are in native con-
tact, while σi j = 0 otherwise. The parameters in the potential
have been chosen to be of the same order of similar Go-Model
applications (see [10] and references therein): a = 0.38 nm,
R0 = 0.45 nm , Rr = 0.65 nm, ε = 2 Kcal/mol. In this first
exploratory study we chose to keep the problem as simple as
possible and did not include Coulombic, angular or torsional
interactions. Hence, the present simple model is not expected
to be realistic in predicting the kinetics of tertiary structures
formation: the collapse of the protein will be driven mostly by
the boundary conditions. On the other hand, the Go-potential
may be sufficiently long-ranged to be effective in the determi-
nation of local secondary structures.

The DFP was obtained minimizing numerically the dis-
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FIG. 4: The evolution of the number of contacts as a function of the
fraction of the total displacement covered during the folding transi-
tions in 6 paths corresponding to different initial random coil config-
urations.

cretized target function

SHJ =
N−1

∑
n

√
2(Ee f f +Ve f f (n))∆ln,n+1 + λP, (8)

where P = ∑N−1
i (∆li,i+1 −〈∆l〉)2 and

Ve f f (n) = ∑
i



 D2

2(kBT )2

(

∑
j

∇ ju(xi(n),x j(n))

)2

− D2

kBT ∑
j

∇2
ju(xi(n),x j(n))

]
(9)

(∆l)2
n,n+1 = ∑

i
(xi(n + 1)−xi(n))2, (10)

∆ ln,n+1 is the Euclidean measure of the n− th elementary path
step and P is a penalty function which keeps all the length
elements close to their average [8] and becomes irrelevant in
the continuum limit.

We have checked that, with 100 discretization steps, simu-
lations performed on a wide range of λ lead to consistent re-
sults. The minimization of the discretized HJ effective action
was performed applying an adaptive simulated annealing al-
gorithm and using 50 and 100 path discretization steps. After
a preliminary thermalization phase based on usual Metropolis
algorithm, we performed about 5 cooling cycles, consisting of
8000 cooling steps each. In order to avoid trapping in local
minima, at the begin of each cooling cycle, the configuration
was heated-up with few Metropolis steps. At the end of each
cooling cycle, the boldness of the Monte Carlo moves was
adapted, in order to keep the rejection rate ∼ 90%. Each
calculation lasted for approximately ∼ 12 hours on a single-
processor work station. We considered the folding transitions
from 6 different random self-avoiding coil configurations to
the same native state. The center of mass was subtracted form
each configurations.

The results of the simulations performed at T = 300 K
and damping constant γ = kBT

D = 0.1ns−1 are reported in
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FIG. 3: The evolution of the percentage of monomers in alpha-helix
conformation as a function of the fraction of the total displacement
covered during the folding transitions in 6 paths corresponding to
different initial random coil configurations.

for stochastic dynamics at fixed temperature, in which the ef-
fects associated with thermal fluctuations and dissipation are
consistently taken into account.

Let us now apply this formalism to the study of the kinetics
of the protein folding. Although the ultimate goal is to char-
acterize folding pathways using an all-atom description, in
this exploratory study we test our method on a very schematic
model in which the effective degrees of freedom (monomers)
are representative of amino-acids, and have a fixed mass. The
monomer-monomer interaction is chosen to be the sum of a
harmonic bond along the chain, supplemented by a repulsive
core between non-consecutive monomers and by an attractive
basin between monomers which are in contact in the native
state (Go-Model [9]). The detailed form of the potential used
is:

U = ∑
i< j

u(xi,x j) = ∑
i< j

(
1
2

Kb(|xi −x j|−a
)2

δ j,i+1

+ εσi, j
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ri j
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2−

(
(2 R0)6

(ri j −R0)6 +(2R0)6)
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(7)

+ ε(1−σi, j)

(
Rr

ri j

)1
2,

where ri j = |xi − x j| and σi j = 1 if i and j are in native con-
tact, while σi j = 0 otherwise. The parameters in the potential
have been chosen to be of the same order of similar Go-Model
applications (see [10] and references therein): a = 0.38 nm,
R0 = 0.45 nm , Rr = 0.65 nm, ε = 2 Kcal/mol. In this first
exploratory study we chose to keep the problem as simple as
possible and did not include Coulombic, angular or torsional
interactions. Hence, the present simple model is not expected
to be realistic in predicting the kinetics of tertiary structures
formation: the collapse of the protein will be driven mostly by
the boundary conditions. On the other hand, the Go-potential
may be sufficiently long-ranged to be effective in the determi-
nation of local secondary structures.

The DFP was obtained minimizing numerically the dis-
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FIG. 4: The evolution of the number of contacts as a function of the
fraction of the total displacement covered during the folding transi-
tions in 6 paths corresponding to different initial random coil config-
urations.
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∆ ln,n+1 is the Euclidean measure of the n− th elementary path
step and P is a penalty function which keeps all the length
elements close to their average [8] and becomes irrelevant in
the continuum limit.

We have checked that, with 100 discretization steps, simu-
lations performed on a wide range of λ lead to consistent re-
sults. The minimization of the discretized HJ effective action
was performed applying an adaptive simulated annealing al-
gorithm and using 50 and 100 path discretization steps. After
a preliminary thermalization phase based on usual Metropolis
algorithm, we performed about 5 cooling cycles, consisting of
8000 cooling steps each. In order to avoid trapping in local
minima, at the begin of each cooling cycle, the configuration
was heated-up with few Metropolis steps. At the end of each
cooling cycle, the boldness of the Monte Carlo moves was
adapted, in order to keep the rejection rate ∼ 90%. Each
calculation lasted for approximately ∼ 12 hours on a single-
processor work station. We considered the folding transitions
from 6 different random self-avoiding coil configurations to
the same native state. The center of mass was subtracted form
each configurations.

The results of the simulations performed at T = 300 K
and damping constant γ = kBT

D = 0.1ns−1 are reported in
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FIG. 3: The evolution of the percentage of monomers in alpha-helix
conformation as a function of the fraction of the total displacement
covered during the folding transitions in 6 paths corresponding to
different initial random coil configurations.

for stochastic dynamics at fixed temperature, in which the ef-
fects associated with thermal fluctuations and dissipation are
consistently taken into account.

Let us now apply this formalism to the study of the kinetics
of the protein folding. Although the ultimate goal is to char-
acterize folding pathways using an all-atom description, in
this exploratory study we test our method on a very schematic
model in which the effective degrees of freedom (monomers)
are representative of amino-acids, and have a fixed mass. The
monomer-monomer interaction is chosen to be the sum of a
harmonic bond along the chain, supplemented by a repulsive
core between non-consecutive monomers and by an attractive
basin between monomers which are in contact in the native
state (Go-Model [9]). The detailed form of the potential used
is:

U = ∑
i< j

u(xi,x j) = ∑
i< j

(
1
2

Kb(|xi −x j|−a
)2

δ j,i+1

+ εσi, j

[(
R0

ri j

)1
2−

(
(2 R0)6

(ri j −R0)6 +(2R0)6)

)]
(7)

+ ε(1−σi, j)

(
Rr

ri j

)1
2,

where ri j = |xi − x j| and σi j = 1 if i and j are in native con-
tact, while σi j = 0 otherwise. The parameters in the potential
have been chosen to be of the same order of similar Go-Model
applications (see [10] and references therein): a = 0.38 nm,
R0 = 0.45 nm , Rr = 0.65 nm, ε = 2 Kcal/mol. In this first
exploratory study we chose to keep the problem as simple as
possible and did not include Coulombic, angular or torsional
interactions. Hence, the present simple model is not expected
to be realistic in predicting the kinetics of tertiary structures
formation: the collapse of the protein will be driven mostly by
the boundary conditions. On the other hand, the Go-potential
may be sufficiently long-ranged to be effective in the determi-
nation of local secondary structures.

The DFP was obtained minimizing numerically the dis-
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(xi(n + 1)−xi(n))2, (10)

∆ ln,n+1 is the Euclidean measure of the n− th elementary path
step and P is a penalty function which keeps all the length
elements close to their average [8] and becomes irrelevant in
the continuum limit.

We have checked that, with 100 discretization steps, simu-
lations performed on a wide range of λ lead to consistent re-
sults. The minimization of the discretized HJ effective action
was performed applying an adaptive simulated annealing al-
gorithm and using 50 and 100 path discretization steps. After
a preliminary thermalization phase based on usual Metropolis
algorithm, we performed about 5 cooling cycles, consisting of
8000 cooling steps each. In order to avoid trapping in local
minima, at the begin of each cooling cycle, the configuration
was heated-up with few Metropolis steps. At the end of each
cooling cycle, the boldness of the Monte Carlo moves was
adapted, in order to keep the rejection rate ∼ 90%. Each
calculation lasted for approximately ∼ 12 hours on a single-
processor work station. We considered the folding transitions
from 6 different random self-avoiding coil configurations to
the same native state. The center of mass was subtracted form
each configurations.

