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a b s t r a c t

Using a gradient-based optimization method, the time-consuming atomistic model of substrate is re-
placed by computationally efficient Lennard-Jones (L-J) potential walls whose parameters are determined
to appropriately represent the interactions between the nanoparticles and the substrate. To obtain the
required design sensitivity with respect to design variables for the constant temperature molecular dy-
namics (MD) simulations that use theNosé–Hoover thermostat, the finite differencemethod is impractical
due to the huge amount of computational costs. Thus, we developed an adjoint design sensitivity analysis
(DSA)method that is efficient for the system ofmany design variables. In numerical examples, we replace
the complicated and time-consuming silicate structure to a multiple layer model of L-J potential wall,
through the design optimization that includes the design variables of ϵ, σ , and the positions of each layer.
The objective is tominimize the squareddifference of time averagedperformance between the full and the
reduced models during the whole time span. The proposed method could lead to a significant reduction
of computational costs, together with comparable outcomes from MD simulations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, interest in molecular dynamics (MD) simulations
has rapidly increased due to the demand of nanoscale manufac-
turing and applications. To overcome the limitation of the conven-
tional continuum-based macroscale approach and to understand
and elucidate nanoscale phenomena, the MD-based simulations
have become one of the promising choices by researchers in vari-
ous fields. Furthermore, the increased computational performance
and enhanced parallel computing enable the MD simulations to
be widely utilized in both academic and industrial environments
to study various mechanical, chemical, and biological nanoscale
systems. Nevertheless, when it comes to the design optimization
of nanoscale materials, which are so far not fully developed yet
but could be essential for future research, hundreds of MD sim-
ulations are required so that the reduction of computing costs in
a simulation is crucial. The objective of this paper is to determine
parameters in Lennard-Jones (L-J) potential walls to appropriately
represent the interactions between nanoparticles and substrate,
using a gradient-based optimization method to replace the time-
consuming model of bulk substrates by the potential walls.

Even though real experiments have revealed many of new con-
cepts and various phenomena in nanoscale, it is extremely difficult
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and also limited to investigate the microscopic, dynamical, and
thermodynamic properties of systems through real experimental
approaches. The MD simulations provide a suitable framework
for exploring and elucidating the physically complex phenomena
at an atomistic level. To obtain meaningful results from the MD
simulations, one of the major concerns is to select the appropriate
interatomic potentials that precisely represent the behavior of
atoms. The interatomic potentials include the parameters which
are determined by a variety of methods depending on the atom
types involved. The estimation of the potential parameters has
been attempted by a number of researchers [1,2] according to the
theoretical basis of equations; the attractive dispersion force by
the Slater–Kirkwood equation [3] and the repulsive term from van
der Waals radii of atoms [4]. Then, the parameters are adjusted
by the crystal packing [5] and other experimental data. One of
the simple experimental results available to test the validity of
the potential parameters may be the second virial coefficient of
a gas composed of atoms in question, since the virial coefficient
can be calculated from the interaction between constituent atoms.
The interatomic potentials usually involve complicated terms and
thus require additional treatments. If bulky substrates, aqueous
solutions, or large bio-structures are involved in the MD simu-
lations, we should include the pairwise force, many body forces,
additional bonding, angle, and dihedral terms need to be included,
which results in one of themajor drawbacks from a computational
point of view. For the interactions of heterogeneous materials in
most of cases, the interatomic potential is generally simplified to
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a pairwise Lennard Jones (L-J) potential form by combining the
pairwise terms of eachmaterial through Lorentz–Berthelot mixing
rules. Nevertheless, the computational costs are still prohibitively
expensive even though themassively parallel computing scheme is
employed. This implies that the significant portion of computation
costs is squandered for simulating the bulk substrates which is
not the major concern of the MD simulations. The objective of
this paper is to determine parameters in Lennard-Jones (L-J) po-
tential walls to appropriately represent the interactions between
nanoparticles and substrate, using a gradient-based optimization
method to replace the time-consuming model of bulk substrates
by the potential walls.

