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Constrained molecular dynamics: Simulations of liquid alkanes with a new 
algorithm 

Roger Edberg, Denis J. Evans, and G. P. Morriss 
Research SchoolojChemistry, Australian National University, Canberra, A. C. T. 2601, Australia 

(Received 26 July 1985; accepted 4 March 1986) 

We present a new algorithm for molecular dynamics simulation involving holonomic constraints. 
Constrained equations of motion are derived using Gauss' principle of least constraint. The 
algorithm uses a fast, exact solution for constraint forces and a new procedure to correct for 
accumulating numerical errors. We report several simulations of liquid n-butane and n-decane 
performed with the new algorithm. We obtain an average trans population of 60.6 ± 1.5% in 
liquid butane at T = 291 K and p = 0.583 glml. This result essentially agrees with that from an 
earlier simulation by Ryckaert and Bellemans [Discuss. Faraday Soc. 66, 95 (1978)]. However, 
our simulations are substantially more precise; our run lengths are typically - 20 times longer 
than those of Ryckaert and Bellemans. Our result also agrees with that from a recent simulation 
by Wielopolski and Smith (following paper). Thermodynamic and structural data from our 
simulations also agree well with results from the simulations discussed in the above articles. 

INTRODUCTION 

Molecular fluids exhibit a vast variety of interesting 
physical behavior and present a challenge to theoreticians. 
Molecular dynamics (MD) simulation is an important tool 
for the study and understanding of these fluids, providing, in 
principle, information about anything of interest, including 
processes not directly amenable to experimental study. 
Methods for simulation of atomic fluids have been in use 
since the mid-1950's and are now well established. For mo­
lecular liquids, however, simulation methods are still in their 
adolescent stage because of the much more difficult theoreti­
cal and computational challenges they present. In this paper 
we describe a new algorithm for constrained molecular dy­
namics simulation and present results from our simulations 
of liquid alkanes. 

In the mid-1970's Jean-Paul Ryckaert and co-workers 
developed the SHAKE algorithm and the "matrix method" 
for implementing holonomic constraints in MD simulations 
of complex molecules. I Ryckaert and Bellman's simulations 
of n-alkanes2 were performed using both of these methods. 
Recently, Wielopolski and Smith3 have performed a long 
simulation of n-butane using the SHAKE algorithm. 
SHAKE, originally devised for n-alkane molecules, has been 
used by many workers for simulations of molecules as large 
as bovine pancreatic trypsin inhibitor, a molecule composed 
of 58 amino acid residues.4 In this paper we compare results 
from our simulations with results from Refs. 2 and 3. We do 
not consider results from the earliest butane simulation of 
Ryckaert and Bellemans5 because these were obtained be­
fore the development of the algorithms of Ref. 1. 

Our new algorithm, like SHAKE and the matrix meth­
od of Ref. 1, uses holonomically constrained equations of 
motion. Constraints obviate the need to follow the many 
irrelevant fast degrees of freedom in alkane molecules. Our 
algorithm contains a new and computationally efficient 
method of solving for constraint forces and a new procedure 
to correct for numerical error. A molecular thermostat, 
which is designed around a nonholonomic temperature con­
straint, is another new feature of our algorithm. Our simula-

tion results present some new findings concerning dense liq­
uid alkanes and clarify the SHAKE and matrix method 
results. 

Our model alkane molecules are exactly those of Ryck­
aert and Bellemans in Ref. 2; each is composed of ns sites of 
mass 2.411 X 10-23 g which represent the methyl or methy­
lene groups of the alkane. Distances between neighboring 
sites are fixed at 1.53 A and bond angles are fixed at 109.47" 
by a next-nearest-neighbor constraint. We use the same di­
hedral potential function to model the effect of missing hy­
drogen atoms on molecular conformation. Sites in different 
molecules and sites more than three apart on the same mole­
cule interact through a standard 12-6 Lennard-Jones poten­
tial truncated at 2.50" with parameters 0" = 3.923 A and 
E/k= 12K. 