The results of the simulations performed at T = 300 K
and damping constant γ = kBT

D = 0.1ns−1 are reported in
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-The energy can be evaluated by normal mode analysis 
or short time MD runs 

3

This equation expresses the intuitive fact that the conforma-
tional entropy of the native state is small if the minimum of
the potential energy is very narrow. From Eq.s (20) and (15),
we can conclude that the effective potential Ve f f (x) provides
a measure of the conformational entropy of any (meta)-stable
state.
The effective potential also governs the kinetics of the fold-

ing. As a result, in this formalism, it is possible to investigate
the relationship between thermodynamical and kinetic aspects
of the protein folding reaction. For example, we now show
that the stability of the native state is related to its confor-
mational entropy. To this end, let us consider the probability
for the native state to remain unchanged during an elementary
time interval dt, i.e. the probability that all points in the native
state evolve into points which are still in the native state:

P(native,dt|native,0) ≡
Z

U(x)−U(xn)<kBT
dx

Z

U(y)−U(xn)<kBT
dy P(y,dt|x,0) (21)

This quantity, which generalizes the persistence probability
(5), can be evaluated using Eq. (2) and expanding the expo-
nent in the Gaussian approximation. The result, which is quite
involved and will not be presented here, shows that the persis-
tence probability of the native state increases for large local
curvatures of the potential energy near the native state, i.e. for
Ve f f (x) →−∞. Hence, Ve f f (x) controls both the stability and
the conformational entropy of the native state. This implies
that, in order to have a large probability to remain unchanged
under Langevin diffusion, the native state has to be character-
ized by a small conformational entropy.
In the case of a protein with Hamiltonian H(!r1, . . . ,!rN),

denoting the coordinates of the minimum-energy conforma-

tion by {!r(n)I }, and assuming again that in the final stage of
the folding, the protein samples the native state, we write the
quadratic expansion around the minimum of H as

H(!r1, . . . ,!rN) = H(!r(n)1 , . . . ,!r(n)N ) (22)

+ ∑
i j,µν

1
2
(rµi − r

µ(n)
i )

∂2H

∂r
µ(n)
i ∂r

ν(n)
j

(rνj − r
ν(n)
j ) (23)

This equation implies the equivalent of equation (15)

Ee f f =
D

2kBT
∑
i

!∇2i H(!r
(n)
1 , . . . ,!r

(n)
N ) (24)

=
D

2kBT
Tr H (n) (25)

whereH (n) is the Hessian matrix around the minimum-energy
conformation. Obviously, such a quantity can be obtained
either from a normal mode analysis around the native state,
or equivalently by evaluating the average of the velocities
v2i ≡ (d!ri/dt)2 from several short MD simulations around the
native state.
To summarize the strategy to find the most probable reac-

tion paths, we may proceed as follows: (i) Prepare several

FIG. 1: Dominant Folding Paths for the C7ax →C7eq (red squares)
and αL → αR (blue squares) transitions. In the background, the free
energy profile for the ψ and φ dihedrals is shown (in units of kJ/mol).
Black squares identify the minimum residence time conformations,
and the white squares the transition states defined by comittement
analysis.

initial denatured conformations by running short MD simula-
tions at high temperature. (ii) Prepare a representative set of
the native state by making short timeMD simulations from the
minimum-energy configuration. These short time MD simu-
lations also allow to compute the trace of the Hessian matrix,
and thus the effective energy Ee f f . (iii) Solve the Hamilton-
Jacobi equations from the denatured conformations to the na-
tive conformations, using the energy Ee f f computed above.
In order to make quantitative predictions on the folding

process, we need to show that this framework can be suc-
cessfully applied to all-atom models, using available com-
puters. As a first application of this type, we study the ki-
netics of alanine dipeptide, which is usually the benchmark
system for the investigation of new simulation methods in
this field.[10, 11, 12]. The force-field employed is GRO-
MOS96 [14], while the electrostatics effects mediated by the
solvent are accounted for by imposing a dielectric permittiv-
ity εr = 80, leaving more sophisticated implicit descriptions
of the solvent to forthcoming phenomenological applications.
In Fig. (1) we present the results of the DFP analysis rel-

ative to two specific transitions (C7ax →C7eq and αL → αR),
compared with the Free Energy landscape computed by direct
integration. The values of the two ψ and φ dihedrals along the
paths obtained by minimising the effective action are plotted
on top of the relative free energymap. These simulations were
performed at temperature T = 300K, and assuming a diffusion
coefficient D = 0.02Å2ps−1 for all atoms. To determine the
DFP we have performed 500 cycles of simulated annealing of
the discretized Hamilton-Jacobi functional [8], followed by a
refinement stage where Conjugate Gradients were used. The
effective energy Ee f f was estimated running a few ps of MD
simulation starting from the minimum-energy conformation.

Hessian

-The Transition State defined by Commitment Analysis

4

We will now show how the DFP analysis can provide valu-

able information about the dynamics of the transition, and

about the determination of the transition state along the path.

While other methods with similar purposes, e.g.[6, 12], only

provide a meta-dynamics, the DFP analysis yields information

on the real-time evolution of the system. Even though time is

no longer an independent variable of the calculation in the HJ

formulation, the total time required to perform the transition

from a conformation xi to a conformation x f can be computed

as

t f − ti =
Z x f

xi

dl
1

√

4D(Ee f f +Ve f f [x(l)])
(26)

and the time spent in the neighborhood of each intermediate

conformation (residence time along the path) is easily derived

from the differential form of Eq. 26. The computed times

for the C7ax→C7eq and αL → αR transitions are 12.0 and

11.4 ps, respectively. Notice, that this is the most probable

transition time, and not the mean first passage, or Kramers

time [17].

An analysis of the residence time along the path shows that

in each of the two DFP’s, there are two points where the con-

formation of alanine dipeptide has shortest residence time.

These points, indicated in Fig. (1) with black symbols, are lo-

cated in the proximity of the saddle-points of the free energy

landscape, as one would expect.

On the other hand, within the present formalism it is also

possible to rigorously define the transition state along the path

in terms of commitment analysis [15, 16]. Following Eq. (2),

once the DFP has been determined, the conformation xts is

easily obtained by requiring that the probability in the sad-

dle point approximation to diffuse back to the initial config-

uration xi, P(xi|xts) equates that of evolving toward the final
native configuration x f , P(x f |xts). In the saddle-point approx-
imation, this condition leads to the simple equation:

U(x f )−U(xi)

2kBT
= SHJ([x];xts,xi)−SHJ([x];xts,x f ). (27)

We want to point out that this definition of xts neither relies

on the use of any specific reaction coordinate, nor on the a

priori knowledge of the free energy landscape, but is purely

based on the properties of the diffusive dynamics followed by

the system. Transition states computed using this prescription

are shown in Fig.1 as white points. These results provide a

clean example of the fact that the definition of transition-state

in terms of commitment analysis can be used to locate the

configuration of highest free-energy barrier only in the case

of two-state transitions.

In conclusion, in the present work we have developed a new

theoretical description of the protein folding reaction, based

on Langevin dynamics. This approach allows for a huge re-

duction of the computational cost needed for obtaining infor-

mation on the full reaction pathway. Within this framework,

all-atom simulations for a dipeptide can be performed in just a

few minutes on a regular desktop, to be compared with times

of the order of a week required by standard MD to exctract

the same amount of information. Moreover, we have shown

that this theoretical tool provides important new insight into

the protein folding problem. In fact, it allows to define, char-

acterize and study the native and transition states and to de-

termine the transition time at different temperatures. We have

also exhibited, within this framework, a clear connection be-

tween the stability of the folded conformation and its small

conformational entropy.

Applications of this formalism to the study of the confor-

mational transitions of small proteins with all-atom models

and implicit solvent are in progress.

