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Preface

Although two decades ago molecular modeling and simulation of biomolecules
were in the realm of specialists with access to supercomputers, ongoing improve-
ments in force fields and powerful software readily available to the academic
community have stimulated a great interest among bioscientists who are primar-
ily interested in investigating biological or chemical problems. This development
has been accompanied by a decrease in the price/performance ratio of hardware that
enables us to carry out meaningful simulations on desktop workstations or small
clusters of workstations. For example, all-atom models of a protein in a lipid mem-
brane with water molecules included can be simulated for a few nanoseconds.

The purpose of Molecular Modeling of Proteins is to enable nonspecialists, first,
to grasp the scope of methods available and, second, to apply methods easily to
their own problems. Although software packages in molecular modeling are ac-
companied by good manuals, the first-time user may easily be frustrated over a
problem that requires only a small tweak of an input file to solve. Thus, most chap-
ters contain, apart from a thorough introduction, step-by-step instructions and notes
on troubleshooting and hints about how to avoid pitfalls.

The first part of the book describes the methodologies of molecular modeling
including a chapter about normal modes and essential dynamics. This part contains,
apart from practical hints and tips, a thorough treatment of the underlying theo-
ries. The next part focuses on free energy calculations, followed by various chapters
about the molecular modeling of membrane proteins. A later part contains chap-
ters about protein structure determination by comparative protein modeling as well
as modeling based on experimental data. A further part is devoted to the conforma-
tional changes of proteins, and protein folding and unfolding and misfolding in prion
diseases. The last part contains several chapters about applications to drug design.
The topics have been chosen to represent the latest developments in the field, albeit
highly relevant to biochemical and biomedical problems. Although this book is di-
rected at the modeling of proteins, the techniques described are equally applicable
to other biomolecules, such as DNA or carbohydrates, provided the adequate force

v



vi Preface

fields are used. The chapters are written by internationally well-established inves-
tigators; they include leading developers of popular simulation packages or force
fields.

Molecular Modeling of Proteins is directed to scientists in chemistry, biochem-
istry, biology, biophysics, and bioinformatics working in industry and academia,
who are interested in applying the techniques described to their own research. Addi-
tionally, the book forms a valuable resource for educators who wish to teach courses
to university students or professionals about molecular modeling.

Andreas Kukol
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Chapter 1
Molecular Dynamics Simulations

Erik R. Lindahl

Summary Molecular simulation is a very powerful toolbox in modern molecular
modeling, and enables us to follow and understand structure and dynamics with
extreme detail—literally on scales where motion of individual atoms can be tracked.
This chapter focuses on the two most commonly used methods, namely, energy min-
imization and molecular dynamics, that, respectively, optimize structure and sim-
ulate the natural motion of biological macromolecules. The common theoretical
framework based on statistical mechanics is covered briefly as well as limitations
of the computational approach, for instance, the lack of quantum effects and lim-
ited timescales accessible. As a practical example, a full simulation of the protein
lysozyme in water is described step by step, including examples of necessary hard-
ware and software, how to obtain suitable starting molecular structures, immersing
it in a solvent, choosing good simulation parameters, and energy minimization. The
chapter also describes how to analyze the simulation in terms of potential energies,
structural fluctuations, coordinate stability, geometrical features, and, finally, how
to create beautiful ray-traced movies that can be used in presentations.

Keywords: Energy minimization · Equilibration · Force field · Molecular dyna-
mics · Position restraints · Protein · Secondary structure · Simulation · Solvent ·
Trajectory analysis

1 Introduction

Biomolecular dynamics occur over a wide range of scales in both time and space,
and the choice of approach to study them depends on the question asked. Molecular
simulation is far from the only theoretical method; when the aim is to predict, e.g.,
the structure and/or function of proteins rather than studying the folding process,
the best tool is normally bioinformatics that detect related proteins from amino
acid sequence similarity; and, for computational drug design, often it is much
more productive to use statistical methods such as quantitative structure–activity

From: Methods in Molecular Biology, vol. 443, Molecular Modeling of Proteins
Edited by Andreas Kukol c© Humana Press, Totowa, NJ
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Fig. 1 Range of time scales for dynamics in biomolecular systems. Although the individual time
steps of molecular dynamics is 1 to 2 fs, parallel computers make it possible to simulate on a mi-
crosecond scale, and distributed computing techniques can sample even slower processes, almost
reaching milliseconds

relationship (QSAR) instead of spending billions of CPU hours to simulate binding
of thousands of compounds.

The most important point of simulations is that they provide a way to test whether
theoretical models predict experimental observations. As an example, simulations
of ion channels cannot compete with experiments when it comes to measuring ion
currents, but they have been useful to explain why some ions pass whereas others
are blocked. Similarly, simulations can provide detail not accessible through ex-
periments, for instance, pressure distributions inside membranes. Further, structural
refinement and energy minimizations are regularly used to improve both experimen-
tal and predicted protein structures, and drug design is moving toward more accurate
models, even including large-scale simulations for free energy screening.

Ideally, the time-dependent Schrödinger equation should be able to predict all
properties of any molecule with arbitrary precision ab initio. However, as soon as
more than a handful of particles are involved, it is necessary to introduce approxi-
mations. For most biomolecular systems, we, therefore, choose to work with empir-
ical parameterizations of models instead; for instance, classic Coulomb interactions
between pointlike atomic charges rather than a quantum description of the elec-
trons. These models are not only orders of magnitude faster, but because they have
been parameterized from experiments, they also perform better when it comes to
reproducing observations on a microsecond scale (Fig. 1), rather than extrapolating
quantum models 10 orders of magnitude. The first molecular dynamics simulation
was performed as late as 1957 [1], although it was not until the 1970s that it was
possible to simulate water [2] and biomolecules [3].

2 Theory

Macroscopic properties measured in an experiment are not direct observations, but
averages over billions of molecules representing a statistical mechanics ensem-
ble. This has deep theoretical implications, which are covered in great detail in
the literature [4, 5], but, even from a practical point of view, there are important
consequences. 1) It is not sufficient to work with individual structures, but systems
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have to be expanded to generate a representative ensemble of structures at the given
experimental conditions, e.g., temperature and pressure. 2) Thermodynamic equi-
librium properties related to free energy, such as binding constant, solubilities, and
relative stability, cannot be calculated directly from individual simulations, but re-
quire more elaborate techniques covered in later chapters. 3) For equilibrium prop-
erties (in contrast to kinetic), the aim is to examine the ensemble of structures, and
not necessarily to reproduce individual atomic trajectories!

The two most common ways to generate statistically faithful equilibrium ensem-
bles are Monte Carlo and molecular dynamics simulations; the latter also has the
advantage of accurately reproducing kinetics of non-equilibrium properties such as
diffusion or folding times. When a starting configuration is very far from equilib-
rium, large forces can cause the simulation to crash or distort the system, and, in
this case, it is necessary to start with energy minimization of the system before the
molecular dynamics simulation. In addition, energy minimizations are commonly
used to refine low-resolution experimental structures.

All classic simulation methods rely on more or less empirical approximations
called force fields [6–9] to calculate interactions and evaluate the potential energy
of the system as a function of pointlike atomic coordinates. A force field consists
of both the set of equations used to calculate the potential energy and forces from
particle coordinates, as well as a collection of parameters used in the equations. For
most purposes, these approximations work well, but they cannot reproduce quantum
effects such as bond formation or breaking.

All common force fields subdivide potential functions into two classes. Bonded
interactions cover covalent bond-stretching, angle-bending, torsion potentials when
rotating around bonds, and out-of-plane “improper torsion” potentials, all which
are normally fixed throughout a simulation—see Fig. 2. The remaining nonbonded
interactions consist of Lennard-Jones repulsion and dispersion as well as Coulomb
electrostatics. These are typically computed from neighborlists updated every 5 to
10 steps.

Given the potential and force (negative gradient of potential) for all atoms, the
coordinates are updated for the next step. For energy minimization, the steepest
descent algorithm simply moves each atom a short distance in the direction of

Fig. 2 Examples of interaction functions in modern force fields. Bonded interactions include cova-
lent bond-stretching, angle-bending, torsion rotation around bonds and out-of-plane or “improper”
torsions (not shown). Nonbonded interactions are based on neighborlists and consist of Lennard-
Jones attraction and repulsion as well as Coulomb electrostatics
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decreasing energy, while molecular dynamics is performed by integrating Newton’s
equations of motion [10]:

Fi = −∂V (r1, . . . , rN )

∂ri

mi
∂2ri

∂t2 = Fi

The updated coordinates are then used to evaluate the potential energy again, as
shown in the flowchart of Fig. 3.

Typical biomolecular simulations use periodic boundary conditions to avoid sur-
face artifacts, so that a water molecule that exits to the right reappears on the left; if
the box is sufficiently large, the molecules will not interact significantly with their

Update coordinates & 
velocities according to 

equations of motion

More steps?

Compute potential V(r) and
forces Fi = iV(r) on atoms

Initial input data:
Interaction function V(r) - "force field"

coordinates r, velocities v

Collect statistics and write
energy/coordinates to

trajectory files  

Done!

Yes

No
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Fig. 3 Simplified flowchart of a typical molecular dynamics simulation. The basic idea is to gener-
ate structures from a natural ensemble by calculating potential functions and integrating Newton’s
equations of motion; these structures are then used to evaluate equilibrium properties of the system.
A typical time step is on the order of 1 or 2 fs!
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Fig. 4 Alternatives to a sharp cut-off for nonbonded coulomb interactions. Top: By switching off
the interaction (dashed) before the cut-off, the force will be the exact derivative of potential, but
the derivative (and, thus, the force) will unnaturally increase just before the cutoff. Bottom: PME
is an amazing algorithm in which the coulomb interaction (solid) is divided into a short-range term
that is evaluated within a cut-off (dashed), and a long-range term that can be solved exactly in
reciprocal space with Fourier transforms (dot-dash)

periodic copies. This is intimately related to the nonbonded interactions, which ide-
ally should be summed over all neighbors in the resulting infinite periodic system.
Simple cut-offs can work for Lennard-Jones interactions that decay very rapidly,
but, for Coulomb interactions, a sudden cut-off can lead to large errors. One alter-
native is to “switch off” the interaction before the cut-off, as shown in Fig. 4, but a
better option is to use particle mesh Ewald summation (PME) to calculate the infi-
nite electrostatic interactions by splitting the summation into short- and long-range
parts [11]. For PME, the cut-off only determines the balance between the two parts,
and the long-range part is treated by assigning charges to a grid that is solved in
reciprocal space through Fourier transforms.

Cut-offs and rounding errors can lead to drifts in energy, which will cause the sys-
tem to heat up during the simulation. To control this, the system is normally coupled
to a thermostat that scales velocities during the integration to maintain room tem-
perature. Similarly, the total pressure in the system can be adjusted through scaling
the simulation box size, either isotropically or separately in x , y, and z dimensions.

The single most demanding part of simulations is the computation of non-
bonded interactions, because millions of pairs have to be evaluated for each time
step. Extending the time step is, thus, an important way to improve simulation
performance, but, unfortunately, errors are introduced in bond vibrations already
at 1 fs. However, in most simulations, the bond vibrations are not of interest per
se, and can be removed entirely by introducing bond constraint algorithms such as
SHAKE [12] or LINCS [13]. Constraints make it possible to extend time steps to
2 fs, and fixed-length bonds are likely better approximations of the quantum me-
chanical grounds state than harmonic springs.
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3 Methods

With the basic theory covered, this section will describe how to: 1) choose and ob-
tain a starting structure, 2) prepare it for a simulation, 3) create a simulation box,
4) add solvent water, 5) perform energy minimization, 6) equilibrate the structure
with simulation, 7) perform the production simulation, and 8) analyze the trajectory
data. To reproduce it, you will need access to a Unix/Linux machine (see Note 1)
with a molecular dynamics package installed. Although the options and files below
refer to the GROMACS program [14], the description should be reasonably straight-
forward to follow with other programs such as AMBER [15], CHARMM [16], or
NAMD [17]. It will also be useful to have the molecular viewer PyMOL [18] and
Unix graph program Grace installed (see Note 2).

3.1 Obtaining a Starting Structure

Lysozyme is a 164-residue protein with antibiotic effect first described by Alexander
Fleming [19], and one of the first biomolecular structures to be determined
[20]. There are plenty of lysozyme structures in the Protein Data Bank (PDB;
http://www.pdb.org), but many are bound to special compounds or determined at
special conditions such as high pressure. Choose the entry 1LYD with 2-Å reso-
lution [21], and download it as 1LYD.pdb (see Note 3). Figure 5 shows a cartoon

Fig. 5 Cartoon representation of the lysozyme structure 1LYD from PDB, with side chains shown
as sticks. Including hydrogens, the protein contains almost 2,900 atoms. Ray-traced image gener-
ated with PyMOL
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representation of this structure; the small crosses are crystal water oxygen atoms
visible in the x-ray experiment (see Note 4).

3.2 Preparation of Input Data

In addition to the coordinates and velocities that change each step, simulations also
need a static description of all atoms and interactions in the system, called topology.
In GROMACS, this is created from the PDB structure by the program pdb2gmx,
which also adds all of the hydrogen atoms that are not present in x-ray structures.
For this example, we will work with the OPLS-AA force field, the TIP3P [22] water
model (see Note 5), and accept the default choices for all residue protonation states,
termini, disulfide bridges, etc. The command to use is then:

pdb2gmx −f 1LYD.pdb −water tip3p

You will be prompted for the force field (select OPLS), and the command will
produce three files: conf.gro contains coordinates with hydrogens, topol.top
is the topology, and posre.itp contains a list of position restraints that will be
used shortly. For all of these programs, you can use the −h flag for help and a
detailed list of options (see Note 6).

3.3 Creating a Simulation Box

The default box is taken from the PDB crystal cell, but a simulation in water requires
something larger. The box size is a trade-off, however: volume is proportional to the
box side cubed, and more water means the simulation is slower. The easiest option
is to place the solute in the center of a cube, with greater than 0.5 nm to the box
sides. The drawback with this is that a cube wastes volume in the corners—the ideal
case would a sphere, but, as mentioned in the theory section, we also require pe-
riodic boundary conditions, which excludes spheres. There are, however, periodic
cells, such as a truncated octahedron or rhombic dodecahedron that are more spher-
ical than a cube (see Note 7). This is far from trivial to see in three dimensions, but
Fig. 6 shows how a hexagonal cell similarly is more efficient than a square in two di-
mensions (very useful for membrane simulations). The box creation is accomplished
with:

editconf −f conf.gro −bt dodecahedron −d 0.5 −o box.gro

where the distance (−d) flag automatically centers the protein in the box, and the
new conformation is written to the file box.gro (see Note 8).
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Fig. 6 Two-dimensional example of how a hexagonal box leads to lower volume than a square
box, with the same separation distance

3.4 Adding Solvent Water

The last step before the simulation is to add water in the box to solvate the protein.
This is performed by using a small pre-equilibrated system of water coordinates that
is repeated over the box, with overlapping water molecules removed. The lysozyme
system will require roughly 6,000 water molecules, which increases the number of
atoms significantly (from 2,900 to more than 20,000). GROMACS does not use a
special pre-equilibrated system for TIP3P water because water coordinates can be
used with any model—the actual parameters are stored in the topology and force
field. In GROMACS, a suitable command to solvate the new box would be:

genbox −cp box.gro −cs spc216.gro −p topol.top \
−o solvated.gro

The backslash means that the entire command should be written on a single line.
Solvent coordinates (−cs) are taken from an SPC water system [23], and the −p
flag adds the new water to the topology file. The resulting system is illustrated in
Fig. 7 (see Note 9).

3.5 Energy Minimization

The added hydrogens and broken hydrogen bond network in water would lead to
very large forces and structure distortion if molecular dynamics was started immedi-
ately. To remove these forces, it is necessary to first run a short energy minimization.
The aim is not to reach any local energy minimum, therefore, 5,000 steps of steepest
descent (as mentioned in the theory section) works very well as a stable rather than
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Fig. 7 Lysozyme solvated in water in a triclinic box representing a rhombic dodecahedron (30%
lower volume than a cube)

maximally efficient minimization. Nonbonded interactions and other settings are
specified in a parameter file (em.mdp); it is only necessary to specify parameters
where we deviate from the default value, for example (also included on the CD-
ROM):

------em.mdp------

integrator = steep

nsteps = 5000

nstlist = 10

rlist = 1.0

coulombtype = pme

rcoulomb = 1.0

vdw-type = cut-off

rvdw = 1.0

nstenergy = 10

------------------

Note 10 contains a more detailed description of these settings. GROMACS uses
a separate preprocessing program, grompp, to collect parameters, topology, and
coordinates into a single run input file (em.tpr) from which the simulation is
started (this makes it easier to move it to a separate supercomputer). These two
commands are:
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grompp −f em.mdp −p topol.top −c solvated.gro −o em.tpr
mdrun −v −deffnm em

The −deffnm is a smart shortcut that uses “em” as the base filename for all
options, but with different extensions. The minimization takes approximately 10
minutes to complete (see Note 11).

3.6 Position-Restrained Equilibration

To avoid unnecessary distortion of the protein when the molecular dynamics sim-
ulation is started, we first perform a 100-ps equilibration run in which all heavy
protein atoms are restrained to their starting positions (using the file posre.itp
generated earlier) while the water is relaxing around the structure. As covered in the
theory section, bonds will be constrained to enable 2-fs time steps. Other settings
are identical to energy minimization, but, for molecular dynamics, we also control
the temperature and pressure with the Berendsen weak coupling algorithm [24] (see
Note 12). The settings used are (see Note 13):

------pr.mdp------

integrator = md

nsteps = 50000

dt = 0.002

constraints = all-bonds

nstlist = 10

rlist = 1.0

coulombtype = pme

rcoulomb = 1.0

vdw-type = cut-off

rvdw = 1.0

tcoupl = Berendsen

tc-grps = protein non-protein

tau-t = 0.1 0.1

ref-t = 298 298

Pcoupl = Berendsen

tau-p = 1.0

compressibility = 5e-5 5e-5 5e-5 0 0 0

ref-p = 1.0

nstenergy = 100

define = −DPOSRES
------------------
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For a small protein such as lysozyme, 100 ps (50,000 steps) should be more than
enough for the water to equilibrate around the protein, but, in a large membrane
system, the slow lipid motions can require several nanoseconds of relaxation. The
only way to know for certain is to watch the potential energy, and to extend the
equilibration until it has converged. Running this equilibration in GROMACS, you
execute:

grompp −f pr.mdp −p topol.top −c em.gro −o pr.tpr
mdrun −v −deffnm pr

This mdrun invocation will take 1 to 2 h to finish on a normal workstation.

3.7 Production Runs

The difference between equilibration and production run is minimal: the position
restraints and pressure coupling are turned off, we decide how often to write output
coordinates to analyze (say, every 1,000 steps), and start a significantly longer sim-
ulation. How long depends on what you are studying, and that should be decided
before starting any simulations! For decent sampling, the simulation should be at
least 10 times longer than the phenomena you are studying, which, unfortunately,
sometimes conflicts with reality and available computer resources. We will perform
a 10-ns simulation (5 million steps), which should take approximately 1 week on a
modern workstation. If you are not that patient, you can choose a shorter simulation
just to get an idea of the concepts, and the analysis programs in the next section can
read the simulation output trajectory as it is being produced.

------run.mdp------
integrator = md

nsteps = 5000000

dt = 0.002

constraints = all-bonds

nstlist = 10

rlist = 1.0

coulombtype = pme

rcoulomb = 1.0

vdw-type = cut-off

rvdw = 1.0

tcoupl = Berendsen

tc-grps = protein non-protein

tau-t = 0.1 0.1
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ref-t = 298 298

nstxout = 100000

nstvout = 100000

nstxtcout = 1000

nstenergy = 1000

------------------

Storing full precision coordinates and velocities every 100,000 steps enables
restart if runs crash (power outage, full disk, etc.). The analysis only uses the com-
pressed coordinates stored every 10,000 steps. Perform the production run as:

grompp −f run.mdp −p topol.top −c pr.gro −o run.tpr
mdrun −v −deffnm run

The production run will use roughly 200 MB of hard disk space for the output
data.

3.8 Trajectory Analysis

3.8.1 Deviation from X-Ray Structure

One of the most important fundamental properties to analyze is whether the protein
is stable and close to the experimental structure. The standard way to measure this
is the root mean square displacement (RMSD) of all heavy atoms with respect to
the x-ray structure. GROMACS has a finished program to do this, as:

g rms −s em.tpr −f run.xtc

Note that the reference structure here is taken from the input before energy min-
imization. The program will prompt for both the fit group, and the group for which
to calculate RMSD—choose “Protein-H” (protein except hydrogens) for both.
The output will be written to rmsd.xvg, and, if you installed the Grace program,
you will directly get a finished graph with:
xmgrace rmsd.xvg

The RMSD is also illustrated in Fig. 8. It increases rapidly in the first part of the
simulation, but stabilizes around 0.19 nm, roughly the resolution of the x-ray struc-
ture. The difference is partly caused by limitations in the force field, but also because
atoms in the simulation are moving and vibrating around an equilibrium structure.
A better measure can be obtained by first creating a running average structure (see
Note 14) from the simulation and comparing the running average with the x-ray
structure, which gives a more realistic RMSD around 0.16 nm (see Note 15).
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Fig. 8 Instantaneous RMSD of all heavy atoms in lysozyme during the simulation (solid), relative
to the crystal structure. To a large extent, atoms are vibrating around an equilibrium, therefore the
RMSD of a 1-ns running average structure (dashed) is a better measure

3.8.2 Comparing Fluctuations with Temperature Factors

Vibrations around the equilibrium are not random, but depend on local struc-
ture flexibility. The root mean square fluctuation (RMSF) of each residue is
straightforward to calculate over the trajectory, but, more important, they can be
converted to temperature factors that are also present for each atom in a PDB file.
Once again, there is a program that will do the entire job:

g rmsf −s run.tpr −f run.xtc −o rmsf.xvg −oq bfac.pdb

You can use the group “C-alpha” to get one value per residue. Figure 9 displays
both the residue RMSF from the simulation (xmgrace rmsf.xvg), as well as
the calculated and experimental temperature factors. The overall agreement is very
good, which lends further credibility to the accuracy and stability of the simulation.

3.8.3 Secondary Structure

Another measure of stability is the protein secondary structure. This can be calcu-
lated for each frame with a program such as DSSP [25]. If the DSSP program is
installed and the environment variable DSSP points to the binary (see Note 16), the
GROMACS program do dssp can create time-resolved secondary structure plots.
Because the program writes output in a special xpm (X pixmap) format, you proba-
bly also need the GROMACS program xpm2ps to convert it to postscript:

do dssp −s run.tpr −f run.xtc
xpm2ps −f ss.xpm −o ss.eps

Use the group “protein” for the calculation. Figure 10 shows the resulting
output in grayscale, with some unused formatting removed. The DSSP secondary
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Fig. 9 Top: RMSF of residue coordinates in the simulation. Bottom: The fluctuations can be con-
verted to x-ray temperature factors (solid), which agree well with the experimental B-factors from
the PDB file (dashed)

0 2 4 6 8 10

20

40

60

80

100

120

140

160

R
es

id
ue

Time (ns)

coil/turn β-sheet α-helix

Fig. 10 Local secondary structure in lysozyme as a function of time during the simulation, accord-
ing to the DSSP definition. Note how helices sometimes are unrolled slightly at the start and end,
but the overall structure is very stable over 10 ns

structure definition is tight, therefore, it is normal for residues to fluctuate around
the well-defined state, in particular at the ends of helices or sheets. For a (long)
protein-folding simulation, a DSSP plot would show how the secondary structures
form during the simulation.

3.8.4 Distance and Hydrogen Bonds

With basic properties accurately reproduced, we can use the simulation to analyze
more specific details. As an example, lysozyme seems to be stabilized by hydrogen
bonds between the residues GLU22 and ARG137, therefore, how much does this
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Fig. 11 Top: Distance between GLU22 and ARG137 residues as a function of simulation time.
Bottom: Number of hydrogen bonds between GLU22 and ARG137

fluctuate in the simulation, and are the hydrogen bonds intact? To determine this,
first create an index file with these groups as:

make ndx −f run.gro

At the prompt, create a group for GLU22 with “r 22,” ARG137 with “r 137,”
and then “q” to save an index file as index.ndx. The distance and number of
hydrogen bonds can now be calculated with the commands:

g dist −s run.tpr −f run.xtc −n index.ndx −o dist.xvg
g hbond −s run.tpr −f run.xtc −n index.ndx −num hbnum.xvg

In both cases, you should select the two groups you just created. Figure 11
shows the results merged into a single plot. Two hydrogen bonds are present al-
most throughout the simulation, and, in a few frames, there is even a third bond
formed, likely because we included the backbone atoms in the residue groups (see
Note 17).

3.8.5 Making a Movie

A normal movie uses approximately 30 frames/s, therefore a 10-s movie requires
300 simulation trajectory frames. To make a smooth movie, the frames should not
be more 1- to 2-ps apart, or it will seem to shake nervously (see Note 18). Export a
short trajectory from the first 500 ps in PDB format (readable by PyMOL) as:

trjconv −s run.tpr −f run.xtc −e 500.0 −o movie.pdb
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Choose the protein group for output rather than the entire system (see Note 19).
If you open this trajectory in PyMOL as “PyMOL movie.pdb,” you can imme-
diately play it using the VCR-style controls on the bottom right, adjust visual set-
tings in the menus, and even use photorealistic ray tracing for all images in the
movie. With MacPyMOL, you can directly save the movie as a quicktime file;
and, on Linux, you can save it as a sequence of PNG images for assembly in an-
other program. Rendering a movie only takes a few minutes, and the final product
lysozyme.mov is included on the CD-ROM.

4 Conclusions

This chapter should provide a basic introduction to general simulations. An impor-
tant lesson is that high-quality simulations require a lot of care from the user—just
as with experimental techniques, the entire result can be ruined by a single sloppy
step. Further, even simulations using empirical force fields are still very limited
in the range of timescales accessible, but recent techniques based on distributed
computing and Markovian state models have been able to probe dynamics in the
millisecond range without extending individual simulations to those scales [30]. Al-
though simulations are advancing rapidly because of the continuous development
of faster computers, the field has also been plagued by (published) simulations that
have not advanced our knowledge either of simulation methods or biomolecules. In-
stead of just starting a simulation and hoping for something to happen, you should
decide beforehand what you want to study, estimate the timescales necessary or
see whether it can be accomplished with more advanced methods (e.g., free energy
calculations), and not start simulations until you are fairly confident both regard-
ing sampling, analysis required, and the force field accuracy. Used with caution,
molecular dynamics is an amazingly powerful tool, and a great complement to ex-
periments.

5 Notes

1. Computer hardware changes extremely rapidly, but, nevertheless, there are a
couple of general recommendations that have been roughly constant during the
last couple of years. First, no matter which molecular dynamics program you
would like to use, they have all been developed for Unix/Linux, so give up
the idea of running it under the Windows operating system—it is simply not
worth the hassle. Standard Intel or AMD PC hardware provides the best price
to performance ratio, for instance, a Dell or HP workstation. If you are serious
about simulations, it is worth investing in a dual dual-core machine (total of
4 processors) to run in parallel later, and the performance will essentially be
proportional to the speed of the processors. Most vendors will offer a bundled
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expensive Linux distribution, but the best option is really to order the machine
without an operating system and the download the free CentOS (“community
enterprise OS”) from http://www.centos.org. This Linux distribution is built
from the same sources as RedHat Linux (completely legal, it is open source)
and there is both free and commercial support available if you need it. Acces-
sories such as graphics card, large amounts of memory, and hard disks do not
affect your performance, therefore you can go very cheap there. If you are hes-
itant about installing Linux, purchase an Apple Macintosh instead (MacPro for
high performance). Apple OS X is a real Unix operating system underneath,
therefore you can open a terminal window for your simulation work while still
having commercial support and a nice user interface—and, in addition, they
make great workstations when it comes to creating movies! The free gcc C
compiler is very good (for OS X it is part of the free developer tools), but if any
programs you use require a Fortran compiler you should invest $100 or so in
the commercial Intel ifort compiler for x86—it can be 50 to 100% faster than
the free gfortran, which adds up in the long run. Intel also has a good C com-
piler (icc) and mathematical libraries (mkl). Most of the molecular simulation
packages are free or at least very cheap for academic use, therefore you can try
several of them, although we have to point you to the program documentation
for details on how to compile, install, and use them.

2. GROMACS is freely available from http://www.gromacs.org. It should be very
easy to install using the step-by-step instructions, and, for most common plat-
forms, there are finished binary packages (installation might require root access,
however). PyMOL is distributed from http://www.PyMOL.org, with binaries
for Windows, Linux, and Mac OS X. The MacPyMOL version requires a li-
cense after a trial period, but is very much recommended for the better movie
export capabilities. Unfortunately, the Grace package is not as trivial to in-
stall. The distribution site http://plasma-gate.weizmann.ac.il/Grace/ only pro-
vides source code, so you might want to use Google to search for a binary
for your platform. Linux RPMs can often be found at http://www.rpmfind.net.
Grace uses Motif X11 library, but it compiles with the open source clone, Less-
Tif, http://www.lesstif.org.

3. For this tutorial, most of the other lysozyme structures would have also been
acceptable, but some of the more esoteric bound compounds can be difficult to
model automatically, both in GROMACS and in other programs. It is often a
good idea to look at the structure in PyMOL, and read the text information at
the top of the PDB file to see whether there are any special issues. For 1LYD,
the header mentions that residues 162 to 164 were not visible in the electron
density map, and they have been modeled in. If large parts of the protein are
inaccurate, it might be better to choose a different structure.

4. Sometimes people remove the crystal water to replace it with their own solvent
later, but this is usually a bad idea. The reason why they are visible is that these
waters are tightly bound to the structure and often form salt bridges, therefore,
if they are discarded, the structure might distort before the new solvent has a
chance to equilibrate in these positions. Keep the crystal water!
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5. Water is a very special liquid, and actually very difficult to model accurately.
However, biomolecular simulations usually focus on the protein, DNA, etc.,
and, thus, normally prefer cheap and simple approximate solvent models to the
most accurate one. The most common such models are SPC [23] (used with
the GROMOS96 force field) and TIP3P [22] (OPLS and Amber force fields),
which both represent the water as an entirely rigid molecule with three sites (one
oxygen and two hydrogens). There are a couple of modified models, such as
SPC/E, that improve bulk properties, but the standard models are often preferred
for interface systems such as membranes. TIP4P [26] is a smart model with a
fourth interaction site offset from the oxygen, and still reasonably cheap com-
putationally (recommended), whereas TIP5P [27], with five interaction sites, is
too expensive for most simulations.

6. pdb2gmx can be somewhat picky with the input structures, but that is usually a
good thing—it will, for instance, not accept proteins with missing heavy atoms.
If that happens, the best option is to find a better structure, and if that is not pos-
sible, you can try to build the missing parts with a program such as Modeller
(http://salilab.org/modeller/). However, if you have to build more than a hand-
ful of residues, it is doubtful that the resulting structure is accurate enough to
simulate. For 1LYD, pdb2gmx will also issue a warning regarding net charge,
but that is fine. In general, all GROMACS program try to do both double and
triple checking of your input, so if you do not get any warning, you can be fairly
confident regarding the correctness of your input.

7. The volume of a rhombic dodecahedron is approximately 71% of a cube with
the same spacing, and, for a truncated octahedron, it is 77%. These differences
can seem small, but 30% is very significant when simulations use weeks of
supercomputer time, and it is a free lunch after all! If you are working with a
program that does not support these shapes, it is also acceptable to use a cubic
box.

8. All GROMACS programs that write coordinates support a number of different
output formats. The default format is .gro, simply because it also has support
for velocities, but if you want a PDB file to view, e.g., in PyMOL, you simply
change the output file extension to .pdb.

9. To compensate for the +8 charge on lysozyme, we could also add eight chlo-
ride counter ions at this stage. The GROMACS program genion can replace
selected waters with positive/negative ions, but for brevity we will skip this step
here—ions can take a long time to equilibrate.

10. We choose a standard cut-off of 1.0 nm, both for the neighborlist generation and
the coulomb and Lennard-Jones interactions. nstlist=10 means it is up-
dated at least every 10 steps, but for energy minimization it will usually be every
step. Energies and other statistical data are stored every 10 steps (nstenergy),
and we have chosen the more expensive PME for electrostatic interactions. The
treatment of nonbonded interactions frequently borders on religion. One camp
advocates that standard cutoffs are fine, another camp swears by switched-
off interactions, whereas the third camp would not even consider anything but
PME. One argument in this context is that ‘true’ interactions should conserve
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energy, which is violated by sharp cut-offs, because the force is no longer the
exact derivative of the potential. On the other hand, just because an interaction
conserves energy does not mean that it describes nature accurately. In practice,
the difference is most pronounced for systems that are very small or with large
charges, but the key lesson is really that it is a trade off. PME is great, but also
clearly slower than cut-offs. Longer cut-offs are always better than short ones
(but slower), and although switched interactions improve energy conservation,
they introduce artificially large forces. Using PME is the safe option, but if that
is not fast enough, it is worth investigating reaction-field or cut-off interactions.
It is also a good idea to check and follow the recommended settings for the force
field used.

11. The mdrun program will write several output files: em.edr is an “energy
file” with statistical data (energies, temperature, pressure, etc.). em.trr is a
trajectory with full coordinates and velocities of the system during the run, and
em.log is a log file. Depending on the parameters (disabled here), it might also
write a compressed trajectory with low-precision coordinates only, em.xtc.

12. Berendsen weak coupling provides the most efficient control of both temper-
ature and pressure, at the cost of violating the statistical mechanics ensemble.
When that is important, Nose-Hoover thermostats [28] and Parinello-Rahman
barostats [29] are better choices, but also more sensitive during equilibration.
Berendsen coupling guarantees exponential relaxation to the correct tempera-
ture and pressure, with the provided time constraints. For temperature, 0.1 ps is
a reasonable choice, whereas pressure scaling should be an order of magnitude
slower (1 ps). In principle, we need to know the compressibility for pressure
scaling, but, because it only affects the relaxation time, we can use water val-
ues, roughly 5 × 10−5 bar−1.

13. For molecular dynamics simulations, the integrator has now been changed to
“md,” and all bonds are constrained to enable 2-fs time steps. Temperature cou-
pling has been enabled for protein and water separately (to avoid heating the
water more than the protein or vice versa), with a 298 K reference temperature.
The compressibility is really a symmetric tensor, and, by setting the last three
elements (off-diagonal) to 0, we disable any box shear deformation. The last
line causes grompp to include the position restraint file posre.itp gener-
ated by pdb2gmx, which turns on position restraints.

14. The easiest way to create a running average in GROMACS is to use
the g filter program. The command “g filter −nf 50 −all −s
run.tpr −f run.xtc −ol lowpass.xtc” will create a low-pass
version of the trajectory (cosine averaging over 50 frames), which then can be
used as modified input file to the g rms program.

15. If the RMSD is significantly higher than this, or continuously increasing, there
is likely something very wrong. Start over with the PDB file, read the headers
carefully, and make sure the starting structure is accurate. In the next step, check
the different energy terms and RMSD change both during minimization and
position restraints. You can also use the −posrefc flag with pdb2gmx to
increase the strength of the position restraints, and extend the equilibration run.
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16. The DSSP program can be obtained from http://swift.cmbi.ru.nl/gv/dssp/. It is
free for academic users, but requires a signed license to be submitted. Compile
the binary and install it, e.g., in /usr/local/bin, and set the environment vari-
able with a command such as “export DSSP=/usr/local/bin/dssp”
(bash shell). If you do not have access to the real DSSP program, you can
download the GROMACS source and try to build our homegrown version in
src/contrib/my dssp, but be warned that it might not produce identical results.

17. Modern force fields no longer use special hydrogen bond interactions, partly be-
cause it is not necessary and partly because it is difficult to track formation and
breaking of hydrogen bonds separately. “Hydrogen bonds” are, therefore, de-
fined from geometric criteria, typically, that the distance between the donor and
acceptor atoms should be smaller than 0.35 nm, and the angle donor–acceptor
hydrogen should be below 30 degrees.

18. To visualize slower phenomena such as protein folding, you can use g filter
to smooth out motions in longer trajectories. In some cases, this can lead to
strange artifacts, e.g., when averaging torsion rotation around a bond, but it is
usually better than taking raw trajectory frames with too large spacing.

19. PyMOL loads all frames of the trajectory into memory, therefore, if the water
molecules are included, it will likely run out of memory when creating graphical
representations for more than 20,000 atoms repeated in 250 frames. Trajectories
restricted to the protein part can, thus, be much longer.
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Chapter 2
Monte Carlo Simulations

David J. Earl and Michael W. Deem

Summary A description of Monte Carlo methods for simulation of proteins is given.
Advantages and disadvantages of the Monte Carlo approach are presented. The the-
oretical basis for calculating equilibrium properties of biological molecules by the
Monte Carlo method is presented. Some of the standard and some of the more re-
cent ways of performing Monte Carlo on proteins are presented. A discussion of the
estimation of errors in properties calculated by Monte Carlo is given.

Keywords: Markov chain · Metropolis algorithm · Monte Carlo · Protein simula-
tion · Stochastic methods

1 Introduction

The term Monte Carlo generally applies to all simulations that use stochastic meth-
ods to generate new configurations of a system of interest. In the context of mole-
cular simulation, specifically, the simulation of proteins, Monte Carlo refers to
importance sampling, which we describe in Sect. 2, of systems at equilibrium. In
general, a Monte Carlo simulation will proceed as follows: starting from an initial
configuration of particles in a system, a Monte Carlo move is attempted that changes
the configuration of the particles. This move is accepted or rejected based on an ac-
ceptance criterion that guarantees that configurations are sampled in the simulation
from a statistical mechanics ensemble distribution, and that the configurations are
sampled with the correct weight. After the acceptance or rejection of a move, one
calculates the value of a property of interest, and, after many such moves, an accu-
rate average value of this property can be obtained. With the application of statistical
mechanics, it is possible to calculate the equilibrium thermodynamic properties of
the system of interest in this way. One important necessary condition for Monte
Carlo simulations is that the scheme used must be ergodic, namely, every point that
is accessible in configuration space should be able to be reached from any other
point in configuration space in a finite number of Monte Carlo moves.
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1.1 Advantages of Monte Carlo

Unlike molecular dynamics simulations, Monte Carlo simulations are free from the
restrictions of solving Newton’s equations of motion. This freedom allows for clev-
erness in the proposal of moves that generate trial configurations within the sta-
tistical mechanics ensemble of choice. Although these moves may be nontrivial,
they can lead to huge speedups of up to 1010 or more in the sampling of equilib-
rium properties. Specific Monte Carlo moves can also be combined in a simulation
allowing the modeler great flexibility in the approach to a specific problem. In addi-
tion, Monte Carlo methods are generally easily parallelizable, with some techniques
being ideal for use with large CPU clusters.

1.2 Disadvantages of Monte Carlo

Because one does not solve Newton’s equations of motion, no dynamical informa-
tion can be gathered from a traditional Monte Carlo simulation. One of the main dif-
ficulties of Monte Carlo simulations of proteins in an explicit solvent is the difficulty
of conducting large-scale moves. Any move that significantly alters the internal co-
ordinates of the protein without also moving the solvent particles will likely result
in a large overlap of atoms and, thus, the rejection of the trial configuration. Simu-
lations using an implicit solvent do not suffer from these drawbacks, and, therefore,
coarse-grained protein models are the most popular systems where Monte Carlo
methods are used. There is also no general, good, freely available program for the
Monte Carlo simulation of proteins because the choice of which Monte Carlo moves
to use, and the rates at which they are attempted, vary for the specific problem one is
interested in, although we note that a Monte Carlo module has recently been added
to CHARMM [1].

2 Theoretical Basis for Monte Carlo

The aim of a Monte Carlo simulation is the accurate calculation of equilibrium ther-
modynamic and physical properties of a system of interest. Let us consider calculat-
ing the average value of some property, 〈A〉. This could be calculated by evaluating
the following:

〈A〉 =
∫

drN exp
[−βU

(
rN )] A

(
rN )

∫
drN exp

[−βU
(
rN
)] , (1)

where β = 1/kBT, U is the potential energy, and rN denotes the configuration of an
N particle system (i.e., the positions of all N particles). Now, the probability density
of finding the system in configuration rN is:
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ρ
(

rN
)

= exp
[−βU

(
rN )]

∫
drN exp

[−βU
(
rN
)] , (2)

where the denominator in Eq. 2 is the configurational integral. If one can randomly
generate NMC points in configuration space according to Eq. 2, then Eq. 1 can be
expressed as:

〈A〉 ≈ 1
NMC

NMC∑

i=1

A
(

rN
i

)
. (3)

After equilibration of our system of interest, errors in 〈A〉 scale as 1/
√

NMC ,
as discussed in Sect. 4. The Monte Carlo methods that we outline in Sect. 3 are
responsible for generating the NMC points in configuration space in a simulation.

