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Abstract

Methods for performing large-scale parallel Molecular Dynamics(MD) simulations are
investigated. A perspective on the field of parallel MD simulations is given. Hardware and
software aspects are characterized and the interplay between the two is briefly discussed.

A method for performing ab initio MD is described; the method essentially recomputes
the interaction potential at each time-step. It has been tested on a system of liquid water
by comparing results with other simulation methods and experimental results. Different
strategies for parallelization are explored.

Furthermore, data-parallel methods for short-range and long-range interactions on
massively parallel platforms are described and compared.

Next, a method for treating electrostatic interactions in MD simulations is developed.
It combines the traditional Ewald summation technique with the nonuniform Fast Fourier
transform—ENUF for short. The method scales as O(N log N), where N is the number
of charges in the system. ENUF has a behavior very similar to Ewald summation and can
be easily and efficiently implemented in existing simulation programs.

Finally, an outlook is given and some directions for further developments are suggested.
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[Statistical mechanics provides] the methods that must be
employed when we wish to predict the behaviour of a
mechanical system on the basis of less knowledge as to its
actual state then would in principle be allowable or
possible. Such partial knowledge of state is in reality all
that we ever do have, and the discipline of statistical
mechanics must always remain necessary.

Richard C. Tolman
C h a pte r 1 The Principles of Statistical Mechanics

A Perspective on Molecular
Dynamics

particles by repeatedly calculating the interactions between the particles

and integrating their equations of motion. This process traces out a dis-
crete phase-space trajectory. Combining statistical mechanics and kinetic theory,
microscopic properties of the system can be calculated. Sampling and averaging
these properties of the system along a sufficiently long trajectory approximates the
corresponding macroscopic properties.

There are three main scenarios for the use of MD. In the first scenario the
simulated properties are compared with experimental results, and when the two
agree it is reasonable to claim that the experimental results can be explained by
the simulation model. In the second scenario, MD simulations are used to interpret
experimental results. In a sense the second scenario is the inverse of the first. In the
third scenario, simulations are used as an exploratory tool to help gain an initial
understanding of a problem and give guidance among possible lines of investigation,
be it theoretical or experimental. In all these scenarios it is often the case that a
larger simulation is a more realistic model.

Molecular Dynamics simulation is today an increasingly common approach for
performing many-body calculations on the condensed states of matter. Since the
first proof-of-concept simulations, almost five decades ago, it has, over the last
thirty years, become an established area of science and is continuously developing
with the aid of improved physical models, more efficient algorithms and faster
computers. Simulations can always be extended to cover longer time periods and
the modeled systems can always be made larger than the largest systems studied so
far. Furthermore, the models can also be made more accurate and brought closer
to the fundamental physics.

The interactions calculated during each time-step are all independent, and once
the total interaction on each particle is known the new position can be found inde-

-\ /| OLECULAR Dynamics (MD) models properties of a system of interacting
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pendently of all the other particles. In principle, this means that the calculations
performed during each time-step could all be done in parallel, but achieving this in
practice, while maintaining efficiency and generality, remains a considerable chal-
lenge. Consequently, there is a strong motivation for developing more accurate and
efficient methods for performing MD simulations that also has favorable parallel
properties. The focus of this thesis is the investigation of a few of the possible av-
enues of method development: MD using interactions calculated via first-principles,
parallel methods for short-range interactions and a novel mentod for long-range
electrostatic interactions. To set the stage for presenting the results I give a his-
torical background followed by a concise description of the MD method and some
aspects of how software and hardware influence efficient implementation for large-
scale problems. Finally, I complete this Chapter by discussing the scope of the
thesis.

1.1 Historical and Scientific Backdrop

YSTEMS of interacting particles is a general modeling paradigm that can be
applied to a wide variety of problems [1]; current examples cover the range
from galaxy- and star-formation to molecular phenomena. Many times it has been
observed that the time evolution of particle systems, the N-body problem, is well
worth studying. Often the more particles involved in the model, the more realistic
the model becomes. Below I give two examples of the historical background.

The gang of four: Tycho, Kepler, Galilei and Newton The earliest particle
models of celestial phenomena predates Newtonian Mechanics and also provided one
of the early successful applications of Newtonian Mechanics, i.e., Kepler’s laws of
planetary motion. This was to a large part made possible by the accumulated
work of Tycho Brahe, Johannes Kepler, Galileo Galilei and Isaac Newton and span
several centuries, but still makes a good example of how experiment, calculation
and theory interplay.

It is rather surprising, but we have a very exact description of how it all
started [2]. On the evening of November 11, 1572 the sky was clear. A young
Danish nobleman, Tycho Brahe (1546-1601), was returning home for supper from
his alchemical laboratory. He observed an unfamiliar starlike object in the sky,
much brighter than Sirius, Vega and even Venus. This observation was to become
decisive for the young man’s life. Using his own home-built and much improved
sextant, Tycho Brahe was able to show that the new star did not move relative
to the other fixed stars. This was against all established religious dogma and sci-
entific wisdom of the time—a new object among the fixed stars! Because of this
extraordinary discovery, he soon became famous throughout Europe and was given
the title of the Royal Danish Astronomer. For financial support he also received
the island Ven, between Denmark and Sweden. On Ven he built Uranienborg (“the
castle of the heavens”) and dedicated it to accurate astronomical studies. During
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a period of over twenty years, Tycho Brahe and his numerous assistants collected
an extensive amount of precise astronomical observations. However, in 1597, he
was forced to leave Ven. Tycho Brahe and his entourage finally settled in Prague,
where he received an appointment as the Imperial Mathematicus. While in Prague,
he invited Johannes Kepler (1571-1630) to join his group. Kepler eagerly accepted
the invitation. Unfortunately, their collaboration did not last more than about a
year, because Tycho Brahe died unexpectedly in 1601. Kepler took well care of
Brahe’s extensive and detailed observations. In a letter, dated 1605 Kepler wrote
“I confess that when Tycho died, I quickly took advantage of the absence, or lack of
circumspection, of the heirs, by taking the observations under my care, or perhaps
usurping them ...” (from page 280 of [3]). Or to put it more bluntly, he purloined
Tycho’s observations.

Nevertheless, Kepler used these observations in a very clever way—in the in-
troduction of Carola Baumgardt’s “Life of Kepler” [4], Albert Einstein uses the
expression “an idea of true genius” to describe Kepler’s work to formulate laws of
planetary motion. After many years of hard work, as well as keeping out of the
way of Tycho Brahe’s heirs who wanted the observations returned, Kepler made
his results public in “Astronomia Nova” in 1609. During the same period, Galileo
Galilei (1564-1642) carried out systematic experiments with moving objects [5, (],
and was able to formulate the laws for velocity and acceleration. He later published
them as “Two New Sciences” (1638). Finally, Isaac Newton (1642-1727), who built
on, combined, and greatly generalized the work of Galilei and Kepler, was instru-
mental in creating a working scientific method firmly grounded in mathematics.
Newton tested his own ideas by rederiving the laws of Kepler, while Kepler had
deduced his three laws from Tycho’s observational data. So in fact, at the very
foundation of Newtonian Mechanics we find this very fruitful relationship between
observation, calculation and theory. In the case of Tycho Brahe, Johannes Kepler
and Isaac Newton, using a modern vocabulary, it was Kepler who did the work of
a “computer”, while Tycho Brahe provided the experimental data and Galilei and
Newton supplied the theoretical and mathematical models.

Laplace’s vision “Given for one instant an intelligence which could comprehend
all the forces by which nature is animated and the respective situation of the beings
who compose it —and intelligence sufficiently vast to submit these data to analysis —
it would embrace in the same formula the movements of the greatest bodies of the
universe and those of the lightest atoms; for it, nothing would be uncertain and the
future, as the past, would be present to its eyes.” [7] In this magnificent statement
from 1814, Laplace is basically stating that the solution to the N-body problem is
the “answer to everything”,' provided that all the necessary calculations could be

performed.

!Depending on the context it is either 4711 [8] or 42 [];)
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Molecular Dynamics enabled by the computer From the above quote of
Laplace, it is clear that an embryonic idea, similar to Molecular Dynamics, had
been around for about 150 years, when the first published simulations results using
MD appeared in 1957 in conjunction with a study of the same system using the
method of Monte Carlo (Mc)[10, 11].

The enabling technology, the “intelligence sufficiently vast to submit these data
to analysis”, was the electronic computer. It was becoming available to a wider
group of scientists after World War II, and one of the earliest problem domains
addressed was computer simulations of particle systems [12, 13]. The computer
simulation approach to statistical mechanics via MD and MC was first met with some
skepticism [14], and it was not until the mid 1960’s when the first simulation of a
liquid system was published [15] that it started to gain a wider acceptance. One of
the systems used in this work contained 864 particles and each time-step took about
45 seconds using floating point arithmetic on a CDC-3600.2 The simplicity and
elegance of the method coupled with a drive to perform more extensive simulations
sparked an interest in developing improved algorithms. An early improvement was
the neighbor-list method as well as the rediscovery of the Stormer-Verlet method
for time integration [16]. With larger and more complicated systems, like water[17]
and ionic salts [18], there was also steady progress in method development for both
short-range interactions [19, 20, 21] and long-range interactions [20].

Today we know that Laplace’s vision was too magnificent, but all the same,
numerically solving the N-body problem on fast computational resources is certainly
one of the most widely applicable scientific models. Since the mid 1970’s, the
exponential increase in computer capability has had a profound influence on how
scientific problems can be addressed. The scientific method of interplay between
experiment and theory is now complemented by computational science. Molecular
Dynamics is a typical example of this.

1.2 Molecular Dynamics in a Nutshell

OLECULAR Dynamics simulation is one of a growing number of methods to
M study the macroscopic behavior of systems by following the evolution of the
system at the molecular scale. One way of categorizing these methods is by the
degree of determinism used in generating molecular positions [22]. On the scale
from the completely stochastic method of Metropolis Monte Carlo to the pure
deterministic method of Molecular Dynamics, we find a multitude of methods;
to name just a few examples: Force-Biased Monte Carlo, Brownian Dynamics,
General Langevin Dynamics [23], Dissipative Particle Dynamics [24, 25], Collisional
Dynamics [26] and Reduced Variable Molecular Dynamics [27]. T give a sketch of
the method of Molecular Dynamics by describing how integrators, force fields and
boundary conditions are combined with the classical equations of motion. More

2CDC—Control Data Corporation, started in 1957. Seymour R. Cray was one of the founders
of CDC. In 1972 he left CDC to start Cray Research Inc.
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details can be found in a number of excellent textbooks that describe the theory
and practice of Molecular Dynamics [28, 29, 30, 31, 32, 33]. For understanding
integrators and how they can be adapted for other ensembles I have found [34]
outstanding.

1.2.1 The MD method

Let r"V denote the set of vectors that locate each center of mass of each of the atoms
in a system, rV = {ry,rs,...,ry}. The particles in the system each have d degrees
of freedom. Assume that the N point particles interact through a continuous pair
potential, V(r"). This pair potential is a model of the interaction between two
particles. Let the mass of each particle ¢ be m;, and let F; be the total force acting

on particle ¢ at time t. Newton’s equation of motion for each particle, i =1,..., IV,
can then be written as
d’r; .

With the assumption of pairwise additive, conservative inter-atomic forces, that are
only a function of the pair separation, the force that particle j exerts on particle i
is

fi; = —ViV(rij), (1.2)

where r;; = ||r; — r;|| is the pair separation. The total potential energy of the
system is a sum over all pairs and the total force acting on each particle 7 is found
by summing over all pairwise interactions

B, = %ZV(mj% (1.3)

N
F, = fi,(j #1) (1.4)
j=1
It should be noted that because of Newton’s third law f;; = —f;;, each pair interac-

tion has to be calculated only once, but of course must still be summed into both
F; and F; with opposite signs.

In equilibrium NVE Molecular Dynamics simulation new molecular positions are
obtained by solving Newton’s equation of motion numerically. In solving Equa-
tion (1.1) use Equation (1.4) and also specify the initial and boundary conditions
of our d dimensional system. This results in a set of d x N coupled second-order or-
dinary differential equations and a total of d x N degrees of freedom.? The equations
are discretized and new positions and velocities for each atom is found numerically
by integrating forward in time:

3With total momentum conserved, subtract d.
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1. Specify the initial conditions (N, initial temperature, boundary conditions,
model potentials, molecular connectivity, time-step, density, . ..).

2. Construct initial structure of the system and give initial velocities to the
particles.

3. For each time-step of the simulation

a) Compute all forces, energies and optional properties (temperature, pres-
sure, ...).

b) Integrate equations of motion.

¢) Sample system properties at regular intervals.
4. Compute averages of system properties.

In equilibrium MD an isolated system of fixed volume V and a fixed number
of molecules N is studied. Because the system is isolated its total energy F is
constant and thus the variables N, V and E determine the thermodynamic state.
The molecules of the system interact through model potentials. The positions of
the molecules are obtained by solving the equations of motion for each molecule.
Usually the dimension d = 3, but d = 2 is also common, and there are even
examples of four dimensional simulations [35]. From the solution one gets the
positions and velocities of each particle as a function of time. By applying kinetic
theory, statistical mechanics and time averaging over these particle trajectories,
macroscopic properties can be computed from microscopic variables. In Molecular
Dynamics, these properties can represent both static properties, like temperature,
pressure and pair distribution functions, and dynamics properties, such as transport
coefficients.

After completing the simulation the trajectory is analyzed to produce the simu-
lation results. It is assumed that by averaging over a sufficient number of time-steps
these time averages become approximate measures of the corresponding NVE en-
semble averages.

In the broader view, there are also other auxiliary tasks that may be included
as shown in the Figure on the facing page. To start a simulation of a complicated
system can be quite tricky, but is usually not computationally expensive. Analyzing
and visualizing massive amounts of data can be a challenge, and just as computa-
tionally expensive as producing the simulation itself. The visualization process can
also be parallelized.

An other addition that is becoming more and more important is the possibility
to get access to large computational resourseces via the network—the Grid. These
efforts are large topics in their own right, outside the scope of this work. In passing,
I note that there are several interesting possibilities under development that is be-
ing explored; a combination of high-speed networks, for sharing simulation results
stored in large digital libraries, distributed scheduling, advanced steering and visu-
alization techniques, such as immersive virtual reality, to analyze and understand
simulation results [36, 37, 38, 39].
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Initial/Restart t----------, Calculate
Configuration Forces

Configuration
Checkpoint  fe------------

Figure 1.1. The initial configuration can be created on the fly or from a restart file.
Complex systems may have to be assembled piece by piece from several specifications.
The Grid is represented by the “cloud” in the background.

1.2.2 Boundary conditions

Boundary conditions in simulations with the objective to study equilibrium prop-
erties of a bulk fluid should be chosen so as to minimize the finite-size effects and
boundary effects. One possible approach to this is to replicate the computational
box and use periodic boundary conditions [10], thereby making the simulated sys-
tem pseudo-infinite. The chosen computational box should be space-filling and it
is replicated throughout space in all directions. While there are several different
space-filling shapes [11] the cubic box is the simplest and most commonly used.

Periodic boundary conditions result in each particle having an infinite number
of interacting neighbors. Express the total potential energy of a periodic system in
a cubic box with side length L as

1 ’
Viot = 5 ZH: izj:veff(rij + IIL), (15)

where the factor 1/2 makes sure that each pair is counted only once, n is a vector
of integers and the prime over the second sum is a remainder that for n = 0 the
term ¢ = j should be not be counted. For short-range interactions it is reasonable
to make an approximation and restrict the number of interactions through the
application of a cut-off, r., around each particle. This can be well motivated by
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shielding effects. For long-range interactions, the periodic images must be taken
into account. In terms of Equation (1.5) it means that for the short-range part we
only need to include the n = 0 term, However note that for reproducible results it
is crucial that the cut-off is made smooth [12]. The cut-off, r., defines a spherical
neighborhood around each particle and for consistency with the minimum image
convention it should fit inside the computational box. In general, if L is the shortest
edge of the simulation box, r. < L/2.

The particles in the central computational box is surrounded by image particles
residing in each of the periodic replicas of the central box. The image particles
move in exactly the same way as the particles in the central computational box.
The periodic boundary conditions are implemented so that when a particle moves
out of the central computational box during the course of the simulation, its periodic
image reappears at the opposite side of the central computational box.