Calculations were partly performed on the HPC facility

"Wiglaf" at the Physics Department of the University of

Trento.
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• Use GROMOS96 force field

• There are four local minima                and

• The effective energy is computed by few ps 
MD runs

3

This equation expresses the intuitive fact that the conforma-
tional entropy of the native state is small if the minimum of
the potential energy is very narrow. From Eq.s (20) and (15),
we can conclude that the effective potential Ve f f (x) provides
a measure of the conformational entropy of any (meta)-stable
state.
The effective energy parameter Ee f f governs also the kinet-

ics of the folding. As a result, in this formalism, it is possible
to investigate the relationship between thermodynamical and
kinetic aspects of the protein folding reaction. For example,
we now show that the stability of the native state is related
to its conformational entropy. To this end, let us consider the
probability for the native state to remain unchanged during an
elementary time interval dt, i.e. the probability that all points
in the native state evolve into points which are still in the na-
tive state:

P(native,dt|native,0) ≡
Z

U(x)−U(xn)<kBT
dx

Z

U(y)−U(xn)<kBT
dy P(y,dt|x,0) (21)

This quantity, which generalizes the persistence probability
(5), can be evaluated using Eq. (2) and expanding the expo-
nent in the Gaussian approximation. The result, which is quite
involved and will not be presented here, shows that the persis-
tence probability of the native state increases for large local
curvatures of the potential energy near the native state, i.e. for
Ve f f (x) →−∞. Hence, Ve f f (x) controls both the stability and
the conformational entropy of the native state. This implies
that, in order to have a large probability to remain unchanged
under Langevin diffusion, the native state has to be character-
ized by a small conformational entropy.
In the case of a protein with Hamiltonian H(!r1, . . . ,!rN),

denoting the coordinates of the minimum-energy conforma-

tion by {!r(n)I }, and assuming again that in the final stage of
the folding, the protein samples the native state, we write the
quadratic expansion around the minimum of H as

H(!r1, . . . ,!rN) = H(!r
(n)
1 , . . . ,!r

(n)
N ) (22)

+ ∑
i j,µν

1
2
(rµi − r

µ(n)
i )

∂2H

∂r
µ(n)
i ∂r

ν(n)
j

(rνj − r
ν(n)
j ) (23)

This equation implies the equivalent of equation (15)

Ee f f =
D

2kBT
∑
i

!∇2i H(!r
(n)
1 , . . . ,!r

(n)
N ) (24)

=
D

2kBT
Tr H (n) (25)

whereH (n) is the Hessian matrix around the minimum-energy
conformation. Obviously, such a quantity can be obtained
either from a normal mode analysis around the native state,
or equivalently by evaluating the average of the velocities
v2i ≡ (d!ri/dt)2 from several short MD simulations around the
native state.

FIG. 1: Dominant Folding Paths for the C7ax →C7eq (red squares)
and αL → αR (blue squares) transitions. In the background, the free
energy profile for the ψ and φ dihedrals is shown (in units of kJ/mol).
Black squares identify the minimum residence time conformations,
and the white squares the transition states defined by comittement
analysis.

To summarize the strategy to find the most probable reac-
tion paths, we may proceed as follows: (i) Prepare several
initial denatured conformations by running short MD simula-
tions at high temperature. (ii) Prepare a representative set of
the native state by making short timeMD simulations from the
minimum-energy configuration. These short time MD simu-
lations also allow to compute the trace of the Hessian matrix,
and thus the effective energy Ee f f . (iii) Solve the Hamilton-
Jacobi equations from the denatured conformations to the na-
tive conformations, using the energy Ee f f computed above.
In order to make quantitative predictions on the folding pro-

cess, we need to show that this framework can be successfully
applied to all-atom models, using available computers. As
a first application of this type, we study the kinetics of ala-
nine dipeptide, which is usually the benchmark system for the
investigation of new simulation methods in this field.[10–12].
The force-field employed is GROMOS96 [14], while the elec-
trostatics effects mediated by the solvent are accounted for by
imposing a dielectric permittivity εr = 80, leaving more so-
phisticated implicit descriptions of the solvent to forthcoming
phenomenological applications.
In Fig. (1) we present the results of the DFP analysis rel-

ative to two specific transitions (C7ax →C7eq and αL → αR),
compared with the Free Energy landscape computed by direct
integration. The values of the two ψ and φ dihedrals along the
paths obtained by minimising the effective action are plotted
on top of the relative free energymap. These simulations were
performed at temperature T = 300K, and assuming a diffusion
coefficient D = 0.02Å2ps−1 for all atoms. To determine the
DFP we have performed 500 cycles of simulated annealing of
the discretized Hamilton-Jacobi functional [8], followed by a
refinement stage where Conjugate Gradients were used. The
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This equation expresses the intuitive fact that the conforma-
tional entropy of the native state is small if the minimum of
the potential energy is very narrow. From Eq.s (20) and (15),
we can conclude that the effective potential Ve f f (x) provides
a measure of the conformational entropy of any (meta)-stable
state.
The effective energy parameter Ee f f governs also the kinet-

ics of the folding. As a result, in this formalism, it is possible
to investigate the relationship between thermodynamical and
kinetic aspects of the protein folding reaction. For example,
we now show that the stability of the native state is related
to its conformational entropy. To this end, let us consider the
probability for the native state to remain unchanged during an
elementary time interval dt, i.e. the probability that all points
in the native state evolve into points which are still in the na-
tive state:

P(native,dt|native,0) ≡
Z

U(x)−U(xn)<kBT
dx

Z

U(y)−U(xn)<kBT
dy P(y,dt|x,0) (21)

This quantity, which generalizes the persistence probability
(5), can be evaluated using Eq. (2) and expanding the expo-
nent in the Gaussian approximation. The result, which is quite
involved and will not be presented here, shows that the persis-
tence probability of the native state increases for large local
curvatures of the potential energy near the native state, i.e. for
Ve f f (x) →−∞. Hence, Ve f f (x) controls both the stability and
the conformational entropy of the native state. This implies
that, in order to have a large probability to remain unchanged
under Langevin diffusion, the native state has to be character-
ized by a small conformational entropy.
In the case of a protein with Hamiltonian H(!r1, . . . ,!rN),

denoting the coordinates of the minimum-energy conforma-

tion by {!r(n)I }, and assuming again that in the final stage of
the folding, the protein samples the native state, we write the
quadratic expansion around the minimum of H as
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ν(n)
j ) (23)

This equation implies the equivalent of equation (15)

Ee f f =
D

2kBT
∑
i

!∇2i H(!r
(n)
1 , . . . ,!r

(n)
N ) (24)

=
D

2kBT
Tr H (n) (25)

whereH (n) is the Hessian matrix around the minimum-energy
conformation. Obviously, such a quantity can be obtained
either from a normal mode analysis around the native state,
or equivalently by evaluating the average of the velocities
v2i ≡ (d!ri/dt)2 from several short MD simulations around the
native state.

FIG. 1: Dominant Folding Paths for the C7ax →C7eq (red squares)
and αL → αR (blue squares) transitions. In the background, the free
energy profile for the ψ and φ dihedrals is shown (in units of kJ/mol).
Black squares identify the minimum residence time conformations,
and the white squares the transition states defined by comittement
analysis.

To summarize the strategy to find the most probable reac-
tion paths, we may proceed as follows: (i) Prepare several
initial denatured conformations by running short MD simula-
tions at high temperature. (ii) Prepare a representative set of
the native state by making short timeMD simulations from the
minimum-energy configuration. These short time MD simu-
lations also allow to compute the trace of the Hessian matrix,
and thus the effective energy Ee f f . (iii) Solve the Hamilton-
Jacobi equations from the denatured conformations to the na-
tive conformations, using the energy Ee f f computed above.
In order to make quantitative predictions on the folding pro-

cess, we need to show that this framework can be successfully
applied to all-atom models, using available computers. As
a first application of this type, we study the kinetics of ala-
nine dipeptide, which is usually the benchmark system for the
investigation of new simulation methods in this field.[10–12].
The force-field employed is GROMOS96 [14], while the elec-
trostatics effects mediated by the solvent are accounted for by
imposing a dielectric permittivity εr = 80, leaving more so-
phisticated implicit descriptions of the solvent to forthcoming
phenomenological applications.
In Fig. (1) we present the results of the DFP analysis rel-

ative to two specific transitions (C7ax →C7eq and αL → αR),
compared with the Free Energy landscape computed by direct
integration. The values of the two ψ and φ dihedrals along the
paths obtained by minimising the effective action are plotted
on top of the relative free energymap. These simulations were
performed at temperature T = 300K, and assuming a diffusion
coefficient D = 0.02Å2ps−1 for all atoms. To determine the
DFP we have performed 500 cycles of simulated annealing of
the discretized Hamilton-Jacobi functional [8], followed by a
refinement stage where Conjugate Gradients were used. The
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• Transition states can be obtained by 
commitment analysis

• which in the saddle-point approximation 
become 

•

P (xi, xts) = P (xf , xts)

4

effective energy Ee f f was estimated running a few ps of MD

simulation starting from the minimum-energy conformation.

We will now show how the DFP analysis can provide valu-

able information about the dynamics of the transition, and

about the determination of the transition state along the path.

While other methods with similar purposes, e.g.[6, 12], only

provide a meta-dynamics, the DFP analysis yields information

on the real-time evolution of the system. Even though time is

no longer an independent variable of the calculation in the HJ

formulation, the total time required to perform the transition

from a conformation xi to a conformation x f can be computed

as

t f − ti =
Z x f

xi

dl
1

√

4D(Ee f f +Ve f f [x(l)])
(26)

and the time spent in the neighborhood of each intermediate

conformation (residence time along the path) is easily derived

from the differential form of Eq. 26. The computed times

for the C7ax→C7eq and αL → αR transitions are 12.0 and

11.4 ps, respectively. Notice, that this is the most probable

transition time, and not the mean first passage, or Kramers

time [17].

An analysis of the residence time along the path shows that

in each of the two DFP’s, there are two points where the con-

formation of alanine dipeptide has shortest residence time.

These points, indicated in Fig. (1) with black symbols, are lo-

cated in the proximity of the saddle-points of the free energy

landscape, as one would expect.

