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Abstract

RNA function crucially depends on its structure. Thermodynamic
models that are used for secondary structure prediction report a large
number of structures in a limited energy range, often failing in iden-
tifying the correct native structure unless complemented by auxiliary
experimental data. In this work we build an automatically trainable
model that is based on a combination of thermodynamic parameters,
chemical probing data (Selective 2’ Hydroxyl Acylation analyzed via
Primer Extension, SHAPE), and co-evolutionary data (Direct Cou-
pling Analysis, DCA). Perturbations are trained on a suitable set of
systems for which the native structure is known. A convolutional win-
dow is used to include neighboring reactivities in the SHAPE nodes
of the network, and regularization terms limit overfitting improving
transferability. The most transferable model is chosen with a cross-
validation strategy that allows to automatically optimize the relative
importance of heterogenous input datasets. The model architecture
enlightens the structural information content of SHAPE reactivities
and their dependence on local conformational ensembles. By using the
selected model, we obtain enhanced populations for reference native
structures and more sensitive and precise predicted structures in an
independent validation set not seen during training. The flexibility of
the approach allows the model to be easily retrained and adapted to
incorporate arbitrary experimental information.
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1 Introduction

Ribonucleic acids (RNA) transcripts, and in particular non-coding RNAs,
play a fundamental role in cellular metabolism being involved in protein
synthesis [1], catalysis [2], and regulation of gene expression [3]. RNAs of-
ten adopt dynamic interconverting conformations, to regulation their func-
tional activity. Their function is however largely dependent on a specific
active conformation [4], making RNA structure determination fundamental
to identify the role of transcripts and the relationships between mutations
and diseases [5]. The nearest-neighbor models based on thermodynamic pa-
rameters [6, 7] allow the stability of a given RNA secondary structure to be
predicted with high reliability, and dynamic programming algorithms [8, 9]
can be used to quickly identify the most stable structure or the entire par-
tition function for a given RNA sequence. However, the coexistence of a
large number of structures in a narrow energetic range [10] often makes the
interpretation of the results difficult. Whereas there are important cases
where multiple structures are indeed expected to coexist in vivo and might
be necessary for function [11, 12], the correct identification of the dominant
structure(s) is crucial to elucidate RNA function and mechanism of action.
In order to compensate for the inaccuracy of thermodynamic models, it
is becoming common to complement them with chemical probing data [13]
providing nucleotide-resolution information that can be used to infer pairing
propensities (e.g., reactive nucleotides are usually unpaired). Particularly
interesting is selective 2′ hydroxyl acylation analyzed via primer extension
(SHAPE) [14, 15], as it can also probe RNA structure in vivo [16]. In a
separate direction, novel methodologies based on direct coupling analysis
(DCA) have been developed to optimally exploit co-evolutionary informa-
tion in protein structure prediction [17] and found their way in the RNA
world as well [18, 19]. Whereas the use of SHAPE data and of multiple se-
quence alignments in RNA structure prediction is becoming more and more
common, these two types of information have been rarely combined [20].

In this paper, we propose a model to optimally integrate RNA thermo-
dynamic models, SHAPE experiments, and DCA co-evolutionary informa-
tion into a robust structure prediction protocol. A crucial ingredient of the
model is the inclusion of chemical probing data from multiple neighboring
nucleotides by means of a convolutional network. A machine learning pro-
cedure is then used to select the appropriate model and optimize the model
parameters based on available experimental structures. Regularization hy-
perparameters are used to tune the complexity of the model thus controlling
overfitting and enhancing transferability. The resulting model leads to per-
formance in secondary structure prediction that surpasses available methods
when used on a validation set not seen in the training phase. The parameters
can be straightforwardly re-trained on new available data.
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(a) (b)

Figure 1: Graphical scheme of the machine learning procedure. (a) Models that
integrate RNAfold, SHAPE experiments, and DCA scores into prediction of struc-
ture populations are trained. One among all the proposed models is selected based
on a transferability criterion and validated against data that is not seen during
training. Available reference structures are used as target for training and valida-
tion. (b) Sequence, SHAPE and DCA data are included through additional terms
in the RNAfold model free energy. The network is split into two channels: a single-
layered channel for SHAPE input (left side) and a double-layered channel for DCA
couplings (right side). Along the SHAPE channel, a convolutional layer operates a
linear combination on the sliding window including the SHAPE reactivity Ri of a
nucleotide and the reactivities {Ri+k} of its neighbors, with weights {ak} and bias
b. The output consists in a pairing penalty λi for the i-th nucleotide. In the DCA
channel, the first layer transforms the input DCA coupling Jij via a non-linear (sig-
moid) activation function, with weight A and bias B. The transformed DCA input
is then mapped to a pairing penalty λij for the specific ij pair via a second layer,
implementing a linear activation function with weight C and bias D. Penalties for
both individual nucleotides and for specific pairs are applied as perturbations to
the RNAfold free-energy model.