The inter-particle distance used in the simulation is calculated using the “min-
imum image” convention. It assumes that the size of the simulation box L > 2r..
This ensures that all particles j within the interaction range of particle ¢ are
uniquely determined. The distance between two particles ¢ and j is the small-
est of all the possible distances between particle ¢ and j, including all the replica
images of particle j. Take the cubic box with edge length L centered at the origin
as an example. This restricts the Cartesian coordinates in each dimension to lie in
the interval [—L/2, L/2[ and consequently the difference in each coordinate value,
Ajj o, ={z,y,2}, is in the interval [0, L[. We find the minimum image distance
in each coordinate direction by taking the smallest absolute value from the three
possible minimum values {A;; o — L, Ajj o, Aijo + L}, o = {z,y, 2}.

A different computational box also means that a different minimum image dis-
tance criteria must be used. For example the truncated octahedron which has a
reasonably simple minimum image transformation [11, 43, 44]. A further refinement
by Bekker [45, 46] develops an interesting simulation box transformation method: a
MD simulation formulated for example in a truncated octahedron box can be trans-
formed into triclinic simulation box via a preprocessing phase. This procedure
implies that every Molecular Dynamics may be done in the same type of box.

Using the minimum image distance criteria ensures that the distance between
two particles varies continuously as particles move out of the central computational
box and reappears at the opposite side. Furthermore, the periodic boundary condi-
tions have the effect of restraining unphysical density fluctuations. However, it also
means that particles in the central computational box will never be more than half
the box length L apart and phenomena with a characteristic length-scale longer
than L become suppressed [17, 18].

1.2.3  Force fields in atomic systems

The interactions between atoms are the most fundamental input of MD simulations.
From a physical point of view all the important contributions to the forces origi-
nate from electronic interactions between the nuclei and the electron clouds of the



1.2. MOLECULAR DYNAMICS IN A NUTSHELL 9

atoms [49, 50, 51]. Some of these contributions are classical, like the Coulomb in-
teraction, while others, like dispersion, require a quantum mechanical explanation.
These model interactions have both attractive and repulsive parts and are often
non-additive. In general the total potential energy of the system is often written
as a sum of n-body terms, n=1,2,3,...

V(ri, re, ..., TN) = Zvl(n) + ng(ri,rj) + ng(ri7rj,rk) +.... (1.6)
i ij

.3,k

The first term on the right hand side represents the effect of an external field on
the system. Examples are external, magnetic or electric fields or fields which model
container walls. The second term is the so called pair potential. It is summed over
all distinct pairs of particles. The third term is the three-body potential and should
be summed over all distinct triplets. Higher order terms are expected to be small
compared to the two-body and three-body terms and are consequently neglected.

In the vast majority of MD applications a further simplification is made by using
effective and pair-wise additive potentials for atomic interactions. In simulations
which contain flexible molecules, it is common practice to add terms which repre-
sent chemical bonds, bond angles, improper torsions and dihedrals. Interactions
between atoms of molecules are represented by effective additive potentials. This
empirical approach splits the total potential energy of the system into a bonded
(inter-molecule) and non-bonded (intra-molecular) part.

For an isolated system there are no external influences, so the first term of Equa-
tion (1.6) is zero. The effective pair potential is a function of the pair separation
ri; = ||r; —r;|| and is constructed in such a way as to include the true pair potential
and average effects of higher order terms; it often includes also electrostatic and
dipolar effects. The total potential energy of the system is then a sum over all
distinct pairs of particles

Vet = % Z Vert(Ti5)- (1.7
i,

Interactions can be described using different attributes, but from a computa-
tional point of view the most important dividing line is between long-range and
short-range forces. The prototypical short-range interaction is the ubiquitous 12-6
Lennard-Jones potential. The Coulomb interaction is an example of a long-range
interaction.

In MD it is common to describe an interaction as short-range when its potential
decays more rapidly than r—¢, where d is the dimensionality of the system. The
reason being that the approximate contribution to the total potential energy of all
particles outside the cut-off is well defined. For example, in 3D this contribution
is proportional to f:co V (r)4nr2dr, which is well defined when V(r) decays more
rapidly than r—3.

In calculating long-range interactions it is quite tempting to apply a simple cut-
off in the same way as in the case of short-range interactions, but this can be ruled
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out since it creates unphysical effects at the boundary of the cut-off sphere. For some
systems it seems that more advanced cut-off methods based on charge grouping may
constitute an acceptable solution [52]. However, there is a growing number of cases
which clearly show that long-range interactions, when present, are very important
and must be given careful consideration, especially in ionic systems [53, 54, 55, 56].
Consequently, a number of alternative approaches have been developed. Examples

are lattice sum methods [57, 58, 59, 60, 61], reaction field methods [62], cut-off
methods [63, 64, 65, 66], the isotropic periodic sum method [66], and hierarchical
methods [67] such as multigrid [68, 69, 70, 71, 72] and fast multipole methods[73].

Further approaches can be found in the excellent review [74].

The essential difference between these approaches is the way in which the in-
teractions beyond the cut-off are represented. In the cut-off methods, interactions
are set to zero for distances longer than the cut-off used, possibly with a constant
long-range correction applied. In the reaction field method, a continous dielectric
medium with a given dielectric constant, is assumed beyond the cut-off; and the
long-range interactions are replaced with reaction field interactions. Replicating
the simulation box in all directions, using periodic boundary conditions (PBC), and
by summing over all the images when calculating long-range interactions, leads to
the lattice sum methods. Furthermore, these alternatives give different trade-offs
when it comes to computational cost and accuracy: the cut-off methods is the
least costly, but often introduces serious artifacts; the reaction field methods can
be viewed as a compromise between computational cost and accuracy and finally
the lattice sum methods are the most costly, but also widely considered the most
accurate.

The most prominent of the lattice sum method is the Ewald summation method.
It has its origin in condensed matter physics [57, 75] and is reckoned to be the
reference method for electrostatic interactions in systems modeled with periodic
boundary conditions. Even though the Ewald method avoids the truncation of long-
range interactions and thus removes the simulation artifacts caused by truncation
methods, it should be noted that there are still subtle, system dependent, issues
with how the periodic boundary conditions affect a simulation[66, 70].

1.3 Software and Hardware Interplay

OW that commonly available parallel hardware and software platforms have
N evolved to a sufficiently stable and mature state, their combination and ap-
plication to large-scale Molecular Dynamics provide both new challenges and new
opportunities. This is further underscored by the comparatively affordable parallel
platforms available through clustering of commodity processors and high-speed net-
works. At first sight it may seem that parallel algorithms for large scale Molecular
Dynamics simulations would be straightforward to design and implement, simply
because both the underlying physical phenomena as well as the MD method itself
can be described as naturally parallel. However, the large number and variety of
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published reviews of parallel MD algorithms from the mid 1980’s and onward —
a small selection is given by [77, 78, 79, 80, 81, 82, 83, 84]—is an indication that
there are many different parallelization aspects that can be taken into account when
designing and implementing parallel software to perform MD simulations.

1.3.1 General software aspects

Finding a good design often requires several iterations. This software effort can be
more or less supported by the programming environment used and it is undoubt-
edly of considerable help if encapsulation and code reuse has a strong support in
the programming language used. When designing and writing efficient programs
for large scale parallel MD it is clear that hardware specific details can not be ig-
nored. Incorporating hardware details specializes the program. In the worst case it
becomes so specialized that it can not be reused when the target platform becomes
outdated. This is a waste of human effort and in the long run simply not accept-
able. The challenge is to design programs so that optimization can be applied with
minimal loss of versatility, generality and portability.

MD is a typical exponent of the 90/10 rule which states that a program spends
90 percent of its cycles in 10 percent of its code [85]. In MD, these 10 percent of
code consist of the force calculation and time integration parts. These parts of the
algorithm are consequently the primary target when optimizing.

Not so long ago, there was a great variety in parallel computer architectures [36].
A large number of experimental parallel computer architectures were proposed and
built. A number of these became commercial products, but the variations in ar-
chitecture between vendors and also between generations from a particular vendor
was substantial. In the case of large scale Molecular Dynamics simulations, the
hardware used has evolved from mainframes and vector-based supercomputers to
parallel computers of different designs. Today, high performance computing (HPC)
for large scale MD is synonymous with parallel computing. Until the late 1980’s, the
software development was very much curtailed by the limitations of hardware, where
the size of available computer memory was the most critical factor. At present, the
most critical aspect for large scale parallel MD simulation is not the hardware, but
the software. Coping with increased problem and algorithmic complexity, as well as
varying hardware platforms is a daunting task. Adding the requirement of optimal
use of hardware resources makes the development or modification of an efficient
and portable parallel MD simulation software a formidable challenge.

To meet this challenge users should first ask themselves what kind of problems
they intend to solve. Often a combination of improved software and hardware ca-
pabilities means that a PC may be good enough for routine simulations. Special
purpose hardware, found in two categories today, is also an alternative. The tra-
ditional form uses specially designed hardware and software, the more recent uses
off-the-shelf hardware and de facto standard software.

Of the traditional special purpose approach, there are several successful projects
reported in the literature, out of which [37, 88, 89] is a small selection. At the
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moment, this approach seems to entail too long development times and also require
special software development. However, with sufficient economic incentive and
scientific need it may still become a viable alternative [90].

With arrangements like a PC cluster, running Linux and using software like MPI
or PVM, we have an alternative special purpose approach that is essentially software
based [91, 92, 93]. There are two key reasons why this kind of approach has become
so prevalent: first a PC cluster requires modest hardware investments and can be
expected to be run in dedicated mode; secondly, since the used software is de facto
standard, programs can be expected to have a longer lifetime and the methods and
algorithms used in the programs can be gradually evolved for best performance.

For optimal use of the available resources, an appropriate computational re-
source to solve a particular problem should be applied. See Figure 1.2. There is a
distinct difference in the services delivered by resources aimed at maximal through-
put and resources aimed at maximal speed. Specifically, this means that, in the
best of worlds, the many simulations that can run on a PC should use this type of
resource and supercomputers should be reserved for truly large scale simulations.

At the high end of the hardware simulation spectrum considerable human effort
is needed and can be motivated by the intrinsic scientific or technical nature of
the problem. The software developed should have a long useful lifetime and over-
all efficiency and speed should be of primary importance [94]. However, the list of
promising parallel computer vendors that are no longer in business grew long during
the end of the 1990’s. Despite this sad fact, software for programming parallel com-
puters has made a number of important advances in the past decade. There is now
a reasonable and growing basis of standard software tools and languages available
that can be used to write efficient programs that can be expected to deliver ade-
quate, but not outstanding, performance on a variety of platforms. Highly efficient
codes still require extensive tuning which are processor and platform dependent.

Dealing with this situation requires an approach which separates the general
from the specific. Software should be constructed so that hardware independent,
general, parts are kept separate from the specific, hardware dependent parts. Valu-
able aids in this process are programming models which help make the distinction
between the general and specific, putting strong emphasis on testing and incremen-
tal development [95, 96, 97]. Designing these types of models are large subjects
in themselves [98, 99, ]. In addition, performance models of computer systems
and applications are valuable guides in understanding how a particular application
performs on a specific platform. When these models are used together they can
clarify what parts of an application are critical for performance and also help to
show what computational resource to use [101].

1.3.2 Parallel computer models

There are many compelling reasons for having a parallel computer model made to
order for parallel MD. The major motivation is that it gives a clear framework for
rethinking old algorithms and formulating new ones. It can also help in building
the performance models required and suggest which hardware features are most
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Figure 1.2. Bar-chart sketch of computer resource spectrum. For optimal use of the
available resources, an appropriate computational resource to solve a problem should be
applied.

important to efficiently solve the problem at hand. Finally, it may also give guidance
for how implementations should be done.

When the Eckert-von Neumann computer model appeared, the concept of the
stored program computer quickly became the most common way to organize and
think about computers in commerce, industry, science and education [102]. The
Eckert-von Neumann computer is composed of a memory and a central processing
unit (CPU). See Figure 1.3. The memory holds both the program and the data. The
CPU executes the program which consists of a sequence of instructions which specify
memory addresses, arithmetic-logical operations or branch statements. Memory is
assumed to be flat, meaning that there is little or no time difference in accessing
different parts of the memory. This simple model has proven remarkably useful
and is still the dominant hardware model, often more or less implicitly assumed in
algorithm design and programming languages.
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Figure 1.3. Model of Eckert-von Neumann computer. The Eckert-von Neumann
computer is composed of a memory and a central processing unit (CPU). The memory
holds both the program and the data. The CPU executes the program which consists of a
sequence of instructions which specify memory addresses, arithmetic-logical operations
or branch statements.

During the early part of the 1990’s, there was a vivid debate between proponents
of multiple instruction streams, multiple data streams (MIMD) and single instruc-
tion stream, multiple data streams (SIMD) parallel computers. This taxonomy,
which stem from Flynn’s classification [103, 104] of computer architectures, is now
mostly of historical interest. From a current hardware point of view the instruction
and data stream classification (SIMD, MIMD, ...) does not capture the most impor-
tant aspects of parallel hardware architecture for scientific computing with large
datasets. The vast majority of parallel computers today are clusters [91]. T assume
the following characteristics of the parallel computer model (See Figure 1.4)

o The nodes in the cluster are single Eckert-von Neumann processors or scalable
multiprocessors (SMPs).

e Nodes may be of varying processing power and have different amounts of
memory.

e Nodes communicate via a network of some kind, which may be more or less
visible to the programmer.

e The memories of the nodes are private, but a global addressing scheme may
be available through a combination of hardware and software.

e The cost of sending a message between two processors is mostly a function of
the size of the message and does not depend too much on the relative node
locations and other network traffic. However, the start-up cost of sending
messages can not be neglected.

e The node local memory is much faster to access than remote memory. This
implies that local read and write operations take significantly less time than
sending and receiving data from other nodes.
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Figure 1.4. The multicomputer. The nodes in the cluster are Eckert-von Neumann or
SMP processors. Nodes may be of varying processing power. Nodes communicate via a
network of some kind. The cost of sending a message between two processors is mostly
a function of the size of the message and does not depend too much on the relative node
locations and other network traffic. The memories of the nodes are private. The node
local memory is faster to access than remote memory.

The parallel computer model described above is often called a multicomputer.
Further discussions of different machine models can be found in [98, 100, 105].
The multicomputer model decouples node-local activities from communication.
This simplification decouples the performance critical aspects of parallel hardware:
calculations and communications. In practice it treats a multi-processor node on
the same footing as a node based on a single CPU microprocessor or a single vector-
processor, thereby allowing programming practices developed for these types of
nodes to be reused. Of course, there are still difficulties with how to construct
efficient programs for each type of node, but these problems have, to a large part,
already been addressed and also in some cases solved —at least in principle.

1.3.3 Programming models and languages

Parallel algorithms are designed with a parallel computer model in mind. In the
context of this work, programming models are supposed to explain how a program
will be executed while the parallel computer model is meant to be an abstraction
of the hardware. The programming model acts as a bridge between algorithms and
actual implementations in software.

There are a number of parallel programming models. The two most common
are SPMD (single program multiple data) and FPMD (few programs multiple data).
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Of these two, SPMD is the most widely used. In actual practice it means that the
same program runs on all the nodes of the parallel computer, but the nodes will
follow different paths through the program. These different paths are chosen based
on conditions that may evaluate differently on each node. The conditions can be
completely general, but often depend on the node identity or on local data computed
at the node. With FPMD, the task at hand is solved by a set of cooperating, but
different programs.

Closely related to SPMD is the data-parallel model. In this model the parallelism
is extracted from the parallel operations that can be performed on arrays of data.
Even though this programming model was first introduced on SIMD computers, it
is a misconception that it is tied exclusively to these types of machines.

SPMD programs are most often written using a combination of one of the stan-
dard programming languages and message passing libraries. There are at least a
half a dozen libraries around that can claim to do message passing, but today the
two major ones are PVM [106] and MPI. The latter is a de facto standard that is well
documented in [107, , , ]. The two libraries have slightly different func-
tionality, but at least for MD purposes they are largely interchangeable [111, .

The programming models that underlie Fortran [113] and C [114] are very sim-
ilar. Both support data structures and encapsulation. C++ [115, ] is for most
practical situations a superset of C.* C++ supports several programming paradigms,
including object oriented constructs. The object oriented programming paradigm
takes a radically different view at how a program is organized [121]. It revolves
around organization of objects which are encapsulations of data and the operations
which can be performed on this data. To manage complexity it uses the concept
of inheritance to help create abstractions through a hierarchy of objects. As expe-
rience has accumulated it has become clear that not all problems are best solved
using only a single programming paradigm [95].