This model for alkanes is useful for several reasons. 
First, it poses a much more challenging theoretical problem 
in writing and solving the equations of motion than a fully 
vibrational model with quadratic or Morse-type potentials 
for chemical bonds and bond angles. These vibrational mod­
els are easily coded. Their main drawback is the amount of 
computing time needed for a thorough simulation because 
much time is spent following fast vibrations. The con­
strained model eliminates these degrees of freedom and of­
fers computational economy. This is extremely valuable 
when one is interested in transport processes, where the sig­
nificant time scales are vastly longer than those for molecular 
vibrations. 

EQUATIONS OF MOTION 

Writing the equations of motion for an alkane molecule 
is the first and most important step in developing our algo­
rithm. We use Cartesian coordinates for clarity. A general­
ized coordinate representation is quite complicated due to 
the many coupled internal degrees of freedom. However, 
with Cartesian coordinates it is perhaps not obvious how one 
incorporates the rigid bond and bond angle constraints into 
these equations. 
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6934 Edberg, Evans, and Morriss: Constrained molecular dynamics 

Gauss' principle of least constraint6 gives us an exact 
prescription for deriving equations of motion involving ho­
lonomic constraints. Constraint forces are used to maintain 
the desired bond distances and angles within each molecule. 
We will briefly illustrate how Gauss' principle is applied to 
obtain equations of motion for a rigid diatomic molecule and 
then move to the more complicated cases of n-butane and 
other n-alkanes. 

The holonomic bonding constraint for the diatomic 
molecule is 

g 12 = ri2 - d 2 = 0, (1 ) 

where f 12 = f 2 - f I and d is the desired bond length. Differ­
entiating this equation twice with respect to time gives 

f12 • i\2 + (r12 )2 = O. (2) 

This equation is central to deriving the equations of motion 
for each site. Equation (2) defines a plane in either fl or f2 
space; - fl2 and f 12' respectively, are normal vectors. Con­
strained acceleration vectors must terminate on this plane. 
Gauss' principle states that the correct trajectory is that 
which minimizes the magnitude of the constraint force Fe. 
Therefore, Fe for each atom must be a multiple of the normal 
vector, n, i.e., Fe = An with A an undetermined scalar. Thus, 
the Gaussian constraint forces project the unconstrained ac­
celerations back onto the constraint hypersurface. 

The equations of motion for each site are 

(3) 

where site masses are set to unity. Note that the constraint 
forces sum to zero for the molecule. A (t) is determined by 
substituting the momentum equations of (3) into the differ­
ential constraint equation (2), giving 

A(t) = - (F12 • fl2 + ri2 )/(2fi2)' (4) 

A is calculated after evaluating Newtonian forces at each 
time step and the resulting net force, F Newton + Fe' goes into 
an appropriate numerical method for solving the equations 
of motion. We have used these Gaussian equations of motion 
for several short trial simulations of systems of homo nuclear 
diatomics with good results. 

For an alkane molecule, the site equations of motion are 
of the same form as Eq. (3), except that each site is subject to 
coupled constraint forces. We need to calculate a set ofmul­
tipliers Aij in order to solve these equations. 

We obtain the equations of motion above by applying 
Gauss' principle of least constraint. These equations are 
identical, within a multiplicative constant in A, to those de­
rived by Ryckaert, Ciccotti, and Berendsen (RCB).I To 
solve for the multiplier we substitute the constrained equa­
tions of motion into the differential constraint relation (2). 
A linear equation for A results. 

Ryckaert, Ciccotti, and Berendsen follow a different 
procedure to obtain A. They substitute the solution of their 
equations of motion for a finite time step into the original 
constraint equation (1), which gives a much more compli­
cated equation to solve for A. SHAKE and the matrix meth­
od of Refs. 1 and 2 are both based upon this procedure for 

determining constraint multipliers. Although the equations 
of motion are the same in both our algorithm and those of 
RCB, our method of calculating the constraint forces is 
much more straightforward. 