To reduce the degrees of freedom (DOF) of full atomisticmodels,
coarse-grained (CG) models that combine multiple atoms into one
group (a CG bead) are developed. One of the challenges in the
CG models is to develop a rigorous atomistic to CG methodol-
ogy that allows, as accurately as possible, the estimation of the
CG effective interactions. There are several CG methods used to
derive the CG effective forces (or potentials): (i) MARTINI force
field which fits thermodynamic properties such as free energy in
the system [6], (ii) Reverse Monte-Carlo method [7], and Iterative
Boltzmann Inversion [8] whichminimizes the differences between
the calculated and the reference averages of structural properties
like a radial distribution function or a structure factor, and (iii)
force matching approaches [9], where the instantaneous CG forces
are fitted to the forces from full MD simulations. The choice of
CG method depends on the nature of the system we are dealing
with. The task of this paper is to closely observe the movement
of the nanoparticles on the substrate. The atomistic motion for a
nanoparticle is expressed as fully as possible, and for a substrate
with little motion, it is expressed as a reduced model. For this
purpose, we proposed a new method instead of the using the
existing CG method to replace the substrate with the virtual L-
J potential walls. The parameters of the virtual LJ potential walls
are fitted to minimize the potential energy difference with the
full model using a design sensitivity analysis (DSA) method. A
simulation using the virtual L-J potential wall model confirmed a
significant reduction of computational costs.

Design sensitivity analysis (DSA) aims at describing how much
output values are affected by the changes in input values. Math-
ematically, the DSA methods have well developed based on con-
tinuum mechanics for structural systems [10]. Until now, most of
researches on the DSA have been devoted to static mechanical
problems. Recently, efficient and accurate DSA methods for tran-
sient dynamic problems are attracting researchers’ attention in
various disciplines. Since the MD is one of the transient dynamic
problems, the DSA for transient dynamic problems is indispens-
able for the design of nanoscale problems. Dynamic problems
require the time integration of partial differential equations to
compute dynamics responses. For transient dynamic problems
with large deformation elastic–plastic materials, an analytical DSA
method [11,12] is developed in the updated Lagrangian formula-
tion using a direct differentiation method (DDM). The adjoint vari-
able method (AVM) for transient dynamics was well established
in the reference [10] and the corresponding adjoint system turned
out to be a terminal value problem. Hsieh andArora [13] developed
DSAmethods using both the DDM and AVM for dynamic problems
with point-wise constraints. Tsay and Arora [14] derived non-
linear DSA for path-dependent problems using total Lagrangian
formulation considering geometrical and material nonlinearities.
However, they follow all the history of solution procedure for the
DSA because the dynamic equations for both original responses
and design sensitivities are path-dependent. This makes it difficult
to extend the DSA methods to MD simulations since the adjoint
system that corresponds to the MD simulations is usually a path-
dependent problem.

The MD is a typical transient dynamic problem but a few lit-
erature is available for the DSA methods of transient dynamics.
Extension of DSA methods to the atomic level transient dynam-
ics was never attempted due to the limitation of computational
resources and the lack of efficient DSA method even though the
MD simulations were already established. When the performance
measure is only dependent on the state at terminal time and the
internal force term is linear with respect to the displacement due
to the harmonic approximation of the inter-atomic potential, the
adjoint equation of motion can be independently solved from the
original system. In that case, there is an advantage of saving the
computational storage to keep the original response history [15,
16]. In the case of non-linear internal forces, however, the adjoint
equations depend on the path of original responses and thus the
tangent stiffness in the adjoint systems changes with time. In this
case, the adjoint problem is time history dependent, which means
that wemust follow all the history of response analysis to solve the
problem.

The DSA [17] in the MD simulations can be utilized in various
fields. For instance, instead of using the expensive first-principle
quantum-mechanical (QM) method, the sensitivities of atomic
mass m and the L-J parameter σ and ϵ can be utilized to develop
an empirical interatomic potential [18]. The DSA method in this
paper is developed in a general manner and can be easily extended
to other general types of performancemeasures like the kinematics
of atoms, the temperature of system, and so on. Even though the
interatomic potential to precisely describe the atomic behaviors
is constructed, the significant amount of computing costs is still
squandered to compute the interatomic forces in the domain of
no interest. Thus, in this research, we determine the L-J parame-
ters to replace the representative interactions between the gold
nanoparticles and the substrate of mica through design sensitivity
analysis and design optimization techniques.We also try to reduce
the computing costs significantly by substituting the structure of
substrate by a L-J potential wall. Due to the huge costs for the anal-
ysis ofMDsystems, a gradient-based approach andparallel compu-
tation are indispensable for the design optimization of nanoscale
materials, which are so far not fully developed yet but essential for
the future direction of nanoscale design optimization. There are
two approaches in design optimizationmethods; a gradient-based
design optimization [11] and a sampling-based one [19] which are
not appropriate for the MD simulations due to the difference of
governing equation and expensive computing costs. Therefore, we
derive the design sensitivity for the MD simulations and perform a
gradient-based design optimization for the best choice of potential
parameters.

