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Abstrat

The omputation of free energy di�erenes through an exponential weighting of out-of-

equilibrium paths (known as the Jarzynski equality [15, 16℄) is often used for transitions

between states desribed by an external parameter λ in the Hamiltonian. We present

here an extension to transitions between states de�ned by di�erent values of some rea-

tion oordinate, using a projeted Brownian dynamis. In ontrast with other approahes

(see e.g. [22℄), we use a projetion rather than a onstraining potential to let the on-

straints assoiated with the reation oordinate evolve. We show how to use the Lagrange

multipliers assoiated with these onstraints to ompute the work assoiated with a given

trajetory. Appropriate disretizations are proposed. Some numerial results demonstrate

the appliability of the method for the omputation of free energy di�erene pro�les.

Keywords: free energy, mean fore, onstrained dynamis, sampling tehniques, Jarzyn-

ski equality, Feynman-Ka formula.

The free energy of a system is a quantity of paramount importane in statistial physis.

It is of the form

F = −β−1 lnZ, (1)

where β = 1/(kBT ) (T denotes the temperature and kB the Boltzmann onstant) and Z is

the partition funtion

Z =

∫

Σ
exp(−βV ) dµ (2)

of the Boltzmann (or Gibbs) measure exp(−βV )dµ. In this expression, the funtion V ≡ V (q)
is the potential energy of the system (denoting by q the position vetor) and µ is a referene

positive measure with support Σ. The spae Σ is the on�guration spae of the system. We

will onsider here that Σ is a submanifold of R
3N

, but all the results extend to the ase

when Σ is a submanifold of T
3N

(the 3N -dimensional torus, whih arises when using periodi

boundary onditions). The statistis of the system are ompletely de�ned by (V, µ).

In most ases, (V, µ) is labeled using a d-dimensional parameter z (with d ≪ 3N) whih

haraterizes the system at some oarser level. The parameter z an be independent of the
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urrent on�guration of the system. In this ase, only the expression of the potential V depends

on the parameter, so that the assoiated swithing has sometimes been alled 'alhemial

transition'. Some examples of suh parameters are the intensity of an external magneti �eld

for a spin system, or the temperature for a simulated annealing proess. However, it is often

the ase that the parameter z labels submanifolds of the on�guration spae, through level

sets Σz = { ξ(q) = z } of some funtion ξ. The funtion ξ is alled a `reation oordinate'. In

this ase, µ (espeially the support of µ) depends on z and is de�ned using the orthogonal

projetion from R
3N

or T
3N

to Σz (this will be made preise in Setion 1.1). Standard

examples of reation oordinates are bond lengths or dihedral angles in a moleule.

The absolute free energy (1) an be omputed only for ertain systems, suh as ideal

gases, or solids at low temperature (resorting to the phonon spetrum) [23℄. However, in

many appliations, the quantity of interest is the free energy di�erene between an initial

and a �nal state (haraterized by two di�erent values of the parameter z). The free energy

di�erene pro�les indeed give information about the relative stabilities of several speies, as

well as their transition kinetis. The free energy di�erenes are muh more amenable to

ompute than the absolute free energy. Classial tehniques to this end fall within three main

lasses. The �rst one, dating bak to Kirkwood [17℄, is thermodynami integration, whih

mimis the quasi-stati evolution of a system as a suession of equilibrium samplings, whih

amounts to an in�nitely slow swithing between the initial and �nal states. The seond one,

the free energy perturbation method, was introdued by Zwanzig [35℄. It reasts free energy

di�erenes as a phase-spae integral, so that usual sampling tehniques an be employed.

Notie also that there exist many re�nements for those two lasses of tehniques, suh as

umbrella sampling [31℄. The last and most reent lass of methods uses dynamis arising from

a swithing at a �nite rate. This an be done using nonequilibrium dynamis (the so-alled fast

growth methods) with a suitable exponential reweighting, as introdued by Jarzynski in [15℄.

Notie that the thermodynami integration and free energy perturbation methods an be seen

respetively as the limits of in�nitely slow and fast swithing of nonequilibrium dynamis, at

least formally. Instead of being imposed a priori, this swithing may also arise as the result

of an equilibrium sampling, using for example the Adaptive Biasing Fore tehnique [7, 12℄ or

metadynamis [14℄. In those ases, the system is progressively fored to leave regions where

the sampling of the reation oordinate has been ompleted.

It is still a matter of debate whih method is the most e�ient. While some results

show that fast growth methods an be ompetitive in some situations [11℄, other studies

disagree [19℄. The results of [19℄ indeed indiate that even with the use of e�ient path

sampling tehniques (see also [29, 30, 34℄), fast growth methods do not outperform onventional

methods suh as umbrella sampling or thermodynami integration (at least in a number of

typial ases). However, general onlusions about the e�ieny of fast growth methods are

still to be drawn, depending on the ases under onsideration. We believe that there is room for

improvements of this relatively new method (e.g. by optimizing the swithing shedule [24℄).

Let us also mention that this method is straightforward to parallelize and naturally provides

with a posteriori error bounds via the entral limit theorem, sine it involves many independent

trajetories.

Most methods to ompute free energy di�erenes are well suited to the alhemial transition

setting, but do not straightforwardly extend to the reation oordinate setting. This latter

ase is the fous throughout this artile. In this ase, the methods desribed above require

to onsider dynamis restrited to the submanifold Σz. For omputations using Hamiltonian

dynamis, we refer for example to [4, 24℄. In the stohasti ase, thermodynami integration
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in the reation oordinate ase using projeted stohasti dynamis has reently been put on

a �rm grounding [6, 9℄. On the other hand, stohasti nonequilibrium dynamis à la Jarzynski

in the reation oordinate ase was, to our knowledge, not studied mathematially. It is the

aim of this paper to perform suh a study and to present a methodology to ompute free

energy di�erenes in this framework.

Nonequilibrium omputations of free energy di�erenes in the reation oordinate setting

using stohasti dynamis have until now used soft onstraints to swith between the initial

state entered on the submanifold {ξ(q) = z0} and the �nal state entered on {ξ(q) = z1}.
Steered moleular dynamis tehniques use for example a penalty term K(ξ(q) − z)2 in the

energy of the system [22℄ (with K large) to 'softly' onstraint the system to remain lose to the

submanifold {ξ(q)−z = 0}, and varying the value z from 0 to 1 in a �nite time T . It is shown
in [13℄ how to use suh a biasing potential to exatly ompute free energy di�erenes (even

for a �nite K), whih is of partiular interest for experimental studies. From a omputational

viewpoint however, it is expeted that large values of K require small integration time steps.

Moreover, it is observed in pratie that the statistial �utuations inrease with larger K
(see [22℄). Instead, we propose to replae the sti� onstraining potential K(ξ(q) − z)2 by a

projetion onto the submanifold {ξ(q) − z = 0}. This situation is reminisent of the ase of

moleular onstraints, that an be enfored using a sti� penalty term, or more elegantly and

often more e�iently, using some projetion of the dynamis involving Lagrange multipliers.