Choosing a particular programming language does in fact also shape the solu-
tion domain that is conveniently accessible. While it is possible to emulate object
oriented constructs in Fortran 95 [122] I strongly believe that a suitable program-
ming language for a generic and extensible MD program needs built-in support for
these facilities. For new and more complex programming projects it is clear that
C++ programs can be written with very high performance while still retaining
portability [101, , , ]. Even though the learning curve is rather steep, I
believe that an object oriented software approach will become the rule rather than
the exception also in scientific computing. So in summary, as a complement to the
parallel computer model, the programming model and languages used go hand in
hand to allow modularity, encapsulation and extensibility.

4With C89 this is true, but to a lesser degree with the new ISO standard C98 [117, ].
However, with the revision of this standarad well under way [119], there is a clear goal to reconcile
most of the differences. See [120] and references therein.
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1.3.4 Performance models

When developing, parallelizing or porting an MD program, performance models can
be of great help in understanding how a particular algorithm or implementation
behaves and where the major performance bottlenecks are located in the code [126,

.

The attained performance improvements, when solving a particular problem of
size N on a parallel computer with P nodes are often quantified by the speedup.
The speedup, S(N, P), is defined as the quotient between the best sequential time
and the time to solve the problem on P nodes

I7(N)
Tp(N)

S(N,P) = (1.8)
Often T (N) can be difficult to obtain because a completely different algorithm
should be used on a sequential computer than on a parallel computer, or the problem
may be so large that it can not be solved on a single node. To still get a measure
of speedup, the best possible sequential time, T;°(N), can be replaced by T7(N).
That is, the time it takes to run the parallel algorithm and problem of same size
on a single node. This speedup is then called the scaled speedup. In theory the best
possible speedup that can be obtained is linear, i.e., using a factor f more nodes
the execution time is is scaled by a factor 1/f.

Notwithstanding, there are examples of super-linear speedup. These can most
often be attributed to memory effects. Dividing a problem up into smaller pieces
on several cooperating processors will make it more likely that a larger part of the
active problem data will spend more of its time in a faster memory, compared to
the case when the problem is solved on a single node. If the problem has been using
disk as a temporary storage media the effects of being able to fit the whole problem
into memory can be quite dramatic. For example, relative speedups of 527 when
running on a 48 nodes parallel computer is reported in [127].

For parallel computers the performance model is a function of the parallel com-
puter model. A general observation that is always important to have in mind, is
Amdahl’s law [128]. It can be stated in a number of different ways. A common
formulation states that if the sequential component of a program is 1/s then the
maximum speedup that can be attained on any parallel computer is s. A typical
MD program has a sequential component of about 10 percent, which according to
Amdahl’s law would imply a maximal speedup of 10. What must not be overlooked
is that Amdahl’s law assumes that the problem size is fixed. For many problems
this is not really the case. Furthermore, as the parallel component of a problem
grows at some rate, the sequential component will grow at a slower rate or not at
all. This observation, often called Gustafson’s law [129], implies that large parallel
computers can achieve excellent speedup if the problem to solve is allowed to grow
with the number of nodes employed.

Performance modeling can be approached in different ways. One way is to for-
mally derive the asymptotic behavior of the most time critical part of the program.
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The asymptotic behavior of an algorithm gives an estimate of the execution time
as a function of problem size and of possibly other parameters. The notation that
is commonly used is called “big-oh” [130]. For example, the statement that says
that some method scales as O(N3/?) means that there are positive constants ¢ and
N, such that for all N greater than or equal to N, the execution time, T'(N), of
the method is bounded by ¢N3/2. More formally we express this as

T(N) scales as O(N%/2):3N,, ¢ > 0 such that T(N) < ¢N3/2 YN > N,. (1.9)

The “big-oh” analysis may be misleading since the relevant problem sizes at hand
are much smaller than N, and the constant ¢ may also be quite large. To get more
relevant information that can help in the optimization process, it becomes necessary
to develop empirical models and perform benchmark runs [100].

Once the program has been verified and its basic performance characteristics is
understood, it may also be relevant to perform some processor specific fine-tuning.
This can consume a lot of time —and therefore one should be quite sure that it is
worth the effort before spending time on it. To first approximation, the parallel
computer model T assume (§1.3.2) also decides the performance model. Since I
postulate the decoupling of calculations and communications, account for these
activities separately; denote them by Tcac and Teomm, respectively. Furthermore,
because of imbalance in the computation or computer system also include the time
spent idling, Tiqe]. The total run-time, T', of an application on a system with P
processors can thus be factored into

T= Tcalc + Tcomm + T‘idle

= P-1 P-1
= F (Z clalc + Z Tgomm + Z izdle> :
=0 =0 =0

(1.10)

The latter quantities are straightforward to find, since they can be measured on
each node separately and then summed at the end of a run. By reordering or
overlapping communications and calculations it may be possible to decrease Tigie.
Should this not be feasible, a load-balancing strategy should be tried.

The most often used of the time to send a message consisting of L bytes, over
a link with a startup time ¢4 and bandwidth ¢,,, is given by

Tcomm =ts+ twL- (111)

In MD simulations the two most common communication patterns are nearest
neighbor communication on a logical grid and global all-to-all communication. In
both of these cases the amount of data communicated is often not large. This
means that the actual communication behavior can differ substantially from the
simple model of Equation (1.11) [131, ]. The upshot of this is that selected
methods should be based on actual measurements.
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1.3.5 Hardware aspects

In large-scale scientific computing, including MD simulations, the most performance
critical parameters of the parallel computer hardware from an application perspec-
tive are:

e bandwidth to memory,

e physical memory per processing node,

¢ sustained processing power of each node,
e network latency and bandwidth,

o sustained bandwidth to secondary media,
o aggregated physical memory.

The items in the above list are ordered in terms of decreasing approximate im-
portance. The first two items on the list are concerned with the physical memory
of the machine and the processing power of each node comes only in third place.
Network and secondary media follow thereafter. This ordering puts the focus on
the primary bottleneck in (parallel) computers used for scientific computing with
large datasets.

Organization of memory

Currently, the two most common types of computer memory technology are static
and dynamic RAM. Their respective acronyms are SRAM and DRAM. In SRAM
designs the emphasis on speed®. DRAM designs focus primarily on capacity. DRAM
designs uses a single transistor to store one bit while SRAM designs uses four to six
transistors per bit. This difference in design has consequences for how persistent
the contents of the memory are over time and accounts for most of the performance
difference between the two flavors.

Assuming comparable memory technologies SRAMs are about 8 to 16 times faster
than DRAMs, but also 8 to 16 times more expensive; the capacity of DRAMs are a
factor of 4 to 8 to that of SRAMs. The growth rate of DRAM capacity is a factor of
four between generations which appear approximately every three years (60% per
year). Unfortunately, the speed (access time) is only going up at a rate of 20% per
generation, and the latenecy is going down by about 7% per year[35].

Microprocessors have been getting 60% faster every year since 1987. This means
that there is a CPU-DRAM performance gap that is growing exponentially with a
factor 1.5 every year [85]. This growing performance gap makes it more and more
difficult for large scale simulations to extract the performance gains that the increase
in microprocessor peak performance appear to promise[l33, , ]. Tt is much
more likely that the increase in performance will be on a curve with a similar slope
to that of the memory access time.

5“SRAM can not swing a dead cat at DRAM capacity.”
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Figure 1.5. The memory organization pyramid. At the base of the pyramid we have
the most inexpensive and also largest storage capacity. As data moves up the pyramid
the access time becomes shorter, the memory technology more expensive, and because
of cost constraints there will be less storage capacity. At the top of the pyramid we find
the CPU registers.

In current high performance computer architectures one of the biggest challenges
is to optimize the performance of the memory system using a cost constraint. In
a broad sense, there are basically two organizations of memory: interleaving of
memory banks or a hierarchy of memories.

Interleaving memory banks mean that the memory is organized into B number
of banks. Consecutive memory locations are stored in adjacent memory banks: a
word with address a is stored in bank number ¢ mod B. The memory cycle time
is the minimum time between accesses to a memory chip. This means that there
is a maximum rate at which a memory chip can receive requests and consequently
a minimum time between two accesses to the same memory bank, the bank busy
time. This has performance implications for a program that has a memory access
pattern that hits the same bank more often than the bank busy time.

The hierarchical memory organization tries to maximize performance by using
several layers of increasing capacity and decreasing access time. Thinking of the hi-
erarchy as a pyramid, the memory technology of the base may vary. See Figure 1.5.
At the top of the pyramid we have the CPU with a small number of fast registers.
There are one or more levels of caches often called L1, L2 etc. Since a cache should
be fast it is constructed using SRAM. A typical solution is an L1 and L2 cache on
the same chip as the CPU and an external L3 cache made up of SRAM.



1.3. SOFTWARE AND HARDWARE INTERPLAY 21

Caches are organized in a number of equal sized slots known as cache lines. A
cache line consists of several consecutive memory addresses. The line size varies
from design to design, but is usually in the range of 64 to 512 bytes wide. When
the CPU requests a data item from main memory, the memory subsystem will check
to see if it can be found in cache. If the data is not in cache, a cache miss occurs.
When this happens the data item will be searched for at lower levels of the memory
system and when it is eventually found it is brought into the cache.

Data are fetched from memory in units of a cache line. This kind of memory
organization is motivated by the observation that data which is used often should
be accessible as quickly as possible and when a data item is accessed it is also very
likely that data items located close to it in memory will also be accessed soon. So
memory access patterns which are local in space and time will be quickly serviced.
Molecular Dynamics simulation algorithms often have quite a lot of potential for
memory access patterns that are local both in time and space. How well this
can be exploited is very much dependent on the data-structures that are used in
implementations. Which, of all possible data-structures, are optimal for MD is still
an open question.

Type of processing node

From an application performance point of view, the peak performance of a pro-
cessor is very rarely obtained. MD applications are no exceptions. What matters,
is the sustained performance delivered, when running the application in produc-
tion. The sustained performance actually measured is usually in the range from
5 to 50 percent of peak performance [130, , , , ]. These sustainable
performance factors should not be forgotten when a prize-performance analysis is
made.

Interconnect

The network topology of parallel computers used to be vividly debated. In fact,
to a such extent that one could believe that it was the most important issue in
parallel computing. This is no longer the case. Network speed and latency are
certainly important factors in deciding how general a particular parallel machine
is, but the problem is that developing new networks that can be built reliably and
cost-effectively is hard. Closely related to the network is the problem of I/O. For
large scale MD simulations it is becoming a very real problem which certainly must
be dealt with. See [141], for an interesting discussion on these issues.

1.3.6 Software and hardware interaction

The node type —microprocessor, multi-processor —as well as the communication net-
work and topology must be considered when designing an efficient program. With
the current state of affairs, it is clearly the node performance that must be consid-
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ered first. Secondly, appropriate parallel algorithms should be used. They should
map the problem domain to the network topology in an efficient way. Further
fine-tuning can be done by improving the load-balancing and also considering the
network topology, but the efforts spent on further iterations on the program’s single-
node performance is probably more rewarding.

It may sound like a paradox, but currently, in optimizing for a parallel com-
puter most of the effort should be spent on making sure that the individual node
performance is as good as possible. This is a consequence of the power of the indi-
vidual node compared to the network latency and bandwidth. In short, the current
parallel machines are of “large grain” type. The parallel algorithm used should
make every effort to communicate as seldom as possible. For best performance it
often means that a particular calculated value, needed on several nodes, can actu-
ally be recalculated more quickly on each node, compared to communicating it to
the nodes where it is needed. This is the parallel form of the classic optimization
trade-off between memory and CPU cycles.

1.3.7 Cost of calculating interactions

The naive MD simulation algorithm calculates the interactions for each of the N
particles in the simulation with all the other N — 1 particles. This gives rise to an
O(N?) computational complexity of the force calculation. Depending on the range
of the interactions, it is of course possible to do quite a bit better than this.

Since short-range interactions have a rather limited range one usually makes an
approximation and applies a cut-off radius, neglecting the interactions outside this
distance. We take this into account by denoting the cut-off range of the interaction
by r. and assume that the particle density is approximately uniform throughout
the simulation box. This means that the number of particles, found within each
particle’s cut-off sphere, is going to be roughly constant and proportional to rZ. So
by taking advantage of the local nature of forces we can bring the computational
complexity down to O(Nr9).

Long-range electrostatic forces between charged atoms can be treated using
many different methods. In MD simulations the models usually only include charges
and perhaps dipolar effects. Treating point dipole interaction is large subject in
itself [51].

Hierarchical methods for calculating long-range interactions achieve a computa-
tional complexity between O(N) and O(N log N), but with considerable variations
in the constants, hidden in the ordo notation. Practical implementation show that
this is very much true, with reported constants varying several orders of magnitude
for the same algorithm. The large variation can be attributed to both the efficiency
of the implementations, the actual hardware used and to the accuracy achieved.
This current state of affairs implies that the traditional approach based on Ewald
summation is still viable, especially since it continues to evolve and improve in com-
putational complexity [112, , ]. Further support of this view is the method
I present in §2.5.
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Figure 1.6. The simulation box with side length L, and the sub-cells width side length
l. A particle’s primary region, primary neighbor region and interaction sphere of radius
re < 1. The union of the primary region and the primary neighbor region is called the
interaction region of the sub-cell.

1.3.8 Algorithms for large-scale MD

I consider first methods for treating interactions where a cut-off . is applied. These
methods are central for treating both short-range and long-range interactions be-
cause the approaches for treating long-range interactions usually split the interac-
tion into a short-range component and a long-range component which can be dealt
with separately.

Short-range interactions

The short-range nature of forces can be exploited by making sure that interactions
are only calculated between those particles having a chance to interact due to
their mutual distance. Conceptually this can be envisioned by subdividing the
computational box, with box length L, into smaller cells with a side length, [. The
smaller cells completely fill the computational box and each particle is located in
exactly one of the smaller cells, which I call the particle’s primary region. By
choosing [ so that it is at least as large as the cut-off, [ > r., we can be sure to
find, for each particle, all the interacting particles in the primary region and the
3% — 1 cells that are adjacent to the primary region. Call these adjacent cells, the
primary neighbor region and the sphere with radius r. around each particle for the
particle’s interaction sphere. Also, call the union of the primary region and the
primary neighbor region for interaction region of the sub-cell. See Figure 1.6. All
particles located in a sub-cell will have their interaction spheres, by construction,
fit inside the interaction region of the primary cell. This geometrical fact explains
why it is sufficient to look for possible interacting particles in the cell’s interaction
region.
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Under the assumption of approximately uniform particle density, the computa-
tional work in calculating the force on a particle is proportional to the volume that
the force calculation algorithm searches for possible interactions. In our nomencla-
ture this is the volume of the cell interaction region, V7. In 3D we have 33 — 1 = 26
cells in the primary neighbor region and assuming that I = r. the domain decompo-
sition algorithm above has V; = 27r2. But for each particle the interaction sphere
has volume V; = 4712 /3 and V;/V; = 4m/81 ~ 0.16. So of all possible interactions
this straightforward method examines, only 16 percent actually do interact.

Now let us further examine the neighborhood of a particle j. The other particles
found in the interaction sphere of particle j will change from time-step to time-step.
The interaction sphere of particle 7 moves as j moves and the content of the sphere
will change because particle 7 moves and at the same time other particles move
in and out of the sphere. By adding a suitably thick skin, r, to the interaction
sphere we can expect to find all interacting particles of 7 within this larger sphere,
of radius r, = r. + rs, for a number of time-steps. Call the sphere with the radius
r, the particle’s neighborhood. See Figure 1.7.

By storing the information about those particles belonging to the neighborhood
sphere we can use this information to find all the particles in the interaction sphere
directly rather than searching through the interaction region every time-step. If
the overhead in storing and managing the information about the contents of the
neighborhood sphere for each particle can be amortized over a sufficient number
of time-steps, IV, the result should be a significantly faster method than always
recalculating the contents of the interaction sphere. The maximum number of time-
steps between updates of the contents of the neighborhood sphere will vary during
the course of a simulation and will depend of the size of the skin and the nature
and state of the system. In general, this can be viewed as a dynamical optimization
problem which does not have seem to have a straightforward solution. It is, of
course, possible to devise simpler criteria, but experience has shown that it is often
better to recalculate the contents of the neighborhood sphere at regular intervals.
Choosing the skin 75 in the range from 0.1r. to 0.2r. it will result in N, being
in the range from 10 to 20. In order for the recalculation of the contents of the
neighborhood spheres to be sure to find all interacting particles, the size of the
sub-cells must be larger than the radius of the neighborhood sphere, I > 7.

