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Abstra
t

The 
omputation of free energy di�eren
es through an exponential weighting of out-of-

equilibrium paths (known as the Jarzynski equality [15, 16℄) is often used for transitions

between states des
ribed by an external parameter λ in the Hamiltonian. We present

here an extension to transitions between states de�ned by di�erent values of some rea
-

tion 
oordinate, using a proje
ted Brownian dynami
s. In 
ontrast with other approa
hes

(see e.g. [22℄), we use a proje
tion rather than a 
onstraining potential to let the 
on-

straints asso
iated with the rea
tion 
oordinate evolve. We show how to use the Lagrange

multipliers asso
iated with these 
onstraints to 
ompute the work asso
iated with a given

traje
tory. Appropriate dis
retizations are proposed. Some numeri
al results demonstrate

the appli
ability of the method for the 
omputation of free energy di�eren
e pro�les.

Keywords: free energy, mean for
e, 
onstrained dynami
s, sampling te
hniques, Jarzyn-

ski equality, Feynman-Ka
 formula.

The free energy of a system is a quantity of paramount importan
e in statisti
al physi
s.

It is of the form

F = −β−1 lnZ, (1)

where β = 1/(kBT ) (T denotes the temperature and kB the Boltzmann 
onstant) and Z is

the partition fun
tion

Z =

∫

Σ
exp(−βV ) dµ (2)

of the Boltzmann (or Gibbs) measure exp(−βV )dµ. In this expression, the fun
tion V ≡ V (q)
is the potential energy of the system (denoting by q the position ve
tor) and µ is a referen
e

positive measure with support Σ. The spa
e Σ is the 
on�guration spa
e of the system. We

will 
onsider here that Σ is a submanifold of R
3N

, but all the results extend to the 
ase

when Σ is a submanifold of T
3N

(the 3N -dimensional torus, whi
h arises when using periodi


boundary 
onditions). The statisti
s of the system are 
ompletely de�ned by (V, µ).

In most 
ases, (V, µ) is labeled using a d-dimensional parameter z (with d ≪ 3N) whi
h


hara
terizes the system at some 
oarser level. The parameter z 
an be independent of the

1

http://arxiv.org/abs/cond-mat/0603426v2



urrent 
on�guration of the system. In this 
ase, only the expression of the potential V depends

on the parameter, so that the asso
iated swit
hing has sometimes been 
alled 'al
hemi
al

transition'. Some examples of su
h parameters are the intensity of an external magneti
 �eld

for a spin system, or the temperature for a simulated annealing pro
ess. However, it is often

the 
ase that the parameter z labels submanifolds of the 
on�guration spa
e, through level

sets Σz = { ξ(q) = z } of some fun
tion ξ. The fun
tion ξ is 
alled a `rea
tion 
oordinate'. In

this 
ase, µ (espe
ially the support of µ) depends on z and is de�ned using the orthogonal

proje
tion from R
3N

or T
3N

to Σz (this will be made pre
ise in Se
tion 1.1). Standard

examples of rea
tion 
oordinates are bond lengths or dihedral angles in a mole
ule.

The absolute free energy (1) 
an be 
omputed only for 
ertain systems, su
h as ideal

gases, or solids at low temperature (resorting to the phonon spe
trum) [23℄. However, in

many appli
ations, the quantity of interest is the free energy di�eren
e between an initial

and a �nal state (
hara
terized by two di�erent values of the parameter z). The free energy

di�eren
e pro�les indeed give information about the relative stabilities of several spe
ies, as

well as their transition kineti
s. The free energy di�eren
es are mu
h more amenable to


ompute than the absolute free energy. Classi
al te
hniques to this end fall within three main


lasses. The �rst one, dating ba
k to Kirkwood [17℄, is thermodynami
 integration, whi
h

mimi
s the quasi-stati
 evolution of a system as a su

ession of equilibrium samplings, whi
h

amounts to an in�nitely slow swit
hing between the initial and �nal states. The se
ond one,

the free energy perturbation method, was introdu
ed by Zwanzig [35℄. It re
asts free energy

di�eren
es as a phase-spa
e integral, so that usual sampling te
hniques 
an be employed.

Noti
e also that there exist many re�nements for those two 
lasses of te
hniques, su
h as

umbrella sampling [31℄. The last and most re
ent 
lass of methods uses dynami
s arising from

a swit
hing at a �nite rate. This 
an be done using nonequilibrium dynami
s (the so-
alled fast

growth methods) with a suitable exponential reweighting, as introdu
ed by Jarzynski in [15℄.

Noti
e that the thermodynami
 integration and free energy perturbation methods 
an be seen

respe
tively as the limits of in�nitely slow and fast swit
hing of nonequilibrium dynami
s, at

least formally. Instead of being imposed a priori, this swit
hing may also arise as the result

of an equilibrium sampling, using for example the Adaptive Biasing For
e te
hnique [7, 12℄ or

metadynami
s [14℄. In those 
ases, the system is progressively for
ed to leave regions where

the sampling of the rea
tion 
oordinate has been 
ompleted.

It is still a matter of debate whi
h method is the most e�
ient. While some results

show that fast growth methods 
an be 
ompetitive in some situations [11℄, other studies

disagree [19℄. The results of [19℄ indeed indi
ate that even with the use of e�
ient path

sampling te
hniques (see also [29, 30, 34℄), fast growth methods do not outperform 
onventional

methods su
h as umbrella sampling or thermodynami
 integration (at least in a number of

typi
al 
ases). However, general 
on
lusions about the e�
ien
y of fast growth methods are

still to be drawn, depending on the 
ases under 
onsideration. We believe that there is room for

improvements of this relatively new method (e.g. by optimizing the swit
hing s
hedule [24℄).

Let us also mention that this method is straightforward to parallelize and naturally provides

with a posteriori error bounds via the 
entral limit theorem, sin
e it involves many independent

traje
tories.

Most methods to 
ompute free energy di�eren
es are well suited to the al
hemi
al transition

setting, but do not straightforwardly extend to the rea
tion 
oordinate setting. This latter


ase is the fo
us throughout this arti
le. In this 
ase, the methods des
ribed above require

to 
onsider dynami
s restri
ted to the submanifold Σz. For 
omputations using Hamiltonian

dynami
s, we refer for example to [4, 24℄. In the sto
hasti
 
ase, thermodynami
 integration
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in the rea
tion 
oordinate 
ase using proje
ted sto
hasti
 dynami
s has re
ently been put on

a �rm grounding [6, 9℄. On the other hand, sto
hasti
 nonequilibrium dynami
s à la Jarzynski

in the rea
tion 
oordinate 
ase was, to our knowledge, not studied mathemati
ally. It is the

aim of this paper to perform su
h a study and to present a methodology to 
ompute free

energy di�eren
es in this framework.

Nonequilibrium 
omputations of free energy di�eren
es in the rea
tion 
oordinate setting

using sto
hasti
 dynami
s have until now used soft 
onstraints to swit
h between the initial

state 
entered on the submanifold {ξ(q) = z0} and the �nal state 
entered on {ξ(q) = z1}.
Steered mole
ular dynami
s te
hniques use for example a penalty term K(ξ(q) − z)2 in the

energy of the system [22℄ (with K large) to 'softly' 
onstraint the system to remain 
lose to the

submanifold {ξ(q)−z = 0}, and varying the value z from 0 to 1 in a �nite time T . It is shown
in [13℄ how to use su
h a biasing potential to exa
tly 
ompute free energy di�eren
es (even

for a �nite K), whi
h is of parti
ular interest for experimental studies. From a 
omputational

viewpoint however, it is expe
ted that large values of K require small integration time steps.