2 Results

The architecture of the model is summarized in Fig. 1. Chemical probing ex-
periments provide reactivities per nucleotide (one-dimensional information,
Ri) that are mapped via a single-layered convolutional network to penal-
ties to be associated to the pairing propensity of individual nucleotides
(λi). Similarly, direct-coupling analysis provides predicted contact scores
(two-dimensional information, Jij) that are mapped through a non-linear
function into penalties to be associated with specific nucleotide-nucleotide
pairs (λij). The resulting penalties are integrated in the folding algorithm
RNAfold from the Vienna package [9], which allows the full partition func-
tion of the system to be computed, including the population of any subopti-
mal structure. The parameters of the mapping functions are trained in order
to maximise the population of the secondary structures as annotated in a
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Molecule PDB lseq S1 S2 S3 S4 S5

yeast Phe-tRNA 1EHZ 76 T V T T T
D5,6 Yeast ai5g G-II Intron 1KXK 70 T T T T V
Adenine riboswitch 1Y26 71 T T T T T
TPP riboswtich 2GDI 78 T T V V T
SAM riboswitch 2GIS 94 T T V T T
Lysine riboswitch 3DIG 174 T T V V T
c-di-GMP riboswitch 3IRW 90 T T T V V
M-box riboswitch 3PDR 161 V V T T T
THF riboswitch 3SD3 89 V V T T V
Fluoride riboswitch 3VRS 52 V T T T T
50S ribosomal 4YBB CB 120 T T T T T

Table 1: RNA molecules included in the dataset. For each molecule we indicate
the PDB ID (second column) of the corresponding annotated structure, the number
of nucleotides (lseq), and, for each random dataset splitting that we used (S1 to S5),
a mark to denote whether the molecule data are used for training (T) or validation
(V). For PDB 4YBB, chain CB was used as a reference.

set of high-resolution X-ray diffraction experiments. The differentiability of
the RNAfold model with respect to the applied penalties is crucial, since
it allows the thermodynamic model to be used during the training proce-
dure. Reference structures are obtained from the structural database [21].
Reference SHAPE data are partly taken from the RNA mapping database
[22, 23] and from Ref. [24], and partly reported for the first time in this
paper. Reference direct couplings are partly taken from Ref. [25] and partly
obtained in this paper, using RNA families deposited on RFAM [26]. The
model complexity is controlled via three hyperparameters, which are chosen
using a cross-validation procedure, and the obtained model is evaluated on
an independent dataset not seen during the training procedure. A more
detailed explanation can be found in the Online Methods.

2.1 Model training

We randomly choose a training set of 8 systems, leaving 3 others out for
later validation. Since crystal structures, SHAPE data, and DCA data for
different systems might be of different quality, the specific choice of the
splitting might affect the overall training and validation results. We thus
generate five independent random splittings, reported in Table 1. In the
following we refer to splitting S4, as it yields intermediate performance on
the validation set. Results obtained with different splittings are reported
in Supporting Information. The model complexity is controlled by means
of three handles: a regularization parameter acting on the one-dimensional
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(a) (b)

Figure 2: Population of native structure as function of hyperparameters. Popula-
tion is indicated in the color scale. The optimized population of native structures,
when averaged on the training set (a), is by construction a monotonically increasing
function of the integer p controlling the window size of the convolutional network
in the SHAPE channel, and a monotonically decreasing function of the regulariza-
tion coefficients αS and αD. When averaged on the leave-one-out iterations of the
CV procedure (b), the dependency of the optimized population of native structures
on these hyperparameters becomes non-trivial, as it results from a combination of
model complexity (controlled by p) and regularization (controlled by αS and αD

independently). The CV procedure serves as criterion for model selection, resulting
in the selection of hyperparameters {p = 2, αS = 0.01, αD = 0.001}.
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penalties derived from SHAPE reactivities (0 ≤ αS ≤ ∞), a regularization
parameter acting on the two-dimensional penalties derived from DCA (0 ≤
αD ≤ ∞) and an integer controlling the size of the window used for the
convolutional network (p <= 3). When the performance of the model is
evaluated on the training set, the model that better fits the data is the most
complex one, with no regularization term (αS = αD = 0) and the largest
tested window (p = 3) (Fig. 2a). The geometric average increase in the
population of native structures, when compared with the thermodynamic
model alone, is ≈ 108 times. Within our procedure it is straightforward to
train the model in order to use only SHAPE data (αD =∞), or only DCA
data (αS =∞), resulting in increases of native population of ≈ 17 times and
≈ 24 times respectively using the same randomized training set (S4 of Table
1). This result suggests that the amount of information provided by the
co-evolutionary analysis is higher than that provided by chemical probing
experiments.