Again, assume uniform particle density, [ = r,, and that the overhead of neigh-
borhood construction is very small. We write down the volume, V,,, that the im-
proved force calculation method will search on average:

V, = 4nr3 /3 + Vi /N, (1.12)
The quota:
4N,
Vi)V, = cul (1.13)

(1+7s/r:)3(81 +4N,m)’

which for ry = 0.1r. and N, = 10 gives V;/V,, =~ 0.57. The optimal value may be
even better.
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Figure 1.7. The simulation box with side length L, and the sub-cells width side length
l. A particle’s interaction sphere of radius r. and its neighborhood sphere of radius
ry <1

One of the main drawbacks with the idea that each particle has its own neigh-
borhood sphere is that it will be rather costly in memory. The exact amount of
memory needed will depend on the state of the system, the number density and r,
but a rough estimate is that an order of magnitude more memory is needed. For
large-scale simulations this will sooner or later become a real problem. To lower the
memory needed, but still do better than the straightforward domain decomposition
algorithm we must group particles that are close together. There a several meth-
ods reported in the literature [145, , ]. Tt should be clear from the above
that there are a number of variations of the basic domain decomposition algorithm
for short-range interaction and there is still a room for improvement both in the
methods and the implementations.

Long-range interactions

In this discussion we limit ourselves to electrostatic interactions between point
charges. The overall system is assumed to be neutral. The potential field of charge-
charge interactions is in fact described by one of the classic differential equations,
namely the Poisson equation with periodic boundary conditions. Because of the
somewhat unusual boundary conditions it is important to realize that some care
must be practiced when applying a solution strategy.

There is a growing number of approaches to treat the essentially infinite reach of

charge-charge interactions [74]. To mention just a few which are well adapted to the
requirements of MD, we have charge group cut-off [52], the isotropic periodic sum
method [66], Lekner summation [148, 149, 150], Ewald [58] summation, smooth par-
ticle Ewald [142] summation and particle-particle-particle-mesh (P*M) [1]. There
are also several variations of hierarchical methods [(7]; a few examples are the
method of Barnes and Hut (BH) [151], multigrid [68, 69, 70, 71, 72] the fast multi-
pole method (FMM), with [152] and without [153] multipoles, and the cell multipole

method [154].
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Two standard methods are in common use in the MD community: the reaction
field method [33, 155] and the Ewald summation technique [57, 58, 156, 157]. There
are also various hierarchical algorithms which are quite attractive in principle, but
have proved to be challenging to implement efficiently in practice [158, , ,

) ) ) ) 9 }'

Since all of these methods solve the same problem, they have some features in
common. Excluding the cut-off methods and Lekner’s summation formula we have
essentially two classes of methods: hierarchical methods and Ewald summation type
methods. These two broad classes both view the full long-range interaction as a sum
of two components. The first component is short-range and the second component
is long-range. The short-range component of both classes can be performed using
domain decomposition. The exact manner in which the division into two parts is
done differs and this will also result in different approaches for the treating the
second component.

Implementation and other issues

The basic methods for treating short-range interactions are often called by the
common implementation methods used, i.e., Verlet neighbor lists [16] and linked
lists [19, 20]. I believe that this nomenclature should be reserved for the respective
implementation methods since they tend to stand in the way for better implemen-
tation methods and data-structure that could be developed. It is more appropriate
to use names which describe the actual algorithmic ideas.

In support of this view is the observation that neither Verlet neighbor lists
nor linked list can be very efficient on cache-based processors, since they have a
tendency to access memory in an unstructured way. The same access pattern is
also a headache on vector architectures. Examples of data structures that are
both efficient and likely to get better cache reuse can be found in [21, , ].
An improvement in the construction of neighbor lists can be found in [162]. Tt is
notable that Everaers and Kremer [117] also report very good vectorization of the
method they have developed.

1.3.9 Algorithms for parallel MD

The domain decomposition algorithm described in §1.3.8 can be parallelized in a
number of different ways. The MD algorithm contains opportunities for independent
operations on several different levels. In principle, the interaction on each particle
can be calculated independently of all the others and the same goes for time-
integration. For an in-depth discussion of these issues I refer to the review by
Fincham [163, 77]. This fine-grain parallelism is not really used in practice because
it does not really match the hardware in use today.

Note that the term granularity is often used in two contexts. One referring to
the parallel algorithm and the other referring to the hardware. The second meaning
refers to the capacity of each node while the first refers to the unit of parallelism
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the algorithm exploits. In general, it is important from a performance point of
view that the granularity of the parallel algorithm matches the granularity of the
hardware. A fine-grain algorithm can easily be made more coarse by the process of
agglomeration [100], but the opposite transformation may be much more difficult.
In the MD case agglomeration can be accomplished at different levels. Below I
discuss some of the levels which can easily be exploited [164] while still retaining
the advantages of domain decomposition.

Task queue

At the coarsest level, we may simply run the same program with slightly different
starting conditions. This may not look very useful at first sight, but since the
objective is to follow a phase space trajectory long enough for the time-scale of
the phenomena of interest, it is clear that several simulations running in parallel
will accumulate enough statistics faster. So at the start of the simulation several
independent tasks are created and given out to the available processors.

This approach is viable if we assume that we depart from an initial state of
the system that has been equilibrated and then add small perturbations at the
very start of each task. The chaotic nature of the system will make sure that the
different trajectories soon become completely uncorrelated and at the end of the
run the statistics of the different simulations can be combined. It is also possible
to start from an equilibrated system and run two simulations but with opposite
direction of time [165].

This approach may be applied using programs that are serial or parallel and
is an excellent approach for achieving good parallel speed-up with a minimum of
programming.

Replicated data and systolic loops

Replicated data (RD) is an approach which divides the force calculations evenly
between the available nodes [166, 80]. Each node is responsible for calculating the
forces on the particles which has been assigned to the node. Since the complete
system is replicated on each node this is straightforward. When all the forces on
the node-local particles have been calculated the positions of these particles can
be updated. An all-to-all communication must take place to distribute the new
positions of all particles in the system to all nodes. In this formulation of Newton’s
third law is not used.

By storing a complete force array for the whole system, Newton’s third law
can be used which halves the force calculations that must be done during each
time-step. But before the time-integration step the complete force array must be
globally summed and then distributed to all nodes. When this has been done we
can choose to integrate the whole system on each node and then go directly to the
next time-step [L67] or we can update just the node local particle coordinates and
then perform and all-to-all communication. See Figure 1.8.

Which one of these variations one should use is mostly a question of the balance
between communication and calculation of the parallel computer being used. In
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replicated coor di and velocities
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Figure 1.8. Replicated data method using only one global communication step. Parti-
cle coordinates and velocities are replicated on all nodes. A complete force array is also
stored on each node. By integrating the whole system on each node independently the
method only requires on communication step.

any case, as the systems grow larger the RD method will be limited by the all-
to-all global communication steps. However, there is an improvement of the RD
method which avoids global all-to-all communication [169, ]. Also it is possible
to combine the ideas of RD with systolic loop algorithms. The main reason to
do this would be to decrease the need for node memory and it also opens up the
possibility for overlapping communication and calculation [166, , , ].
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Figure 1.9. The mapping of regions of simulation space to nodes. The arrows show
where the sub-cells are needed during the force calculation. The outer layer of sub-cells
on each node cell represents the temporary space needed to hold particle position data.
(Adapted from [168].)

Spatial decomposition

Spatial decomposition is a parallelization strategy that maps spatial regions of the
system to each processor [167]. If these regions are large enough it implies that most
of the communication will be between processors that are topologically close and
it will also be mostly point-to-point communication. The global communication
that is needed will be concerned with obtaining global quantities, like temperature.
The domain decomposition algorithm naturally fits with the spatial decomposition
parallelization strategy of §1.3.8.

With coarse-grain nodes, fairly large regions of simulation space, containing
several sub-cells in each coordinate direction, should be mapped to each node. Call
these larger regions of space node cells. See Figure 1.9.

Using a cubic simulation cell, there are three basic classes of node cells: slice,
beam and block. To minimize the volume of communication the cubic node cell are
clearly the most efficient because it has the largest volume to surface ratio. If this
subdivision can be used it is clearly preferred, but other factors, like communication
latency and mapping of regions to physical nodes, may make it favorable to use a
slice or a beam decomposition.
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Figure 1.10. Retrieving the complete node region neighborhood consisting of 8 cells
in 2D using only 4 communication steps. The generalization to 3D is straightforward
by adding another two communication steps. The first two steps communicate in the
east/west direction, each sending and receiving particle positions that are within a dis-
tance 7, of the respective node cell boundary. The following two step perform the
communication steps in the north/south directions, but now some of the newly received
particles should also be communicated. See also Figure 1.9. (Adapted from [80].)

During each time-step the surface particles of the node regions must be com-
municated to the neighbor nodes that require them in their local force calculations.
Here we have a choice of using Newton’s third law or not; this is a typical parallel
optimization trade-off between using more memory and recalculating results [168].
In the case of cubic node cells and not taking advantage of Newton’s third law
we can bring in the complete node region neighborhood of all 26 cells using only
six communication steps [80]. See Figure 1.10. This means that a fair amount of
temporary memory has to be available.

An alternative method described in [173] is more aimed at saving memory rather
than communication. To take advantage of Newton’s third law we must also send
back the calculated forces to the originating node. See Figure 1.11. This means
that we communicate half as much data but twice as often. The positions have to
be sent out and the calculated forces sent back. The overhead in communication
may often swamp the gain from not recalculating forces. Still for some computer
systems this is still an effective approach [174].
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Figure 1.11. This communication pattern should send both particle positions and
force accumulators. Between communication steps force calculations are performed and
forces are successively accumulated. (Adapted from [173].)

The spatial decomposition strategy has the potential to scale linearly for sim-
ple systems. However, for more complex systems with large biomolecules it is not
yet clear how to best represent the large molecules in a distributed manner. This
challenging problem is discussed in [175]. The strategy may also suffer from load
imbalance which results in poor scaling. Some of the possible advanced load bal-
ancing strategies are discussed in [176].

1.4 Thesis Scope

S the capacity and availability of computers have increased, the MD models
that can be fruitfully simulated have grown in complexity. The construction
of the first successful supercomputer with vector registers —the CRAY-1 —in the mid
1970’s meant that new methods and algorithms had to be developed in order to
fully utilize the hardware capacity. This interplay of hardware and software became
more important when parallel computers appeared and started to be used for MD
simulations [36, 77] and continues to grow in importance as the peak capacity of
of the most powerful hardware platforms are expected to surpass the Pflop/s limit
around 2010 [177].

Now that commonly available parallel hardware and software platforms have
evolved to a sufficiently stable and mature state, their combination and application
to large-scale Molecular Dynamics provide both new challenges and new opportuni-
ties. This is further underscored by the comparatively affordable parallel platforms
available through clustering of commodity processors and high-speed networks. In
describing the scope of this thesis I first attempt to quantify “large-scale” Molecular
Dynamics simulations. The term “large-scale” in connection to MD simulations has
suffered from a very severe inflation ever since it was invented, in the beginning of
the vector-supercomputer era in the early 1980’s [178, 99, 177]. This, of course, has
been unavoidable due to the exponential growth in capability in computer hardware
technology. When classifying Molecular Dynamics simulations quantitatively, the
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Figure 1.12. A qualitative sketch of the simulation-scale phase-space. The intersection
points of the computational horizons with the (N, T, F') axes move towards larger values
over time because large simulations become possible to perform.

most important factors are: size of the system, coverage in time and the complex-
ity of the used model. Focusing on these particular aspects, I assign the following
three parameters to characterize any MD simulation:

e N, the total number of particles (or mass-points) in the simulation,
e T, the total number of time-steps in the simulation,

e F. the number of floating point operations per interaction and per time-step.
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To obtain a overview, I bundle them together into a three-dimensional space,
(N, T, F), which I call the simulation-scale phase-space. The range of these num-
bers vary several orders of magnitudes so it makes good sense to use a logarithmic
scale in each direction of the space. To define and use the first two dimensions
(N and T) is straightforward, while the third is more elusive. However, for our
purposes, reasonable estimates are quite sufficient.

In the very first MD simulations [10] only 32 particles were used. This number
was soon scaled up to close to 1000 particles [15]. The highest number of particles in
a simulation has gone up quite dramatically during the last couple of years. There
are reports of production calculations using over a 1 billion [180] and benchmarks
calculations for systems containing over 10 billion particles interacting via short-
range interactions [181]. The number of time-steps in an average simulation is
usually in the range from 10* to nearly 10% (corresponding to several hundred
nanoseconds). So currently I estimate that log(N) is in the range from 3 to 10, and
log(T) from 5 to 8.

Concerning the number of floating point operations, a simple Lennard-Jones
effective pair-potential has log(F') = 1.5, while common polarizable potential mod-
els have roughly log(F) ~ 2.5, because they have to be solved iteratively for
self-consistent results. However, recent developments is bringing this down to
log(F) ~ 1.8, by combining fast methods for electostatics and improved itera-
tive methods [182]. By generalizing the interactions and leaving the classical MD
interaction regime, I estimate log F' =~ 8, for a pure quantum many-body interac-
tion at the Hartree-Fock level [183] using a limited basis sets. To allow for more
exact interaction potentials in MD simulations I estimate that log F' will stay in the
range from 1 to 10 in the near future. Using these estimates, imagine collecting
simulation-scale phase-space points, (N, T, F), for a large number MD simulations.
Now, because computer resources are, after all, finite, all points can be found in
the first octant, below and to the left of a plane. Acknowledging this state of affairs
it is appropriate to call this plane the horizon of the MD simulation world [184], or
simply the computational horizon. The major part of all production calculations
are still performed with a moderate number of time-steps (corresponding to a few
hundred nanoseconds), using empirical pair potentials, and on systems with sizes,
much smaller than what could be maximally possible. So, in fact, the vast major-
ity of the points should be expected to lie in a region to the left of a plane I call
the average computational horizon. The truly large-scale simulations can be found
between the two planes.

Due to advances in implementations, algorithms, compilers, system software and
computer hardware capabilities, the computational horizons are steadily expanding.
A schematic representation of this is given in Figure 1.12. The intersection points
of the computational horizons with the (N, T, F') axes move towards larger values
over time, as simulations containing larger number of particles, extending over more
time steps and using more complex potentials become possible to perform.
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A natural question to ask is what is the motivation behind performing larger and
larger simulations? And, do we really need large-scale simulations? The simple an-
swer is yes! They allow us to perform more reliable and realistic simulations at the
same time as bigger and more complicated systems become possible to study. The
situation is analogous with computational quantum chemistry or weather forecast-
ing based on computer models. More specifically there are several factors pushing
the development towards larger simulations. A few examples based on the (N, T, F)
parameters in Figure 1.12:

o Longer simulations or a series of shorter simulations will give a more reliable
sampling of the phase space. Especially conformational phase spaces of flexi-
ble molecules. Also longer simulations are needed to get reliable statistics for
dynamical phenomena with long time constants.

e As the experimental techniques become more refined, it becomes possible to
perform simulations containing more or less the same number of particles
as the system on which the actual experiment is conducted on. This can
obviously be of great help in interpreting experimental results as well as giving
very detailed information at the atomic level, which would not otherwise be
available to the experimentalist.

o Immersing large biomolecules in solutions with solvent molecules and counter-
ions is computationally expensive. Most of the computational cost is spent on
simulating the solvent and electrostatic interactions. In a high quality simu-
lation, the solute should be solvated with several layers of solvent molecules
so that even a bulk region is included.

e MD simulations based on first principles quantum mechanical forces will be-
come more and more widespread. These methods are dramatically more ex-
pensive than classical MD simulations. (F increases several orders of magni-
tude, while N and T have to be decreased in these simulations in order to
make them feasible)

This thesis investigates methods for performing large-scale parallel Molecular
Dynamics in the sense given above. Referring to Figure 1.12 I have explored meth-
ods that advance along the F' and N axis.
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Albert Einstein
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Chapter 2

Results

parallel simulations is the focus of this Chapter. I start by describing

the development (§2.1) and parallelization (§2.2) of an ab initio method
that increases the number of operations (F') significantly, essentially recomputing
the interaction potential at each time-step; I continue with studies of methods
designed for massively parallel hardware platforms and large numbers of particles
(N) with short-range (§2.3) and long-range (§2.4) interactions; I end with a novel
method (§2.5) for treating electrostatic interactions.