A Monte Carlo algorithm consists of a group of Monte Carlo moves that gen-
erate a Markov chain of states. This Markov process has no history dependence,
in the sense that new configurations are generated with a probability that depends
only on the current configuration and not on any previous configurations. If our
system is currently in state m, then the probability of moving to a state n is de-
fined as πmn , where π is the transition matrix. Let us introduce a probability vec-
tor, ρ, that defines the probability that the system is in a particular state; ρi is the
probability of being in state i . The initial probability vector, for a randomly chosen
starting configuration, is ρ(0) and the probability vector for subsequent points in the
simulation is ρ( j) = ρ( j−1)π. The equilibrium, limiting distribution of the Markov
chain, ρ∗, results from applying the transition matrix an infinite number of times,
ρ∗ = limNMC →∞ ρ(0)πNMC . We note:

ρ∗ = ρ∗π. (4)

If we are simulating in the canonical ensemble, then ρ∗ is reached when ρi is
equal to the Boltzmann factor (Eq. 4) for all states. Thus, once a system has reached
equilibrium, any subsequent Monte Carlo moves leave the system in equilibrium.
The initial starting configuration of the system should not matter as long as the
system is simulated for a sufficient number of Monte Carlo steps, NMC . For the
simulation to converge to the limiting distribution, the Monte Carlo moves used
must satisfy the balance condition and they must result in ergodic sampling [2]. If
the transition matrix satisfies Eq. 4, then the balance condition is met. For the stricter
condition of detailed balance to be satisfied, the net flux between two states must be
zero at equilibrium, i.e.:

ρmπmn = ρnπnm . (5)

For all of the Monte Carlo moves we present in Sect. 3, the balance or detailed
balance conditions hold.

Now, how is the transition matrix chosen, such that balance or detailed balance
is satisfied? In other words, how do we propose a Monte Carlo move and correctly
choose whether to accept or reject it? As an example, let us consider the Metropolis
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acceptance criterion. The transition matrix between states m and n can be written
as:

πmn = αmn pmn, (6)

where αmn is the probability of proposing a move between the two states and pmn
is the probability of accepting the move. Assuming that αmn = αnm , as is the
case for many but not all Monte Carlo moves, then Metropolis proposed the fol-
lowing scheme: if the new state (n) is lower in energy than the old state (m),
then accept the move (i.e., pmn = 1 and πmn = αmn for ρn ≥ ρm), or, if
the new state is higher in energy than the old state, then accept the move with
pmn = exp (−β [U (n) − U (m)]) < 1; i.e., πmn = αmn

(
ρn/ρm

)
for ρn < ρm ,

where the energy of state i is U (i). If the old and new states are the same, then
the transition matrix is given by πmm = 1 − ∑

n 
=m
πmn . The Metropolis acceptance

criterion [3, 4] can be summarized as:

pmn = min {1, exp (−β [U (n) − U (m)])} . (7)

In a computer simulation, for the case where U (n) is greater than U (m), one
generates a pseudorandom number with a value between 0 and 1, and if this number
is less than pmn , then the trial move is accepted.

Monte Carlo simulations can be conducted in several different statistical mechan-
ics ensembles, and the distribution that we sample from depends on the ensemble.
These ensembles include, but are not limited to, the canonical ensemble (constant
number of particles N , volume V , and temperature T ), the isobaric–isothermal en-
semble (constant N , pressure P , and T ), the grand canonical ensemble (constant
chemical potential µ, V, T ), and the semigrand canonical ensemble. For simulations
of proteins, the modeler is unlikely to stray too often from the canonical ensemble
where the partition function is:

Q (N , V, T ) ≡
N∏

i=1

1

Λ3
i N !

∫
drN exp

[
−βU

(
rN
)]

, (8)

where �i is the thermal de Broglie wavelength, �i = √
h2/ (2πmi kB T ) and mi is

the mass of particle i . A thorough description of Monte Carlo simulations in other
ensembles can be found elsewhere [5, 6].

3 Monte Carlo Methods for Protein Simulation and Analysis

3.1 Standard Monte Carlo Moves

For a molecular system, there are several standard Monte Carlo moves that one can
use to explore conformational degrees of freedom. The simplest trial move is to
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select at random an atom, i , in the system, and propose a change in its Cartesian
coordinates:

xnew
i = xold

i + �(χ − 0.5), (9a)

ynew
i = yold

i + �(χ − 0.5), (9b)

znew
i = zold

i + �(χ − 0.5), (9c)

where χ is a pseudorandom number between 0 and 1 that is different for each axis
at each attempted move, and � sets the maximum displacement. After moving the
atom, one calculates the energy of the new trial structure, and the new structure is
accepted or rejected based on the Metropolis criterion, Eq. 7. For molecules such as
proteins, these moves are often not very efficient, because a change in the coordi-
nates of one atom changes the bond lengths between the selected atom and all the
atoms to which it is connected. This move will also change any bond angles and
torsional angles that the atom is involved in, and, therefore, acceptance of the move
is unlikely for all but the very smallest of moves, especially because proteins often
have a number of stiff or rigid bonds (or bond angles or torsional angles). As an
alternative scheme, one can select individual bond lengths, bond angles, or torsional
angles in the molecule to change at random, while keeping all other bond lengths,
bond angles, and torsional angles fixed. For bond lengths, bond angles, and torsional
angles that are effectively rigid, one can impose constraints on their movement. Tor-
sional angle (or pivot) moves can result in significant changes in the structure of the
molecule, and, thus, can be problematic when the protein is surrounded by a solvent.
This is because any significant change in the conformation of the protein will result
in an overlap with the solvent with a high energetic penalty, and, thus, the rejec-
tion of the move. Pivot moves can be very effective in implicit solvent simulations,
however.

When considering multiple molecules, one can also use Monte Carlo moves that
translate or rotate entire molecules. For flexible, nonlinear molecules such as pro-
teins, the method of quarternions should be used for rotation moves. For translation
moves, the center of mass of the molecule in question is simply changed, in the
same way as for a single atom move (Eqs. 9a–9c).

3.2 Configurational-Bias Monte Carlo

Configurational-bias Monte Carlo moves fall under the more general category of
biased Monte Carlo moves. In these moves, the Monte Carlo trial move is biased
toward the proposal of reasonable configurations and, to satisfy detailed balance, the
acceptance rules used must be altered because α, in Eq. 6, will no longer be symmet-
ric. Configurational-bias Monte Carlo was originally proposed for the simulation of
chain molecules [7] and was later adapted for the simulation of biomolecules [8].
The idea behind the approach is to delete a section of a molecule and to then “re-
grow” the section. The regrowth of the molecule is biased such that energetically
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reasonable conformations are likely to be produced by the method used. Biasing
during the regrowth can occur by, for example, restricting torsional angles to rea-
sonable bounds and, if one is regrowing a central section of a molecule, biasing
the regrowth toward an area of the simulation box. A configurational-bias Monte
Carlo algorithm is composed of the following main steps. First, a section of a mole-
cule is deleted. Second, a trial conformation for the regrowth is generated using a
Rosenbluth scheme, and the Rosenbluth weight for the new configuration, W (n),
is calculated. Third, the Rosenbluth weight for the old configuration, W (m), is cal-
culated by “retracing” the original conformation. Finally, the trial configuration is
accepted with the probability:

pmn = min
{

1,
W (n)

W (m)

}

. (10)

We do not provide details here for determining the Rosenbluth weight, or the gen-
eration of trial orientations for the regrowth, of peptide and protein molecules within
configurational-bias Monte Carlo methods, because they are lengthy and nontrivial.
We instead refer the reader to the following excellent references in which the theory
is fully described [6, 7].

3.3 Rebridging and Fixed End Moves

Rebridging, concerted rotation, or end-bridging Monte Carlo moves have been de-
veloped to explore the conformational degrees of freedom of internal, backbone por-
tions of polymers, peptides, and proteins [9–12]. An example of a rebridging move
for a peptide molecule that causes a local change in conformation but leaves the po-
sitions of the rest of the molecule fixed, is shown in Fig. 1. Torsional angles φ0 and

φ1

φ3

φ2

φ0
φ4

φ7
φ5 φ6

Fig. 1 Driver angles φ0 and φ7 are changed, breaking the connectivity of the molecule in the
enclosed region, in an analytic rebridging move. The backbone segment is rebridged in the enclosed
region, and the solid lines represent pi bonds or rigid molecular fragments within which no rotation
is possible. Reprinted from [12] with permission. Copyright American Institute of Physics (1999)
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Fig. 2 Fixed end move for biomolecules. The atoms between i and j are rotated about r by an
angle τ

φ7 are rotated by �φ0 and �φ7, causing a change in the units between 0 and 6, and
breaking the connectivity of the molecule. In this move, rigid units only, where bond
lengths and angles are fixed at a prescribed or equilibrium value, are considered to
reduce the situation to a geometric problem, and it is possible to determine all of the
solutions that reinsert the backbone in a valid, connected way. Where there are side
chains attached to the backbone, they are considered to be rigidly rotated. To satisfy
detailed balance, solutions for new and old configurations are determined, and the
maximum number of solutions can be shown to be limited to 16. One of these solu-
tions is randomly selected, and the new conformation is accepted or rejected based
on a modified acceptance criterion.

An alternative to the rebridging move is a fixed end move, shown in Fig. 2, in
which a rigid rotation, τ, along the Cα ends of an arbitrary length of the backbone
is attempted. This move changes two torsional angles, φ and ψ, as well as the bond
angle at each end of the segment, but keeps the other internal angles and torsional
angles in the molecule fixed. The rigid rotation, τ, is chosen such that the bond an-
gles at the end of the segment do not vary by more than 10◦ from their natural range.
The relations between the torsional angles, the bond angles, and τ are nonlinear, but
it has been shown that trial moves can be proposed that satisfy detailed balance and
are effective in equilibrating peptide molecules [13].

3.4 Hybrid Monte Carlo

A hybrid Monte Carlo move involves running a molecular dynamics simulation for
a fixed length of time [14]. The configuration at the end of this molecular dynamics
run is accepted or rejected based on the Metropolis criterion (Eq. 7), where U (m) is
the potential energy before the molecular dynamics run, and U (n) is the potential
energy at the end of the run [15]. Thus, molecular dynamics can be used to pro-
pose a Monte Carlo move that involves the collective motion of many particles. An
advantage that this method has over conventional molecular dynamics simulations is
that large time steps may be used in the hybrid Monte Carlo move, because there is
no need to conserve energy during the molecular dynamics run. As long as the mole-
cular dynamics algorithm that is used is time reversible and area preserving, then it
is acceptable for use in a hybrid Monte Carlo move. Indeed, several very suitable



32 D.J. Earl, M.W. Deem

multiple-time-step molecular dynamics algorithms now exist that are ideal for use
in hybrid Monte Carlo moves, including those proposed by Martyna, Tuckerman,
and coworkers [16].

At the start of each new hybrid MC move, particle velocities can be assigned at
random from a Maxwell distribution, or alternatively they can be biased toward par-
ticle velocities from previous, successful hybrid Monte Carlo steps, with, of course,
a modified acceptance criterion. The total length of time one uses for the molecu-
lar dynamics run is at the discretion of the simulator. However, the general rule of
not using too long or short a run applies, because long runs that are not accepted
are wasteful of CPU time, and short runs do not advance the configuration through
phase space quickly.

3.5 Parallel Tempering

In the parallel tempering method [17], one simulates M replicas of an original sys-
tem of interest. These replicas are typically each at a different temperature. The
general idea of the method is that the higher-temperature replicas are able to ac-
cess large volumes of phase space, whereas lower-temperature systems may be-
come trapped in local energy minima during the timescales of a typical computer
simulation. By allowing configuration swaps between different (typically adjacent
in temperature) replicas, the lower-temperature systems can access a representative
set of low-energy regions of phase space. The partition function for the M replica
system in the canonical ensemble is:

Q ≡
M∏

i=1

qi

N !
∫

drN
i exp

[
−βiU

(
rN

i

)]
, (11)

where qi = ∏N
j=1

(
2πm j kB Ti/h2)3/2 comes from integrating out the momenta,

and βi = 1/kB Ti is the reciprocal temperature of the replica. If the probability of
performing a swap move is equal for all conditions, then exchanges of configura-
tions between replicas i and j are accepted with the probability:

pi j = min
〈
1, exp

{
+
[
βi − β j

] [
U
(

rN
i

)
− U

(
rN

j

)]}〉
(12)

A rather complex issue when using parallel tempering is how many replicas one
should use and what temperatures each replica should be set at. As with most Monte
Carlo moves, there are no hard and set rules. The highest temperature must be high
enough for the simulation to pass over all of the energy barriers in phase space in
a manageable computational time, and there must be a sufficient number of repli-
cas to allow a reasonable probability of acceptance for parallel tempering moves,
allowing each system to sample both high and low temperatures. To maximize the
efficiency of parallel tempering simulations, recent theoretical [18] and numerical
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studies [19] have recommended “tuning” the temperature intervals such that moves
between replicas are accepted with a probability of 20 to 25%. An adaptive approach
based on the total “round-trip” time between high and low temperature replicas
seems to be well founded for tuning the temperature intervals [20].

With appropriate scheduling, parallel tempering is an ideal approach to use with
large CPU clusters [21], and its effectiveness in the simulation of biomolecules, as
well as in solid state and material modeling, is well proven [22].

3.6 Density of States Methods

The canonical partition function can also be written as:

Q (N , V, T ) ≡
∑

Ei

g(N , V, Ei ) exp [−βEi ], (13)

where g is the density of states. Wang and Landau [23] proposed a Monte Carlo
scheme whereby one performs a random walk in energy space, while keeping a run-
ning estimate of the inverse of the density of states as a function of the energy, or,
alternatively, collecting the configurational temperature as a function of the energy
and determining the density of states by integrating the inverse temperature. Al-
though density of states methods do not satisfy detailed balance, it has been proven
that they asymptotically satisfy balance [24]. During the simulation, the density of
states is continuously modified to produce a flat histogram in energy space, pre-
venting the simulation from becoming stuck in low-energy minima. de Pablo and
coworkers have used the density of states method, combined with hybrid Monte
Carlo and pivot moves, to fold small protein molecules successfully [25].

3.7 Monte Carlo as an Optimization Tool

Monte Carlo methods that satisfy the balance condition are essential if one is inter-
ested in calculating properties at equilibrium. If one is, instead, only interested in
optimizing a property of interest, for example, determining a minimum energy struc-
ture, then there is no such restriction, and one has greater flexibility in the choice
of moves one can use. Simulated annealing, in which a simulation begins at a high
temperature and is sequentially reduced, is one such method that does not satisfy
balance but can be highly effective in overcoming energetic barriers.

In protein structure prediction, Monte Carlo methods can be particularly effec-
tive as an optimization tool. For example, Baker and coworkers have had great
success in the high-resolution de novo structure prediction of small proteins [26].
In their method, they use a combination of multiscale force fields, Monte Carlo
torsional angle moves, side-chain optimization using rotamer representations, and



34 D.J. Earl, M.W. Deem

gradient-based minimization of their all-atom energy function. Similar methods can
be used in the refinement of structures from nuclear magnetic resonance (NMR)
and x-ray data [27]. Saven and coworkers have also shown that biased Monte Carlo
moves and parallel tempering-based simulations can be particularly useful in pro-
tein sequence design efforts, in which one attempts to define amino acid sequences
that fold to a particular tertiary structure [28].

4 Statistical Errors

Although we may wish that the results from our computer simulations could provide
exact values for a property that we are interested in, this is never the case, because we
are unable to simulate our system for an infinite length of time. One must, therefore,
estimate the error in the calculated value of the property. One way to do this is to
use the method of block averaging. Suppose that we have n samples of a fluctuating
property of interest, A, that were taken when our system was in equilibrium. The
average value of A is estimated as:

〈A〉 ≈ Ā ≡ 1
n

n∑

i=1

Ai . (14)

If all of our samples were uncorrelated, then our estimate of the variance would
be:

σ 2 (A) =
〈
A2
〉
− 〈A〉2 ≈ 1

n

n∑

i=1

[
Ai − Ā

]2
. (15)

However, in a simulation, our samples are correlated. To account for this fact, one
may compute averages for blocks of data, and use these block averages to estimate
the variance. Where we have n′ blocks of data, the variance of our new set of data
is:

σ 2 (A′) =
〈
A′2〉− 〈

A′〉2 = 1
n′

n′
∑

i=1

[
A′

i − Ā
]2

, (16)

where A′
i is the block average of set i , and the average for the whole set of data

remains the same. As the size of the block used increases, the correlation be-
tween the blocks will decrease. Thus, as the block size becomes sufficiently large,
σ2 (A′) /

(
n′ − 1

)
should be constant and provide an estimate of the error of our

ensemble average of A:

ε2 (A) ≈ σ 2 (A′)

n′ − 1
, (17)

and an accurate measure of our statistical error ε, is now available.
Another way of calculating errors in a quantity is through the bootstrap method.

From our original n samples, one produces N new sets of data, each containing n
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samples. The samples that comprise each new set of data are picked at random from
the original data set, and, therefore, it is probable that there will be repeat elements
in the new data sets. These new data sets provide an estimate of the probability
distribution of our property of interest, and, thus, provide another estimate of the
variance and error in the simulation results.

5 Conclusions

Having presented a large number of Monte Carlo moves in Sect. 3, we conclude by
discussing how one can combine these moves in an algorithm that satisfies balance.
Most Monte Carlo algorithms are comprised of several different Monte Carlo moves
that are effective at relaxing different degrees of freedom in a molecule or system.
How to choose which Monte Carlo moves to include in a combined algorithm, and
the probability of attempting each of them, is problem specific.

To satisfy detailed balance, the choice of what type of Monte Carlo move to at-
tempt at a particular time is chosen on a probabilistic basis, and each of the specific
Monte Carlo moves satisfies detailed balance individually. This scheme presents a
problem when using methods such as parallel tempering, in which it is convenient
to synchronize replicas in Monte Carlo move number and attempt swaps after a set
number of Monte Carlo steps. This latter approach satisfies the balance condition,
however, and therefore, it is perfectly acceptable. Also acceptable, because it satis-
fies balance, is sequential updating of a system, in which the moves are performed
in a defined sequence, rather than the moves chosen at random.

Most Monte Carlo simulations to date are performed by software custom written
by research groups. The most typical language for these Monte Carlo simulations is
C. Both the Allen and Tildesley book [6] and the Frenkel and Smit book [5] offer
web sites with useful routines [29, 30]. C language code for analytical rebridging
[12] is available [31]. A web site by Mihaly Mezei lists several useful links related
to Monte Carlo simulation of proteins [32].
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Chapter 3
Hybrid Quantum and Classical Methods for
Computing Kinetic Isotope Effects of Chemical
Reactions in Solutions and in Enzymes
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Summary A method for incorporating quantum mechanics into enzyme kinetics
modeling is presented. Three aspects are emphasized: 1) combined quantum
mechanical and molecular mechanical methods are used to represent the poten-
tial energy surface for modeling bond forming and breaking processes, 2) instan-
taneous normal mode analyses are used to incorporate quantum vibrational free
energies to the classical potential of mean force, and 3) multidimensional tun-
neling methods are used to estimate quantum effects on the reaction coordinate
motion. Centroid path integral simulations are described to make quantum correc-
tions to the classical potential of mean force. In this method, the nuclear quantum
vibrational and tunneling contributions are not separable. An integrated centroid
path integral–free energy perturbation and umbrella sampling (PI-FEP/UM) method
along with a bisection sampling procedure was summarized, which provides an ac-
curate, easily convergent method for computing kinetic isotope effects for chem-
ical reactions in solution and in enzymes. In the ensemble-averaged variational
transition state theory with multidimensional tunneling (EA-VTST/MT), these
three aspects of quantum mechanical effects can be individually treated, provid-
ing useful insights into the mechanism of enzymatic reactions. These methods are
illustrated by applications to a model process in the gas phase, the decarboxy-
lation reaction of N -methyl picolinate in water, and the proton abstraction and
reprotonation process catalyzed by alanine racemase. These examples show that
the incorporation of quantum mechanical effects is essential for enzyme kinetics
simulations.

Keywords: Combined QM/MM · Dual-level potential · Enzyme kinetics · Kinetic
isotope effects · Path integral simulations · PI-FEP/UM · Solvent effects

From: Methods in Molecular Biology, vol. 443, Molecular Modeling of Proteins
Edited by Andreas Kukol c© Humana Press, Totowa, NJ

37



38 J. Gao et al.

1 Introduction

The remarkable ability that enzymes accelerate the rates of chemical reactions has
fascinated chemists and biochemists for nearly a century since the identification
of proteins as the primary biological catalysts [1]. In the absence of structural
information, Pauling proposed that enzymes specifically bind the transition state
more strongly than the reactant state, consequently lowering the free energy of
activation [2]. This remains a key concept in our understanding of enzyme catal-
ysis [3]. Now, detailed energy calculations can be carried out to provide an under-
standing of the mechanism of enzymes at the atomistic level [4–6], thanks to the
development of modern transition state theory (TST), the advent of computer sim-
ulation methods, and the availability of three-dimensional structures of enzymes
and enzyme–substrate complexes. Quantum mechanics is essential for modeling
enzyme mechanism and kinetics, and it contributes to these calculations in three
specific ways [7, 8]: 1) electronic structural theory provides the necessary potential
energy surface (PES) for the enzyme system to adequately treat the bond forming
and breaking processes, 2) quantum mechanical (QM) treatment of vibrational mo-
tions allows the more accurate estimation of the rate constant for enzyme reactions,
and 3) inclusion of nuclear tunneling provides further insight in the understanding
of enzyme mechanism and the transition state through quantitative computation of
kinetic isotope effects (KIE). In this chapter, we present some of the methods that
have been developed in our laboratories for studying enzymatic reactions.

We begin our discussion by considering the general kinetic equation for an en-
zyme reaction:

E + S
k1�

k−1
E S

kcat−→EP −→ E + P

where the symbols E, S, and P are the enzyme, substrate, and product, respectively,
and ES and EP are substrate and product complexes with the enzyme, respectively.
Although the bimolecular rate constant kcat/KM , where KM = (k−1 + kcat )/k1,
is the key kinetic parameter for the specific biological function of the enzyme [9],
the rate reduction in the catalyze reaction, kcat , relative to that of the corresponding
uncatalyzed process in aqueous solution, kaq , is of special interest in understanding
the origin of enzyme catalysis. The experimental approach is best illustrated by the
systematic studies of Wolfenden, who pioneered the concept of comparing the rate
constant of the catalyzed reaction with that of the same reaction in the absence of the
enzyme in water [9,10]. Furthermore, site-directed mutagenesis experiments help to
identify residues that make important contributions to catalysis, but the experimen-
tal findings do not always shed light on the mechanism of the enzyme action, for a
variety of reasons, including the possibility of altering the mechanism of the actual
catalyzed reaction. Computer simulations provide a powerful and a complementary
tool for elucidating the mechanism of enzyme reactions and this involves the com-
putation and comparison of the catalyzed (kcat ) and uncatalyzed (kaq) rate constant.

The theoretical framework in the present discussion is TST, which yields the
expression of the classical mechanical (CM) rate constant [11, 12]. However,
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evaluation of the QM rate constant is of particular interest. Although a number of
methods have been developed, we describe a method to make QM corrections to
classical trajectories. This is especially attractive because it is efficient to use clas-
sical molecular dynamics simulations to sample enzyme configurations. Thus, for a
unimolecular reaction, the forward rate constant is written as:

k ≡ kqm = γ · kTST , (1)

where kqm and kTST are the QM and TST rate constants, respectively, and γ is the
generalized transmission coefficient [5], which includes the classical dynamic re-
crossing factor, �, and the quantum correction factor, κ:

γ = κ · �. (2)

The classical transmission coefficient accounts for the dynamical correction to
TST, and the time-dependent transmission coefficient can be calculated by the reac-
tion flux method [13, 14]:

�(t) = N < ż(0)H [z(t) − z 
=] >z 
= , (3)

where z is the reaction coordinate, ż(0) is the time derivative of z at time t = 0, z 
=
is the value of the reaction coordinate at the transition state, N is a normalization
factor, H is a step function such that it is 1 when the trajectory is in the product
side and 0 otherwise, and the brackets, 〈· · · 〉z 
= , specify an ensemble average over
transition state configurations. Although it is important to consider dynamic effects
[15, 16], it has been noted that the “sobering fact for the theorist” is that the solvent
contribution to the free energy of activation often has much greater influence on
the computed rate constant because of its exponential dependence [17]. Here, we
assume that the � factor is unity and is identical for the CM and QM rate constant;
interested readers are directed to our recent article on this subject [8].

The quantum correction factor is then defined as follows:

κ = kqm

kTST
= e

−β
(
�F 
=

qm−�F 
=
TST

)

. (4)

In Eq. 4, β = 1/kB T with kB being Boltzmann’s constant and T the tempera-
ture; �F 
=

qm and �F 
=
TST are, respectively, the quantum and the classical free energy

of activation. The different methods applied to enzymatic reactions to incorporate
nuclear quantum effects differ in the specific approximations to estimate the free
energy difference in Eq. 4.

In classical dynamics, the TST rate constant is the rate of one-way flux through
the transition state dividing surface [11, 17]:

kTST =< ż >z 
= e−βw(z 
=)/

∫ z 
=

−∞
dz e−βw(z), (5)
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where w(z) is the potential of mean force (PMF) along the reaction coordinate z.
The frequency for passage through the transition state is given by the average veloc-
ity of the reaction coordinate z′ at the transition state, z = z 
=. Alternatively, Eq. 5
can be written as:

kTST = 1
βh

e−β�F 
=
TST , (6)

where h is Planck’s constant and �F 
=
TST is the molar standard state free energy of

activation, defined as [18]:

�F 
=
TST = wCM(z 
=) − [wCM(zR) + FR

CM(z)] + C(z), (7)

where zR is the value of the reaction coordinate at the reactant state, FR
CM(z) corre-

sponds to the free energy of the mode in the reactant (R) state that correlates with
the progress coordinate z, and C(z) is a small correction term that is caused by the
Jacobian of the transformation from a locally rectilinear reaction coordinate to the
curvilinear reaction coordinate z.

The classical PMF is defined as follows:

w(z) = −1
β

ln
∫

dz′dqδ[z − z′]e−βV (z′,q), (8)

where q represents all degrees of freedom of the system except that corresponding
to the reaction coordinate, and V (z′, q) is the potential energy function. Compu-
tationally, the PMF w(z) can be obtained by umbrella sampling [19] from Monte
Carlo and molecular dynamics simulations [20–23].

There is no unique way of separating the exact CM rate constant into the dy-
namical correction factor, �, and the TST rate constant, kTST . Both quantities can
be determined from computer simulations, in which the solvent is in thermal equi-
librium along the reaction coordinate, z. Thus, solvation affects both �F 
=

TST and
�, and these two quantities are not independent of each other, but they are related
by the choice of the reaction coordinate, z [7, 17]. Consequently, in analyzing com-
putational results, it is important to examine the effect of using a specific reaction
coordinate on the computed PMF [24–26].

The rest of this chapter focuses on discussion of treatment of the PES and meth-
ods for computing free energies of activation and for incorporating nuclear quantum
effects in enzyme reactions.

2 Methods

Almost all enzyme reactions can be well described by the Born-Oppenheimer ap-
proximation, in which the sum of the electronic energy and the nuclear repulsion
provides a potential energy function, or PES, governing the interatomic motions.
Therefore, the molecular modeling problem breaks into two parts: the PES and the
dynamics simulations.
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2.1 Potential Energy Surface

The potential energy function describes the energetic changes as a function of the
variations in atomic coordinates, including thermal fluctuations and rearrangements
of the chemical bonds. The accuracy of the potential energy function used to carry
out molecular dynamics simulations directly affects the reliability of the computed
�F 
=

TST and its nuclear quantum correction [7,27]. The accuracy can be achieved by
the use of analytical functions fitted to reproduce key energetic, structural, and force
constant data, from either experiments or high-level ab initio calculations. Molec-
ular mechanical (MM) potentials or force fields [28, 29], however, are not general
for chemical reactions, and require reparameterization of the empirical parameters
for every new reaction, which severely limits applicability. More importantly, often,
little information is available in regions of the PES other than the stationary reac-
tant and product states and the saddle point (transition state). On the other hand,
combined QM and MM (QM/MM) potentials offer the advantages of both compu-
tational efficiency and accuracy for all regions of the PES [30, 31].

2.1.1 Empirical Potentials

The application of MM methods to modeling molecule–solvent interactions in un-
catalyzed chemical reactions in solution was pioneered by Chandrasekhar and Jor-
gensen in their classic study of a model SN2 reaction in water [32, 33]. Their study
involved three key steps: 1) defining a reaction path, 2) determining potential func-
tions that reproduce experimental or ab initio results along the entire reaction path
in the gas phase, and 3) performing free energy simulations. This procedure remains
valuable for studying chemical reactions in solution and in enzymes [34]. Yang and
coworkers further developed and applied this approach in a number of calculations
of enzymatic reactions, using the reaction path and charges derived from combined
QM/MM energy minimizations (the QM/MM method is explained as type 3 below)
and density functional theory (DFT) [35, 36].

The most widely used potential energy function for modeling enzyme reactions
is the empirical valence bond (EVB) model developed by Warshel and coworkers
[37–39]. The form of the potential function is derived on the basis of a two-state
valence bond theory for the chemical bond, such as that in a hydrogen molecule.
Thus, it has a flavor of quantum mechanics. In applications to enzyme reactions, two
empirical functions represent the reactant (H11) and product (H22) configurations,
called effective diabatic states. They are represented by a force field and the bonding
term is treated by a Morse potential [38, 39]. The EVB potential function is given
by:

UEVB = 0.5
[

(H11 + H22) +
√

(H11 − H22)2 − 4ε2
12

]

. (9)

In Eq. 9, the coupling between the two potentials or resonance integral ε12
is treated empirically [40], typically by an exponential function. Although, in
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principle, many valence bond states can be included in constructing an EVB po-
tential, and sometimes this is done, most applications to enzymatic reactions have
used a simple two-state procedure [39, 41]. The successful application of the EVB
method relies on the parameterization of the resonance integral ε12 to the barrier
height of the specific reaction and of the diagonal constant �ε (embedded in H22)
to the free energy of reaction [38, 39]. The parameterization process has been typi-
cally carried out for the uncatalyzed reaction in aqueous solution [6, 42], and, then,
the study of enzymatic reactions is performed to estimate ��F
=(aq → enzyme)
using these parameters. This method has been reviewed in a number of publications
by Aqvist and Warshel [43, 44].

The assumption that the atomic partial charges are invariant, although it is not an
inherent restriction of the EVB model, is a major shortcoming in practical applica-
tions because these charges do polarize and vary as the geometry of the substrate
and the positions of the rest of the system fluctuate during the chemical process.
Although the free energy barrier can be parameterized and its change in the enzyme
can be computed to reproduce experimental results, there is no rigorous justification
for its representing other regions of the PES, casting doubt on results that require
a knowledge of this information, such as tunneling and KIE. QM models that de-
fine the Lewis resonance structures based on block-localized wave functions have
been developed [25, 45], and these effective diabatic states have been used in effec-
tive valence bond treatment at the Hartree-Fock level, coupled with configuration
interaction (CI) theory, which showed a remarkable charge polarization within each
diabatic state [46–48].

Truhlar and coworkers developed a multiconfiguration molecular mechanics
(MCMM) method that involves a systematic parameterization for the off-diagonal
element [40, 49]. The MCMM method is fitted to reproduce ab initio energies and
gradients. Thus, the MCMM potential is a proper function for use to compute nu-
clear quantum effects and KIE.

2.1.2 QM Potentials

It is possible to treat the entire enzyme–solvent system by semiempirical or first
principles QM methods [50–56]. Although this approach has the advantage of avoid-
ing the intermediate parameterization step and has been applied successfully to a
variety of condensed-phase systems, the computational costs are still too large to
be practical for free energy simulations of enzymatic reactions with appreciable
barriers. A semiempirical molecular orbital approach has been used in a variety of
applications to biological systems [57–60]. In most enzyme reactions, it is not clear
whether there is a need to treat the entire enzyme by quantum mechanics.

2.1.3 Combined QM/MM Potentials

The most promising approaches for modeling enzymatic reactions are QM/MM
methods, in which a system is divided into a QM region and an MM region
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[30, 31, 46, 61–70]. The QM region typically includes atoms that are directly in-
volved in the chemical step and they are treated explicitly by a QM electronic
structure method, whereas the MM region consists of the rest of the system and
is approximated by an MM force field. This way of combining QM with MM was
initially developed for gas-phase calculations by Warshel and Karplus [71], and it
was applied to enzyme systems by Warshel and Levitt [62]. Molecular dynamics
and Monte Carlos simulations using combined QM/MM potentials began to emerge
more than 10 years later [30, 66, 72]. The QM/MM potential is given by [31, 65]:

Utot = 〈�(S)|Ho
qm(S) + Hqm/mm(S)|�(S)〉 + Umm, (10)

where Ho
qm(S) is the Hamiltonian of the QM subsystem (the substrate and key

amino acid residues) in the gas phase, Umm is the classical (MM) potential en-
ergy of the remainder of the system, Hqm/mm(S) is the QM/MM interaction Hamil-
tonian between the two regions, and �(S) is the molecular wavefunction of the
QM-subsystem optimized for Ho

qm(S) + Hqm/mm(S).
We have found that it is most convenient to rewrite Eq. 10 as follows [30, 66]:

Utot = Eo
qm(S) + �Eqm/mm(S) + Umm, (11)

where Eo
qm(S) is the energy of an isolated QM subsystem in the gas phase:

Eo
qm(S) =

〈
�o(S)

∣
∣
∣Ho

qm(S)
∣
∣
∣�o(S)

〉
. (12)

In Eq. 11, �Eqm/mm(S) is the interaction energy between the QM and MM re-
gions, corresponding to the energy change of transferring the QM subsystem from
the gas phase into the condensed phase, which is defined by:

�Eqm/mm(S) = 〈�(S)|Ho
qm(S) + Hqm/mm(S)|�(S)〉 − Eo

qm(S). (13)

In Eqs. 11 to 13, we have identified the energy terms involving electronic degrees
of freedom by E and those purely empirical functions by U , the combination of
which is also an empirical potential.

Eq. 11 is especially useful in that the total energy of a hybrid QM and MM sys-
tem is separated into two “independent” terms—the gas-phase energy and the in-
teraction energy—which can now be evaluated using different QM methods. There
is sometimes confusion regarding the accuracy of applications using semiempiri-
cal QM/MM potentials [42]. Eq. 11 illustrates that there are two issues. The first
is the intrinsic performance of the model, e.g., the Eo

qm(S) term, which is indeed
not adequate using semiempirical models and which would require extremely high-
level QM methods to achieve the desired accuracy. This is only possible by using
CCSD(T), CASPT2, or well-tested density functionals along with a large basis set,
and none of these methods are tractable for applications to enzymes. When semiem-
pirical methods are used, the PES for the Eo

qm(S) term is either reparameterized to
fit experimental data, or replaced by high-level results. These methods are only di-
rectly used without alteration in rare occasions when a semiempirical model yields
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good agreement with experiment [73,74]. Importantly, Eq. 11 allows us to substitute
a “high-level” (HL) theory for the semiempirical intrinsic energy:

E HL
qm (S) = Eo

qm(S). (14)

Now, we have the flexibility to choose our favorite, most accurate QM methods
to achieve the desired accuracy. This substitution of QM models can be made on the
fly during a dynamics simulation, or post priori.

The second issue on accuracy is in the calculation of the �Eqm/mm(S) term.
It was recognized early on, when QM/MM simulations were first carried out, that
combined QM/MM potential is an empirical model, which contains empirical para-
meters and should be optimized to describe QM/MM interactions [30, 68, 75]. By
systematically optimizing the associated van der Waals parameters for the “QM-
atoms,” both semiempirical and ab initio (Hartree-Fock) QM/MM potentials can
yield excellent results for hydrogen-bonding and dispersion interactions in compar-
ison with experimental data. The use of semiempirical methods, such as the Austin
Model 1 (AM1) [76] or Parameterized Model 3 (PM3) [77] in QM/MM simula-
tions has been validated through extensive studies of a variety of properties and
molecular systems, including computations of free energies of solvation and polar-
ization energies of organic compounds [30, 78], the free energy profiles for organic
reactions [23, 73, 79], and the effects of solvation on molecular structures and on
electronic transitions [80, 81].

For studying enzymatic reactions, it is necessary to obtain the free energy of ac-
tivation, typically obtained by computing the PMF along a reaction coordinate. This
requires sufficient configurational sampling through molecular dynamics simula-
tions, which is another critical factor contributing to accuracy, and the �Eqm/mm(S)
in Eq. 11 is most relevant. It must be evaluated and repeated millions of times. Con-
sequently, a computationally efficient method, such as a semiempirical QM model,
must be used. Here, we use the term “lower-level” (LL) model to denote the use
of an efficient QM/MM potential, which is used on-the-fly in molecular dynamics
simulations:

�E L L
qm/mm(S) = �Eqm/mm(S). (15)

This is critical for studying enzymatic reactions because it introduces the instan-
taneous electronic polarization of the QM subsystem caused by the thermal fluctua-
tions of the enzyme and solvent environment [82].

By these substitutions, we obtain a highly accurate dual-level (DL) total energy
for the enzyme reaction [83]:

U DL
tot = E HL

qm (S) + �E LL
qm/mm(S) + Umm . (16)

The dual-level QM/MM approach is akin to the ONIOM model developed by
Morokuma and coworkers [84], and it has been used in a number of QM/MM sim-
ulations.

The QM/MM PES combines the generality of QM methods for treating chem-
ical processes with the computational efficiency of molecular mechanics for large
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molecular systems. The use of an explicit electronic structure method to describe
the enzyme active site is important because understanding the changes in electronic
structure along the reaction path can help to design inhibitors and novel catalysts. It
is also important because the dynamic fluctuations of the enzyme and aqueous sol-
vent system have a major impact on the polarization of the species involved in the
chemical reaction, which, in turn, affects the chemical reactivity [30,82]. Combined
QM/MM methods have been reviewed in several articles [31, 39, 61, 65, 85].

2.2 Classical PMF

The free energy barrier �F 
=
TST (or �F 
=

qm when quantum effects are considered, see
Eq. 26) is the most relevant quantity to quantify enzyme catalysis, and it is typi-
cally obtained by computing the PMF along the reaction coordinate. Two methods
are generally used in the calculation of PMFs for reactions in solution and in en-
zymes, the umbrella sampling [19] technique and the free energy perturbation the-
ory [86,87]; these are reviewed elsewhere [88,89]. The umbrella sampling technique
provides a direct estimate of the relative probability of finding the reaction system
at the reactant position along the reactant coordinate and at the transition state po-
sition; this estimate includes both the structural variations of the substrate and dy-
namic, thermal fluctuations of the enzyme along the reaction coordinate. Thus, it
provides the most accurate estimate of the change in the free energy of activation
��F 
= = �F 
=

enz − �F 
=
aq from water to the enzyme using the given PES.

Because these calculations are often carried out using classical mechanics,
zero-point energy and effects of the quantization of vibrational motion are neglected.
Studies have shown that inclusion of these effects can significantly lower the
classical free energy barrier, particularly in systems involving hydrogen transfer
[90–93], and that omission of these quantum effects can lead to significant errors
in computed free energies of activation, particularly in systems involving hydro-
gen transfer. Thus, it is desirable to make quantal corrections to the CM-PMF or to
perform simulations that directly include nuclear QM effects.