This is the spirit of the well known SHAKE algorithm [26℄.

We propose a nonequilibrium stohasti dynamis and an equality that allow to ompute

free energy di�erenes between states de�ned by di�erent values of a reation oordinate. The

dynamis relies on a projetion onto the urrent submanifold at eah time step, and we use

the Lagrange multipliers assoiated with this projetion to estimate the free energy di�erene.

More preisely, we use the di�erene between these Lagrange multipliers and the external

foring term required for the �nite time swithing (see for example the disretization (31)).

The main results of the paper are the Feynman-Ka equality of Theorem 2.2 (whih extends

the proof of [13℄ to hard onstraints), as well as the assoiated disretizations (33) and (34).

The method we propose fores the system to pass free energy barriers, and thus enables

free energy di�erene omputations for metastable systems. Of ourse the reliability of the

algorithm ruially depends on the hoie of the reation oordinate, whih represents the

essential degrees of freedom. The reation oordinate should be rih enough in order to

adequately desribe the on�guration paths of the system from the initial state to the �nal

state. The determination of the essential degrees of freedom of a system is a very important

problem, whih is not the fous of this work. Thus, in the following, we suppose that a �good�

reation oordinate is given, and we are interested in the omputation of free energy di�erenes

assoiated with this reation oordinate.

Let us also notie that some reent re�nements of nonequilibrium dynamis to ompute free

energy di�erenes, espeially path sampling tehniques [34℄ and Interating Partile Systems

approahes [25℄ (whih equilibrate the nonequilibrium dynamis through some birth/death

proess based on the urrent work), an be extended to the reation oordinate setting using

the tehniques we present here. Moreover, we restrit ourselves to the so-alled overdamped

Langevin dynamis, but it is possible to extend these results to the usual Langevin dynamis

(this is a work in progress).

The paper is organized as follows. In Setion 1, the thermodynami integration setting is

outlined in the reation oordinate ase. Setion 2 then extends the method to nonequilibrium

dynamis. Adapted numerial shemes are proposed in Setion 3, and some numerial results
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assessing the orretness of the method are presented in Setion 4. For larity, we present the

method in the ase of a one-dimensional reation oordinate and postpone until Appendix A

the proofs and the expressions for the multi-dimensional ase.

1 Equilibrium omputation of free energy di�erenes

The aim of this setion is to introdue the de�nitions of the free energy and the mean fore,

and to reall how thermodynami integration is used to ompute free energy di�erenes. The

omputation of the mean fore is based on projeted stohasti di�erential equations (SDE).

These SDEs will also be used for the disretization of Jarzynski equality in Setion 2. This

setion mainly reviews results of [6℄.

1.1 Free energy and mean fore

In the following, we denote by M ⊂ R
3N

the on�guration spae of the system when no

parameter z is involved. The state of the system is haraterized by the value of a reation

oordinate ξ : M → [0, 1]. The funtion ξ is supposed to be smooth and suh that ∇ξ(q) 6= 0
for all q ∈ M. For a given value z ∈ [0, 1], we denote by Σz the submanifold

Σz = { q ∈ M, ξ(q) = z } (3)

and we assume that

⋃
z∈[0,1]Σz ⊂ M. For eah point q ∈ Σz, we also introdue the orthogonal

projetion operator P (q) onto the tangent spae to Σz at point q de�ned by:

P (q) = Id− ∇ξ ⊗∇ξ

|∇ξ|2 (q), (4)

where ⊗ denotes the tensor produt. The orthogonal projetion operator on the normal spae

to Σz at point q is de�ned by P⊥(q) = Id− P (q).
The free energy is then de�ned as

F (z) = −β−1 ln (Zz) , (5)

with

Zz =

∫

Σz

exp(−βV ) dσΣz
, (6)

where for any submanifold Σ of R
3N

, σΣ denotes the Lebesgue measure indued on Σ as a

submanifold of R
3N

. The assoiated Boltzmann probability measure is

dµΣz
= Z−1

z exp(−βV ) dσΣz
. (7)

Remark 1.1 (On the de�nition of the free energy). Two omments are in order about for-

mula (5). First, this formula is valid up to an additive onstant, whih is not important when

onsidering free energy di�erenes. Seond, the potential V in (6) may be a potential di�erent

from the atual potential seen by the partiles. More preisely, if the partiles evolve in a

potential V , the standard de�nition of the free energy in the physis and hemistry literature

is (5) with

Zz =

∫
exp(−βV ) δξ(q)−z ,
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where δξ(q)−z is a measure supported by Σz and de�ned by: for all test funtions φ,
∫

φ(q)δξ(q)−z =

∫

Σz

φ|∇ξ|−1 dσΣz
.

This amounts to onsidering (5)�(6) with V replaed by an e�etive potential V + β−1 ln |∇ξ|
(see Remark A.1 for the ase of a multi-dimensional onstraint). Sine the results we present

in this paper hold irrespetive of the physial signi�ation of the potential V , we may assume

without loss of mathematial generality that the free energy is indeed given by (5)�(6). Let

us emphasize that, in pratie, the umbersome omputation of the gradient of the additional

term β−1 ln |∇ξ| in the modi�ed potential (whih intervenes in the projeted SDEs we use,

see (27)�(28) or (29)�(30)) an be avoided resorting to some �nite di�erenes, as explained

in [6℄.

Using the o-area formula (see (42) and Proposition A.2 for a proof in the multi-dimensional

ase), it is possible to derive the following expression of the derivative of the free energy F
with respet to z (the so-alled mean fore) (see [21, 27℄):

F ′(z) = Z−1
z

∫

Σz

∇ξ

|∇ξ|2 · (∇V + β−1H) exp(−βV )dσΣz
, (8)

where

H = −∇ ·
( ∇ξ

|∇ξ|

) ∇ξ

|∇ξ| (9)

is the mean urvature vetor �eld of the surfae Σz. The free energy an thus be expressed as

an average with respet to µΣz
:

F ′(z) =

∫

Σz

f(q)dµΣz
(q), (10)

where f is the loal mean fore de�ned by:

f =
∇ξ

|∇ξ|2 · (∇V + β−1H). (11)

In next setion, we will explain how it is possible to ompute this average with respet to µΣz
,

without expliitly omputing f , by using projeted SDEs. This avoids in partiular the om-

putation of the mean urvature vetor H whih involves seond-order derivatives of ξ.
The priniple of thermodynami integration is to reast the free energy di�erene

∆F (z) = F (z)− F (0) (12)

between two reation oordinates 0 and z as an integral over the mean fore:

∆F (z) =

∫ z

0
F ′(y) dy. (13)

Therefore, in pratie, thermodynami integration omputation of free-energy is as follows.