2.2 Model selection

In order to make the parametrization transferable, we perform a leave-one-
out cross-validation (CV) procedure (see Online Methods) where one of the 8
systems at a time is left out of the training procedure and the increase in the
native population for the left-out system is used to estimate transferability.
Overall, the average performance of the model on the left-out system shows
a non-trivial dependence on the hyperparameters (Fig. 2b). The model with
hyperparameters αS = αD = 0 and p = 3 results in CV populations that
are lower than those obtained with the thermodynamic model alone, which
is a signature of overfitting. The best performance in the cross-validation
test is obtained when choosing αS = 0.01, αD = 0.001 and p = 2. We select
this model as the one that yields the best balance between performance and
transferability. Results obtained by using a different randomization of the
training set are reported in SI. Whereas the precise set of optimal hyperpa-
rameters depends on the specific training set, sets of hyperparameters that
perform well on a specific set tend to perform well for all the tested training
sets.

2.3 Validation on an independent dataset

Finally, we evaluate the performance of the selected model on a dataset
of three systems that were not seen during training. This additional test is
done in the spirit of nested cross-validation [27] in order to properly evaluate
the transferability of the procedure.

For the three test systems (splitting S4 of Table 1), the introduced pro-
cedure leads to a boost of the population of the native structure of ≈ 10
times, on average (Fig. 3a, right side of the vertical line), when using the
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(a) (b)

(c) (d)

Figure 3: Comparison of populations of native structures obtained with unmodi-
fied RNAfold and with selected models, respectively: (a) the best performing model;
(b) the best performing model with DCA data only; (c) the best performing model
with SHAPE data only and (d) the best performing model with SHAPE data only
and convolutional window width p = 0. Hyperparameters are noted in the figure.
Native structure populations obtained with unmodified RNAfold (black cross), with
our trained model (red star) and in the leave-one-out procedure (blue circle, for each
molecule the model is trained on all the other molecules in the training set) are
reported. Populations obtained by mapping SHAPE reactivities into penalties with
the method in Ref. [15] are reported for comparison (green plus), only for molecules
studied in previous work and in panels where SHAPE data only are used (c and
d). The populations of native structures that we obtain with the trained model
are almost always enhanced for molecules included in the training set (left side
of the vertical line), whereas for molecules not included (right side of the vertical
line) overfitting occur in some cases, yielding populations lower than obtained with
unmodified RNAfold.
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selected model {αS = 0.01, αD = 0.001, p = 2}. A side effect of targeting
the population of native structures for model optimization and selection is
the increase in the similarity between the predicted minimum free energy
(MFE) structures and the experimental ones. Reference secondary struc-
tures, along with MFE predictions made with unmodified RNAfold and with
the selected model are reported in Fig. 4 for comparison. This similarity can
be quantified using the Matthews Correlation Coefficient (MCC) [28], that
is routinely used to benchmark RNA structure prediction [29]. Its average is
here enhanced from 0.66 to 0.88. Specific changes in the predicted secondary
structures are reported in detail in the caption of Fig. 4. Considering all the
tested splittings of the dataset, the average MCC of minimum free energy
structure predictions is enhanced from 0.72 ± 0.22 to 0.87 ± 0.07, implying
both an increased average and a decreased variance (details in SI).

It is also possible to test the scenarios where only DCA data or only
SHAPE data are available. In case of DCA-only information (αS = ∞),
the best performance in CV is obtained using the model with αD = 0.0001
(Fig. 3b). This model is transferable to the validation set yielding an increase
in the population of the native structures lower but comparable to what
obtained when SHAPE and DCA data are both included. In case of SHAPE-
only information (αD = ∞), the best performance in CV is obtained using
the model with hyperparameters αS = 0.01 and p = 3. In this case our CV
procedure fails to identify a parametrization that is completely transferable
to the validation set, as can be seen from Fig. 3c. The population of native
structure is increased for only one system out of the three, and it is slightly
decreased on average, by a factor ≈ 0.8.

Our procedure to compute pairing penalties from SHAPE data can be
compared with the one introduced by Deigan et. al. [15]. Since the Deigan’s
method requires SHAPE data normalized with a different procedure, we use
normalized reactivities reported in Ref. [23]. Remarkably, our procedure
leads to significantly better results both for molecules that are included in
the training set (e.g. 1EHZ and 1Y26 in Fig. 3c), and for the one included
in the validation set (2GDI in the right side of Fig. 3c). Even when 1EHZ

is not used for training but only as a validation structure (splitting S2)
the selected model yields an increase in population of native structure of a
factor ≈ 5, outperforming both unmodified RNAfold and Deigan’s method.
The improvement in performance that we obtain may be due either to a
more robust training and validation protocol, to the choice of a mapping
function that includes neighboring reactivities, or to a combination of these
two factors. In order to discriminate between these scenarios, we restrict
further the comparison with Deigan’s procedure to models with p = 0. In
this case our best performing model in CV is defined by αS = 0. As can be
seen from Fig. 3d, populations are on average lower than those obtained with
p = 3 and αS = 0.01, suggesting that the inclusion of neighboring SHAPE
reactivities, when combined with proper regularization, is preferable.
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(a) Reference (b) RNAfold (0.81) (c) Trained model (0.83)