Moreover, it is observed in pra
ti
e that the statisti
al �u
tuations in
rease with larger K
(see [22℄). Instead, we propose to repla
e the sti� 
onstraining potential K(ξ(q) − z)2 by a

proje
tion onto the submanifold {ξ(q) − z = 0}. This situation is reminis
ent of the 
ase of

mole
ular 
onstraints, that 
an be enfor
ed using a sti� penalty term, or more elegantly and

often more e�
iently, using some proje
tion of the dynami
s involving Lagrange multipliers.

This is the spirit of the well known SHAKE algorithm [26℄.

We propose a nonequilibrium sto
hasti
 dynami
s and an equality that allow to 
ompute

free energy di�eren
es between states de�ned by di�erent values of a rea
tion 
oordinate. The

dynami
s relies on a proje
tion onto the 
urrent submanifold at ea
h time step, and we use

the Lagrange multipliers asso
iated with this proje
tion to estimate the free energy di�eren
e.

More pre
isely, we use the di�eren
e between these Lagrange multipliers and the external

for
ing term required for the �nite time swit
hing (see for example the dis
retization (31)).

The main results of the paper are the Feynman-Ka
 equality of Theorem 2.2 (whi
h extends

the proof of [13℄ to hard 
onstraints), as well as the asso
iated dis
retizations (33) and (34).

The method we propose for
es the system to pass free energy barriers, and thus enables

free energy di�eren
e 
omputations for metastable systems. Of 
ourse the reliability of the

algorithm 
ru
ially depends on the 
hoi
e of the rea
tion 
oordinate, whi
h represents the

essential degrees of freedom. The rea
tion 
oordinate should be ri
h enough in order to

adequately des
ribe the 
on�guration paths of the system from the initial state to the �nal

state. The determination of the essential degrees of freedom of a system is a very important

problem, whi
h is not the fo
us of this work. Thus, in the following, we suppose that a �good�

rea
tion 
oordinate is given, and we are interested in the 
omputation of free energy di�eren
es

asso
iated with this rea
tion 
oordinate.

Let us also noti
e that some re
ent re�nements of nonequilibrium dynami
s to 
ompute free

energy di�eren
es, espe
ially path sampling te
hniques [34℄ and Intera
ting Parti
le Systems

approa
hes [25℄ (whi
h equilibrate the nonequilibrium dynami
s through some birth/death

pro
ess based on the 
urrent work), 
an be extended to the rea
tion 
oordinate setting using

the te
hniques we present here. Moreover, we restri
t ourselves to the so-
alled overdamped

Langevin dynami
s, but it is possible to extend these results to the usual Langevin dynami
s

(this is a work in progress).

The paper is organized as follows. In Se
tion 1, the thermodynami
 integration setting is

outlined in the rea
tion 
oordinate 
ase. Se
tion 2 then extends the method to nonequilibrium

dynami
s. Adapted numeri
al s
hemes are proposed in Se
tion 3, and some numeri
al results
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assessing the 
orre
tness of the method are presented in Se
tion 4. For 
larity, we present the

method in the 
ase of a one-dimensional rea
tion 
oordinate and postpone until Appendix A

the proofs and the expressions for the multi-dimensional 
ase.

1 Equilibrium 
omputation of free energy di�eren
es

The aim of this se
tion is to introdu
e the de�nitions of the free energy and the mean for
e,

and to re
all how thermodynami
 integration is used to 
ompute free energy di�eren
es. The


omputation of the mean for
e is based on proje
ted sto
hasti
 di�erential equations (SDE).

These SDEs will also be used for the dis
retization of Jarzynski equality in Se
tion 2. This

se
tion mainly reviews results of [6℄.

1.1 Free energy and mean for
e

In the following, we denote by M ⊂ R
3N

the 
on�guration spa
e of the system when no

parameter z is involved. The state of the system is 
hara
terized by the value of a rea
tion


oordinate ξ : M → [0, 1]. The fun
tion ξ is supposed to be smooth and su
h that ∇ξ(q) 6= 0
for all q ∈ M. For a given value z ∈ [0, 1], we denote by Σz the submanifold

Σz = { q ∈ M, ξ(q) = z } (3)

and we assume that

⋃
z∈[0,1]Σz ⊂ M. For ea
h point q ∈ Σz, we also introdu
e the orthogonal

proje
tion operator P (q) onto the tangent spa
e to Σz at point q de�ned by:

P (q) = Id− ∇ξ ⊗∇ξ

|∇ξ|2 (q), (4)

where ⊗ denotes the tensor produ
t. The orthogonal proje
tion operator on the normal spa
e

to Σz at point q is de�ned by P⊥(q) = Id− P (q).
The free energy is then de�ned as

F (z) = −β−1 ln (Zz) , (5)

with

Zz =

∫

Σz

exp(−βV ) dσΣz
, (6)

where for any submanifold Σ of R
3N

, σΣ denotes the Lebesgue measure indu
ed on Σ as a

submanifold of R
3N

. The asso
iated Boltzmann probability measure is

dµΣz
= Z−1

z exp(−βV ) dσΣz
. (7)

Remark 1.1 (On the de�nition of the free energy). Two 
omments are in order about for-

mula (5). First, this formula is valid up to an additive 
onstant, whi
h is not important when


onsidering free energy di�eren
es. Se
ond, the potential V in (6) may be a potential di�erent

from the a
tual potential seen by the parti
les. More pre
isely, if the parti
les evolve in a

potential V , the standard de�nition of the free energy in the physi
s and 
hemistry literature

is (5) with

Zz =

∫
exp(−βV ) δξ(q)−z ,
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where δξ(q)−z is a measure supported by Σz and de�ned by: for all test fun
tions φ,
∫

φ(q)δξ(q)−z =

∫

Σz

φ|∇ξ|−1 dσΣz
.

This amounts to 
onsidering (5)�(6) with V repla
ed by an e�e
tive potential V + β−1 ln |∇ξ|
(see Remark A.1 for the 
ase of a multi-dimensional 
onstraint). Sin
e the results we present

in this paper hold irrespe
tive of the physi
al signi�
ation of the potential V , we may assume

without loss of mathemati
al generality that the free energy is indeed given by (5)�(6). Let

us emphasize that, in pra
ti
e, the 
umbersome 
omputation of the gradient of the additional

term β−1 ln |∇ξ| in the modi�ed potential (whi
h intervenes in the proje
ted SDEs we use,

see (27)�(28) or (29)�(30)) 
an be avoided resorting to some �nite di�eren
es, as explained

in [6℄.

Using the 
o-area formula (see (42) and Proposition A.2 for a proof in the multi-dimensional


ase), it is possible to derive the following expression of the derivative of the free energy F
with respe
t to z (the so-
alled mean for
e) (see [21, 27℄):

F ′(z) = Z−1
z

∫

Σz

∇ξ

|∇ξ|2 · (∇V + β−1H) exp(−βV )dσΣz
, (8)

where

H = −∇ ·
( ∇ξ

|∇ξ|

) ∇ξ

|∇ξ| (9)

is the mean 
urvature ve
tor �eld of the surfa
e Σz. The free energy 
an thus be expressed as

an average with respe
t to µΣz
:

F ′(z) =

∫

Σz

f(q)dµΣz
(q), (10)

where f is the lo
al mean for
e de�ned by:

f =
∇ξ

|∇ξ|2 · (∇V + β−1H). (11)

In next se
tion, we will explain how it is possible to 
ompute this average with respe
t to µΣz
,

without expli
itly 
omputing f , by using proje
ted SDEs. This avoids in parti
ular the 
om-

putation of the mean 
urvature ve
tor H whi
h involves se
ond-order derivatives of ξ.
The prin
iple of thermodynami
 integration is to re
ast the free energy di�eren
e

∆F (z) = F (z)− F (0) (12)

between two rea
tion 
oordinates 0 and z as an integral over the mean for
e:

∆F (z) =

∫ z

0
F ′(y) dy. (13)

Therefore, in pra
ti
e, thermodynami
 integration 
omputation of free-energy is as follows.