-\ /| OLECULAR Dynamics algorithms tailored for systems requiring large-scale

2.1 QMD: a Novel ab initio MD Method

N the paper “A Parallel Quantum Mechanical MD Simulation of Liquids” we
I present and test a novel approach for doing Molecular Dynamics using forces
calculated from first principles. The method employs atomic forces calculated as
gradients of the variational energy expressions [185, ]. Arbitrary levels of quan-
tum chemical methodology and electronic state may be used. The computational
scheme is simple to implement, although rather expensive to use. Furthermore, the
approach can be applied to studies which are beyond the capabilities of current
classical simulations, e.g., simple chemical reactions or other chemical processes
involving excited electronic states or radicals.

We test the method using simulations of liquid water (with all internal degrees
of freedom included) and periodic boundary conditions. A modified version of
the computer simulation program “McMoldyn” [187] is the classical starting point
and we interface it to a standard quantum chemistry package, “Gaussian94” [188].
For our purposes, any other quantum chemistry package that contains calculations
of atomic forces could just as well be used. Forces are calculated at the semi-
empirical AM1 molecular orbital (MO) level, and at the ab initio SCF MO Hartree-
Fock level. Comparisons are made with corresponding classical simulations of water,
with simulations using the car-parrinello method [189], and to experimental radial
distribution functions [190].

35
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This is a time consuming method and it is necessary to use parallel computer
platforms to achieve the necessary compute power. Scaling and load balancing
properties of the adopted parallel scheme are discussed.

2.1.1 Algorithm

We replace the classical intra- and inter- molecular force calculations in a classical
MD program by the corresponding quantum mechanical force calculations. Forces
are calculated as gradients of the variational energy expressions [185, .

Start from the classical MD method with periodic boundary conditions (PBC)
and distances calculated from the minimum image criteria. For simplicity use the
neighbor-list (NL) technique [16]. We reuse this algorithmic structure, but the
classical pair-wise force calculations are substituted with quantum mechanical (QM)
calculations.

For each molecule in the simulation we get one QM calculation with the
molecule’s current NL included and minimum image criteria applied. See Figure 2.1.
Using this approach all participating molecules are treated in the same way; we get
N “cluster” calculations per time-step in a simulation containing N molecules. The
force calculations thus become many-body interaction calculations. It is important
to note that to continue with PBC we must treat each central molecule in every NL
in the same way.

The total energy is the sum of the potential energy of the nuclear positions
and the electrons plus the kinetic energy of the electrons and the nuclei. The
kinetic energy of the nuclei is computed using classical molecular dynamics. The
QM calculations are iterated to the same accuracy at each time-step to ensure
conservation of the energy. The approach described above leads to the following
tasks at each time-step:

1. Generate input files for the quantum chemistry program from the MD pro-
gram. Coordinates of molecules, kept in the respective neighbor-lists, are
used. Molecules in each neighbor-list become clusters. They form the input
to a QM calculation. With N molecules in the simulation cell, N quantum
mechanical cluster calculations are carried out in each time-step.

2. From each cluster calculation we extract the forces acting on the central atom
in the cluster. We also get energies, and atomic charges from a Mulliken
population analysis. Loop through all N clusters and calculate the forces on
each molecule.

3. Finally perform a numerical time integration and update the position and
velocity of each atom.

The cost of a time-step will depend on the size of the system (IN), the sophis-
tication level of the QM method employed, and the number of functions (L) in
the basis set. Since the clusters we calculate on can not be expected to contain
any symmetries to reduce the number of operations, the computational complexity
becomes O(NL*).
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Figure 2.1. A quantum mechanical MD method that is classical in the time domain
(CT) and quantum mechanical in the force domain (QF)-CTQF. The MD program
generates input files for the quantum chemistry program. With the minimum image
convention applied, the coordinates in the neighbor list of each molecule and the molecule
itself result in a “cluster” and a corresponding input file. From each completed cluster
calculation forces acting on the atoms of the central molecule in the cluster are extracted.
With all forces returned to the MD program it can perform a numerical time integration
step to update the position and velocity of each atom in the simulated system.

2.1.2 Method test

Comparing simulations of small and large classical systems of water, one finds minor
differences. We assume that the same holds true for small and large QM simulations.
A system of liquid water is prepared using classical MD. A cubic box is filled with
32 water molecules to a density of 1.0 g/cm?, giving a box length of 9.86 A. Water
molecules in the classical simulation are described using the flexible SPC potential
model [191, ]. Periodic boundary conditions and minimum image convention are
applied. The system is equilibrated classically at 300 K. Temperature is maintained
using the Noése-Hoover method [193, ]. The time-step is chosen to 0.2 fs. This
ensures that various types of fast motion of the water molecules are properly treated
as well as all the internal degrees of freedom, including bond-stretching and angle
bending.

The neighbor-list technique is used to calculate the intermolecular interactions.
Let the cut-off be half the box length. For each of the 32 water molecules, there



38 CHAPTER 2. RESULTS

is a spherical volume around its centre-of-mass (COM) containing 18-22 neighbors.
The varying number molecules kept in the neighbor-list is due to local density
fluctuations. After an initial classical simulation, the Newtonian forces are turned
off and the corresponding quantum mechanical forces, supplied by the interfaced
quantum chemistry software, are activated.

MD simulation at the AM1 level

After a classical MD simulation was carried out to equilibrate the system of liquid
water, the AM1 force field was turned on and the system equilibrated during 2000
steps. It took about 800 steps for the water molecules to adjust into the new
interactions, after which, temperature and energies were fluctuating around their
mean values. The simulation was continued another 3000 steps. The total length
of the simulation using the AM1 force field corresponds to 1.0 picoseconds. Use of
the AM1 method also serves as a soft intermediate between the classical force field
and the ab initio Hartree-Fock force field.

MD simulation at the Hartree-Fock level

The final configuration from the AM1 simulation was taken as an initial configura-
tion for a run with a Hartree-Fock force field. Again, the water system was first
equilibrated for 2000 steps in order to get it adapted into a new environment of
interactions. In Hartree-Fock calculations, the Fock matrix is diagonalized itera-
tively until a specified threshold, normally based either on the energy or on the
electron density, is reached. The energy of the whole system of water molecules in
the simulation cell is assumed to be conserved by solving the HF equations to the
same accuracy during each cluster calculation. This resulted in some fluctuations
in the numbers of iterations to reach convergence. As in the case of the AM1 model,
all runs had to be carried out without the use of symmetry. The basis set we used
was the limited sSTO-3G. The number of time-steps of the simulation was the same
as for the AM1 model. To the best of our knowledge, this is the first MD simulation
of liquid water carried out at the Hartree-Fock level.

Liquid structure of water

The Figures in the paper show 3 sets of radial distribution functions. Compared to
the experimental curves, all the simulations (both the classical and the two quantum
mechanical) give the first maximum position shifted to a closer distance. Compared
to the g(roo) function from a “full-scale” classical simulation with a larger number
of molecules using the same potential model [192], there are no essential differences
between the results. This would indicate that the liquid near structure of water
can be described reasonably well using as few as 32 water molecules. The position
of g(roo) from the AM1 simulation appears to be closer to the experimental curve
than the STO-3G curve but having a lower peak height.
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For the g(rom) curves there are some striking feature. The AM1 model com-
pletely fails to describe the hydrogen-bonds. The HF curve is much more shifted to
closer distances than the classical g(r), giving a too short H-bond distance. How-
ever, the height of the second peak is in better agreement with the experimental
curve.

For the g(rmpm) curves the AM1 model fails to reproduce the characteristic shape
of the H-H structure of water. The flexible SPC model and the HF STO-3G both give
too high intensities in comparison with the experimental curve. Again, the HF curve
is shifted too much to closer distances.

It is encouraging to observe that the structure and dynamics (see paper) of
liquid water can be described reasonably well by our simulations. In summary, the
results of our simulations is a strong indication that our method works.

2.1.3 Parallel platform

The parallel computer used was the IBM Power Parallel SP, commonly called the
IBM SP-2. The Sp-2 had a MIMD architecture: the interconnect was a high perfor-
mance switch with each node being a standard processor with local memory.

We started from a conventional MD program, added code to evenly distribute
the cluster calculations to different processors and also interfaced it to a standard
quantum chemistry package. The parallel communication library used was IBM’s
MPL. We have used the User Space (US) communication subsystem and the high-
performance switch. The parallel scheme is implemented in such a way that the
program will automatically accommodate for the number of available nodes at pro-
gram start-up. The Unix system call system is used to start the cluster calculations
from the MD program. To be able to use both US communication and system we
had to explicitly tell the compiler to use the extended memory model. Further
details of the software and hardware configuration used can be found in the paper.

2.1.4 Efhciency

Parallel computers are an obvious alternative when solving very CPU intensive
tasks [195]. MD simulations are naturally parallel since, during each time-step, in-
teractions on molecules can be calculated and accumulated independently of other
molecules. In the method under consideration, the number of tasks and processors
are approximately the same and the character of force calculation is very much
different than in a classical MD scheme. An overwhelmingly large fraction of the
total CPU simulation time is spent on calculating these interactions.

During each time-step, the quantum chemical calculations of molecular clusters
are, besides very CPU demanding, also completely independent of each other and
can be done concurrently. Also the integration of forces can be done locally to
obtain the new positions and velocities for the atoms. The amount of data to be
communicated is limited to the atomic coordinates, velocities of each molecule and
a few molecular properties. The inter-processor communication should practically
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not take any time at all in comparison to the time the nodes are busy doing the
force calculations. At first sight, this problem appears to be an ideal and straight-
forward problem to parallelize. We have a number of large-grain tasks that need
to communicate very small amounts of data, and during each time-step we only
need one synchronization point. This problem naturally fits the Replicated Data
(RD) [196, 197] parallelization. See Figure 1.8.

However, we can not use more than N processors and load balancing becomes a
problem if there are variations in the time it takes to complete a cluster calculation
task. With only one task per processor the most time consuming task in every time-
step sets the pace, and this means that efficiency will decrease. Since the problem
complexity is O(NL?) it is clear that in order to efficiently use more processors
than there are particles we must also be able to parallelize cluster calculations (the
L dimension).

We have calculated the speed-up by varying the number of nodes and processors.
The speed-up achieved is respectable for almost all cases. The most outstanding
exception comes from running the AM1 model on 32 processors. The explanation
for the poor speed-up in this case comes from the fact that the calculation times
of each cluster calculation are short and the variations in calculation time are
relatively large. In general, since we are using a static assignment of molecules to
processors, we can not expect speed-ups to be perfectly linear. Using a dynamic
assignment based on previous calculation times for each molecule one could devise
a load balancing scheme that would be slightly more efficient.

In the following paper (§2.2) we devise a method for using more than N pro-
cessors as well as a number of different load-balancing strategies.

2.2 QMD: Improving Parallelization and Scaling

HE previous paper (§2.1) identified two main hurdles for parallel scalability:
load-balancing and ability to use more processors than “clusters”. In the
present paper “Parallel aspects of quantum molecular dynamics simulations of lig-
uids” we improve the computational approach by providing solutions to these prob-
lems.

Our approach to ab initio MD is built on the basic assumption that quantum
mechanical interactions are short-range, particularly in comparison with Coulomb
interactions between point charges, present in conventional molecular simulations.
In our case the liquid is built from overlapping clusters where the effective radius
of the cluster is set by the range of quantum mechanical interactions. The number
of clusters is equal to the number of molecules, each molecule carrying its sur-
rounding in a small spherical liquid droplet. The force field is calculated without
any pre-determined parameters and without an assumption of pairwise additivity
of interactions. No distinction is made between intermolecular and intramolecular
forces and no constraints are imposed on the molecular geometry. This last feature
dictates that a very short time-step is used.
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The system simulated is the same as in the previous paper. Results from three
different simulations are presented. The basis sets used were STO-3G, 6-31G, and
4-31G*. Further details of these aspects are given in the paper.

2.2.1 Parallel algorithm

During each time-step quantum chemical force calculations are performed for each
of the N molecules in the system. In addition to the sophistication level of the QM
method employed, the cost of a time-step will depend on the size of the system (V)
and the number of functions (L) in the basis set used. The cluster of molecules on
which we calculate can not be expected to contain any symmetries to reduce the
number of operations. When using SCF Hartree-Fock the computational complexity
becomes O(NL?).

These calculations are independent of each-other. This gives a first level of
parallelism. To be able to use more processors than there are molecules we must also
parallelize the QM calculations (the L dimension). This second level of parallelism
comes from distributing the force calculations of each molecule over a number of
processors. On the first level, we thus have a number of large-grain tasks that
only need to communicate very small amounts of data, and during each time-step
we only need one synchronization point. The second level can be obtained by
using a parallel QM program. This problem naturally fits the Replicated Data (RD)
parallelization strategy [77, ]. See Figure 2.2.

2.2.2 Parallel implementation

A simulation is made up of thousands of time-steps and each time-step consists of
N force calculations. Consequently it is essential that each QM run starts quickly.
GAMESS [198] is an example of a general QM simulation package that meets this
requirement.

In constructing a parallel program that in turn can start several parallel in-
stances of GAMESS we need to decide on how many processors to assign to each
individual instance of GAMESS. In the general case, an appropriate partitioning of
the system must be found. This can be done by measuring the wall-clock time it
takes to perform the typical QM force calculations that are needed during the course
of the simulation. For a realistic assignment we also measure how these wall-clock
times vary when more processors are used.

In our simulations we have used a system which only contains one type of
molecule and this makes it reasonable to use the same number of processors for
each instance of the QM program. This can be achieved by arranging the available
processors in an p X m grid topology. In the implementation we use MPI. See
Figure 2.3. Each column is one parallel pool assigned to each instance of GAMESS
and the processors in the first row act as masters for each pool [199]. For a pro-
duction run we choose the number of processors (“pool size”) that delivers the best
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MD system parallel QM program

Figure 2.2. During each time-step, each of the N “cluster” calculations are indepen-
dent. Each of these calculations can also be parallelized. On the first level, we thus
have a number of large-grain tasks that only need to communicate very small amounts
of data, and during each time-step we only need one synchronization point. The second
level can be obtained by using a parallel QM program.

efficiency. When simulating an inhomogeneous system it is probable that other
arrangements with pools of different sizes are better.

In implementing the above scheme on the 1BM SP-2 we faced several practical
issues. The details of how these were resolved are found in the paper. Benchmark
results on water systems of different sizes are also reported for runs using from 16
up to 128 processors.

2.2.3 Better load-balancing gives improved scaling

Increasing the number of processors means that the number of tasks allocated to
each pool goes down. The initial benchmark results show less than ideal scaling.
The fundamental reason behind this behavior is the lack of tasks. This happens
when the last few tasks during each time-step is about to complete and all the other
pools are left idle. Better load-balancing strategies are needed which can handle the
varying force-calculation times and which are also reasonably simple to implement.
Starting from the simple static assignment of tasks to pools we have made several
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First row with one master per pool

Independent pools for QM programs

Figure 2.3. In simulations which only contain one type of molecule it is reasonable
to use the same number of processors for each instance of the QM program. This can
be achieved by arranging the available processors in an p X m grid topology. The
processors in the first row participate in the RD part of the parallel program and also
act as masters for each pool. Each column is one parallel pool assigned to each instance
of the QM program.

step-wise improvements to find a better scheme. The most obvious candidate is a
regular master-slave approach which will give out tasks to workers as soon as they
request it. By also keeping track of the wall-clock time used by each of the N
force-calculations during the previous time-step, the master can give out tasks in
a time-sorted order, starting with the tasks that took the most time during the
previous time-step. These two load-balancing schemes will distribute the available
work-load more evenly, but they do not actively address the task starvation issue.
One way of doing this is to change the number of pools allocated to a task once the
number of tasks remaining between two time-steps goes below a fixed threshold.
A natural threshold to use is the number of pools in the simulation. So, when
there are less tasks remaining than the number of pools, then tasks are allocated to
two pools which then combine forces on the allocated task. This algorithm keeps
more processors busy and result in better load-balancing and scaling. In the paper
we show the scaling behavior of these four load-balancing algorithms on a system
of 64 water molecules. Benchmark runs on an IBM SP using from 16 up to 128
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processors show that a load-balancing scheme based on the master-slave approach
with time-sorted work allocation of tasks strikes a good balance between obtained
speed-up and implementation effort.