2.2.1 Quasiclassical PMF

A convenient procedure to include the effect of quantization of molecular vibrations
in free energy calculations is to relate the quantum PMF to the classical PMF of
Eq. 8 at temperature T by [18, 93]:

wQC(z) = wCM(z) + �wvib(T, z), (17)

where �wvib(T, z) is an ensemble average of the instantaneous harmonic approx-
imation to the quantal correction to the classical vibrational free energy for vibra-
tional modes orthogonal to the reaction coordinate, z. The subscript QC in Eq. 17
specifies the fact that tunneling and other quantum effects on the reaction coordinate
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z are excluded, giving rise to the quasiclassical PMF (QC-PMF). The constraint
that the modes included are orthogonal to z can be achieved by a projection oper-
ator [18, 93]. In practice [8], for each instantaneous configuration that was saved
from the classical dynamics trajectory, we separate the entire N -atom system into
a primary zone, consisting of N1 atoms (typically those in the QM-subsystem) and
a secondary zone (the rest of N–N1 atoms). We then freeze all secondary atoms
and evaluate the normal modes of the primary zone system under the effects of the
secondary zone. In computing the QC-PMF, 3N1 − 7 modes at the transition state
and 3N1 − 6 modes at the reactant state are used. To evaluate the quasiclassical free
energy of activation, �F 
=

QC , quantum corrections must also be made to the FR
CM(z)

term in Eq. 7. A procedure for making these corrections has been reported [18].
The rate constant with quantized vibrations using �F 
=

QC is:

kQC = 1
βh

e−β�F 
=
QC , (18)

where �F 
=
QC is the quasiclassical free energy of activation. We note here that the

recrossing transmission coefficient can be estimated by coupling the reaction coor-
dinate z to the rest of the 3N1 −1 degrees of freedom using the frozen bath approxi-
mation. Most applications show that the recrossing factor is in the range of 0.2 to 1.
Thus, it is not further discussed in this article.

Billeter et al. [92] mixed quantum and classical molecular dynamics (MQCMD)
to obtain the quantized PMF, and then a transmission coefficient was added by mole-
cular dynamics with quantum transitions. In the MQCMD calculation, which has
been applied to hydrogen transfer reactions, the three degrees of freedom for the
transferring atom are treated as a quantal subsystem, and a numerical method is used
to solve the three-dimensional vibrational wave function. The quantal subsystem is
embedded in the rest of the system, which is treated classically [94, 95]. The large
number of grid points, on which the potentials from the environment are evaluated,
are the computational bottleneck in this approach, which has limited its application
to quantize only one atom [92].

Free energy simulations of model proton shifts in water as well as enzymatic hy-
drogen transfer reactions in a number of enzymes indicate that inclusion of quantum
vibrational free energy contributions reduces the classical barrier height by 2 to 4
kcal/mol and that more degrees of freedom than those associated with the migrating
atoms are needed in these calculations [91–93, 96, 97].

2.2.2 Tunneling

Nuclear tunneling and other quantum effects on the reaction coordinate that are
missing in the calculation of the PMF are treated separately from effects on other
degrees of freedom [8], although QM effects are not uniquely separable [7]. Never-
theless, it provides useful insights into the factors of QM contributions to the eval-
uation of the rate constant. In path integral (see next section) or quantum-classical
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molecular dynamics (QCMD) calculations, such a separation is obviously not pos-
sible, and, to a certain degree, the effect of the nuclear tunneling contributions is
absorbed into the computed PMF in these methods. From a more general perspec-
tive, any reliable approach to calculating tunneling effects must be multidimensional
to take account the nonseparability of the reaction coordinate [8].

In the ensemble-averaged variational TST with multidimensional tunneling (EA-
VTST/MT) [18, 27], nuclear quantum effects on the reaction coordinate are esti-
mated as a transmission coefficient. Thus, the overall quantum correction factor is:

κ = kqm

kTST
= κMT · e

−β
(
�F 
=

QC −�F 
=
TST

)

, (19)

where κMT is the multidimensional tunneling (MT) transmission coefficient. Here,
we have again omitted the classical recrossing factor. The κMT coefficient is ap-
proximated as [18]:

κMT =< κMT (i) >
=∼= 1
M

M∑

i=1

κMT (i), (20)

where the brackets 〈· · · 〉
= represent an ensemble average over transition state (TS)
configurations at temperature T, κMT accounts for tunneling through the effective
barrier and nonclassical diffractive reflection from the barrier top, i denotes a par-
ticular member of the QC transition state ensemble, and M is the total number
of configurations that have been sampled in the calculation. The ensemble of TS
configurations can be generated during the PMF calculation using umbrella sam-
pling [18] or in a separate molecular dynamics simulation with the constraint that
the reaction coordinate corresponds to the TS value [91, 96].

For each configuration i in the TS ensemble [18], the “tunneling factor” κMT (i)
is evaluated by a semiclassical MT approximation, either the small-curvature tunnel-
ing (SCT) approximation [98], or the microcanonically optimized multidimensional
tunneling (µ OMT) approximation [99]. The latter involves choosing, at each tun-
neling energy, the better of the small-curvature [98] and large-curvature [100, 101]
tunneling approximations.

2.2.3 Centroid Path Integral Simulations

Feynman path integral simulations provide a convenient procedure for incorporating
quantum effects on vibrations [102]. In this approach, the ensemble averages for the
quantum system can be obtained by carrying out a classical simulation in which the
quantized particles are represented by ring polymers of classical particles. To de-
termine the PMF, the average position (centroid) of the quantized particles is used
as a classical variable [103–107], leading to a method called path integral quantum
TST (PI-QTST). Although this approach has been successful for some problems
and it was applied to an enzyme reaction [108], it has been noted that difficulty ex-
ists in using the approach for asymmetric reactions at low temperature [109–112].
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Hwang et al. used an approach called quantized classical path (QCP), in which
quantum effects are formulated as a correction to the classical PMF [97,107]. Thus,
the classical simulations and quantum corrections are fully separated, making it par-
ticularly attractive and efficient to model enzymatic reactions [6, 97, 107, 113].

In the discrete path integral method, each quantized nucleus is represented by a
ring of P quasiparticles called beads, whose coordinates are denoted as r = {ri ; i =
1, · · · , P}, with a definition of rP+1 = r1. Each bead is connected to its two neigh-
bors via harmonic springs, and is subjected to a fraction, 1/P , of the full classical
potential, U (ri , S), where S represents all classical protein–solvent coordinates. The
following discussion can easily be extended to many-quantized particles. In a cen-
troid path integral, the centroid position, r, is used as the principle variable and the
canonical QM partition function of the hybrid system can be written as follows:

Qqm
P =

∫
dS

∫
dr
(

P

2πλ2

)3P/2 ∫
dRe−βV qm (r,S), (21)

where V qm(r, S) is the effective QM potential,
∫

dR = ∫
dr1 · · · ∫ drP δ(r); the

centroid coordinate, r, of the quasiparticles is defined as r = 1/P
P∑

i=1
ri ; and the

de Broglie thermal wavelength, λ2, of a particle of mass M is λ2 = βh̄2/M . The
key result in the hybrid classical and path integral approach or quantized classical
path is that the quantum partition function can be rewritten as the double averages
[97, 107, 114–116]:

Qqm
P = Qcm

P << e−β�U (r,S) >FP,r>Utot , (22)

where Qcm
P is the classical partition function [102], the average < · · · >Utot is ob-

tained according the potential Utot (r, S), which is of QM/MM type, but purely clas-
sical in nuclear degrees of freedom, and the inner average < · · · >FP,r represents
free particle sampling carried out without the external potential Utot (r, S):

< · · · >F P,r =
∫

drP {· · · }δ(r)e−(P/2λ2)P
i (�ri )

2

∫
drP δ(r)e−(P/2λ2)P

i (�ri )2
, (23)

where �ri = ri −ri+1. This procedure was initially used by Sprik et al. for a system
consisting of one electron embedded in random hard spheres [114]. As Warshel
pointed out [97, 107], the expression of Eq. 22 is particularly useful because the
quantum free energy of the system can be obtained by first carrying out classical
trajectories for averaging classical configurations (r, S), and then determining the
quantum contributions through free particle sampling by path integral simulations
(Eq. 23).

Based on Eq. 22, the QM PMF, defined as a function of the centroid reaction
coordinate, z̄, can be readily expressed by:

wQM (z̄) = wCM (z̄) − kB T ln << e−β�U (z̄) >FP,z̄>Utot , (24)
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where wQM (z̄) and wCM (z = z̄) are the centroid QM and CM PMF, respectively,
and the average potential energy is given as follows:

�U (z̄) = 1
P

P∑

i

{U (ri , S) − U (r̄, S)}. (25)

Finally, the quantum free energy of activation (in Eq. 4) can be obtained by:

�F 
=
qm =

[
wQM

(
z̄ 
=

qm

)
− wQM

(
z̄ R

qm

)]
, (26)

where the symbol z̄ 
=
qm specifies the value of the centroid reaction coordinate, at

which wQM (z̄) has the maximum value, and z̄ R
qm is the coordinate at the reactant

state.
A bisection sampling scheme has been developed for centroid path integral sim-

ulations [115, 116], based on the original procedure of Ceperley [117], and this
method has been implemented in the context of the quantized classical path sim-
ulation strategy (BQCP). Through a series of investigations [79, 118], it has been
demonstrated that the BQCP sampling procedure can yield rapidly converging
results [115, 116], which has been a major problem for application to enzymes. In
general, any particle position of the cyclic quasiparticles can be expressed as:

ri = λM θi ; i = 1, 2, · · · , P, (27)

where the vector θi is a generalized positive vector, properly scaled, generated
randomly according to the free particle distribution, and associated with earlier
levels of bisection sampling. The specific details have been given in references
[115, 116, 119]. Note that the beads positions are dependent on the particle mass
via λM .

2.3 Computation of KIE

An integrated path integral–free energy perturbation and umbrella sampling (PI-
FEP/UM) method has been developed to compute KIE, in which molecular dynam-
ics simulations are first carried out to obtain the CM-PMF using umbrella sampling.
Then, the nuclear coordinates of atoms associated with the chemical reaction are
quantized by a path integral with the constraint that the centroid positions coincide
with their corresponding classical coordinates. KIE are evaluated by free energy per-
turbation between heavy and light atom masses, which is related to the quantized
quasiparticle positions.

Considering an atom transfer reaction in which the light atom of mass ML is
replaced by a heavier isotope of mass MH , we use exactly the same sequence of
random numbers, i.e., displacement vectors, to generate the bisection path inte-
gral distribution for both isotopes to obtain the free particle distribution. Thus, the
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resulting coordinates of these two bead-distributions differ only by the ratio of the
corresponding masses:

ri,L

ri,H
= λML θi

λMH θi
=
√

MH

ML
; i = 1, 2, · · · , P, (28)

where ri,L and ri,H are the coordinates for bead i of the corresponding light and
heavy isotopes.

The KIE can be computed by considering the ratio between the heavy and light
QM partition functions. At a given reaction coordinate value z̄ (centroid coordi-
nates), the ratio can be obtained exactly by free energy perturbation:

Q H
QM (z̄)

QL
QM (z̄)

= < δ(z − z̄) < e− β
P i �U L→H

i e−β�U L >F P,L>Utot

< δ(z − z̄)e−β[FL (z̄,S)−Fo
F P ] >Utot

, (29)

where the superscripts or subscripts L and H specify computations performed us-
ing light or heavy isotopes, and �U L→H

i = Utot (ri,H ) − Utot (ri,L) represents the
difference in potential energy at the heavy and light bead positions, ri,H and ri,L .
In Eq. 29, we obtain the free energy (inner average) difference between the heavy
and light isotopes by carrying out the bisection path integral sampling with the light
atom and then perturbing the heavy isotope positions according to Eq. 28. Then, the
free energy difference between the light and heavy isotope ensembles is weighted
by free energy (outer average).

The KIE are computed as follows:

KIE = kL

k H =
[

QL
QM

(
z̄ 
=

L
)

Q H
QM

(
z̄ 
=

H
)

][
Q H

QM
(
z̄ R

H
)

QL
QM

(
z̄ R

L
)

]

e−β
{

FR
CM

(
z̄ R

L

)
−FR

CM

(
z̄ R

H

)}
. (30)

Note that FR
CM(z̄ R

L ) and FR
CM(z̄ R

H ) are the free energies of the mode in the reac-
tant (R) state that correlates with the progress coordinate z for the light and heavy
isotopes. A method for estimating their values has been described [18].

3 Illustrative Examples

3.1 The Symmetric Eckart Barrier

We first present the result for a model system of proton transfer barrier described by
the symmetric Eckart potential:

V (z) = Vmax cosh2
(πz

l

)
, (31)
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Table 1 Computed QM correction factor for hydrogen and H/D KIE for the Eckart potential

Temperature
(K)

κ κH/κD

BQCP Exact PI-FEP/UM Exact
500 1.43 1.53 1.19 1.23
400 1.75 1.92 1.31 1.37
350 2.09 2.23 1.43 1.51
300 2.73 3.15 1.62 1.76
250 4.46 5.31 2.08 2.28
200 11.5 15.0 3.33 3.84
100 1.30 × 105 1.80 × 105 156 106

Table 2 Computed and experimental primary 12C/13C and secondary 14N/15N KIE for the decar-
boxylation of N -methyl picolinate at 25◦C in water

12k/13k 14k/15k

Exp (25◦C) 1.0281 ± 0.0003 1.0070 ± 0.0003
PI-FEP/UM 1.0318 ± 0.0028 1.0083 ± 0.0016

where Vmax = 5.7307 kcal/mol and l = 1.0967 Å [120, 121]. The PI-BQCP simu-
lation was carried out by 10,000 Monte Carlo steps using 32 beads for the quantized
particle. The computed quantum correction factors at various temperatures are given
in Table 1, which are in reasonable agreement with the exact values [104,120–122].
Similar results were also obtained using 64 beads by Hwang and Warshel [107]. The
deviation of the present BQCP simulation from the exact values is likely caused by
a combination of factors including the centroid approximation near the top of the
barrier reducing the computed tunneling contributions, and a finite number of beads
used in the sampling. The results listed in Table 1 were obtained with 32 beads in
BQCP sampling, but we have tested the convergence by using 256 beads at 300 K,
which yielded results within 5% of that for the 32-bead system.

Table 1 also lists the computed KIE for a hypothetic proton and deuterium trans-
fer over this barrier, which is compared with the exact results (the computed KIE
included only the quantum correction terms). In this comparison, the quantum cor-
rection factors for the hydrogen and deuterium transfer reactions are computed in-
dependently along the “reaction coordinate,” z (Eq. 31). It is evident that the errors
in the computed KIE are reduced relative to that of the transmission coefficient
(Table 2). At 300 K, the KIE is underestimated by 0.14, which translates to an error
of 8% in comparison to that from the exact data.

3.2 The Decarboxylation of N-Methyl Picolinate in Water

The decarboxylation of N -methyl picolinate was used as a model to probe the mech-
anism of the uncatalyzed reaction in water for orotidine 5′-monophosphate decar-
boxylase (Scheme 1). The primary and secondary heavy atom KIE were determined
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by Rishavy and Cleland at an elevated temperature and then extrapolated to 25◦C
[123]. Classical molecular dynamics simulations and umbrella sampling were first
carried out for a system containing the N -methyl picolinate, treated by the AM1
Hamiltonian, in a cubic box (30×30×30 Å3

) of 888 water molecules, described by
the TIP3P potential [119]. In all calculations, long-range electrostatic interactions
were treated by the particle mesh–Ewald method for QM/MM potentials [124]. The
CM-PMF as a function of the C2–CO2 distance reaction coordinate was obtained
at 25◦C and 1 atm through a total of 2 ns of dynamics simulations. Then, the coor-
dinates from the classical trajectory were used in path integral BQCP simulations,
a total of 97,800 classical configurations was used for each isotope (12C, 13C, 14N,
and 15N) for the decarboxylation reaction, combined with 10 path-integral steps per
classical configuration. Each quantized atom was described by 32 beads.

Solvent effects are significant, increasing the free energy barrier by 15.2 kcal/mol
to a value of 26.8 kcal/mol, which is accompanied by a net free energy of reaction of
24.7 kcal/mol. The large solvent effect is caused by the presence of a positive charge
on the pyridine nitrogen, which is annihilated in the decarboxylation reaction. There
is only approximately 2 kcal/mol of CO2 recombination barrier, which would cause
difficulty for computing KIE using only a single transition structure.

Both the 12C/13C primary KIE and the 14N/15N secondary KIE have been
determined (Table 2), with the immediate adjacent atoms around the isotopic sub-
stitution site quantized as well. Figure 1 shows the absolute quantum correction
factor (in kcal/mol) for both 12C and 13C at the carboxyl position, and Fig. 2 de-
picts their difference to illustrate the computational sensitivity. First, we note that
the nuclear quantum effects are not negligible even for bond cleavage involving
two carbon atoms, which reduce the free energy barrier by 0.45 kcal/mol. The com-
puted intrinsic 13C primary KIE, without including the FR

CM(z̄ R) term in Eq. 30, is
1.0318 ± 0.0028 at 25◦C for the decarboxylation of N -methyl picolinate in water
(Table 1). To emphasize the sensitivity of the computational result, the computed
KIE is equivalent to a free energy difference of merely 0.0187 kcal/mol (Fig. 2),
which is feasible by the use of free energy perturbation/umbrella sampling tech-
niques. For comparison, the experimental value is 1.0281 ± 0.0003 at 25◦C. For
the secondary 15N KIE, the PI-FEP/UM simulation yields an average value of
1.0083±0.0016, which may be compared with experiment (1.0070±0.0003) [123].
The agreement between theory and experiment is excellent, which provides support
for a unimolecular decarboxylation mechanism in this model reaction.
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3.3 Alanine Racemase

Alanine racemase catalyzes the interconversion of L- and D-alanine, the latter of
which is an essential component in the peptidoglycan layer of the bacterial cell
wall. The biosynthesis of D-Ala is unique to bacteria [125], making the enzyme
alanine racemase (AlaR) an attractive target for antibacterial drug design [126]. The
chemical transformation is illustrated in Scheme 2, which has been modeled by a
combined QM/MM potential in molecular dynamics simulations.

Following the procedure described above, the primary KIE both for the forward
and reverse processes have been determined [118, 127]. In these calculations, the
semiempirical AM1 formalism was used to describe the active site, which includes
the pyridoxal 5′-phosphate (PLP) cofactor-bound substrate and the acid and base
residues Lys39 and Tyr265′, where the prime indicates a residue from the second
subunit of the dimeric enzyme. However, the AM1 model was reparameterized to
model the AlaR-catalyzed racemization, yielding a highly accurate Hamiltonian that
is comparable to mPW1PW91/6-311++G(3df,2p) calculations. Stochastic bound-
ary molecular dynamics simulations were carried out for a system of a 30 Å sphere
about the center of the active site, and a series of umbrella sampling simulations
were performed, cumulating a total of 24 ns statistical sampling (with a 1-fs inte-
gration step) to yield the classical PMF. Then, the transferring proton, the donor,
and acceptor heavy atoms for each process are quantized by a centroid path integral
with 32 beads for each particle. Approximately 15,000 configurations saved from
these trajectories in regions corresponding to the Michaelis complex reactant state,
transition state, and product state were extracted, each of which was subjected to
10 BQCP sampling to yield the centroid path integral–quantum corrections to the
classical free energy profile.

The QM potentials of mean force are displayed in Fig. 3, which incorporate the
QM corrections to the classical PMF from molecular dynamics simulations. For the
L → D alanine racemization in AlaR, the first proton abstraction step by Tyr265′
is rate limiting, and, thus, the observed rate constant is directly related to this re-
action step, kobs = k1, and the KIE is computed using this rate constant. Figure 3
shows that inclusion of QM contributions to the computed classical PMF lowers the
free energy barrier by 2.60 and 1.74 kcal/mol for proton and deuteron transfer to
Tyr265′ phenolate ion in AlaR. This leads to a computed intrinsic KIE of 4.21 for
the α-proton abstraction in the L → D alanine conversion; the FR

CM(z̄ R) has been
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Fig. 3 Computed CM and QM potentials of mean force for the proton and deuteron abstraction of
Ala-PLP by Tyr265′, and the reprotonation of Ala-PLP carbanion intermediate by Lys39 in alanine
racemase

neglected in these calculations. The computational result is much greater than the
experimental value of 1.9 [128], which may be a result of one factor or a combi-
nation of factors, including the complexity involved in the analysis of experimental
kinetic data, the possibility that the experimental KIE was not exactly the intrinsic
value, and computational uncertainty.

For comparison, the primary intrinsic KIE was also computed using the EA-
VTST/MT method [8, 18], yielding a value of 3.97 for the Tyr265′ proton abstrac-
tion, in close agreement with the path integral simulation results. Interestingly, the
EA-VTST/MT method allows the separation of the total nuclear quantum effects
into vibrational motions and tunneling. We found that the dominant QM contribu-
tion is caused by the change in zero-point energy in going from the reactant state to
the transition state, and that hydrogen tunneling is negligible, with an average trans-
mission factor of 1.14 and 1.31 for the hydrogen and deuterium. Furthermore, the
net quantum effects, from EA-VTST/MT calculations, lower the classical barrier by
2.71 and 1.89 kcal/mol for the hydrogen and deuterium transfer reactions, respec-
tively, in accord with the BQCP calculations. The average recrossing transmission
factors, �, were also computed using the EA-VTST/MT method, which are 0.96
and 0.94 for the hydrogen and deuterium transfers, respectively.

For the D → L conversion of alanine by AlaR, the actual proton transfer step is
not rate limiting. If we neglect the complexity of reaction steps involving internal
and external aldimine exchange, substrate binding, and product release, i.e., we only
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consider the proton abstraction and reprotonation steps, the overall rate constant for
the “chemical step” can be expressed as follows [127]:

kef f = k−2k−1

k−1 + k2
. (32)

Because our simulations (Fig. 3) show that k2 >> k−1, we obtain the following
rate expression:

ke f f = k−2k−1

k2
= k−1

K2
, (33)

where K2 is the equilibrium constant for the proton transfer reaction from L-Ala-
PLP to a neutral Lys39. Based on the relative free energies in Fig. 3, we obtained
an estimated primary KIE of 3.06 from path integral simulations, and 2.65 from
EA-VTST/MT. Again, these values are greater than that from a multicomponent
analysis of experimental kinetic data (1.43 ± 0.20) [128]. The difference between
computational results and values from analysis of experimental data suggest that fur-
ther studies are needed. Finally, we note that the computed recrossing transmission
coefficients are 0.81 and 0.87 for the proton and deuteron transfer reactions to
Lys39, which are somewhat smaller than the L to D isomerization, but they are still
very close to unity.

4 Concluding Remarks

We presented a method for incorporating quantum mechanics into enzyme kinet-
ics modeling. Three aspects are emphasized: 1) the PES is represented by com-
bined QM/MM method in which electronic structure theory is used to describe bond
forming and breaking processes, 2) quasiclassical PMF is obtained by incorporating
quantum vibrational free energies, and 3) quantum effects on the reaction coordinate
motion are estimated by the use of MT methods. In the EA-VTST/MT, these three
aspects of QM effects can be individually treated, providing useful insights into
the mechanism of enzymatic reactions. Centroid path integral simulations that make
QM corrections to the CM PMF are also described. In this method, the nuclear quan-
tum vibrational and tunneling contributions are not separable. An integrated centroid
path integral–free energy perturbation and umbrella sampling (PI-FEP/UM) method
along with a bisection sampling procedure was summarized, which provides an ac-
curate, easily convergent method for computing KIE for chemical reactions in so-
lution and in enzymes. These methods are illustrated by applications to a model
process in the gas phase, the decarboxylation reaction of N -methyl picolinate in
water, and the proton abstraction and reprotonation process catalyzed by alanine
racemase. These examples show that the incorporation of QM effects is essential
for enzyme kinetics simulations. These computational approaches provided insights
and helped to interpret experimental data, such as KIE.
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Chapter 4
Comparison of Protein Force Fields
for Molecular Dynamics Simulations

Olgun Guvench and Alexander D. MacKerell, Jr.

Summary In the context of molecular dynamics simulations of proteins, the term
“force field” refers to the combination of a mathematical formula and associ-
ated parameters that are used to describe the energy of the protein as a function
of its atomic coordinates. In this review, we describe the functional forms and
parameterization protocols of the widely used biomolecular force fields Amber,
CHARMM, GROMOS, and OPLS-AA. We also summarize the ability of various
readily available noncommercial molecular dynamics packages to perform simula-
tions using these force fields, as well as to use modern methods for the generation
of constant-temperature, constant-pressure ensembles and to treat long-range inter-
actions. Finally, we finish with a discussion of the ability of these force fields to
support the modeling of proteins in conjunction with nucleic acids, lipids, carbohy-
drates, and/or small molecules.

Keywords: Amber · CHARMM · GROMOS · Molecular dynamics · OPLS-AA ·
Protein

1 Introduction

Classical molecular dynamics (MD) simulations of proteins are founded on the idea
of using a differentiable function of the atomic coordinates to represent the energy of
the system. This function is an approximation of the true quantum mechanical (QM)
wavefunction. The function’s partial derivatives with respect to the atomic Cartesian
coordinates yield forces that can then be used to propagate the system through time
using classical mechanics. In addition to being dependent on the atomic coordinates,
the function’s value also depends on a set of parameters that describe the geometric
and energetic properties of interparticle interactions. Unlike the coordinates, these
parameters are invariant during the course of a simulation. The combination of the
mathematical function and the parameters is commonly referred to as a “force field.”
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In this review, we will focus on the widely used biomolecular protein force fields
Amber [1], CHARMM [2], GROMOS [3], and OPLS-AA [4], which account for
the majority of recently published MD simulations of proteins. All four of these
force fields have been developed by academic research groups and, accordingly,
the associated parameters have been peer reviewed and made publicly available. A
non-exhaustive list of other force fields for protein simulations includes CVFF [5],
ECEPP [6–9], ENCAD [10, 11], MM4 [12–17], MMFF [18–24], and UFF [25];
further examples can be found in two recent reviews [26, 27]. Although we limit
our discussion to the preceding four force fields, we do note that the ENCAD force
field has been used extensively by Daggett and coworkers to study protein folding
via explicit solvent MD simulations [28], and the ECEPP and UNRES force fields
of Scheraga and coworkers have been used for protein structure prediction with an
implicit solvent treatment [29].

We begin the review with a description of the mathematical functional forms for
these force fields, first focusing on what they have in common and then pointing out
how they differ. We then give an overview of parameter development and speak to
the particulars of each force field. We follow this with a discussion of present-day
approaches to handling long-range interactions and generating appropriate ensem-
bles at constant temperature and pressure that allow for direct comparisons with
experimental data. We follow with a list of widely available academically distrib-
uted software packages that support MD simulations using one or more of these
force fields. We finish with an overview of the present-day ability of these force
fields to support not only simulations of proteins but also of proteins in conjunction
with nucleic acids, lipids, carbohydrates, and/or small molecules.

2 Force Field Functional Forms

The underlying functional forms of the Amber, CHARMM, GROMOS, and OPLS-
AA force fields can be readily understood by the molecular properties they seek
to represent. These can be classified into two groups: bonded and nonbonded. The
terms representing bonded interactions seek to account for the stretching of bonds,
the bending of valence angles, and the rotation of dihedrals. The terms representing
nonbonded interactions aim to capture electrostatics, dispersion, and Pauli exclu-
sion. Thus, energy terms common to these force fields are:

Ebonded =
∑

bonds

Kb(b−b0)
2 +

∑

angles

Kθ(θ−θ0)
2 +

∑

dihedrals

Kχ[1+cos(nχ−σ)] (1)

and

Enonbonded =
∑

nonbonded
pairs i j

(

εi j

[(
Rmin,i j

ri j

)12

− 2 ∗
(

Rmin,i j

ri j

)6
]

+ qi q j

ri j

)

, (2)
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where Ebonded is the contribution to the total energy from bonded interactions and
Enonbonded is the contribution from nonbonded interactions. The total energy is then:

Etotal = Ebonded + Enonbonded + Eother, (3)

where Eother includes any force field-specific terms, as described subsequently.
The first term in Eq. 1 is a sum over all bonded pairs of atoms and describes

the stretching of bonds; b is the interatom distance (i.e., bond length); and Kb and
b0 are parameters describing the stiffness and the equilibrium length of the bond,
respectively. The term has the same quadratic form as that of Hooke’s law for the
potential energy of a spring. The second term involves triplets of atoms, e.g., A, B,
and C, where A is bonded to B and B is bonded to C, and describes the bending of
angles. θ is the angle formed by the two bond vectors, Kθ and θ0 are the parameters
describing the stiffness and equilibrium geometry of the angle, and, similar to the
term for bond stretching, the term is quadratic. The third and final term in Eq. 1 is
a sum over quadruplets of atoms A, B, C, and D, where A is bonded to B, B to
C, and C to D, and describes the energetics associated with rotation of the dihedral
angle defined by those four atoms. Because such rotation is necessarily periodic in
nature, a cosine function is used. χ is the value of the dihedral, Kχ is the energetic
parameter that determines barrier heights, n is the periodicity or multiplicity, and
σ is the phase. The addition of 1 in this term is used so that the energy is equal to
or greater than zero. In addition, the equation may be extended in a Fourier series
where the term is applied more than once to a given dihedral in which the different
terms are associated with different periodicities (although the other parameters may
also differ). It should be noted that the bonded terms are also referred to as internal
or intramolecular interactions.

Equation 2 describes the nonbonded interactions; the terms external or intermole-
cular interactions are also used to designate these interactions. In all of the force
fields discussed herein, nonbonded interactions between atoms are defined as oc-
curring either between atoms in separate molecules or between atoms separated by
three or more bonds in the same molecule. Equation 2 is composed of two parts. The
first, known as the Lennard-Jones (LJ) equation, is the portion in square brackets
along with the prefactor εi j , and models attractive dispersion and repulsive Pauli-
exclusion interactions and is commonly referred to as the van der Waals term. As
two atoms are brought together from infinite separation, the negative term in the
brackets, which goes as the inverse of the interatomic separation ri j to the sixth
power, dominates the interaction and the atoms feel an increasing attraction with
decreasing distance as the energy becomes progressively more negative. This part
of the LJ equation models dispersion, and its (1/r)6 form derives from the inter-
action energy of an instantaneous dipole with an induced dipole, according to the
definition of London’s dispersion. As the atoms get progressively closer, an energy
minimum is reached and, at closer distances, the (1/r)12 term, which is positive,
starts to dominate and leads to increasing energy and, hence, repulsion. Its form
was originally chosen based on its computational expedience because it is simply
the square of (1/r)6. Nonetheless, it serves as an adequate representation of the
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very steep repulsive energy wall that arises from Pauli exclusion as two atoms get
closer than the sum of their van der Waals radii. The prefactor, εi j , is a parameter
based on the types of the two interacting atoms i and j . As its value increases, the
interaction minimum becomes deeper and the repulsive wall steeper. Rmin,i j is a
parameter that also depends on the types of the two interacting atoms and defines
the distance at which the LJ energy is a minimum. The LJ equation is sometimes
written as

∑

nonbonded
pairs i j

(
Ai j

ri j 12 − Bi j
ri j 6

)
, and can be equated to the form in Eq. 2 using the

relations Ai j = εi j Rmin,i j
12 and Bi j = 2εi j Rmin,i j

6.
The second part of Eq. 2 is Coulomb’s law and is used to model the electrosta-

tic interaction between nonbonded pairs of atoms. As with the LJ equation, ri j is
the interatomic distance. qi and q j are the parameters that describe the effective
charges on atoms i and j . It is important to note that the effective charge parameters
are not simply unit charges located on formally charged atoms. Rather they are par-
tial atomic charges with noninteger values that are selected to represent the overall
charge distribution of a molecule. Thus, even the hydrogen atoms on aliphatic car-
bon atoms can have charges of approximately 0.05 to 0.1 electrons in biomolecular
force fields. Naturally, the sum of the partial charges in a molecule must equal the
molecule’s net formal charge. In addition, in the case of metal ions, the charge is
typically assigned the formal charge (e.g., +1 for the sodium ion).

It is important to emphasize that nonbonded interactions involve only pairs of
atoms. Early simulations of noble gases, which used only the LJ equation, showed
that fitting εi j and Rmin to reproduce the adiabatic potential energy surface of a
dimer of the noble gas led to inaccuracies in the thermodynamic properties of the
system as calculated from simulations of a large number of such particles using these
parameters [30]. This deficit was also seen in liquid water simulation that included
both LJ and Coulomb terms and used parameters derived from the QM interac-
tion potential of two water molecules [31,32]. In reality, multibody terms involving
three or more atoms simultaneously contribute to the total energy in multiparticle
systems, whereas Eq. 2 is limited to a sum over pairs of atoms for computational
tractability. Thus, current biomolecular force fields, whose foremost goal it is to
capture the energetics of biomolecules in their physiologically relevant condensed-
phase milieu, use effective pairwise-nonbonded potentials, also known as additive
or nonpolarizable models. That is, the parameters in Eq. 2 are developed with the
constraint of accurately modeling condensed-phase properties, although this may
come at the expense of deviating from gas-phase QM dimerization energies.

As a final word regarding the nonbonded contribution to the energy, one should
note that there is no explicit term for hydrogen bonding. In all of the force fields
discussed herein, biologically important hydrogen bonds are handled by the combi-
nation of the LJ and Coulomb terms. Amber, CHARMM, GROMOS, and OPLS-AA
only include interaction sites for bonded and nonbonded interactions at the location
of the atomic nuclei. This model is generally very good with respect to being able
to reproduce hydrogen bond energies and geometries [33], although it can lead to
deviations from QM results with respect to the angular dependence of hydrogen
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bonding energy in certain cases [34]. The angular dependence of hydrogen bond-
ing can be improved by the inclusion of additional interaction sites, for example,
at the position of lone pairs, as was used for modeling sulfur atoms in an earlier
Amber force field [35]. Indeed, the TIP5P water model, which is a five-point water
model with interaction sites at lone pair positions as well as atomic positions, ex-
hibits excellent thermodynamic, dynamic, and structural properties in liquid water
simulations [36–38]. Up to 90% of the particles in a simulation of a solvated protein
belong to the water molecules thus, going from a three-particle water model with in-
teraction sites at the location of the oxygen and hydrogen atoms to a five-point water
model with additional interaction sites at the lone pair positions nearly doubles the
number of particles in the system. Because nonbonded interactions are pairwise,
this near doubling would lead to a threefold to fourfold increase in the number of
interactions and a likewise increase in computational cost. Therefore, current sim-
ulations generally use three-particle water models lacking lone pair positions, such
as TIP3P [39] and SPC/E [40], and the representation of the proteins in these force
fields likewise does not include lone pair positions.

Having concluded the discussion of the similarities in the functional forms of the
Amber, CHARMM, GROMOS, and OPLS-AA, we now move on to the differences.
Two primary differences exist in the bonded portion of the force fields. The first is
the variable use of “improper” dihedrals, which can be used to maintain chirality
or planarity at an atom center with bonds to three other atoms. For example, in the
case of the NH group in the protein backbone amide bond, the improper dihedral
angle would be defined by the atoms H-C-Cα-N, with N having bonds to H, C, and
Cα. In the case of Amber and OPLS-AA, improper dihedral angles contribute to the
energy via the dihedral term in Eq. 1, and are applied to planar groups and use a
periodicity n = 2. The CHARMM and GROMOS force fields add a separate term
for improper dihedral energy that has a quadratic dependence on the value of the
improper dihedral, similar to the terms for bonds and angles. This is particularly
important in the case of the GROMOS force field, which does not include particle
positions for hydrogen atoms bonded to aliphatic carbons; improper dihedral terms
serve to preserve chirality at these carbon centers. The second difference is that
the CHARMM force field adds a Urey-Bradly angle term, which treats the two
terminal atoms in an angle (i.e., 1,3 atoms) with a quadratic term that depends on the
atom–atom distance. The improper dihedral and Urey-Bradly angle terms provide
additional degrees of freedom for the accurate reproduction of vibrational spectra
during parametrization, as discussed in the next section.

Similar to the bonded terms, two primary differences exist with respect to the
treatment of nonbonded interactions. The first is in the combining rules used for
the determination of the LJ parameters εi j and Rmin,i j . The subscript “ij” associated
with these parameters exists to make explicit their dependence on the atom type of
both atom i and atom j . The concept of “atom type” allows for the assignment of
different parameters to atoms of identical atomic number depending on the chemi-
cal context. For example, a hydrogen atom bonded to an oxygen atom has a differ-
ent atom type and associated bonded and nonbonded parameters than a hydrogen
atom bonded to an aromatic carbon atom for all four of the force fields discussed.
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The OPLS-AA and GROMOS force fields use geometric combining rules for both
εi j and Rmin,i j , that is, εi j = (εi ε j )

1/2 and Rmin,i j = (Rmin,i Rmin, j )
1/2, where the

parameters with single subscripts refer to the parameters for that particular atom’s
atom type. CHARMM and Amber also use the geometric mean for calculating εi j ,
but use the arithmetic mean, 1

2 (Rmin,i + Rmin, j ), for Rmin,i j .
The second difference in the nonbonded part of the force fields is the handling of

1,4-nonbonded interactions, that is, those between atoms A and D in the dihedral A-
B-C-D. The four force fields apply various scaling constants to the LJ and Coulomb
interactions between these atoms pairs. For example, Amber scales 1,4-LJ interac-
tions by 1/2 and Coulomb interactions by 1/1.2. OPLS-AA applies a scale factor
of 1/2 to both interactions. GROMOS takes a case-by-case approach that includes
having different LJ parameters for a particular atom type if it is in a polar or ionic
interaction versus a nonpolar interaction, scaling by 0 1,4-nonbonded interactions in
aromatic rings, allowing for a different set of LJ parameters for atoms i and j if they
are 1,4 relative to each other, and having particular atom type pairings for which the
LJ parameters are directly defined instead of being derived by combining rules. The
CHARMM force field takes a simple approach by not scaling 1,4-nonbonded inter-
actions, although, for a few atom type pairs, special 1,4-LJ parameters are applied.

The special treatment of 1,4-nonbonded interactions was largely motivated by
the desire to more readily reproduce dihedral rotation energetics while facilitating
the use of the same nonbonded parameters for intermolecular and intramolecular in-
teractions [41]. The pairwise-additive nature of the nonbonded interactions prevents
the lowering of rotational barriers caused by electronic polarization, hence, the ap-
plication of empirical scaling values. The lack of consensus for how best to treat
such interactions suggests that no single best solution exists to this problem. Indeed,
the deficits of trying to capture the conformational energetics of a molecule caused
by changes in dihedral angles using a combination of LJ, Coulomb, and cosine terms
becomes particularly apparent in a molecule with more than one dihedral degree of
freedom. The archetypical example is the alanine dipeptide whose energy depends
simultaneously on the φ and ψ dihedral angles (Fig. 1). The different approaches to
treating 1,4-nonbonded dihedral interactions combined with differences in the par-
tial charge and LJ parameters lead to different energy surfaces (i.e., φ/ψ surface or
Ramachandran surface) for the alanine dipeptide, depending on which force field is
used. This is reflected in the solvated energetics of the alanine dipeptide, for which

Fig. 1 The alanine dipeptide
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both the depth and shape of the free energy contours of the alanine dipeptide in
water are substantially different for the Amber, CHARMM, and OPLS-AA force
fields [26]. Additionally, the force fields in their original versions do not reproduce
the distribution of φ and ψ dihedral angles in comparison with either protein crys-
tallographic data [42] or quantum chemical calculations using explicit solvent [43].
Both the Amber and OPLS-AA force fields have undergone revisions of their φ and
ψ dihedral parameters in an effort to improve the conformational energetics of the
polypeptide backbone [44–46]. In the case of Amber, this has led to a number of
descendents to the original Cornell et al. Amber force field. According to the Am-
ber 9 MD software documentation, this latter force field is no longer considered as
the Amber default force field, unlike in earlier versions of the software, although it
is the force field we will focus on here because of its wide past and present use and
the lack of a single default force field in the Amber 9 software package; we refer
interested readers to the Amber 9 documentation for a full listing and description of
the available Amber force fields.

Similar to other protein force fields, the CHARMM force field has been found to
have inaccuracies in the backbone conformational energetics of peptides. This orig-
inally manifested as an unrealistically large proportion of π-helical conformations
for helical peptides [47], and was later found to be a result of deficiencies in the
original φ and ψ dihedral parameters, a problem that was shown to be present in a
number of other empirical force fields to varying degrees [48]. Instead of refitting
these parameters such as in the case of Amber and OPLS-AA, a different approach
was taken by adding a new “correction map” (CMAP) term to the potential energy
equation. This additional term uses a grid-based interpolation scheme with values
of points on the grid having a dependency on two dihedrals simultaneously [42,49].
Thus, any φ/ψ energy surface can be exactly reproduced by the CHARMM force
field using the CMAP term.