First, the free energy di�eren
e ∆F (z) is estimated using quadrature formulae for the integral

in (13), su
h as for example a Gauss-Lobatto s
heme:

∆F (z) ≃
K∑

i=0

ωiF
′(yi)

5



where the points {y0, y1, . . . , yK} are in [0, z] and {ω0, ω1, . . . , ωK} are their asso
iated weights.
Se
ond, the derivatives F ′(yi) are 
omputed as 
anoni
al averages over the submanifolds Σyi ,

using proje
ted SDEs (see next se
tion).

To obtain a free-energy pro�le (and not only a free-energy di�eren
e for a �xed �nal state),

it is possible to approximate the fun
tion ∆F (z) on the interval [0, 1] by a polynomial. This


an be done for example by interpolating the derivative F ′
by splines, and integrating the

resulting fun
tion (
onsistently with the normalization ∆F (0) = 0).

1.2 Proje
ted sto
hasti
 di�erential equations

In this se
tion, we explain how to 
ompute the mean for
e F ′(z) de�ned by (8) using proje
ted

SDEs, for a �xed parameter z. We 
onsider the solution Qt to the following SDE:

{
Q0 ∈ Σz,

dQt = −P (Qt)∇V (Qt) dt+
√

2β−1P (Qt) ◦ dBt,
(14)

where Bt is the standard 3N -dimensional Brownian motion and ◦ denotes the Stratonovi
h

produ
t. It is possible (see [6℄) to 
he
k that µΣz
is an invariant probability measure asso
iated

with the SDE (14). Under suitable assumptions, whi
h we assume in the rest of the se
tion, on

the potential V and the surfa
e Σz, the pro
ess Qt is ergodi
 with respe
t to µΣz
. Moreover,

the SDE (14) 
an be rewritten in the following way:

dQt = −∇V (Qt) dt+
√

2β−1dBt +∇ξ(Qt)dΛt, (15)

where Λt is a real valued pro
ess, whi
h 
an be interpreted as the Lagrange multiplier asso-


iated with the 
onstraint ξ(Qt) = z (see the dis
retization in Se
tion 3.1). This pro
ess 
an

be de
omposed into two parts:

dΛt = dΛm
t + dΛf

t. (16)

The so-
alled martingale

1

part Λm
t (whose �u
tuation is of order

√
∆t over a timestep ∆t) is

dΛm
t = −

√
2β−1

∇ξ

|∇ξ|2 (Qt) · dBt, (17)

where · impli
itly denotes the It� produ
t. The so-
alled bounded variation part Λf
t (whose

�u
tuation is of order ∆t over a timestep ∆t) is

dΛf
t =

∇ξ

|∇ξ|2 (Qt) · ∇V (Qt) dt+ β−1 ∇ξ

|∇ξ|2 (Qt) ·H(Qt) dt = f(Qt) dt, (18)

f being the lo
al mean for
e de�ned above by (11). Thus, sin
e Qt is ergodi
 with respe
t to

µΣz
the mean for
e 
an be obtained as a mean over the Lagrange multiplier Λt:

Proposition 1.2. The mean for
e is given by:

F ′(z) = lim
T→∞

1

T

∫ T

0
dΛt = lim

T→∞

1

T

∫ T

0
dΛf

t. (19)

1

For our purposes, it is enough to think of a martingale as an It� integral with respe
t to the Brownian

motion (Bt)t≥0.

6



Noti
e that the martingale part dΛm
t , whi
h has the largest �u
tuations, has zero mean.

In order to redu
e the varian
e, it is thus numeri
ally 
onvenient to perform the mean over the

bounded variation part dΛf
t rather than over the whole Lagrange multiplier dΛt (see Se
tion 3).

We refer to [6℄ for a proof of Proposition 1.2, as well as for formulae involving higher

dimensional rea
tion 
oordinates. Su
h ideas have been used for a long time in the framework

of Hamiltonian dynami
s (see [21, 27℄).

The interest of Equation (19) is that the SDE (15) 
an be very naturally dis
retized

as explained in Se
tion 3.1 below. Then, the average over a dis
retized traje
tory of the

pro
ess Λt 
onverges to F ′(z). This is parti
ularly 
onvenient for numeri
al purposes sin
e

it does not ask for expli
itly 
omputing the lo
al for
e f . For further details, we refer to [6℄

and to Se
tion 3.1. In next se
tion, we use these ideas for the 
omputation of the free energy

di�eren
e given through the Jarzynski equality.

2 Nonequilibrium sto
hasti
 methods in the rea
tion 
oordi-

nate 
ase

As opposed to quasistati
 methods where the free energy di�eren
e between an initial state

and a �nal state is expressed by (13), in nonequilibrium methods, the free energy di�eren
e

is expressed using a Feynman-Ka
 average over nonequilibrium paths [15, 13, 25℄

∆F (1) = F (1) − F (0) = −β−1 lnE
(
e−βW(T )

)
, (20)

where W(T ) denotes the total work exerted along a nonequilibrium path (Qt, z(t))t∈[0,T ], with

z(0) = 0 and z(T ) = 1.
We wish here to extend the Feynman-Ka
 formula derived in [13℄ for a parameter z whi
h

appears only in the potential V , to the rea
tion 
oordinate 
ase, where z labels submanifolds Σz

(de�ned by Equation (3)) of the state spa
e. To this end, we need to make pre
ise the evolution

of the 
onstraints.

We 
onsider a C1
path z : [0, T ] → [0, 1] of values of the rea
tion 
oordinate ξ, with

z(0) = 0, and z(T ) = 1. Re
all that the asso
iated family of submanifolds of admissible


on�gurations is denoted by

Σz(t) = {q ∈ M, ξ(q) = z(t)} ,

and that the asso
iated Boltzmann probability measures are

dµΣz(t)
= Z−1

z(t) exp(−βV )dσΣz(t)
.

We 
onstru
t a di�usion (Qt)t∈[0,T ] so that Qt ∈ Σz(t) for all t ∈ [0, T ] and (Qt)t∈[0,T ] satis�es

the following properties (see Se
tion 2.1 for a more rigorous formulation):

• Q0 ∼ µΣz(0)
,

• For all t ∈ [0, T ], Qt+dt is the orthogonal proje
tion on Σz(t+dt) of the position obtained

by the un
onstrained displa
ement: Qt −∇V (Qt)dt+
√

2β−1dBt.

To ea
h realization of this pro
ess, a work W(t) 
an be asso
iated as

W(t) =

∫ t

0
f(Qs)z

′(s)ds,

7



where f is the lo
al mean for
e de�ned above by (11). Then, we prove that the Feynman-

Ka
 formula (20) holds for the free energy F asso
iated with the rea
tion 
oordinate and

de�ned by (5). Noti
e that, at least formally, in the limit of an in�nitely slow swit
hing

from z(0) = 0 to z(T ) = 1, Formula (20) 
orresponds to the thermodynami
 integration

formula (13). Formula (20) enables the 
omputation of free energy di�eren
e at arbitrary

rates, through a 
orre
tion 
onsisting in a reweighting of the nonequilibrium paths.