(d) Reference (e) RNAfold (0.9) (f) Trained model (0.95)

(g) Reference (h) RNAfold (0.25) (i) Trained model (0.87)

Figure 4: Minimum free energy (MFE) structure predictions. For each system
in the validation set, reference native structure is compared with predicted MFEs.
Correctly predicted base pairs (true positives) and unpaired nucleotides (true neg-
atives) are reported in dark green and lime green, respectively. Wrongly predicted
base pairs (false positives) and unpaired nucleotides (false negatives) are reported
in orange and red, respectively. MCC between prediction and reference is reported
in parenthesis. For 2GDI (a-c), the accuracy of prediction is slightly increased with
respect to unmodified RNAfold. In particular, our model recovers the correct struc-
ture of the internal loop (49–53:66–70). For 3DIG (d-f), some bulges and an interior
loop wrongly predicted by RNAfold are correctly discarded by our model, recov-
ering almost completely the structure of the five-way junction. In the best-case
result, 3IRW (g-i), despite our model is not able to predict correctly the initial helix
(2–5:86–90), it recovers almost completely the other stem-loop structures that are
not correctly predicted by RNAfold. All secondary structure diagrams are drawn
with forna [30].
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2.4 Interpretation of parameters

In principle, different randomizations of the training set yield different hy-
perparameters and parameters for the functions implemented in the selected
model. Here we continue focusing on splitting S4 as it yields intermediate
performance in validation. The selected model is defined by hyperparam-
eters {αS = 0.01, αD = 0.001, p = 2}. Results for different splittings are
similar and are reported in SI.

DCA channel. DCA couplings are mapped into pairing penalties through
a double-layered neural network, resulting in a non-linear function reported
in Fig. 5a. Pairing penalties are found to be decreasing with increasing
DCA coupling value, consistently with the interpretation that large cou-
plings should correspond to co-evolutionarily related and thus likely paired
nucleobases [18]. We notice however that the final bias in this non-linear
function is coupled with the bias of the SHAPE channel and thus cannot be
directly interpreted. We can nonetheless exclude this effect by restricting to
models taking only DCA couplings as input (αS = ∞). The corresponding
non-linear function is reported in Fig. 5b. The overall shape is consistent
with that obtained fitting all the data (Fig. 5a), but the zero of this function
can be straightforwardly interpreted as the threshold for penalizing or favor-
ing base pairing. The resulting value is J threshold = 0.51 consistent with the
typical thresholds obtained in [25] with a different optimization criterion,
based on the accuracy of contact predictions, and fitted on a larger dataset,
thus confirming the transferability of the non-linear function reported here.
SHAPE channel. SHAPE reactivities are mapped into penalties affecting
the population of individual nucleotide pairing states through a single con-
volutional layer with a linear activation function. For each nucleotide, the
network input vector includes SHAPE reactivities from its second-nearest-
neighbor upstream to its second-nearest-neighbor downstream along the
sequence. The activation coefficients weight the contribution of each nu-
cleotide in the neighbor window. Optimal parameters are reported in Fig. 5c.
We first notice that the sum of the weights

∑2
i=−2 ai is negative, so that the

pairing of a nucleotide in a highly reactive region is unfavored, and vice-
versa for regions of low reactivity. The largest contribution arises from the
a0 term, confirming that reactivity of a nucleotide, related to its flexibil-
ity [31, 32], is maximally affected by its pairing state. The second-largest
contribution is given from the reactivity of the first downstream neighbor
(a+1), with a weight that has the opposite sign. The combination of the
a0 and a+1 contributions can be interpreted as a forward finite-difference
operator estimating the first derivative of the reactivity with respect to the
position in the sequence. This contribution maps a local downward trend
of the reactivity profile into a pairing penalty, thus providing a sort of nor-
malization for the reactivity of the central nucleotide with respect to that
of the first downstream neighbor. The remaining weights are lower and can
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(a) (b)

(c)