3 Parameter Optimization

The optimization of force field parameters involves adjusting parameter values un-
til the force field is able to reproduce a set of target data to within a prescribed
threshold. The target data include some subset of experimental spectroscopic, ther-
modynamic, and crystallographic data as well as data computed using QM methods.
Typical examples of experimental target data include vibrational spectra; heats of
vaporization; densities; solvation free energies; microwave, electron, or X-ray dif-
fraction structures; and relative conformational energies and barrier heights. Typical
examples of computed QM target data include vibrational spectra; minimum energy
geometries; dipole moments; conformational energies and barrier heights; electro-
static potentials; and dimerization energies.

The Amber, CHARMM, GROMOS, and OPLS-AA force fields for proteins
each target a different subset of the possible experimental and QM data, although
there is substantial overlap between the subsets. The most commonality exists in
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the development of the bond stretching and angle bending parameters, which are
uniformly aimed at reproducing either experimental or computed infrared spectra,
and experimental or computed geometries. In fact, the OPLS-AA bond and angle
parameters are largely those of the Amber force field, along with some from the
CHARMM force field [4]. All of these force fields similarly use experimental and
computed QM conformational energies as target data for the development of dihe-
dral parameters. Thus, there is consensus with respect to the development of the
bonded parameters, which is likely a reflection of the influence of the pioneering
efforts made in the development of earlier force fields designed to reproduce con-
formations and energetics of small molecules [6, 50–52].

Similar to the development of the bonded parameters, the nonbonded LJ parame-
ters have been developed in a similar manner across all four force fields, and follow
closely the protocol that was developed for the original OPLS force field [53], which
lacked interaction sites for nonpolar hydrogens, in contrast to the more recent all-
atom OPLS force field (OPLS-AA) [4]. This approach involves condensed-phase
simulations at constant temperature and pressure for a variety of pure liquids, such
as alkanes, alcohols, amides, aromatics, etc., that have moieties chemically similar
to those found in proteins. The LJ parameters are then adjusted to reproduce ex-
perimental heats of vaporization and densities for these liquids, with the underlying
philosophy that the parameters will be adjusted so that the pairwise-additive form of
the force field nonbonded terms will effectively reproduce condensed-phase proper-
ties and, thus, be suitable for, e.g., solvated protein simulations. The GROMOS LJ
parameterization protocol also incorporates experimental atomic polarizabilities [3].

Naturally, the Coulomb partial atomic charge parameters also contribute to the
heats of vaporization and densities. In the case of OPLS-AA, the partial charges are
empirically adjusted along with the LJ parameters during the fitting to the experi-
mental heats of vaporization and densities. In contrast, the Amber force field uses
computed QM electrostatic potential surfaces as the target data for partial charge de-
termination [41, 54–56]. Thus, Amber partial charges aim to reproduce molecules’
gas-phase electrostatic potentials. CHARMM takes yet another approach. Similar
to Amber, computed QM data are used. However, these data are the dimeriza-
tion energies and minimum-energy interaction distances for small molecule–water
dimers [33, 57]. This approach is aimed at balancing water–protein, water–water,
and protein–protein interaction energies in the condensed phase. Finally, the GRO-
MOS force field, similar to OPLS-AA, targets thermodynamic data in the refinement
of partial atomic charge parameters. However, the solvation free energies of model
compounds, both in water and in cyclohexane, are also included as target data [3,58].
The principle aim of this approach is to properly capture the partitioning of protein
moieties between aqueous and nonaqueous environments, for example, between the
solvent-exposed surface of a globular protein and its hydrophobic core.

The similar approach among the force fields with regard to the derivation of LJ
parameters puts constraints on the possible values of the partial charges. Thus, all
four force fields tend toward similar LJ and partial charge parameters. However,
because small parameter differences can affect a force field’s ability to reproduce
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experimental thermodynamic and computed QM data, each of the force fields most
likely does best at reproducing the particular data for which its partial charges were
parameterized. For example, the Amber, CHARMM, and OPLS-AA models, which
were optimized based on pure solvent properties, all have a tendency to overestimate
the free energies of solvation of model compounds representative of protein func-
tional groups [59, 60]. Because the various nonbonded parameterization schemes
all are reasonable choices, it becomes a matter of opinion regarding which, if any,
particular choice of target data for partial-charge parameterization is better.

Of note is the fact that conformational energetics, and to a lesser extent bond and
angle geometries and simulated vibrational spectra, depend on not just the dihedral,
bond, and angle parameters but also the nonbonded parameters. For example, in the
rotation of ethane about its CC bond, not only the dihedral parameters but also the
LJ and charge parameters on the hydrogens affect the energy surface. Thus, force
field development is necessarily an iterative self-consistent process. Any time the
nonbonded parameters are changed, the ability of the force field to reproduce all of
the target data must be checked and bonded parameters updated accordingly. Like-
wise, when bonded parameters are changed, all of the target data must be checked
and nonbonded parameters updated as needed. Changes in nonbonded parameters
change not only intermolecular interactions and, hence, condensed-phase proper-
ties, but also intramolecular interactions and, therefore, conformational energetics,
thereby requiring adjustment of dihedral parameters. Similarly, dihedral parame-
ters affect intramolecular conformational energetics, which contribute to the heat
of vaporization. The intramolecular conformational energetics also determine pre-
ferred intramolecular geometries and molecular volumes, and, hence, the density
of the liquid. As a result, nonbonded parameters require validation and may need
adjustment after dihedral parameters have been altered. Thus, because of the need
for self-consistent iterative refinement of the bonded and nonbonded parameters,
force field parameter development can be a computationally demanding and labor-
intensive process.

Protein force field development has evolved beyond the paradigm of solely using
small molecule compounds to derive force field parameters, in which the parameters
from model compounds are combined to produce the protein force field. The ever-
increasing speed of computers has enabled recent efforts to include larger molecules
directly in the parameterization process. Amber φ and ψ dihedral parameters have
been adjusted to better reproduce the experimental conformational properties of
structured peptides [45]. Data from MD simulations on myoglobin were used in the
final stages of optimization of the CHARMM force field [2], whereas the parameters
for the grid-based CHARMM CMAP term for the backbone φ/ψ energy have been
developed using a large collection of protein x-ray crystallographic data [49]. Finally,
the OPLS-AA φ and ψ dihedral parameters have been updated based not only on
the alanine dipeptide but also on the alanine tetrapeptide [46].

We end this section by noting that the properties of a condensed-phase system
simulated using MD depend not only on the force field but also on the simulation
methodology. In particular, properties depend on methods for generating the desired
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thermodynamic ensemble, typically constant temperature and constant pressure, and
for handling long-range nonbonded interactions. Accordingly, the next section is
dedicated to a discussion of these points.

4 Modern Methods for Constant Temperature and Pressure
and the Treatment of Long-Range Interactions

Current simulations of proteins in an explicit solvent environment typically involve
systems on the order of 25,000 to several hundred thousand atoms and 75 to 150 Å in
dimension. The application of periodic boundary conditions is the most well estab-
lished and widely used method for preventing boundary artifacts (i.e., edge effects)
that can arise because of the finite size of the protein–solvent system [30]. Under
periodic boundary conditions, the system interacts with images of itself in every
dimension. Thus, when a molecule drifts outside the span of the primary system it
drifts back in from the opposite side.

MD simulations are based on integration of Newton’s equations of motion. Ac-
cording to these equations, energy is a constant. Additionally, the definition of pe-
riodic boundary conditions implies that the system has a volume, which is also
constant. Thus, the simplest MD simulation of a system under periodic boundary
conditions is under constant energy and constant volume conditions. However, lab-
oratory conditions are constant temperature and constant volume, corresponding to
the Gibbs free energy. Thus, a real system is free to exchange energy with its sur-
roundings both through heat and through pressure–volume work.

Unlike Monte Carlo simulations, which readily generate constant temperature–
constant pressure ensembles by the application of temperature as a parameter in the
definition of the method and changes in volume as Monte Carlo trial moves [61–63],
MD methodology requires nontrivial changes to the equations of motion so as to
generate a proper constant temperature–constant pressure ensemble under the con-
straint of continuous dynamics. Although it is possible to apply velocity reassign-
ment and Monte Carlo volume changes during the course of a MD simulation, these
disrupt the continuity of the dynamics. MD shows superior ability relative to Monte
Carlo to equilibrate heterogeneous systems because continuous dynamics allows the
system to retain a “memory” of where it has been and gives it momentum through
phase space [64–66], thus, the importance of preserving continuous dynamics.

Newton’s equations of motion have been extended to allow for the continuous
transfer of heat and pressure–volume work between the system and additional de-
grees of freedom [67–72]. Owing to these developments, continuous dynamics at
constant temperature and constant pressure are now possible. These methods are
rigorous from a theoretical perspective in that not only do they assure that the av-
erage temperature and pressure of the system remain constant, but they also assure
that fluctuations in energy and volume are consistent with those in a real system at
constant temperature and pressure (i.e., reproduce a Boltzmann distribution). This is
in contrast to the “weak coupling” or “Berendsen” algorithm, which also produces
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constant average temperature and pressure with continuous dynamics, but does not
reproduce proper fluctuations in energy and volume and, therefore, does not cor-
respond to the Gibbs thermodynamic ensemble [71, 73]. Although weak coupling
was a pioneering effort aimed at producing constant temperature, constant pressure
simulations with continuous dynamics and benefits from being a straightforward
extension to a constant energy–constant volume code, it has been superseded by the
described methods and should be avoided except in the heating and equilibration
stages of a simulation, although it can be very useful in these stages because it will
prevent large oscillations in temperature and/or volume for an MD trajectory started
from a conformation that is far from equilibrium.

The simplest treatment of the long-range nonbonded interactions in a periodic
system is the minimum image condition, in which a particle interacts with the clos-
est images of the other particles in the system [30]. However, this can become very
computationally costly as the system size increases, because the number of pairwise
interactions goes as the number of particles squared. To lessen the computational
burden, various truncation schemes have been developed whereby nonbonded inter-
actions beyond a cutoff distance are ignored, and a smoothing function is typically
applied to ensure continuity in the forces [74]. Such procedures can be a particularly
severe approximation in the case of electrostatic interactions, whose energy goes as
1/ri j . As a result, not only do the sums of these interactions continue to make a
substantial contribution to the total system energy beyond the typical cutoff length
of approximately 10 Å, but pairwise forces are also nonnegligible beyond the cutoff.

The introduction of Ewald sums [75] into biomolecular simulations under
periodic boundary conditions has essentially solved the problem of long-range elec-
trostatic truncation. The system is treated as being infinitely periodic, and interac-
tion energies and forces beyond the cutoff length are calculated using the Ewald
algorithm, which works in reciprocal space, instead of being calculated directly
using Coulomb’s law. Although the original Ewald formalism is computationally
expensive, recent developments based on grid-based treatments of reciprocal space,
including particle-mesh Ewald (PME) methods, allow for the rigorous treatment
of long-range electrostatics in a computationally efficient manner [76–79]. Ewald
methods impose the constraint of charge neutrality on the system. Thus, neutraliz-
ing counterions are typically added to the system to cancel out any excess net formal
charge on the protein, although the use of a uniform neutralizing plasma does allow
for the application of Ewald methods to systems with nonzero net charge.

The fast (1/ri j )
6 decay of the attractive portion of the LJ potential means that the

neglect of these interactions beyond the cutoff is significantly less of an approxima-
tion than doing the same for Coulomb interactions. Pairwise forces arising from LJ
interactions approach 0 by 10 Å, making the direct truncation of these interactions
less problematic than for electrostatic interactions. However, because all of the LJ
interactions are favorable (attractive) at long distances, the sum total of these pair-
wise interactions does result in a nonnegligible contribution to the total energy and
system pressure. This is particularly important in the case of constant pressure MD
calculations, because neglecting this contribution will have an effect on the aver-
age volume of the system. This can be corrected by the application of a long-range
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correction to the truncated LJ potential, thereby recovering the contribution of LJ in-
teractions beyond the cutoff to the pressure and, hence, the average volume [30,80].

In summary, it is recommended that simulations under periodic boundary con-
ditions be performed with theoretically rigorous continuous dynamics methods for
maintaining constant temperature and pressure. Additionally, the use of PME is rec-
ommended for the handling of long-range electrostatic interactions beyond the cut-
off at approximately 10 Å and the use of the long-range correction for the treatment
of LJ interactions beyond the cutoff. These methods properly address the original
limitations of MD simulations with periodic boundary conditions and are becoming
the de facto standard.

Although the above methods may be considered state-of-the art for simulations of
solvated proteins as well as other biological systems, alternative methods that may
be used are worth noting. These, in particular, include stochastic boundary condi-
tions and implicit solvent models. Both methods are particularly useful in situations
in which doing a fully solvated simulation under periodic boundary conditions be-
comes computationally infeasible because of the large number of solvent molecules.
In the case of stochastic boundary conditions, only the part of the protein that is of
interest is solvated in a droplet of water. A reaction field is applied beyond the ra-
dius of the water droplet to prevent edge artifacts, and the portion of the protein
outside of the water droplet is constrained so that it does not denature [81–83]. A
recent study has shown that this approach yields excellent results for the solvation
free energies of amino acid side chain analogs in comparison with periodic boundary
conditions with PME electrostatics [60]. Continuum solvent models are the limit-
ing case of this approach, in that no explicit water molecules are included at all.
Rather, the water environment is included in a mean-field fashion, with additional
energy terms introduced to account for the solvation of polar and charged groups,
charge screening by solvent, and the hydrophobic effect, such as in the widely used
generalized Born model and its variants [84–91]. As a further approximation to re-
duce computation time, it is possible to apply a continuum solvent model to the full
protein while only a small portion of the protein is allowed to move, which can be
useful in the study of protein–ligand interactions [92]. Current work in the field of
implicit solvent models aims to include lipid bilayers in an implicit fashion [93, 94]
as well as to account for the missing solute–solvent LJ interactions [95, 96].

We conclude this section with a cautionary word. Because the described MD
simulation methods have only recently become standardized, none of the force fields
were developed using a complete combination of proper thermostating and barostat-
ing, Ewald sums for long-range Coulomb interactions, and the long-range correction
for LJ interactions. All force field development work in our laboratory, which is the
primary developer of the CHARMM force field, now uses these modern methods
for constant temperature and pressure and the treatment of long-range interactions.
We anticipate that other groups will adopt this as standard practice for force field
parameter development, if they have not already done so, because of the wide avail-
ability of these methods in various MD software packages, the fact that most recent
MD simulations using these force fields use these methods, and, most importantly,
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the theoretical soundness of these methods. In the next section, we turn our attention
to MD software packages and their support for these force fields and MD methods.

5 MD Packages

The Amber, CHARMM, and GROMOS force fields have been primarily developed
in the context of the Amber [97–99], CHARMM [100], and GROMOS [101, 102]
molecular mechanics and dynamics software packages, whereas OPLS-AA has
been developed in the context of the BOSS [103] and MCPro software packages
[104]. However, these force fields are accessible through a variety of different MD
packages. We limit our discussion to a number of academically developed soft-
ware packages that can be obtained either free or for a minor cost for academic re-
search, and whose full documentation sets can be freely obtained on the World Wide
Web: Amber (http://amber.scripps.edu), CHARMM (http://www.charmm.org),
GROMACS (http://www.gromacs.org) [105–107], NAMD (http://www.ks.uiuc.
edu/Research/namd) [108–111], and Tinker (http://dasher.wustl.edu/tinker). Ac-
cording to their respective web sites, the most recent versions of these programs
at the time of writing were: Amber v. 9, CHARMM v. c32b2, GROMACS v. 3.3.2,
NAMD v. 2.6, and Tinker v. 4.2. We have not included GROMOS in this list because
its full documentation is not available via the World Wide Web. BOSS and MCPro
are not included because they are primarily Monte Carlo software packages and this
review is focused on MD. Excellent overviews of the GROMOS, BOSS, and MCPro
programs, as well as of the IMPACT software that supports MD simulations using
OPLS-AA, have recently been authored by their developers in a special issue of the
Journal of Computational Chemistry, Volume 26, Number 16, “Special emphasis is-
sue on biomolecular simulations,” along with overviews of Amber, GROMACS, and
NAMD, and those articles provide descriptions that are much more detailed than is
possible within the scope of this review [99,102,104,107,111,112]. A similar review
of the CHARMM software package is anticipated in 2008.

Table 1 summarizes the force fields, methods, and academic costs associated with
each software package. This table has been designed in the context of this particular
review. It is important to emphasize that the various packages have a host of features
that are not represented in the table. Amber, CHARMM, and Tinker include very
large feature sets with regards to molecular modeling and dynamics methodology.
GROMACS has been designed to maximize the speed of computation. NAMD has
been designed to take advantage of hardware platforms running large numbers of
processors in parallel. We note that all of these software packages support PME for
long-range electrostatics, although there is variable support for the recommended
thermostating and barostating methods and the long-range LJ correction. We also
note that all of these packages are under active development and are continually
upgraded with respect to feature sets, performance, and compatibility with different
hardware platforms, and, therefore, we recommend that users refer directly to the
respective web sites for the most up-to-date information.



76 O. Guvench, A.D. MacKerell, Jr.

Table 1 Supported force fields, methods, and academic cost of the Amber, CHARMM, GRO-
MACS, NAMD, and Tinker MD software packages

Amber CHARMM GROMACS NAMD Tinker
v. 9 v. c32b2 v. 3.3.2 v. 2.6 v. 4.2

Amber X X X X X
CHARMM X X Xa

GROMOS X
OPLS-AA X X X X
Thermostatb X X c X
Barostatb X X X
PME X X X X X
LRC X X X
Paralleld X X X X
Academic
cost

$400 $600 $0 $0 $0

All data in the table is from the software packages’ respective web sites and the documentation
available therein.
aNo support for the additional grid-based CHARMM force field energy term.
bAll packages provide means for thermostating and barostating. “X” indicates support for the rec-
ommended thermostating and barostating methods.
cLacks recommended thermostat, but such thermostating can be achieved in constant temperature–
constant pressure simulations through use of the Langevin piston barostat.
dAbility to run MD on multiple CPUs in parallel.

6 Incorporating Nucleic Acids, Lipids, Carbohydrates,
and Small Molecules into Simulations with Proteins

The ability to simulate proteins in an aqueous environment provides many oppor-
tunities for studying protein folding, structure, function, dynamics, and thermody-
namics [113]. It is nevertheless of great interest and importance to be able to expand
MD simulations of proteins to include not only polypeptides in water, but also sol-
vated proteins in conjunction with nucleic acids, lipids, carbohydrates, and small
molecules. Such simulations are important in the study of protein–nucleic acid inter-
actions, membrane-spanning proteins, glycosylated proteins, and protein substrates,
inhibitors, and cofactors. Because parameter development is both a CPU- and labor-
intensive process, the extension of force fields to include these other nonprotein
entities is no small undertaking. Nevertheless, significant progress has been made
with respect to the development of force field parameters for all of these classes of
compounds. In this final section, we give a brief overview of the state of the Amber,
CHARMM, GROMOS, and OPLS-AA force fields with respect to the modeling of
these compounds.
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6.1 Nucleic Acids

Both the Amber and CHARMM force fields include nucleic acid parameter sets that
have seen wide use in simulations of DNA and RNA. These parameter sets were
specifically developed for nucleic acids simulations and are, thus, highly optimized
[1,114]. Recent examples of simulations with the Amber force field include studies
of the motions of ions around DNA [115], the TATA/TBP DNA/protein interaction
[116], and ribosomal RNA [117]. The CHARMM force field has recently been used
to study ribosomal peptidyl transfer [118], the reorganization of solvent in DNA
conformational changes [119], and protein-facilitated DNA base flipping [120]. Of
note is that these examples include heterogeneous protein–nucleic acid simulations
for both force fields.

Very recently, a new GROMOS nucleic acid force field has been released [121].
It updates the previous parameter set through the addition of new backbone dihedral
energy terms and the refinement of existing ones, as well as the addition of explicit
aromatic hydrogen atoms to the nucleotide bases to better account for aromatic–
aromatic interactions. Unlike the most recent GROMOS protein force field, this
nucleic acid force field did not use solvation free energies as parameterization target
data. Whether this has an impact on the simulation of protein–nucleic acid systems
will likely become apparent in the near future as simulations using this force field
emerge. The OPLS-AA force field does include atom types appropriate for modeling
nucleic acid polymers, although no simulations of nucleic acids have been reported.
If calculations on nucleic acids were undertaken with OPLS-AA, care should be
taken to validate the force field with regard to the phosphodiester backbone and
sugar moieties whose conformational energetics are particularly sensitive to the ac-
curacy of the dihedral parameters.

Although it may be tempting, we recommend against mixing force fields to
perform simulation of heterogeneous systems, for example simulating a protein–
DNA complex using OPLS-AA protein parameters and CHARMM DNA parame-
ters. Reliable results in such systems depend critically on the proper balance of
the nonbonded parameters because these determine the intermolecular interactions.
Because the nonbonded parameters are developed differently for each of the force
fields, and, furthermore, because of differences in the LJ parameter combining rules,
achieving the proper balance of solute–solute, solute–solvent, and solvent–solvent
interactions in a simulation with multiple parameter sets is probably unlikely and
certainly untested.

6.2 Lipids

The CHARMM lipid force field has seen extensive effort put into development,
testing, and application. Since the original version for modeling saturated [122] and
unsaturated phospholipids [123], there have been improvements in the treatment of
the dihedral and LJ parameters and extension to the original lipid parameter set to
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include polyunsaturated chains, such that there is now support for accurate modeling
of a wide variety of lipid systems [124–126]. In addition to studies of lipid–water
systems, carried out during the development process and corroborating the ability
of the force field to reproduce experimental observables, there have been recent
simulations of protein–lipid–water systems that include G-protein-coupled recep-
tors [127], viral fusion peptides in bilayers and micelles [128], and the conduc-
tion of water through a transmembrane water channel [129]. It is important to note
that the published improvements and extensions to this force field are reflected in
the latest distribution of the CHARMM parameters (freely available for download
from http://www.pharmacy.umaryland.edu/faculty/amackere/force fields.htm), and
future applications of the force field should use the newest available version, which
is always considered the “official” CHARMM force field.

Studies of peptides and proteins interacting with bilayers using the latest version
of GROMOS protein force field are eagerly awaited because solvation free energies
of the amino acid analogs in this force field were tuned for both cyclohexane and
water, and this should help ensure proper protein behavior in both low-dielectric
membrane and high-dielectric water environments. Previous versions of the GRO-
MOS force field have been widely used for simulations in protein–lipid systems in
water, and often use the dipalmitoylphosphatidylcholine (DPPC) lipid parameteri-
zation of Berger et al. [130] although a DPPC model based on GROMOS alkane
parameters has recently been proposed [131]; the results of these simulations will
serve as a useful benchmark for comparison with the newest parameter set. Recent
studies have included simulations of peptide–bilayer systems [132, 133] and ion
channels [134].

Although MD simulations of protein–lipid–water systems are dominated by the
CHARMM and GROMOS force fields, lipid–water simulations are also possible
with the Amber and OPLS-AA force fields. With Amber, only a limited number
of lipid simulations have been reported [135], including heterogeneous simulations
of peptides [136] and membrane channels [137]. Studies of lipid–water systems
using OPLS-AA would be of interest because of the force field’s strong emphasis
on reproducing condensed-phase properties of model compounds, and would serve
to validate its application to protein–lipid–water systems.

6.3 Carbohydrates

Carbohydrates provide a particular challenge with regard to force field develop-
ment because of the large number of intramolecular hydrogen bonds that can be
formed. Thus, the nonbonded and dihedral parameters must be carefully parame-
terized to correctly capture intramolecular energies and geometries. Furthermore,
many biologically interesting carbohydrates are geometric isomers of each other.
For example, glucose, galactose, and mannose differ only in the chirality of vari-
ous hydroxyl- and hydrogen-bearing carbon centers. Therefore, without resorting to
special atoms types for each monosaccharide, the force field parameters, including
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dihedral terms, must be able to simultaneously account for the energetics of the
different geometric isomers.

The Amber carbohydrate force field is named GLYCAM [138–140]. Unlike the
protein and nucleic acid force fields that were developed by Peter Kollman and
coworkers, GLYCAM was developed and continues to undergo development pri-
marily in the laboratory of Robert Woods. Nonetheless, GLYCAM is part of the
Amber force field insofar as it is documented in the Amber software distribution
and discussed in detail in a recent review of the Amber software [99]. Of the four
force fields, protein–carbohydrate simulations with Amber/GLYCAM predominate,
with recent simulations including enzyme–carbohydrate-analog complexes [141],
protein–carbohydrate solutions [142], glycosylated peptides [143], and protein–
oligosaccharide complexes [144]. However, to quantitatively reproduce the ener-
getics of the exocyclic hydroxymethyl rotation, it was shown that 1,4-nonbonded
interactions should not be scaled [145], in contrast with the protein and nucleic acid
Amber force fields, and this can potentially complicate the simulation of protein–
carbohydrate systems.

The OPLS-AA carbohydrate force field has done a notably good job of targeting
the intramolecular energetics of a large set of pyranose monosaccharide geometric
isomers and their conformations, as well as the glycosidic linkage [146]. The use
of standard OPLS-AA atoms types and their associated partial charges and LJ pa-
rameters keeps it consistent with the OPLS-AA protein force field and, therefore,
enables protein–carbohydrate simulations using OPLS-AA, such as a recent one of
protein–disaccharide complexes [147]. A revision to include 1,5 and 1,6 nonbonded
scale factors was proposed and shown to increase the accuracy of the carbohydrate
intramolecular energetics [148]. However, these nonstandard scale factors make it
incompatible with rest of the OPLS-AA force field, which limits scaling to only
1,4-nonbonded parameters.

The CHARMM force field has recently been expanded to include parameters that
reproduce well the hydroxymethyl rotation in solvated glucose and galactose [149].
Because of its recent development, it has not yet seen use in protein–carbohydrate
simulations. To accommodate the simulation of more diverse carbohydrate systems
with the CHARMM force field, our laboratory has recently begun a large effort
to develop a CHARMM carbohydrate force field. Its development is following
the same procedures as used for the CHARMM protein, nucleic acid, and lipid
force fields, with the aim of facilitating the accurate simulation of heterogenous
biomolecular systems. In addition, very recently, a new GROMOS force field for
hexopyranose-based carbohydrates has been developed and validated with respect
to experimental data via solvated MD simulations of monosaccharides and disac-
charides [150]. Similar to the recent GROMOS nucleic acid parameters, but unlike
the recent GROMOS protein parameters, the force field development process did
not target solvation free energies. Thus, similar to the GROMOS nucleic acid force
field, it would be useful to compare simulation results of heterogeneous systems
using the most recent GROMOS protein force field as well as the previous protein
force field version [151, 152], which was parameterized in a fashion similar to the
new carbohydrate force field.
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6.4 Small Molecules

Amber, CHARMM, GROMOS, and OPLS-AA all provide a reasonably large
palette of atoms types such that many organic small molecules can be represented by
assigning atom types based on chemical similarity. The Amber force field includes
the general Amber Force Field (GAFF) [153], which is not simply a parameter set
but rather a software package designed to generate an Amber force field model for
an input molecule. This makes it particularly attractive from an end-user standpoint
by facilitating automated construction of a force field model of an arbitrary small
molecule and having that model be consistent with the Amber protein force field.
OPLS-AA, with its emphasis on condensed-phase simulations of small molecules,
provides a diverse set of compounds and may be a good choice, although atom type
assignment must be done by hand. In addition to highly optimized parameters for
proteins, nucleic acids, and lipids, the CHARMM force field includes a large collec-
tion of similarly parameterized small molecules whose parameters can be used for
simulation of substrates, cofactors, inhibitors, etc., with the limitation that, similar
to the case of OPLS-AA, atom type assignment must be done by hand; work on
a more general CHARMM force field is in progress in our laboratory. Finally, the
GROMOS force field atom type palette, which derives from parameters for biopoly-
mers, also provides a reasonable amount of diversity for the construction of force
field models of small molecules.

One key issue for all of the above-mentioned force fields is that although suf-
ficient, if not good to excellent, parameters already exist for the bond, angle, LJ,
and Coulomb terms, the dihedral term can pose a difficulty in the modeling of small
molecules. Conformational energetics can be context dependent, especially in cases
in which there are multiple and/or strong intramolecular nonbonded interactions.
This, therefore, can impede the transferability of dihedral parameters developed in
the context of biopolymers or simple small molecules to larger, conformationally
flexible small molecules, and validation by comparing with QM conformational en-
ergies is recommended. To the benefit of the uninitiated, there are many commer-
cially available QM programs with intuitive graphical user interfaces that greatly
facilitate molecule construction and energy calculations. Modern desktop comput-
ers are capable of QM calculations on small molecules at the HF/6-31G(d) model
chemistry level, which is often satisfactory for conformational energetics, although
MP2/6-31G(d) or higher is preferable. Comparison of force field and QM results for
conformational surfaces of small molecules is recommended to serious deficiencies
in the force field representation of the conformational energetics, and adjustment of
dihedral parameters is warranted when there are large differences between the QM
and force field results.

7 Conclusion

The outlook for force field-based simulations of proteins and heterogeneous protein-
containing systems is bright. The field of simulation benefits enormously from the
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vibrant commodity computer hardware industry, which continues to push the limits
of computing power and does so at very affordable prices. Although all of the force
fields detailed in this review—Amber, CHARMM, GROMOS, and OPLS-AA—
treat proteins at an often satisfactory level of accuracy, it will not be surprising if
they all will require further revision as MD simulations probe larger systems at in-
creasingly longer time scales and, in doing so, expose currently unknown deficien-
cies. Finally, a number of laboratories are currently undertaking the development
of force fields that include explicit treatment of electronic polarizability [154–157],
laying the groundwork for the next generation of empirical force fields for proteins
and other biological molecules.
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82. Brünger, A. T., Brooks, C. L., III, and Karplus, M. (1984) Stochastic boundary conditions
for molecular dynamics simulations of ST2 water. Chem. Phys. Lett. 105, 495.
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Chapter 5
Normal Modes and Essential Dynamics

Steven Hayward and Bert L. de Groot

Summary Normal mode analysis and essential dynamics analysis are powerful
methods used for the analysis of collective motions in biomolecules. Their appli-
cation has led to an appreciation of the importance of protein dynamics in function
and the relationship between structure and dynamical behavior. In this chapter, the
methods and their implementation are introduced and recent developments such as
elastic networks and advanced sampling techniques are described.

Keywords: Collective protein dynamics · Conformational flooding · Conforma-
tional sampling · Elastic network · Principal component analysis

1 Introduction

1.1 Standard Normal Mode Analysis

Normal mode analysis (NMA) is one of the major simulation techniques used
to probe the large-scale, shape-changing motions in biological molecules [1–3].
Although it has connection to the experimental techniques of infrared and Raman
spectroscopy, its recent application has been to predict functional motions in pro-
teins or other biological molecules. Functional motions are those that relate to func-
tion and are often the consequence of binding other molecules. In NMA studies, it
is always assumed that the normal modes with the largest fluctuation (lowest fre-
quency modes) are the ones that are functionally relevant, because, like function,
they exist by evolutionary design rather than by chance. The ultimate justification
for this assumption must come from comparisons with experimental data and indeed
studies that compare predictions of an NMA with transitions derived from multiple
x-ray conformers do suggest that the low-frequency normal modes are often func-
tionally relevant.
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NMA is a harmonic analysis. In its purest form, it uses exactly the same force
fields as used in molecular dynamics simulations. In that sense, it is accurate. How-
ever, the underlying assumption that the conformational energy surface at an energy
minimum can be approximated by a parabola over the range of thermal fluctuations
is known not to be correct at physiological temperatures. There exists abundant ev-
idence, both experimental [4] and computational [5], that the harmonic approxima-
tion breaks down spectacularly for proteins at physiological temperatures, where, far
from performing harmonic motion in a single energy minimum, the state point visits
multiple minima crossing energy barriers of various heights. Thus, when perform-
ing NMA, one has to be aware of this assumption and its limitations at functioning
temperatures.

A standard NMA requires a set of coordinates, a force field describing the in-
teractions between constituent atoms, and software to perform the required calcu-
lations. The performance of an NMA in Cartesian coordinate space requires three
main calculation steps: 1) minimization of the conformational potential energy as
a function of the atomic Cartesian coordinates; 2) the calculation of the so-called
“Hessian” matrix, which is the matrix of second derivatives of the potential energy
with respect to the mass-weighted atomic coordinates; and 3) the diagonalization of
the Hessian matrix. This final step yields eigenvalues and eigenvectors (the “normal
modes”). Each of these three steps can be computationally demanding, depending
on the size of the molecule. Usually, the first and final steps are the bottlenecks.
Normally, energy minimization is demanding of CPU time and diagonalization is
demanding of CPU time and memory because it involves the diagonalization of a
3N × 3N matrix, where N is the number of atoms in the molecule. We have called
this NMA “standard” NMA to distinguish it from the elastic network model NMA.

1.2 Elastic Network Models

Because of the computational difficulties of standard NMA, the current popularity
of the elastic network models is not surprising. This is still an NMA, but the protein
model is dramatically simplified. Tirion first introduced it into protein research [6].
As the name suggests, the atoms are connected by a network of elastic connections.
The method has two main advantages over the standard NMA. The first is that there
is no need for energy minimization because the distances of all of the elastic connec-
tions are taken to be at their minimum energy length. Second, the diagonalization
task is greatly reduced compared with the standard NMA method because the num-
ber of atoms is reduced from the total number of atoms to the number of residues,
if one uses only Cα atoms, as is common practice. This leads to a tenfold reduction
in the number of atoms. Unlike standard NMA, elastic network models have two
parameters to be set. One is the force or spring constant, normally denoted as γ or
C, and the other is a cut-off distance, denoted Rc.

A pertinent question is whether the method is any less accurate than the standard
NMA. Tirion showed that there is a respectable degree of correspondence between
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the two methods [6]. Given the drastic assumptions that are inherent in the standard
NMA, the small difference between the results from these two methods is probably
unimportant relative to differences between standard NMA and reality. Comparisons
between movements in the low-frequency modes derived from elastic network mod-
els of 20 proteins with movements derived from pairs of x-ray structures [7] suggest
the same level of moderate correspondence seen in similar studies using standard
NMA. This, together with the relatively low computational cost of elastic network
models, explains their current popularity in comparison with standard NMA.

1.3 Essential Dynamics and Principal Components Analysis

Because of the complexity of biomolecular systems, molecular dynamics simula-
tions can be notoriously hard to analyze, rendering it difficult to grasp the motions
of interest, or to uncover functional mechanisms. A principal components analy-
sis (PCA) [8–10] often alleviates this problem. Similar to NMA, PCA rests on the
assumption that the major collective modes of fluctuation dominate the functional
dynamics. Interestingly, it has been found that the vast majority of protein dynamics
can be described by a surprisingly low number of collective degrees of freedom [9].
For the analysis of protein molecular dynamics simulations, this approach has the
advantage that the dynamics along the individual modes can be inspected and visu-
alized separately, thereby allowing one to filter the main modes of collective motion
from more local fluctuations. Because these principal modes of motion could, in
many cases, be linked to protein function, the dynamics in the low-dimensional
subspace spanned by these modes was termed “essential dynamics” [9], to reflect
the notion that these are the modes essential for function. The subspace spanned by
the major modes of collective fluctuations is accordingly often referred to as “es-
sential subspace.” The fact that only a small subset of the total number of degrees
of freedom dominates the molecular dynamics of biomolecules not only aids the
analysis and interpretation of molecular dynamics trajectories, but also opens the
way to enhanced sampling algorithms that search the essential subspace in either a
systematic or exploratory fashion [11–14].

In contrast to NMA, PCA of a molecular dynamics simulation trajectory does not
rest on the assumption of a harmonic potential. In fact, PCA can be used to study the
degree of anharmonicity in the molecular dynamics of a simulated system. For pro-
teins, it was shown that, at physiological temperatures, especially the major modes
of collective fluctuation are dominated by anharmonic fluctuations [9, 15]. Over-
all, protein dynamics at physiological temperatures has been described as diffusion
among multiple minima [16–18]; on short timescales, the dynamics are dominated
by fluctuations within a local minimum (that can be approximated well by a sys-
tem’s local normal modes), whereas, on longer timescales, the large fluctuations are
dominated by a largely anharmonic diffusion between multiple wells.

In NMA the modes of greatest fluctuation are those with the lowest frequencies.
As in PCA, no assumptions are implied regarding the harmonicity of the motion,
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modes are usually sorted according to variance rather than frequency. Nevertheless,
the largest-amplitude modes of a PCA usually also represent the slowest dynamical
transitions.

2 Theory

2.1 Standard NMA

NMA is usually performed in a vacuum, where the potential energy of a biomole-
cule is a complex function of its 3N coordinates, N being the number of atoms.
This function is normally written in terms of its bonded and nonbonded energy
terms. It is usual to use Cartesian coordinates [3], although dihedral angles have
been used [1, 19, 20]. The basic idea is that, at a minimum, the potential energy
function V can be expanded in a Taylor series in terms of the mass-weighted coor-
dinates qi = √

mi�xi, where �xi is the displacement of the ith coordinate from the
energy minimum and mi is that mass of the corresponding atom. If the expansion is
terminated at the quadratic level, then because the linear term is zero at an energy
minimum:

V = 1
2

3N∑

i,j=1

∂2V
∂qi∂qj

∣
∣
∣
∣
∣
0

qiqj. (1)

Thus, the energy surface is approximated by a parabola characterized by the sec-
ond derivatives evaluated at the energy at the minimum. The basic, but false, as-
sumption of NMA of biomolecules at physiological temperatures is that fluctuations
still occur within this parabolic energy surface. It is known, however, that, at these
temperatures, the state point moves on a complex energy surface with multiple min-
ima, crossing energy barriers of various heights [4]. The second derivatives in Eq. 1
can be written in a matrix, which is often called the “Hessian,” F. Determination of
its eigenvalues and eigenvectors (equivalent to diagonalization) implies:

Fwj = ω2
j wj, (2)

where wj is the jth eigenvector and ω2
j is the jth eigenvalue. There are 3N such eigen-

vector equations. Each eigenvector specifies a normal mode coordinate through:

Qj =
3N∑

i=1

wij qi. (3)

The sum is over the elements of wj. Note that |wj| = 1. It can be shown that
these normal mode coordinates oscillate harmonically and independently of each
other each with the angular frequency, ωj:

Qj = Aj cos(ωjt + εj). (4)
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Here, Aj is the amplitude and εj is the phase. These normal mode coordinates are
collective variables because they are linear combinations of the atom-based Carte-
sian coordinates, as shown in Eq. 3. If a single normal mode j is activated, then:

�xij = wij√
mi

Aj cos(ω j t + ε j ), (5)

which means that, in the jth mode, the relative displacements of the Cartesian co-
ordinates are specified by the elements of wj. Each normal mode then specifies a
pattern of atomic displacement. For example, in a multidomain protein, this pattern
of displacement could indicate the relative movement of two domains. Figure 1b
shows an example. A more thorough introduction to the theory and its application
to biomolecules can be found elsewhere [21].

It can be shown that the lower the frequency, the larger the fluctuation of the
corresponding normal mode coordinate [22]. It is common to compare the lowest
frequency modes with functional modes derived from, e.g., a pair of x-ray structures,
one bound to a functional ligand and the other unbound. The overlap with the jth
mode can be defined as [23]:

Oj =

3N∑

i=1
�xij�xexp

i
√

3N∑

i=1

(
�xij

)2

√
3N∑

i=1

(
�xexp

i
)2

. (6)

Fig. 1 (a) Elastic network model of the homodimeric molecule liver alcohol dehydrogenase. A
cut-off distance, Rc, of 7 Å was used. (b) Cα trace of liver alcohol dehydrogenase, with each short
line showing the displacement of the Cα in the first normal mode derived from the elastic network
model shown in (a)
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2.2 Elastic Network Models

There is, in fact, no essential difference between the elastic network NMA and the
standard NMA other than the force field. In the case of the elastic network, the
Hessian would be derived from the following potential energy function [6]:

V = γ
2

∑

∣
∣
∣r0

ij

∣
∣
∣<RC

(
rij − r0

ij

)2
, (7)

where rij is the distance between atoms i and j and r0
ij is the distance between the

atoms in the reference structure, e.g., the crystallographic structure. This summation
is only performed over atoms less than a cut-off distance Rc, and γ is the spring,
or force constant for the elastic bond between the atoms and is the same for all
atoms pairs (see Fig. 1a). The energy function in Eq. 7 seems to be the most popular,
although other types of functions can be used. The network corresponding to the
energy function of Eq. 7 is sometimes referred to as the anharmonic network model
[24]. A Gaussian network model has a different energy function, which results in
modes without any directional information [24,25] and will not be considered here.
Once the function of Eq. 7 has been calculated, the procedure is exactly the same
as for the standard NMA, namely, the Hessian is calculated and its eigenvalues and
eigenvectors are determined. Whereas the standard NMA must be performed on all
atoms as required by the force field, the elastic network model can be carried out
on a subset of atoms. Often, for a protein, this would be the Cα atoms. Compared
with the standard NMA, this would result in a Hessian approximately tenfold lower
in order, thus, yielding considerable computational savings in the calculation of the
eigenvalues and eigenvectors because these routines are normally of the order of N3

operations, where N is the order of the Hessian matrix.