The rest of this se
tion is organized as follows. In Se
tion 2.1, we make pre
ise the pro-


ess Qt we 
onsider. Then, in Se
tion 2.2, we state the Feynman-Ka
 formula (20) for a

one-dimensional rea
tion 
oordinate. We re
all that the formulae for the general 
ase in-

volving higher dimensional rea
tion 
oordinates, as well as the main proofs, are presented in

Appendix A.

2.1 The nonequilibrium proje
ted sto
hasti
 dynami
s

The 
onsidered di�usion reads, in the Stratonovi
h setting:





Q0 ∼ µΣz(0)
,

dQt = −P (Qt)∇V (Qt)dt+
√

2β−1P (Qt) ◦ dBt +∇ξ(Qt) dΛ
ext
t ,

dΛext
t =

z′(t)

|∇ξ(Qt)|2
dt.

(21)

With a view to the dis
retization of Qt, let us noti
e that Qt 
an be 
hara
terized by the

following property:

Proposition 2.1. The pro
ess Qt solution to (21) is the only It� pro
ess satisfying for some

real-valued adapted It� pro
ess (Λt)t∈[0,T ]:





Q0 ∼ µΣz(0)
,

dQt = −∇V (Qt)dt+
√

2β−1dBt +∇ξ(Qt) dΛt,
ξ(Qt) = z(t).

Moreover, the pro
ess (Λt)t∈[0,T ] 
an be de
omposed as

Λt = Λm
t + Λf

t + Λext
t , (22)

with the martingale part

dΛm
t = −

√
2β−1

∇ξ

|∇ξ|2 (Qt) · dBt,

the lo
al for
e part (see (11) for the de�nition of f)

dΛf
t =

∇ξ

|∇ξ|2 (Qt) ·
(
∇V (Qt) dt+ β−1H(Qt)

)
dt = f(Qt) dt, (23)

and the external for
ing (or swit
hing) term

dΛext
t =

z′(t)

|∇ξ(Qt)|2
dt.

8



The proof of Proposition 2.1 is easy and 
onsists in 
omputing dξ(Qt) by It�'s 
al
ulus

and identifying the bounded variation and the martingale parts of the sto
hasti
 pro
esses.

The di�eren
e with the proje
ted sto
hasti
 di�erential equation (14) 
onsidered in the

thermodynami
 integration setting is that the out-of-equilibrium evolution of the 
onstraints z(t)

reates a drift ∇ξ(Qt) dΛ

ext
t along the rea
tion 
oordinate. This drift 
an be interpreted as

an external for
ing required for the swit
hing to take pla
e at a �nite rate, and must be sub-

tra
ted from the Lagrange multiplier Λt in order to obtain a 
orre
t expression for the work

W(t) involved in the Feynman-Ka
 �u
tuation equality (see Equations (31) and (33) below).

This 
orre
tion is quantitatively important when the swit
hing is not slow.

2.2 The Feynman-Ka
 �u
tuation equality

Let us de�ne the nonequilibrium work exerted on the di�usion (21) by:

W(t) =

∫ t

0
f(Qs) z

′(s) ds, (24)

where f is the lo
al mean for
e de�ned above by (11). In pra
ti
e, the nonequilibrium

work W(t) 
an be 
omputed by using the lo
al for
e part dΛf
t (see (23)), as in the ther-

modynami
 integration method (see (19)). Thus, the formula we use to 
ompute W(t) is

rather:

W(t) =

∫ t

0
z′(s) dΛf

s, (25)

sin
e Λf
t 
an be obtained by a natural numeri
al s
heme (see Se
tion 3), avoiding the 
um-

bersome 
omputations of the mean 
urvature ve
tor H in the expression of f (as already

explained in Se
tion 1.1).

We 
an now state the generalization of the Jarzynski nonequilibrium equality to the 
ase

when the swit
hing is parameterized by a rea
tion 
oordinate.

Theorem 2.2 (Feynman-Ka
 �u
tuation equality). For any test fun
tion ϕ and ∀t ∈ [0, T ],
it holds

Zz(t)

Zz(0)

∫

Σz(t)

ϕdµΣz(t)
= E

(
ϕ(Qt)e

−βW(t)
)
.

In parti
ular, we have the work �u
tuation identity: ∀t ∈ [0, T ],

∆F (z(t)) = F (z(t)) − F (z(0)) = −β−1 ln
(
E

(
e−βW(t)

))
. (26)

As in the al
hemi
al 
ase [13℄, the proof follows from a Feynman-Ka
 formula. The proof

of this theorem is presented in the general multi-dimensional 
ase in Appendix A (see Theo-

rem A.5).

3 Dis
retization of the dynami
s

The main interest of the above formulae (13)�(19) and (25)�(26) is that they admit natural

time dis
retizations. The prin
iple is to use a predi
tor-
orre
tor s
heme for the asso
iated

dynami
s (14) and (21), and to use the Lagrange multiplier Λt to 
ompute the lo
al mean

for
e f .

9



Se
tion 3.1 is mainly a review of the results of [6℄ and presents this idea in the 
ontext of

thermodynami
 integration. Then, we extend the method to the 
ase of evolving 
onstraints

in Se
tion 3.2.

3.1 Dis
retization of the proje
ted di�usion

For the proje
ted SDE (15) onto a submanifold Σz = {ξ(q)−z = 0}, two dis
retizations of the
dynami
s, extending the usual Euler-Maruyama s
heme, are proposed in [6℄. These numeri
al

s
hemes for 
onstrained Brownian dynami
s are in the spirit of the so-
alled RATTLE [2℄ and

SHAKE [26℄ algorithms 
lassi
al used for 
onstrained Hamiltonian dynami
s, and also related

with the algorithms proposed in [32, 1, 20℄.

The �rst one is:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λn+1∇ξ(Qn+1),

where ∆Λn+1 is su
h that ξ(Qn+1) = z,
(27)

where ∆t is the time step and Un
is a 3N -dimensional standard Gaussian random ve
tor.

Noti
e that (27) admits a natural variational interpretation, sin
e Qn+1 
an be seen as the


losest point on the submanifold Σz to the predi
ted position Qn−∇V (Qn)∆t+
√
2∆tβ−1 Un.

The real ∆Λn+1 is then the Lagrange multiplier asso
iated with the 
onstraint ξ(Qn+1) = z.

Another possible dis
retization of (15) is

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λn+1∇ξ(Qn),

where ∆Λn+1 is su
h that ξ(Qn+1) = z.
(28)

Although this s
heme is not naturally asso
iated with a variational prin
iple, it may be more

pra
ti
al sin
e its formulation is more expli
it. Noti
e also that we use the same notation ∆Λn

for the Lagrange multipliers for both (27) and (28) (and later for (29) and (30)), sin
e all the

formulas we state in terms of ∆Λn are veri�ed whatever the 
onstrained dynami
s.

To solve Equation (27), 
lassi
al methods for optimization problems with 
onstraints 
an

be used. We refer to [10℄ for a presentation of the 
lassi
al Uzawa algorithm, and to [3℄ for

more advan
ed methods. Problem (28) 
an be solved using 
lassi
al methods for nonlinear

problems, su
h as the Newton method (see [3℄). We also refer to Chapter 7 of [18℄ where similar

problems are dis
ussed, for the 
lassi
al RATTLE and SHAKE s
hemes used for Hamiltonian

dynami
s with 
onstraints.