In the viewpoint of design aspects, temperature is one of the
significant design variables that can be controlled to a value in
simulations and experiments. The temperature effects of vari-
ous properties of nanomaterials such as nanowires [20,21] and
nanoparticles [22] were reported, using MD simulations. How-
ever, the method of studying temperature effects on nanoma-
terial properties relies on a trial and error approach. With the
help of DSA, we can efficiently quantify the effects of parameters
such as temperature on the results from MD simulations as well
as experiments. Also, the gradient of simulation parameters can
be changed when the operation temperature varies. Adjoint DSA
method for the MD system where the number of atoms N, volume
V and energy E is fixed (microcanonical (NVE) ensemble) was
already proposed [17]. In this paper, we developed an adjoint DSA
method for the constant temperature MD simulations. To obtain
the continuous trajectory of a system having constant number N of
atoms, volume V, and temperature T (canonical (NVT) ensemble),
the Nosé–Hoover thermostat is utilized. The adjoint system of
NVT ensemble is inherently path-dependent due to the additional
degrees of freedom corresponding to the heat bath which acts as a
damping term.
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2. Design sensitivity analysis of extended MD systems

2.1. MD system with Nosé–Hoover thermostat

For MD simulations in a system where the number of particles
N , volume V , and temperature T are fixed, a physical system
is regarded as interacting with a heat bath. Hamiltonian for the
extended system can be written, in terms of the extended vari-
ables [23,24], as

H
(
p̃, q, p̃s, s

)
=

3N∑
i=1

p̃2i
2mis2

+
p̃2s
2Q

+ Vpot (q) + z ln s (1)

where p̃, q, and Vpot are the momenta conjugate to q, atomic
position, and potential energy function, respectively. p̃, S, and Q
respectively denote the momentum conjugate to S, the additional
degrees of freedom (DOFs) for the heat bath, and an effective mass
associated with S. z is a factor for sampling canonical distribution.
The upper tilde denotes the extended variables corresponding to
the scaled time τ . The equations ofmotion for the extended system
variables are described as
dp̃i
dτ

≡ −
∂H
∂q

= Fi (2)

dqi
dτ

≡
∂H
∂ p̃i

=
p̃i

mis2
(3)

dp̃s
dτ

≡ −
∂H
∂s

=

3N∑
i=1

p̃2i
mis3

− z
1
s

(4)

and
ds
dτ

≡
∂H
∂ p̃s

=
p̃s
Q

(5)

The relation between the physical time and the scale time τ in
the extended system is given by

dτ = sdt (6)

If we sample the canonical distribution or calculate the ensem-
ble average with the extended variable τ , the sampling is carried
out at the integer multiples of the extended time step that are not
constant. Therefore, for the sampling at equal intervals in physical
time, it would be convenient to perform the integrations in terms
of the physical system variables through the transformations and
Eq. (6). Using the transformations, the equations of motion are
written, in terms of the physical system variables and the heat bath
variables, as

ṗi = Fi − pi
ṡ
s

(7)

q̇i =
pi
mi

(8)

ṗs =

3N∑
i=1

p2i
mi

− z (9)

and

ṡ = s
ps
Q

(10)

The second order Lagrangian equations of motion are written,
in terms of physical variables whichmost often are used in theMD
simulations by combining the first order equations of motion, as

q̈i =
Fi
mi

− q̇iζ (11)

and

ζ̇ =
1
Q

(
3N∑
i=1

miq̇2i − z

)
(12)

where the friction coefficient ζ = ṡ/s is proposed by Hoover [25].
The factor z is determined, to recover a canonical sampling, by

z = 3NkBT (13)

where N is the number of atoms in the physical system.