Figure 5: Properties of the optimized neural network. For the DCA channel,
the optimized function mapping DCA couplings Jij into pairing penalties λij , for
both (a) the selected model and (b) the best performing model with restriction
to only DCA input. When trained on the whole training set (red) the activation
function is consistent with the average on the leave-one-out training subsets (or-
ange). Error bars are computed as standard deviations and are significantly lower
in the region of DCA couplings around zero, as couplings lying in that region are
more frequent. The trained function maps (respectively, low) high DCA coupling
values to penalties favoring (respectively, disfavoring) the corresponding pairings,
thus affecting the population of the structures including the specific pair. When
restricting to (b) models including only DCA input, the threshold value of the cou-
pling J th between disfavored and favored pairing corresponds to the zero of the
activation function, as indicated by the dashed line. For the SHAPE channel, (c)
optimal values of model parameters are shown for the selected model, with hyper-
parameters {αS = 0.01, αD = 0.001, p = 2}. Training results (red) lie within the
leave-one-out error bars (orange), indicating robustness of the minimization pro-
cedure against cross-validation. Coefficients {a−2, . . . , a+2} weighting reactivities
up to the second-nearest-neighbors of a nucleotide, report the importance of the
reactivity pattern for the downstream neighbor in addition to the nucleotide’s own
reactivity.
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be interpreted as corrections to penalties taking into account higher-order
variations in the local reactivity profile of the neighbor window.

3 Discussions

In this work we build a network that can be used to predict RNA structure
taking as an input RNA sequence, SHAPE reactivities, and DCA scores.
Whereas SHAPE reactivities and DCA scores are processed through stan-
dard linear or non-linear units, RNA sequence enters through a thermody-
namic model. A crucial ingredient that we introduce here are the derivatives
of the result of the thermodynamic model with respect to the pairing penal-
ties, that allow the network to be trained using gradient-based machine
learning techniques.

We built up a total of 196 models to map simultaneously SHAPE reactiv-
ities and DCA scores into free-energy terms coupling, respectively, the pair-
ing state of individual nucleotides and that of specific pairs of nucleotides.
Each model is defined by tunable hyperparameters controlling the width of
the windows used to process SHAPE reactivities and the strength of the
regularization terms applied to SHAPE and DCA data. The dataset is a
priori split randomly into a training set and a validation set (8 and 3 sys-
tems respectively). Training, model selection and validation are repeated
for different random splittings of the dataset, ensuring the robustness of the
procedure. The whole procedure, from training to model selection, is auto-
matic so that new parameters could be straightforwardly obtained using new
SHAPE and DCA data and new crystallographic structures, allowing for a
continuous refinement of the proposed structure prediction protocol. In the
dataset we used, some SHAPE reactivities are taken from available experi-
mental data. Other SHAPE reactivities are measured here for the first time
so as to increase the number of systems for which both co-evolutionary data
and SHAPE reactivities are available. DCA scores are based on ClustalW
alignments [33] so that they are not manually curated with prior structural
information. We notice however that classification of sequences in RFAM
is performed including structural information, when available. In addition,
co-evolutionary information might be difficult to extract for poorly con-
served long non-coding RNAs. All the results obtained with different ran-
domization of the validation set are reported in SI so that different sets of
parameters can be easily tested.

The model selected via CV is defined by hyperparameters {p = 2, αS =
0.01, αD = 0.001}. The best performing method thus incorporates in the
pairing state of a nucleotide reactivities from neighboring nucleotides up to
the second-nearest ones. This is furthermore supported by the fact that,
when restricting to SHAPE-only information, models with larger windows p
perform better than models with narrower windows. In general the selected
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models with p > 0 yield better results in population than what obtained with
Deigan’s method [15], which is accounted for best state-of-the-art method
[34] among those based on SHAPE reactivities only. Our results thus show
that the reactivity of a nucleotide is affected by the local conformational en-
semble, in agreement with molecular dynamics simulations [32]. Our results
also confirm that the reactivity of a nucleotide is a good indicator of its own
pairing state [34], but additionally indicate that the reactivity trend with
respect to its downstream nearest-neighbor plays an important role as well
(see Section 2.4, SHAPE channel paragraph). With this approach we at
least partially solve inconsistencies between SHAPE reactivities and pairing
states previously pointed out [35, 36] as an issue in fitting free-energy terms
computed from individual nucleotide reactivities. In perspective, the model
can be extended to include additional features of the SHAPE experiments
that may be related to non-canonical interactions and three-dimensional
structure.

We also notice that when trained on SHAPE data alone our procedure
identifies a set of hyperparameters for which the model is overfitted. This
might be due to the heterogeneity of the SHAPE data used here, that come
from different sources and might have been obtained in different conditions.
On the other hand, the model obtained combining SHAPE and DCA data
is systematically capable of predicting a higher population for the native
structure.

Although the model is trained to maximize the population of the indi-
vidual reference structure as obtained by crystallization experiments, it can
still report alternative structures. Whereas we did not investigate this issue
here, alternative low-population states might be highly relevant for func-
tion. Compatibly with that, the absolute population of the native structure
remains significantly low (from ≈ 10−6 to ≈ 10−1), but is still one of the
highest in the ensemble. In particular, the individual structure with highest
population (minimum free-energy structure) with our method is closer to
the reference crystallographic structure than the one predicted by thermo-
dynamic parameters alone on systems not seen during training.