Both s
hemes are 
onsistent (the dis
retization error goes to 0 when the time step ∆t
goes to 0) with the proje
ted di�usion (15) (see [6℄). A

ordingly, ∆Λn+1 is a 
onsistent

dis
retization of

∫ tn+1

tn
dΛt and therefore, it 
an be proven [6℄:

lim
T→∞

lim
∆t→0

1

T

T/∆t∑

n=1

∆Λn = F ′(z)

whi
h is the dis
rete 
ounterpart of the traje
tory average (19). In [6℄, a varian
e redu
tion

te
hnique is proposed, whi
h 
onsists in extra
ting the bounded variation part ∆Λf
n of ∆Λn

(resorting lo
ally to reversed Brownian in
rements). We give some details of an adaptation of

this method for evolving 
onstraints in next se
tion.
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3.2 Dis
retization with evolving 
onstraints

When nonequilibrium dynami
s are 
onsidered, the 
onstraint is stated as ξ(Qt) = z(t). The
rea
tion 
oordinate path is �rst dis
retized as {z(0), . . . , z(tNT

)} where NT is the number of

timesteps. For example, equal time in
rements 
an be used, in whi
h 
ase ∆t = T
NT

and

tn = n∆t (we refer to Remark 3.1 below for some re�nements). The initial 
onditions Q0 are

sampled a

ording to µΣ0 . A way to do that is to subsample a long traje
tory of the proje
ted

SDE on Σ0 (using the s
hemes (27) or (28)).

The proje
ted SDE on evolving 
onstraints (21) is then dis
retized with the s
heme (27)

or (28), taking into a

ount the evolution of the 
onstraint:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λn+1∇ξ(Qn+1),

where ∆Λn+1 is su
h that ξ(Qn+1) = z(tn+1),
(29)

or {
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λn+1∇ξ(Qn),

where ∆Λn+1 is su
h that ξ(Qn+1) = z(tn+1).
(30)

It remains to extra
t the for
e part ∆Λf
n+1 from the dis
retized Lagrange multiplier ∆Λn+1

(
onsistently with (22)). We propose two methods. First, this 
an be done by simply sub-

tra
ting the drift and the martingale part

∆Λf
n+1 = ∆Λn+1 −

z(tn+1)− z(tn)

|∇ξ(Qn)|2
+
√

2∆tβ−1
∇ξ(Qn)

|∇ξ(Qn)|2
· Un. (31)

Another possibility in the spirit of the varian
e redu
tion te
hniques used in [6℄ 
an also be

used. Consider the following 
oupled dynami
 with lo
ally time-reversed 
onstraint evolution

(written here for the s
heme (29)):

QR
n+1 = Qn −∇V (Qn)∆t−

√
2∆t β−1 Un +∆ΛR

n+1∇ξ(QR
n+1),

with ∆ΛR
n+1 su
h that:

1

2
(ξ(QR

n+1) + ξ(Qn+1)) = ξ(Qn).

The position QR
n+1 is 
omputed as Qn+1 in (29), but with a proje
tion on Σ2ξ(Qn)−ξ(Qn+1)

instead of Σz(tn+1), and using the Brownian in
rement −
√
∆tUn instead of

√
∆t Un. Noti
e

that in 
ase of a 
onstant in
rement for the 
onstraints, we have ξ(QR
n+1) = 2ξ(Qn)−ξ(Qn+1) =

z(tn−1). The for
e part ∆Λf
n+1 is then obtained through

∆Λf
n+1 =

1

2
(∆Λn+1 +∆ΛR

n+1) (32)

whi
h 
an be shown to be a 
onsistent time dis
retization of

∫ tn+1

tn
dΛf

t.

3.3 Computation of free energy using a Feynman-Ka
 equality

The 
onsistent dis
retization of Qt, and more pre
isely of

∫ tn+1

tn
dΛf

t, we have obtained in the

previous se
tion 
an now be used to approximate the work W(t) de�ned by (25) by





W0 = 0,

Wn+1 = Wn +
z(tn+1)− z(tn)

tn+1 − tn
∆Λf

n+1,
(33)
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using either the dynami
s (29) or (30), and the lo
al for
e part of the Lagrange multiplier


omputed by (31) or (32). Averaging over M independent realizations (the 
orresponding

works being labeled by an upper index 1 ≤ m ≤ M), an estimator of the free energy di�eren
e

∆F (z(T )) is, using Theorem 2.2,

∆̂F (z(T )) = −β−1 ln

(
1

M

M∑

m=1

e
−βWm

NT

)
. (34)

The estimator ∆̂F (z(T )) 
onverges to ∆F (z(T )) as ∆t → 0 and M → +∞. It is 
lear that

the estimation of ∆F (z(T )) by (34) is straightforward to parallelize sin
e the (Wm
NT

)1≤m≤M

are independent.

Noti
e that, even in the limit ∆t → 0, ∆̂F (z(T )) is a biased estimator. Indeed,

exp(−β∆̂F (z(T ))) is an unbiased estimator of exp(−β∆F (z(T ))), and therefore, using the


on
avity of ln, E(∆̂F (z(T ))) ≥ ∆F (z(T )). Re
ent works propose 
orre
tions to this system-

ati
 bias using asymptoti
 expansions in the limit M → +∞ (see for instan
e [24, 36℄).

Remark 3.1 (On pra
ti
al implementation). Noti
e that it may be useful to adaptively re�ne

the time step over ea
h sto
hasti
 traje
tories, using for example the work evolution rate (Wn−
Wn−1)n≥1 as a re�nement 
riterion.

As noti
ed in [24℄, it is also possible to optimize the evolution of the 
onstraint z(t), for ex-
ample by minimizing the varian
e of the results obtained for a priori s
hedules for the evolving


onstraint on a small set of preliminary runs.

4 Numeri
al results

We present in this se
tion some illustrations of the algorithm we have des
ribed above to 
om-

pute free energy di�eren
es through nonequilibrium paths. In Se
tion 4.1, a two-dimensional

toy potential V is used, for whi
h we 
an 
ompare the results with analyti
al pro�les. A more

realisti
 test 
ase in Se
tion 4.2 demonstrates the ability of the method to 
ompute free energy

pro�les in presen
e of a free energy barrier.

Our aim in this se
tion is not to 
ompare the numeri
al e�
ien
y of the thermodynami


integration method presented in Se
tion 1 (or any other method) with nonequilibrium 
om-

putations, sin
e it is di�
ult to draw general 
on
lusions about su
h 
omparisons. However,

we 
ompare on a simple example in Se
tion 4.1, the numeri
al e�
ien
y of out-of-equilibrium


omputations using a few long traje
tories or many short traje
tories, at a �xed 
omputational


ost.

4.1 A two-dimensional toy problem

We 
onsider the two-dimensional potential introdu
ed in [33℄

V (x, y) = cos(2πx)(1 + d1y) + d2y
2, (35)

where d1 and d2 are two positive 
onstants. Some 
orresponding Boltzmann-Gibbs probability

densities are depi
ted in Figure 1.