3. Adjoint variable method for extended MD systems

The finite difference method (FDM) and the direct differentia-
tionmethod (DDM) are impractical to obtain the design sensitivity
with respect to design variables due to huge amount of compu-
tational costs. Thus we employed the AVM which is efficient for
the system of many design variables. The detailed adjoint DSA
formulation for MD problems can be found in reference [26]. Com-
pared to the NVE ensemble, the NVT ensemble has additional DOFs
for thermostat variable in both the extended Hamiltonian and the
equations of motion. A general performance measure ψ for the
extendedMD system can be defined, including both terminal value
and time history quantity, as

ψ = g(b, ζ , q, q̇)]t=tT +

∫ tT

0
h(b, ζ , q, q̇)dt (14)

where b is a design variable vector. Taking the first order variation
of Eq. (14) with respect to the design b and integrating by parts
lead to

ψ ′
=

{
∂g
∂bδb +

∂g
∂ζ
ζ ′

+

(
∂g
∂q +

∂h
∂q̇

)
q′

+
∂g
∂q̇ q̇

′

}
t=tT

+
∫ tT
0

{
∂h
∂bδb +

∂h
∂ζ
ζ ′

+

(
∂h
∂q −

d
dt
∂h
∂q̇

)
q′

}
dt

(15)

where (·)′ = (d(·)/db) δb and as being independent of design, the
initial conditions for the design sensitivity are selected as q′(0) =

q̇′(0) = 0. To efficiently evaluate Eq. (15), the implicit dependence
terms are removed by using the adjoint system responses. Using
the Nosé–Hoover thermostat [23–25], the equations of motion of
Eqs. (11) and (12) can be rewritten, in matrix–vector forms, as

mAq̈(t) = f − ζ (t)mAq̇(t) (16)

where the thermostat variable is obtained by solving the following
equation,

Q ζ̇ (t) = q̇(t)TmAq̇(t) − z (17)

where Q denotes the effectivemasses associated with the thermo-
stat variable ζ (t). For sampling canonical distribution, a factor is
introduced as z = 3NkBT , where N , kB, and T denote the number
of atoms, Boltzmann constant, and desired temperature in the
ensemble, respectively. Note that coupling between the ensembles
is found through q in the inter-atomic force term in Eqs. (16)
and (17). Introducing two adjoint variables λ(t) and ξ (t) that are
assumed to be independent of the design, the following should
hold for all the time span.∫ tT

0
λT {mA(b)q̈ − f(b, q) + mA(b)ζ q̇} dt

+

∫ tT

0
ξ
{
Q (b)ζ̇ − q̇TmA(b)q̇ + z(b)

}
dt = 0 (18)
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Taking the first order variation of Eq. (18) and integrating by
parts yield{
λTmAq̇′ +

(
λT ζmA − λ̇TmA − 2ξ q̇TmA

)
q′

+ ξQ ζ ′
}
t=tT

+
∫ tT
0

(
λ̈TmA − λT ∂f

∂q − λ̇T ζmA

−λT ζ̇mA + 2ξ q̈TmA + 2ξ̇ q̇TmA
)
q′dt

+
∫ tT
0

(
λTmAq̇ − ξ̇Q

)
ζ ′dt

= −
∫ tT
0

{
λT
(
∂mA
∂b q̈ −

∂f
∂b +

∂mA
∂b ζ q̇

)
+ξ

(
∂z
∂b +

∂Q
∂b ζ̇ − q̇T ∂mA

∂b q̇
)}
δbdt

(19)

Comparing the resulting identity of Eq. (19) with Eq. (15), the
following adjoint systems are obtained together with the corre-
sponding terminal conditions for theMDsystemsofNVT ensemble.

λ̈ = ζ λ̇+m−1
A
∂f
∂q
λ+ ζ̇ λ−2ξ q̈−2ξ̇ q̇+m−1

A

(
∂h
∂q

−
d
dt
∂h
∂q̇

)T

(20)

ξ̇ =
1
Q

(
λTmAq̇ −

∂h
∂ζ

)
(21)

ξ (tT ) =
1
Q
∂g
∂ζ

(22)

λ(tT ) = m−1
A

(
∂g
∂q̇

)T

(23)

and using Eqs. (22) and Eqs. (23),

λ̇(tT ) = m−1
A

{
ζ

(
∂g
∂q̇

)T

−

(
∂g
∂q

+
∂h
∂q̇

)T
}

−
2
Q

(
∂g
∂ζ

)
q̇. (24)

Thus, the adjoint design sensitivity can be obtained as

ψ ′
=

∂g
∂bδb

⏐⏐
t=tT

+
∫ tT
0

{
∂h
∂b − λT

(
∂mA
∂b (q̈ + ζ q̇)−

∂f
∂b

)
−ξ

(
∂z
∂b +

∂Q
∂b ζ̇ − q̇T ∂mA

∂b q̇
)}
δbdt

(25)

Note that Eq. (25) requires the original and the adjoint re-
sponses. For detailed derivation and discussions, interested read-
ers may refer to Jang and Cho [26].