First, the free energy di�erene ∆F (z) is estimated using quadrature formulae for the integral

in (13), suh as for example a Gauss-Lobatto sheme:

∆F (z) ≃
K∑

i=0

ωiF
′(yi)

5



where the points {y0, y1, . . . , yK} are in [0, z] and {ω0, ω1, . . . , ωK} are their assoiated weights.
Seond, the derivatives F ′(yi) are omputed as anonial averages over the submanifolds Σyi ,

using projeted SDEs (see next setion).

To obtain a free-energy pro�le (and not only a free-energy di�erene for a �xed �nal state),

it is possible to approximate the funtion ∆F (z) on the interval [0, 1] by a polynomial. This

an be done for example by interpolating the derivative F ′
by splines, and integrating the

resulting funtion (onsistently with the normalization ∆F (0) = 0).

1.2 Projeted stohasti di�erential equations

In this setion, we explain how to ompute the mean fore F ′(z) de�ned by (8) using projeted

SDEs, for a �xed parameter z. We onsider the solution Qt to the following SDE:

{
Q0 ∈ Σz,

dQt = −P (Qt)∇V (Qt) dt+
√

2β−1P (Qt) ◦ dBt,
(14)

where Bt is the standard 3N -dimensional Brownian motion and ◦ denotes the Stratonovih

produt. It is possible (see [6℄) to hek that µΣz
is an invariant probability measure assoiated

with the SDE (14). Under suitable assumptions, whih we assume in the rest of the setion, on

the potential V and the surfae Σz, the proess Qt is ergodi with respet to µΣz
. Moreover,

the SDE (14) an be rewritten in the following way:

dQt = −∇V (Qt) dt+
√

2β−1dBt +∇ξ(Qt)dΛt, (15)

where Λt is a real valued proess, whih an be interpreted as the Lagrange multiplier asso-

iated with the onstraint ξ(Qt) = z (see the disretization in Setion 3.1). This proess an

be deomposed into two parts:

dΛt = dΛm
t + dΛf

t. (16)

The so-alled martingale

1

part Λm
t (whose �utuation is of order

√
∆t over a timestep ∆t) is

dΛm
t = −

√
2β−1

∇ξ

|∇ξ|2 (Qt) · dBt, (17)

where · impliitly denotes the It� produt. The so-alled bounded variation part Λf
t (whose

�utuation is of order ∆t over a timestep ∆t) is

dΛf
t =

∇ξ

|∇ξ|2 (Qt) · ∇V (Qt) dt+ β−1 ∇ξ

|∇ξ|2 (Qt) ·H(Qt) dt = f(Qt) dt, (18)

f being the loal mean fore de�ned above by (11). Thus, sine Qt is ergodi with respet to

µΣz
the mean fore an be obtained as a mean over the Lagrange multiplier Λt:

Proposition 1.2. The mean fore is given by:

F ′(z) = lim
T→∞

1

T

∫ T

0
dΛt = lim

T→∞

1

T

∫ T

0
dΛf

t. (19)

1

For our purposes, it is enough to think of a martingale as an It� integral with respet to the Brownian

motion (Bt)t≥0.
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Notie that the martingale part dΛm
t , whih has the largest �utuations, has zero mean.

In order to redue the variane, it is thus numerially onvenient to perform the mean over the

bounded variation part dΛf
t rather than over the whole Lagrange multiplier dΛt (see Setion 3).

We refer to [6℄ for a proof of Proposition 1.2, as well as for formulae involving higher

dimensional reation oordinates. Suh ideas have been used for a long time in the framework

of Hamiltonian dynamis (see [21, 27℄).

The interest of Equation (19) is that the SDE (15) an be very naturally disretized

as explained in Setion 3.1 below. Then, the average over a disretized trajetory of the

proess Λt onverges to F ′(z). This is partiularly onvenient for numerial purposes sine

it does not ask for expliitly omputing the loal fore f . For further details, we refer to [6℄

and to Setion 3.1. In next setion, we use these ideas for the omputation of the free energy

di�erene given through the Jarzynski equality.

2 Nonequilibrium stohasti methods in the reation oordi-

nate ase

As opposed to quasistati methods where the free energy di�erene between an initial state

and a �nal state is expressed by (13), in nonequilibrium methods, the free energy di�erene

is expressed using a Feynman-Ka average over nonequilibrium paths [15, 13, 25℄

∆F (1) = F (1) − F (0) = −β−1 lnE
(
e−βW(T )

)
, (20)

where W(T ) denotes the total work exerted along a nonequilibrium path (Qt, z(t))t∈[0,T ], with

z(0) = 0 and z(T ) = 1.
We wish here to extend the Feynman-Ka formula derived in [13℄ for a parameter z whih

appears only in the potential V , to the reation oordinate ase, where z labels submanifolds Σz

(de�ned by Equation (3)) of the state spae. To this end, we need to make preise the evolution

of the onstraints.

We onsider a C1
path z : [0, T ] → [0, 1] of values of the reation oordinate ξ, with

z(0) = 0, and z(T ) = 1. Reall that the assoiated family of submanifolds of admissible

on�gurations is denoted by

Σz(t) = {q ∈ M, ξ(q) = z(t)} ,

and that the assoiated Boltzmann probability measures are

dµΣz(t)
= Z−1

z(t) exp(−βV )dσΣz(t)
.

We onstrut a di�usion (Qt)t∈[0,T ] so that Qt ∈ Σz(t) for all t ∈ [0, T ] and (Qt)t∈[0,T ] satis�es

the following properties (see Setion 2.1 for a more rigorous formulation):

• Q0 ∼ µΣz(0)
,

• For all t ∈ [0, T ], Qt+dt is the orthogonal projetion on Σz(t+dt) of the position obtained

by the unonstrained displaement: Qt −∇V (Qt)dt+
√

2β−1dBt.

To eah realization of this proess, a work W(t) an be assoiated as

W(t) =

∫ t

0
f(Qs)z

′(s)ds,

7



where f is the loal mean fore de�ned above by (11). Then, we prove that the Feynman-

Ka formula (20) holds for the free energy F assoiated with the reation oordinate and

de�ned by (5). Notie that, at least formally, in the limit of an in�nitely slow swithing

from z(0) = 0 to z(T ) = 1, Formula (20) orresponds to the thermodynami integration

formula (13). Formula (20) enables the omputation of free energy di�erene at arbitrary

rates, through a orretion onsisting in a reweighting of the nonequilibrium paths.

The rest of this setion is organized as follows. In Setion 2.1, we make preise the pro-

ess Qt we onsider. Then, in Setion 2.2, we state the Feynman-Ka formula (20) for a

one-dimensional reation oordinate. We reall that the formulae for the general ase in-

volving higher dimensional reation oordinates, as well as the main proofs, are presented in

Appendix A.

2.1 The nonequilibrium projeted stohasti dynamis

The onsidered di�usion reads, in the Stratonovih setting:





Q0 ∼ µΣz(0)
,

dQt = −P (Qt)∇V (Qt)dt+
√

2β−1P (Qt) ◦ dBt +∇ξ(Qt) dΛ
ext
t ,

dΛext
t =

z′(t)

|∇ξ(Qt)|2
dt.