We want to 
ompute the free energy di�eren
e pro�le between the initial state x = x0 =
−0.5 and the transition state x = x1 = 0. Noti
e that the saddle point is (x1, y1) = (0, 0) for

12
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Figure 1: Plot of some probability densities 
orresponding to the potential (35) for β = 1,
d2 = 2π2

, and d1 = 0 on the left or d1 = 10 on the right.

d1 = 0, but is in
reasingly shifted toward lower values of y1 as d1 in
reases. We parameterize

the transition along the x-axis, either with the rea
tion 
oordinate

ξ(x, y) =
x− x0
x1 − x0

, (36)

or with the rea
tion 
oordinate (n ≥ 2)

ηn(x, y) =
1

2n − 1

[(
1 +

x− x0
x1 − x0

)n

− 1

]
. (37)

For these rea
tion 
oordinates, the initial state (resp. the transition state) 
orresponds to a

value of the rea
tion 
oordinate z = 0 (resp. z = 1). The analyti
al expression of the free

energy di�eren
e that we 
onsider here is, for a rea
tion 
oordinate ν(x, y) (su
h as ξ or ηn
de�ned above)

∆Fν(z) = −β−1 ln

(∫
e−βV (x,y)δν(x,y)−z∫
e−βV (x,y)δν(x,y)

)
,

where the distribution δν(x,y)−z is de�ned in Remark 1.1 above. Noti
e that even though the

initial state Σ0 = {x = −0.5} and the �nal state Σ1 = {x = 0} are the same for the rea
tion


oordinates ξ and ηn, the asso
iated free energy di�eren
es di�er. This is due to the fa
t that

∇ξ 6= ∇ηn, and therefore δξ(x,y)−z 6= δηn(x,y)−z. More pre
isely,

∆Fξ(z) = − cos(2πx0) + cos(2πxξ(z)) +
(d1)

2

4d2
(cos2(2πx0)− cos2(2πxξ(z))),

with

xξ(z) = x0 + z(x1 − x0),

13
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Figure 2: Free energy pro�les using the potential (35) with β = 1, d1 = 30 and d2 = 2π2
,

and the rea
tion 
oordinate (36) on the left, or the rea
tion 
oordinate (37) with n = 5 on

the right. Analyti
al referen
e pro�les are in dotted lines. The dashed lines (resp. the solid

lines) represent the upper and lower bound of the 95% 
on�den
e interval (obtained over 100

independent realizations) for nonequilibrium 
omputations with M = 103 repli
as (resp. with
M = 104 repli
as). The swit
hing time is T = 1 and the time step is ∆t = 0.005 on the left

and ∆t = 0.0025 on the right.

and

∆Fηn(z) = − cos(2πx0) + cos(2πxηn(z)) +
(d1)

2

4d2
(cos2(2πx0)− cos2(2πxηn(z)))

+
n− 1

β
ln

(
1 +

xηn(z) − x0
x1 − x0

)
,

with

xηn(z) = x0 + ((2n − 1)z + 1)1/n − 1)(x1 − x0).

Free energy pro�les for the two rea
tion 
oordinates 
onsidered here 
an then be 
omputed

using the dis
retization proposed in Se
tion 3.3. Averaging over several realizations, error

estimates 
an be proposed: in parti
ular, the standard deviation 
an be 
omputed for all

intermediate points z ∈ [0, 1], so that, for all values z, a 
on�den
e interval around the

empiri
al mean 
an be proposed. We represent on Figure 2 the analyti
al pro�les, and the

lower and upper bounds of the 95% 
on�den
e interval for M = 103 and M = 104, using here
and hen
eforth a linear s
hedule: z(t) = t/T . The initial 
onditions are 
reated by subsampling

every 100 timesteps a traje
tory 
onstrained to remain on the initial submanifold Σ0. As

announ
ed above, the pro�les obtained with ηn and ξ are not exa
tly the same, though

the general shape is preserved. These �gures also show that the varian
e in
reases with z.
Therefore, to further test the 
onvergen
e of the method, it is enough here to 
hara
terize the


onvergen
e of the value for the end point at z = 1.

We study the 
onvergen
e of the end value ∆F (1) 
omputed with the out-of-equilibrium

dynami
s with respe
t to the number of repli
as M and the time step ∆t, using the rea
tion


oordinate (36) as an example. The results are presented in Table 1. The time step ∆t

14



∆t T M ∆̂F (z(T ))

0.001 1 103 2.056 (0.274)

0.0025 1 103 2.033 (0.259)

0.005 1 103 2.076 (0.286)

0.01 1 103 2.073 (0.278)

0.005 1 103 2.076 (0.286)

0.005 1 104 2.014 (0.116)

0.005 1 105 2.001 (0.045)

∆t T M ∆̂F (z(T ))

0.005 1 104 2.014 (0.116)

0.005 10 103 1.999 (0.029)

0.005 100 102 2.001 (0.025)

0.005 1000 101 1.997 (0.022)

Table 1: Free energy di�eren
es ∆F (1) obtained by nonequilibrium 
omputations for the

rea
tion 
oordinate (36) with β = 1, d1 = 1 and d2 = 30. The results are presented as follows:

E

(
∆̂F (z(T ))

) (√
Var

(
∆̂F (z(T ))

))
(the estimates of these quantities are obtained by

averages over 100 independent runs). The exa
t value is ∆F (1) = 2.

does not seem to have any noti
eable in�uen
e on the �nal result, as long as it remains in a

reasonable range. As expe
ted, the error gets smaller as M in
reases.

In Table 1, we also show that, in this parti
ular 
ase, for a �xed 
omputational 
ost and

provided that the swit
hing time is large enough

2

, 
omputing many short traje
tories is as

e�
ient as 
omputing a few longer ones (the mean and the varian
e are essentially un
hanged).

This 
on
lusion also holds for the more realisti
 test 
ase presented in next se
tion. The


omputation of many traje
tories 
an be straightforwardly and very e�
iently parallelized.

We �nally mention that we are able to exhibit the bias of the Jarzynski estimator in this

parti
ular 
ase (see Se
tion 3.3 and [36℄). We observe that the estimator ∆̂F (z(T )) is generally
greater than ∆F (z(T )). More pre
isely, averaging over 104 realizations, with the parameters

T = 1 and ∆t = 0.005, we obtain the following 95 % 
on�den
e intervals for ∆̂F (z(T )), for

various values of M : ∆̂F (z(T )) = 2.0576± 0.0059 for M = 103, ∆̂F (z(T )) = 2.0095± 0.0026

for M = 104, and ∆̂F (z(T )) = 2.00075 ± 0.0010 for M = 105. As expe
ted, the bias goes to
zero when M → ∞.

4.2 Model system for 
onformational 
hanges in�uen
ed by solvation

We 
onsider a system 
omposed of N parti
les in a periodi
 box of side length l, intera
ting
through the purely repulsive WCA pair potential [8, 28℄:

VWCA(r) =





4ǫ

[(σ
r

)12
−
(σ
r

)6]
+ ǫ if r ≤ r0,

0 if r > r0,

where r denotes the distan
e between two parti
les, ǫ and σ are two positive parameters and

r0 = 21/6σ. Among these parti
les, two (numbered 1 and 2 in the following) are designated

to form a dimer while the others are solvent parti
les. Instead of the above WCA potential,

the intera
tion potential between the two parti
les of the dimer is a double-well potential

VS(r) = h

[
1− (r − r0 − w)2

w2

]2
, (38)

2

Of 
ourse, this threshold time depends on the system under study.
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Figure 3: S
hemati
 views of the system, when the dimer is in the 
ompa
t state (Left), and

in the stret
hed state (Right). The intera
tion of the parti
les forming the dimer is des
ribed

by a double well potential. All the other intera
tions are of WCA form.

where h and w are two positive parameters. The potential VS exhibits two energy minima,

one 
orresponding to the 
ompa
t state where the length of the dimer is r = r0, and one


orresponding to the stret
hed state where this length is r = r0 + 2w. The energy barrier

separating both states is h. Figure 3 presents a s
hemati
 view of the system.

The rea
tion 
oordinate used is

ξ(q) =
|q1 − q2| − r0

2w
, (39)

where q1 and q2 are the positions of the parti
les forming the dimer. The 
ompa
t state (resp.

the stret
hed state) 
orresponds to a value of the rea
tion 
oordinate z = 0 (resp. z = 1).