EQUATIONS OF MOTION FOR BUTANE 

Here we derive the equations of motion for a single n­
butane molecule and outline the procedure for determining 
constraint forces. Site masses are set equal to unity for clarity 
and sites are labeled 1-4, from one end of the molecule to the 
other. A useful notation is Rn = faP = f P - fa' with 
n = a + /3 - 2. This makes our equations much more com­
pact. Note that nearest-neighbor vectors have odd n, while 
next nearest-neighbor vectors have even n. We write con­
straint forces for site a as Aa P fa P' where a </3. 

The constrained acceleration equations for atoms one 
through four can be written in the form 

-I 

o 

o 

o 
-1 

o 

o 
-1 

o 
1 

or using the notation described above: 

ra =Fa + IMan(AR)n' 
n 

-v· 
(5) 

The matrix M "selects" the appropriate constraints from the 
column vector (A R)n for each site a. 

As an example consider site number two. It is subject to 
three constraint forces: two from nearest neighbors one and 
three, and one from next-nearest-neighbor four. Its equation 
of motion is 

r2 = F2 + Al2fl2 - A23f 23 - A24f 24· 

Using the n notation defined above, this is 

r2 = F2 + AIRI - A3R3 - A4R4' 

(6) 

(7) 

keeping in mind that, as in Eq. (5), the index a = 2 applies 
to rand F, and n = 1,3,4 to the constraint terms. 

The constraint equations of motion for rap can now be 
written as 

raP =Fap + ILcaPln(AR)n' (8) 
n 

where the matrix LCaPln is obtained by taking differences of 
rows/3anda in M, that is, L CaPln = Mpn - Man.Defininga 
new index m analogous to n above, Eq. (8) becomes 

(9) 
n 

To obtain a set of equations for the Gaussian multipliers we 
use the set of differential constraint equations equivalent to 
Eq. (2), 

(10) 
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and substitute for Rm with Eq. (9). The result is 

n 

which is simply a linear matrix equation that can be solved 
for the set An once the Newtonian forces F m = F p - Fa are 
known. 

For butane there are five distance constraints. The ma­
trices Land M are of dimension 5 X 5 and 4 X 5, respectively. 
For an alkane of n. sites (carbons) there will be 
nc = 2n. - 3 constraints and nc multipliers to solve for. 
Thus, Land M will be nc X nc and n. X nc matrices. M con­
sists of rows in which the basic unit is 
[ 1 1 0 - 1 - 1] with zeros elsewhere; each succes­
sive row has this unit shifted two columns to the right. A 
prescription for generating M is as follows. Start by writing 
the basic block [ 1 1 0 - 1 - 1] in rows from top to 
bottom, shifting each successive row two columns to the 
right. Next, fill all empty spaces with zeros. Finally, trim this 
matrix such that its dimension is ns Xnc ' ensuring that 
M(1,l) = - 1 andM(ns,nc ) = 1. M is the result. Knowing 
this, one can readily write constrained equations of motion 
for any n-alkane molecule. 

In principle, our most difficult problem is solved. We 
need only incorporate the above scheme into a standard MD 
program in order to run simulations. However, we have 
overlooked a problem. Numerical errors from the inexact 
solution of the equations of motion and roundoff by the com­
puter will cause the constrained distances to deviate from 
their desired values. In order to make our algorithm practi­
cal we need to correct for this "constraint decay" due to 
numerical error. 

CONSTRAINT CORRECTION 

To counter the effects of numerical error in the simula­
tion, we simply readjust site positions and velocities to the 
proper constrained values whenever the constraints become 
sufficiently violated. 

Consider the following penalty functions for any single 
constraint: 

<l>n = (r~p _d~p)2 

and 

\I1n = (rap' t ap )2. 