4. Reduced model for silicate substrate

To precisely mimic the nanoscale behaviors observed from
experiments, the accurate modeling and determination of inter-
atomic potential parameters are crucial for the successful MD
simulations. A sufficient number of layers is necessary to consider
the bulk characteristics of substrates, especially when substrates
are involved. Despite the efforts to reduce the size of substrates,
e.g. utilizing periodic boundary conditions and freezing several
bottom layers, the structure of substrates requires special treat-
ments in interatomic force terms such as bonding, angle, dihedral,
and improper ones in most cases. These special treatments gener-
ally lead to the tremendous increase of computational costs even
for simple metallic nanostructures. Furthermore, only limited sort
of substrate structures and the force field parameters are available
due to the empirical nature of fitting parameters matching the
bulk properties of target materials. It is well known that these
drawbacksmake it difficult to fulfill the needs of rapidly increasing
interest of correlating the MD simulations to the physical experi-
ments.

Consider the cold welding problem of gold nanoparticles on a
silicate substrate[27–29] in Fig. 1. Despite not the main subject
of MD simulations, the silicate substrate consumes most of the

computational costs. Therefore, we replace the complicated and
time-consuming silicate structure with a multiple layer model of
12–6 L-J potential wall, through a gradient-based design optimiza-
tion whose design variables include ϵ, σ , and the positions of
each layer. When the substrates and the nanostructures consist
of different materials, the interactions between them are gener-
ally represented by Lennard-Jones type interactions regardless of
interatomic potentials utilized in each material. With the proper
parameters and positions of multiply layered L-J potential walls
determined from the design optimization, we successfully repro-
duce the behavior of the silicate substrate while dramatic saving is
achieved in computational costs.

4.1. Modeling details

We construct two numerical models; a full model of gold
nanoparticles on themica substrate as a reference for the optimiza-
tion and a reduced model of gold nanoparticles on the potential
walls. The full model is analyzed by the establishedMD simulation
package LAMMPS to make the reference for the optimization[30].
The gold nanoparticles are thermally equilibrated independently
at 300 K for 1 ns. The time step of 1 fs is used together with
a Nosé–Hoover thermostat. We used the EAM (Embedded Atom
Method) interatomic potential for gold atoms [31,32]. After the
thermal equilibration of gold nanoparticles, they are placed on the
mica substrate consisting of 2688 atoms of 5 types, 3840 bonds
of 3 harmonic bond types, and 9,984 angles of 6 harmonic angle
types. Then, additional thermal equilibration is performed for 10
ps at 300 K with the time step of 1 fs using the Nosé–Hoover
thermostat. Finally, the kinematic information of gold nanoparti-
cles is transferred to the reduced one to impose the same initial
conditions. The detailed information of pairwise, bond, and angle
force field parameters are shown in Tables 1–3. The pairwise terms
for different atom types are obtained from the Lorentz–Berthelot
mixing rule. The Lennard-Jones parameters for gold atoms are
referred from Merabia et al. [33].

4.2. Formulation of design optimization problem

Consider the gold nanoparticles placed on a mica substrate as
shown in Fig. 1(a). The objective is to determine the position and
the proper Lennard-Jones force field parameters (energy depth ϵ
and collision diameter σ of subdomain in each layer of multi-
layered potential wall as shown in Fig. 1(b), through gradient-
based design optimization. The initial positions of L-J potential
walls are obtained from the z-directional center of mass of each
atomic layer of the mica substrate. Due to the cut off radius in
the MD simulations, the first 11 atomic layers of mica substrate
are selected. Therefore, the total number of design variables is 22
and their initial values are chosen as the L-J parameters utilized for
interactions between the gold and the atoms consisting of themica.
A design optimization problem is formulated, as shown in Fig. 2, as

Minimize

ψ =

∫ tT
0 w(t)

{
Φm

reduced(t) −Φm
full(t)

}2dt∫ tT
0 w(t)dt

(26)

Subjected to

0.0001 ≤ εi ≤ 100 (i = 1, . . . , ndv1)
0.1 ≤ σj ≤ 100 (j = 1, . . . , ndv2)
xl ≤ xk ≤ xu (k = 1, . . . , ndv3)

(27)

The objective is to minimize the squared difference of time av-
eraged performance of gold nanoparticles between the full and the
reducedmodels during thewhole time span. It is an unconstrained
optimization problem only with the side constraints for the design
variables εi, σj, and xk as shown in Eq. (27). A gradient-based
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Fig. 1. Reduced (multiple layer L-J potential wall) model for silicate substrate. (a) Modeling of mica substrate (b) Full (mica substrate) model (c) Reduced model.