Importantly, all the data and the used scripts are available and can be
used to fit the model over larger datasets. In order to avoid overfitting, we
suggest to repeat the leave-one-out procedure to select the most transferable
model, whenever new independent data is added to the dataset. Scripts for
training and model selection are reported in SI. In principle the model can
be straighforwardly extended to include any chemical probing data that pu-
tatively correlates with base pairing state [13] or other types of experimental
information that correlate with base-pairing probabilities [37]. Training on a
larger set of reference structures and using more types of experimental data
will make the model more robust and open the way to the reliable structure
determination of non-coding RNAs.

13



4 Online methods

4.1 Secondary structure annotation

The secondary structures that we use as examples for training and validation
are obtained annotating crystallographic structures with x3dna-dssr [38].
Differently from previous work, we include all the computed cis-Watson-
Crick contacts as reference base pairs, with exception of pseudoknots that
are forbidden in predictions made with RNAfold. All the reference structures
are published in the PDB database and have a resolution better than 3 Å so
that they can be assumed to be of similar quality, although crystal packing
effects or other artefacts might in principle be different. The list of PDB
files used in this work is reported in Table 1.

4.2 Thermodynamic model

As a starting point we use the nearest neighbor thermodynamic model [6, 7]
as implemented using dynamic programming [8] in the ViennaRNA package
[9]. Given a sequence ~seq the model estimates the free energy associated to
any possible secondary structure ~s by means of a sum over consecutive base
pairs, with parameters based on the identity of each involved nucleobase.
We denote this free energy as F0 (~s| ~seq). We used here the default ther-
modynamic parameters of the ViennaRNA package [39], but the method
could be retrained starting with alternative parameters. The probability of
a structure ~seq to be observed is thus

P0 (~s| ~seq) =
e−

1
RT

F0(~s| ~seq)

Z0 ( ~seq)
(1)

where Z0 is the partition function, R is the gas constant and T the tem-
perature. Importantly, the implemented algorithm is capable to find in a
polynomial time not only the most stable structure associated to a sequence
(arg min~sF0 (~s| ~seq)) but also the full partition function Z0 and the proba-
bility of each base pair to be formed [40].

4.3 Experimental data

4.3.1 SHAPE data

SHAPE data for systems 1EHZ, 1Y26, 2GDI, 3DIG, 3PDR and 4YBB CB were
taken from the literature [22, 23, 24]. SHAPE data for systems 1KXK, 2GIS,
3IRW, 3SD3 and 3VRS were collected for this work.

Single stranded DNA templates containing the T7 promoter region and
the 3 and 5 SHAPE cassettes [41] were ordered from Eurofins Genomics.
RNAs were transcribed using in-house prepared T7 polymerase. Briefly,
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complementary T7 promoter DNA was mixed with the desired DNA tem-
plate and snap cooled (95 ◦C for 5 minutes, followed by incubation on ice for
10 minutes) to ensure annealing of the T7 complementary promoter with
template DNA. The mixture was supplemented with rNTPs, 20X transcrip-
tion buffer (TRIS pH 8, 100 mM Spermidine, 200 mM DTT), PEG 8000,
various concentrations of MgCl2 (final concentration ranging from 10 to
40 mM), and T7 (10 mg/mL). The RNAs were run on a 12% denaturing
polyacrylamide urea gel and stained with toluidine blue to assess the most
optimal MgCl2 concentration. The RNA was cut from the gel and iso-
lated using the crush and soak method [42]. Following crush and soak, the
RNAs were precipitated using ethanol, and resuspended in RNAse-free wa-
ter. SHAPE modification followed by reverse transcription (using 5’ FAM
labeled primers) was carried out as previously described [41]. Following
reverse transcription, RNAs were precipitated using ethanol, redissolved
in HiDi formamide, and cDNA fragments separated using capillary elec-
trophoresis (ABI 3130 Sequencer). Raw reads corresponding to cDNA frag-
ments were obtained using QuSHAPE [43] and are reported in SI. Reads
in each of the control and modifier channels were first normalized indepen-
dently by dividing them by the sum of reads in the corresponding channel.
SHAPE reactivities were then estimated by subtracting the normalized reads
in the control channel from the normalized reads in the modifier channel,
with negative values replaced with zeros. This normalization is a simplified
version of the one proposed in Ref. [44] and does not contain position de-
pendent corrections. These corrections are only expected to be relevant for
RNA molecules significantly larger than those analyzed here.