<l> indicates the deviation of the constrained distance from its 
set value while \11, analogous to d<l> / dt, indicates how quickly 
the constrained distance is changing. Both <l> and \11 should 
equal zero at all times if the constraint is exactly satisfied. 
With our equations of motion these functions increase slow­
ly with time because of numerical error. For each molecule 
we define the bond penalty function <l> and the velocity pen­
alty function \11 as 

and 

(13) 

where the sums are over all nc constrained distances. To 

correct for numerical error we minimize these potentials 
whenever their values become sufficiently large, adjusting 
positions and velocities to new values at the potential mini­
mum. This nonlinear minimization is not nearly as expen­
sive in computing time as one might expect. By a suitable 
choice of the allowed penalty function tolerances, individual 
molecules are never allowed to deviate very far from the true 
minima of<l> and \11. Thus the penalty function surfaces are 
always well behaved, positive definite and nearly quadratic. 

Minimization of <l> also provides a method for con­
structing alkane molecules, although other methods using 
coordinate analysis are probably more convenient. In our 
simulations we have used both methods for generating start­
ing configurations with equally good results. 

THERMOSTAT 

In most cases we wish to run our simulations at a speci­
fied temperature. This requires an additional application of 
Gauss' principle for a nonholonomic temperature con­
straint.6 Note that there are many ways to define a tempera­
ture for a molecular system. For example, one could calcu­
late a temperature using molecular center of mass velocities 
or atomic velocities. In either case, classical equipartition of 
energy equates kT /2 with each degree offreedom. Each con­
strained alkane molecule has 3ns - nc = ns + 3 degrees of 
freedom, and recall that MD simulations conserve the three 
Cartesian components of total momentum. Also, a Gaussian 
thermostat removes one extra degree of freedom from the 
system. The two temperatures are 

Tatomic = (r msiteV;ite )j<N(ns + 3) - 4)k (14) 

and 

Tmolecular = (rmmoIV!,ol ))3n - 4)k, (15) 

where N equals the number of alkane molecules. 
A Gaussian thermostat can be applied to fix either tem­

perature,6 giving equations of motion with an additional 
constraint force term - ~ 'Pia for the atomic thermostat or 
- ~Pi = -; l:a Pia for the molecular thermostat, where 

index i refers to a molecule and a to atoms within molecule i. 
In the atomic case a large system of coupled equations for; , 
and {Am} must be solved. These equations decouple when 
the themostat fixes the molecular temperature T m; the 
- ;Pi terms cancel from Rn in Eq. (8). Also, the constraint 

forces sum to zero for each molecule. A compact expression 
for; results: 

(16) 

SIMULATION ALGORITHM 

Our algorithm is now complete. We can repeatedly 
solve the Gaussian equations of motion for complex mole­
cules and correct for numerical errors. After all Newtonian 
and dihedral forces have been calculated, a fast back-substi­
tution routine solves Eq. (11) for each molecule, giving Am 
and thus the constraint forces. Note that complete inversion 
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of the matrices in Eq. (11) is unnecessary. The process of 
calculating the A.m takes only a minute fraction of the total 
computing time, even for a system of decane molecules 
where Lnm is a 17 X 17 matrix. As with monoatomic simula­
tions, the majority of computing time is spent calculating 
Newtonian site-site forces. A second-order Runge-Kutta 
procedure integrates the equations of motion. Standard peri­
odic boundary conditions keep the molecular centers of 
mass within the simulation cube. 

The penalty functions <I> and 'II are monitored for each 
molecule at every time step and minimized if they become 
sufficiently large. The rate at which constraints deviate from 
their desired values clearly depends upon several factors, 
most importantly the simulation time step fl.t * and the toler­
ances for <I> and'll. We find that fl.t * = 0.001 
(fl.t = 1.93 X 10- 15 s) gives good energy conservation in 
adiabatic test runs of the program, typically 0.1 % in 10 000 
time steps. The minimization routines are not called exces­
sively with this time step. Tolerances for the penalty func­
tions are _10- 7 > f > 10- 12

• Table I shows statistics: POS­
MIN being the minimization routine for <I> and VELMIN 
the routine for'll. 