On the other hand, within the present formalism it is also

possible to rigorously define the transition state along the path

in terms of commitment analysis [15, 16]. Following Eq. (2),

once the DFP has been determined, the conformation xts is

easily obtained by requiring that the probability in the sad-

dle point approximation to diffuse back to the initial config-

uration xi, P(xi|xts) equates that of evolving toward the final
native configuration x f , P(x f |xts). In the saddle-point approx-
imation, this condition leads to the simple equation:

U(x f )−U(xi)

2kBT
= SHJ([x];xts,xi)−SHJ([x];xts,x f ). (27)

We want to point out that this definition of xts neither relies

on the use of any specific reaction coordinate, nor on the a

priori knowledge of the free energy landscape, but is purely

based on the properties of the diffusive dynamics followed by

the system. Transition states computed using this prescription

are shown in Fig.1 as white points. These results provide a

clean example of the fact that the definition of transition-state

in terms of commitment analysis can be used to locate the

configuration of highest free-energy barrier only in the case

of two-state transitions.

In conclusion, in the present work we have developed a new

theoretical description of the protein folding reaction, based

on Langevin dynamics. Within this framework, all-atom sim-

ulations for a dipeptide can be performed in just a few minutes

on a regular desktop. Moreover, we have shown that this the-

oretical tool provides important new insight into the protein

folding problem. In fact, it allows to define, characterize and

study the native and transition states and to determine the tran-

sition time at different temperatures. We have also exhibited,

within this framework, a clear connection between the stabil-

ity of the folded conformation and its small conformational

entropy.

Applications of this formalism to the study of the confor-

mational transitions of small proteins with all-atom models

and implicit solvent are in progress.

Calculations were partly performed on the HPC facility

"Wiglaf" at the Physics Department of the University of

Trento.

[1] V. Muñoz, E. R. Henry, J. Hofrichter, and W. A. Eaton, Proc.

Natl. Acad. Sci. USA 95, (1998) 5872

[2] V. Muñoz, Curr. Opin. Struct. Biol. 11,(2001) 212

[3] J. N. Onuchic and P. G. Wolynes, Curr. Opin. Struct. Biol. 14

(2004) 70

[4] V. S. Pande et al., Biopolym. 68, (2003) 91

[5] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Ann.

Rev. Phys. Chem. 53, (2002) 291

[6] R. Elber, A. Ghosh and A. Cardenas, Acc. Chem. Res 35,

(2002) 396

[7] J. Kubelka, J. Hofrichter, and W. A. Eaton, Curr. Opin. Struct.

Biol. 14 (2004) 76

[8] P. Faccioli, M. Sega, F. Pederiva and H. Orland, Phys. Rev. Lett.

97 (2006), 108101

[9] E. Pitard and H. Orland, Europhys. Lett. 41, 467-472 (1998)

[10] P. G. Bolhuis, C. Dellago and D Chandler, Proc Natl. Acad. Sci.

USA 97 (2000), 5877

[11] R. Czerminski and R. Elber, J. Chem. Phys. 92 (1990), 5580

[12] A. van der Vaart and M. Karplus, J. Chem. Phys. 122 (2005),

114903

[13] J. Kubelka, W. A. Eaton and J. Hofrichter, J. Mol. Biol. 329,

(2003) 625;

[14] van Gunsteren, et al., Biomolecular Simulation: The

GROMOS96 manual and user guide. Zürich, Switzerland:

Hochschulverlag AG an der ETH Zürich. 1996.

[15] M.M. Klosek, B.J. Matkowsky and Z. Schuss and Ber. Bunsen-

ges. Phys. Chem. 95, (1991) 331

[16] R. Du, V.S. Pande, A.Y. Grosberg,T. Tanaka and

E.S. Shakhnovich, J. Chem. Phys 108 (1998) 334

[17] B. Caroli, C. Caroli and B. Roulet, J. Stat. Phys, 26 (1981) 83

mardi 13 mai 14



3

This equation expresses the intuitive fact that the conforma-
tional entropy of the native state is small if the minimum of
the potential energy is very narrow. From Eq.s (20) and (15),
we can conclude that the effective potential Ve f f (x) provides
a measure of the conformational entropy of any (meta)-stable
state.
The effective energy parameter Ee f f governs also the kinet-

ics of the folding. As a result, in this formalism, it is possible
to investigate the relationship between thermodynamical and
kinetic aspects of the protein folding reaction. For example,
we now show that the stability of the native state is related
to its conformational entropy. To this end, let us consider the
probability for the native state to remain unchanged during an
elementary time interval dt, i.e. the probability that all points
in the native state evolve into points which are still in the na-
tive state:

P(native,dt|native,0) ≡
Z

U(x)−U(xn)<kBT
dx

Z

U(y)−U(xn)<kBT
dy P(y,dt|x,0) (21)

This quantity, which generalizes the persistence probability
(5), can be evaluated using Eq. (2) and expanding the expo-
nent in the Gaussian approximation. The result, which is quite
involved and will not be presented here, shows that the persis-
tence probability of the native state increases for large local
curvatures of the potential energy near the native state, i.e. for
Ve f f (x) →−∞. Hence, Ve f f (x) controls both the stability and
the conformational entropy of the native state. This implies
that, in order to have a large probability to remain unchanged
under Langevin diffusion, the native state has to be character-
ized by a small conformational entropy.
In the case of a protein with Hamiltonian H(!r1, . . . ,!rN),

denoting the coordinates of the minimum-energy conforma-

tion by {!r(n)I }, and assuming again that in the final stage of
the folding, the protein samples the native state, we write the
quadratic expansion around the minimum of H as

H(!r1, . . . ,!rN) = H(!r
(n)
1 , . . . ,!r

(n)
N ) (22)

+ ∑
i j,µν

1
2
(rµi − r

µ(n)
i )

∂2H

∂r
µ(n)
i ∂r

ν(n)
j

(rνj − r
ν(n)
j ) (23)

This equation implies the equivalent of equation (15)

Ee f f =
D

2kBT
∑
i

!∇2i H(!r
(n)
1 , . . . ,!r

(n)
N ) (24)

=
D

2kBT
Tr H (n) (25)

whereH (n) is the Hessian matrix around the minimum-energy
conformation. Obviously, such a quantity can be obtained
either from a normal mode analysis around the native state,
or equivalently by evaluating the average of the velocities
v2i ≡ (d!ri/dt)2 from several short MD simulations around the
native state.

FIG. 1: Dominant Folding Paths for the C7ax →C7eq (red squares)
and αL → αR (blue squares) transitions. In the background, the free
energy profile for the ψ and φ dihedrals is shown (in units of kJ/mol).
Black squares identify the minimum residence time conformations,
and the white squares the transition states defined by comittement
analysis.

To summarize the strategy to find the most probable reac-
tion paths, we may proceed as follows: (i) Prepare several
initial denatured conformations by running short MD simula-
tions at high temperature. (ii) Prepare a representative set of
the native state by making short timeMD simulations from the
minimum-energy configuration. These short time MD simu-
lations also allow to compute the trace of the Hessian matrix,
and thus the effective energy Ee f f . (iii) Solve the Hamilton-
Jacobi equations from the denatured conformations to the na-
tive conformations, using the energy Ee f f computed above.
In order to make quantitative predictions on the folding pro-

cess, we need to show that this framework can be successfully
applied to all-atom models, using available computers. As
a first application of this type, we study the kinetics of ala-
nine dipeptide, which is usually the benchmark system for the
investigation of new simulation methods in this field.[10–12].
The force-field employed is GROMOS96 [14], while the elec-
trostatics effects mediated by the solvent are accounted for by
imposing a dielectric permittivity εr = 80, leaving more so-
phisticated implicit descriptions of the solvent to forthcoming
phenomenological applications.
In Fig. (1) we present the results of the DFP analysis rel-

ative to two specific transitions (C7ax →C7eq and αL → αR),
compared with the Free Energy landscape computed by direct
integration. The values of the two ψ and φ dihedrals along the
paths obtained by minimising the effective action are plotted
on top of the relative free energymap. These simulations were
performed at temperature T = 300K, and assuming a diffusion
coefficient D = 0.02Å2ps−1 for all atoms. To determine the
DFP we have performed 500 cycles of simulated annealing of
the discretized Hamilton-Jacobi functional [8], followed by a
refinement stage where Conjugate Gradients were used. The
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Difficulties with the Method

• Many local minima, particularly with all atom 
simulations: many routes to folding?

• Optimisation of HJ stuck in the vicinity of 
initial trajectory

• How to overcome these difficulties?

38
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Langevin Bridges

• Consider paths starting at             and 
conditioned to end at 

• The conditional probability for such a path 
to be at           is given by

39

(x0, 0)
(xf , tf )

(x, t)

The goal of this paper is to show how one can generate a representative sample of transi-

tion paths, starting in state A at time 0 and ending in state B at some arbitrary time tf . In

mathematical terms, we are looking for the paths starting from A at time 0 and conditioned

to end in state B at time tf .