4.3.2 DCA data

Direct couplings for all the systems were calculated using the same code and
parameters reported in Ref. [25], but aligning them with ClustalW [33] so
as to avoid including indirectly known structural information. For systems
where the sequences used in Ref. [25] were different from those reported in
the PDB or used in SHAPE experiments, DCA calculations were performed
again. Coupling Jij ’s were computed as the Frobenius norm of the couplings
between positions i and j, as detailed in Ref. [25]. All the used alignments
and couplings are reported in Supporting Information.

4.4 Penalties

We integrate SHAPE reactivities Ri and direct couplings Jij into the model
by mapping them into penalties to pairing propensity of, respectively, indi-
vidual nucleotides and specific nucleotide pairs. This is obtained through a

15



modification of the original model free energy by two additional terms:

F
(
~s| ~seq; ~R, ~J

)
= F0 (~s| ~seq) +RT

lseq∑
i=1

λi(~R) · (1− si) +RT

lseq∑
j>i+2

λij( ~J) · sij

(2)
where si is the pairing status of the i-th nucleotide in the structure ~s

si =

{
1 if nucleotide i is paired

0 otherwise
(3)

and sij is the pairing status of the specific couple of nucleotides i and j

sij =

{
1 if nucleotide i is paired with nucleotide j

0 otherwise
(4)

We implement both kinds of penalties in the folding algorithm using the soft
constraints functions from RNAlib vrna sc add up and vrna sc add bp, re-
spectively. We notice that penalties on individual nucleotides are used in sev-
eral methods developed to account for chemical probing experiments [45, 46]
though the way these penalties are computed can differ. Also notice that the
most used model to include SHAPE data in secondary structure prediction
[15] uses slightly different penalties that are associated to consecutive base
pairs rather than to individual ones.

4.5 Neural network

An important ingredient in our procedure is the way experimental data
(SHAPE and direct couplings) are mapped into single and pairwise penalties
respectively.

The penalties associated with individual nucleotides are mapped from
SHAPE reactivities via a single-layered convolutional network:

λi

(
~R
)

=

p∑
k=−p

ak ·Ri+k + b (5)

We include the reactivities of the first p neighbor nucleotides on both the 3′

and 5′ sides along the sequence. Hence, the hyperparameter p determines
the size of the convolutional window, namely 2p+ 1. The parameters ak of
the linear activation function control the relative weights of neighbors, and
b is the bias.

The penalties on specific nucleotide pairs are mapped from direct cou-
plings via a double-layered network:

λij (Jij) = C · σ (A · Jij +B) +D (6)
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The activation function of the output layer is linear with parameters C and
D, whereas we apply a sigmoid activation σ (x) = 1

1+e−x at the innermost
layer, with weight A and bias B.

The model has thus 2p + 6 free parameters: {ak, b} for the penalties
associated to the SHAPE data and {A,B,C,D} for those associated to the
DCA data.

4.6 Training

The modifications to the model free energy affect the whole ensemble of
structures for a given sequence, resulting in modified populations:

P
(
~s| ~seq, ~R, ~J

)
=
e−

1
RT

F(~s| ~seq;~R, ~J)

Z
(
~seq, ~R, ~J

) (7)

Our aim is to enhance the population of the native structure, under the
assumption that the native structure is the one obtained by X-ray crystal-
lography. We thus consider a set of given sequence-structure pairs { ~seq, ŝ}
(one for each system in the training set), where ŝ denotes an available crys-
tallographic structure, and for each system we train the model to minimize
the cost function

C ({ak, b}, {A,B,C,D}) = −RT lnP
(
ŝ| ~seq, ~R, ~J

)
(8)

Its minimization, in the training procedure, is equivalent to maximizing the
population of the target structures.

For each system we decompose the cost function into two terms, namely

F
(
~s| ~seq; ~R, ~J

)
and −RT lnZ

(
~seq, ~R, ~J

)
that we can compute using, re-

spectively, the functions vrna eval structure and vrna pf from RNAlib.
The derivatives of Eq. (8) with respect to model paramaters, that are re-
quired for cost minimization, are proportional to pairing probabilities of
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individual nucleotides pi and of specific nucleotide pairs pij :

∂C
∂an

= RT

lseq∑
i=1

(pi − ŝi)
∂λi
∂an

= RT

lseq∑
i=1

(pi − ŝi)Ri+n

∂C
∂b

= RT

lseq∑
i=1

(pi − ŝi)
∂λi
∂b

= RT

lseq∑
i=1

(pi − ŝi)

∂C
∂A

= RT

lseq∑
j>i+2

(ŝij − pij)
∂λij
∂A

= RT

lseq∑
j>i+2

(ŝij − pij) Jij · Cσ′ (AJij +B)

∂C
∂B

= RT

lseq∑
j>i+2

(ŝij − pij)
∂λij
∂B

= RT

lseq∑
j>i+2

(ŝij − pij) · Cσ′ (AJij +B)