Fig. 2. Scheme for automated design optimization.

optimization algorithm for unconstrained optimization method,
Broyden–Fletcher–Goldfarb–Shanno (BFGS), is utilized to solve the
aforementioned optimization problem, where the required gradi-
ent values are provided by the developed adjoint DSAmethod [17].
The algorithm for the automated design optimization procedure
[34] is illustrated in Fig. 2. The design variables (εi , σj, and xk) and
objective function (ψ) are supplied to the optimization tool BFGS. If
the control parameter ‘‘inform’’ is equal to zero, the optimization is
completed. If inform=1, the objective function and constraints are
evaluated. If inform=2, the gradients of those are evaluated.

5. Results and discussions

5.1. Verification of reduced model: Cold welding of gold nanoparti-
cles [31]

In Fig. 3, the performance of reduced models (In-house,
LAMMPS [30]) is compared with that of the full model (Mica). The
reduced models employ the potential walls instead of mica sub-
strate. The L-J parameters for interactions between gold and each
atom in the mica substrate are utilized for the reduced models,
whichmatch verywell as shown in Fig. 3.MD simulationswithNVT
ensemble are performed for 20 ps using the time step of 0.1 fs. The
reduced models show similar potential energy trajectory at early
time of simulation, compared to the full model (Mica). However,
the trajectory starts to deviate after 2.5 ps and the difference
becomes significant after 20 ps.

Comparing the configurations of full model (Mica) at initial
and terminal time steps in Fig. 4(a), the initial nanoparticles (yel-
low) are agglomerated and shrunk at terminal time (green). The

Table 1
Pairwise force field parameters.
Atom type ϵ (eV) σ (Å)

Al 0.0021682 3.74178
H 0.0005637 0.97830
K 0.0086729 3.38542
O 0.0010841 3.11815
Si 0.0021682 3.56359

clearance between the nanoparticles and the mica substrate is
maintained during the whole time span. However, comparing the
configurations of full (yellow) and reduced (red) models at termi-
nal time in Fig. 4(b), the nanoparticles in the reduced model are
floating above the mica substrate surface. This indicates that the
attraction force between the multi-layer potential walls and the
nanoparticle is insufficient compared with the full model. Thus, it
is necessary to determine appropriate L-J parameters to make the
performance of the reducedmodel as close as that of the fullmodel.

5.2. Optimal potential parameters for multiple layers

In this section, the optimal potential parameters are determined
using a gradient based optimization algorithm. The total number of
design variables is 22 (energy depth and collision diameter of each
or the 11 layers of L-J potential wall). Since the MD simulation is
used to solve a transient dynamic problem, it is not always possible
to improve the performances inwhole time span. However, we can
improve the performance measure selectively at some time steps.
In Fig. 3, we can notice that the reduced models start to deviate
from the full model at the time step of 23,400 and maintain the
difference after that. In this optimization problem, the objective
is to minimize the squared difference of time averaged potential
energy between 23,400 and 36,200 time steps.

Minimize

ψ =
1

t2 − t1

∫ t2

t1

w(t)
{
Φm

reduced(t) −Φm
full(t)

}2dt,
t1 = 23, 400, t2 = 36, 200 (28)

Subjected to

0.0001 ≤ εi ≤ 100 (i = 1, . . . , 11)
0.1 ≤ σj ≤ 100 (j = 1, . . . , 11) (29)

Fig. 4 shows the history of potential energy of gold nanoparti-
cles (AuNPs) in the reduced and the full models after the optimiza-
tion of potential parameters. The difference of potential energies
between the reduced and the full models is significantly reduced
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Fig. 3. Potential energy in reduced (Mica, In-house) and full (LAMMPS) models.