2.3 Essential Dynamics and PCA

After superposition to a common reference structure, a variance–covariance matrix
of positional fluctuations is constructed:

C =< (x(t)− < x >)(x(t)− < x >)T > (8)

where <> denotes an ensemble average. The coordinates x are denoted as a function
of time for clarity, but may be provided in any order and can be, for example, a
molecular dynamics trajectory or a set of experimental structures. C is a symmetric
matrix that can be diagonalized by an orthogonal coordinate transformation T:

C = T�TT (9)

with � the diagonal (eigenvalue) matrix and T containing, as columns, the eigenvec-
tors of C. The eigenvalues λ correspond to the mean square eigenvector coordinate
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fluctuation, and, therefore, contain the contribution of each principal component to
the total fluctuation. The eigenvectors are usually sorted such that their eigenval-
ues are in decreasing order. For a system of N atoms, C is a 3N × 3N matrix. If
at least 3N configurations are used to construct C, then 3N − 6 eigenvectors with
nonzero eigenvalues will be obtained. Six eigenvalues should be exactly zero, of
which the corresponding eigenvectors describe the overall rotation and translation
(that is eliminated by the superposition). If only M configurations are available (with
M < 3N), then at most M − 1 nonzero eigenvalues with corresponding eigenvectors
will result. If µi is the ith eigenvector of C (the ith column of T), then the original
configurations can be projected onto each of the principal components to yield the
principal coordinates pi(t) as follows:

pi (t) = µi · (x(t) −< x >) (10)

Note that the variance < pi
2 > equals the eigenvalue λi. These projections can

be easily transformed back to Cartesian coordinates for visualization purposes as
follows:

x′
i(t) = pi (t) · µi+ < x >. (11)

Two sets of eigenvectors µ and ν can be compared with each other by taking
inner products:

Ii j = µi · ν j . (12)

Subspace overlaps are often calculated as summed squared inner products:

Om
n =

n∑

i=1

m∑

j=1

(µi · ν j )
2, (13)

expressing how much of the n-dimensional subspace of set µ is contained within
the m-dimensional subspace of set ν. Note that m should be larger than n to achieve
full overlap (O = 1).

3 Methods

3.1 Standard NMA

For standard NMA, one needs a set of coordinates, a force field, and software to
perform the calculations. Often NMA is performed using molecular mechanics soft-
ware packages that are also able to perform molecular dynamics simulations, etc.
For a protein, the structural information is normally held in a PDB file. The software
will normally be able to interpret the file to determine the correct energy function us-
ing the selected force field. Any missing atoms should be added. Missing hydrogen
atoms also need to be added but most software packages have routines to do this.
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It is usual, but not a requirement of the methodology, to remove water and ligands.
Once the system is prepared, the first major calculation is energy minimization.

3.1.1 Energy Minimization

The two main energy minimization routines are steepest descent and conjugate gra-
dient. The former can be used in the initial stages, for the first 100 steps, for example,
followed by the latter. Sometimes, when approaching the energy minimum, the ac-
tual minimum cannot be found because of overstepping. This can present a problem
for NMA, where very precise location of the minimum is required. However, many
minimizers are able to adjust the step size to avoid overstepping. Normally, mini-
mization can be stopped when the root mean square force is approximately 10−4 to
10−12 kcal · mol−1 · Å−1.

3.1.2 Hessian Calculation

This step creates the Hessian matrix, which is the matrix of second derivatives of the
potential energy function with respect to the mass-weighted Cartesian coordinates.
It is a symmetric matrix and, therefore, it is not required to store the whole matrix.

3.1.3 Diagonalization of Hessian Matrix

This stage determines the eigenvalues and eigenvectors. Because of the large size of
this 3N × 3N matrix, where N is the number of atoms in the molecule, this stage of-
ten presents memory problems for large molecules (see Note 1). The process results
in a set of 3N eigenvalues and a set of 3N eigenvectors each with 3N components.
The eigenvalues are sorted in ascending order and the eigenvectors are sorted ac-
cordingly. The first six eigenvalues should have values close to zero because these
correspond to the three translational and three rotational degrees of freedom for the
whole molecule (see Note 2). The seventh eigenvector is the lowest frequency mode,
and it is often predicted to be a functionally relevant mode.

3.1.4 Comparison with Experimental Results

Eq. 6 shows how to measure the overlap with a functional mode derived from, e.g.,
two x-ray structures. To perform this calculation, one needs to calculate the exper-
imental displacements, �xexp

i . These displacements need to be calculated from the
experimental structures oriented in the same way as the minimized structure used
for the NMA. To do this, one can use a least-squares best fit routine to superpose
the two experimental structures on the minimized structure.
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3.2 Elastic Network Models

One major advantage of these models is that energy minimization is not required
because the structure used is already assumed to be in an energy minimum (see
Note 3). The steps are as follows:

• Prepare the structure, e.g., remove ligands and water molecules.
• Decide which atoms will build the network, e.g., just Cα atoms.
• Choose a cut-off length, Rc, which typically is 7 to 10 Å when using just Cα

atoms (see Note 4).
• Choose the spring constant, γ (see Note 5).
• Calculate the eigenvalues and eigenvectors (see Note 6).

From the last step onward, there is no essential difference to the standard NMA.
However, if calculations are performed on the Cα atoms only, then, naturally, one
can only compare with the movements of the Cα atoms in the experimentally deter-
mined functional mode, i.e., movements of side chains cannot be compared. Tama
and Sanejouand have made a comparison between the results from an elastic net-
work model and modes derived from a pair of x-ray structures for 20 proteins [7].

3.3 Essential Dynamics and PCA

3.3.1 PCA of Structural Ensembles

A principal component or essential dynamics analysis may be carried out on a mole-
cular dynamics trajectory or any other structural ensemble. It typically consists
of three steps. First, the configurations from the ensemble must be superposed,
to enable the filtering of internal motions from overall rotation and translation.
This is usually accomplished by a least-squares fit of each of the configurations
onto a reference structure (see Note 7). Second, this “fitted” trajectory is used
to construct a variance–covariance matrix that is subsequently diagonalized. The
variance–covariance matrix is a symmetric matrix containing, as elements, the co-
variances of the atomic displacements relative to their respective averages for each
pair of atoms for the off-diagonal elements and the variances of each atom dis-
placements along the diagonal. Atoms that move concertedly give rise to positive
covariances, whereas anticorrelated motions give rise to negative entries. Noncorre-
lated displacements result in near-zero covariances (see also Note 8). Diagonaliza-
tion of this covariance matrix yields a set of eigenvectors and eigenvalues, which
are usually sorted such that the eigenvalues are in decreasing order. The eigenvalues
represent the variance along each of the corresponding collective modes (eigenvec-
tors) and usually a small number of modes suffice to describe the majority of the
total fluctuation. As a third step, the original trajectory may be analyzed in terms of
the principal components. To this end, the trajectory is projected onto each of the
principal modes to yield the time behavior and distribution of each of the principal
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coordinates (see also Note 9). Often, two- or three-dimensional projections along
the major principal components are used to allow a representation of the sampled
distribution in configuration space or to compare multiple ensembles along the prin-
cipal modes of collective fluctuation. These projections onto single or multiple prin-
cipal coordinates can also be readily translated back into Cartesian space to yield an
ensemble or animation of the motion along a selection of principal coordinates.

In contrast to standard NMA, a PCA can be carried out on any subset of atoms,
and, for proteins, usually only Cα or backbone atoms are taken into account (see
also Note 9). This has the advantage that the storage and diagonalization of the
covariance matrix is less demanding, whereas the main collective modes are very
similar to an all-atom analysis [9, 26]. An additional advantage of a backbone-only
analysis is that artificial apparent correlations between slow side-chain fluctuations
and backbone motions are not picked up by the analysis. A PCA may be com-
pared with results from a standard NMA. However, to this end, one must perform
an all-atom PCA and the fluctuations must be calculated from mass-weighted dis-
placements [21]. This form of PCA is often referred to as “quasiharmonic analysis.”
If an all-atom analysis is required, an approximation may be used to retrieve only
the principal modes of fluctuation, that alleviates the need to store and diagonal-
ize the full matrix [26]. As mentioned above, the PCA technique is not limited to
the analysis of molecular dynamics trajectories but can be carried out on any en-
semble of structures. It can, e.g., be carried out to derive the principal modes from
sets of x-ray structures [27], to compare simulation data with experimental con-
formations [28–30] (see also Fig. 2), or to derive search directions from multiple
homologous structures to aid homology modeling [31].

3.3.2 Convergence of PCA Results Derived from Molecular Dynamics
Simulations

Principal components derived from different simulations or simulation parts allow
us to compare the major directions of configurational space and sampled regions
and to judge similarity and convergence. It has been observed that sub-nanosecond
protein molecular dynamics simulations suffer from a significant sampling problem,
resulting in an apparently poor overlap between the principal components extracted
from multiple parts of these trajectories [32, 33]. Nevertheless, it was observed that
despite the fact that individual principal components may be different, the subspaces
that are spanned by the major principal components converge remarkable rapidly
and show a favorable agreement not only between different simulation results, but
also between simulation and experiment [28, 30, 34, 35], see also Fig. 2.

The anharmonic dynamics along the principal modes of collective fluctuation that
corresponds to the jumping between multiple local energy minima results in a dif-
fusive dynamics of the principal coordinates [16, 17]. The analogy of this diffusive
dynamics to a multidimensional random walk allows one to assess the convergence
of the dynamics along the principal (and usually slowest) modes by comparison of
the time evolution of the principal coordinates with cosines that would result from
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Fig. 2 PCA of a set of x-ray structures of T4-lysozyme compared with ensembles obtained from
molecular dynamics simulations. Each structural ensemble is projected onto the two major prin-
cipal components extracted from the x-ray ensemble (a, b, d, e). Shown are the x-ray ensemble
(a) and three independent molecular dynamics simulations of 1 ns each (b, d, e). The black ar-
rows depict the starting structures of the simulations (WT for wild-type; M61 ‘D’ for the fourth
conformer of the M61 mutant). The color-coded structures (c, f) depict the domain character of
the motions, with the arrow illustrating the screw axis that describes the motion of the red domain
with respect to the blue domain. The first eigenvector describes a closure motion (c), whereas the
second eigenvector describes a twisting motion (f)

random diffusion [36,37]. A high cosine content typically indicates a nonconverged
trajectory. Note, however, that a lack of convergence of the dynamics along a set
of modes does not necessarily also imply that the directions of such modes or the
subspace they span are not converged or poorly defined. Provided that a sufficiently
converged trajectory is available, thermodynamic properties may be derived as en-
semble averages and can be readily mapped onto the principal coordinates to yield,
e.g., free energy landscapes (see Fig. 3).

3.3.3 Comparison of PCA Results from Different Sources

It is often useful to compare structural ensembles from different simulations or from
experiment with each other in terms of their major principal coordinates. It is in-
structive to discuss three possibilities that are often used to carry out such a com-
parison. First, separate principal component analyses may be carried out over each
individual ensemble. Subsequently, the resulting eigenvectors are compared with
each other, either individually or as, e.g., a subset of major directions. Such a com-
parison usually involves inner products between sets of eigenvectors as a measure
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Fig. 3 PCA of a peptide trajectory that covers reversible folding and unfolding events. The upper
panel depicts the structural ensemble projected onto the major principal modes, color coded to
configurational density (upper right panel), together with three representative structures from the
simulation (upper left panels). The lower panels depict the folding free energy landscape, revealing
three low-energy configurations (see also upper panel). The difference of the entropic contribution
at different temperatures is clearly visible (lower right panel)

for similarity. For sets of eigenvectors, the summed (or cumulative) squared inner
product is a useful measure of similarity that is zero for orthogonal, non-overlapping
subspaces and one for identical subspaces. Values from 0.3 to 0.4 already indicate
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significant overlap, because of the usually large dimensionality of the configuration
space as compared with the analyzed subspace. Alternatively, full inner product ma-
trices can also be used [26, 34]. This method focuses on the directions of the prin-
cipal modes rather than the sampled region along the modes. Therefore, a second,
complementary, method can be used to include this ensemble information. In this
case, the structures from one ensemble are projected onto the eigenvectors extracted
from another ensemble (usually together with the structures from that ensemble),
allowing a direct comparison of the sampled regions in each of the projected en-
sembles. This approach has proven particularly useful for cases in which one set of
eigenvectors can be regarded as a reference set, for example, those that were ex-
tracted from a set of experimental structures [28, 29]; see also Fig. 2. For cases in
which there is not one natural reference set of directions, a third approach may be
used. In such cases, multiple sub-ensembles may be concatenated into one meta-
ensemble on which the PCA is carried out. The individual sub-ensembles can be
separately projected onto this combined set of modes, allowing a direct compari-
son of sub-ensembles. This method has the advantage that differences between the
different sub-ensembles are frequently visible along one of the combined princi-
pal modes, even for subtle effects such as the difference between an apo- or holo
ensemble, or the effect of a point mutation [38].

3.3.4 Enhanced Sampling Techniques

Knowledge of the major coordinates of collective fluctuations opens the way to
develop specialized simulation techniques tailored toward an efficient or even sys-
tematic sampling along these coordinates, thereby alleviating the sampling problem
inherent to virtually all common computer simulations of biomolecular systems to-
day. The first attempts in this direction were aimed at a simulation scheme in which
the equations of motion were solely integrated along a selection of primary principal
modes, thereby drastically reducing the number of degrees of freedom [9]. However,
these attempts proved problematic because of nontrivial couplings between high-
and low-amplitude modes, even though, after diagonalization, the modes are linearly
independent (orthogonal). Therefore, instead, a series of other techniques has pre-
vailed that takes into account the full-dimensional simulation system and enhance
the motion along a selection of principal modes. The most common of these tech-
niques are conformational flooding [11] and essential dynamics sampling [12–14].
In conformational flooding, an additional potential energy term that stimulates the
simulated system to explore new regions of phase space is introduced on a selection
of principal modes (Fig. 4), whereas, in essential dynamics, sampling a similar goal
is achieved by geometrical constraints along a selection of principal modes. More
recently, the concept of conformational flooding was reformulated in the context
of metadynamics [39]. These techniques have in common that a sampling efficiency
enhancement of up to an order of magnitude can be achieved, provided that a reason-
able approximation of the principal modes has been obtained from a conventional
simulation.
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Fig. 4 Conformational flooding. (a) The principle of conformational flooding: configurations
along principal coordinates (PC’s) sampled during an molecular dynamics simulation are desta-
bilized in a subsequent set of simulations by an additional potential energy term, Vfl, to enhance
the probability of visiting previously unsampled minima. To this end, the original energy landscape
F is locally approximated by a harmonic potential F̃. b and c: Application to the prion protein. The
red arrow depicts the motion induced by the flooding potential in configuration space (b) and
mapped onto the structure (c)

4 Notes

1. Diagonalization routines exert great demands on memory. For example, the rou-
tine in AMBER [40] requires 8 × 9N(3N − 1)/2 bytes of memory. A 400-atom
system requires 1.7 Mbytes, but a 4,000-atom system requires 1.7 Gbytes [41]. A
number of methodologies have been devised to overcome this memory problem.
These methods are usually used to calculate only the lowest frequency eigenvec-
tors. Another alternative is to perform dihedral angle space NMA. This reduces
the number of variables by a factor of approximately 8 for proteins and approxi-
mately 11 for nucleic acids. These methods have been reviewed elsewhere [21].
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2. The first six eigenvalues should be close to zero. No eigenvalues should be nega-
tive. Negative eigenvalues indicate negative curvature on the energy surface and
suggest insufficient minimization.

3. A major advantage of this method over the standard NMA is that energy mini-
mization is not required. Because energy minimization does not normally bring
about large changes in conformation, it is to be expected that there would be
little difference between the results from the starting structure and an energy-
minimized structure.

4. It seems that choosing a value for Rc is often problematic. It relates to the radius
of the first coordination shell around the selected atoms. If one uses Cα atoms,
then its value (7–10 Å) should be longer than when using all atoms, where a
value of 3 Å would be more appropriate. Some reports suggest that results do not
vary dramatically with small variations in the cutoff distance [42]. Obviously,
the shorter the cut-off, the greater the savings there would be in the calculation
of the energy.

5. The value of γ has no effect on the eigenvectors and, thus, if one is only in-
terested in the character of the motions, then its value is not important. How-
ever, its appropriate value is sometimes determined for x-ray structures by
calculating atomic mean square fluctuations and matching them to experimen-
tally determined B-factors. A value of 1.0 kcal/mol Å2 might be a reasonable
starting value, if no appropriate value is known.

6. Depending on the structure, some regions may be only loosely connected to the
rest of the molecule, e.g., a terminal region in a protein. In such a case, the
movement of this region could appear as a low-frequency mode. This may be
undesirable if one is interested in global motions. Some programs (private com-
munication from Dr. Atsushi Matsumoto) allow one to provide extra connec-
tions to these regions, thus, effectively integrating them more with the rest of the
structure.

7. Before a PCA, all structures should be superimposed onto a common reference
structure. This can be problematic for very flexible systems such as peptides,
where the fit may be ambiguous, leading to artificial structural transitions. In
certain cases, such problems may be alleviated by using a progressive fit, where
each structure is superimposed onto the previous one. It is also important to note
that when results of different PCAs are to be compared with each other, then
each individual PCA should be based on the same reference structure used for
superposition.

8. PCA is a linear analysis, i.e., only linear correlations between atomic displace-
ments enter the covariance matrix. This means that nonlinear correlations be-
tween atom movements may be overlooked because they get spread out across
multiple collective coordinates. In practice, this is usually not a big problem,
except for systems that undergo large-scale rotations.

9. Similar to NMA, PCA can also be carried out in dihedral angle space [26, 43].
Although it has the advantage that it does not require superposition to a reference
structure (because it is based on internal coordinates), PCA in dihedral space
has two main disadvantages. First, major collective dihedral transitions do not
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usually correspond to major transitions in Cartesian space. For example, a small
change of one backbone dihedral in a central residue in a two-domain pro-
tein can result in a large-scale motion of the two domains with respect to each
other. Although such a motion would likely be relevant, it would easily be over-
looked. Second, the metric of the configuration space cannot be retained in a
straightforward way. This may lead to artificial correlations between the dihe-
dral coordinates and complicates the translation back to Cartesian space for, e.g.,
visualization purposes.
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Chapter 6
Calculation of Absolute Protein–Ligand Binding
Constants with the Molecular Dynamics Free
Energy Perturbation Method

Hyung-June Woo

Summary Reliable first-principles calculations of protein–ligand binding constants
can play important roles in the study and characterization of biological recognition
processes and applications to drug discovery. A detailed procedure for such a calcu-
lation is outlined in this chapter. The methodology is computationally implemented
using the molecular dynamics sampling of relevant configurational spaces and free
energy perturbation techniques. The procedure is illustrated with the model system
of the phosphotyrosine peptide binding to the Src SH2 domain.

Keywords: Binding · Drug discovery · Free energy · Free energy perturbation ·
Ligand · Molecular dynamics · Umbrella sampling

1 Introduction

The binding of a ligand to protein receptors underlies a wide variety of recogni-
tion processes in biological systems. The understanding of such systems can be
enhanced greatly by the development of reliable computational methods to calcu-
late protein–ligand binding constants. In addition, such methodologies are of interest
to pharmaceutical industries for their potential applications in drug discovery. Al-
though the physical basis of the phenomena is, in principle, straightforward with
applications of equilibrium statistical mechanics, practical implementations suit-
able for direct calculations using molecular simulation techniques are often chal-
lenging. Many computational methods using a range of approximations have been
developed to estimate both the relative binding affinities of closely related ligands
and the absolute binding constants. Widely used simplified methodologies range
from docking [1], which often ignores solvation contributions and/or the flexibility
of proteins and ligands, to continuum electrostatic methods, such as the molecular
mechanics/Poisson–Boltzmann surface area (MM-PBSA) techniques [2, 3]. In this
chapter, we will concentrate instead on an implementation [4] of the computational

From: Methods in Molecular Biology, vol. 443, Molecular Modeling of Proteins
Edited by Andreas Kukol c© Humana Press, Totowa, NJ

109



110 H.-J. Woo

scheme designed to calculate the absolute protein–ligand binding constant from
first principles using molecular dynamics (MD) free energy perturbation techniques
[5,6]. Although such ab initio free energy calculations [7–9] are more computation-
ally demanding than simpler approximate treatments, their successful implementa-
tions and applications to model systems of biological significance can greatly benefit
computational studies of binding in general, providing benchmarks and insights into
molecular aspects of the process. The overall scheme and the model system used in
this chapter are those adopted in Ref. [4], with the primary emphasis here centered
on practical details and procedures of the computation. For more details of the the-
oretical formulations, the reader is referred to Ref. [4].

2 Theory

We adopt the scheme of free energy calculation illustrated schematically in Fig. 1.
The sequence of steps is ordered such that the overall process corresponds to the
reversible binding of a ligand from the bulk to the binding site of the receptor. The
reverse process could have been chosen, for which each free energy term would
have the opposite sign. The process can be divided into the following steps:

1. The conformation of the ligand initially in the isotropic bulk is constrained to the
particular form of the bound conformation.

2. The isotropy of the space is then lifted by imposing a set of orientational con-
straints of the ligand orientation and center of mass axes with respect to a chosen
origin at a distance r∗ between the ligand and receptor.

3. The ligand center of mass is reversibly moved into the contact distance corre-
sponding to the bound state.

4. The orientational and axial constraints on the ligand are switched off in the bind-
ing site.

5. The conformational constraint on the ligand is switched off in the binding site.

The use of Step 3 corresponding to a reversible physical separation of the ligand
center of mass from the receptor (also used in Ref. [9]) is in contrast to the more
conventional alchemical switching method [5–8]. In the alchemical schemes, the
receptor–ligand nonbonding interaction energy terms are first reversibly turned off,
after which, the ligand is reintroduced into the bulk solution. Such methods work
best when the individual free energy terms calculated are relatively small in their
magnitudes, as for rigid nonpolar ligands. For highly charged ligands, the absolute
electrostatic solvation free energy is typically orders of magnitude larger than the net
free energy of binding, making the alchemical method highly error-prone. Imposing
the conformational and orientational constraints on the ligand before and after the
separation [7], on the other hand, serves to restrict the configurational spaces the
ligand molecule explores while detached from its native binding pocket, enhancing
the efficiency of sampling.
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Fig. 1 Schematic illustration of the binding free energy calculation divided into steps

The equilibrium binding constant is expressed in terms of the free energy terms
of the computational scheme shown in Fig. 1 as [4]:

Keq = S∗ I ∗ exp
[
−β

(
G(bulk)

c + G(bulk)
o − G(si te)

a − G(si te)
o − G(si te)

c

)]
, (1)

where G(bulk)
c and G(bulk)

o are the free energy differences of imposing the confor-
mational and orientational constraints on the ligand in the bulk, and G(si te)

a , G(si te)
o ,

and G(si te)
c are the free energy differences of imposing the axial, orientational, and

conformational constraints in the binding site. The two prefactors S∗ and I ∗ are as-
sociated with the reversible radial separation of the ligand represented by the symbol
Gs in Fig. 1 (Step 3).
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3 Methods

The computational methods of the scheme in Fig. 1 are outlined in this section.
The biomolecular simulation package CHARMM [10] version c31b1 with PARAM
27 force field [11] is used for illustration purposes. Details may differ slightly with
other programs. Conditions specific to the model system chosen are indicated within
parentheses in the following to facilitate applications and generalizations to other
systems.

3.1 Building the System for MD Simulations

3.1.1 Protein and ligand structures

All simulations used for calculating the free energy terms are performed with all-
atom explicit water setups with periodic boundary conditions (see Note 1). The crys-
tallographic structure of the receptor–ligand bound complex is used to build the
starting structure as well as the reference bound conformation of the ligand. The
PDB coordinate of the Src SH2 domain–phosphotyrosine peptide complex (PDB
ID 1LKK) [12] is used to build the reference state. Only one of the alternative side-
chain rotamer positions is taken. Crystal water oxygen coordinates are also retained
to form a part of the solvent molecules. The protonation states of titratable residues
are assumed to be the respective most stable forms at neutral pH when isolated in the
bulk solution (default in CHARMM). For the ligand peptide (pYEEI), the tyrosine
is patched to be converted into the dianionic phosphotyrosine (the “TP2” patch) and
its N terminus is acetylated, which results in the total charge of −5 for the peptide.
The HBUILD command is used to build hydrogen atom coordinates.

3.1.2 Ligand–Receptor Complex

The ligand–receptor complex is solvated with a pre-equilibrated bulk water (TIP3P
model) [13] box in orthorhombic geometry. The complex, along with the crystallo-
graphic water molecules, is placed in the box with its intermolecular axis connect-
ing the receptor and ligand centers of mass aligned with the longest axis (x-axis)
of the water box (Fig. 2). The position of the receptor center of mass is displaced
by a suitable distance (x = −10 Å in this case) along the x-axis (see Note 2). A
script is used to delete water molecules whose oxygen coordinates lie within 2.8 Å
of any existing heavy atoms. Potassium and chloride ions are added to neutralize the
overall system, with their coordinates assigned randomly away from the receptor–
ligand complex. Extra ion pairs are added to simulate the condition of 150 mM ionic
strength approximately using the volume of the water box. With known crystallo-
graphic coordinates fixed, the solvated complex is energy minimized (500 steps)
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Fig. 2 The simulation geometry for the protein–ligand complex in periodic boundary conditions
and the choice of axes. The protein and the ligand are shown with cartoons and spheres, respec-
tively. The centers of mass of the protein and ligand lie on the x-axis, and the ligand is displaced
toward the positive x-direction in successive windows in the radial PMF calculation

to relieve any unfavorable local configurations, followed by another minimization
(500 steps) with all atoms free. In any minimization or subsequent dynamics runs,
the center of mass of the protein is constrained to the initial position lying on the
x-axis via a harmonic potential of moderate force constant (∼10 kcal/mol Å2

) to
prevent the overall drifting of the complex (see Note 3).

3.1.3 Ligand

The ligand is solvated in a water box of cubic geometry (with the size of the box
30 Å) for calculations of free energy terms of the peptide in bulk solution. The sol-
vated system is energy minimized as for the complex. The center of mass of the
ligand is also constrained at the box center to prevent drifting.

3.2 Imposition of Orientational Constraints

3.2.1 Coordinate Systems

Three groups of atoms each in the protein and the ligand are chosen to define the
coordinate systems used for the orientational and axial constraints. The axial orien-
tation of the ligand center of mass relative to the protein is specified by its spherical
polar coordinate (r1, θ1, φ1), defined with respect to the axes formed by the three
groups P1 (center of mass of Ile183, Leu202, Leu205, and Leu165), P2 (center of
mass of Asp171), and P3 (center of mass of His208) of the protein (Fig. 3). The
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Fig. 3 Illustration of the definition of atom groups and coordinate systems for the orientational and
axial constraints. P1, P2, and P3 and L1, L2, and L3 belong to the protein and ligand, respectively

three groups in the ligand are also chosen to define the Euler angles associated with
the relative orientation of the ligand internal coordinates with respect to the protein:
L1 (center of mass of ligand), L2 (center of mass of pTyr), and L3 (center of mass
of Ile4). The radial coordinate r1 is the P1 to L1 distance, and the two spherical an-
gles, θ1, φ1, are the angle P2-P1-L1, and the dihedral P3-P1-P2-L1, respectively. The
three Euler angles (�1,�1, �1) are taken as the angle P1-L1-L2, and the dihedrals
P2-P1-L1-L2 and L2-L1-P1-L3, respectively (see Note 4).

3.2.2 Constraints

The orientational constraint for the Euler angles is taken as:

uo (�1,�1, �1) = ko

[(
�1 − �

re f
1

)2 +
(
�1 − �

re f
1

)2 +
(
�1 − �

re f
1

)2
]

, (2)

where ko is the force constant, and (�re f
1 ,�

re f
1 , �

re f
1 ) are the reference angle

values of the bound crystallographic structure. The axial constraint for the ligand is
taken as:

ua (θ1, φ1) = ka

[(
θ1 − θ

re f
1

)2 +
(
φ1 − φ

re f
1

)2
]

, (3)

with analogously defined constants.

3.3 Umbrella Sampling MD Simulations

Umbrella sampling [14] MD simulations are used to obtain the potential of mean
force (PMF) as a function of a reaction coordinate for a number of steps in Fig. 1.
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The relevant reaction coordinate space is subdivided into a discrete set of inter-
vals, each of which corresponds to different windows of the umbrella sampling. MD
simulations are run for each window in the presence of harmonic constraints with
minima located at the given offset value of the reaction coordinate. The dynamics
are run starting from the solvated initial structure built as described in Sect. 3.1 in
constant pressure (1 atm) and temperature (300 K) in periodic boundary conditions.
The electrostatic interactions are treated with the particle mesh Ewald method [15],
using the grid size of approximately 1 Å in each dimension. The van der Waals in-
teractions are cut off at a suitable distance (10 Å). The hydrogen–heavy atom bond
lengths are fixed using the SHAKE algorithm [16], and the dynamics are run with
2-fs time steps.

3.4 Calculation of Free Energy Terms for a Ligand in the Bulk

3.4.1 Conformational Free Energy G(bulk)
c

The term G(bulk)
c corresponds to the free energy change of reversibly turning on the

conformational constraint for a flexible ligand in the bulk. The harmonic constraint
is taken as:

uc = kc(ξ − ξ0)
2, (4)

where kc is the force constant, ξ is the root mean square deviation (RMSD) of the
ligand with respect to the reference conformational state (taken as the crystallo-
graphic structure of the bound complex) with ξ0 as the offset value (equal to zero
in this case). The RMSD is calculated using a fixed set of atoms, taken here as
the heavy (nonhydrogen) atoms with known crystallographic coordinate for the lig-
and. The PMF as a function of the RMSD reaction coordinate ξ is calculated using
umbrella sampling MD. A suitable number of windows (20 windows) are used to di-
vide the range of ξ values (0 < ξ < 10 Å). Constrained dynamics simulations in the
presence of harmonic constraints are run for each windows (for up to 2 ns), prefer-
ably with varying strengths of force constants (1 kcal/mol Å2 and 10 kcal/mol Å2

).
The umbrella sampling data is recombined using the weighted histogram analysis
method (WHAM) [17, 18] with different sets of simulation time series unbiased
using respective constraints. Figure 4a shows the resulting PMF w

(bulk)
c (ξ) for the

ligand in the bulk [4]. The free energy G(bulk)
c is calculated from the PMF by the

formula:

exp
(
−βG(bulk)

c

)
=
∫

dξ exp
[
−βw

(bulk)
c (ξ) − βuc (ξ)

]

∫
dξ exp

[
−βw

(bulk)
c (ξ)

] , (5)
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Fig. 4 The PMF wc
(bulk)(ξ) (a) and wc

(si te)(ξ) (b) of the ligand conformational states in the bulk
and the binding site, respectively. Reproduced from Ref. [4]. Copyright c© 2005 by the National
Academy of Sciences

with each integral in the fraction calculated numerically using the PMF w
(bulk)
c (ξ).

The conformational constraint uc in Eq. 5 is taken as Eq. 4 with ξ0 = 0 and the fixed
value of kc(1.192 kcal/mol Å2

), which is used in other parts of calculations where
the ligand conformation remains constrained.

3.4.2 Orientational Free Energy G(bulk)
o

The free energy of imposing the orientational constraint uo is calculated by the
numerical evaluation of the integral:

exp
(
−βG(bulk)

o

)
= 1

8π2

π∫

0

d�1 sin �1

2π∫

0

d�1

2π∫

0

d�1 exp (−βuo) (6)

with Eq. 2.

3.5 Calculation of Free Energy Terms for the Ligand–Receptor
Complex

3.5.1 Conformational Free Energy G(si te)
c

The free energy change of imposing the conformational constraint to the ligand
bound to receptor is calculated analogous to the case of the ligand in the bulk. The
solvated protein–ligand complex is simulated by umbrella sampling MD (for up to
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1 ns) to yield the PMF w
(si te)
c (ξ) (Fig. 4B). A numerical integration of the equation

analogous to Eq. 5 yields G(si te)
c .

3.5.2 Orientational/Axial Free Energy Terms Go
(si te) and Ga

(si te)

The free energy perturbation [5, 6] is used to calculate the free energy terms of
constraining the direction and orientation of the ligand in the binding site (using
the PERT module of CHARMM). The MD simulation is made more efficient by
modifying the solvated complex built in Sect. 3.1, making the simulation box geom-
etry cubic (56 Å in each dimension). The two constraints, Eqs. 2 and 3, are turned
on with suitable force constant values (ko = ka = 100 kcal/mol rad2) using a
thermodynamic coupling parameter λ(0 ≤ λ ≤ 1) divided into 10 intermediate
intervals. The set of windows are simulated (for up to 0.5 ns), and the free energy
terms are calculated by adding the free energy perturbation contributions from each
window (see Note 5). All simulations need to be run in the presence of the con-
formational constraint, Eq. 4, with ξ0 = 0 and the chosen value of force constant
(kc = 1.192 kcal/mol Å2

).

3.6 Unbinding of the Ligand from the Receptor

3.6.1 PMF as a Function of r1

The PMF as a function of the receptor–ligand center of mass distance r1 is calculated
by umbrella sampling MD. The radial constraint is taken as:

ur = kr (r1 − r1
0)2, (7)

where kr is the force constant (1 kcal/mol Å2
) and r1

0 is the offset distance for
each window. The relevant range of distances (10 Å < r1 < 40 Å) is subdivided into
a number (28 windows) that are simulated with the constraint, Eq. 7, with the offset
distance at the center of the window. MD simulations are performed (up to 2 ns),
all in the presence of conformational, axial, and orientational constraints, and the
resulting time-series are recombined using the WHAM algorithm to construct the
PMF W (r1) (Fig. 5) (see Note 6).

3.6.2 Prefactor S∗

The prefactor S∗ is calculated by the numerical integration of:

S∗ = (
r1

∗)2
π∫

0

dθ1 sin θ1

2π∫

0

dφ1 exp (−βua), (8)
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Fig. 5 The radial PMF W (r1) for the displacement of the ligand from the receptor binding site
in the presence of conformational, orientational, and axial constraints. Reproduced from Ref. [4].
Copyright c© 2005 by the National Academy of Sciences

where r1
∗ is chosen as a distance (30 Å) sufficiently large such that the ligand can

be regarded as in an isotropic bulk solution. The radial factor I ∗ is calculated from
the PMF by:

I ∗ =
r1

∗∫

0

dr1 exp
[−βW (r1) + βW

(
r1

∗)] (9)

(see Note 7).
The binding constant is calculated from Eq. 1.

4 Notes

1. Other choices can be made, most notably the use of implicit solvent treatments,
such as the Generalized Born or Poisson–Boltzmann methods [19–21], which
can reduce the computational cost significantly for larger systems.

2. The box size is to be large enough so that, with periodic boundary conditions,
the minimum distances between any protein atoms in the primary cell and their
images would not be smaller than the nonbonding interaction cutoff. In addition,
the box size along the x-direction has to be large enough so that the center of
mass of the ligand can be displaced along the x-axis away from the receptor up
to a certain distance (30 Å) without getting too close to the protein image atoms.
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3. For the umbrella sampling of radial PMF (Step 3), it is useful to impose an
additional constraint that prevents the receptor–ligand complex from making
rotational drifts with the protein near the center. The MMFP command of
CHARMM, for example, can be used for the center of mass of the ligand with a
potential of cylindrical geometry centered on the x-axis of Fig. 2 and a moderate
force constant (1 kcal/mol Å2

) (see Fig. 2).
4. The choice of groups used for defining the orientational and axial constraints

needs to be made such that none of the groups used for dihedral angles are close
to collinear. In addition, it is best to choose the group P1 and the direction of
pulling (θ1, φ1) so that any possible steric hindrances the ligand might feel while
being “pulled away” from the binding site via the radial PMF calculation would
be minimized.

5. The orientational and axial constraints on the ligand in the binding site can be
turned on for the free energy perturbation calculations either at the same time or
one after the other. The consistency of the resulting numbers can serve as a cross
check. Because the orientation of the bound ligand is already stable, imposing
the constraints does not lead to significant changes in the free energy, and the
magnitudes of the two free energy terms should be relatively small.

6. The radial PMF calculation is the most computationally intensive part of the
scheme in Fig. 1. It is helpful to vary the force constant of the radial con-
straint (1 and 10 kcal/mol Å2

) in multiple sets of umbrella sampling data to en-
hance the quality of statistics. The range of distances near the binding region
(10 Å < r1 < 20 Å) is more difficult to sample sufficiently. Extra sets of windows
can be assigned to this region with larger force constant and/or shorter interwin-
dow spacing. The overall convergence of the PMF calculation can be assessed
by performing the WHAM analysis using partial sets of time-series data, and
comparing the results [4].

7. Although in Eqs. 8 to 9, the absolute values of S∗ and I ∗ do seem to depend
on the particular choice of the “bulk” distance r1

∗, the binding free energy
Gbind = −kB T ln

(
KeqC0), where C0 = 1/1661 Å3, is insensitive to the choice

as long as the value chosen is sufficiently larger than the binding site “well” (near
12 Å) in Fig. 5. In calculating I ∗ by Eq. 9, one notes that W (r1

∗) − W (r1) has a
functional form resembling a Gaussian function peaked at the well (r1 = 12 Å;
Fig. 5), and, therefore, its peak height can be factored out of the integral, whereas
the remaining (small) correction can be easily calculated either with direct nu-
merical integration or by approximating the function as a Gaussian. The domi-
nant contribution of Step 3 to the binding free energy, therefore, comes from the
height of the radial PMF.
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Chapter 7
Free Energy Calculations Applied
to Membrane Proteins

Christophe Chipot

Summary Selected applications of free energy calculations to the realm of mem-
brane proteins are reviewed. The theoretical underpinnings of these calculations are
described, focusing on free energy perturbation and the use of thermodynamic in-
tegration to determine free energy changes along well–delineated order parameters.
Current strategies for improving the reliability of free energy calculations, while
making them somewhat more affordable are outlined. Application of the free energy
methodology to understand the structure and function of membrane proteins is illus-
trated in three concrete examples: The binding of an agonist ligand to a G protein–
coupled receptor, the assisted transport of a small permeant through a membrane
channel, and the recognition and association of transmembrane α–helical domains.

Keywords: Free energy calculations · molecular dynamics simulations · membrane
proteins · transport · recognition and association · signal transduction

1 Introduction

The paucity of structural information available for membrane proteins has imparted
a new momentum to the computational investigations of complex biological sys-
tems. The grand challenge of molecular modeling is to attain the microscopic de-
tail that is often inaccessible to conventional experimental techniques. Among the
30,000–some protein structures that can be found in the protein data bank [1] (PDB),
slightly more than a hundred correspond to unique membrane proteins, and in this
subset, a single one belongs to the family of G protein–coupled receptors (GPCRs)
— a prominent class of targets for de novo drug design. This situation, which may
seem paradoxical considering that about 30% of the human genome actually code
for membrane proteins, can be easily understood by realizing how difficult the ex-
pression and the purification of these proteins are, especially in quantities compat-
ible with x-ray crystallography. Such technical obstacles are further magnified by
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the imperious necessity to extract the protein from its natural lipid environment and
solubilize it gingerly in a proper detergent that will preserve its three–dimensional
structure and, hence, its function.