(21)

With a view to the disretization of Qt, let us notie that Qt an be haraterized by the

following property:

Proposition 2.1. The proess Qt solution to (21) is the only It� proess satisfying for some

real-valued adapted It� proess (Λt)t∈[0,T ]:





Q0 ∼ µΣz(0)
,

dQt = −∇V (Qt)dt+
√

2β−1dBt +∇ξ(Qt) dΛt,
ξ(Qt) = z(t).

Moreover, the proess (Λt)t∈[0,T ] an be deomposed as

Λt = Λm
t + Λf

t + Λext
t , (22)

with the martingale part

dΛm
t = −

√
2β−1

∇ξ

|∇ξ|2 (Qt) · dBt,

the loal fore part (see (11) for the de�nition of f)

dΛf
t =

∇ξ

|∇ξ|2 (Qt) ·
(
∇V (Qt) dt+ β−1H(Qt)

)
dt = f(Qt) dt, (23)

and the external foring (or swithing) term

dΛext
t =

z′(t)

|∇ξ(Qt)|2
dt.

8



The proof of Proposition 2.1 is easy and onsists in omputing dξ(Qt) by It�'s alulus

and identifying the bounded variation and the martingale parts of the stohasti proesses.

The di�erene with the projeted stohasti di�erential equation (14) onsidered in the

thermodynami integration setting is that the out-of-equilibrium evolution of the onstraints z(t)
reates a drift ∇ξ(Qt) dΛ

ext
t along the reation oordinate. This drift an be interpreted as

an external foring required for the swithing to take plae at a �nite rate, and must be sub-

trated from the Lagrange multiplier Λt in order to obtain a orret expression for the work

W(t) involved in the Feynman-Ka �utuation equality (see Equations (31) and (33) below).

This orretion is quantitatively important when the swithing is not slow.

2.2 The Feynman-Ka �utuation equality

Let us de�ne the nonequilibrium work exerted on the di�usion (21) by:

W(t) =

∫ t

0
f(Qs) z

′(s) ds, (24)

where f is the loal mean fore de�ned above by (11). In pratie, the nonequilibrium

work W(t) an be omputed by using the loal fore part dΛf
t (see (23)), as in the ther-

modynami integration method (see (19)). Thus, the formula we use to ompute W(t) is

rather:

W(t) =

∫ t

0
z′(s) dΛf

s, (25)

sine Λf
t an be obtained by a natural numerial sheme (see Setion 3), avoiding the um-

bersome omputations of the mean urvature vetor H in the expression of f (as already

explained in Setion 1.1).

We an now state the generalization of the Jarzynski nonequilibrium equality to the ase

when the swithing is parameterized by a reation oordinate.

Theorem 2.2 (Feynman-Ka �utuation equality). For any test funtion ϕ and ∀t ∈ [0, T ],
it holds

Zz(t)

Zz(0)

∫

Σz(t)

ϕdµΣz(t)
= E

(
ϕ(Qt)e

−βW(t)
)
.

In partiular, we have the work �utuation identity: ∀t ∈ [0, T ],

∆F (z(t)) = F (z(t)) − F (z(0)) = −β−1 ln
(
E

(
e−βW(t)

))
. (26)

As in the alhemial ase [13℄, the proof follows from a Feynman-Ka formula. The proof

of this theorem is presented in the general multi-dimensional ase in Appendix A (see Theo-

rem A.5).

3 Disretization of the dynamis

The main interest of the above formulae (13)�(19) and (25)�(26) is that they admit natural

time disretizations. The priniple is to use a preditor-orretor sheme for the assoiated

dynamis (14) and (21), and to use the Lagrange multiplier Λt to ompute the loal mean

fore f .
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Setion 3.1 is mainly a review of the results of [6℄ and presents this idea in the ontext of

thermodynami integration. Then, we extend the method to the ase of evolving onstraints

in Setion 3.2.

3.1 Disretization of the projeted di�usion

For the projeted SDE (15) onto a submanifold Σz = {ξ(q)−z = 0}, two disretizations of the
dynamis, extending the usual Euler-Maruyama sheme, are proposed in [6℄. These numerial

shemes for onstrained Brownian dynamis are in the spirit of the so-alled RATTLE [2℄ and

SHAKE [26℄ algorithms lassial used for onstrained Hamiltonian dynamis, and also related

with the algorithms proposed in [32, 1, 20℄.

The �rst one is:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λn+1∇ξ(Qn+1),

where ∆Λn+1 is suh that ξ(Qn+1) = z,
(27)

where ∆t is the time step and Un
is a 3N -dimensional standard Gaussian random vetor.

Notie that (27) admits a natural variational interpretation, sine Qn+1 an be seen as the

losest point on the submanifold Σz to the predited position Qn−∇V (Qn)∆t+
√
2∆tβ−1 Un.

The real ∆Λn+1 is then the Lagrange multiplier assoiated with the onstraint ξ(Qn+1) = z.

Another possible disretization of (15) is

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λn+1∇ξ(Qn),

where ∆Λn+1 is suh that ξ(Qn+1) = z.
(28)

Although this sheme is not naturally assoiated with a variational priniple, it may be more

pratial sine its formulation is more expliit. Notie also that we use the same notation ∆Λn

for the Lagrange multipliers for both (27) and (28) (and later for (29) and (30)), sine all the

formulas we state in terms of ∆Λn are veri�ed whatever the onstrained dynamis.

To solve Equation (27), lassial methods for optimization problems with onstraints an

be used. We refer to [10℄ for a presentation of the lassial Uzawa algorithm, and to [3℄ for

more advaned methods. Problem (28) an be solved using lassial methods for nonlinear

problems, suh as the Newton method (see [3℄). We also refer to Chapter 7 of [18℄ where similar

problems are disussed, for the lassial RATTLE and SHAKE shemes used for Hamiltonian

dynamis with onstraints.

Both shemes are onsistent (the disretization error goes to 0 when the time step ∆t
goes to 0) with the projeted di�usion (15) (see [6℄). Aordingly, ∆Λn+1 is a onsistent

disretization of

∫ tn+1

tn
dΛt and therefore, it an be proven [6℄:

lim
T→∞

lim
∆t→0

1

T

T/∆t∑

n=1

∆Λn = F ′(z)

whih is the disrete ounterpart of the trajetory average (19). In [6℄, a variane redution

tehnique is proposed, whih onsists in extrating the bounded variation part ∆Λf
n of ∆Λn

(resorting loally to reversed Brownian inrements). We give some details of an adaptation of

this method for evolving onstraints in next setion.
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3.2 Disretization with evolving onstraints

When nonequilibrium dynamis are onsidered, the onstraint is stated as ξ(Qt) = z(t). The
reation oordinate path is �rst disretized as {z(0), . . . , z(tNT

)} where NT is the number of

timesteps. For example, equal time inrements an be used, in whih ase ∆t = T
NT

and

tn = n∆t (we refer to Remark 3.1 below for some re�nements). The initial onditions Q0 are

sampled aording to µΣ0 . A way to do that is to subsample a long trajetory of the projeted

SDE on Σ0 (using the shemes (27) or (28)).