2.3 CMmd: Data-Parallel Short-Range Interactions

HE paper “Data Parallel Large-Scale Molecular Dynamics for Liquids” develops
T a parallel algorithm suitable for simulating systems consisting of particles that
interact via short-range interactions. The interaction used in the paper is the
spherically symmetric Lennard-Jones potential: with a pair of atoms ¢ and j located
at r; and r;, separated by a distance r;; = |r; —r;|, the potential function used is

o \12 _ ( o \6 . —
Virg) = { 4e ((T7) (m_,») )When Tij < Teuwt = 2.80, @2.1)

0 when r;; > reys.

The parameter o can be interpreted as the atomic diameter and the parameter
controls the strength of the interaction.

The algorithm presented in the paper is a refinement of the serial link-cell algo-
rithm combined with the neighbor-list algorithm and adapted for a SIMD parallel
platform [19, 20, 87]. Furthermore, we show that it can be efficiently implemented
on a SIMD massively parallel computer —the Connection Machine CM-2. The im-
plementation uses CM Fortran, a high-level parallel language and an early precursor
of High Performance Fortran (HPF) [200] —a dialect of Fortran 95[113].

2.3.1 Parallel platform

The Connection Machine platform from Thinking Machines Inc. (TMC) was a mas-
sively parallel (SIMD) computer that contained both 1-bit processors and floating
point processors, as well as a high-performance parallel file system [201, ]. The
memory was local to the processor nodes. The clock frequency was 8 MHz for
the CM-2 model and 10 MHz for the CM-200. The CM-2 hardware system was
built in sizes of 4K, 8K, 16K, 32K and 64K. A fully configured system contained
8 Gbyte of memory, 64K 1-bit processors and 2K floating point processors. The
theoretical peak performance was 40 Gflop/s. Each physical processor emulated
a number of virtual processors via a combination of the run-time system and a
high-level language. The virtual processors could be transparently used through
high-level languages like ¢M Fortran. The interconnect topology was a hypercube,
and it supported both structured and unstructured communication patterns as well
as global logical operations and global numerical operations. The nearest-neighbor
communication (NEWS) had a cost per floating point value that was roughly two to
three times more expensive compared with a floating point operation. Unstructured
communication could cost several hundred times more.
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Figure 2.4. The simulation box with side length L, and the sub-cells with side length
. A particle’s primary region (“home cell”), primary neighbor region and interaction
sphere of radius rey: < I.

2.3.2 Algorithm

In the link-cell algorithm a simulation box is divided into a number of equally
sized cubic sub-cells. Let L be the simulation box-size. Choose the sub-cell size
l=|L/rcer], where reeyp = reut + 7skin- The “skin” is a small fraction of potential
the cut-off. This choice limits the search volume of possible interacting particles
to the 26 neighboring cells and the particle’s primary region (“home cell”). See
Figure 2.4.

Using force symmetry, F;; = —Fj;, we only need to consider 13 neighboring
cells and the home cell. The 13 neighbors can be divided into 3 groups: 4 “point
cells”, 6 “line cells” and 3 “plane cells”. The terms point, line and plane indicate
what geometrical object the cell has in common with the home cell. Thus, the force
acting on a particle consists of an intra-cell component and an inter-cell component.

The inter-cell component is calculated by a double do-loop over all the particles
present in the cell as is shown in the following CM Fortran code example

¢ Zero local potential energy

cm_pe = 0.0
do i=1,imax—1
c
c Compute inverse of distance squared between particle i and particle j.
c
do j=i+1,imax
deltal = xcl(i,:,;,:) — xcl1(j,::: )
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delta2 = xc2(i,:,;,:) — xc2(j,:,::)
delta3 = xc3(i,:,:,:) — xc3(j,:00)
r2 = 1.0 / (deltal * deltal + delta2 * delta2 + delta3 * delta3)

c Within cut off radius.
where (r2.1t.rssqi)
r2 = 0.0
end where
c Calculate L-J potential; use result only within cut off radius.
6 =12 %712 *r2
estr = (b12 * 16 + a6) * 16
fsr = (b12_12 * 16 + a6_6) * r6 * r2

cm_pe = cm_pe + esr

c Accumulate scalar force in x,y and z direction.

fe3(i,:,::) = fe3(ir,::) + fsr * delta3
fe3(j,:,:) = £e3(j,:000) — fsr * delta3
end do
end do

¢ Total potential energy.
c
pe = pe + sum(cm_pe)

The intra-cell component of each particle consists of 13 components originating
from the 13 neighbor cells of the home cell. For each of these 13 components
the inter-cell calculation proceeds as in the intra-cell calculation, but with a few
differences.

1. Before the double do-loop starts, the particles in each cell is sorted into two
buffers: the green buffer and the red buffer.

2. Inside the first do-loop the position of a red particle is shifted to the current
neighbor cell.

3. After the second do loop the force accumulated on the red particle is shifted
back to its home cell.

4. Finally, when the double do-loop has been completed the forces on the red
and green particles are accumulated.
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Figure 2.5. “Red” and “green” regions of the home cell when the neighbor cell is either
a point cell or a line cell.

The sorting procedure is based only on the distance of each particle in its home
cell to the geometrical object the home cell shares with the current neighbor cell:
a point, a line or a plane. The particles which are within the cut-off radius of this
object becomes red. The ones which are within the cut-off radius of the comple-
menting cell becomes green. The complementing cell is the unique symmetrical
counterpart found among the other 13 neighbor cells which are accounted for by
force symmetry.

Thus the algorithm colors particles red or green using only local computations.
Thereafter, red particles of the current neighbor are shifted to the home cell where
they interact with the green particles in the home cell. Red forces are shifted back
and accumulated. After all red and green particles have interacted, the total force
on each particle has been calculated.

The speed and efficiency of our algorithm result from a consistent use of in-
direct addressing features (node-local gather and scatter), available directly via
CM Fortran, in combination with an algorithm that can screen out interaction can-
didates with inter-particle distances longer than the cut-off of the interaction. The
operation of screening out potential interaction candidates is formulated so that it
does not require any inter-processor communication. In addition, it requires very
little additional storage.

2.3.3 Efhciency

The timings in the paper show that the program scales linearly on a computer sys-
tem with either 256 or 512 floating point processors and on system sizes up to about
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5 million particles. This was the size of the hardware platform available to us at the
time. With the combination of a scalable algorithm and the hardware architecture
of the CM-2/CM-200, one could expect a fully configured system to be a factor of
eight more powerful than the system we performed our calculations and timings
on. In spite of what was later reported in the review article by Plimpton [80], it is
clear from the timings reported in the paper, that at the time of publication this
was probably one of the fastest MD programs for simulating simple particle systems
with short-range interactions. It compared very favorably with a number of other
algorithms implemented on similar type of SIMD hardware. In addition it performed
on par or better with other algorithms implemented on MIMD hardware.

2.4 CMmd: Data-Parallel Long-Range Interactions

HE paper “A Data-Parallel Molecular Dynamics Method for Liquids With
Coulombic Interactions” develops a parallel algorithm for simulating systems
that include charges. The algorithm is an evolution of the overall approach for
short-range interactions that we describe in §2.3. To include long-range interac-
tions in our simulations we develop an efficient data-parallel formulation of the
Ewald summation method. Moreover we demonstrate an efficient implementation.
We use fused salts as our model systems with the BEMFT! potential [203]: given
two particles 7 and j, with respective charges ¢; and ¢; separated by a distance 7,
the potential V(r;;) is given by

long—range

——
62 C,L Di'
V(rij) = aigj— +Aijexp (Bloy —rij)) + 7,6] + rsj (2.2)
ij ij ij

short—range

The first term in Equation (2.2) is the Coulombic interaction, the exponential term
is the Born-Huggins repulsion and the third and fourth term represent, respec-
tively, the dipole-dipole and dipole-quadrupole dispersion energies. Parameters are
obtained from [204]. As noted in the above Equation, the Coulombic interaction is
long-range, whereas the last three terms can be considered short-range.

2.4.1 Ewald summation

In periodic systems the Coulombic interaction is conditionally convergent. This
means that the result of a direct summation of the interactions depend on the
summation order. The Ewald summation method transforms the conditionally
convergent sum into four parts, the real-space term, the reciprocal-space term, the
self-interaction term, and the boundary term [58]. The Ewald sum for an electrically

IBorn-Huggins-Mayer model parametrized by Fumi and Tosi.
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neutral system of N charges with no external field can be written

VCoulomb = VR + VF - VS + VB(€T), (23)
where
1 Z 44
" dmeo rii<T T'ij . C(ar J) ( )
| exp(-[kP/40?)
Vi — 3 2.5

N
a 5
V —72 2 2.
5 ﬁizqu (2:6)

In the above Equation, erfc is the complementary error function; @ denotes the
charge density? at wave-vector k

2w .
Qk: = zi:qi exp(zk . ’l‘i)7 k= f(k‘l,kg,kg), k‘l S Z, 1= 1,2,3; (27)

L is the simulation box length and V = L3.

The last term in Equation (2.3) is a function of the dipole moment of the simu-
lation cell and the dielectric constant of the surrounding media of the periodically
replicated cells.

2.4.2 Algorithm

Except for the boundary term, the different terms in the Ewald method are func-
tions of a free parameter, a—the Ewald convergence parameter. The self-interaction
term, Equation (2.6), is a constant during a simulation and can be calculated at
initialization.

Use the same accuracy requirement § < 1 for both the real-space term and
reciprocal-space term. We employ the fact that erfc(z) ~ exp(—z?) when z >
1 and select a suitably large value for the Ewald convergence parameter. This
makes the real-space term, Equation (2.4), sufficiently short-ranged, and it can be
calculated together with the other short-range parts of the potential. The downside
is that a large value of « forces the use of a large number of terms in the reciprocal-
space term, Equation (2.5).

Adding in the real-space part of the Ewald summation only changes the routine
which contains the force calculations. Real-space contributions are calculated with
a data-parallel approach: it consists of a loop over the 13 neighboring?® cells and the

2Also called the structure factor.
3Symmetry of force gives (27 — 1)/2 = 13.
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“home-cell”. First select particles which have a chance of interacting with particles
in the neighbor cell, zero out force accumulators, change origin of selected particles
and shift them to the neighboring cell. Now interactions can be calculated and
the forces which have been found are sent back and accumulated. Calculated forces
must be sent back and accumulated, because we only loop over half the 26 neighbor
cells.

do group=1,NRNEIGH

call color_group

call zero_force_and_change_origo

call shift_arrays_forward

call real_space_force

call shift_arrays_back

call add_in_accumulated_force
enddo

Particles in all cells have their coordinates in relation to their current “home-
cell”. This arrangement allows for more uniform algorithms since particles in the
interior will not have to be treated differently than particles belonging to a cell at
the edge of the simulation box. In particular we can calculate distances directly,
without having to use the minimum-image transformation.

The reciprocal-space part does not require any exchange of information between
processors except for the global summation for each wave-vector, k (Equation (2.7)).
For an efficient and memory conservative calculation of Qg in Equation (2.5) we
use an iterative scheme to find the values of exp(ik - ;) based on the formulas

sinnx = 2sin(n — 1)z cosx — sin(n — 2)x, 2.8)
cosnz = 2cos(n — 1)z cosx — cos(n — 2)x. '

First, adjust global coordinates and calculate the initial terms of the iterative
scheme in Equation (2.8). Calculate in one octant of reciprocal-space and use the
symmetries of Equation (2.7) (internal, face, axis). End by switching back from a
global to local coordinate system.

call ewald_setup
call ewald_internal
call ewald_face
call ewald_axis
call ewald_scale

2.4.3 Efhiciency

To estimate the performance of our data-parallel formulation of the Ewald method
we performed a number of benchmark runs on the CM-200. The system size ranged
from N = 32768 to N = 2097152. The timings are reported in the paper and show
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that we were attempting too large systems for realistic simulations. Additionally,
the parameters we selected for the Ewald method were far from optimal [156].

Nevertheless, the performance of our algorithm compared quite well with the
approach reported by Boltjes and de Leeuw [205]. In their paper several paral-
lel algorithms for the BHMFT potential are presented; the largest system run was
N = 32768 on a 32K CM-2 with a time per time-step of &~ 570 seconds. For the
same system size we reported a time of 28 seconds on a 4K CM-200. This is roughly
a factor 20 faster on a computer with 1/4 the number of processors. Part of the
difference in performance can be attributed to the faster clock speed of our Connec-
tion Machine and also much improved compilers. Still, at the time of publication
this was probably one of the fastest MD programs for large simulations of simple
particle systems with both long-range and short-range interactions.

2.5 ENUF: an O(N log N) Algorithm for Electrostatic Interactions

EAL molecules in compounds are in continuous rapid motion under normal
R conditions. In liquids and gases they are colliding and interacting with each
other at close distances and they also interact with external fields. In computer
simulations of molecular systems, mechanistic ball and spring models are common
to give a simple picture of atoms with specific sizes and masses bonded together with
covalent bonds. Molecular equilibrium geometries and interactions are defined in so-
called force fields where a somewhat arbitrary division between intramolecular and
intermolecular interactions is made. Arbitrary because this partitioning is clearly
a simplification of the more detailed and fundamental understanding furnished by
a quantum mechanical description.

Intramolecular? interactions are normally described by bond-stretching, angle
bending and torsional angle motion terms. These interactions involve the closest
bonded atoms described by two-, three-, and four-body terms, respectively. The
bond and angle terms are normally given as harmonic wells while the torsion term
is most often expressed as a Fourier sum.

Intermolecular® interactions are those between separate molecules but also in-
clude all interactions within the same molecule beyond the bonded interactions.
Non-bonded interactions are further divided between short-ranged and long-ranged
interactions. The short-range interactions mimic the van der Waals type of forces.
The long-range interactions are electrostatic interactions. These approximate the
electron distributions around atoms by fixed point charges. Interactions are treated
using Coulomb’s law.

The short-range interactions are by definition such that their effective range
is limited to within a specified cut-off. By assuming a uniform density on scales
larger than the cut-off, error terms may be approximated and correction terms

40ften called bonded interactios.
50ften called non-bonded interactions.)
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can be applied [33, 32, 29]. Thus the short-range interactions can be accurately
approximated by truncation in most calculations.

Artificially collecting and dividing the diffuse and fluctuating electron densities
inside and around molecules on single atomic sites is a crude but conceptually simple
approximation, since Coulomb’s law can be invoked. However, this simplification
comes at a price since the interactions between point charges exist over very long
distances. Furthermore, the long-range can not be truncated without introducing
simulation artifacts [206, 207, 55, 56].

As the system size grows, calculating the electrostatic interactions becomes the
major computational bottleneck. Methods based on Ewald summation [57, 58]
are still considered as the most reliable choice and a large variety of schemes to
compute them in computer simulations have been proposed [208, , , ,

, , ]. There is also a multitude of alternative methods for representing

electrostatic interactions. Examples are methods based on a cut-off [63, 64, 65], tree
and multipole based methods [73, , , , , ], multigrid methods [70,
, 72], reaction field methods [221, , ], the particle mesh method [1, ],

and the isotropic sum method [66].

In the paper “Ewald Summation Based on Nonuniform Fast Fourier Transform”
we present a novel approach that scales as O(N log N), where N is the number if
electrostatic interaction sites in the system. Our method combines the traditional
Ewald summation technique with the nonuniform Fast Fourier transform to calcu-
late electrostatic energies and forces in molecular computer simulations.

An essential ingredient in any method is its name. We propose the acronym
ENUF—Ewald summation using NonUniform fast Fourier transform. In the pa-
per we show that ENUF is an easy-to-implement, practical, and efficient method
for calculating electrostatic interactions. Energy and momentum is conserved to
floating point accuracy. By a suitable choice of parameters, ENUF can be made to
behave as traditional Ewald summation but at the same time give a computational
complexity of O(N log N). Weighing all these properties together, we believe that
ENUF should be an attractive alternative in simulations where the high accuracy of
Ewald summation is desired.

2.5.1 Ewald summation

We start by describing a model system of charged particles which captures the most
salient features of electrostatic interactions in general MD systems. The electrostatic
potential of a system with periodic boundary conditions (PBC) is first stated; we
follow with the manipulation of the basic formulas to the form in which they are
commonly written; this Section ends with a summary of expressions for both energy
and forces.