The principle difference between our algorithm and 
SHAKE is the method by which constraint forces are calcu­
lated. Instead of solving a linear matrix equation for the con­
straint multipliers, the SHAKE algorithm iteratively solves 
coupled quadratic equations to obtain constraint forces at 
each time step while keeping constraints within a specified 
tolerance. SHAKE effectively minimizes the penalty func­
tions <I> and'll continuously. Our algorithm allows con­
straints to "float" slightly between tolerances which are 
smaller than those of SHAKE in typical applications. 1-4 The 
matrix solution of Eq. (11) and the minimization routines 
use a very small fraction of computing time. 

We run simulations with our algorithm exactly as they 
are done for monoatomic liquids; we choose an appropriate 
starting configuration, equilibrate and then collect data of 
interest in a long thermostatted run. Starting configurations 
are cubic or fcc crystals with all dihedral angles trans. For 
our reported simulations, starting configurations were the 
final configurations from other runs of at least 50 ps, which is 
sufficiently long to approach trans-gauche equilibrium. 

TABLE I. POSMIN/vELMIN statistics at state points of Ref. 2. Reduced 
time step = 0.001 = 0.00193 ps. Tolerances are in reduced units (r/u). 

Mean time between minimizations 
(time steps) 

1. each molecule 
2. any molecule 

Mean ~U(system): before/after POSMIN 
Mean ~ U( <p): molecule minimized 
Mean I ~ cos <p I: molecule minimized 
Minimization tolerances 

~= I(r~p-d!p)2 

'II = I(rap . rap)2 

Calling tolerances ~ and'll 

Butane 

2300 ± 400 
86± 10 

0.004% 
0.005% 
0.0003 

10- 12 

10- 13 

10- 7 

Decane 

1800 ± 200 
81 ± 10 

0.002% 
0.001% 
0.0002 

10- 12 

10- 13 

10-7 

Thermodynamic functions were time averaged for all of 
our simulations; most importantly the internal energies, 
pressures, and the two temperatures defined by Eqs. (14) 
and (15). The pressure tensor is calculated in a molecular 
representation. 7 Intermolecular energies are calculated from 
pair interactions only. Self-diffusion coefficients are calcu­
lated from mean squared displacements of the molecular 
centers of mass. 

Molecular conformations are defined in terms of the di­
hedral angle ¢: 

A A 

cos rP = - A· B; A = r12XrZ3 and B = r23 Xr34· (17) 

rP < (11'/3) defines the trans state and rP > (17'/3) t.Qe g~uche. 
The "sign" of rP is given by the function f s (rP) = A X B • r 23· 
Conformational transitions are counted at the top of the po­
tential barrier, rP* = (17'/3), by checking rP at each time step. 

SIMULATION RESULTS: BUTANE AND DECANE 

Equilibrium simulations of liquid n-butane and n-de­
cane using the new algorithm have given some new and in­
teresting results. Table II presents these for n-butane at three 
state points. A and B correspond to states B 2 and B 1 of Ref. 
2, respectively; C is a point not studied by MD until now. 
Table III shows our decane results along with those of Ref. 2. 
Scalar pressures [ = j Tr(P)] and intermolecular energies 
are not corrected for truncation of the site-site U potential. 

Thermodynamics 

Thermodynamic averages from our work agree well 
with those of Refs. 2 and 3. Dihedral potential energies differ 
slightly, reflecting trans population differences. Pressures, 
and intermolecular and total energies relax quickly and fluc­
tuate about their time average values. Time averages for 
these variables are approximately the same at - 20 ps as they 
are at the end of the runs. 

The two temperatures show interesting behavior. Tm is 
rigidly fixed by the Gaussian thermostat while Ta fluctuates 
within ± - 10% ofthe T m' In the initial equilibrium phase 
of a simulation (Ta) and Tm usually differ by quite large 
amounts. The agreement of (Ta) and T m is convincing evi­
dence that the system is truly at equilibrium. 

TABLE II. Simulation results for n-butane - N = 64 molecules. 