Using the path integral representation of eq.9, we see that the probability for a path

{x(t)} starting at x0 at time 0, to end at xf at tf is given by

P ({x(t)}) =
1

A
e��(U(xf )�U(x0))/2 exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(10)

where

A =

ˆ
dxfe

��(U(xf )�U(x0))/2

ˆ (xf ,tf )

(x0,0)

Dx(t) exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(11)

The conditional probability over all paths starting at x0 at time 0 and ending at xf at

time tf , to find the system at point x at an intermediate time t is given by

P(x, t) =
1

P (xf , tf |x0, 0)
Q(x, t)P (x, t)

where

P (x, t) = P (x, t|x0, 0)

Q(x, t) = P (xf , tf |x, t)

The equation satisfied by P is given in eq. 4, whereas the equation for Q is given by

⌅Q

⌅t
= �D

⌅2Q

⌅x2
+ D�

⌅U

⌅x

⌅Q

⌅x
(12)

It follows easily that the equation for the conditional probability P(x, t) is given by

⌅P
⌅t

= D
⌅

⌅x

�
⌅P
⌅x

+
⌅

⌅x
(�U � 2 ln Q)P

⇥

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,

one sees that it can be obtained from a Langevin equation with a modified potential

dx

dt
= � D

kBT

⌅U

⌅x
+ 2D

⌅ ln Q

⌅x
+ ⇤(t) (13)

5

FP equation
adjoint FP equation
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Fokker-Planck and adjoint

40

It is well known that the probability distribution P (x, t) for the particle to be at point x

at time t is given by a Fokker-Planck equation [10]

⇧P

⇧t
= D

⇧

⇧x

�
⇧P

⇧x
+ �

⇧U

⇧x
P

⇥
(4)

where � = 1/kBT is the inverse temperature. In this one dimensional model, the initial state

A is characterized by its position x0 at time 0 and the final state B by its position xf at time

tf . This equation is thus to be supplemented by a boundary condition P (x, 0) = ⇤(x� x0)

where x0 is the initial position of the particle.

It is convenient to go to the Schrödinger representation, by defining

�(x, t) = e⇥U(x)/2P (x, t)

The function �(x, t) satisfies the imaginary time Schrödinger equation

⇧�

⇧t
=

kBT

⇥

⇧2�

⇧x2
� 1

4⇥kBT
V (x)�(x) (5)

with

V (x) =

�
⇧U

⇧x

⇥2

� 2kBT
⇧2U

⇧x2
(6)

Using the standard notations of quantum mechanics, one can conveniently write

P (xf , tf |x0, 0) = e�⇥(U(xf )�U(x0))/2 < xf |e�tf H |x0 > (7)

where the Hamiltonian H is given by

H = �kBT

⇥

⇧2

⇧x2
+

1

4⇥kBT
V (x) (8)

In eq.(7), we have denoted by P (xf , tf |x0, 0) the probability for a particle to start at x0 at

time 0 and end at xf at time tf , to emphasize the boundary conditions.

It is well-known that the ground state of H, which has 0 energy, is �0(x) = e�⇥U(x)/2/
⇥

Z

where Z is the partition function of the system, and all eigenstates �� of H have strictly

positive energies E� > 0. The spectral expansion of P can be written as

P (xf , tf |x0, 0) =
e�⇥U(x)

Z
+

⇤

� ⇥=0

e�tf E�P�(xf , x0)

We see that for large tf the system converges to the Boltzmann distribution, and that its

relaxation time is given by the inverse of the first eigenvalue ⌅R = 1/E1. In systems with

3

The goal of this paper is to show how one can generate a representative sample of tran-

sition paths, starting in state A at time 0 and ending in state B at some arbitrary time tf .

The typical times of interest are not the (long) folding times, but rather the (very short)

transition or barrier crossing times. In mathematical terms, we are looking for the paths

starting from A at time 0 and conditioned to end in state B at time tf << ⇤K .

Using the path integral representation of eq.(9), we see that the probability for a path

{x(t)} starting at x0 at time 0, to end at xf at tf is given by

P ({x(t)}) =
1

A
e��(U(xf )�U(x0))/2 exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(10)

where

A =

ˆ
dxfe

��(U(xf )�U(x0))/2

ˆ (xf ,tf )

(x0,0)

Dx(t) exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(11)

The conditional probability over all paths starting at x0 at time 0 and ending at xf at

time tf , to find the system at point x at an intermediate time t is given by

P(x, t) =
1

P (xf , tf |x0, 0)
Q(x, t)P (x, t)

where

P (x, t) = P (x, t|x0, 0)

Q(x, t) = P (xf , tf |x, t)

The equation satisfied by P is given by (4), whereas that for Q is given by

⌅Q

⌅t
= �D

⌅2Q

⌅x2
+ D�

⌅U

⌅x

⌅Q

⌅x
(12)

It follows easily that the equation for the conditional probability P(x, t) is given by

⌅P
⌅t

= D
⌅

⌅x

�
⌅P
⌅x

+
⌅

⌅x
(�U � 2 ln Q)P

⇥

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,

one sees that it can be obtained from a Langevin equation with a modified potential

6

FP

adjoint FP

The goal of this paper is to show how one can generate a representative sample of tran-

sition paths, starting in state A at time 0 and ending in state B at some arbitrary time tf .

The typical times of interest are not the (long) folding times, but rather the (very short)

transition or barrier crossing times. In mathematical terms, we are looking for the paths

starting from A at time 0 and conditioned to end in state B at time tf << ⇤K .

Using the path integral representation of eq.(9), we see that the probability for a path

{x(t)} starting at x0 at time 0, to end at xf at tf is given by

P ({x(t)}) =
1

A
e��(U(xf )�U(x0))/2 exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(10)

where

A =

ˆ
dxfe

��(U(xf )�U(x0))/2

ˆ (xf ,tf )

(x0,0)

Dx(t) exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(11)

The conditional probability over all paths starting at x0 at time 0 and ending at xf at

time tf , to find the system at point x at an intermediate time t is given by

P(x, t) =
1

P (xf , tf |x0, 0)
Q(x, t)P (x, t)

where

P (x, t) = P (x, t|x0, 0)

Q(x, t) = P (xf , tf |x, t)

The equation satisfied by P is given by (4), whereas that for Q is given by

⌅Q

⌅t
= �D

⌅2Q

⌅x2
+ D�

⌅U

⌅x

⌅Q

⌅x
(12)

It follows easily that the equation for the conditional probability P(x, t) is given by

⌅P
⌅t

= D
⌅

⌅x

�
⌅P
⌅x

+
⌅

⌅x
(�U � 2 ln Q)P

⇥

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,

one sees that it can be obtained from a Langevin equation with a modified potential

6

conditional probability
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• Modified Langevin equation for conditioned 
paths

41

The goal of this paper is to show how one can generate a representative sample of transi-

tion paths, starting in state A at time 0 and ending in state B at some arbitrary time tf . In

mathematical terms, we are looking for the paths starting from A at time 0 and conditioned

to end in state B at time tf .

Using the path integral representation of eq.9, we see that the probability for a path

{x(t)} starting at x0 at time 0, to end at xf at tf is given by

P ({x(t)}) =
1

A
e��(U(xf )�U(x0))/2 exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(10)

where

A =

ˆ
dxfe

��(U(xf )�U(x0))/2

ˆ (xf ,tf )

(x0,0)

Dx(t) exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(11)

The conditional probability over all paths starting at x0 at time 0 and ending at xf at

time tf , to find the system at point x at an intermediate time t is given by

P(x, t) =
1

P (xf , tf |x0, 0)
Q(x, t)P (x, t)

where

P (x, t) = P (x, t|x0, 0)

Q(x, t) = P (xf , tf |x, t)

The equation satisfied by P is given in eq. 4, whereas the equation for Q is given by

⌅Q

⌅t
= �D

⌅2Q

⌅x2
+ D�

⌅U

⌅x

⌅Q

⌅x
(12)

It follows easily that the equation for the conditional probability P(x, t) is given by

⌅P
⌅t

= D
⌅

⌅x

�
⌅P
⌅x

+
⌅

⌅x
(�U � 2 ln Q)P

⇥

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,

one sees that it can be obtained from a Langevin equation with a modified potential

dx

dt
= � D

kBT

⌅U

⌅x
+ 2D

⌅ ln Q

⌅x
+ ⇤(t) (13)

5

This equation has been previously obtained using the Doob transform and is known in

the probability literature as a Langevin bridge: the paths {x(t)} generated by (13) are

trajectories starting at (x0, 0) and conditioned to end at (xf , tf ). It is the new term in the

Langevin equation that guarantees that the trajectory starting at (x0, 0) will end at (xf , tf ).