Table 2
Harmonic bond distance.
Bond type K (eV/Å2) Equilibrium bond distance (Å)

Al-O 37.2935 1.940
H-O 42.9309 0.929
Si-O 37.2935 1.640

Table 3
Harmonic angle.
Angle type K (eV/rad2) Equilibrium angle (◦)

Al-O-Al 14.7440 109.5
Al-O-H 0.9974 116.2
Al-O-Si 14.7440 109.5
O-Al-O 14.7440 95.0
O-Si-O 14.7440 109.5
Si-O-Si 14.7440 109.5

Fig. 4. Configuration comparison at terminal time. (a) Full model (Mica) (b) Full
(yellow) and reduced (red) models. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

around the terminal time, which is due to the optimal determina-
tion of potential parameters by reducing the deviation tendency
between 23,400 and 36,200 time steps (see Fig. 5).

Comparing the configurations of full model (Mica) at initial and
terminal time steps in Fig. 6(a), the initial nanoparticles (green) are
agglomerated and shrunk at terminal time (yellow). Fig. 6(b) shows
the configuration of the full (yellow) and the reduced optimal
(red) models at terminal time. In the reduced optimal (red) model,
the clearance between the nanoparticles and the mica substrate
is maintained during the whole time span. This indicates that
the attraction force between the multi-layer potential walls and
the nanoparticle is optimally determined compared with the full
model.

The optimization process is quite convergent; the MD simula-
tions are performed 39 times and gradients are evaluated 6 times.
The objective function of Eq. (28) is monotonically decreased as
shown in Fig. 7.

Optimally determined design variables are compared with the
original values in Table 4. Generally, the variables (energy depth
ϵ and collision diameter σ ) at all the layers increase except for
the first layer. Comparing the computational costs for one MD
simulation using LAMMPS in Table 5, the reduced model requires
only 1.77

5.3. Optimal potential parameters for sub-divided single layer

Consider a reduced model with the sub-divided single layer of
L-J potential wall in Fig. 8, where the image of mica is inserted
in Fig. 8(b) just for the visualization purpose of sub-divided sin-
gle layer. The single layer is divided into 16 segments and the
dimension of each segment is 10.3836 × 9.0154. The single po-
tential wall is used instead of the mica substrate in Fig. 8(a). Three
models are constructed to verify the effectiveness of potential wall
of sub-divided single layer; (A) sub-divided potential wall model
(in-house), (B) single layer potential wall model (in-house), and
(C) single layer potential wall model (LAMMPS). Initial potential
parameters for all the models are ε = 0.0061149, σ = 3.6000,
which stand for the characteristics of hydrogen atoms.

In Fig. 9, the performance of sub-divided potential wall models
(A) is comparedwith that of the single potential wall models (B, C).
MD simulations with NVT ensemble are performed for 50 ps using

Table 4
Comparison of design variables.
Layer ϵ σ

(a) Original (b) Optimal (b)/(a) (%) (c) Original (d) Optimal (d)/(c) (%)

1 6.1149e−03 5.5216e−04 9.0298 3.6000 3.3921 94.2263
2 1.9149e−03 1.3794e−01 7203.6054 3.2488 3.2520 100.0978
3 9.7640e−04 4.3133e−03 441.7581 1.9562 1.9562 100.0019
4 6.1149e−03 4.6868e−02 766.4584 3.6000 3.6050 100.1383
5 1.9149e−03 1.1970e−02 625.1031 3.3379 3.3383 100.0113
6 6.1149e−03 1.0833e−02 177.1568 3.6000 3.6006 100.0171
7 9.7640e−04 1.0369e−03 106.1984 1.9562 1.9562 100.0000
8 6.1149e−03 7.3242e−03 119.7769 3.6000 3.6002 100.0044
9 1.9149e−03 2.4369e−03 127.2601 3.2488 3.2488 100.0006
10 6.1149e−03 6.1203e−03 100.0883 3.6000 3.6000 100.0000
11 3.8298e−03 3.8298e−03 100.0000 3.1597 3.1597 100.0000
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Fig. 5. Multi-layer potential wall (In-house OPT, LAMMPS OPT) and full model (Mica) (top: a comparison of the full mica model and OPT model, bottom: purple section
indicates potential energy difference between potential wall model with initial parameters and full mica model, red section indicates potential energy difference between
potential wall model with optimized parameters and full mica model). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Configuration comparison at terminal time: (a) Full model (Mica), (b) Full (yellow) and reduced optimal (red). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 7. Optimization history (6 gradient calls, 39 function calls).
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Fig. 8. Mica and gold nanoparticle models (a) Full model (front view) (b) Sub-divided single layer model (top view).

