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5.1 INTRODUCTION

In the first part of this article the review of various theor-

etical models for polymer chains is given. The models of freely

jointed chains, freely rotating chains (including wormlike

chains), and chains with fixed bond angles and independent

rotational potentials and with interdependent potentials, in-

cluding rotational isomeric state approximation, are presented.

In the second part various theories of polymer networks

are presented. The affine network model, phantom network,

and theories of real networks are discussed. Scattering from

polymer chains is also briefly presented.

The third part of this article covers computer simulations

of polymer chains. Methods of simulation of chains on

lattices are presented and the equivalence between lattice

chains and off-lattice chain models is discussed. The simu-

lation of excluded volume effect is examined. The polymer

chain collapse from random coil to dense globular state, and

simulations of dense polymer systems are discussed.

This article describes models for linear chains of

homopolymers and for unimodal, unfilled polymer networks.

Theoretical models for other systems, such as star, branched,

and ring polymers, random and alternating copolymers,

graft and block copolymers are discussed in the book by

Mattice and Suter [1]. Block copolymers are discussed in

Chap. 32 of this Handbook [2]. Theories of branched and ring

polymers are presented in the book by Yamakawa [3].

Liquid–crystalline polymers are discussed in the book by

Grosberg and Khokhlov [4], and liquid crystalline elastomers

in the recent book of Warner and Terentjev [5]. Bimodal

networks are discussed by Mark and Erman [6,7]. Molecular

theories of filled polymer networks are presented by

Kloczkowski, Sharaf and Mark [8] and recently by Sharaf

and Mark [9].

This first part of this article deals only with treatment of

‘‘bonded’’ interactions of polymer chains, appropriate only

for modeling chains under Q-point conditions. Problems

connected with effects of excluded volume are presented

at the end of this chapter. The excluded volume effect for

chains in good solvents are also presented in Chaps. IIB [10]

and IIID [11] of this handbook and in books by Freed [12],

de Gennes [13], des Cloizeaux and Jannink [14], and
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Forsman [15]. More information about computer modeling

of polymers is provided by Binder [16,17], Baumgartner

[18], Kolinski and Skolnick [19], and most recently by

Kotelyanskii and Therodorou [20].

5.2 THE FREELY JOINTED CHAIN

The freely jointed chain model (known also as random

flight model) was proposed for polymers by Kuhn in 1936.

The chain is assumed to consist of n bonds of equal length l,
jointed in linear succession, where the directions (u, f)

of bond vectors may assume all values (0 # u # p;

0 # f # 2p) with equal probability (see Fig. 5.1).

This means that directions of neighboring bonds are com-

pletely uncorrelated. The freely jointed chain model corres-

ponds to a chain with fixed bond lengths and with

unconstrained, free to adjust valence angles and with free

torsional rotations. The mean square end-to-end vector hr2i0
in the unperturbed state (denoted by subscript 0) for the freely

jointed chain is

hr2i0 ¼ h(
Xn

i¼1

lj) � (
Xn

j¼1

lj)i0 ¼ nl 2 (5:1)

because

hli � lji0 ¼ 0 for i 6¼ j: (5:2)

It is convenient to compare real polymer chains with

freely jointed chain by using the concept of the characteris-

tic ratio defined as the ratio of the mean-square end-to-end

vectors of a real chain and freely jointed chain with the same

number of bonds

Cn ¼
hr2i0
nl 2

: (5:3)

The characteristic ratio is a measure of chain flexibility.

Flexible chains have Cn close to unity, while semiflexible and

rigid polymers have usually much larger values of Cn. The

mean-square radius of gyration for freely jointed chain is:

hs2i0 �

P
0 # I< j # n

hr2
iji0

(nþ 1)2
¼ (nþ 2)nl 2

6 (nþ 1):
(5:4)

For longer chains (in the limit n!1) we have

hs2i0
hr2i0

¼ 1

6
: (5:5)

The freely jointed chain model has an exact analytical

solution for the distribution function of the end-to-end vec-

tor. The probability that the chain of n bonds has the end-to-

end vector r is

P(r,n) ¼
Z

dl1dl2 . . . dlnd[(
Xn

i¼1

li)� r]P
j¼1

n

exp
�u(lj)

kT

� �
,

(5:6)

where T is the absolute temperature, k is the Boltzmann

constant, u(lj) is the potential energy of two segments con-

nected by the j-th bond lj, and d denotes Dirac delta func-

tion. For the freely jointed chain model we have

exp
�u(lj)

kT

� �
¼ 1

4pl 2
d(jljj � ‘): (5:7)

By using the Fourier representation of the d function we

obtain

P(r, n) ¼ 1

8p3

Z
dk e�ik�r sin (kl)

kl

� �n

¼ 1

2p2r

Z 1

0

sin (kr)
sin (kl)

kl

� �n

kdk: (5:8)

The solution of Eq. (5.8) is

P(r, n) ¼ 1

2nþ1pl 2r(n� 2)!

Xi#(n�r=l)=2

i¼0

(� 1)i n!

i!(n� i)!
(n� 2i� r=l )n�2: (5:9)
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FIGURE 5.1. Polymer chain composed of n bonds. Angles u are defined as complementary angles.
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