Using eq.(7) for Q, one can write equation (13) as

dx

dt
= 2

kBT

�

⌅

⌅x
ln < xf |e�(tf�t)H |x > +⇥(t) (14)

Using the analogous of the correspondence principle of quantum mechanics, i.e. ~
i

⇥
⇥x ⇥ p,

we find that this equation can be rewritten in the form

dx

dt
=< ẋ(t) > +⇥(t) (15)

where by definition

< ẋ >=
1

< xf |e�(tf�t)H |x >

ˆ (xf ,tf )

(x,t)

Dx(⇤)ẋ(t) exp

�
� 1

4kBT

ˆ tf

t

d⇤

�
�ẋ2 +

1

�
V (x)

⇥⇥

(16)

Since we have a natural splitting of the Hamiltonian H as H = H0 + V1 with H0 =

�kBT
�

⇥2

⇥x2 and V1 = V/4�kBT , it is convenient to rewrite the above equation as
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kBT
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Note that the first term in the r.h.s. above is singular at t = tf and is thus responsible for

driving the system to (xf , tf ) whereas the second one is not. It follows that the first term is

the only term which drives the system to (xf , tf ), and any approximation which keeps the

second term finite for t = tf will not a�ect this property.

This nice bridge equation cannot be used "as is", since we don’t know how to compute

the function Q or equivalently the matrix element in the above equation. There are many

ways to approximate this function. It is important however that the approximation retains

the symmetry of the matrix element.

The only approximation we found which remains local in time, i.e. which does not

give rise to an integro-di�erential stochastic equation is the symmetric form of the Trotter

approximation, commonly used in quantum mechanics. Indeed, for short times tf , a very

simple and convenient symmetric approximation for Q is to use
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Langevin equation that guarantees that the trajectory starting at (x0, 0) will end at (xf , tf ).

Using eq.(7) for Q, one can write equation (13) as

dx

dt
= 2

kBT

�

⌅

⌅x
ln < xf |e�(tf�t)H |x > +⇥(t) (14)

Using the analogous of the correspondence principle of quantum mechanics, i.e. ~
i

⇥
⇥x ⇥ p,

we find that this equation can be rewritten in the form

dx

dt
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6

Q(x, t) = e

� �
2 (U(xf )�U(x))

< xf |e�(tf�t)H |x >

Q(x, t) = P (xf , tf |x, t)
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• Example: Brownian bridges

• Conditioned Langevin equation becomes

42

U(x) = 0

P (xf , tf |x, t) =

s
1

4⇡D(tf � t)
e

�
(x

f

�x)2

4D(t

f

�t)

dx

dt

=
xf � x

tf � t

+ ⌘(t)

dX

dt

=
xf �X

tf � t

average is linear
          in time
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• Example: the Harmonic oscillator

• Bridge equation

• Note that this equation does not depend on 
the sign of K: same trajectories for well or 
barrier

44

U(x) =
1
2
Kx

2

dx

dt

=

K

�

xf � x cosh

K
� (tf � t)

sinh

K
� (tf � t)

+ ⌘(t)
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• In general, we don’t know how to calculate 
the function Q(x,t). We need to make 
approximations.

• Some important requirements:
– Q(x,t)>0
– Detailed balance:                                             

and we should have 

– Local in time and space (for simplicity and 
tractability)

46

Q(x, t) = P (xf , tf |x, t)

P (xf , tf |x, t)
P (x, tf |xf , t)

= e

�
U(x

f

)�U(x)
k

B

T
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• Langevin equation for conditioned paths

47

The goal of this paper is to show how one can generate a representative sample of transi-

tion paths, starting in state A at time 0 and ending in state B at some arbitrary time tf . In

mathematical terms, we are looking for the paths starting from A at time 0 and conditioned

to end in state B at time tf .

Using the path integral representation of eq.9, we see that the probability for a path

{x(t)} starting at x0 at time 0, to end at xf at tf is given by

P ({x(t)}) =
1

A
e��(U(xf )�U(x0))/2 exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(10)

where

A =

ˆ
dxfe

��(U(xf )�U(x0))/2

ˆ (xf ,tf )

(x0,0)

Dx(t) exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(11)

The conditional probability over all paths starting at x0 at time 0 and ending at xf at

time tf , to find the system at point x at an intermediate time t is given by

P(x, t) =
1

P (xf , tf |x0, 0)
Q(x, t)P (x, t)

where

P (x, t) = P (x, t|x0, 0)

Q(x, t) = P (xf , tf |x, t)

The equation satisfied by P is given in eq. 4, whereas the equation for Q is given by

⌅Q

⌅t
= �D

⌅2Q

⌅x2
+ D�

⌅U

⌅x

⌅Q

⌅x
(12)

It follows easily that the equation for the conditional probability P(x, t) is given by

⌅P
⌅t

= D
⌅

⌅x

�
⌅P
⌅x

+
⌅

⌅x
(�U � 2 ln Q)P

⇥

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,

one sees that it can be obtained from a Langevin equation with a modified potential

dx

dt
= � D

kBT

⌅U

⌅x
+ 2D

⌅ ln Q

⌅x
+ ⇤(t) (13)
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Note that the first term in the r.h.s. above is singular at t = tf and is thus responsible for

driving the system to (xf , tf ) whereas the second one is not. It follows that the first term is

the only term which drives the system to (xf , tf ), and any approximation which keeps the

second term finite for t = tf will not a�ect this property.

This nice bridge equation cannot be used "as is", since we don’t know how to compute

the function Q or equivalently the matrix element in the above equation. There are many

ways to approximate this function. It is important however that the approximation retains

the symmetry of the matrix element.

The only approximation we found which remains local in time, i.e. which does not

give rise to an integro-di�erential stochastic equation is the symmetric form of the Trotter

approximation, commonly used in quantum mechanics. Indeed, for short times tf , a very

simple and convenient symmetric approximation for Q is to use

6

Q(x, t) = e

� �
2 (U(xf )�U(x))

< xf |e�(tf�t)H |x >

Q(x, t) = P (xf , tf |x, t)
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Short transition path time 
approximation

• In the Kramers picture, there are 2 time 
scales:
– Kramers time, or waiting time, or folding time

– Transition path time (Hummer, Szabo)

– We will assume 

48

⌧K ⇡ e
�E

kBT

⌧TP ⇡ log

�E

kBT

⌧TP << ⌧K
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< xf |e�(tf�t)V1/2
e

�(tf�t)H0
e

�(tf�t)V1/2|x >= e

�(tf�t)(V1(xf )+V1(x))/2
< xf |e�(tf�t)H0 |xi >

For short times, use the Trotter formula (Baker, 
Campbell, Haussdorf). To satisfy detailed balance, 
use symmetric form

e�"(H0+V1) = e�"V1/2e�"H0e�"V1/2 + O("3)

I(x, t) =< xf |e�H(tf�t)|x >

Q(x, t) = e

�
U(x

f

)�U(x)

2k
B

T

< xf |e�H(t
f

�t)|x >

< xf |e�H0(t
f

�t)|x > =

s
1

4⇡D(tf � t)
e

�
(x

f

�x)2

4D(t
f

�t)
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e�Ht ⇥ e�tV1/2e�tH0e�tV1/2 + O(t3) (18)

Note that this approximation is exact for a linear potential U(x) since then V (x) is a

constant.

It would be nice to relate the range of validity of this equation to the spectrum of H.

Indeed, as was shown before, the spectrum of H corresponds to all the dynamical times of

the system (folding times, transition times, etc...). We have not succeeded in finding such a

relation except in the solvable case of the harmonic oscillator. In that case, it can be easily

seen that the natural expansion parameter is t� where � is the constant gap between the

energy levels of H. As mentioned before, in the case of protein folding, the folding time

which is the inverse of the first gap of the system can be very long, and we might expect the

above approximation to be valid for times much smaller than this time. In particular, this

approximation would allow to investigate the transition times which satisfy this condition.

Plugging equation (18) in eq.(14 we obtain the approximate Langevin bridge equation

which in arbitrary dimension reads

d⇤x

dt
=

⇤xf � ⇤x

tf � t
� 1

4�2
(tf � t)⇤V (⇤x) + ⇤⇥(t) (19)

where ⇤⇥(t) is a white noise vector whose components satisfy the relations (2) and (3) and

V (⇤x) = (⇤U)2 � 2kBT⇤2U (20)

In order to build a representative sample of paths starting at (x0, 0) and ending at (xf , tf ),

one must simply solve this equation many times. Only the initial boundary condition is to be

imposed, as the equation itself imposes the correct final boundary condition. An important

point to note is that all the trajectories generated by eq.(19) are statistically independent.

From a numerical point of view, this means that this equation can be fully parallelized,

and from a statistical point of view, it implies that all trajectories can be used in the

representative sample. This last important point is to be contrasted with most existing

methods where the sample is generated by some stochastic (Monte Carlo) methods, which

generate highly correlated trajectories.