Fig. 9. Comparison of various potential wall models.

Fig. 10. Potential energy in model A (blue), model C (black), and optimal model A (red). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 5
Comparison of computation costs (LAMMPS).
(a) Full model (sec) (b) Reduced model (sec) (b)/(a) (%)

4739.48 84.0308 1.7730

the time step of 0.1 fs. Model (A) shows similar potential energy
trajectory compared to the other models (B, C).

Using the gradient based optimization algorithm,we determine
the optimal L-J potential parameters for sub-divided single layer
model (A). The total number of design variables is 32 (energy
depth ϵ and collision diameter σ in each segment of L-J potential
wall). In this optimization problem, the objective is tominimize the
squared difference of time averaged potential energy of mica and
sub-divided single layer potential wall model between 27,300 and

27,600 time steps. The objective is to minimize the time averaged
potential energy between 27,300 and 27,600 steps.

Minimize

ψ =
1

t2 − t1

∫ t2

t1

w(t)
{
Φm

A (t) −Φm
C (t)

}2dt,
t1 = 27, 300, t2 = 27, 600, (30)

Subjected to

0.0001 ≤ εi ≤ 100 (i = 1, . . . , 16)
0.1 ≤ σj ≤ 100 (j = 1, . . . , 16) . (31)

Fig. 10 compares the history of potential energy in models A
and C, and the optimal model of A, up to 50,000 time steps. The
potential energies in models A (blue) and C (black) show similar
tendency until around 26,000 time steps but its difference starts
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Table 6
Optimization results.
Segment ϵ σ

(a) Original (b) Optimal (b)/(a) (%) (c) Original (d) Optimal (d)/(c) (%)

1 6.1149e−03 100.0000 3.6000 100.0000
2 6.1149e−03 100.0000 3.6000 100.0000
3 6.1149e−03 100.0000 3.6000 100.0000
4 6.1149e−03 100.0000 3.6000 100.0000
5 5.3916e−03 88.1674 3.5998 99.9940
6 1.4557e−03 23.8063 3.5977 99.9370
7 1.6910e−02 276.5442 3.6046 100.1285
8 6.5386e−03 106.9283 3.6002 100.0067
9 5.8116e−03 95.0395 3.5999 99.9972
10 8.0306e−04 13.1328 3.5977 99.9364
11 1.6961e−02 277.3777 3.6055 100.1537
12 6.0390e−03 98.7588 3.6000 100.0004
13 6.1149e−03 100.0000 3.6000 100.0000
14 6.1149e−03 100.0000 3.6000 100.0000
15 6.1149e−03 100.0000 3.6000 100.0000
16

6.1149e−03

6.1149e−03 100.0000

3.6000

3.6000 100.0000

to increase between 27,300 and 27,600 time steps. Notice that
the potential energy in the optimal model A (red) still has some
deviation from model C (black) but matches very well between
27,300 and 27,600 time steps. The optimization process is quite
convergent and the objective function of Eq. (30) is monotonically
decreased.

Optimally determined design variables are compared with the
original values in Table 6. Notice that there are some changes in the
variables (energy depth ϵ and collision diameterσ ) of the segments
around the nanoparticles and the energy depth especially varies
significantly.

6. Conclusions

Only limited sort of substrate structures and the force field
parameters are available due to the empirical nature of fitting pa-
rametersmatching the bulk properties of targetmaterials. It is well
known that these drawbacks make it difficult to fulfill the needs of
rapidly increasing interest of correlating theMD simulations to the
physical experiments. Thus, we developed an adjoint DSA method
for the constant temperature MD simulations with a Nosé–Hoover
thermostat. In numerical examples, with the proper parameters
and positions of multiple layer L-J potential walls determined by
design optimization, we successfully reproduce the behavior of
silicate substrate while dramatically saving is achieved in com-
putational costs. The difference of potential energies between the
reduced and the fullmodels is significantly reduced around the ter-
minal time, which is due to the optimal determination of potential
parameters by reducing the deviation tendency during some time
steps. Comparing the computational costs for one MD simulation
using LAMMPS, the reduced model requires only 1.77.
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