∂C
∂C

= RT

lseq∑
j>i+2

(ŝij − pij)
∂λij
∂C

= RT

lseq∑
j>i+2

(ŝij − pij)σ (AJij +B)

∂C
∂D

= RT

lseq∑
j>i+2

(ŝij − pij)
∂λij
∂D

= RT

lseq∑
j>i+2

(ŝij − pij)

(9)
These derivatives are then used to back propagate derivatives from the out-
put layer to the input nodes. Here ŝi and ŝij represent the pairing state in
the reference structure for nucleotide i and for pair ij respectively. Base-pair
probabilities in the penalty-driven ensembles

pij =
∑
{~s}

P
(
~s| ~seq, ~R, ~J

)
sij

pi =

lseq∑
j=1

pij

(10)

can be straightforwardly computed using the function vrna bpp from
RNAlib.

4.7 Regularization

In order to reduce the risk of overfitting we include l−2 regularization in the
training procedure. Direct couplings (two-dimensional data) and SHAPE
profiles (one-dimensional data) differ in the amount of structural informa-
tion they contain. For this reason, instead of adding to the cost function a
standard single regularization term on all parameters, we add two regular-
ization terms, each with an independent coefficient, directly on the penalties
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mapped from each type of data:

C ({ak, b}, {A,B,C,D}) = −RT lnP
(
ŝ| ~seq, ~R, ~J

)
+

+ αS

∑
i

λ2i + αD

∑
ij

λ2ij
(11)

This procedure keeps the penalties that we add to the model free energy
from becoming too large, and thus helps preventing the occurence of over-
fitting during the minimization of the cost function. The introduction of
regularization terms must be taken into account in the cost function deriva-
tives of Eq.(9) by addition of corresponding derivative terms that are easily
computed.

4.8 Minimization

The inclusion of regularization terms in the cost function brings in two
hyperparameters, αS and αD, in addition to p, the hyperparameter that
determines the width of the convolutional window. The collection of
models that we train is thus defined by the triplet of hyperparameters
{p, αS , αD}. We then explore all hyperparameters combination within the
ranges p ∈ [0, 1, 2, 3] and αS , αD ∈ [∞, 1.0, 10−1, 10−2, 10−3, 10−4, 0.0] for a
total of 4×7×7 = 196 models. For each model we minimize the correspond-
ing cost function using the sequential quadratic programming algorithm as
implemented in the scipy.optimize optimization package [47]. The mini-
mization problem is non-convex whenever αD is finite, so we expect the cost
function landscape to be rough, with multiple local minima. The result of
the minimization will thus depend on the initial set of model parameters.
For each minimization we try multiple initial values for the model param-
eters, extracting them from a random uniform distribution, and we select
those that yield the minimum cost function. For each minimization we in-
clude in the set of starting parameters also three specific sets of starting
points:

• parameter values from the optimized {p− 1, αS , αD} model, with the
new a−p and ap set to 0.0; if p = 0, we ignore this starting point.

• parameter values from the optimized {p, 10 · αS , αD} model; if αS =
0.0, we use values from the optimized {p, 10−4, αD} model; if αS = 1,
we use values from the optimized {p,∞, αD} model; if αS = ∞, we
ignore this starting point.

• parameter values from the optimized {p, αS , 10 · αD} model; if αD =
0.0, we use values from the optimized {p, αS , 10−4} model; if αD = 1,
we use values from the optimized {p, αS ,∞} model; if αD = ∞, we
ignore this starting point.
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This ensures that models with higher complexity (i.e., higher p or lower αS

or αD) will, by construction, fit the data better than models with lower
complexity. In this way the performance of the models, as evaluated on the
training set, is by construction a monotonically decreasing function of αD

and αS , and a monotonically increasing function of p.

4.9 Leave-one-out

Among the models optimized in the training procedure, we select the one
that yields the best performance without overfitting the training data, in
order to ensure the transferability of its structure and optimal parameters.
As a test for transferability, we use a leave-one-out cross-validation. This
procedure consists in iteratively leaving each of the 8 systems at a time
out of the training set, and using the optimal parameters resulting from
optimization on the reduced training set to compute the population of the
native structure for the left-out system. The population of native structures,
averaged on the left-out systems, is used to rank all the tested models. We
consider the model with the highest score as the most capable of yielding
an increase in population of native structures for systems on which it was
not trained.

4.10 Validation

The resulting model is then validated on a set of systems that were not used
in the parameter or hyperparameter optimization. For these systems we
compute the population of the native structure. In addition, we compute
the similarity between the most stable structure in the predicted ensemble
(minimum free energy structure) and the native structure using the Mathews
correlation coefficient, that optimally balances sensitivity and precision.
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