Access to massively parallel computational resources has undeniably pushed
back the limits of molecular simulations, allowing larger assemblies of atoms to
be investigated over longer times. Theoretical studies of biological systems, in gen-
eral, and membrane proteins, in particular, have benefited from this increase in both
size and time scales. Such advances on the hardware front — and to a lesser extent
on the methodological front, have without a doubt helped decipher at the atomic
level how membrane proteins operate in lipid bilayers. Yet, to understand in depth
the molecular mechanisms responsible for their function, a close examination of the
underlying free energy behavior is necessary [2, 3]. For instance, assisted transport
phenomena across the membrane, or recognition and association of transmembrane
(TM) protein segments cannot be fully appreciated without the knowledge of the
constituent free energy changes. Furthermore, free energy represents a tangible link
between experimental and computational investigations, and, hence, a quantitative
tool for appraising the quality of the designed models. The ability to determine a
priori and with a reasonable level of accuracy free energy differences through sta-
tistical simulations is within reach. Relentless developments over the past twenty
years have contributed to bring free energy calculations at the level of similarly
robust and well–characterized modeling tools, while widening their field of applica-
tions. It is fair to recognize, however, that in spite of bolstering results, the accurate
estimation of free energy changes in large, biologically realistic molecular assem-
blies still constitutes a challenge for the modeler. Taking advantage of the newest,
fastest architectures, cost–effective and precise free energy calculations can pro-
vide a convincing answer to help rationalize experimental observations. In some
instances, they may even play a predictive role — for instance, in the development
of new leads for a specific target.

In the first section of this chapter, the theoretical underpinnings of free energy
calculations are recapped, focusing on the methods that are currently utilized to
determine free energy differences. Next, the reader is invited to delve into three
biologically relevant examples that correspond to distinct facets of free energy sim-
ulations applied to membrane proteins. In the first application, molecular dynamics
(MD) simulations and free energy methodology are utilized to probe the three–
dimensional structure of a complex formed by a GPCR and an agonist ligand.
Arguably enough, understanding how the agonist ligand interacts with its receptor
constitutes the first step in deciphering the complex mechanism whereby the cellu-
lar signal is transduced across the cell by means of GPCRs. Next, we examine how
Nature has designed specific and extremely efficient carriers for transporting water
as well as small, linear polyalcohols like glycerol across the cell membrane. Last,
the intricate mechanism responsible for the reversible association of TM α–helices
in a membrane–like environment is dissected. Conclusions on the role played by
free energy calculations in the molecular modeling of membrane proteins are drawn
with a glimpse into their promising future.
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2 Methods

Molecular simulations provide the modeler with ensembles of configurations, from
which detailed structural information can be gained. Such configurations, or sets
of Cartesian coordinates, {x}, can also be used to determine thermodynamic aver-
ages, which, in turn, can be confronted directly to experimental observables. In this
section, we will show that free energy can be expressed as an ensemble average, and,
hence, can be inferred from computer simulations. In the following subsections, we
shall assume that these simulations are carried out in the canonical, N V T , ensemble.

2.1 Statistical Mechanics Background

In the canonical ensemble, the Helmholtz free energy for an N–particle system
writes [4]:

A = − 1
β

ln QNVT (1)

where β = 1/kB T . kB is the Boltzmann constant and T is the temperature of the
system. QNVT denotes its 6N–dimensional partition function:

QNVT = 1
h3N N !

∫ ∫
exp [−βH (x, px )] dx dpx (2)

Here, H (x, px ) is the classical Hamiltonian describing the system. In
equation (2), integration is carried out over all atomic coordinates, {x}, and
momenta, {px }. The normalization factor reflects the measure of the volume of the
phase space through the Planck constant, h, and the indistinguishable nature of the
particles, embodied in the factorial term, N !.

The definition of the partition function may be utilized to introduce the concept
of probability distribution to find the system in the unique microscopic state charac-
terized by positions {x} and momenta {px }:

P(x, px ) = 1
h3N N !

1
QNVT

exp [−βH (x, px )] (3)

A logical consequence of this expression is that low–energy regions of the
phase space will be sampled predominantly, according to their respective Boltzmann
weight [3, 5].

To a large extent, the canonical partition function constitutes the corner stone
of the statistical mechanical description of the assembly of particles. From a
phenomenological point of view, it can be seen as a measure of the thermodynamic
states accessible to the system in terms of spatial coordinates and momenta.

It seems rather obvious from the above that the estimation of QNVT and, hence,
A, will be an extremely challenging task — virtually impossible from the perspec-
tive of finite molecular simulations. In practice, however, the modeler is generally
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interested in free energy differences, ∆A, between well–delineated thermodynamic
states. In this case, the free energy difference can be expressed in terms of a ratio
of partition functions. Using a rather straightforward transform, this ratio can be
further restated in terms of energies:

∆A = − 1
β

ln
∫

�[∆H (x, px )] exp [−β∆H (x, px )] d∆H (x, px ) (4)

where �[∆H (x, px )] is the so–called density of states accessible to the system of
interest. As will be seen momentarily, the concept of density of states is particularly
useful to understand the convergence properties of free energy calculations.

2.2 Free Energy Perturbation

Let us assume that we are interested in estimating the free energy difference between
a reference system, a, described by Hamiltonian Ha(x, px ), and a target system, b,
described by Hamiltonian Hb(x, px ), such that:

Hb(x, px ) = Ha(x, px ) + ∆H (x, px ) (5)

Here, ∆H (x, px ) represents a perturbation between the initial and the final states
of the transformation. As has been hinted in the previous subsection, the difference
in the Helmholtz free energy can be expressed in terms of a ratio of the correspond-
ing partition function (2):

∆Aa→b = − 1
β

ln
Qb

NVT
Qa

NVT
(6)

Substituting equation (2) to equation (6), it follows that:

∆Aa→b = − 1
β

ln

∫ ∫
exp [−βHb(x, px )] dx dpx

∫ ∫
exp [−βHb(x, px )] dx dpx

(7)

= − 1
β

ln

∫ ∫
exp [−β∆H (x, px )] exp [−βHa(x, px )] dx dpx

∫ ∫
exp [−βHb(x, px )] dx dpx

Recalling the definition (3) of the probability to find the system in the unique
microscopic state characterized by positions {x} and momenta {px }, the free energy
difference between the reference and the target states becomes:

∆Aa→b = − 1
β

ln
∫ ∫

exp [−β∆H (x, px )] P(x, px ) dx dpx (8)
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or equivalently:

∆Aa→b = − 1
β

ln 〈exp [−β∆H (x, px )]〉a (9)

where 〈· · · 〉a stands for an ensemble average over configurations representative of
the reference system. Equation (9), the fundamental free energy perturbation (FEP)
formula [6], thus, states that ∆Aa→b can be determined by sampling only equilib-
rium configurations of the initial state, a. In principle, this equation is “exact” in
the sense that it is expected to converge regardless of ∆H (x, px ) — which is true
in the limit of infinite sampling. In practice, however, validity of the perturbation
formula (9) only holds for small changes between a and b, for obvious numerical
reasons.

At this stage, the condition of small changes ought to be clarified, as it is often
misconstrued. It does not imply that the free energies characteristic of the reference
and the target systems be sufficiently close, but rather that the corresponding config-
urational ensembles overlap appropriately to guarantee the desired accuracy [7, 8].
In other words, it is expected that the density of states, �[∆H (x, px )], describing
the transformation between these systems be narrow enough — viz. typically on the
order of 1/β, to ascertain that, when multiplied by the exponential term of equa-
tion (4), the resulting distribution be located in a region where ample statistical data
has been accrued.

Under most circumstances, however, single–step transformations between rather
orthogonal states only seldom fulfill this requirement. To circumvent this difficulty,
the reaction pathway connecting the reference and the target systems is broken down
into a number of intermediate, states, so that between any two contiguous states,
the condition of overlapping ensembles is satisfied [9]. To achieve this goal, the
Hamiltonian, H (x, px ), is made a function of the order parameter, or “coupling
parameter”, λ, characterizing the transformation [10]. Conventionally, λ varies be-
tween 0 and 1 when the system goes from the initial state, a, to the final state, b. In
practice, λ can correspond to a variety of order parameters — possibly a true reac-
tion coordinates, e.g. non–bonded parameters in the so–called “alchemical transfor-
mations” or in silico point mutations [11, 12].

The interval separating the intermediate states of the transformation between the
reference and the target systems, which corresponds to selected fixed values of the
coupling parameter, λ, is often referred to as “window”. It should be reminded that
the vocabulary window adopted in perturbation theory is distinct from that utilized
in “umbrella sampling” (US) simulations [13], where it denotes a range of values
taken by the order parameter. For a series of a N intermediate states, the total free
energy change for the transformation from a to b is expressed as a sum of N − 1
free energy differences [9]:

∆Aa→b = − 1
β

N−1∑

k=1

ln
〈
exp

{−β
[
H (x, px ; λk+1) − H (x, px ; λk)

]}〉
λk

(10)
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Fig. 1 Dual–topology paradigm illustrated in the case of a serine to alanine “alchemical trans-
formation”. The initial and the final states coexist , yet without “seeing” each other. The interac-
tion energy of these topologies with their environment is scaled as λ goes from 0 to 1, so that
H (x, px ; λ) = λHb(x, px ) + (1 − λ)Ha(x, px )

Assessing an ideal number of intermediate states, N , between the initial and the
final states is evidently dependent upon the nature of the system that undergoes
the transformation. The condition of overlapping ensembles should be kept in mind
when setting N , remembering that the choice of ∆λ = λk+1 − λk ought to cor-
respond to a finite perturbation of the system. A natural choice consists in using a
number of windows that guarantees reasonably similar free energy changes between
contiguous intermediate states. The consequence of this choice is that the width of
the consecutive windows connecting a to b will be different.

Performing “alchemical transformations” calls for the definition of topologies
that describe the initial and the final states of the mutation. In the dual–topology
approach [14, 15], shown in Figure 1, the topologies representative of the reference
and the target states are defined concomitantly. Yet, these topologies do not interact
with each other in the course of the simulation. Their interaction energy with the
surroundings is scaled as λ goes from 0 to 1. The dual–topology paradigm has been
recognized to be sensitive to the so–called “end–point catastrophes”, when λ tends
towards 0 or 1, because ghost particles can appear where solvent molecules are
already present, thereby causing severe van der Waals clashes, and, thus, numerical
instabilities. A number of schemes have been devised to circumvent this problem,
among which the use of windows of decreasing width as λ tends towards 0 or 1.
Introduction of a soft–core potential [16] to eliminate the singularities at 0 or 1
perhaps constitutes the most elegant method proposed hitherto.

2.3 Thermodynamic Integration

Closely related to the FEP formalism (9), thermodynamic integration (TI) restates
the free energy difference between the reference and the target systems as a finite
difference [10, 17]:



Free Energy Calculations Applied to Membrane Proteins 127

∆Aa→b = A(λb) − A(λa) (11)

=
∫ λb

λa

dA(λ)

dλ
dλ

Substituting the definition of the canonical partition function (2) to the above
equation, it follows that:

dA(λ)

dλ
=

∫
∂H (x, px ; λ)

∂λ
exp −βH (x, px ; λ) dx dpx

∫
exp −βH (x, px ; λ) dx dpx

(12)

We recognize here again the expression of the probability (3) of finding the sys-
tem in the unique microscopic state characterized by positions {x} and momenta
{px }. The free energy difference between the reference and the target states then
becomes:

∆Aa→b =
∫ λb

λa

∂H (x, px ; λ)

∂λ
P(x, px ; λ) dλ (13)

and the integrand can be written as an ensemble average:

∆Aa→b =
∫ λb

λa

〈
∂H (x, px ; λ)

∂λ

〉

λ

dλ (14)

In sharp contrast with the FEP method, the criterion of convergence here is the
appropriate smoothness of the free energy as a function of λ.

2.4 Unconstrained Molecular Dynamics and Average Forces

Assuming that the variation of the kinetic energy between the reference and the tar-
get systems can be neglected, it is apparent from equation (14) that the derivative of
∆Aa→b with respect to some order parameter, ξ , is equal to − 〈

Fξ

〉
ξ
, the average of

the force exerted along ξ , hence, the concept of potential of mean force (PMF) [18].
Traditionally, the PMF, which can be used to quantify the reversible work re-

quired to bring two particles in a solvent bath from infinity to a contact distance, is
expressed from the corresponding pair correlation function, g(r). Generalization of
this classical definition [18] is, however, far from straightforward. For this reason,
the free energy as a function of order parameter ξ will be restated as:

A(ξ) = − 1
β

ln P(ξ) + A0 (15)
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where P(ξ) is the probability distribution to find the system at a given value, ξ ,
along that order parameter:

P(ξ) =
∫

δ[ξ − ξ(x)] exp[−βH (x, px )] dx dpx (16)

Equation (15) corresponds to the classical definition of the free energy in methods
like US, in which external biasing potentials are included to ensure a uniform dis-
tribution P(ξ). To improve sampling efficiency, the complete reaction pathway is
broken down into “windows”, or ranges of ξ , wherein individual free energy profiles
are determined. The latter are subsequently pasted together using, for instance, the
self–consistent weighted histogram analysis method (WHAM) [19].

For a number of years, the first derivative of the free energy with respect to the
order parameter has been written as [20]:

dA(ξ)

dξ
=
〈
∂V (x)

∂ξ

〉

ξ

(17)

This description is, however, erroneous because ξ and {x} do evidently not con-
stitute independent variables [21, 22]. Furthermore, it assumes that kinetic contri-
butions can be omitted, which may not always be necessarily the case. Rigorous
separation of the variables imposes a transformation of the metric, so that:

P(ξ) =
∫

|J | exp[−βV (q; ξ)] dq
∫

exp[−βT (px )]dpx (18)

Introducing probability P(ξ) in the first derivative (17), it follows that the kinetic
contribution vanishes in dA(ξ)/dξ :

dA(ξ)

dξ
= − 1

β

1
P(ξ)

∫
exp[−βV (q; ξ∗)] δ(ξ∗ − ξ) (19)

×
{

−β|J |∂V (q; ξ∗)
∂ξ

+ ∂|J |
∂ξ

}

dq dξ∗

After back transformation into Cartesian coordinates, the derivative of the free
energy with respect to ξ can be expressed as a sum of configurational averages at
constant ξ [23]:

dA(ξ)

dξ
=
〈
∂V (x)

∂ξ

〉

ξ

− 1
β

〈
∂ ln |J |

∂ξ

〉

ξ

= −〈Fξ 〉ξ (20)

In this approach, only the average 〈Fξ 〉ξ is the physically meaningful quantity,
unlike the instantaneous components, Fξ , from which it is evaluated. From a com-
putational perspective, Fξ is accrued in bins of finite size, δξ . After a predefined
number of observables are accumulated in each bin, the adaptive biasing force
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(ABF) [24, 25] is applied along the order parameter:

FABF = ∇ Ã = −〈Fξ 〉ξ ∇ξ (21)

which, in turn, yields a Hamiltonian in which no average force is exerted along ξ . It
follows that the evolution of the system in that direction is governed mainly by its
self–diffusion properties. It is apparent from the present description that the ABF
method is significantly more effective than US or its variants, because no knowl-
edge of the free energy hypersurface is required beforehand to define the necessary
biasing potentials that guarantee uniform sampling along ξ . Determining the form
of such external biases may easily become intricate in the case of qualitatively new
problems, in which variation of the free energy behavior cannot be guessed with
the appropriate accuracy. Yet, it should be clearly understood that, whereas ABF
undoubtedly improves sampling dramatically along the order parameter, efficiency
still suffers, like in any other free energy method, from slowly relaxing, orthogonal
degrees of freedom.

2.5 Convergence Properties of Free Energy Calculations
and Error Analysis

When is enough sampling really enough to assume safely that the free energy calcu-
lation has converged? constitutes a classical conundrum that often leaves the mod-
elers performing free energy calculations discomfited. Assessing the convergence
properties and the error associated to a free energy calculation often turns out to be
a challenging task. Sources of errors likely to be at play are diverse, and, hence, can
modulate the results differently.

One usually distinguishes between systematic and statistical errors. In the first
category, the choice of the force field parameters undoubtedly affects the results of
the simulation, albeit this contribution can be largely concealed by the statistical er-
ror arising from insufficient sampling. Paradoxically, exceedingly short free energy
calculations employing inadequate non–bonded parameters may, nonetheless, yield
the correct answer [26]. Under the hypothetical assumption of an optimally designed
potential energy function, quasi non–ergodicity scenarios constitute a common pit-
fall towards fully converged simulations [3].

Quasi non–ergodicity originates from different sources. In a vast number of
cases, however, it is a manifestation of slow degrees of freedom relaxing over
time scales that cannot be easily embraced by MD simulations. As a consequence,
sampling is impeded and the system is trapped in regions of configurational space
of lesser relevance for the determination of the targeted free energy change. This
unfortunate situation may be the result of a poorly chosen order parameter for
characterizing a process of interest. Under most circumstances, finding an adequate
order parameter, let alone a true reaction coordinate, constitutes a daunting task,
because the degrees of freedom at play as the system progresses are not known a
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priori. Furthermore, obvious order parameters along which the system is envisioned
to glide in an unhampered fashion can be strongly coupled to degrees of freedom
from the slow manifolds. As illustrated in Figure 2, these shortcomings may be re-
vealed in multistage simulations, wherein the reaction pathway is split into ranges
of the order parameter, or windows. Non–Boltzmann sampling methods, like the
US and the ABF schemes, are designed to flatten the free energy landscape in the
direction of the selected order parameter. If the latter is coupled to orthogonal, slow
degrees of freedom, exploration of the reaction pathway over the range of inter-
est can be severely jeopardized, because sampling of these degrees of freedom is
disrupted by large free energy barriers.

Appreciation of the statistical error has been devised following different schemes.
Historically, the free energy changes for the λ → λ + δλ and the λ → λ − δλ
perturbations were computed simultaneously to provide the hysteresis between the
forward and the reverse transformations. In practice, it can be shown that when ∆λ
is sufficiently small, the hysteresis of such “double–wide sampling” simulation [27]
becomes negligible, irrespective of the amount of sampling generated in each win-
dow — as would be the case in a “slow–growth” calculation [28].

window 2

window 1

Fig. 2 Illustration of a quasi non–ergodicity scenario: Progress along the order parameter, ξ , is en-
hanced by means of properly designed external biases that ensure sampling uniformity. To improve
the efficiency of the calculation further, the reaction pathway can be broken down into windows,
in which sampling is confined. Whereas the external biases help overcome the free energy barriers
along ξ , sampling may be hampered by coupled, orthogonal degrees of freedom, ζ 
= ξ . In window
1, the smooth free energy landscape in both the ξ– and the ζ–directions suggests that averaging
over ζ as the system progresses along ξ is likely to be very effective. In sharp contrast, sampling
along ξ in window 2 is expected to be incomplete because the system is trapped along ζ , which
precludes proper averaging in that direction. It is anticipated that a free energy calculation per-
formed using a single, broad window will yield a free energy landscape distinct from that obtained
by pasting the profiles of window 1 and window 2 [47]
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A somewhat less arguable point of view consists in performing the transfor-
mation in the forward, a → b, and in the reverse, b → a, directions. Micro–
reversibility imposes that, in principle, ∆Ab→a = −∆Aa→b. Unfortunately,
forward and reverse transformations do not necessarily share the same convergence
properties. Case in point, the insertion and deletion of a particle in a liquid [29]:
Whereas the former simulation converges rapidly towards the expected excess
chemical potential, the latter never does. This shortcoming can be ascribed to the
fact that configurations in which a cavity does not exist where a real atom is present
are never sampled. In terms of density of states, this scenario would translate into
�a[∆H (x, px )] embracing �b[∆H (x, px )] entirely, thereby ensuring a proper con-
vergence of the forward simulation, whereas the same cannot be said for the recip-
rocal, reverse transformation. Estimation of errors based on forward and reverse
simulations should, therefore, be considered with great care. Yet, appropriate com-
bination of the two can be used profitably to improve the accuracy of free energy
calculations [7].

In FEP calculations, convergence may be probed by monitoring the evolution of
the ensemble average (9) as a function of time. This rather coarse test constitutes,
however, a necessary, albeit not sufficient condition for convergence, because appar-
ent plateaus of the ensemble average often conceal anomalous overlap of the density
of states characterizing the reference and the target systems [7, 8]. The latter should
be the key–criterion to ascertain the local convergence of the simulation for those
degrees of freedom that are effectively sampled.

In addition, statistical errors in FEP calculations can be estimated by means of a
first–order expansion of the free energy:

∆A = − 1
β

{

ln 〈exp [−β∆H (x, px ; λ)]〉λ ± δε

〈exp [−β∆H (x, px ; λ)]〉λ

}

(22)

where δε is the statistical error on the ensemble average, 〈exp [−β∆V (x; λ)]〉λ, de-
fined as:

∆ε2 = 1 + 2τ

N
(23)

×
{
〈exp [−2β∆H (x, px ; λ)]〉λ − 〈exp [−β∆H (x, px ; λ)]〉2

λ

}

Here, N is the number of samples accrued in the FEP calculation and (1 + 2τ) is
the sampling ratio of the latter [30].

In the idealistic cases where a thermodynamic cycle can be defined, closure of the
latter imposes that individual free energy contributions add up to zero [31]. In prin-
ciple, any deviation from this target should provide a valuable guidance to improve
sampling efficiency. In practice, however, discrimination of the faulty transforma-
tion, or transformations, becomes rapidly intricate on account of possible mutual
compensation or cancelation of errors.

As has been commented on previously, visual inspection of �a[∆H (x, px )] and
�b[∆H (x, px )] indicates whether the free energy calculation has converged [7, 8].
Deficiencies in the overlap of the two distributions is also suggestive of possible
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errors, but it should be kept in mind that approximations like (22) only reflect the
statistical precision of the computation, and evidently do not account for fluctua-
tions in the system occurring over long time scales. In sharp contrast, the statistical
accuracy is expected to yield a more faithful picture of the degrees of freedom that
have been actually sampled. The safest route to estimate this quantity consists in
performing the same free energy calculation, starting from different regions of the
phase space — viz. the error is then defined as the root mean square deviation over
the different simulations [32]. Semantically speaking, the error measured from one
individual run yields the statistical precision of the free energy calculation, whereas
that derived from the ensemble of simulations provides its statistical accuracy.

3 A First Step Towards Understanding Cellular Signal
Transduction

As has been mentioned earlier in this chapter, the lack of structural information
available for membrane proteins has encouraged the theoretical and computational
biophysics community to investigate these systems by means of large–scale sta-
tistical simulations. Of topical interest are seven TM domain GPCRs [33], which
correspond to the third largest family of genes in the human genome, and, there-
fore, represent privileged targets for the pharmaceutical industry. Full resolution by
x-ray crystallography of the three–dimensional structure of bovine rhodopsin [34],
the only GPCR structure known to this date, has paved the way for the modeling
of other, related membrane proteins. Unfortunately, crystallization of this receptor
in its dark, inactive state does not constitute the best possible basis for homology
modeling of GPCR–ligand activated complexes [35].

With over ten years of hindsight, it has become apparent that neither theory nor
experiment alone can provide atomic–level, three–dimensional structures of acti-
vated GPCRs. It would seem, however, that their synergistic combination offers an
interesting perspective to reach this goal. Such a self–consistent strategy between
experimentalists and modelers has been applied rather successfully to elucidate the
structure of the human receptor of cholecystokinin (CCK1R) in the presence of an
agonist ligand [36] — viz. a nonapeptide (CCK9) [37] of sequence Arg–Asp–S-Tyr–
Thr–Gly–Trp–Met–Asp–Phe–NH2, where S-Tyr stands for a sulfated tyrosyl amino
acid. Design of a consistent in vacuo construct of the complex involved site–directed
mutagenesis experiments targeted at highlighting key receptor–ligand interactions,
which helped position the constituent TM α–helices and dock CCK9 in its desig-
nated binding pocket.

In vacuo models reflect the geometrical constraints enforced in the course of
their construction — e.g. TM segments are necessarily coerced in their putative ori-
entation by means of appropriately chosen restraints. It is far from clear, however,
whether these constructs will behave as anticipated when immersed in a realistic
membrane environment. Accordingly, the model formed by CCK1R and CCK9 was
inserted in a fully hydrated palmitoyloleylphosphatidylcholine (POPC) bilayer, and



Free Energy Calculations Applied to Membrane Proteins 133

the complete assembly was scrutinized over a period of 30 ns, using MD simula-
tion [38]. Thorough analysis of the trajectory reveals no apparent loss of secondary
structure in the TM domain, and the distance root mean square deviation (RMSD)
for the backbone atoms never exceeded 2 Å. More importantly, all crucial receptor–
ligand interactions brought to light by site–directed mutagenesis experiments are
preserved throughout the simulation — e.g. Arg336 with Asp8 [39], and Met195 and
Arg197 with S-Tyr3 [40, 41].

Arguably enough, such MD simulations only supply a qualitative picture of
the molecular assembly. Integrity of the complex is probed over the time scale
amenable to MD, which evidently cannot capture large spatial rearrangements. Be-
yond the qualitative view, free energy calculations quantify intermolecular interac-
tions according to their importance, and, as such, form a bridge with experiment
to assess the accuracy of the proposed model. Moreover, free energies are directly
comparable to site–directed mutagenesis experiments utilized to build the receptor,
thereby closing the loop of the modeling process.

Performing free energy calculations in such large molecular assemblies may be
viewed as a bold and perhaps foolish leap of faith, considering the variety of sources
of errors likely to affect the final result. Among the latter, attempting to reproduce
free energy differences using a three–dimensional model in lieu of a well–resolved,
experimentally determined structure casts tremendous doubts on the chances of
success of this venture. Of equal concern, “alchemical transformations” involving
charged amino acids are driven primarily by the hydration of the appearing, or the
vanishing ionic moieties, which usually yields large free energies, the difference of
which, between the free and the bound states, is expected to be small.

Assuming a valid, consistent model, which appears to be confirmed by the pre-
liminary MD simulation, the key–question, already mentioned in this chapter, re-
mains: When is “enough sampling” really enough? This question should be, in fact,
rephrased here as: Are the time scales characteristic of the slowest degrees of free-
dom in the system crucial for the free energy changes that are being estimated? For
instance, is the mutation of the penultimate amino acid of CCK9 — viz. Asp8 into
alanine (see Figure 3), likely to be affected by the slow collective motions of lipid
molecules, or possible translational motions of TM α–helices? Nanosecond MD
simulations obviously cannot capture these events, which occur over significantly
longer times. Yet, under the assumption that the replacement of an agonist ligand
by an alternate one does not entail any noticeable rearrangement of the TM domain,
the present free energy calculations are likely to be appropriate for ranking ligands
according to their affinity towards a given receptor.

The theoretical free energy estimates were obtained from two runs of 3.4 ns each,
in bulk water and in CCK1R, respectively, breaking the reaction path into 114 con-
secutive windows of uneven width, and using the dual–topology paradigm. The er-
ror was estimated from two distinct runs performed at 5.0 and 10.5 ns of the MD
simulation. In contrast with an error derived from a first–order expansion of the
free energy, which only reflects the statistical precision of the calculation — here,
±0.3 kcal/mol, repeating the simulation from distinct initial conditions accounts for
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Fig. 3 Human receptor of cholecystokinin, CCK1R, embedded in a fully hydrated POPC bilayer.
The agonist ligand, the CCK9 nonapeptide, is shown in a space–filling representation (a). Free
energy change for the mutation in CCK9 of Asp8 into alanine: Transformation in the receptor
(solid line) and in water (dashed line). Inset: Overlapping density of states characterizing adjacent
states, at λ = 0.5 (b). Thermodynamic cycle utilized to estimate the relative receptor–ligand binding
free energy for the D8A point mutation in CCK9 (c)

fluctuations of the structure over longer time scales, thereby providing a measure of
its accuracy.

The FEP estimate of +3.0 ± 0.7 kcal/mol for the Asp8 to alanine transforma-
tion agrees very well with the site–directed mutagenesis experiments that yielded
a free energy change equal to +.2 ± 0.3 kcal/mol. Replacement of the eight,
sulfated–tyrosyl residue of CCK9 by tyrosine yielded a free energy change of
+1.9 ± 0.4 kcal/ mol, which does not compare as nicely with the experimental
estimate of +2.7±0.1 kcal/mol. Disagreement between theory and experiment may
be ascribed to, at least, two distinct sources — First, the flexibility of the extracellu-
lar loop with which S-Tyr8 interacts, which evidently cannot be modeled fully over
finite MD simulations. Second, possible imperfections in the parametrization of the
non–standard sulfated tyrosyl residue.

To conclude, while it is difficult to ascertain without ambiguity the correctness
of the three–dimensional structure of CCK1R:CCK9 in the sole light of a limited
number of numerical experiments, it still remains that the variety of observations
accrued in these simulations coincide nicely with the host of available experimental
data. De novo development of new drug candidates for targets of unknown structure
constitutes one of the greatest challenges faced today by the pharmaceutical indus-
try. It is envisioned that the very encouraging results presented herein for CCK1R
will pave the way towards a more self–contained approach to drug design, virtually
emancipated from the requirement of well–resolved structures.
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4 Deciphering Transport Phenomena Using Free Energy
Methods

Considerable effort has been invested in recent years to understand the assisted
transport of small molecules across the cell membrane. Of particular interest, the
conduction events of water and small, linear polyalcohols through aquaporins like
the Escherichia coli glycerol transport facilitator [42–44] (GlpF) have been explored
by means of classical atomistic MD simulations [45, 46]. Owing to the significant
time scales covered by the very slow permeation of the four channels forming the
homotetrameric membrane protein [44], evidently not amenable to all–atom MD,
investigation of such rare events constitutes a paradigmatic application for free en-
ergy calculations along an appropriately chosen order parameter. These calculations
are expected to provide a realistic picture of the conformational and orientational
relaxation phenomena in the TM channels.

Conduction of glycerol in GlpF was investigated at thermodynamic equilibrium,
using the ABF scheme outlined above. Solvation of the GlpF homotetramer in a
fully hydrated palmitoyloleylphosphatidylethanolamine (POPE) bilayer is described
in reference [46]. To enhance the statistical information supplied by the simulations,
the assisted transport of glycerol was investigated along the z–direction of Carte-
sian space, normal to the water–membrane interface, in the four channels of GlpF,
through the concomitant definition of four independent order parameters. The or-
der parameter was chosen as the distance separating the center of mass of glycerol
from the centroid of the channel in which it was confined, projected onto z. The effi-
ciency of the calculation was further increased by dividing the pathway connecting
the cytoplasm and the periplasm sides of the membrane into seven non–overlapping
windows, in which up to 20 ns of MD trajectory was generated, amounting to a
total simulation time of 70 ns. Quasi non–ergodicity scenarios prone to occur in
multi–stage approaches [47] were circumvented by means of an additional, 20–ns
simulation performed in a single, large window spanning 25 Å. The set of initial bi-
ases for this simulation were inferred from the windowed free energy calculations.

In the hypothetical limit of infinite sampling, the free energy profiles character-
izing the permeation of GlpF by glycerol in its four constituent channels should
superimpose perfectly. 90 ns of sampling proved, however, that such may not nec-
essarily be true. The similarity of the different curves suggests, nonetheless, that
convergence is within reach. This assertion is reflected in the moderate RMSD of
the average force, 〈Fz〉z , which peaks at ca. 2.5 kcal/mol/Å in the constriction sec-
tion of the conduction pathway, as shown in Figure 4.

The average free energy profile determined from the different channels is remark-
ably simple. The constriction region is preceded by a shallow vestibular minimum.
The selectivity filter (SF) is embodied in a single free energy barrier, the average
height of which is ca. 9.0 kcal/mol, matching closely the experimental activation
energy of Borgnia and Agre, of 9.6 kcal/mol [44]. The remainder of the free energy
landscape along z, in particular near the sequence formed by the three consecutive
asparagine, proline and alanine amino acids (NPA motif), is essentially flat.
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(a) (b)

Fig. 4 Molecular assembly formed by the homotetrameric facilitator of glycerol transport, GlpF,
embedded in a fully hydrated POPE lipid bilayer (a). Average force acting along the order para-
meter, the z–direction of Cartesian space, which coincides with the normal to the water–membrane
interface (b). The error bars represent the RMSD computed over the four channels Inset: Free
energy profile delineating the permeation of GlpF by glycerol

At the experimental level, the activation energy measured for glycerol conduction
through GlpF [44] consists of an average over an ensemble of permeant molecules
entering the constriction region of the aquaglyceroporin with distinct conformations
and orientations. A closer look at the glycerol molecules as they enter the SF sheds
new light on the intimate relationship between orientation, isomerization, and free
energy.

Orientation of glycerol in the midst of the SF follows a two–state regime,
whereby the vector joining the first and the last carbon of the molecule is either
parallel or antiparallel to the normal to the water–membrane interface. It is worth
noting that the preferred parallel orientation is conducive to the emergence of the
gauche–gauche conformer, hence, suggesting that orientation and conformation are
closely coupled. The marked propensity towards gauche–anti conformers for an-
tiparallel orientations further illustrates the stereoselectivity of the channel, in which
conformation is dictated by prochirality. Furthermore, the average orientation of the
dipole moment follows the expected mechanism for the permeation process: The
dipole moment is roughly antiparallel to the normal of the aqueous interface, before
it tilts to a parallel orientation near the NPA motif [48].

On the biological time scale, transport of one glycerol molecule in GlpF occurs
within ca. 55 ms [44], which evidently cannot be described by current atomistic sim-
ulations. This “blue moon” event from the perspective of theoretical and computa-
tional biophysics can, nonetheless, be modeled by accelerating the natural process to
a time scale compatible with the contingencies of MD–related approaches. Captur-
ing the full permeation event still remains limited by isomerization of the permeant
in the channel. The latter occurs on the multi–nanosecond time scale, flipping of
the two torsional angles, ϕ1 and ϕ2, of glycerol being concerted. This phenomenon
spans a somewhat shorter, yet appreciable time scale when glycerol is solvated in
bulk water. Not too unexpectedly, reorientation of the permeant is reasonably fast
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near the cytoplasm, but is hampered dramatically in the SF region, where it can
be congealed either parallel or antiparallel to the normal to the water–membrane
interface for as long as ca. 10 ns.

Glycerol conduction in GlpF has been investigated from the perspective of equi-
librium, sub–hundred–nanosecond free energy calculations. Compared to shorter,
irreversible pulling experiments, unable to capture relaxation phenomena embrac-
ing significant time scales, the length of the present simulations and their reversible
character allow the permeant to reorient and isomerize freely as it diffuses slowly
through the conduction pathway. They illuminate that orientational and confor-
mational relaxation of glycerol and its ABF–assisted transport in the channels
span comparable time scales. The heights of the free energy barrier separating the
periplasmic vestibule from the NPA motif, initially modulated by the original ori-
entation of glycerol in the channel, appears to converge after appropriate sampling
towards the experimentally determined activation energy [44]. The reported free
energy calculations, therefore, constitute an important, albeit still incomplete step
towards the full understanding of glycerol diffusion in GlpF. To reconcile fully the-
oretical and experimental results, a better characterization of the slow degrees of
freedom that thwart diffusion in the channels is highly desirable.

5 Recognition and Association in Membrane Proteins

It is fair to recognize that our current knowledge of how membrane protein domains
recognize and associate into functional, three–dimensional entities is still fragmen-
tary. Whereas the structure of membrane proteins can be particularly complex, their
TM region is often simple, consisting in general of a bundle of α–helices, or barrels
of β–strands. A fundamental result brought to light by deletion experiments reveals
that some membrane proteins can retain their biological function even when large
fractions of the protein are removed [49–52]. This suggests that rudimentary mod-
els, like simple α–helices, can be utilized profitably to understand how TM segments
recognize and associate into complex membrane proteins.

The “two–stage” model of Popot and Engelman [53], a pioneering attempt to
reach this goal, represents an interesting view for rationalizing the folding of mem-
brane proteins. According to this model, elements of the secondary structure —
viz. under most circumstances, α–helices — are first formed and inserted into the
lipid bilayer, prior to specific inter–helical interactions that drive the TM segments
towards well–ordered, native structures.

Capturing the atomic detail of the underlying mechanisms of α–helix recogni-
tion and association requires model systems supported by robust experimental data
to appraise the accuracy of the computations endeavored. Glycophorin A (GpA),
a glycoprotein ubiquitous to the human erythrocyte membrane, represents one
such system. It forms non–covalent dimers through the reversible association of
its membrane–spanning domain — i.e. residues 62 to 101, albeit only residues 73
to 96 actually adopt an α–helical conformation [54–56]. Inter–helical association
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(a) (b)

Fig. 5 TM domain of GpA formed by a homodimer of α–helices, embedded in a lipid membrane
mimetic. The heptad of residues involved in the association of the TM segments are shown as
transparent van der Waals spheres. Note the crossing angle between the two α–helices, equal to ca.
40◦ (a). Free energy profile delineating the reversible association of the TM segments (b). From
the generated MD trajectory, it is possible to determine a posteriori the different contributions to
the total free energy change by evaluating the associated force and projecting the latter onto the
order parameter, ξ

has been shown to result from specific interactions involving a heptad of residues,
essentially located on one face of each TM segment, as may be seen in Figure 5.

The reversible association of GpA in a lipid bilayer was examined using its
dimeric, α–helical TM segments immersed in a membrane mimetic resulting from
the assembly of a dodecane lamella placed between two lamellae of water. The
ABF method was employed to allow the TM segments to diffuse freely along an
order parameter, ξ , chosen to be the distance separating the centers of mass of the
two TM α–helices. Such a free energy calculation is not only challenging method-
ologically, but it is also of paramount importance from a biophysical standpoint,
because it provides a tangible link between the structural data obtained from nu-
clear magnetic resonance (NMR) [54–56] and the thermodynamic data derived from
analytical ultracentrifugation [57, 58] and fluorescence resonance energy transfer
(FRET) [59, 60] measurements, while providing a dynamic view of the recognition
and association stages.

Reversible association of the α–helices was examined over a period of
125 ns [61]. The PMF derived from this simulation is shown to be qualitatively sim-
ple, featuring a single minimum characteristic of the native dimer — see Figure 5.
As ξ increases, so does the free energy, progressing by steps that correspond to the
successive breaking of all inter–helical contacts. Beyond 21 Å, the TM segments are
sufficiently separated to assume that they no longer interact. It is noteworthy that as
the interaction of the two α–helices vanish, the latter progressively tilt towards an
upright orientation, which is suggestive that the formation of the signature right–
handed 40◦ crossing angle is concomitant with the creation of short–range inter–
helical contacts.
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Table 1 Distinction between the short–range and long–range regimes that govern α–helix recog-
nition and association in the TM region of GpA

Short–range interactions Long–range interactions

Contacts native non–native
Crossing angle native (40◦) upright (<15◦)
Driving force helix–helix helix–solvent

The association constant of the TM segments may be recovered by integrating the
PMF in the limit of α–helix association. The corresponding standardized free energy
of dimerization is equal to +11.5 ± 0.4 kcal/mol. Yet, direct and precise comparison
of this value with experiment is not possible, because measurements were carried in
different environments, namely hydrocarbon vs. detergent micelles. It can, nonethe-
less, be inferred that the value in dodecane probably constitutes an upper bound to
the experimental estimates determined in micelles, for two reasons, namely (i) the
greater order imposed by the detergent chains, and, (ii) the hydrophobic fraction of
the system increasing with the length of the chain [60].

Valuable information may be derived from the PMF Deconvolution of the PMF
into free energy components illuminates two distinct regimes controlling recogni-
tion and association, which are summarized in Table 1. At large separations, as
inter–helical contacts vanish, the helix–helix term becomes progressively negligi-
ble, resulting essentially from the 1/ξ3 interaction of two macro–dipoles — see
Figure 5. The TM segments are stabilized by favorable helix–solvent contributions.
In contrast, at short separations, helix–helix interactions are prominent and gov-
ern the change in the free energy near the global minimum. Association proceeds
through the transient formation of early, non–native contacts involving residues that
act as recognition sites. These contacts are subsequently replaced by contacts in the
heptad of residues responsible for association, concomitantly with the tilt of the two
α–helices from an upright position to that characteristic of the native dimer.

6 Conclusion

Beyond the qualitative structural information inferred from molecular simulations,
free energy calculations offer a robust link between theory and experiment by quan-
tifying the modeled processes at the thermodynamic level. In addition, these calcu-
lations provide a rigorous and discriminating assessment of the quality of the model,
while suggesting how the latter might be improved.