The projeted SDE on evolving onstraints (21) is then disretized with the sheme (27)

or (28), taking into aount the evolution of the onstraint:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λn+1∇ξ(Qn+1),

where ∆Λn+1 is suh that ξ(Qn+1) = z(tn+1),
(29)

or {
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λn+1∇ξ(Qn),

where ∆Λn+1 is suh that ξ(Qn+1) = z(tn+1).
(30)

It remains to extrat the fore part ∆Λf
n+1 from the disretized Lagrange multiplier ∆Λn+1

(onsistently with (22)). We propose two methods. First, this an be done by simply sub-

trating the drift and the martingale part

∆Λf
n+1 = ∆Λn+1 −

z(tn+1)− z(tn)

|∇ξ(Qn)|2
+
√

2∆tβ−1
∇ξ(Qn)

|∇ξ(Qn)|2
· Un. (31)

Another possibility in the spirit of the variane redution tehniques used in [6℄ an also be

used. Consider the following oupled dynami with loally time-reversed onstraint evolution

(written here for the sheme (29)):

QR
n+1 = Qn −∇V (Qn)∆t−

√
2∆t β−1 Un +∆ΛR

n+1∇ξ(QR
n+1),

with ∆ΛR
n+1 suh that:

1

2
(ξ(QR

n+1) + ξ(Qn+1)) = ξ(Qn).

The position QR
n+1 is omputed as Qn+1 in (29), but with a projetion on Σ2ξ(Qn)−ξ(Qn+1)

instead of Σz(tn+1), and using the Brownian inrement −
√
∆tUn instead of

√
∆t Un. Notie

that in ase of a onstant inrement for the onstraints, we have ξ(QR
n+1) = 2ξ(Qn)−ξ(Qn+1) =

z(tn−1). The fore part ∆Λf
n+1 is then obtained through

∆Λf
n+1 =

1

2
(∆Λn+1 +∆ΛR

n+1) (32)

whih an be shown to be a onsistent time disretization of

∫ tn+1

tn
dΛf

t.

3.3 Computation of free energy using a Feynman-Ka equality

The onsistent disretization of Qt, and more preisely of

∫ tn+1

tn
dΛf

t, we have obtained in the

previous setion an now be used to approximate the work W(t) de�ned by (25) by





W0 = 0,

Wn+1 = Wn +
z(tn+1)− z(tn)

tn+1 − tn
∆Λf

n+1,
(33)
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using either the dynamis (29) or (30), and the loal fore part of the Lagrange multiplier

omputed by (31) or (32). Averaging over M independent realizations (the orresponding

works being labeled by an upper index 1 ≤ m ≤ M), an estimator of the free energy di�erene

∆F (z(T )) is, using Theorem 2.2,

∆̂F (z(T )) = −β−1 ln

(
1

M

M∑

m=1

e
−βWm

NT

)
. (34)

The estimator ∆̂F (z(T )) onverges to ∆F (z(T )) as ∆t → 0 and M → +∞. It is lear that

the estimation of ∆F (z(T )) by (34) is straightforward to parallelize sine the (Wm
NT

)1≤m≤M

are independent.

Notie that, even in the limit ∆t → 0, ∆̂F (z(T )) is a biased estimator. Indeed,

exp(−β∆̂F (z(T ))) is an unbiased estimator of exp(−β∆F (z(T ))), and therefore, using the

onavity of ln, E(∆̂F (z(T ))) ≥ ∆F (z(T )). Reent works propose orretions to this system-

ati bias using asymptoti expansions in the limit M → +∞ (see for instane [24, 36℄).

Remark 3.1 (On pratial implementation). Notie that it may be useful to adaptively re�ne

the time step over eah stohasti trajetories, using for example the work evolution rate (Wn−
Wn−1)n≥1 as a re�nement riterion.

As notied in [24℄, it is also possible to optimize the evolution of the onstraint z(t), for ex-
ample by minimizing the variane of the results obtained for a priori shedules for the evolving

onstraint on a small set of preliminary runs.

4 Numerial results

We present in this setion some illustrations of the algorithm we have desribed above to om-

pute free energy di�erenes through nonequilibrium paths. In Setion 4.1, a two-dimensional

toy potential V is used, for whih we an ompare the results with analytial pro�les. A more

realisti test ase in Setion 4.2 demonstrates the ability of the method to ompute free energy

pro�les in presene of a free energy barrier.

Our aim in this setion is not to ompare the numerial e�ieny of the thermodynami

integration method presented in Setion 1 (or any other method) with nonequilibrium om-

putations, sine it is di�ult to draw general onlusions about suh omparisons. However,

we ompare on a simple example in Setion 4.1, the numerial e�ieny of out-of-equilibrium

omputations using a few long trajetories or many short trajetories, at a �xed omputational

ost.

4.1 A two-dimensional toy problem

We onsider the two-dimensional potential introdued in [33℄

V (x, y) = cos(2πx)(1 + d1y) + d2y
2, (35)

where d1 and d2 are two positive onstants. Some orresponding Boltzmann-Gibbs probability

densities are depited in Figure 1.

We want to ompute the free energy di�erene pro�le between the initial state x = x0 =
−0.5 and the transition state x = x1 = 0. Notie that the saddle point is (x1, y1) = (0, 0) for

12
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Figure 1: Plot of some probability densities orresponding to the potential (35) for β = 1,
d2 = 2π2

, and d1 = 0 on the left or d1 = 10 on the right.

d1 = 0, but is inreasingly shifted toward lower values of y1 as d1 inreases. We parameterize

the transition along the x-axis, either with the reation oordinate

ξ(x, y) =
x− x0
x1 − x0

, (36)

or with the reation oordinate (n ≥ 2)

ηn(x, y) =
1

2n − 1

[(
1 +

x− x0
x1 − x0

)n

− 1

]
. (37)

For these reation oordinates, the initial state (resp. the transition state) orresponds to a

value of the reation oordinate z = 0 (resp. z = 1). The analytial expression of the free

energy di�erene that we onsider here is, for a reation oordinate ν(x, y) (suh as ξ or ηn
de�ned above)

∆Fν(z) = −β−1 ln

(∫
e−βV (x,y)δν(x,y)−z∫
e−βV (x,y)δν(x,y)

)
,

where the distribution δν(x,y)−z is de�ned in Remark 1.1 above. Notie that even though the

initial state Σ0 = {x = −0.5} and the �nal state Σ1 = {x = 0} are the same for the reation

oordinates ξ and ηn, the assoiated free energy di�erenes di�er. This is due to the fat that