The parameters used for the simulations are: β = 1, ǫ = 1, σ = 1, h = 1, w = 0.5 and N =
16. We still use a linear s
hedule: z(t) = t/T . The side length l of the simulation box takes

two values: l = 1.3 (high density state) and l = 3 (low density state). Figure 4 presents some

plots of the free energy di�eren
e pro�les 
omputed using nonequilibrium dynami
s, as well as

thermodynami
 integration referen
e pro�les. The results show that nonequilibrium estimates

are 
onsistent with thermodynami
 integration. Our experien
e on this parti
ular example

also shows that it is 
omputationally as e�
ient to simulate several short nonequilibrium

traje
tories (provided the swit
hing time is not too small, say, T ∼ 1 in the units used here,

so that the di�usion pro
ess 
an take pla
e), or one single long traje
tory where the swit
hing

is done slowly (as already observed in Se
tion 4.1).

The free energy pro�les highlight the relative stabilities of the two 
onformations of the

dimer: at low densities (Figure 4, Left) the stret
hed 
onformation has a lower free energy

and is thus expe
ted to be more stable (this 
an indeed be veri�ed by running long mole
ular

dynami
s traje
tories and monitoring the time spent in ea
h 
onformation). When the density

in
reases, the 
ompa
t 
onformation be
omes more and more likely. At the density 
onsidered

in Figure 4 (Right), the 
ompa
t state already has a free energy slightly smaller than the

stret
hed state. Noti
e also that the free energy barrier in
reases as the density in
reases, so

that spontaneous transitions are less and less frequent. But sin
e we know here a rea
tion


oordinate, we 
an enfor
e the transition. This prevents us from running and monitoring long

traje
tories to get su�
ient statisti
s to 
ompare relative o

urren
es of both states.
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Figure 4: Comparison of free energy di�eren
e pro�les using the rea
tion 
oordinate (39),

at low densities (l = 3) on the left, and high densities (l = 1.3) on the right. The double

well potential VS is represented in dashed line. The referen
e free energy di�eren
e pro�le


omputed with a very pre
ise thermodynami
 integration is represented in dotted line. We

used NTI = 101 thermodynami
 integration points (uniformly distributed over (0, 1)) and

averaged the mean for
e over MTI = 107 
on�gurations for ea
h �xed value of z. The upper

and lower bounds of the 95% 
on�den
e interval (obtained over 50 independent realizations)

for out-of-equilibrium 
omputations are represented with solid lines. We used M = 1000
nonequilibrium traje
tories, a swit
hing time T = 1, and a timestep ∆t = 0.00025 (left)

or ∆t = 0.0005 (right).
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A Appendix: The multi-dimensional 
ase

In this appendix, we generalize the previous results for nonequilibrium 
omputation of free

energy di�eren
es to the 
ase of multi-dimensional rea
tion 
oordinates.

A.1 Geometri
 setting and basi
 notation and formulae.

We 
onsider a d-dimensional system of smooth rea
tion 
oordinates ξ = (ξ1, . . . , ξd) : R
3N →

R
d, non-singular on an open domain M ⊂ R

3N

∀q ∈ M, range(∇ξ1(q), . . . ,∇ξd(q)) = d,

and a smooth path of asso
iated 
oordinates

z = (z1, . . . , zd) : [0, T ] → R
d.

A

ordingly, we de�ne for all t ∈ [0, T ] a smooth submanifold of 
odimension d 
ontained

in M:

Σz(t) =
{
q ∈ R

3N , ξ(q) = z(t)
}
⊂ M.

In the 
onstraints spa
e R
d
, 
oordinates are labeled by Greek letters and we use the

summation 
onvention on repeated indi
es. In the 
on�guration spa
e R
3N

, 
oordinates are

labeled by Latin letters and we also use the summation 
onvention on repeated indi
es. We

denote by X · Y = XiYi the s
alar produ
t of two ve
tor �elds of R
3N

, by M : N = Mi,jNi,j

the 
ontra
tion of two tensor �elds of R
3N

, and by (X ⊗ Y )i,j = XiYj the tensor produ
t of

two ve
tor �elds of R
3N

.

The d× d matrix

Gα,γ = ∇ξα · ∇ξγ

20



is the Gram matrix of the 
onstraints. It is symmetri
 and stri
tly positive on M. We denote

by G−1
α,γ the (α, γ) 
omponent of G−1

, the inverse matrix of G. At ea
h point q ∈ M, we

de�ne the orthogonal proje
tion operator

P⊥ = G−1
α,γ∇ξα ⊗∇ξγ

onto the normal spa
e to Σξ(q) and the orthogonal proje
tion operator

P = Id− P⊥

onto the tangent spa
e to Σξ(q). The mean 
urvature ve
tor �eld of the submanifold is de�ned

by:

H = −∇ ·
(
(detG)1/2G−1

α,γ∇ξγ

)
(detG)−1/2∇ξα (40)

and satis�es:

Hi = Pj,k∇jPi,k.

We re
all the divergen
e theorem on submanifolds: for any smooth fun
tion φ : R3N →
R
3N

with 
ompa
t support,

∫

Σz

divΣ(φ) dσΣz
= −

∫

Σz

H · φdσΣz
(41)

where divΣ(φ) = Pi,j∇iφj denotes the surfa
e divergen
e, and σΣz
is the indu
ed Lebesgue

measure on the submanifold Σz of R
3N

.

We will also use the 
o-area formula: for any smooth fun
tion φ : R3N → R,

∫

R3N

φ(q)(detG(q))1/2dq =

∫

Rd

∫

Σz

φdσΣz
dz. (42)

These de�nitions and formulae are provided with more details in [6℄.

A.2 Free energy and 
onstrained di�usions for multi-dimensional rea
tion


oordinates

As in the one-dimensional 
ase, the Boltzmann-Gibbs distribution restri
ted on the submani-

fold Σz is de�ned by:

dµΣz
= Z−1

z exp(−βV )dσΣz
,

with

Zz =

∫

Σz

exp(−βV )dσΣz
.

The asso
iated free energy is:

F (z) = −β−1 ln (Zz) .

Remark A.1 (On the de�nition of the free energy: the multi-dimensional 
ase). As in the

one-dimensional 
ase (see Remark 1.1), if the parti
les initially evolve in a potential V , the


lassi
al de�nition of the free energy is as above, but with V repla
ed by an e�e
tive potential

V + β−1 ln
(
(detG)1/2

)
. The 
omputation of the gradient of this potential in the dynami
s

then involves se
ond-order derivatives of ξ, whi
h 
an be approximated in pra
ti
e by �nite

di�eren
es (see [6℄).
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For any 1 ≤ α ≤ d, we now introdu
e the lo
al mean for
e along ∇ξα (whi
h general-

izes (11)):

fα = G−1
α,γ∇ξγ ·

(
∇V + β−1H

)
. (43)

As in the one-dimensional 
ase (see Equation (10)), we obtain the derivative of the mean for
e

by averaging the lo
al mean for
e:

Proposition A.2. The derivative of the free energy F with respe
t to zα is given by:

∇αF (z) =

∫

Σz

fα dµΣz
.

Proposition A.2 is a 
orollary of

Lemma A.3. For any test fun
tion ϕ with 
ompa
t support in M, we have:

∇α

(∫

Σz

ϕ exp(−βV )dσΣz

)
=

∫

Σz

(
G−1

α,γ∇ξγ · ∇ϕ− βfαϕ
)
exp(−βV )dσΣz

.