The simulations reported herein demonstrate that with twenty years of hindsight
gained from methodological development and characterization, a variety of biologi-
cally relevant problems can now be tackled with confidence. Whereas the foundation
of the FEP machinery have been established many years ago, significant progress
has been achieved only recently in the calculation of free energies along a chosen
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order parameter. Employing the concept of an average force acting along this para-
meter [24, 25], free energy barriers may be overcome without any a priori knowl-
edge of the actual free energy landscape, from which the necessary biases could be
determined to ensure a uniform sampling. This methodology is now available in the
popular program NAMD [62], well suited for the simulation of complex biological
system on large arrays of processors.

By and large, free energy calculations have greatly benefited from the increased
access to massively parallel architectures as the price/performance ratio of computer
processors continues to fall inexorably. They have also benefited from advances in
the understanding of the methods and how the latter should be applied [63], as well
as in the characterization of the error affecting the simulations [7,8,64]. Put together,
they have come of age to emancipate from their traditional role of a mere proof of
concept [65], and progressively become a predictive tool. As has been illustrated
in this chapter, they can be applied profitably to a host of problems in theoreti-
cal and computational biophysics, involving large assemblies of atoms. In the field
of membrane proteins, whenever a structural information is available, free energy
calculations are expected to help decipher the mechanisms whereby these systems
operate in the cell machinery, and, thus, help relate the concepts of structure and
function.

Free energy calculations, however, cannot yet be considered as “black box” rou-
tine jobs. A robust and reliable methodology does not necessarily imply that it can
be used blindly, as the nature of the problem essentially dictates the choice of the
method and the associated sampling strategy. In the investigation of assisted trans-
port phenomena, for instance, the definition of a suitable order parameter has proven
to be particularly problematic on account of its often equivocal nature. If the order
parameter is too strongly coupled to degrees of freedom in the slow manifolds, con-
vergence of the simulation will be unavoidably plagued by these slowly relaxing
degrees of freedom. Circumventing such quasi non–ergodicity scenarios is gener-
ally difficult, because we do not know beforehand what are the fast and the slow
degrees of freedom in the system.

It still remains that the results reported here are not only very encouraging, but
they also illustrate how much progress has been accomplished since the pioneer-
ing calculations of Tembe and McCammon, who demonstrated, using a very rudi-
mentary model, that the FEP machinery could be applied successfully to model
ligand–receptor assemblies [66]. Reproduction of relative binding free energies
within chemical accuracy for protein–ligand complexes formed by several thou-
sands of atoms evidently opens new vistas for the rational design of novel drug
candidates aimed at membrane proteins. Moreover, comparing the free energy pro-
files characterizing glycerol diffusion in GlpF and α–helix dimerization in GpA with
that derived by Berne and coworkers back in 1979 to investigate the hydrophobic
effect [67], using a multistage strategy and a model system formed by two Lennard–
Jones spheres in a water bath, one can appreciate the latest advances in the computa-
tion of free energy changes along an order parameter. Although these recent results
hold great promise for the future of free energy calculations, exploring reaction path-
ways in complex biological systems remains thwarted by the recurrent difficulty to
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select an adequate order parameter capable of describing fully a process of interest.
Bridging theory and experiment inevitably implies that such order parameters can
be determined, but it also suggests that we can discriminate between the slow and
the fast degrees of freedom coupled to the latter. Advancing with this objective in
mind constitutes a priority for the years to come [3].
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and the centre de Calcul Réseaux et Visualisation Haute Performance (CRVHP) are gratefully ac-
knowledged for generous provision of CPU time on their SGI Origin 3000 architectures.

References

1. Sussman, J. L., Lin, D., Jiang, J., Manning, N. O., Prilusky, J., Ritter, O., and Abola E. E.,
(1998), Protein data bank (PDB): Database of three–dimensional structural information of
biological macromolecules, Acta Cryst., D54, 1078–1084.

2. Kollman, P. A., (1993), Free energy calculations: Applications to chemical and biochemical
phenomena, Chem. Rev., 93, 2395–2417.

3. Chipot, C. and Pohorille, A., Eds., Free energy calculations. Theory and applications in chem-
istry and biology, Springer Verlag, 2007. (in press).

4. McQuarrie, D. A., Statistical mechanics, Harper and Row: New York, 1976.
5. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Clarendon Press: Oxford,

1987.
6. Zwanzig, R. W., (1954), High–temperature equation of state by a perturbation method. I. Non-

polar gases, J. Chem. Phys., 22, 1420–1426.
7. Lu, N., Adhikari, J. and Kofke, D. A., (2003), Variational formula for the free energy based

on incomplete sampling in a molecular simulation, Phys. Rev. E, 68, 026122–1–026122–7.
8. Lu, N., Kofke, D. A. and Woolf, T. B., (2004), Improving the efficiency and reliability of

free energy perturbation calculations using overlap sampling methods, J. Comput. Chem., 25,
28–39.

9. Mark, A. E. Free Energy Perturbation Calculations. In Encyclopedia of computational chem-
istry, Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer III,
H. F.; Schreiner, P. R., Eds., vol. 2. Wiley and Sons, Chichester, (1998), pp. 1070–1083.

10. Kirkwood, J. G., (1935), Statistical mechanics of fluid mixtures, J. Chem. Phys., 3, 300–313.
11. Bash, P. A., Singh, U. C., Brown, F. K., Langridge, R. and Kollman, P. A., (1987), Calculation

of the relative change in binding free energy of a protein–inhibitor complex, Science, 235,
574–576.

12. Bash, P. A., Singh, U. C., Langridge, R. and Kollman, P. A., (1987), Free energy calculations
by computer simulation, Science, 236, 564–568.

13. Torrie, G. M. and Valleau, J. P., (1977), Monte Carlo study of phase separating liquid mixture
by umbrella sampling, J. Chem. Phys., 66, 1402–1408.

14. Gao, J., Kuczera, K., Tidor, B. and Karplus, M., (1989), Hidden thermodynamics of mutant
proteins: A molecular dynamics analysis, Science, 244, 1069–1072.

15. Pearlman, D. A., (1994), Free energy derivatives: A new method for probing the convergence
problem in free energy calculations, J. Comput. Chem., 15, 105–124.

16. Beutler, T. C., Mark, A. E., van Schaik, R. C., Gerber, P. R. and van Gunsteren, W. F., (1994),
Avoiding singularities and neumerical instabilities in free energy calculations based on mole-
cular simulations, Chem. Phys. Lett., 222, 529–539.



142 C. Chipot

17. Straatsma, T. P. and Berendsen, H. J. C., (1988), Free energy of ionic hydration: Analysis
of a thermodynamic integration technique to evaluate free energy differences by molecular
dynamics simulations, J. Chem. Phys., 89, 5876–5886.

18. Chandler, D., Introduction to modern statistical mechanics, Oxford University Press, 1987.
19. Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A. and Rosenberg, J. M., (1992), The

weighted histogram analysis method for free energy calculations on biomolecules. I. The
method, J. Comput. Chem., 13, 1011–1021.

20. Pearlman, D. A., (1993), Determining the contributions of constraints in free energy calcula-
tions: Development, characterization, and recommendations, J. Chem. Phys., 98, 8946–8957.

21. Carter, E, A., Cicotti, G., Hynes, J. T. and Kapral, R., (1989), Constrained reaction coordinate
dynamics for the simulation of rare events, Chem. Phys. Lett., 156, 472–477.

22. den Otter, W. K. and Briels, W. J., (1998), The calculation of free–energy differences by
constrained molecular dynamics simulations, J. Chem. Phys., 109, 4139–4146.

23. den Otter, W. K., (2000), Thermodynamic integration of the free energy along a reaction co-
ordinate in Cartesian coordinates, J. Chem. Phys., 112, 7283–7292.

24. Darve, E. and Pohorille, A., (2001), Calculating free energies using average force, J. Chem.
Phys., 115, 9169–9183.

25. Hénin, J. and Chipot, C., (2004), Overcoming free energy barriers using unconstrained mole-
cular dynamics simulations, J. Chem. Phys., 121, 2904–2914.

26. Pearlman, D. A. and Kollman, P. A., (1991), The overlooked bond–stretching contribution in
free energy perturbation calculations, J. Chem. Phys., 94, 4532–4545.

27. Jorgensen, W. L. and Ravimohan, C., (1985), Monte Carlo simulation of differences in free
energies of hydration, J. Chem. Phys., 83, 3050–3054.

28. Chipot, C., Kollman, P. A. and Pearlman, D. A., (1996), Alternative approaches to potential
of mean force calculations: Free energy perturbation versus thermodynamic integration. Case
study of some representative nonpolar interactions, J. Comput. Chem., 17, 1112–1131.

29. Widom, B., (1963), Some topics in the theory of fluids, J. Chem. Phys., 39, 2808–2812.
30. Straatsma, T. P., Berendsen, H. J. C. and Stam, A. J., (1986), Estimation of statistical errors in

molecular simulation calculations, Mol. Phys., 57, 89–95.
31. Chipot, C. and Pohorille, A., (1998), Conformational equilibria of terminally blocked single

amino acids at the water–hexane interface. A molecular dynamics study, J. Phys. Chem. B,
102, 281–290.

32. Chipot, C., Millot, C., Maigret, B. and Kollman, P. A., (1994), Molecular dynamics free energy
perturbation calculations. Influence of nonbonded parameters on the free energy of hydration
of charged and neutral species, J. Phys. Chem., 98, 11362–11372.

33. Takeda, S. Kadowaki, S., Haga, T., Takaesu, H. and Mitaku, S., (2002), Identification of G
protein–coupled receptor genes from the human genome sequence, FEBS Lett., 520, 97–101.

34. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong,
I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M. and Miyano, M., (2000), Crystal
structure of rhodopsin: A G protein–coupled receptor, Science, 289, 739–745.

35. Archer, E., Maigret, B., Escrieut, C., Pradayrol, L. and Fourmy, D., (2003), Rhodopsin crystal:
New template yielding realistic models of G–protein–coupled receptors?, Trends Pharmacol.
Sci., 24, 36–40.

36. Talkad, V. D., Fortune, K. P., Pollo, D. A., Shah, G. N., Wank, S. A. and Gardner, J. D., (1994),
Direct demonstration of three different states of the pancreatic cholecystokinin receptor, Proc.
Natl. Acad. Sci. U. S. A., 91, 1868–1872.

37. Moroder, L., Wilschowitz, L., Gemeiner, M., Göhring, W., Knof, S., Scharf, R., Thamm, P.,
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and Engel, A., Nov 2000, The 6.9-Å structure of GlpF: A basis for homology modeling of the
glycerol channel from Escherichia coli, J. Struct. Biol., 132, 133–141.

43. Fu, D., Libson, A., Miercke, L. J., Weitzman, C., Nollert, P., Krucinski, J. and Stroud, R. M.,
(2000), Structure of a glycerol-conducting channel and the basis for its selectivity., Science,
290, 481–6.

44. Borgnia, M. J. and Agre, P., (2001), Reconstitution and functional comparison of purified
GlpF and AqpZ, the glycerol and water channels from Escherichia coli, Proc. Natl. Acad. Sci.
USA, 98, 2888–2893.

45. Jensen, M. Ø., Park, S., Tajkhorshid, E. and Schulten, K., (2002), Energetics of glycerol con-
duction through aquaglyceroporin GlpF, Proc. Natl. Acad. Sci. USA, 99, 6731–6736.

46. Jensen, M. O., Tajkhorshid, E. and Schulten, K., (2001), The mechanism of glycerol conduc-
tion in aquaglyceroporins, Structure, 9, 1083–1093.

47. Chipot, C. and Hénin, J., (2005), Exploring the free energy landscape of a short peptide using
an average force, J. Chem. Phys., 123, 244906.

48. Wang, Y., Schulten, K. and Tajkhorshid, E., (2005), What makes an aquaporin a glycerol
channel? A comparative study of AqpZ and GlpF, Structure, 13, 1107–1118.

49. Duff, K. C. and Ashley, R. H., (1992), The transmembrane domain of influenza A M2 protein
forms amantidine sensitive proton channels in planar lipid bilayers, Virology, 190, 485–489.

50. Oblatt-Montal, M., Buhler, L., Iwamoto, T., Tomich, J. and Montal, M., (1993), Synthetic
peptides and four-helix bundle proteins as model systems for the pore–forming structure of
channel proteins. I. Transmembrane segment M2 of the nicotinic cholinergic receptor channel
is a key pore–lining structure, J. Biol. Chem., 268, 14601–14607.

51. Montal, M., (1995), Molecular mimicry in channel–protein structure, Curr. Opin. Struct. Biol.,
5, 501–506.

52. Montal, M., (1995), Design of molecular function: Channels of communication, Annu. Rev.
Biophys. Biomol. Struct., 24, 31–57.

53. Popot, J. L. and Engelman, D. M., (1990), Membrane protein folding and oligomerization:
The two–stage model, Biochemistry, 29, 4031–4037.

54. MacKenzie, K. R., Prestegard, J. H. and Engelman, D. M., (1997), A transmembrane helix
dimer: Structure and implications, Science, 276, 131–133.

55. MacKenzie, K. R. and Engelman, D. M., (1998), Structure–based prediction of the stability of
transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimer-
ization, Proc. Natl. Acad. Sci. USA, 95, 3583–3590.

56. Smith, S. O., Song, D., Shekar, S., Groesbeek, M., Ziliox, M. and Aimoto, S., (2001), Structure
of the transmembrane dimer interface of glycophorin A in membrane bilayers, Biochemistry,
40, 6553–6558.

57. Fleming, K. G., Ackerman, A. L. and Engelman, D. M., (1997), The effect of point mutations
on the free energy of transmembrane α–helix dimerization, J. Mol. Biol., 272, 266–275.

58. Fleming, K. G., (2002), Standardizing the free energy change of transmembrane helix–helix
interactions, J. Mol. Biol., 323, 563–571.

59. Fisher, L. E., Engelman, D. M. and Sturgis, J. N., (1999), Detergents modulate dimerization,
but not helicity, of the glycophorin A transmembrane domain, J. Mol. Biol., 293, 639–651.



144 C. Chipot

60. Fisher, L. E., Engelman, D. M. and Sturgis, J. N., (2003), Effects of detergents on the associ-
ation of the glycophorin A transmembrane helix, Biophys. J., 85, 3097–3105.

61. Hénin, J., Pohorille, A. and Chipot, C., (2005), Insights into the recognition and association of
transmembrane α–helices. The free energy of α–helix dimerization in glycophorin A, J. Am.
Chem. Soc., 127, 8478–8484.

62. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel,
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Chapter 8
Molecular Dynamics Simulations of Membrane
Proteins

Philip C. Biggin and Peter J. Bond

Summary Membrane protein structures are underrepresented in the Protein Data
Bank (PDB) because of difficulties associated with expression and crystallization.
As such, it is one area in which computational studies, particularly molecular dy-
namics (MD), can provide useful additional information. Recently, there has been
substantial progress in the simulation of lipid bilayers and membrane proteins em-
bedded within them. Initial efforts at simulating membrane proteins embedded
within a lipid bilayer were relatively slow and interactive processes, but recent ad-
vances now mean that the setup and running of membrane protein simulations is
somewhat more straightforward, although not without its problems. In this chapter,
we outline practical methods for setting up and running MD simulations of a mem-
brane protein embedded within a lipid bilayer and discuss methodologies that are
likely to contribute future improvements.

Keywords: Computational · Ion channels · Membrane proteins · Molecular
Dynamics · Simulation

1 Introduction

Membrane proteins are thought to constitute approximately 30% of genomes
[1]. Furthermore, it has been estimated that more than half of all drug targets
are membrane proteins [2]. However, because of problems associated with ex-
pression and crystallization, the number of high resolution crystal structures is
less than 1% of the total number of structures (see http://blanco.biomol.uci.edu/
Membrane Proteins xtal.html for a maintained list of membrane proteins). The sit-
uation is further complicated by the fact that many membrane proteins undergo
very large conformational changes to complete their function (for example, trans-
porter proteins [3–5], which cycle between at least two distinct states). Crystallog-
raphy will, at best, only be able to capture a time- and space-averaged snapshot
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of these states. Computer simulations, on the other hand, and, in particular, mole-
cular dynamics (MD), are useful tools that, in addition to providing information
regarding the stability of a membrane protein, can also provide insight into the
manner in which these conformational changes can proceed. Thus, there has been a
large increase in the application of computer simulation methods to membrane pro-
teins [6,7], ranging from ion channels [8–10] to outer membrane proteins [11]. MD
can also be used to test hypotheses in idealized systems in which one can explore
underlying biophysical principals governing a process [12], and through to systems
that represent in vivo systems as closely as possible [13].

The field of membrane protein simulation has matured during recent years, and
worldwide there are now many groups performing simulations. One reason for the
recent increase in the number of research groups is that the computational facilities
required to perform membrane protein simulations are now accessible to more peo-
ple. Because the most common computational method used is MD, in this chapter,
we discuss how to set up and run a membrane protein simulation, focusing on the
more practical aspects. Until recently, the setup required a large amount of interac-
tive input from the researcher. Now, principally because of increases in computa-
tional power, the setup and running of such simulations is much simpler. We divide
the process into four distinct steps: the preparation of the protein itself, the prepara-
tion of the lipid (although this is discussed only briefly because the main thrust of
this chapter is the setup and running of a membrane protein simulation), the actual
insertion and establishing of a stable system, and, finally, running the simulation. Of
these steps, it is perhaps the preparation of the protein itself that requires the most
care and interactive input from the researcher.

2 Theory

The underlying theory for MD simulations is discussed in detail in Chap. 1, and,
therefore, in this section, we will briefly discuss some specific considerations that
researchers should bear in mind when performing simulations of membrane pro-
teins. Perhaps the most important of these considerations are the timescale of the
problem that is under consideration and the resources that are available. The many
different aspects of membrane dynamics span a large timescale, ranging from a few
picoseconds (for a protein side chain to rotate) through minutes and longer (for flip-
flop motion of lipids). Indeed, where resources are minimal and only an approximate
representation of the bilayer is required, one may be content with using a slab of oc-
tane to represent the hydrophobic core of the bilayer [14]. More recently, efforts
have been made to approximate the lipid molecules in a different way, by using a
coarse-grained (CG) approach, where, typically, four atoms are represented by one
particle [15]. These methods have become popular because they allow much longer
timescale events to be explored, but, of course, they are less detailed than a fully
atomistic simulation.
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Typically, for simulations of membrane proteins, a stable simulation is required,
usually reflecting some sort of equilibrium of the system. In these simulations, we
have two components to worry about, the protein and the lipid bilayer. Thus, some
metrics of stability are required. For the protein, the most common of these metrics
is the root mean square deviation (RMSD) of Cα atoms from the initial (usually
x-ray) starting structure. In the case of the lipid, a good indicator is the mean surface
area per lipid [16].

The basic theory underlying the insertion process below is very simple. We place
the protein in the bilayer and remove overlapping atoms. We then allow the whole
system to relax and equilibrate as the lipids adjust conformation around the protein.
The positioning of the protein is still somewhat subjective, especially with respect
to its displacement along the membrane normal axis. However, structural bioinfor-
matics analysis [17] has demonstrated that nearly all membrane proteins have two
“aromatic girdles” (although not phenylalanine), separated by approximately 30 Å.
These girdles are thought to interact with the interface region of the lipid bilayer
and, thus, provide an approximate indication of how to position the protein. An-
other approach is to treat the protein as a rigid body and optimize the transfer free
energy between water and a hydrophobic slab that represents the location of the
lipid bilayer [18–20]. Some of these methods have been developed into web-servers
where one can obtain a pre-oriented inserted protein. Toward the end of the chapter,
we discuss how this issue may also be addressed via a CG simulation approach. If
one is not interested in the interaction of the protein with the lipid at the particle
level at all, then a more suitable approach may be to use an implicit membrane,
which is discussed in detail in Chap. 10.

3 Methods

There are obviously two main components to a membrane protein simulation: the
actual protein and the lipid bilayer in which it is to be embedded. Although we focus
on the issues concerning the whole system, it is worth briefly reviewing practical
considerations for these individual components.

3.1 Preparation of the Protein

Typically, the starting point for the protein will be a structure deposited in the pro-
tein data bank (PDB; www.rcsb.org). Often, however, these structures will need a
certain amount of preparation before production level MD can be run. The most se-
vere of these considerations might be missing atoms, which can range from entire
loops to a couple of side chain atoms. How one deals with this problem depends on
the question one is trying to address with the simulation. For the case in which only
a few atoms are missing from a small number of side chains, one can manually build
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in the missing atoms using an interactive modeling program such as PyMOL [21] or
What-If [22] (see Note 1). For the more complicated case in which whole loops are
missing, typically, one has to resort to programs that can build random structures
that are geometrically correct, such as Modeller [23]. Indeed, in some cases, it may
be that construction of an entire homology model is required (Chap. 11). Another
related consideration is how to deal with the termini in the structure. Frequently,
the structure is not the whole sequence of the protein, and, therefore, charged ter-
mini may not be appropriate. One common procedure has been to build on capping
groups that help to best mimic the continuing protein chain (see Note 2). A sim-
pler approach involves simply protonating the C terminus and deprotonating the
N terminus.

In all but the very high-resolution structures, one will still have to add hydrogen
atoms because these will not be present in the PDB file. Although this is a very
simple process, there are decisions to be made even for this process: 1) the choice of
force field—all atom versus a united-atom model in which only polar hydrogens are
explicit, and 2) the protonation states of ionizable side chains. United-atom force
fields will give the benefit of reduced computational effort because of reduction
in the number of particles, but all-atom models might be preferred in some cases
in which greater accuracy is required. Various programs exist to calculate the pKa
of ionizable side chains (PROPKA [24], H++ [25], and WHAT IF [22]). Most
rely on calculating an estimate of the free energy (via the thermodynamic cycle)
of protonating the residue within its proteinaceous environment. It may be the case
that the protonation state is not important, in which case, default ionization states at
pH 7.0 are assumed. However, there are examples in which the protonation state may
be critical, as exemplified by the protonation state of Glu71 in KcsA [26–29]. The
position of the hydrogens on histidine residues should also be considered carefully,
usually by simple visual inspection to optimize local hydrogen bonding.

Finally, although solvation of the system is generally automated, oxygen atoms
from water molecules are often included in protein crystal structures. These reflect
low-energy minima for a water molecule and, thus, it is usual to include these be-
fore “bulk solvation.” Deciding whether a water molecule belongs to the subunit of
interest from the PDB file is a problem and usually one simply chooses an arbitrary
cut-off within which to include these crystallographic waters in the simulation. A
cut-off that we have used in the past has been 4 Å [30–32]. The remainder of the
simulation box is solvated with pre-equilibrated water boxes. Although we are typ-
ically interested in the protein–lipid interactions, it is important to have adequate
solvation of the entire protein (see Note 3).

3.2 Preparation of the Lipid

Not all of the methods below rely on a preformed lipid bilayer. However, one in-
variably will need a lipid-only system for control purposes, therefore, simulation of
the pure system should be done at some point. The simulation of lipid bilayers has
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matured during the past 15 to 20 years and it is beyond the scope of this chapter
to cover this in depth. The interested reader is referred to several excellent rev-
iews [33–36]. Some groups have generously made equilibrated conformations of
some lipid bilayer systems freely available (see Note 4), which provide a good
starting point for the main procedure we outline below in Sect. 3.3. Sometimes it
will be necessary to generate a new lipid bilayer system from scratch, and one then
needs a measure of how stable or good that pure system is before proceeding to in-
sert a protein into it. The most commonly used measure of equilibration or stability
is to analyze the mean area per lipid; a quantity for which there frequently exists
experimental data with which to make a direct comparison. Furthermore, if this is
incorrect, then it is likely that most other properties will also be inaccurate [16].

3.3 Setup of the Protein in the Membrane

We will focus here on methods currently used in our laboratory, but it is worthwhile
to briefly mention alternative methods. Earlier setup methods were developed with
the limitations imposed by available computer power at the time. The approach
adopted by Woolf and Roux was to build up lipids around the protein by placing
isolated lipid molecules randomly selected from a library of 2,000 conformations.
The system was adjusted to remove as many overlaps as possible, followed by a
constrained minimization procedure [37, 38]. Although one does not start from a
preformed lipid bilayer in this case, the conformations in the library will be derived
from a simulation of pure lipids.

A different approach was proposed by Faraldo-Gómez and colleagues [39], who
used preformed lipid bilayers as the starting point. Their method relies on creating
a cavity in a pre-equilibrated lipid bilayer using the solvent-accessible surface area
of the protein as a template. Lipid molecules whose head groups fall within the
volume are removed while remaining lipids are subjected to an ever-increasing force
acting perpendicular to the surface of the cavity template until the cavity is empty.
The protein itself can then simply be inserted into the cavity. This method has the
advantage that a pre-existing lipid bilayer can be used and in such a way that non-
interfacial lipid molecules are not significantly perturbed, which results in a faster
equilibration time.

With the advent of more powerful computers, a more direct approach to the setup
has become possible, and we will focus on this approach. We have implemented this
procedure using GROMACS [40] in combination with VMD [41], but there is also a
plug-in available at http://www.ks.uiuc.edu/Research/vmd/plugins/membrane/ to do
the entire process in VMD. This plug-in, however, is more useful if you intend to use
NAMD [42] as your MD program. Both methodologies exploit the fact that enough
simulation time is available to adequately equilibrate the system. The procedure is
very interactive and can be summarized by the following steps:

1. Obtain a pre-equilibrated lipid bilayer (see Note 4)
2. Align protein in the lipid bilayer
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A B

Fig. 1 (A) The protein BtuB (dark molecular surface), embedded in the bilayer after the removal
of overlapping lipids (only protein and lipid are shown in this figure for clarity). Lipid atoms are
shown as van der Waals spheres. During the course of the equilibration phase, lipid molecules will
move in around the protein as shown in (B), which is an equilibrated system

3. Remove overlapping lipid molecules
4. Equilibrate new system

The alignment of the protein with the pre-equilibrated lipid bilayer in this process
is essentially something that is performed by eye. As mentioned in the introduction,
some guidance is afforded by the presence of the tryptophan/tyrosine girdles that are
associated with membrane proteins. Removal of whole overlapping lipid molecules
means that the resulting system will have a vacuum in between the protein and the
lipid molecule (see Fig. 1a). During the first stage of the equilibration, this will be
removed as the lipid molecules relax around the protein. Typically, for this stage, it
is important to keep the protein conformation as close to the starting coordinates as
possible. Thus, it is common for positional restraints to be imposed on the protein
atoms (or a subset thereof) during this stage. An NPT ensemble (see Note 5) MD
simulation is then performed to allow the lipid molecules to equilibrate around the
newly inserted membrane protein (Fig. 1b). During this stage, water may penetrate
slightly into the vacuum between lipids and the protein. These will be expelled
during the course of the simulation as the lipids move toward the protein and the
system equilibrates. The length of this equilibration phase is usually determined by
monitoring the area per lipid as a function of time. After a period of time (typically
between 1 and 3 ns for systems with 512 lipids), one should see this plateau. This
value can be checked against experimental data. Before unconstrained production or
further dynamics can be performed, it is best to allow the protein to relax in stages.
There are many different approaches reported in the literature, which can seem to be
rather subjective, but the underling philosophy is to work back from the backbone
of the protein (see Note 6).
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3.4 An Alternative CG Method

A more recent approach has been to simulate the whole system de novo from a
random arrangement of molecules in the system. Such an approach is made possible
via the use of the CG methods [15] in which small groups of atoms (typically four)
are treated as single particles. Because of the associated reduction in the number of
particles, much longer time and length scales can be addressed. This presents the
opportunity to simulate large-scale changes in protein–lipid interactions, such as
membrane protein bilayer insertion. Thus, at that point, decide whether the problem
requires a switch to a fully atomistic description or whether the CG description is
adequate. There are currently ongoing efforts to integrate multiscale methods into
a self-consistent representation [43–45]. A full discussion of these methods is not
possible here, but it seems likely that these methods offer the greatest potential in
terms of flexibility across time and length scales for membrane systems.

CG simulations have previously proved useful in modeling the dynamics of lipids
and detergents [46–51], DNA [52], proteins [53], and “toy” peptides [54–56]. A
semiquantitative model for lipid systems was devised based on thermodynamic data
as well as structural and dynamic properties of atomistic simulations [57]. We re-
cently adapted this model for application to membrane proteins [58, 59], and a sim-
ilar model has been developed for related systems [60]. In our CG model, instead of
representing every atom in a protein or lipid molecule, approximately four atoms are
grouped together into one particle, and are parameterized to capture the hydropho-
bicity/hydrophilicity, charge, and hydrogen-bonding properties of their constituent
atoms. Bonds, angles, and the overall backbone secondary/tertiary structure are pre-
served through soft harmonic potentials [58].

The initial CG model for a protein is derived by extracting the coordinates for
all Cα atoms and selected side chain atoms from the corresponding all-atom protein
file. The overall shape and surface area of a lipid or protein molecule is preserved in
the model (Fig. 2). Subsequently, lipid molecules taken from a library (derived from,
e.g., a pure lipid simulation) are randomly placed in a box containing the protein,
before solvation with a pre-equilibrated box of water particles, and neutralizing ions
(Fig. 3a). A number of factors must be considered when solvating the protein. First,
as with atomistic models, the number of lipid molecules should be such that the
bilayer formed is sufficiently large enough to allow plenty of space between the
embedded protein and its periodic image within the membrane plane (see Note 3).
This number may be estimated by considering the equilibrium area per lipid of
interest. Second, a ratio of CG water particles to lipid molecules of approximately 10
to 25 should be used to favor the formation of a bilayer, rather than, e.g., hexagonal,
micellar, or other nonlamellar phases [57].

Once the system has been prepared, a short energy minimization procedure is
carried out, before one or more production runs are performed. A typical such CG
simulation will normally be approximately two orders of magnitude faster than the
corresponding atomistic simulation, as a consequence of the reduced number of par-
ticles, softer potentials (and, thus, longer MD integration timestep), and considera-
tion of only short-range nonbonded interactions. Our experience with approximately
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Atomistic Coarse-grained

Fig. 2 Illustration of the how the atomistic model translates into the CG model for the KcsA
potassium channel. Aromatic particles are shown as black van der Waals spheres, hydrophobic or
backbone particles are shown in light grey, and polar/charged particles are shown in dark grey

A B

Fig. 3 (A) The random starting configuration of the CG simulation of KcsA with dipalmitoyl-
phosphatidylcholine (DPPC). KcsA is drawn as a black backbone trace. Lipid acyl chain particles
are drawn as light grey van der Waals spheres, glycerol backbone particles are show in dark grey,
and lipid head groups (including the phosphates) are drawn as black spheres. Water molecules are
not shown for clarity. (B) The configuration after 200 ns, which clearly shows that the system has
evolved into a bilayer arrangement with KcsA embedded within it
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40 different membrane proteins suggests that a period of approximately 0.1 to 0.2 µs
is normally sufficient to allow the self-assembly of a phospholipid bilayer around
the protein of interest. For a typical system of approximately 6,000 CG particles,
this translates to a CPU time of approximately 1 to 2 days on a typical workstation
computer [58]. The simulation proceeds via an initial assembly of lipids into a con-
tinuous lamellar phase, with a lipid “stalk” that bridges between the bilayer and its
periodic image. Eventually this “stalk” is broken to form a defect-free bilayer with
the membrane protein correctly inserted (Fig. 3b).

This CG method for bilayer insertion has been successfully applied to a num-
ber of membrane proteins, and shown to agree in terms of lipid–protein interactions
with extended atomistic simulations of an eight-stranded β-barrel, OmpA; a trans-
membrane α-helical dimer, Glycophorin A [58]; and a 12-transmembrane α-helix
bundle, LacY [59]. It has also been extensively tested against a number of α-helical
membrane peptides and proteins and shown to be in good agreement with experi-
mental data in terms of orientation within the bilayer [59]. The primary advantage
of the CG approach to membrane insertion is the elimination of the need for user
input, e.g., using the aromatic girdles to guide placement. This is particularly useful
for proteins that might be tilted with respect to the bilayer normal, such as the Vpu
α-helical fragment from HIV-1 [59]. This is also true of proteins that are nonuni-
form in their transmembrane distribution, e.g., the coat protein from fd phage, which
contains an amphipathic in-plane helix thought to reside at the membrane/water in-
terface [59]; monotopic proteins that sit on the surface of the bilayer; or proteins
with large extracellular regions, such as the multidomain ABC transporter family.
Finally, self-assembly simulations of complex, atypical membrane proteins, such
as the highly charged voltage sensor domain from a potassium channel, reveal that
considerable local bilayer deformation may be necessary for insertion, rather than a
bilayer of fixed and uniform thickness surrounding the protein [61].

Once the protein has stably inserted within the membrane, it may be desirable
to convert from the CG representation back to an atomistic level of detail. The
most obvious method for achieving this is to use the CG results as a “rough guide”
for positioning the atomistic protein into a bilayer via the method detailed above
(Sect. 3.3) involving placement into a pre-equilibrated bilayer before removal of
overlapping lipid molecules. For example, the peaks in densities of the head groups
along the membrane normal in the atomistic preformed bilayer may be matched
up with the CG system, before least-squares fitting the atomistic protein Cα atoms
onto the backbone of the CG model, or, alternatively, using homology modeling
techniques. For proteins that are more complex, such as those that are significantly
tilted or that induce local bilayer deformation, a more direct matching of atomistic
and CG coordinates may be necessary. Therefore, a method is currently being de-
veloped whereby atomistic lipid structures from a pure lipid simulation library are
iteratively least-squares fitted onto their CG lipid counterparts, with each of the best
matching molecules being retained. Thus, an atomistic bilayer resembling the CG
system is gradually built up around the atomistic protein model, which is again ob-
tained by fitting the Cα atoms onto the backbone of the CG protein.
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3.5 Running the Simulation

The last step is to actually run your atomistic simulation. The primary emphasis
has been on using parameters and ensembles that best reproduce the properties of
lipid bilayers in the absence of proteins. A full review of these considerations is
beyond the scope of this chapter, but the interested reader is referred to several
recent articles that discuss sources of error and the best choice of parameters in
membrane simulations [16, 62–64].

There are many properties that one could check in the simulation, but probably
the most useful is the area per lipid, which gives an indication of molecular packing
and the membrane fluidity. It is also a property that is sensitive to simulation setup
while also being a reasonably reliable indicator that other properties will also be
correct. It is important to remember here what your question is—large undulations
across large membrane patches will require much longer simulation time than a
study of water–head group interactions, for example.

Finally, there are practical considerations, such as disk space and storage of very
large trajectories (see Note 7), a problem that is presumably going to parallel the
increase in computer power.

4 Conclusions

We have discussed two approaches that can be used to set up and perform MD
simulations of membrane proteins. The advantage of the first atomistic approach is
that it is easy to use and generally applicable. A disadvantage of this approach is
that, to some extent, it depends on a subjective positioning of the protein within the
bilayer in terms of its overall tilt and its disposition along the bilayer normal. The
second approach, via the use of CG methodologies, allows one to circumvent these
problems. The combination of both of these methodologies allows one to explore a
wide range of time and length scales with respect to membrane proteins, and should
provide valuable information regarding their structure and function.

5 Notes

1. There is also an online server version of the What-If program (http://www.cmbi.
kun.nl:1100/WIWWWI/) that provides useful tools features to rebuild missing
atoms in side chains. Stereochemical checking tools are also available at this site
(useful if you are starting from a model).

2. Typical capping groups are an acetyl on the N terminus (to give CH3-CO-NH2–
protein) or amidation at the C terminus (to give protein–CO-NH2). These can be
added with a molecule-building program such as Pymol [21]. These additional
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Table 1 Lipid configurations available for download

Principal investigator URL Lipids

Scott Feller http://persweb.wabash.edu/facstaff/fellers/ POPC, DOPC, DPPC,
SDPC

Helmut Heller http://www.lrz-muenchen.de/∼heller/
membrane/membrane.html

POPC

Mikko Karttunen http://www.lce.hut.fi/research/ polymer/
downloads.shtml

DMTAP, DMP, DPPC

Peter Tieleman http://moose.bio.ucalgary.ca/
index.php?page=Structures and Topologies

DPC micelles, POPC,
DMPC, DPPC, PLPC

groups are either treated as separated residues (as is case for GROMACS [40])
or as patches (as is the case for CHARMM [65]).

3. In periodic systems (nearly all lipid bilayer simulations will be periodic), it is
important to make sure that the parts of the protein that are not in the bilayer
are adequately solvated to ensure that the protein near one edge of the box does
not “see” itself in the nearest periodic image. To avoid such problems, we have
typically set up the system such that there is 10 Å of water between the protein
and its nearest box edge.

4. Some groups have made freely available their coordinates of pre-equilibrated
lipid bilayers, and these provide a useful start point. Some that are available at
the time of writing are summarized in Table 1.

5. NPT refers to the thermodynamic ensemble used. In this case, a constant number
of particles (N ), constant pressure (P), and constant temperature (T ). This al-
lows the volume of the system to change and, hence, the surface area of the lipid,
which can then be compared back with experiment as a measure of simulation
quality.

6. Typically, the protein is relaxed in steps. For example, there may be a period
during which backbone atoms only are constrained, followed by just Cα atoms,
followed by no constraints during the production phase of the simulation.

7. An issue that requires constant revisiting is how often one writes simulation
frames to the trajectory file. The problem is compounded by two factors: the
ever-increasing size of the system that can be reasonably addressed (currently
routinely up to 200,000 atoms), and the length of simulation time (of the order
of tens of nanoseconds). A reasonable value for atomistic simulations is to write
to disk every 5 ps, but, again, this will depend on what question you are trying to
address.
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Chapter 9
Membrane-Associated Proteins and Peptides

Marc F. Lensink

Summary This chapter discusses the practical aspects of setting up molecular
dynamics simulations for membrane-associated proteins and peptides. Special
emphasis lies on the analysis of such systems. The main focus is the associ-
ation between a cationic peptide and an anionic lipid bilayer—a peptide/lipid–
bilayer system—but the extension onto more complicated systems is discussed.
Topology files for selected lipids and several new analysis tools relevant for
protein–membrane simulations are presented, the most important ones of which are:
g helixaxis, to calculate the axis of a helix and its angle with the bilayer; g arom,
to calculate aromatic order parameters; and g under, to calculate which lipids in-
teract with the protein. A procedure is explained to calculate properties involving
peptide-interacting lipids only, as opposed to all lipids.

Keywords: Cell-penetrating peptide · GROMACS · Helix axis · Molecular dyna-
mics · Order parameter · Penetratin · Peptide–lipid interaction · Peptide-membrane
association · POPA · POPC · POPG · POPS

1 Introduction

Membrane-associated proteins are relatively little studied by modeling or simulation
techniques because of the traditional difficulty in getting high-quality starting struc-
tures and the related underrepresentation in the Protein Data Bank [1] (PDB), de-
spite their critical contribution to cell functioning. The simulation of such systems is
not necessarily more involved than any other simulation, but the lipid bilayer adds a
complexity that requires an elevated level of bookkeeping to keep the analysis of the
simulations tangible. On the other hand, the normal to the bilayer plane—especially
when it aligns with one of the primary axes—offers an easy frame of reference.
Aspects of the simulation setup and analyses will be demonstrated using a peptide–
bilayer (as opposed to protein–bilayer) system, more specifically, the association of
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the cationic helix penetratin to a partially negatively charged bilayer. Please refer to
other chapters in this volume for simulation setup and analysis details that are not
specific for the simulation of membrane-associated peptides.

The main sections of this chapter are system setup and analysis. In the system
setup section, I show how to create a new lipid topology from an existing one by
varying only the head group function, how to incorporate these new lipids into an
existing (and equilibrated) bilayer, how to add one (or more) peptide(s) in the sol-
vent phase of this bilayer system, and how to mutate residues (to alanine) without
solvating the hydrophobic core of the bilayer. In the analysis section, the analysis
of the simulation of these systems is discussed and several new tools are presented.
Both sections end with a downloadable files subsection. All files relevant for this
chapter are freely available to the scientific community.

1.1 Penetratin

The 16-residue helix named penetratin originates from the Antennapedia homeo-
domain of Drosophila melanogaster. Homeodomain proteins are DNA-binding pro-
teins in which the third helix binds in the major groove (Fig. 1).