State point 
Simulation time (ps) 
Density (reduced) 
Temperature (molecular) 
Temperature (atomic) 
Pressure (uncorrected) 
U (dihedral) 
U (intermolecular) 
Total energy 
Average percent trans 
Ideal gas percent trans 
Barrier crossings 

A 
418.52 

0.419 
2.778 
2.817 
4.046 
3.050 

35.796 
22.888 
71.3 
78 

B 
332.93 

0.365 
4.047 
4.122 
2.637 
4.613 

29.394 
10.345 
60.6 
67 

C 
580.90 

0.365 
5.991 
6.065 
8.242 
6.434 

27.478 
0.182 

51.6 
58 

T-G 133 952 6284 
G-T 141 955 6275 

Barrier crossing rate 0.0050 0.045 0.169 
109 XD (m2/s) 1.86 6.14 9.66 
Reduced units T* = T /(E/k), E* = E/(NE), p* = P(UJ/E), p* = pUJ 
Barrier crossing rate = [transitions/simulation time (ps)]lN 
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TABLE III. Simulation results for n-decane - T= 481 K, P = 0.630 g/ 
ml, N = 27 molecules. 

This work RB (Ref. 3) 

Time (ps) 55.14 19.0 
Temperature (molecular) 6.680 6.68 
Temperature (atomic) 6.738 
Pressure (uncorrected) 0.298 0.50 
U (dihedral) 45.930 • 
U (intramolecular) - 8.049 * 
U (intra + dihedral) 37.881 36.03 
U (intermolecular) - 65.739 - 68.19 
Total energy 15.440 13.26 
10·XD (m2/s) 5.15 7.5 
(r) 2.235 2.246 
(r) 5.077 5.117 
(r) - (r)2 0.082 0.Q70 
Mean squared radius of gyration 0.625 0.625 
Reduced units T* = T I(Elk), E* = EI(NE), r* = rlu, p* = P(d'IE) , 
p* = pd', where p = N IV 

Structure 

The simulations give us important infonnation about 
structure in dense liquid alkanes. Figures 1 and 2 show our 
observed site-site radial distribution functions, g(r), for bu­
tane at stateB and decane, respectively. Delta functions at rl 
0' = 0.39 and 0.63 arising from nearest- and next-nearest­
neighbor constraints are omitted. For butane, the broad and 
sharp peaks correspond to gauche and trans confonnations, 
respectively; the remainder of the curve shows intennolecu­
lar correlations. Decane has an even more interesting g(r), 
with fine structure from molecular confonnations; certain 
peaks can be attributed to confonnational sequences in the 
molecules. The distinctive sharp peaks arise from sequences 
of trans dihedral angles. From left to right these are T, IT, 
TIT, and TTTTat riO' = 0.98,1.27, 1.61, and 1.91, respec­
tively. For these peaks, site-site distances can only be less 
than or equal to a maximum extension which corresponds to 
all of the included dihedral angles being exactly zero. Thus, 
they have the characteristic cusp-like shape of a "half-Gaus­
sian" curve. The rounded peaks can be assigned to sequences 
with one or more gauche states; there are many possible se­
quences for each. These have full Gaussian shapes due to 
fluctuations about the gauche potential minima. Our g(r) 
plots have the same fonn as those from Ref. 2, but better 
sampling gives us less noise at large r. This function contains 
much infonnation about preferred confonnations in the 
dense fluid. 

2.5 

2.0 

1.5 
L 

CJ, 1.0 

0.5 

0.0 
0.5 

T 

1.0 1.5 2.0 
r 

2.5 

FIG. 1. Site-site g(r) for n-butane at state point B, r = r(A)lu. 

2.5 T 

TT 

2.0 

1.5 TG TTT 
L TTTT 
CJ, 1.0 

0.5 

0.0 
0.5 1.0 1.5 2.0 2.5 

r 
FIG. 2. Site-site g(r) for n-decane, r = r(A)lu. 

Figure 3 shows our nonnalized distribution of end-to­
end distances for n-decane. Our graph has the same shape as 
Ryckaert and Bellemans' distribution, but is smoother be­
cause of better sampling. This function, ee(r), also has a 
curious fine structure from preferred confonnations. Our 
values (r) and ("z) (Table III) are slightly less than those of 
Ryckaert and Bellemans, while our average mean squared 
radius of gyration agrees with their result. 