Proof. It is enough to prove the formula in the 
ase V = 0, up to a modi�
ation of the test

fun
tion ϕ. For any test fun
tion g : R → R with 
ompa
t support, we have (using su

essively

an integration by parts on R, the 
o-area formula (42), an integration by parts on R
3N

, and

�nally again (42)):

∫

Rd

g(zα)∇α

(∫

Σz

ϕdσΣz

)
dz = −

∫

Rd

∫

Σz

g′(zα)ϕdσΣz
dz,

= −
∫

R3N

g′ ◦ ξα ϕ (detG)1/2 dq,

= −
∫

R3N

G−1
α,γ∇ξγ · ∇(g ◦ ξα) ϕ (detG)1/2 dq,

=

∫

R3N

g ◦ ξα∇ ·
(
G−1

α,γ ∇ξγ ϕ (detG)1/2
)
dq,

=

∫

Rd

g(zα)

∫

Σz

∇ ·
(
G−1

α,γ∇ξγ ϕ (detG)1/2
)
(detG)−1/2 dσΣz

dz,

whi
h gives the result using the expression (40) of the mean 
urvature ve
tor H.

We now de�ne the 
onstrained di�usion (whi
h generalizes (21)):





Q0 ∼ µΣz(0)
,

dQt = −P (Qt)∇V (Qt)dt+
√

2β−1P (Qt) ◦ dBt +∇ξα(Qt)dΛ
ext
α,t ,

dΛext
α,t = G−1

α,γ(Qt)z
′
γ(t)dt, ∀1 ≤ α ≤ d.

(44)

The sto
hasti
 pro
ess Qt 
an be 
hara
terized by the following property:

Proposition A.4. The pro
ess Qt solution to (44) is the only It� pro
ess satisfying for some

adapted It� pro
esses (Λ1,t, . . . ,Λd,t)t∈[0,T ] with values in R
d
:





Q0 ∼ µΣz(0)
,

dQt = −∇V (Qt)dt+
√

2β−1dBt +∇ξα(Qt)dΛα,t,
ξ(Qt) = z(t).
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Moreover, the pro
ess (Λα,t)t∈[0,T ] 
an be de
omposed as

Λα,t = Λm
α,t + Λf

α,t +Λext
α,t ,

with the martingale part

dΛm
α,t = −

√
2β−1G−1

α,γ∇ξγ(Qt) · dBt,

the lo
al for
e part (see (43) for the de�nition of fα)

dΛf
α,t = fα(Qt)dt,

and the external for
ing (or swit
hing) term

dΛext
α,t = G−1

α,γ(Qt)z
′
γ(t)dt.

The proof 
onsists in 
omputing dξ(Qt) by It�'s 
al
ulus and identifying the bounded

variation and the martingale parts of the sto
hasti
 pro
esses.

A.3 The Feynman-Ka
 �u
tuation equality

Theorem 2.2 is generalized as:

Theorem A.5 (Feynman-Ka
 �u
tuation equality). Let us de�ne the nonequilibrium work

exerted on the di�usion Qt solution to (44) by:

W(t) =

∫ t

0
fα(Qs)z

′
α(s) ds =

∫ t

0
z′α(s)dΛ

f
α,s.

Then, we have the following �u
tuation equality: for any test fun
tion ϕ, and ∀t ∈ [0, T ],

Zz(t)

Zz(0)

∫

Σz(t)

ϕdµΣz(t)
= E

(
ϕ(Qt)e

−βW(t)
)
. (45)

In parti
ular, we have the work �u
tuation identity: ∀t ∈ [0, T ],

∆F (z(t)) = F (z(t)) − F (z(0)) = −β−1 ln
(
E

(
e−βW(t)

))
. (46)

Proof. For any s ∈ [0, T ] and x ∈ M, let us introdu
e (Qs,x
t )t∈[s,T ], the sto
hasti
 pro
ess

satisfying the SDE (44), starting from x at time s:





Qs,x
s = x,

dQs,x
t = −P (Qs,x

t )∇V (Qs,x
t )dt+

√
2β−1P (Qs,x

t ) ◦ dBt +∇ξα(Q
s,x
t )dΛext

α,t ,

dΛext
α,t = G−1

α,γ(Q
s,x
t )z′γ(t)dt, ∀1 ≤ α ≤ d.

(47)

Noti
e that for any s ∈ [0, T ], there is an open neighborhood (s−, s+) × Ms of (s,Σz(s)) in
R×M su
h that the di�usion (Qs,x

t )t∈[s,T ] remains in M almost surely. This holds sin
e this

pro
ess satis�es dξ(Qs,x
t ) = z′(t) dt and therefore ξ(Qs,x

t ) = ξ(x) + z(t) − z(s). This gives

usual regularity assumptions su�
ient to get a ba
kward semi-group (t being from now on

�xed in (0, T ) and s varying in [0, t]):

u(s, x) = E

(
ϕ(Qs,x

t ) exp

(
−β

∫ t

s
fα(Q

s,x
r )z′α(r) dr

))
,
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satisfying the following partial di�erential equation (PDE) on (s−, s+)×Ms:

∂su = −Ls(u(s, .)) + βz′α(s)fαu,

where Ls is the generator of the di�usion Qt solution to (44):

Ls = β−1P : ∇2 − P∇V · ∇+ β−1H · ∇+ z′γ(s)G
−1
α,γ∇ξα · ∇.

Now, using Lemma A.3, we have:

d

ds

∫

Σz(s)

u(s, .) exp(−βV )dσΣz(s)

=

∫

Σz(s)

(
−Ls(u(s, .)) + z′α(s)G

−1
α,γ∇ξγ · ∇u(s, .)

)
exp(−βV )dσΣz(s)

,

= −
∫

Σz(s)

(
β−1P : ∇2u(s, .) − P∇V · ∇u(s, .) + β−1H · ∇u(s, .)

)
exp(−βV )dσΣz(s)

,

= −β−1

∫

Σz(s)

(
divΣ (∇u(s, .) exp(−βV )) +H · ∇u(s, .) exp(−βV )

)
dσΣz(s)

,

= 0,

by the divergen
e theorem (41). Therefore

∫

Σz(t)

u(t, .) exp(−βV )dσΣz(t)
=

∫

Σz(0)

u(0, .) exp(−βV )dσΣz(0)
,

whi
h yields

∫

Σz(t)

ϕ exp(−βV )dσΣz(t)
= Zz(0)E

(
ϕ(Qt) exp

(
−β

∫ t

0
fα(Qr)z

′
α(r) dr

))
,

where Qt satis�es (44). This proves (45), and (46) is obtained by taking ϕ = 1.

A.4 The numeri
al s
heme

The adaptation of the algorithm we propose for the one-dimensional 
ase to the multi-

dimensional 
ase is straightforward. Indeed, the generalizations of s
hemes (29) and (30)

to the multi-dimensional 
ase are, respe
tively:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λα,n+1∇ξα(Qn+1),

where (∆Λα,n+1)1≤α≤d is su
h that ξ(Qn+1) = z(tn+1),

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆t β−1 Un +∆Λα,n+1 ∇ξα(Qn),

where (∆Λα,n+1)1≤α≤d is su
h that ξ(Qn+1) = z(tn+1).

The for
e part ∆Λf
α,n of ∆Λα,n is obtained by similar pro
edures as those des
ribed in Se
-

tion 3.2. For example, the generalization of (31) is:

∆Λf
α,n+1 = ∆Λα,n+1 −G−1

α,γ(Qn) (zγ(tn+1)− zγ(tn)) +
√

2∆tβ−1G−1
α,γ∇ξγ(Qn) · Un.

The generalization of (32) is also straightforward.
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Now, the estimator ∆̂F (z(T )) of the free energy di�eren
e ∆F (z(T )) is given by (34),

with the following approximation of the work W(t):





W0 = 0,

Wn+1 = Wn +
zα(tn+1)− zα(tn)

tn+1 − tn
∆Λf

α,n+1,

whi
h generalizes (33). Noti
e that Remark 3.1 also holds for a multi-dimensional rea
tion


oordinate.
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