The motivation for this recapitulation of known results is to prepare the ground
for the next stage (§2.5.3) in which we show how ENUF can be developed.
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Model system

Consider a cubic simulation box with edge length L, containing N charged particles,
each with a charge ¢;, located at r;. Periodic boundary conditions in a system
without cut-off is represented by replicating the simulation box in all directions.
The total electrostatic potential energy of the charge-charge interactions is then
given by

U,

qa9q

Il
]
™

quj
o] 2 5> ZZ [rs; + 0l

i=1 j=i+1 n;aéO i=1 j=1
1 ol & qiq;
B L 2.9
52 22 gl (2.9)
n i=1j=1

where r;; = r; — r;, and |r| denotes the length (2-norm) of the vector r. Be-
cause of the long-range nature of the electrostatic interactions, U,, includes con-
tributions from all replicas, but exclude self-interactions; this is expressed in the
triple sum in Equation (2.9): the outer sum is taken over all integer vectors
n = (n1,n2,n3) such that each n; € Z; the 1 symbol on the first summation sign
in Equation (2.9), indicates that the self-interaction terms should not be included,
i.e., when n = 0 then the ¢ = j terms are omitted.

The sum in Equation (2.9) is not an absolutely convergent series, but rather
conditionally convergent.® As a consequence, the order of summation affects the
value of the series. In fact it was discovered by Riemann that any conditionally
convergent series of real terms can be rearranged to yield a series which converges
to any prescribed sum [224, Section 8.18]. In a sense, this is a situation very similar
to the case when a linear equation has an infinite number of solutions because it is
under-determined; by adding a set of conditions a unique solution may be defined.
For the specific case of Equation (2.9), a physically relevant summation order has
to be prescribed and the boundary conditions of the surrounding media have to be
specified.

The lattice sum of Equation (2.9) can be calculated by a method that was first
developed in 1921 by P.P Ewald [57] to calculate lattice potentials in solids. There
are several different derivations of the Ewald summation method for use in the
context of Molecular Dynamics that are more recent and easily accessible; a small

selection is given by [57, 58, , 29]. In the discussion below I mainly follow the
work of de Leeuw et al. [58, 156, 220].
In [58] de Leeuw etal. developed a technique using convergence factors that

transforms the sum of a conditionally convergent series into a series with a well
defined sum. Furthermore, they showed that applying a specific convergence factor
is equivalent to a certain summation order. Assuming an overall charge neutral
system, Y. ¢; = 0, and summing the terms in Equation (2.9) over all integer vectors

6 A series 3" a; is called absolutley convergent if 3 |a;| converges. When 3 a; converges and
>~ |ai| diverges, the series is called conditionally convergent.
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n in concentric spherical order, they showed that the electrostatic potential energy
can be written as

- o qiq5
Ugler=1)= > L\If ZqZ e +1 3\qu| (2.10)

1<i<j<N

when the surrounding media of the periodically replicated cell is vacuum (e, = 1)
and distances are calculated with the minimum image convention. The function ¥
and number ¢ are defined below in Equations (2.14) and (2.13), respectively. When
the surrounding media is a conductor (e, = 00), the energy can be written as

N
oy 9i9j o Tij £ 2
1<i<j<N i=1
2T
=U, (=1 — —— iri |2 2.12
e =) = o s 2o (2.12

From Equation (2.12) it is clear that the boundary conditions, vacuum or conductor,
have an effect on the energy of the system. Depending on the simulated system and
the properties of interest, the choice of boundary conditions can affect the results
obtained, e.g., [227, 228].

The number £ used above in Equations (2.10) and (2.11) is defined as

erfc(a|n|) 1 e~ Inl/e®  9q
_ 1 2 2.1
LT tRL WP A 21

n#0

and the function VU is given by

W(r) = Z erfe(a|r + n|) n % Z exp(2mm - r — 72|n|?/a?) (214

- n) Z nf? |

with the error functions erfe(x) and erf(x) defined as

erfe(x) f/ 2dt:\/2g/:o -
erf(z) = 1 — erfe(z)

Equations (2.10) and (2.11) are not in a form that is appropriate for efficient
numerical calculations and in the case of Molecular Dynamics simulation we also
need expressions for the forces. To arrive at a more suitable form we make the
necessary anlysis for the electrostatic energy and forces in the following Sections.
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Energies in Ewald summation

To rearrange and expand Equation (2.10) we first insert r;;/L in Equation (2.14)

erfe(al %2 + nl) exp(2mm - T2 — 72|n|?/a?)
‘Il(rij/L):Z——F > L

L P
erfe(¢|r;; + Ln|)
=T L'"v
> = +Ln| (2.15)

Z exp(Zin - r; — m2n|*/a?)
T n[? ’

Next we rescale o by making the substitution o« — aL in Equations (2.15) and
(2.13) to get

erfe(alr;; + Ln|)
i/ L) 5
’I‘J/ Z |,',,U T Ln|
2.1
exp(Zin - r;; — w2n? /(aL)?) (2.16)
DY i
n;ﬁO
and
- Z erfe(aL|n|) n 1 Z e~ Inl*/(aL)*  9q[ (2.17)
— 4+ = 5 - . .
= Il i Inf VT

Inserting Equations (2.16) and (2.17) into Equation (2.10) we get

erfe(a|r;; + Ln|)
qu(er:1): Z %%{Z \r—:Ln|
1<i<j<N n v

Z eXp(27m,n Tij — 2|n2/(aL)2)}
7TL

2
oo n|

2 2 2
1 9 erfe(alln|) 1 emm In/el)™ 9q L
N I

i n#0 n#0

27
+ (»7L3| > qmil* (2.18)

Note that the summation above is for ¢ < j in the first sum. We make further
simplifications by studying the terms on the right hand side of Equation (2.18) for
n =0 and n # 0.
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When n = 0 we have the following terms

erfe(a|r;;l)
Z %%‘Wffqu m|2%r1|

1<i<j<N

I ¢t 49
=3 ; 7] erfe(a|ri;|) \f Z% m| Zqﬂ“ﬂ (2.19)

with the terms independent of n included; the 1 symbol indicates that the i = j
terms are excluded from the daggered sum.
When n # 0 we get

Z . Z erfc(a|r;; + Ln|)
— % |rij + Ln|
1<i<j<N n#0
Z eXP(2m" Tij — 7T2|n‘2/(0‘L)2)
7TL

n[?

n#0
1 9 erfe(alln|) 1 e~ In|?/(aL)?
tar > {Z Y R > TR
i n#0 n#0

. erfo(alry + Lnl) | 1 e-™inf/@? o
=3 ;Qz% T;){ rij + Ln + I ™E exp( 7 n-ri) .

(2.20)

The factor 1/2 in Equation (2.20) comes from changing the summation from i < j
to all pairs ¢ and j, and using the symmetry induced by 7r;; = —7;; and +n.

By combining Equation (2.19) and (2.20) we identify the real-space term, U(’;g“‘l,

the reciprocal-space term, U, rec‘p the self-interaction term, U;glf, and the boundary-

condition term, U, qch. The real space term is given by

erfc(alr;j|) erfc(alr;; + Ln)|)
Ureal _ ) J J
aq Z GG rij] Z Z ri; + Ln]

1<i<j<N 1<j n#0
4= Z Z erfc a|Ln|

. |Ln|

i n#0

Z Z - T o o erfetalri; + In)) (2.21)
ij T
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and the reciprocal-space term is

. —7T2|17,| /(O‘L)2 271-7/
g = 2 2w o — e n-ry)
z<] n#0
e~ In|?/(aL)?
%L NN gig———— PR (2.22)
i m#0
However, with the symmetries generated by r;; = —r;; and £n, we get
S S )
= onp 2 2 4 T
i#j n#0
e~ Inl?/(aL)?
27rL Z Z Gl e (2.23)
i n#0
*W2\n\ /(aL)? 2m
=51 Z Z Gigj———5—— exp(fn “Tij) (2.24)
n#0 1,j

Furthermore, we have

self __
qu f Z QZ (225)

bc 2
R A— iril?, 2.2
U (2€T+1)L3|zi:qr | (2.26)

and finally
real reci self bc
Uygler = 1) = UL 4 yreer — pselt 4 ke, (2.27)

The reciprocal-space part, Equation (2.24), can be expanded in two different
forms. The first form is in terms of the structure factor S(n),

2
= Z G exp(—%zn 7)), (2.28)

and is given by

2 2 2
. 1 e_ﬂ— ‘n‘ /(aL) 2772
rreciv — Qi —n-(r,—7r;
qq 27TLnZ¢O ‘n|2 lzq qj eXP( L n (T r]))

2 2 2

1 e e—m2Inl?/(aL)

- 277Ln¢0 ‘nlg qu eXp n r; Zq] eXp ( ))
1 e ’o
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Now for a fixed m, the structure factor S(n) is just a complex number a, and the
simple fact that a@ = Re(a)? + Im(a)?, gives the real form of Equation (2.24)

—n2|n|?/(aL)?

reci 1 €
qu P = QWLZ ‘nIQ quq] eXp 7’”’ ( r]))

+ |Zqisin(2%n : ri)|2]. (2.30)

The last form is the most common point-of-departure when implementing the
reciprocal-space part. The first form is used in our fast approach to calculating
the reciprocal-space part.

Forces in Ewald summation

Now that we have calculated the electrostatic energy of the system we can easily
compute the electrostatic forces F; that act on each particle i. Splitting the forces
in the same way as we have split the energy and using Equation (2.27) we get the
total electrostatic force by finding the negative of the gradient of the electrostatic
energy

_ _ real reci self bc
Fy = ViU, = =V [Uge + Upeel? — Uzell 1 U] 2
= Freal 4 preett g 4 FPe.

Where the subscript ¢ on the V operator indicates that we take the partial deriva-
tives with respect to the position of particle r; and the 0 in Equation (2.31) comes
from the self-interaction term (Equation (2.25)) being independent of r;. Before
we do this calculation we note a couple basic, but helpful, formulas for calculating
derivatives

Vin-rij = Vz-n~ (’I"i —’I"j) =n

Vi 1 __ ’I"ij
|74 \Tij|3
Vi |r1]‘ = ﬁ
" (2.32)
20[ T .
V,; erf )= ——=—"Y 2
exe(ofny ) = =2 T exp(—a?lr )
2 2 2
Vi exp(%n Ty = —n% exp(%n i)
2 2 2
V; exp(%n i) = n% exp(%n “Ti5)
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With the formulas on the facing page, it is straightforward to find the different
terms of F,. The contribution from the real-space term, Fr°®! becomes

real __ rrreal
Freal = Ut

{ 2: §:|r %Ql aﬁiaﬁw'%LnD
ig T

(rij + Ln)
= **Z Z il mefffi(al"’ij+flnl)
_ (Tij + Ln) 2a
rij + Ln|* V7

ij +1Ln)
oY Yaa et

exp(—az\rij + Ln|2)}

erfe(a|r;; + Ln|)
|rij + Ln|

2
+ mexp(—airy + Ln?)], (2.33)

such that when n # 0 include all j and otherwise only j # i— “the daggered
saviour”. Equation (2.30) on the preceding page is convenient to use when calcu-
lating the reciprocal-space contribution because it is expressed in terms of charge
locations r; rather than relative distances r;;. Thus the reciprocal-space force is
given by

recip _ . recip
FreP = e

—m?|n|?/(aL)?

1 € 2
= _VZ|:2’/TLZ 2 {qucos —n-r;)]
n#0
2
s

2 2
1 e~ In| /(aL)? A 9 o
= —27(an¢:0 |n‘2 L |: qZSln(f’rL ’I"Z ZqJCOS I nf'a])

2 2
+q cos(%n . 7‘1)2 qjsin(%n : Tj):|
J

2 2 2
29, —m|n|*/(aL)
:—q; n62[81n —n-Tr;) E qjcos n ;)
L o |n|

2 2
- cos(%n-ri) 4 qjsin(£n~rj)]
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2q2 e_WQ‘nlz/(aL)2 . 27'(
= ﬁ HT Sln(f
n#0

n-r;) Re(S(n))

+ Cos(%rn 1) Im(S(n))} (2.34)

Finally, the contribution that depends on the boundary condition

27
be __ ) |2
P = sl S
) i (2.35)
J

Summary of energy and forces in Ewald summation

Consider a periodically replicated system, with the central box consisting of N
point charges ¢;, such that

26 =0 (2.36)

Assume that the surrounding media at the boundary of the periodically replicated
system is a uniform dielectric with dielectric constant €,.. The cubic box has edge
length L; each charge g; is located at r;, and distances are calculated with the min-
imum image convention. After expansion and rearrangements of Equation (2.10),
rescaling @ — oL and using symmetries induced by r;; = —r;; and £n, the total
electrostatic energy of the system can be written as

_ __ 7rrreal reci self bec
Uygler = 1) = UL 4 ULee® — Uzl + U (2.37)

with the different terms given by

real __ quJ y
Uy = Z Z o + o erfelalry + Inl), (2.38)
. —w2|n| /@l o,
U P = oL Z Z 49— 5 eXP(T" “Tij) (2.39)
n#0 4,j

—m?|n|?/(aL)?

1 e
B T [lzqzcos T
n#0

+ IZqisin(Z%n ~ ”ﬂ (2.40)
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2 2 2
1 e—mInl?/(aL)
= 27TLZ e S(—n)S(n), (2.41)
n#0
self __ « 2
Uzl = ﬁZqi : (2.42)
2m
be _ |2
Vs = Ge + 1)L3‘qu| ' (2:49)

Note that a > 0 is a free parameter. The structure factor S(n) is defined as
2me
=> exp(— = 7). (2.44)

The total electrostatic force, F;, on each particle is
Fz’ — Fl_real + Firecip + Fibc' (245)

Each of the force terms given by

Freal — Z Z (rij + Ln) lerfc(a|rij + Ln|)

44; |ri; + Ln|? |ri; + Ln|
2a 9 9
+ ﬁexp(—a |rij + Ln|7) |, (2.46)
2 2 2
reci 2q'L eiﬂ- ‘n‘ /(aL)
Fredp — =73 a nT sin( n T Zq]cos —n-r;)
n#0
2 2
- cos(fﬂ-n “7;) qjsin(%n . rj)] , (2.47)
J
4an
bc _ . e
F; ——m%szrr (2.48)
j

The positive number «, the so called Ewald convergence parameter, is chosen
for computational convenience. Note that erfc(z) =~ for large values of . By
choosing « large enough in Equation (2.38) on the facmg page, we can ensure that
the only terms that contribute in the real-space sum is when n = 0. This may be
expressed so that all terms with |[n| < n.,: should be included.

Choose a cut-off in both real-space and reciprocal-space so that the neglected
terms in the real-space and reciprocal-space parts are of the same order ¢, or less.
The truncation in real-space implies that a sufficient number of terms must be
included in the reciprocal-space sums, Equation (2.41).
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Given a required accuracy 0, ney; is fixed by
L
e_ﬂ-?nm"tz/(aL)Q S 6:ncut Z ai\/ - log(é), (249)
T

and 7.4 is determined by

TN cut
o?L
Note that there are 2 conditions and 4 parameters. With a required § we may just
as well pick a suitable value for n.,; and let the above 2 Equations determine o
and 7eyt-

With an optimal choice of parameters the computational effort of the Ewald
method becomes O(N?3/2) [156, 229] giving a considerable improvement over the
O(N?) computational complexity implied by the “infinite” reach of the Coulomb
interactions.

2.2
erfe(arey) e Tewt < §ireyy =

(2.50)

2.5.2 Discrete Fourier transforms for non-equispaced data

The fast Fourier transform for nonuniform data-points (NFFT) [230] is a general-
ization of the FFT [231]. Several similar approaches have been proposed; some
examples are [232, , , , , , , , 240] with comparisons in [241,

, 247,

The basic idea of NFFT is to combine the standard FFT and linear combinations
of a window function that is well localized in both the spatial/time domain and
the frequency domain. A controlled approximation using a cut-off in the frequency
domain and a limited number of terms in the spatial/time domain results in an
aliasing error and a truncation error, respectively. The aliasing errors is controlled
by the oversampling factor o, and the truncation error is controlled by the number
of terms, m, in the spatial/time approximation. For a number of window functions
(Gaussian, B-spline, Sinc-power, Kaiser-Bessel), it has been shown that for a fixed
oversampling factor, o > 1, the error decays exponentially with m [243].

Problem definition

We wish to calculate the discrete Fourier transform for nonequispaced data (NDFT).
The problem can be stated as follows. For a finite number of given Fourier coeffi-
cients fi € C with k € Iy we want to evaluate the trigonometric polynomial

f(z) = Z fr exp(—2mika)

kel

at each of the given nonequispaced points x; € DY j =0,...,N —1. In the
literature, points are often called knots. We use the two terms synonymously.