S = (1/ N) ~i ui ui defines an order tensor for the sys­
tem with ui an end-to-end unit vector for molecule i. For 
both butane and decane we observe that (S) = jl, indicating 
isotropy in the fluids at equilibrium. 

Conformational equilibrium 

The trans-gauche confonnational equilibrium in dense 
butane has been the subject of much theoretical interest. 2,8 

We find that this equilibrium shifts slightly towards the 
gauche state in going from the ideal gas to the dense fluid. 
From Table II, note that the average percent trans decreases 
with increasing temperature. At all three states the average 
population is -6%-7% trans less than the prediction for 
molecules in the ideal gas via the expression 

[

13 

[(Ntrans}INLdealgas= 0 sO(¢J)d¢J, (18) 

where SO (¢J) is the ideal gas dihedral distribution for con­
strained model butane: 

sO(¢J) = exp( - V(¢J )lkT) [g"(¢J)] 112 

2,0 

L 1.0 
OJ 
Q.) 

X {II' exp( - V(¢J)lkT) [g"(¢J)] 112d¢J} -1. (19) 

" 
" " 

;' .. 

i', , , 

.. , 

0.0 L-____ ~ __ ~~ __ ~ ____ ~-~ 

o 1.0 2.0 3.0 
r 

FIG. 3. Normalized end-end distribution function for n-decane, r = r(A)/ 
u. r .... = 2.8747. corresponding to all dihedral angles trans. 
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FIO. 4. Population vs time plots for state points A, B, and C. The horizontal 
lines indicate average values. Vertical axis units are percent trans. 

gz ( ,p ) is the determinant of the metric tensor for constrained 
model butane.9 Figure 4 shows portions of population (per­
cent trans) vs time plots for our state points A, B, and C; the 
horizontal lines indicate the average percent trans for each 
state. The three states exhibit markedly different time scales 
for concentration fluctuations. 
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FlO. 5. Population vs time for state point B. The solid horizontal line (RB) 
covering 14 ps shows the run length and average population for Ryckaert 
and Bellemans' simulation. The arrow indicates the average ideal gas popu­
lation. 

Table IV presents our B( = B 1) state data and the re­
sults from Refs. 2 and 3. We are mainly concerned with our 
64 molecule simulation; the small system results are includ­
ed for completeness. A striking feature is the difference in 
real time covered by the simulations; our best run at state B 
being - 23 times as long as that of Ryckaert and Bellemans, 
as Fig. 5 shows. 

Our most important result is an observed average popu­
lation of 60.6 ± 1.5% trans. Wielopolski and Smith3 obtain 
58.5 ± 1.0% trans using the SHAKE algorithm. Ryckaert 
and Bellemans report an average of 54% trans, but do not 
give an error estimate. Based on run lengths, we estimate 
their uncertainty to be - ± 7% trans. Thus, these three val­
ues for the eqUilibrium population agree. Chandler and co­
workers8 theoretically predict an average population of 
-60% trans at the lower temperature of 274 K. At 291 K, 
this number should be less than 60%, possibly lying within 
our uncertainty. Clearly, the simulations of Ryckaert and 
Bellemans are much too short to give an accurate equilibri­
um constant for model butane. 

Figure 6 shows our normalized distribution function for 
the dihedral angle,p in butane, s(,p), at state B. The contin­
uous curve is the ideal gas distribution SO (,p ). Integrating our 
histogram curve s(,p) from,p = 0 to tTI3 gives exactly the 
same number for (% trans) as time averaging N ,rans over the 
run. (l:i f s (,pi» = 0, ensuring that this distribution is com-

TABLE IV. Simulation results for butane at state point B - T= 291 K, P = 0.583 glm!. 