∇ξ 6= ∇ηn, and therefore δξ(x,y)−z 6= δηn(x,y)−z. More preisely,

∆Fξ(z) = − cos(2πx0) + cos(2πxξ(z)) +
(d1)

2

4d2
(cos2(2πx0)− cos2(2πxξ(z))),

with

xξ(z) = x0 + z(x1 − x0),

13
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Figure 2: Free energy pro�les using the potential (35) with β = 1, d1 = 30 and d2 = 2π2
,

and the reation oordinate (36) on the left, or the reation oordinate (37) with n = 5 on

the right. Analytial referene pro�les are in dotted lines. The dashed lines (resp. the solid

lines) represent the upper and lower bound of the 95% on�dene interval (obtained over 100

independent realizations) for nonequilibrium omputations with M = 103 replias (resp. with
M = 104 replias). The swithing time is T = 1 and the time step is ∆t = 0.005 on the left

and ∆t = 0.0025 on the right.

and

∆Fηn(z) = − cos(2πx0) + cos(2πxηn(z)) +
(d1)

2

4d2
(cos2(2πx0)− cos2(2πxηn(z)))

+
n− 1

β
ln

(
1 +

xηn(z) − x0
x1 − x0

)
,

with

xηn(z) = x0 + ((2n − 1)z + 1)1/n − 1)(x1 − x0).

Free energy pro�les for the two reation oordinates onsidered here an then be omputed

using the disretization proposed in Setion 3.3. Averaging over several realizations, error

estimates an be proposed: in partiular, the standard deviation an be omputed for all

intermediate points z ∈ [0, 1], so that, for all values z, a on�dene interval around the

empirial mean an be proposed. We represent on Figure 2 the analytial pro�les, and the

lower and upper bounds of the 95% on�dene interval for M = 103 and M = 104, using here
and heneforth a linear shedule: z(t) = t/T . The initial onditions are reated by subsampling

every 100 timesteps a trajetory onstrained to remain on the initial submanifold Σ0. As

announed above, the pro�les obtained with ηn and ξ are not exatly the same, though

the general shape is preserved. These �gures also show that the variane inreases with z.
Therefore, to further test the onvergene of the method, it is enough here to haraterize the

onvergene of the value for the end point at z = 1.

We study the onvergene of the end value ∆F (1) omputed with the out-of-equilibrium

dynamis with respet to the number of replias M and the time step ∆t, using the reation

oordinate (36) as an example. The results are presented in Table 1. The time step ∆t

14



∆t T M ∆̂F (z(T ))

0.001 1 103 2.056 (0.274)

0.0025 1 103 2.033 (0.259)

0.005 1 103 2.076 (0.286)

0.01 1 103 2.073 (0.278)

0.005 1 103 2.076 (0.286)

0.005 1 104 2.014 (0.116)

0.005 1 105 2.001 (0.045)

∆t T M ∆̂F (z(T ))

0.005 1 104 2.014 (0.116)

0.005 10 103 1.999 (0.029)

0.005 100 102 2.001 (0.025)

0.005 1000 101 1.997 (0.022)

Table 1: Free energy di�erenes ∆F (1) obtained by nonequilibrium omputations for the

reation oordinate (36) with β = 1, d1 = 1 and d2 = 30. The results are presented as follows:

E

(
∆̂F (z(T ))

) (√
Var

(
∆̂F (z(T ))

))
(the estimates of these quantities are obtained by

averages over 100 independent runs). The exat value is ∆F (1) = 2.

does not seem to have any notieable in�uene on the �nal result, as long as it remains in a

reasonable range. As expeted, the error gets smaller as M inreases.

In Table 1, we also show that, in this partiular ase, for a �xed omputational ost and

provided that the swithing time is large enough

2

, omputing many short trajetories is as

e�ient as omputing a few longer ones (the mean and the variane are essentially unhanged).

This onlusion also holds for the more realisti test ase presented in next setion. The

omputation of many trajetories an be straightforwardly and very e�iently parallelized.

We �nally mention that we are able to exhibit the bias of the Jarzynski estimator in this

partiular ase (see Setion 3.3 and [36℄). We observe that the estimator ∆̂F (z(T )) is generally
greater than ∆F (z(T )). More preisely, averaging over 104 realizations, with the parameters

T = 1 and ∆t = 0.005, we obtain the following 95 % on�dene intervals for ∆̂F (z(T )), for

various values of M : ∆̂F (z(T )) = 2.0576± 0.0059 for M = 103, ∆̂F (z(T )) = 2.0095± 0.0026

for M = 104, and ∆̂F (z(T )) = 2.00075 ± 0.0010 for M = 105. As expeted, the bias goes to
zero when M → ∞.

4.2 Model system for onformational hanges in�uened by solvation

We onsider a system omposed of N partiles in a periodi box of side length l, interating
through the purely repulsive WCA pair potential [8, 28℄:

VWCA(r) =





4ǫ

[(σ
r

)12
−
(σ
r

)6]
+ ǫ if r ≤ r0,

0 if r > r0,

where r denotes the distane between two partiles, ǫ and σ are two positive parameters and

r0 = 21/6σ. Among these partiles, two (numbered 1 and 2 in the following) are designated

to form a dimer while the others are solvent partiles. Instead of the above WCA potential,

the interation potential between the two partiles of the dimer is a double-well potential

VS(r) = h

[
1− (r − r0 − w)2

w2

]2
, (38)

2

Of ourse, this threshold time depends on the system under study.
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Figure 3: Shemati views of the system, when the dimer is in the ompat state (Left), and

in the strethed state (Right). The interation of the partiles forming the dimer is desribed

by a double well potential. All the other interations are of WCA form.

where h and w are two positive parameters. The potential VS exhibits two energy minima,

one orresponding to the ompat state where the length of the dimer is r = r0, and one

orresponding to the strethed state where this length is r = r0 + 2w. The energy barrier

separating both states is h. Figure 3 presents a shemati view of the system.

The reation oordinate used is

ξ(q) =
|q1 − q2| − r0

2w
, (39)

where q1 and q2 are the positions of the partiles forming the dimer. The ompat state (resp.

the strethed state) orresponds to a value of the reation oordinate z = 0 (resp. z = 1).

The parameters used for the simulations are: β = 1, ǫ = 1, σ = 1, h = 1, w = 0.5 and N =
16. We still use a linear shedule: z(t) = t/T . The side length l of the simulation box takes

two values: l = 1.3 (high density state) and l = 3 (low density state). Figure 4 presents some

plots of the free energy di�erene pro�les omputed using nonequilibrium dynamis, as well as

thermodynami integration referene pro�les. The results show that nonequilibrium estimates

are onsistent with thermodynami integration. Our experiene on this partiular example

also shows that it is omputationally as e�ient to simulate several short nonequilibrium

trajetories (provided the swithing time is not too small, say, T ∼ 1 in the units used here,

so that the di�usion proess an take plae), or one single long trajetory where the swithing

is done slowly (as already observed in Setion 4.1).