Before presenting examples of application of this method, let us discuss how to control

the fact that the total time tf should be small. Due to this, the statistic of trajectories

7
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7

• For short enough time, putting all the terms 
together we obtain the (approximate) 
Langevin bridge equation

Equation is local.
This equation is to be integrated with initial condition xi
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• Works very well for “short times”
• For longer times, need to reweight the paths

• then for any observable

51

is not exact. Indeed, if eq.(19) were exact, each trajectory would be generated with its

correct weight, and if one wanted to calculate any observable, one would just compute a

white average over all trajectories. However, as the equation is approximate, one needs to

resample the ensemble of trajectories, that is assign them a new weight. As we will show,

the resampling weight is easily obtained.

Indeed, if we consider the sample of all the trajectories generated using eq.(19) between

(x0, 0) and (xf , tf ) , the weight of a trajectory should be given by eq.(10). However, it is

clear from eq.(19) that with the Ito prescription, the weight is given by

exp

⇤
� �

4kBT

ˆ tf

0

dt

�
d⇥x

dt
� ⇥xf � ⇥x

tf � t
+

tf � t

4�2
⇥V (⇥x)

⇥2
⌅

(21)

Up to a normalization, the reweighting factor for any trajectory is thus given by

exp

⇤
� �

4kBT

ˆ tf

0

dt

⇤�
d⇥x

dt
+

1

�
⇥U

⇥2

�
�

d⇥x

dt
� ⇥xf � ⇥x

tf � t
+

tf � t

4�2
⇥V (⇥x)

⇥2
⌅⌅

(22)

This quantity is easily calculated and allows for a correct evaluation of averages over

paths.

In addition, this reweighting technique can be used to generate paths which are now

statistically exactly sampled according to eq. 13. Indeed, consider eq. 15. The expectation

value < ẋ(t) > can be computed by generating at each time t an ensemble of (approximate)

trajectories starting from the current point x at time t to xf at time tf , using eq. 19 and

reweighting them using the weights of eq. 22. Note that this procedure which generates

correctly weighted trajectories might seem computationally costly. However, it is worth not-

ing that since all trajectories are independent, they can e�ectively generated using massive

parallelization.

We now illustrate the method on two examples: barrier crossing in 1d (quartic potential)

and the entropic barrier in 2d (going through a small hole).

I. THE QUARTIC DOUBLE-WELL

We illustrate the method with the one-dimensional double-well potential

U(x) =
1

4
(x2 � 1)2

8

true weight
actual weight

w({x(t)}) =

< A >=
X

{x(t)}

w({x(t)})A({x(t)})
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Example: Quartic double well

• We take

52

U(x) =
1
4
(x2 � 1)2

V (x) =
1

4kBT

(U 02(x)� 2kBTU

00(x))

T = 0.05
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Figure 2: Potential U(x) (in black) and potential V (x) (in red).

I. EXAMPLE: THE QUARTIC DOUBLE-WELL

We now illustrate the method on the example of barrier crossing in 1d (quartic potential).

U(x) =
1

4
(x2 � 1)2

This potential has two minima at x = ±1, separated by a barrier of height 1/4. Note

that at low enough temperature, the potential V (x) has two minima at points close to ±1

and one minimum at x = 0 (from eq.(2)). Note that V (x) is much steeper than U(x) and

thus more confining, around its minima.

The model can be solved exactly by solving numerically the Fokker-Planck equation or

by diagonalizing the Hamiltonian. All the examples are performed at low temperature

T = 0.05, where the barrier height is equal to 5 in units of kBT and the Kramers relaxation

time, given by the inverse of the smallest non-zero eigenvalue of H, is equal to �K = 366.39.

12
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Langevin

Figure 3: Full Langevin trajectory during time tf = 1000 with 2 transitions between the minima

On fig.3, we present a long trajectory (tf = 1000) obtained by solving the Langevin

eq.(1) for a particle starting at x0 = �1 at time 0. The general pattern described in the

introduction can be easily checked: the particle stays in the left well for a time of the order

of 550, then jumps very rapidly into the right well, where it stays for a time of the order of

200, then jumps back to the left well where it stays again a time equal to about 250.

The two crossings times are very short, and we display an enlargement of the first tran-

sition in fig.4.

As can be seen, the crossing time for this specific trajectory is approximately �C t 2.5,

much smaller than the Kramers time.

In fig.5, we plot two examples of two trajectories conditioned to cross the barrier during

a time tf = 5. The trajectory in black is obtained by solving the exact bridge eq.(14) by

computing exactly (using a spectral decomposition) the matrix element of the evolution

operator, while the trajectory in red is obtained by solving the approximate eq.(19) with

13
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Figure 4: Enlargement of the first transition region
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Figure 5: Two sets (a) and (b) of exact trajectories (in black) and approximate trajectories (in red)

the exact same sequence of noise �(t). In the left figure, the 2 trajectories are barely

distinguishable, whereas the agreement is not as spectacular on the right figure.

Next we look at some observables, obtained by averaging over many trajectories.

14

transition region

mardi 13 mai 14



54

mardi 13 mai 14



Averages and Observables

• Average trajectory: exact (black), 
approximate (red), reweighted (blue)

55
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Figure 6: Average position as a function of time for (a) tf = 2, (b) tf = 5, (c) tf = 10. Black curve:

exact. Red curve: approximate. Blue curve: reweighted

In fig.6, we plot: in black the exact average x(t) (obtained by a full expansion over the

eigenstates of H), in red the average x(t) over 2000 trajectories obtained by solving eq.(19),

and in blue, the average x(t) obtained by reweighting the trajectories according to eq.(22) .

Plot (a) is obtained for tf = 2, plot (b) for tf = 5 and plot (c) for tf = 10.

As expected, we see that the discrepancy between the exact (black) and the approximate

(red) average x(t) increases with tf . For times shorter than the transition time �C , the

agreement is excellent, whereas for tf = 10 > �C , the agreement is not as good. However,

we see that the reweighting procedure, although not perfect, improves drastically the quality

of the average for large tf .

One of the main defects which appears in the approximate theory is the following: In

the exact theory, the transition between the 2 minima can take place at any time between 0

and tf . By contrast, it seems that in the approximate theory, the transition is driven by the

final state and takes place only in the end of the trajectory. This e�ect remains negligible

as long as tf . �C but becomes important for tf >�c. We illustrate this problem in fig.7 for

tf = 10. On the left figure, the exact and approximate trajectories make their transition

in the last part of the time, whereas in the right figure, the real trajectory crosses in the

beginning while the approximate trajectory still crosses in the last part.

However, as we are interested quantitatively only in the region where the particle crosses

the barrier, one can make long runs of approximate trajectories: They will not be good ap-

proximations of the real trajectories, except in the end of the trajectory where the transition

to the final state occurs.
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FIG. 6. Average position xav as a function of time with 2000 trajectories for (a) t f = 2, (b) t f = 5, (c) t f = 10. Black curve: exact. Red curve: approximate.
Blue curve: reweighted.

Using the approximation (16) we can write

Q(x, t) = e
β
2 U (x)e− t

2 V1(x)
∫

dy
A

φ(y)e− β
2 U (y)

× e− t
2 V1(y)e

− βγ
4

(y−x)2

t f −t , (27)

where A =
√

4π (t f − t)/βγ .
As the function φ restricts the integration in Eq. (27) to

the vicinity of the native state, we can approximate the poten-
tial U (x) in this region by a quadratic expansion in terms of
the normal modes

U (x) # ω

2
(x − x f )2.

It follows that V and V1 are also quadratic and thus the
integral (27) can be performed. Although we will consider
only one-dimensional cases in the examples, we present the
results for the multi-dimensional case.

Denoting by ωi j = ∂2U
∂xi ∂x j

|x f
i

the Hessian matrix of nor-
mal modes around the native state, the potential U can be
written in that region as

U (x) = 1
2

∑

i, j

(xi − x f
i )ωi j (x j − x f

j ),

and thus

V (x) =
∑

i, j

(
xi − x f

i

)
'i j

(
x j − x f

j

)
− 2kB T Tr ωi j ,

where the symbol Tr denotes the trace of the normal mode
matrix and

'i j =
∑

k

ωikωk j .

The function Q can be easily calculated as

Q(x, t) = e− β
8γ

(t f −t)V (x)− β
4

∑
i, j

(
x f

I −xi

)
Wi j

(
x f

j −x j

)

,

where

Wi j =
∑

k

Dik

(
I + t f − t

γ
D

)−1

k j
,

where I is the unit matrix and

Di j = ωi j + t f − t
2γ

'i j .

The bridge equations then become

dxi

dt
= 1

γ

∑

j

Wi j

(
x f

j − x j

)
− 1

4γ 2
(t f − t)∇i V (%x) + ηi (t).

(28)
Finally, let us make a comment about the generic case

when the initial state is also distributed, for instance for tran-
sitions between allosteric states (where the initial state is a
Boltzmann distribution around a metastable state) or for the
transition from the denatured state of a protein. In that case,
one may want to use the distribution of initial states as an
initial condition. However, this does not translate into a new
equation as in Eq. (28), but rather requires to generate many
trajectories with an initial condition sampled from the initial
state distribution.