System size (molecules) 
Time (ps) 
Temperature (molecular) 
Temperature (atomic) 
Pressure (uncorrected) 
U (dihedral) 
U (intermolecular) 
Total energy 
Average percent trans 
Barrier crossings 

Our best simulations 

27 
240.6 

4.049 
4.178 
5.470 
4.803 

27.619 
8.194 

58.1 

64 
332.9 

4.047 
4.122 
2.637 
4.613 

29.394 
10.345 
60.6 

T-G 333 952 
G-T 329 955 

Barrier crossing rate 0.051 0.045 
109 XD (m2/s) 5.05 6.14 
Reduced units T* = T /(E/k), E* = EI(NE), p* = P(if/E) , p* = pif, where p = N IV. 
Barrier crossing rate = (transitions/simulation time (ps) )IN 

RB (Ref. 2) 

64 
14.0 
4.05 

1.86 
5.14 

- 30.37 
- 11.06 

54.0 

43 
45 
0.049 
6.1 
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WS (Ref. 3) 

64 
249.0 

3.962 

0.90 
4.49 

31.42 
13.06 
58.5 

Ideal gas 

4.11 

67 
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FIG. 6. Dihedral angle distributions at state point B. The points show our 
simulation distribution s(I/». The solid curve is the ideal gas distribution 
tJ(I/». I/> is in units of 1/". 

pletely symmetric about ifJ = O. Ryckaert and Bellemans' 
s(ifJ) is not symmetric about ifJ = O. This is further evidence 
that their simulated system is not fully equilibrated. At our 
high temperature state C (T* = 6.0), s(ifJ) covers the entire 
dihedral angle space {0,1T}, indicating at least one direct 
gauche to gauche transition. This is a very rare event consid­
ering that the G--.+G potential barrier is roughly three times 
as high as the T --.+G barrier. 

Our simulations also show that classical transition state 
theory does not adequately describe the dynamics of isomer­
ization in liquid alkanes. Typical trajectories along the reac­
tion coordinate ifJ recross ifJ* several times before settling in 
either the trans or gauche potential well. TST assumes that 
no recrossings occur. Times between recrossings in either 
direction for butane at state B are approximately normally 
distributed with a mean of -0.20 ps; molecules recross ifJ* 
two or three times on average in either direction. A simple 
count of barrier crossings does provide an estimate of the 
rate within transition state theory. However, it is not the best 
way to characterize a true conformational transition rate 
because it ignores the oscillatory nature of motion in the 
vicinity of ifJ* on a short (relative to well-to-well motion) 
time scale and overestimates the rate constant. To more ac­
curately describe a transition rate one could define a trans­
mission coefficient at a given temperature and density in 
terms of the average number ofrecrossings in a long simula­
tion. Nevertheless, our rates from a total count of barrier 
crossings at state point B are nearly identical to Ryckaert 
and Bellemans', despite the dramatic difference in simula­
tion time. 

CONCLUSION 

We have presented a new algorithm for constrained MD 
simulation and results from simulations of liquid alkanes. 

An important advantage of this new algorithm is that con­
straint force multipliers are determined by solving coupled 
linear equations. Another advantage is the Gaussian ther­
mostat, which allows simulation in the isothermal ensem­
ble.1O All previous simulations of alkanes with bond and 
bond angle constraints 1-3,5 have been carried out in the stan­
dard NVE or MD ensemble. Gauss' principle of least con­
straint plays an important role in the design of our algo­
rithm, as it allows us to treat constraints in a clear and 
concise manner. 

This work has been concerned with liquid n-alkanes, but 
the algorithm can easily be used for larger and more complex 
molecules or for different constraint schemes, nearest-neigh­
bor bond constraints, only, for example, by changing the 
forms of the constraint force vector (A R) n and the matrix 
M. Improved numerical methods and the use of vector pro­
cessing could substantially decrease the computing time 
needed for simulations of systems of large molecules. 

Agreement of results from completely different simula­
tion algorithms, ours and those of Ryckaert and Bellemans, 
is very important because it essentially confirms their cor­
rectness and validity. Independent cross checks such as this 
are not often performed. Tildesley and Allen have recently 
discovered coding errors in several simulation programs 
from the CCP5 library.u Cross checking these CCP5 pro­
grams against other algorithms would have revealed the er­
rors much earlier. 
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