Obviously, the details of an NDFT depend on the definitions of a sampling set for
knots, D%, and an index space I;. More in-depth discussions and further details
can be found in [243, ]. The presentation that follows is mainly drawn from
these sources.



2.5. ENUF: AN O(N LOG N) ALGORITHM FOR ELECTROSTATIC INTERACTIONS 63

Underlying concepts

Consider a d-dimensional domain D? in which the set of nonequispaced knots, or
data points, are located. Let

1 1
D= {z= (Tt)t=0,...a-1 € RY 3 <o < 5 t=0,...,d—1}, (2.51)
and the set of NV data points
X:={x;eD?: j=0,...,N -1}

For the application we have in mind d is usually 2 or 3. Let F be a function space
of trigonometric polynomials with degree M; (¢t =0,...,d — 1) in dimension ¢; the
function space F can be defined as

F:={f: D%+ C such that f € span(e™>™* . ke Iy)}.

The dimension of this function space is dim(F) = My, where My = ;1:—01 M,.
The frequencies k € Ip; with the index set I; are such that

M M
Iy = {k = (ki)i=o,..a1 € 2% : —Tt < ke < 72 t=0,...,d—1}. (2.52)

Matrix-vector formulation

With these preliminary defintions we carry on with the problem of calculating the
discrete Fourier transform for nonequispaced data. For a finite number of given
Fourier coefficients fk € C with k € Ip; we want to evaluate the trigonometric
polynomial

f(z) = Z fr exp(—2mika) (2.53)
kelm

at each of the given nonequispaced knots in X. Where the product kx is the
usual scalar product of the two vectors k and x, kx := koxg + ... + kg_124_1-
Consequently, for each x; € X, we evaluate

fi=f(z;) = Z fr exp(—2mikx;). (2.54)

kel

This may be reformulated in matrix-vector notation by setting

f=(fi)j=0,.n—1, A= (e 2™*) ;o ~N_1ken Fi=(fr)reln

and writing

f=Af. (2.55)
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Related matrix-vector products

A number of related NDFT matrix-vector products can also be defined. To write
them down we let A be the complex conjugate of the elements of the matrix A

—T . . .
and A¥ = A" the transposed complex conjugate of the matrix A. Using these
conventions we can name and summarize the related NDFT matrix-vector products
and their component representation as

regular
f=Af (2.56)
fi= Z fr exp(—2mkx;)
kel
adjoint
f=A"f (2.57)
~ N_l ~
fr = Z fjexp(2mika;)
j=0
conjugated
f=Af (2.58)
fi= Z fre exp(2mika;)
keln
transposed
f=ATf (2.59)

A~ N71 A~
fr = Z fjexp(—2mkx;)

Jj=0

NDFT, FFT and NFFT

From the different NDFT products written in matrix-vector form, as in Equa-
tions (2.56)—(2.59), it is clear that it takes O(NMy) arithmetic operations to
transform between the Fourier-samples and the Fourier-coefficients. This is simply
because the matrix A is N x My, with M = dim(F) = f:_ol M;.

However, for the special case of M; = M, (t = 0,...,d —1) and N = M?
equispaced knots xp (k € I), the Fourier-samples fi can be calculated from
the Fourier-coefficients fj by the fast Fourier transform (FFT) with O(N log N)
arithmetic operations.
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The fast Fourier transform for nonequispaced knots (NFFT) is a generalization of
the FFT. The essential idea is that of combining a window function with the stan-
dard FFT. The window function is a well localized function in both the space domain
and frequency domain. Several different window functions and similar approaches
have been proposed. The resulting algorithms are approximative and some of them
have been shown to have a computational complexity of O(Myy log Mp+log(1/€)N),
where € is the desired accuracy [243].

2.5.3 Fast Ewald summation

Using optimal parameters in the Ewald summation method implies that the time
to calculate the real-space part and the reciprocal-space part are approximately
equal. As the number of particles in the system grows we would like to combine
the calculation of the short-range part of the potential with the real-space part.
This implies that we need to choose a real-space cut-off about the same size as the
short-range cut-off. With this nonoptimal choice, the reciprocal-space parts of the
Ewald summation method become the most time-consuming to calculate [157].

To show how a fast Ewald summation approach may be obtained from the
regular Ewald method, described in §2.5.1, we focus on the reciprocal-space parts.
In §2.5.2 we give the details of the discrete Fourier transform (DFT) for data that
is nonuniformly spaced (NDFT). Based on these definitions we get a number of
useful algorithmic primitives. First we reformulate the reciprocal-space part of the
regular Ewald method in terms of the NDFT primitives. Then we show how the
fast Fourier transform for nonequispaced (NFFT) can be applied, yielding an Ewald
method based on the nonuniform fast Fourier transform.

Reciprocal space terms as DFT

We apply the generalized DFT, described in §2.5.2, to the calculation of the
reciprocal-space energy and forces. This allows us to formulate the standard Ewald
method for calculating the reciprocal energy and forces in terms of the NDFT prim-
itives.

Reciprocal energy In the case of the electrostatic energy we have from Equa-
tion (2.41)

o2 Inl?/(aL)?

recip __ 1
Ureciv = %LZ —n)S(n), (2.60)

n|?
n#0

with the structure factor S(n) defined as

S(n) = qu exp(—%n-rj). (2.61)
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By comparing the definition of the transposed NDFT in Equation (2.59) and the
structure factor in Equation (2.61) we note that they have the same structure;
after a renumbering of the location indexes, the summation limits are also the
same. In fact, by setting

o the normalized locations, ; = r;/L, and

e the samples, fj = qj,

we see by inspection that Equation (2.61) is a 3D instance of Equation (2.59) with
fn=S5 (n). Furthermore, assuming that the MD simulation box is centered around
the origin, the normalized locations can be assumed to be in the domain D? as
defined in Equation (2.51).

Consequently, we can use the NDFT approach to calculate each of the compo-
nents of the structure factor. From a computational point of view this means that
we can also expect to utilize an NFFT based algorithm to calculate the components
of the structure factor S(n), rather than the straightforward summation normally
used in the Ewald method.

Recasting Equation (2.60) in terms of Fourier-components

Urccip 1 6—772‘"‘2/(041/)25 S 2.62
T A T (262
2,12 2
| e/
= 2w1;j£: P | fnl?, (2.63)

and using the symmetry of S(n) around the origin

o= Inl?/(aL)?

| Fnl. (2.64)

1
:EZ

In|?
n.>0

Calculating the energy, Uégdp, using Equation (2.64) means that we
1. calculate all fn using the transposed NDFT,
2. scale each | fn|?,

3. sum all the scaled components.

Reciprocal forces We calculate the contribution from the reciprocal-space forces
using a similar approach as for the energy. In the formula on the next page, Re(e),
and Im(e), denote the real and imaginary part of the arguments, respectively. From
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Equation (2.34) we have that

. 2q; A CTO R N
recip __ <4t —mn 7.
F*F = 7221 e sin( T ri) Re(S(n))
n#0
2m
+ cos(fn 1) Im(S(n))]. (2.65)

Now, the structure factor S(n) is just a complex number so the expression in
the brackets above can be written as the imaginary part of a product

sin(zfﬂn-ri) Re(S(n))+ cos(%”n-n) Im(S(n)) = Im {exp(QLmnmi)S(n)] (2.66)

Inserting this into Equation (2.65) gives

2 2 2
. 2q e T [n]®/(aL) 2T
) 3 —— — —n-r)S 267
rr = B ey |- st (2.67)
2 2 2
QqZ 6771' I'n“ /(O‘L) 271—2

Note that Equation (2.68) is a vector equation. Furthermore, each of the three
components has the same structure as the conjugated NDFT of Equation (2.58). By
setting the normalized locations, x; = r;/L, and the samples,

Gn = neXp(”2||:||22 /(aL)’) S(n) for n #0, (2.69)

we see, again, by inspection that each component of Equation (2.68) is a 3D instance
of Equation (2.58). Assuming that m is in the index set Ij; of Equation (2.52),
n € I, and setting go = 0, we can formulate F;°“'? directly in Fourier-terms

i 2q; R
Frecip — Im{qu Z dn exp(?mnmi)} (2.70)
nely
2q;
= L—; Im(g;). (2.71)

Calculating the reciprocal-space force FI°? on particle i, using Equation (2.70),
means that we

1. start with the structure factor components, S(n), already obtained when we
calulated Uégdp,

2. scale each S(n) using Equation (2.69),
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3. giving a new set of Fourier-coefficients that are transformed back to real-space,
via Equation (2.70), using the conjugated NDFT, and finally

4. with Equation (2.71), taking the imaginary part of coefficient g; and scaling
it with 2ng gives the reciprocal force on particle 3.

Thus we can use the NDFT approach to calculate each of the components of the
reciprocal forces. Again, from a computational point of view this means we can
expect to utilize an NFFT based algorithm to find the respective components.

Combining the Ewald method and NFFT

The reformulation of Ul¢P and FI“P a5 in Equations (2.64) and (2.70) shows the
central role of the transposed and conjugated NDFT in calculating the reciprocal-
space energy and forces. Starting with the location of the charged particles, the
structure factor S(n) is calculated via a transposed NDFT. In the language of Ewald
summation, we transform from real-space to reciprocal-space. Scaling the absolute
value of the Fourier-components and summing gives UeP. To find F}*P we go
back from the reciprocal-space to the real-space by first calculating the Fourier-
components of the forces and then performing a conjugated NDFT.

An implementation of Ewald summation uses cut-offs, in reciprocal-space, neyz,
and real-space, 7.,;; with « large enough and with a required accuracy, J, truncate
the sums Equation (2.38) and Equation (2.41) at the respective cut-offs so that the
last term added < §, in each of the sums. When n.,; is fixed by

L
e~ Inl*/(aL)® < 0 Moyt > a—\/ —log(8):neur x L o N1/3. (2.72)
0

Then 7y is determined by

TN cut
o?L

2.2
erfe(areyt) ~ e Tewt < 0ireys =

(2.73)

We have recast Uje°P and F;*"" in terms of Fourier-components and set M; =

205N eyt, Where o is the oversampling factor. This gives M = Hf;ol M;. In general
the computational complexity of the NFFT method is O(Mylog My + log(1/€)N),
where € is the desired accuracy in the approximation used within NFFT [243]. Us-
ing Equation (2.72) and the above defintion of My, we see that the complexity
becomes O(N log N + log(1/€)N). Note that € is a function of m, for a fixed over-
sampling factor. With a controlled approximation of the structure factor via the
use of nonuniform fast Fourier transform, the original computational complexity of
O(N?/2) becomes O(N log N).

At this stage, the path to a fast Ewald method should now be clear. By spec-
ifying an accuracy 6, we replace the transposed and conjugated NDFT with the
corresponding operations using the NFFT algorithm. Thus Equations (2.64) and
(2.70) become a concise procedure to calculate approximations of Ujc“Pand Fimdp.
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Most of the mathematical details can be kept separate and hidden in a set of li-
brary routines and the remaining formulas pertain to the physics of the problem.
Furthermore, with a library implementation based on a state-of-the-art FFT-library,
we have good reason to expect it to be efficient.

Implementation and results

In our current implementation [245], we use the libraries FFTW [240] and NFFT [244].
Details of the accuracy and scaling properties can be found in the paper.

Basing the implementation on libraries has a number of advantages. It makes
the implementation task easier and introduces a convenient division of labor in
the program code: the mathematical aspects are mainly concentrated to the li-
braries while the physical aspects of the problem remain. Also, since the code
becomes quite compact without becoming convoluted, it becomes easier to check,
understand, and explain. Improvements and optimizations of the libraries can be
easily included in the program, usually by just relinking the program. For example,
the customization of the window function used in the NFFT algorithm—Gaussian
functions, dilated cardinal B-splines, Sinc functions, or Kaiser-Bessel functions—is
currently achieved by recompiling the NFFT library and relinking the application.
Due to the comparatively small size of the NFFT library this is very quick. Further-
more, improvements in either theory or implementation of the used libraries will
be easily accessible.

In summary we claim that the ENUF method is

o efficient and concise, and
« has a clear separation of concerns between mathematical and physical details.

In a sense it can be said that we get the best of two worlds: a concise and efficient
algorithm. The separation of mathematical concerns is a bonus that has the po-
tential to simplify implementation and further developments due to the fact that
they may occur independently of each-other.






The first general-purpose electronic digital computer, the
ENIAC, was a highly parallel and highly decentralised
machine. [...] The difficulty of programming parallel
computers is a recurring theme that is still with us today,
and it remains to be seen whether the second coming of the
parallel computer in the 1980s will be more successful than
the first!

R. W. Hockney, C. R. Jesshope
C ha pter 3 Parallel Computers2

Outlook

and MD continues to evolve with the latest developments in computer

technology. The computational horizon is steadily expanding and as the
investigated problems become more complex, more efficient and general methods
are needed.

-\ /| OLECULAR Dynamics as a discipline was enabled by the electronic computer

3.1 Further Development of Results

HIS thesis has investigated methods for performing large-scale parallel Molecular
Dynamics. The focus has been on methods that advance along the F and N
axis (See Figure on page 32).

I have shown that it is possible to perform ab initio MD simulations that give
results that are in good agreement with experimental results. The method I have
demonstrated is computationally expensive and parallel computers are an essential
component. However, given the modest communication demands of the method,
it can be expected to run well even on parallel platforms that have an ordinary
communication network, i.e., clusters and Grid platforms. This implies that ade-
quate computational resources are not too hard to find. Currently I am preparing
a simulation study of electron transport in liquid water.

For almost a decade, the most common parallel platforms have been built using
commodity processors, but with a large variation in the type of interconnect. The
number of nodes have usually been rather modest. This is now changing and the
massively parallel computers(MPP) are back again.! The algorithms for short-
range and long-range interactions presented in this thesis were tailored for Mpp
platforms with thousands of processors and aimed at large-scale simulations. The
specific platforms I used are long gone, but the algorithmic ideas remain and serve

1Some examples from http://top500.org dated November 2005: BlueGene/L from IBM with
131072 processors, SGI Altix with 10160 processors, Cray XT3 with 10880 processors.
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as a remainder that algorithms for MPPs need to be designed from scratch to deliver
expected performance.

One of the most challenging aspects of MD is the treatment of long-range inter-
actions. I have proposed a method(ENUF) that is efficient and straightforward to
implement in existing MD programs. The results so far show that ENUF preserves
both energy and momentum and has a behaviour very similar to the Ewald sum-
mation method. Work is in progress to improve the efficiency of ENUF and also
include a modest degree of parallelism.

3.2 Speculations and Hints for Walkabouts

HE epigraph of this Chapter is an indication that the problem of “programming
T parallel computers” is not new. The problem is not likely to disappear and
can be regarded as one important characteristic of the whole field of Computationl
Science. An approach that aims to control complexity at different levels by a
divide-and-conquer strategy should be consciously adopted.

It is important to make a distinction between the particular implementation
platform and the algorithm used. Hardware platforms age and disappear, but the
algorithms remain. I have noted before that “The fastest and most cost-effective
computers available today are the massively parallel computing systems based on
10%2-10° processors working in parallel”. With the advent of the BLUE-GENE/L plat-
form this is certainly true once again. At least for the performance aspect. Another
recent development is the Grid [37]. To master the additional software complex-
ity these platforms bring, advances in Computer Science can help. In particular
I believe that software development approaches that combines a multi-paradigm
approach [95] with “test-driven development” and Agile practices will be very pow-
erful [97, 96].

From an MD point-of-view, the Grid can potentially offer an “ensemble” of com-
puters that can be used in a simulation. It is no longer the case that we need to be
limited by a few simulation runs in our investigations, but we can expect to rou-
tinely employ a large number of runs. Parameter spaces can be more fully sampled
and different hypotheses can be compared against experimental data. To lever-
age this new capability more robust and general approaches to statistical analysis
should adopted. I strongly advocate the assimilation of a Bayesian approach to data
analysis [2417, , , , ]. Results along these lines are already starting to
appear [252].

Going even further out on a limb, I have a strong hunch that an information
theoretical approach to Statistical Mechanics can provide new insights that are
relevant for the practice of Molecular Dynamics. For the inquiring mind I refer to
some of the text books on the subject [253, , , , , 258].
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3.3 Conclusion

0 take full advantage of the increasing computational capabilities, influences
T and cross fertilization from other fields, such as Statistics, Computer Science,
Numerical Analysis and Mathematics, are crucial. This work is an attempt along
these lines. It also shows that it is very probable that there are many interesting
opportunities that remain to be discovered and explored.

AVANCEZ!
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