The free energy pro�les highlight the relative stabilities of the two onformations of the

dimer: at low densities (Figure 4, Left) the strethed onformation has a lower free energy

and is thus expeted to be more stable (this an indeed be veri�ed by running long moleular

dynamis trajetories and monitoring the time spent in eah onformation). When the density

inreases, the ompat onformation beomes more and more likely. At the density onsidered

in Figure 4 (Right), the ompat state already has a free energy slightly smaller than the

strethed state. Notie also that the free energy barrier inreases as the density inreases, so

that spontaneous transitions are less and less frequent. But sine we know here a reation

oordinate, we an enfore the transition. This prevents us from running and monitoring long

trajetories to get su�ient statistis to ompare relative ourrenes of both states.
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Figure 4: Comparison of free energy di�erene pro�les using the reation oordinate (39),

at low densities (l = 3) on the left, and high densities (l = 1.3) on the right. The double

well potential VS is represented in dashed line. The referene free energy di�erene pro�le

omputed with a very preise thermodynami integration is represented in dotted line. We

used NTI = 101 thermodynami integration points (uniformly distributed over (0, 1)) and

averaged the mean fore over MTI = 107 on�gurations for eah �xed value of z. The upper

and lower bounds of the 95% on�dene interval (obtained over 50 independent realizations)

for out-of-equilibrium omputations are represented with solid lines. We used M = 1000
nonequilibrium trajetories, a swithing time T = 1, and a timestep ∆t = 0.00025 (left)

or ∆t = 0.0005 (right).
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A Appendix: The multi-dimensional ase

In this appendix, we generalize the previous results for nonequilibrium omputation of free

energy di�erenes to the ase of multi-dimensional reation oordinates.

A.1 Geometri setting and basi notation and formulae.

We onsider a d-dimensional system of smooth reation oordinates ξ = (ξ1, . . . , ξd) : R
3N →

R
d, non-singular on an open domain M ⊂ R

3N

∀q ∈ M, range(∇ξ1(q), . . . ,∇ξd(q)) = d,

and a smooth path of assoiated oordinates

z = (z1, . . . , zd) : [0, T ] → R
d.

Aordingly, we de�ne for all t ∈ [0, T ] a smooth submanifold of odimension d ontained

in M:

Σz(t) =
{
q ∈ R

3N , ξ(q) = z(t)
}
⊂ M.

In the onstraints spae R
d
, oordinates are labeled by Greek letters and we use the

summation onvention on repeated indies. In the on�guration spae R
3N

, oordinates are

labeled by Latin letters and we also use the summation onvention on repeated indies. We

denote by X · Y = XiYi the salar produt of two vetor �elds of R
3N

, by M : N = Mi,jNi,j

the ontration of two tensor �elds of R
3N

, and by (X ⊗ Y )i,j = XiYj the tensor produt of

two vetor �elds of R
3N

.

The d× d matrix

Gα,γ = ∇ξα · ∇ξγ
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is the Gram matrix of the onstraints. It is symmetri and stritly positive on M. We denote

by G−1
α,γ the (α, γ) omponent of G−1

, the inverse matrix of G. At eah point q ∈ M, we

de�ne the orthogonal projetion operator

P⊥ = G−1
α,γ∇ξα ⊗∇ξγ

onto the normal spae to Σξ(q) and the orthogonal projetion operator

P = Id− P⊥

onto the tangent spae to Σξ(q). The mean urvature vetor �eld of the submanifold is de�ned

by:

H = −∇ ·
(
(detG)1/2G−1

α,γ∇ξγ

)
(detG)−1/2∇ξα (40)

and satis�es:

Hi = Pj,k∇jPi,k.

We reall the divergene theorem on submanifolds: for any smooth funtion φ : R3N →
R
3N

with ompat support,

∫

Σz

divΣ(φ) dσΣz
= −

∫

Σz

H · φdσΣz
(41)

where divΣ(φ) = Pi,j∇iφj denotes the surfae divergene, and σΣz
is the indued Lebesgue

measure on the submanifold Σz of R
3N

.

We will also use the o-area formula: for any smooth funtion φ : R3N → R,

∫

R3N

φ(q)(detG(q))1/2dq =

∫

Rd

∫

Σz

φdσΣz
dz. (42)

These de�nitions and formulae are provided with more details in [6℄.

A.2 Free energy and onstrained di�usions for multi-dimensional reation

oordinates

As in the one-dimensional ase, the Boltzmann-Gibbs distribution restrited on the submani-

fold Σz is de�ned by:

dµΣz
= Z−1

z exp(−βV )dσΣz
,

with

Zz =

∫

Σz

exp(−βV )dσΣz
.

The assoiated free energy is:

F (z) = −β−1 ln (Zz) .

Remark A.1 (On the de�nition of the free energy: the multi-dimensional ase). As in the

one-dimensional ase (see Remark 1.1), if the partiles initially evolve in a potential V , the

lassial de�nition of the free energy is as above, but with V replaed by an e�etive potential

V + β−1 ln
(
(detG)1/2

)
. The omputation of the gradient of this potential in the dynamis

then involves seond-order derivatives of ξ, whih an be approximated in pratie by �nite

di�erenes (see [6℄).
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For any 1 ≤ α ≤ d, we now introdue the loal mean fore along ∇ξα (whih general-

izes (11)):

fα = G−1
α,γ∇ξγ ·

(
∇V + β−1H

)
. (43)

As in the one-dimensional ase (see Equation (10)), we obtain the derivative of the mean fore

by averaging the loal mean fore:

Proposition A.2. The derivative of the free energy F with respet to zα is given by:

∇αF (z) =

∫

Σz

fα dµΣz
.

Proposition A.2 is a orollary of

Lemma A.3. For any test funtion ϕ with ompat support in M, we have:

∇α

(∫

Σz

ϕ exp(−βV )dσΣz

)
=

∫

Σz

(
G−1

α,γ∇ξγ · ∇ϕ− βfαϕ
)
exp(−βV )dσΣz

.

Proof. It is enough to prove the formula in the ase V = 0, up to a modi�ation of the test

funtion ϕ. For any test funtion g : R → R with ompat support, we have (using suessively

an integration by parts on R, the o-area formula (42), an integration by parts on R
3N

, and

�nally again (42)):

∫

Rd

g(zα)∇α

(∫

Σz

ϕdσΣz

)
dz = −

∫

Rd

∫

Σz

g′(zα)ϕdσΣz
dz,

= −
∫

R3N

g′ ◦ ξα ϕ (detG)1/2 dq,

= −
∫

R3N

G−1
α,γ∇ξγ · ∇(g ◦ ξα) ϕ (detG)1/2 dq,

=

∫

R3N

g ◦ ξα∇ ·
(
G−1

α,γ ∇ξγ ϕ (detG)1/2
)
dq,

=

∫

Rd

g(zα)

∫

Σz

∇ ·
(
G−1

α,γ∇ξγ ϕ (detG)1/2
)
(detG)−1/2 dσΣz

dz,

whih gives the result using the expression (40) of the mean urvature vetor H.