Example: The Quartic Double-Well: We now illustrate
the method on the example of barrier crossing in one-
dimensional (quartic potential).

U (x) = 1
4

(x2 − 1)2.

This potential has two minima at x = ±1, separated by
a barrier of height 1/4. Note that at low enough tempera-
ture, the potential V (x) has two minima at points close to ±1
and one minimum at x = 0 (from Eq. (2)). Note that V (x) is
much steeper than U (x) and, thus, more confining around its
minima.

FIG. 7. Average position xav as a function of time with 10000 trajecto-
ries for t f = 10. Black curve: exact. Red curve: approximate. Blue curve:
reweighted.
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The Mueller potential

56

The potential is given by

V (x, y) =
4 

i=1

Ai exp
�
ai(x� x0

i )
2 + bi(x� x0

i )(y � y0
i ) + ci(y � y0

i )
2
⇥

(2.2)

where A = (�200,�100,�170, 15), a = (�1,�1,�6.5, 0.7), b = (0, 0, 11, 0.6),

c = (�10,�10,�6.5, 0.7), x0 = (1, 0,�0.5,�1), and y0 = (0, 0.5, 1.5, 1). The neighborhood

of the Müller-Brown potential we explore is shown in Figure 3 along with a listing of the fixed

points, their energy, and their classification. We first discuss the initialization of the ring,

and then three di⇥erent forms of “backward stepping”: time-stepping, arclength-stepping in

(phase space)⇥(time) and potential-stepping. Our initial ring will be the V = �105 energy

contour surrounding the minimum at (0.62, 0.03).

A ring is a smooth curve ⇥, here in two dimensions. In our implementation, we dis-

cretize this curve and denote the instantaneous position of the discretized ring by the vectors

�i ⇤ ⇥(�i, t) = [x(�i, t), y(�i, t)] (with �i in R2, �i in R) for the coordinates of the ith dis-

cretization node, where �i is a suitable parametrization. A natural choice is the normalized

arc-length along the ring with �i ⌅ [0, 1], as in the string method, but now with periodic

boundary conditions. Note that one does not need to initialize on an exact isopotential

contour; keeping the analogy with local stable manifolds of a dynamical system fixed point,

one can use the local linearization – and more generally, local Taylor series – to approximate

a closed curve on the manifold. Anticipating the “energy-stepping” reverse evolution mode,

however, we start with an isopotential contour here. This requires an initial point on the

surface; we then trace the isopotential contour passing through this point using a scheme

which resembles the sliding stage in the “Step and Slide” method of Miron and Fichthorn22

for saddle point identification. We simply “slide” along the contour to generate a curve �,

moving (in some pseudo-time ⇥) perpendicular to the local energy gradient according to

d�

d⇥
=

⇤

⌥⇧
⇤V/⇤y

�⇤V/⇤x

⌅

�⌃ . (2.3)

8

1

2

3
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Transition 1-2
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Transition 

Transition 2-3
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Histogram of barrier heights
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Transition 1-3
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Work in progress: exact numerical solution 
of Langevin Bridge

• Need to solve the 2 equations

• but need            only along trajectories

62

The goal of this paper is to show how one can generate a representative sample of tran-

sition paths, starting in state A at time 0 and ending in state B at some arbitrary time tf .

The typical times of interest are not the (long) folding times, but rather the (very short)

transition or barrier crossing times. In mathematical terms, we are looking for the paths

starting from A at time 0 and conditioned to end in state B at time tf << ⇤K .

Using the path integral representation of eq.(9), we see that the probability for a path

{x(t)} starting at x0 at time 0, to end at xf at tf is given by

P ({x(t)}) =
1

A
e��(U(xf )�U(x0))/2 exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(10)

where

A =

ˆ
dxfe

��(U(xf )�U(x0))/2

ˆ (xf ,tf )

(x0,0)

Dx(t) exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(11)

The conditional probability over all paths starting at x0 at time 0 and ending at xf at

time tf , to find the system at point x at an intermediate time t is given by

P(x, t) =
1

P (xf , tf |x0, 0)
Q(x, t)P (x, t)

where

P (x, t) = P (x, t|x0, 0)

Q(x, t) = P (xf , tf |x, t)

The equation satisfied by P is given by (4), whereas that for Q is given by

⌅Q

⌅t
= �D

⌅2Q

⌅x2
+ D�

⌅U

⌅x

⌅Q

⌅x
(12)

It follows easily that the equation for the conditional probability P(x, t) is given by

⌅P
⌅t

= D
⌅

⌅x

�
⌅P
⌅x

+
⌅

⌅x
(�U � 2 ln Q)P

⇥

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,

one sees that it can be obtained from a Langevin equation with a modified potential

6

The goal of this paper is to show how one can generate a representative sample of transi-

tion paths, starting in state A at time 0 and ending in state B at some arbitrary time tf . In

mathematical terms, we are looking for the paths starting from A at time 0 and conditioned

to end in state B at time tf .

Using the path integral representation of eq.9, we see that the probability for a path

{x(t)} starting at x0 at time 0, to end at xf at tf is given by
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1
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The conditional probability over all paths starting at x0 at time 0 and ending at xf at

time tf , to find the system at point x at an intermediate time t is given by
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P (xf , tf |x0, 0)
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where

P (x, t) = P (x, t|x0, 0)
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The equation satisfied by P is given in eq. 4, whereas the equation for Q is given by
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= �D

⌅2Q

⌅x2
+ D�

⌅U

⌅x

⌅Q

⌅x
(12)

It follows easily that the equation for the conditional probability P(x, t) is given by

⌅P
⌅t

= D
⌅

⌅x

�
⌅P
⌅x

+
⌅

⌅x
(�U � 2 ln Q)P

⇥

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,

one sees that it can be obtained from a Langevin equation with a modified potential

dx

dt
= � D

kBT

⌅U

⌅x
+ 2D

⌅ ln Q

⌅x
+ ⇤(t) (13)

5

Q(x, t)

equation for Q(x(t), t)
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Q(xk+1, k + 1) = Q(xk, k) + (xk+1 � xk)
@Q(xk, k)

@xk
+

1

2
(xk+1 � xk)

2 @
2
Q(xk, k)

@x

2
k

� Ddt

@

2
Q(xk, k)

@x

2
k

+D�dt

@U(xk)

@xk

@Q(xk, k)

@xk

So if we know a path up to time k, we can increment x and then Q.

xk+1 = xk �D�dt

@U(xk)

@xk
+ 2Ddt

@ logQ(xk, k)

@xk
+

p
2Ddt⇣k

< ⇣k >= 0

< ⇣k⇣k >= �kl

To compute the derivatives of Q, we need to grow a family of many paths in 
parallel, and look for points close enough to compute derivatives.

There remains some difficulties (instabilities)

mardi 13 mai 14



Other numerical approach

• Equation to solve:

• Start with 
• Generate M trajectories 

• From these trajectories, generate

• Iterate procedure 64

The goal of this paper is to show how one can generate a representative sample of transi-

tion paths, starting in state A at time 0 and ending in state B at some arbitrary time tf . In

mathematical terms, we are looking for the paths starting from A at time 0 and conditioned

to end in state B at time tf .

Using the path integral representation of eq.9, we see that the probability for a path

{x(t)} starting at x0 at time 0, to end at xf at tf is given by

P ({x(t)}) =
1

A
e��(U(xf )�U(x0))/2 exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(10)

where

A =

ˆ
dxfe

��(U(xf )�U(x0))/2

ˆ (xf ,tf )

(x0,0)

Dx(t) exp

�
� 1

4kBT

ˆ tf

0

dt

�
⇥ẋ2 +

1

⇥
V (x)

⇥⇥
(11)

The conditional probability over all paths starting at x0 at time 0 and ending at xf at

time tf , to find the system at point x at an intermediate time t is given by

P(x, t) =
1

P (xf , tf |x0, 0)
Q(x, t)P (x, t)

where

P (x, t) = P (x, t|x0, 0)

Q(x, t) = P (xf , tf |x, t)

The equation satisfied by P is given in eq. 4, whereas the equation for Q is given by

⌅Q

⌅t
= �D

⌅2Q

⌅x2
+ D�

⌅U

⌅x

⌅Q

⌅x
(12)

It follows easily that the equation for the conditional probability P(x, t) is given by

⌅P
⌅t

= D
⌅

⌅x

�
⌅P
⌅x

+
⌅

⌅x
(�U � 2 ln Q)P

⇥

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,

one sees that it can be obtained from a Langevin equation with a modified potential

dx

dt
= � D

kBT

⌅U

⌅x
+ 2D

⌅ ln Q

⌅x
+ ⇤(t) (13)

5Q0(x, t)

x

(0)
↵ (t), {↵ = 1, ...,M}

Q1(x, t)
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• No need of reaction coordinates
• Method is efficient, and fast : completely 

parallelizable
• All trajectories are statistically independent
• Possibility to reweight the trajectories
• Possibility to include the solvent
• Can be generalized to discrete systems.

65

Conclusion
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