We now de�ne the onstrained di�usion (whih generalizes (21)):





Q0 ∼ µΣz(0)
,

dQt = −P (Qt)∇V (Qt)dt+
√

2β−1P (Qt) ◦ dBt +∇ξα(Qt)dΛ
ext
α,t ,

dΛext
α,t = G−1

α,γ(Qt)z
′
γ(t)dt, ∀1 ≤ α ≤ d.

(44)

The stohasti proess Qt an be haraterized by the following property:

Proposition A.4. The proess Qt solution to (44) is the only It� proess satisfying for some

adapted It� proesses (Λ1,t, . . . ,Λd,t)t∈[0,T ] with values in R
d
:





Q0 ∼ µΣz(0)
,

dQt = −∇V (Qt)dt+
√

2β−1dBt +∇ξα(Qt)dΛα,t,
ξ(Qt) = z(t).
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Moreover, the proess (Λα,t)t∈[0,T ] an be deomposed as

Λα,t = Λm
α,t + Λf

α,t +Λext
α,t ,

with the martingale part

dΛm
α,t = −

√
2β−1G−1

α,γ∇ξγ(Qt) · dBt,

the loal fore part (see (43) for the de�nition of fα)

dΛf
α,t = fα(Qt)dt,

and the external foring (or swithing) term

dΛext
α,t = G−1

α,γ(Qt)z
′
γ(t)dt.

The proof onsists in omputing dξ(Qt) by It�'s alulus and identifying the bounded

variation and the martingale parts of the stohasti proesses.

A.3 The Feynman-Ka �utuation equality

Theorem 2.2 is generalized as:

Theorem A.5 (Feynman-Ka �utuation equality). Let us de�ne the nonequilibrium work

exerted on the di�usion Qt solution to (44) by:

W(t) =

∫ t

0
fα(Qs)z

′
α(s) ds =

∫ t

0
z′α(s)dΛ

f
α,s.

Then, we have the following �utuation equality: for any test funtion ϕ, and ∀t ∈ [0, T ],

Zz(t)

Zz(0)

∫

Σz(t)

ϕdµΣz(t)
= E

(
ϕ(Qt)e

−βW(t)
)
. (45)

In partiular, we have the work �utuation identity: ∀t ∈ [0, T ],

∆F (z(t)) = F (z(t)) − F (z(0)) = −β−1 ln
(
E

(
e−βW(t)

))
. (46)

Proof. For any s ∈ [0, T ] and x ∈ M, let us introdue (Qs,x
t )t∈[s,T ], the stohasti proess

satisfying the SDE (44), starting from x at time s:





Qs,x
s = x,

dQs,x
t = −P (Qs,x

t )∇V (Qs,x
t )dt+

√
2β−1P (Qs,x

t ) ◦ dBt +∇ξα(Q
s,x
t )dΛext

α,t ,

dΛext
α,t = G−1

α,γ(Q
s,x
t )z′γ(t)dt, ∀1 ≤ α ≤ d.

(47)

Notie that for any s ∈ [0, T ], there is an open neighborhood (s−, s+) × Ms of (s,Σz(s)) in
R×M suh that the di�usion (Qs,x

t )t∈[s,T ] remains in M almost surely. This holds sine this

proess satis�es dξ(Qs,x
t ) = z′(t) dt and therefore ξ(Qs,x

t ) = ξ(x) + z(t) − z(s). This gives

usual regularity assumptions su�ient to get a bakward semi-group (t being from now on

�xed in (0, T ) and s varying in [0, t]):

u(s, x) = E

(
ϕ(Qs,x

t ) exp

(
−β

∫ t

s
fα(Q

s,x
r )z′α(r) dr

))
,
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satisfying the following partial di�erential equation (PDE) on (s−, s+)×Ms:

∂su = −Ls(u(s, .)) + βz′α(s)fαu,

where Ls is the generator of the di�usion Qt solution to (44):

Ls = β−1P : ∇2 − P∇V · ∇+ β−1H · ∇+ z′γ(s)G
−1
α,γ∇ξα · ∇.

Now, using Lemma A.3, we have:

d

ds

∫

Σz(s)

u(s, .) exp(−βV )dσΣz(s)

=

∫

Σz(s)

(
−Ls(u(s, .)) + z′α(s)G

−1
α,γ∇ξγ · ∇u(s, .)

)
exp(−βV )dσΣz(s)

,

= −
∫

Σz(s)

(
β−1P : ∇2u(s, .) − P∇V · ∇u(s, .) + β−1H · ∇u(s, .)

)
exp(−βV )dσΣz(s)

,

= −β−1

∫

Σz(s)

(
divΣ (∇u(s, .) exp(−βV )) +H · ∇u(s, .) exp(−βV )

)
dσΣz(s)

,

= 0,

by the divergene theorem (41). Therefore

∫

Σz(t)

u(t, .) exp(−βV )dσΣz(t)
=

∫

Σz(0)

u(0, .) exp(−βV )dσΣz(0)
,

whih yields

∫

Σz(t)

ϕ exp(−βV )dσΣz(t)
= Zz(0)E

(
ϕ(Qt) exp

(
−β

∫ t

0
fα(Qr)z

′
α(r) dr

))
,

where Qt satis�es (44). This proves (45), and (46) is obtained by taking ϕ = 1.

A.4 The numerial sheme

The adaptation of the algorithm we propose for the one-dimensional ase to the multi-

dimensional ase is straightforward. Indeed, the generalizations of shemes (29) and (30)

to the multi-dimensional ase are, respetively:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λα,n+1∇ξα(Qn+1),

where (∆Λα,n+1)1≤α≤d is suh that ξ(Qn+1) = z(tn+1),

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λα,n+1 ∇ξα(Qn),

where (∆Λα,n+1)1≤α≤d is suh that ξ(Qn+1) = z(tn+1).

The fore part ∆Λf
α,n of ∆Λα,n is obtained by similar proedures as those desribed in Se-

tion 3.2. For example, the generalization of (31) is:

∆Λf
α,n+1 = ∆Λα,n+1 −G−1

α,γ(Qn) (zγ(tn+1)− zγ(tn)) +
√

2∆tβ−1G−1
α,γ∇ξγ(Qn) · Un.

The generalization of (32) is also straightforward.
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Now, the estimator ∆̂F (z(T )) of the free energy di�erene ∆F (z(T )) is given by (34),

with the following approximation of the work W(t):





W0 = 0,

Wn+1 = Wn +
zα(tn+1)− zα(tn)

tn+1 − tn
∆Λf

α,n+1,

whih generalizes (33). Notie that Remark 3.1 also holds for a multi-dimensional reation

oordinate.
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