This helix, with sequence RQIKIWFQNRRMKWKK (residues 43–58), con-
tains a relatively high number of positively charged residues, and interaction
with—specifically the phosphate groups of—a cellular membrane is, therefore,

Fig. 1 Homeodomain binding to DNA
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not surprising. However, the Antennapedia homeodomain was found to not only
bind to, but also be able to translocate across a cellular membrane [2], with its
discriminating factor the third helix [3]. This so-called pAntp peptide, or pene-
tratin, was the first member of an increasingly large family of cell-penetrating pep-
tides [4] that have been proposed and reported as carriers for cellular uptake of
proteins, oligonucleotides, and drugs [5,6]. Penetratin differentiates itself from most
membrane-associating peptides through its non-amphipathic character [7]; the pos-
itively charged residues are distributed evenly over the helix, leaving no single side
of the helix hydrophobic enough to allow the formation of pores.

The translocation mechanism of penetratin is, to date, not known [8]. Penetratin
translocation is thought to be a receptor-independent process [9], but different path-
ways seem to exist [10] that may be direct [11] or energy dependent [12], involve
endocytosis [13], or require a transmembrane potential [14, 15]. Its potential abil-
ity to permeate pure lipid bilayers is a matter of controversy and more and more
evidence to the contrary is presented [16–18]. Additional simulations, using a trans-
membrane potential and using the replica exchange molecular dynamics technique,
seem to confirm this observation (results not published).

Although the penetratin system is indeed an interesting system to study on its
own, the principles that govern the peptide–membrane interaction are easily ap-
plicable to protein–membrane systems as well. Structure, orientation, and bilayer–
peptide and lipid–residue interaction are all determined by their three-dimensional
coordinates and (a combination of) atom–atom contacts. Once the correct corre-
spondence definitions have been set up, traversing the trajectories and processing
each frame with the desired analysis function is straightforward (see Note 1).

2 Methods

2.1 System Setup

2.1.1 Material

The simulations and analyses presented in this chapter were performed with the
GROMACS [19] suite of programs (see Note 2), version 3.1.4. Additional UNIX
tools such as awk, sed, grep, and cat, as well as programs written by the author of
this chapter, using the GROMACS C programming libraries, are used. The latter
programs are made available to the scientific community (see Note 3). The prin-
ciples of the simulation setup and analysis explained in this chapter apply to any
simulation package, and the presented analysis programs can also be used to ana-
lyze simulations done by other simulations packages.
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Fig. 2 Structure of several of the members of the POPx family of lipids. Structure of several
of the members of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-family (POPx) of lipids. The
different head groups determine the overall charge of the molecule: POPC and POPE are effectively
neutral, whereas POPG, POPA, and POPS carry a negative charge. The dashed boxes indicate
commonly defined groups of atoms. These definitions are also used throughout the text. A typical
calculation involving these groups would be the calculation of their density throughout the bilayer,
thus, investigating the bilayer structure

2.1.2 Lipid Bilayer

As a starting point, a 128-lipid bilayer of POPC molecules was taken, and equili-
brated in the GROMOS96 43a2 force field [20] with modified lipid parameters [21].
The bilayer structure and the topology files needed for simulating this system are
freely available (see Note 4). Figure 2 shows the structure of a selected set of lipids
belonging to the glycerol family that have both a 15-carbon 1-palmitoyl chain and a
17-carbon 2-oleoyl chain containing a single double bond in the middle. The head
group function determines the specifics of the lipid as well as its overall charge.

To obtain a physiologically relevant bilayer, a portion of the neutral lipids can
be replaced by negatively charged ones. This requires modification of the bilayer
structure and the lipid topology.

2.1.3 Modification of Lipid Topology

The creation of force field parameters is a field in its own. Here, I will use the
principle of parameter transfer and copy parameters from well-calibrated residue
parts onto the newly created lipid head group function to make a POPG lipid topol-
ogy from the existing POPC topology files. Topology files for POPA and POPS are
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also available (see Note 3). The only varying entity is the head group, both in the
topology file and the structure. This means that all coordinates, bond definitions,
and interaction terms of the glycerol group can simply be copied to the new lipid
definition.

1. Remove all atoms, bonds, pairs, angles, etc. involving the head group from the
POPC lipid topology file.

2. Increase or decrease all references to atom numbers in what remains of this topol-
ogy file by the difference in number of atoms of the head group function (see
Note 5).

3. Add the new head group function to the section listing the atoms, renaming lipid
atoms to avoid overlap (see Note 6).

4. Add the parameters for the new head group function, copying from chemically
equivalent groups in residues (see Note 7).

5. Add bonded terms (bond, angle, dihedral, and 1-4 pair interaction definitions) for
the atoms involving both the phosphate and head group (see Note 8).

6. Perform a simulation in a vacuum to check the correctness of the newly created
topology (see Note 9).

2.1.4 Modification of Bilayer Structure

Any number of lipids can be replaced from the base POPC bilayer structure, as long
as the varying entity—in this case, the head group—occupies more or less the same
space. The following procedure will replace eight POPC molecules at either side of
the bilayer by POPG (see Note 3).

1. Choose, at random, eight lipids on either side of the bilayer.
2. Replace these lipids in reverse order:

(a) Fit (least-squares root mean square deviation [RMSD]) the phosphate groups
of POPG and POPC, correctly aligning the oxygens that point toward the
head group and the acyl chains.

(b) Extract the head group coordinates from the fit and the phosphate and tail
coordinates from the reference.

(c) Rename the tail atoms to correspond to the previously created POPG
topology.

(d) Copy the coordinates of remaining lipids, and add new head, phosphate, and
tail coordinates, with POPG as the residue name.

3. Restore the original box, and reorder the file: POPC first, then POPG, then SOL
(see Note 10).

2.1.5 Incorporation of Peptide Structure

Although the structure of the third helix in the homeodomain is α-helical, this
need not be the case in solution, or when interacting with a lipid bilayer. Previous
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investigations have shown a random structure in solution [22]. In contrast, binding to
lipid bilayers promotes the formation of secondary structure [23], both α- or β-like,
through backbone hydrogen bond shielding [24], and a decreased dielectric constant
in the membrane core [25]. Although an increase in both peptide concentration or
negatively charged lipid content was shown to induce an α → β conversion [26], at
high lipid-to-peptide ratio and low negatively charged lipid concentration, penetratin
was shown to be α-helical [27].

The following procedure will place the penetratin helix at a distance of approx-
imately 2 nm above the bilayer, horizontally aligned with the bilayer surface (see
Note 11). The solvation step will add solvent molecules both around the helix and
in any vacuum that was formed by the replacement of lipids (previous section) with-
out placing water in the hydrophobic core of the bilayer.

1. Extract the coordinates of the third helix from PDB entry 1ahd, residues 43 to 58.
2. Create a topology for the helix, capping the C terminus with an amine group (see

Note 12).
3. Rotate the helix to align itself perpendicular to the z-axis, i.e., the bilayer surface,

and increase its z coordinates by approximately 10 nm (see Note 13).
4. Add the helix coordinates to the solvated bilayer box.
5. Calculate the minimum box size needed, combine this z-axis of this box with the

x- and y-axes of the original bilayer (see Note 14).
6. Remove counterions and solvate the box, i.e., the resulting vacuum around the

peptide and wherever modified lipids have a smaller head group volume.
7. Remove added waters that have their z coordinate in between the membrane layer

(see Notes 15 and 3).
8. Add counterions to make the system electrostatically neutral.
9. Combine the topology files for the peptide, POPC, POPG, solvent, and counteri-

ons (see Note 16).

Figure 3 shows a representation of the resulting peptide–bilayer system. The
same procedure can be repeated to incorporate additional peptide molecules (see
Note 17). Overlap of these molecules with solvent is not a problem because the
solvation step in the above procedure will eliminate these water molecules.

2.1.6 Mutation of Selected Residues to Alanine

Single-residue mutations are often used in biochemical experiment because a
change in reactivity can be directly associated with a single residue. Likewise, mu-
tation in simulation can provide an important insight into the physical interactions
that lie at the basis of this reactivity.

Mutating selected residues to alanine is a straightforward step that only involves
deletion of the side chain. This results in a local vacuum that can be filled by a few
water molecules, depending on the size of the initial side chain. By allowing only
water molecules to be inserted that show overlap with the original side chain, one
avoids the step of having to remove membrane-inserted water molecules again. The
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Fig. 3 Initial penetratin–bilayer structure. Neutral POPC and negatively charged POPG lipids are
displayed in thin and thick wireframe, respectively. The helix is displayed as a ribbon structure.
Solvent and counterions are not shown. The head group centers, defined as the average coordinate
in the z direction (perpendicular to the bilayer surface) of all lipid phosphorus atoms of each
bilayer half, represent the center of the interface regions. The center of the hydrophobic core of the
membrane is the average of these

easiest approach to this is a two-step procedure, extracting in a first step the added
solvent molecules and adding them manually in a second step. This procedure is
especially desirable when mutating residues that are located in the bilayer interface
region.

1. Pass one:

(a) Convert the system box to force all atoms to be in the box. This will break
molecules but it is easier to visualize the overlap with added water molecules
(see Note 18).

(b) Mutate residues by removing their side chain and renaming the residue name
of the remaining atoms (see Note 3).

(c) Solvate the box, copy the added solvent molecules to the unmutated system
box.

(d) Extract the solvent molecules that overlap with the original unmutated side
chain.

2. Pass two:

(a) Mutate the residues in the original box, but keep the molecules whole (see
Note 19).

(b) Add the selected solvent molecules from the last step of pass one.
(c) Add counterions if charged residues were mutated.

3. Create a new topology (see Note 20).
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2.1.7 Downloadable Files

A solvated bilayer of 128 POPC lipids, and topology files for POPC and POPE can
be downloaded from http://moose.bio.ucalgary.ca/. Topology files for POPG, POPA,
and POPS, as well as scripts to:

• Replace selected POPC lipids
• Remove unwanted water molecules
• Mutate selected residues into alanine

are made available at http://www.scmbb.ulb.ac.be/Users/lensink/lipid/.

2.2 Analysis

The dynamics of a protein in equilibrium may be severely modified by the pres-
ence of an external influence. Such external forces may occur on membrane binding
and/or ligand release and can trigger a cascade of events that are characterized by
slow-motion displacements of secondary structure elements. The dynamics of these
elements are readily identified from RMSD plots after fitting to a common reference
frame such as a central β-sheet [28]. Whenever a membrane is present, an additional
frame of reference exists in the surface of the bilayer (tacitly ignoring curvature
effects). The orientation of a protein with respect to the membrane to which it is
binding is especially relevant in the case of peptide–membrane association.

2.2.1 Calculation of Helical Axis, g helixaxis

The calculation of the axis of one or more helices, together with the normal to the
bilayer plane, offers a view onto (inter)-helical displacements in combination with
their orientation with respect to the bilayer.

The axis of a helix is best determined using a rotational least-squares fitting pro-
cedure, mapping the Cα’s of the helix onto itself but one residue out of phase, i.e.,
residue i is mapped onto residue i + 1. A quaternion-based method is used to iden-
tify the screw transform (translation along and rotation about the helix axis) that will
superimpose the two helices. The rotational least-squares method is fast, accurate,
and insensitive to noise and, thus, able to deal well with imperfect helices [29].

The method has been implemented in a program using the GROMACS devel-
opment and analysis libraries: g helixaxis (see Note 3). It can read trajectory and
single structure PDB files and will output for each helix its angle with the z-axis as
well as their interhelical angles. Optionally, the initial point and vector components
and length of each helix are written, in a format following PDB standards and, thus,
easily visualized using standard molecule viewers.
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2.2.2 Orientation of Aromatic Residues, g arom

Whereas the calculation of helix axes helps in determining the dynamics of such
secondary structure elements, at a more local level, aromatic order parameters are
used (Fig. 4) [30]. The aromatic order parameters S(N) and S(L) are calculated rel-
ative to the normal to the bilayer plane, through the formula 1/2 (3 cos2 θ − 1). S(N)
relates to the normal to the aromatic ring, whereas S(L) describes the vector from
Cγ through the ring. θ is the angle between the respective vector and the bilayer
normal. For S = 1, these vectors are aligned, whereas S = −1/2 means orthogo-
nality. Because these vectors cannot both simultaneously be aligned with the bilayer
normal, the combinations S(N) = 1 and S(L) = 1 are mutually exclusive, and an
increase in the one induces a decrease of the other. They can, however, both equal
−1/2, meaning that both vector are orthogonal to the bilayer normal. The mutually
exclusive behavior is illustrated in Fig. 5.

Calculation of the aromatic order parameters has been implemented in an analy-
sis tool that can read both trajectories and PDB files: g arom (see Note 3). Detection
of aromatic residues is automatic, but it is also possible to select the residues of in-
terest. The vectors Cγ → ζ for PHE and TYR, and Cγ → Cζ2 for TRP, are used for
the calculation of S(L), whereas the aromatic plane, defined by the atoms Cγ, Cε1,

Fig. 4 Aromatic order parameters. Visualization of aromatic order parameters. Solid and dashed
arrows represent S(L) and S(N), respectively. When either arrow is aligned with the normal to the
bilayer plane (long arrow), the respective order parameter equals 1
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Fig. 5 Semiconcerted behavior of aromatic order parameters. Aromatic order parameters for TRP
48 during a 20-ns simulation of the R53A,K57A double mutant, in which mutation occurred after a
100-ns simulation of the association of penetratin with a bilayer consisting of POPC/POPG lipids
in a 7:1 ratio. Notice the concomitant decrease in S(L) after an increase of S(N)

and Cε2 for PHE and TYR, Cζ3 for TRP, determines the normal to this plane, used
in the calculation of S(N).

2.2.3 Lipids Interacting with Peptide, g under

The interaction between a peptide or protein and a lipid bilayer is not a static quan-
tity that can be defined as the interaction between residues X and Y and 1, 2, 3, or N
specific lipids. Although membrane-interacting residues may be likely to sustain this
interaction once established, lateral lipid diffusion will take place, replacing individ-
ual lipids, much like a water molecule interacting through hydrogen bonding with a
protein residue may be replaced a number of times by another water molecule.

In Fig. 3, a positively charged peptide hovers above a negatively charged bilayer.
During the peptide-membrane association, the attractive force on the peptide will
effectively change from an almost uniformly distributed electric field at large dis-
tance into more specific, close distance, atom–atom interactions that include, be-
sides Coulomb, also Lennard-Jones interaction terms.

Here, I present a pragmatic way of defining lipids that interact with an ap-
proaching peptide or protein that is purely distance based. This definition [17] is
implemented in the program g under (see Note 3). Essentially, lipids that come
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within a certain cut-off distance of the peptide are defined as interacting with this
peptide. This distance can be calculated between any two peptide and lipid atoms,
but also be restricted to use only backbone atoms. The distance criteria need not
be the same in the x , y, or z direction. Picturing a cylinder with a radius of 0.1 Å
and height of 2 nm under every atom of the helix in Fig. 3 will define a lipid as
interacting with the peptide when any of its atoms enters this cylinder. This proce-
dure includes lipids that have their acyl chains under, but the head group beside, the
peptide (see Note 21).

The resulting time-dependent evolution of peptide-interacting lipids can subse-
quently be used to calculate properties involving these lipids only, as opposed to the
entire bilayer or bilayer half.

Calculating Properties of Peptide-Interacting Lipids

Most analysis programs calculate a quantity from the interaction between the atomic
coordinates of one set of atoms versus another. If this happens for every frame in
the simulation, one obtains the evolution of this quantity in time. It is usually (also
in the case of GROMACS analysis tools) not possible to vary one of these two sets
of atoms, as one would need, e.g., in the case of peptide-interacting lipids or when
studying a shell of water molecules around an active site.

However, when the quantity to be calculated is cumulative, i.e., the quantity
can be calculated a posteriori from each individual lipid molecule at the instanta-
neous time t, e.g., the average z coordinate of the phosphorus atoms of the peptide-
interacting lipids, or the order parameters, one simply needs to traverse the trajectory
and extract—for the first example—the z coordinate for every single lipid. Then, in
a second step, these can be combined with the list of peptide-interacting lipids to
get the evolution of average z coordinate of all peptide-interacting lipids during the
course of the simulation (see Note 22).

Alternatively, one could cut the trajectory in n pieces of each P ps and scan these
individually. This has the advantage that, for a lipid that becomes interesting during
only a fraction of the simulation, not the entire trajectory needs to be scanned, but
only a (very small) part of it (see Note 23).

2.2.4 Bilayer Structure

Lipid deuterium order parameters describe the ordering of the lipid acyl chains with
respect to the bilayer normal. They can be measured by nuclear magnetic resonance
(NMR) experiments, but can also calculated from the lipid tail C-C dihedral angles
[31] and are expressed as a scalar value per lipid carbon atom that typically ranges
between 0 for disordered and 0.5 for ordered lipid structure. The following example
shows the calculation of lipid order parameters for lipids that are interacting with
the peptide:
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Fig. 6 Calculated lipid deuterium order parameters for a 50-ns simulation of a penetratin mole-
cule bound to a bilayer of 128 lipid molecules in a 7:1 POPC/POPS ratio. Solid circles denote
order parameters calculated over all lipids, open squares are for peptide-interacting lipids only. No
difference is made between POPC and POPS lipid molecules

1. Calculate which lipids interact with the peptide for every frame in the trajectory.
2. For each lipid tail:

(a) Calculate the lipid order parameters for each individual lipid and lipid tail for
every frame in the trajectory. These time frames should match the calculation
of peptide-interacting lipids.

(b) For each time frame:
i. Extract the residue numbers of the peptide-interacting lipids.

ii. Average the calculated order parameters for the given lipid tail for these
lipids at the given time frame.

(c) Average these averaged order parameters over all time frames.

The resulting graph is depicted in Fig. 6.

2.2.5 Coordinate Frame in Bilayer Simulations, g zcoor and g xycoor

Choosing the appropriate reference axes for the simulation significantly facilitates
subsequent analyses because no coordinate transformation is necessary. Taking the
example of Fig. 3, the z-axis coincides with the normal to the bilayer surface. Any
property involving “distance to bilayer” is calculated in the z-axis only, possibly in
relation to the bilayer or head group center. The program g zcoor (see Note 3) does
exactly this: extract the (center-of-mass averaged) z coordinate for a combination of
molecules and/or atoms.

Combining the extraction of z coordinates relative to the bilayer center with
the definition of peptide-interacting lipids produces Fig. 7. It can be seen that the
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Fig. 7 Average distance to the bilayer center (in the z coordinate) for penetratin and selected
lipid groups (see also Fig. 3) for a 50-ns simulation of penetratin binding to a bilayer of 128 lipid
molecules in a 7:1 POPC/POPA ratio. The legend follows the lines from top to bottom, with thick
lines drawn for peptide-interacting lipids and a dashed line for the bilayer center

association between peptide and bilayer has an immediate effect on the lipids that
are defined as interacting with the peptide as they are pushed down toward the bi-
layer center, whereas other lipids do not seem to be affected.

Orthogonally to this, the x- and y-axes describe diffusion within the bilayer sur-
face. The program g xycoor extracts the x and y coordinates for every single atom
in any number of combinations of molecules and/or atoms (see Note 3).
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Fig. 8 Diffusion of lipids in the peptide-binding bilayer half, for a 130-ns time frame with a 100-
ps increment of a 230-ns simulation of penetratin bound to bilayer of 128 lipid molecules in a 7:1
POPC/POPG ratio. Plotted are the x and y coordinates of the lipid phosphorus atoms, relative to
the peptide center-of-mass. Notice the fixating effect that the peptide has on the lipid phosphate
groups in its proximity

Modification of these absolute coordinates into relative ones, e.g., relative to a
membrane bound peptide, shows the restricted diffusional motion of peptide-bound
lipid molecules, as depicted in Fig. 8.

2.2.6 Downloadable Files

The analysis programs:

• g helixaxis, to calculate the axis of a helix
• g arom, to calculate aromatic order parameters
• g under, to calculate which lipids interact with a protein
• g zcoor, to plot average z coordinates
• g xycoor, to plot x and y coordinates

are available to the scientific community (see Note 3). GROMACS needs to be
installed, because these programs dynamically link to the GROMACS libraries,
but to be able to use these programs the simulations need not be performed by
GROMACS.
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3 Notes

1. In the analysis of many different simulations that all consist of almost the same
setup but with minor differences, such as a single mutated residue or a certain
number of POPC lipids replaced by POPS (or any other), a lot of time can be
saved by creating correspondence files that describe which group of atoms of
simulation A corresponds to which group of atoms in simulation B. These files
can then be parsed in the scripts that call the analysis programs to supply these
programs with the correct input.

2. http://www.gromacs.org/.
3. File(s) can be downloaded at http://www.scmbb.ulb.ac.be/Users/lensink/lipid.
4. http://moose.bio.ucalgary.ca/.
5. Renumbering is necessary because the varying entity, the head group, is at the

beginning of the topology.
6. Renaming is not necessary as long as newly added atoms have unique names.
7. If chemically equivalent groups are not available for the force field you are

using, you will have to go through the whole process of deriving parameters—
especially partial charges—from quantum mechanical calculations, following
the procedure as described in the literature for that force field. This lies outside
of the scope of this chapter.

8. Also here Note 7 applies, but at this point, the charges are already known.
Other parameters are less critical, e.g., angles and dihedrals can be made to
follow sp2 or sp3 hybridization and bond lengths taken from experimentally de-
termined values (NMR or x-ray). Moreover, in most present-day simulations,
bond lengths are constrained.

9. Incorrect topologies will quickly explode or collapse. Check the final structure:
if it looks okay, it probably is okay. Remove rotational center-of-mass motion to
avoid accelerated spinning. Vacuum simulations should be sufficiently long (on
the order of several ns) to allow the dissipation of energy in the limited number
of degrees of freedom.

10. The order of the molecules listed in the structure file must correspond to the
order of the molecules in the system topology file.

11. Penetratin positioning in lipid membranes or membrane-mimicking systems
was found to be with the axis lying in the head group region [32–34]. More-
over, the uniform distribution of positively charged residues around the helix
is likely to result in a horizontal approach of the peptide toward the bilayer
surface [35, 36].

12. Capping is generally necessary to avoid artifacts from a terminal charge caused
by the artificial chain breaking. Here the capping was performed to be in accor-
dance with previous experiments [35]. Capping is easiest performed using the
residue topology database by adding a “residue” with the correct name at the ter-
minus, hydrogens are then added automatically. Some RMS fitting may be nec-
essary, but the exact position of the cap atoms is not very important because the
energy minimization is likely to correct them.
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13. This distance will place the helix approximately 2 nm above the bilayer sur-
face, far enough to allow free rotation of the peptide in any direction (the
helix itself is ∼2.5 nm long) without the helix binding to both bilayer halves
simultaneously—which would be an unwanted artifact from the use of periodic
boundary conditions—but also close enough to avoid unfolding of the helical
structure before membrane association.

14. If you want the helix to be exactly in between the bilayer halfs (taking peri-
odic boundary conditions into account), you have to calculate (for a bilayer that
aligns its normal with the z-axis) the average z coordinates of the helix and use
this value for the calculation of the box z length.

15. Because the start is an already-equilibrated bilayer on top of which the peptide is
placed, only water molecules that have been added in the last solvation step need
to be removed. The limiting z coordinates are arbitrarily chosen to represent the
hydrophobic core of the bilayer where we do not want water molecules. They
should be sufficiently close to the hydrophobic region that any existing vacuum
created by a changed lipid head group (POPA has no head group) is filled with
water, without adding water in the hydrophobic core of the bilayer. Because the
solvation step in this procedure uses Van der Waals radii to eliminate waters
overlapping with the template structure, the same effect can probably also be
achieved by (temporarily) increasing the Van der Waals radius of the lipid acyl
chain atoms.

16. The molecule force field definitions can be included in any order, but, for the
section where the molecules’ presence is defined, Note 10 applies.

17. For each additional peptide, the number of counterions has to be corrected to
keep the system electrostatically neutral. With two penetratin peptides, that—
because of the periodic boundary conditions—each will bind to a different bi-
layer half, there are no counterions left (−16e for the bilayer and +8e for each
peptide). One should then have in mind that a third peptide will effectively see a
neutral bilayer and not a negatively charged one. Association between a cationic
peptide and an anionic bilayer is relatively fast and, moreover, subject to lateral
diffusion: in the case of penetratin, additional molecules could be placed at ex-
actly the same position without introducing a bias from the peptides that were
already present.

18. Keeping the molecules whole—as is usual practice—may result in the helix
being partially located out of the box, whereas added water molecules would
be placed in the box. Because one is only interested in knowing which water
molecules occupy the vacuum after the side chain deletion, this would be an
unnecessary complication for visual inspection. Visual inspection is to be pre-
ferred over distance calculation because the number of water molecules to add
would probably not exceed two.

19. In this step, the molecules must be kept whole. Otherwise, the bond connectivity
information is lost in the coordinate file, and automatic topology generation (for
the helix) is no longer possible.

20. The mutation into alanine requires the generation of a new (partial) topology.
It is not possible to simply delete all interactions involving deleted side chain
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atoms. Only a new topology for the helix is required, all other parts of the topol-
ogy can be kept.

21. Specifically, first, every atom that enters the cylinder is calculated and subse-
quently this group is expanded into full residues. The average distance of the
resulting group of atoms to any other group of atoms can be calculated, with
the possibility of excluding itself. More concretely, one could calculate the evo-
lution of the distance between the average position of the phosphorus atoms of
interacting and non-interacting lipids of one bilayer half during the course of
the molecular dynamics simulation.

22. For a 128-lipid bilayer, this still means that the trajectory has to be traversed
128 times. When only the peptide-interacting lipids are required, a first step
would be the identification of these lipids to avoid unnecessary processing of
the trajectory.

23. Scanning of a trajectory file containing all coordinates in the system, includ-
ing water, may become inhibitively slow when the simulation length exceeds
100 ns. When not all coordinates in the system are required, a first step would
be the extraction of only the coordinates involved into a new trajectory and then
only that trajectory is processed. This step usually already results in a trajectory
that is small enough to avoid the necessity of cutting it in pieces.
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21. O. Berger, O. Edholm, and F. Jähnig. Molecular dynamics simulations of a fluid bilayer of
dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature.
Biophys. J., 72:2002–2013, 1997.

22. B. Christiaens, J. Grooten, M. Reusens, A. Joliot, M. Goethals, J. Vandekerckhove,
A. Prochiantz, and M. Rosseneu. Membrane interaction and cellular internalization of pen-
etratin peptides. Eur. J. Biochem., 271:1187–1197, 2004.

23. S. White and W. Wimley. Membrane protein folding and stability: Physical principles. Ann.
Rev. Biophys. Biomol. Struct., 28:319–365, 1999.

24. A. E. Garcı́a and K. Y. Sanbonmatsu. α-Helical stabilization by side chain shielding of back-
bone hydrogen bonds. Proc. Nat. Ac. Sci. USA, 99:2782–2787, 2002.

25. F. Avbelj, P. Luo, and R. L. Baldwin. Energetics of the interaction between water and the
helical peptide group and its role in determining helix propensities. Proc. Nat. Ac. Sci. USA,
97:10786–10791, 2000.
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32. G. Fragneto, F. Graner, T. Charitat, P. Dubos, and E. Bellet-Amalric. Interaction of the third
helix of antennapedia homeodomain with a deposited phospholipid bilayer: A neutron reflec-
tivity structural study. Langmuir, 16:4581–4588, 2000.

33. C. E. Brattwall, P. Lincoln, and B. Nord’en. Orientation and conformation of cell-penetrating
peptide penetratin in phospholipid vesicle membranes determined by polarized-light spec-
troscopy. J. Am. Chem. Soc., 125:14214–14215, 2003.
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Chapter 10
Implicit Membrane Models for Membrane
Protein Simulation

Michael Feig

Summary Implicit models of membrane environments offer computational advan-
tages in simulations of membrane-interacting proteins and peptides. Such methods
are especially useful for studies of long time scale processes, such as folding and ag-
gregation, or very large complexes that are otherwise intractable with explicit lipid
environments. Implicit models replace explicit solute–solvent interactions with a
mean-field approach. In the most physical models, continuum dielectric electrosta-
tics is combined with empirical formulations for the nonpolar components of the
free energy of solvation. The practical use of a number of implicit membrane mod-
els ranging from the empirical IMM1 method to generalized Born-based methods
with two-dielectric and multidielectric representations of biological membrane char-
acteristics is presented.

Keywords: Continuum electrostatics · Dielectric constant · Generalized Born ·
Gouy-Chapman · Langevin dynamics · Poisson-Boltzmann · Solvent-accessible
surface area

1 Introduction

Simulations of proteins and peptides interacting with biological membranes often
involve either very large system sizes, e.g., when transport through channels is
studied, or very long time scales, e.g., in studies of peptide folding and aggre-
gation. Extensive conformational sampling is also necessary to obtain sufficiently
accurate estimates of association and insertion free energies that are discussed in
previous chapters. Simulations of membrane-bound proteins and peptides with ex-
plicit lipids, water molecules, ions, and other co-solvents are relatively straight-
forward, but the associated computational expense imposes serious limitations on
how much sampling can actually be obtained in practice. To save computer time
and to simplify the setup of complex membrane systems, the environment may be
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represented implicitly while maintaining atomic-level detail only for the biomole-
cule of interest. Implicit membrane models reduce computational costs, not just as a
result of much smaller overall system sizes, but also through instantaneous confor-
mational averaging over solvent and lipid molecules. Such models are particularly
attractive in cases in which specific interactions with the phospholipid bilayer play
a minor role and general characteristics of a layered hydrophobic/hydrophilic sys-
tem are sufficient in describing the environment for membrane-interacting proteins
or peptides. It is also possible to use implicit membrane models in combination
with explicitly modeled water, ions, or lipids [1], for example, by explicitly includ-
ing water and ions inside an ion channel. However, because technical challenges in
implementing such hybrid models have, to date, limited their practical application,
only pure implicit models of membrane environments are discussed in this chapter.

Implicit models of membrane environments can be classified either as knowl-
edge based or physics based, although empirical assumptions are often also made
in the latter case. Knowledge-based implicit membrane models typically use ex-
perimentally determined residue-specific transfer free energies between water and
nonpolar organic solvent to capture the energetics of inserting polypeptides into the
hydrophobic membrane interior [2–9]. Implicit membrane models based on physi-
cal principles commonly rely on a decomposition of membrane–protein interactions
into electrostatic contributions based on continuum dielectric theory and nonpolar
contributions based on empirical formalisms [10–15]. Related approaches include
dipole lattice membrane models [16]. Implicit membrane models based on contin-
uum electrostatics are at the center of this chapter because, to date, they have had
the widest application.

2 Theory

2.1 Electrostatic Interactions

The main physical characteristic of biological membranes is a hydrophobic core
layer formed by the fatty acid tails of the phospholipid molecules that constitute
the membrane. From an electrostatic perspective, such a membrane can be ap-
proximated as a layered dielectric system with a low dielectric constant in the
nonpolar interior that gradually rises to the high dielectric aqueous solvent envi-
ronment on either side of the membrane [14]. Such a model is described in general
by Poisson-Boltzmann (PB) theory [17]:

∇ · [ε(r)∇φ(r)] − κ2(r)φ(r) = −4πρ(r) (1)

where ρ(r) is the explicit charge distribution of the biomolecular solute, whereas
the dielectric constant ε(r) and the modified Debye-Hückel screening factor κ(r)
describe the continuum environment. The κ(r) term captures the interaction with
free ions in the environment and may be neglected as a first approximation because
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ions do not commonly penetrate membrane interiors. How to implicitly include the
effect of ions interacting with phospholipid head groups is discussed below. Given
ε(r) and ρ(r), the PB equation can be solved for the electrostatic potential φ(r) from
which the electrostatic solvation energy is obtained as:

�Gsolvation,elec =
∫

V
ρ(r) (φdielectric(r) − φvacuum(r)) dr, (2)

where φdielectric(r) and φvacuum(r) are the potentials in the presence of the dielectric
environment and vacuum, respectively. If �Gsolvation is added to a given molecular
force field, an implicit representation of the environment is introduced. Molecular
dynamics simulations with such an implicit model are straightforward but require
an estimate of the gradient ∇�Gsolvation .

The PB equation can be solved directly with a number of different methods
[18–22]. However, high-accuracy PB solvers are generally not fast enough to be
used effectively in molecular dynamics simulations in which the PB equation would
need to be solved repeatedly at every time step [23–26]. Furthermore, the com-
monly used finite difference and finite element methods introduce large fluctuations
in the calculation of derivatives unless the dielectric interface is smoothed substan-
tially [26–28].

As an alternative, the generalized Born (GB) approximation [29, 30] expresses
the electrostatic solvation energy in pairwise form as:

�Gsolvation,elec = −1
2

(

1 − 1
ε

)∑

i, j

qi q j
√

r2
i j + αiα j e

−r2
i j /Fαi α j

, (3)

where the qi are partial atomic charges of the biomolecule from a given force field,
rij are pairwise atomic distances, and F is an adjustable parameter. The key to the GB
formalism is the calculation of the GB radii αi which are related to the electrostatic
solvation energy of a single charge at the given atomic site in the presence of the
otherwise uncharged biomolecular cavity:

�Gi,elec.solvation = −
(

1 − 1
ε

)
q2

i
αi

. (4)

An efficient calculation of GB radii uses the following expression that follows from
the Coulomb field approximation [29, 30]:

1
αi

= 1
Ri

− 1
4π

∫

solute,r>Ri

1
r4 dV (5)

where Ri is the radius of atom i and the integral is carried out over the solute in-
terior except for a sphere of radius Ri around atom i. Born radii calculated accord-
ing to Eq. 5 are reasonably accurate for small molecules, but additional corrections
improve the accuracy for typical biomolecules [31–34]. The GB formalism is com-
putationally very efficient, maintains reasonable accuracy, and provides analytical
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Fig. 1 Left: Heterogeneous dielectric model of biological membranes. Right: Two-dielectric mem-
brane model. Atomic sites of the solute with explicit partial charges are indicated as black dots

derivatives [25]. As a consequence, GB methods are very attractive for the prac-
tical implementation of dielectric continuum implicit solvent models in molecular
dynamics simulations of biomolecules [33, 35–40].

Coming back to the implicit modeling of membrane environments, it is immedi-
ately clear that a membrane model consisting of multiple dielectric layers, as shown
in Fig. 1 and suggested from previous simulation studies [41, 42], is easily handled
within the context of PB theory. However, the application of the GB formalism for
modeling membrane environments in simulations is less straightforward. Equation 3
only applies to a simple two-dielectric system with ε = 1 inside the solute cavity
and a constant dielectric ε > 1 elsewhere. A membrane environment can be mod-
eled with the GB method by making the assumption that the dielectric constant of
the hydrophobic membrane interior is the same as the solute interior, i.e., 1, and that
the dielectric constant of phospholipid head groups is the same as the surrounding
aqueous solvent [43,44]. Then, a two-dielectric system can be maintained by simply
extending the integration in Eq. 5 to an infinite slab representing the membrane inte-
rior (see Fig. 1) without the need for further modifications. Two-dielectric models of
membrane environments ignore the low, but nonnegligible, polarizability of the lipid
tails and a gradual increase of the dielectric constant in the lipid head group region
that is in part caused by limited penetration of water molecules. Nevertheless, such
models have been implemented and used successfully in folding and aggregation
studies of membrane-bound peptides [43, 45, 46].

A truly heterogeneous dielectric environment can also be implemented with the
GB formalism by introducing a local dielectric constant, εi, for each atomic site and
by modifying Eq. 3 slightly [47]:

�Gsolvation,elec = −1
2

∑

i, j

(

1 − 1
εi j

)
qi q j

√
r2

i j + αi (ε)α j (ε)e
−r2

i j /Fαi (ε)α j (ε)
, (6)
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where εi j = (
εi + ε j

)
/2 and the Born radii αi are calculated as a function of ε [48].

The local dielectric constant could be chosen according to the dielectric layer in
which an atom is located. However, solvation energies calculated according to Eq. 6
in this manner would not agree with solutions of the PB equation for layered dielec-
tric environments. The reason is that a charge in the presence of multiple dielectric
interfaces leads to polarization at each interface, which is captured by PB theory but
not by the GB formalism because the GB model only considers the solute cavity and
the immediate dielectric boundary. The consequences of multiple dielectric bound-
aries can be approximated, however, by introducing an effective dielectric constant
that is used in Eq. 6 instead of the actual discrete dielectric layers [47]. The effective
dielectric profile can be obtained by solving the PB equation for a probe charge at
different locations in a given heterogeneous dielectric system. Practical details on
how to obtain such effective dielectric profiles are discussed in Sect. 3.4.

So far, the presence of charged species in the membrane environment has been
neglected. Many biological membranes contain a significant fraction of anionic
phospholipids that interact strongly with ions from the surrounding electrolyte solu-
tion to form an electric double layer. Neutral phospholipids with zwitterionic head
groups also interact with ions but to a much lesser degree. Gouy-Chapman theory
describes such a system by smearing the phospholipid charge onto a planar surface
and solving the PB equation in the presence of an electrolyte solution [49]. The re-
sulting electrostatic potential outside the membrane is found to decay with distance
z perpendicular to the membrane, as follows:

φ(z) = 2kT
e

ln
1 + α exp(−κz)
1 − α exp(−κz)

, (7)

where α is related to the potential at the membrane surface that depends on the sur-
face charge density, κ is the inverse Debye length, k is the Boltzmann constant, T is
the temperature, and e is the charge of the electrolyte. Inside the membrane, the elec-
trostatic potential is constant and equal to the value at the surface. The contribution
to the solvation free energy from Gouy-Chapman theory is obtained by multiply-
ing the electrostatic potential according to Eq. 7 with the explicit charge distribution
of the solute and, thus, readily added to a continuum dielectric implicit membrane
model [50].

2.2 Nonpolar Interactions

Implicit models of aqueous solvent sometimes neglect nonpolar contributions to
the solvation free energy. However, in implicit models of membranes, the nonpo-
lar component is crucial because the balance between electrostatic and nonpolar
components determines whether a given molecule prefers the membrane interior,
the membrane–water interface, or aqueous solvent. Electrostatic interactions alone
always favor high-dielectric environments where charge–charge interactions are
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screened most. Nonpolar interactions between proteins and membranes consist of
three distinct aspects: cost of cavity formation, solute–solvent van der Waals inter-
actions, and lateral forces near the membrane–water interface caused by membrane
surface tension [51]. As a first approximation, solute–solvent van der Waals inter-
actions do not differ much between aqueous solvent and the membrane interior and
are, therefore, often neglected in implicit membrane models. In contrast, because
the cost of cavity formation is essentially related to the polarity of the solvent, it
increases from nearly zero in the membrane interior to the significant cost of cavity
formation in aqueous solvent. The cost of cavity formation is well described as a
function of the solvent-accessible surface area (SASA):

�Gsolvation,cavi t y = γ S AS A. (8)

If the SASA is expressed as a sum over atomic contributions, S AS A =∑

i
S AS Ai , the prefactor γ can vary as a function of atomic location within the

membrane, most conveniently as a function of z, the coordinate perpendicular to the
membrane slab. Then, the cost of cavity formation in the membrane environment is
obtained as [47]:

�Gsolvation,cavi t y =
∑

i

γ (zi )S AS Ai . (9)

The profile γ(z) can be modeled ad hoc as a sigmoidal function [43] or fitted to
free energies of insertion of nonpolar molecules such as O2 from explicit lipid simu-
lations [52,53]. In the latter case, van der Waals interactions are implicitly included
so that Eq. 9 would describe the entire nonpolar contribution to the solvation free
energy based on the small molecule data.

Membrane deformation after insertion of a molecule introduces an energetic bar-
rier as a function of membrane surface tension [51]. This effect results in lateral
forces that are strongest in the phospholipid head group region because of denser
packing than the phospholipid tails. In an implicit model, such forces can be incor-
porated through an anisotropic contribution to the nonpolar solvation energy given
in Eq. 9, where only the projections of the atomic surfaces visible from the x − y
directions near the water–membrane interface are considered.

3 Methods

Current practical implementations of implicit membrane models in major simulation
packages that can be used in simulations of peptides or proteins are only available in
the latest versions of the CHARMM program [54] (c31 and onward). They include
four different models, IMM1 [2,50], GBSA/IM [44], GBSW [43], and HDGB [47],
that are discussed in more detail in this section.
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3.1 IMM1

IMM1 is an extension of the EEF1 model [55] that approximates solute–solvent
interactions with a distance-dependent dielectric constant in explicit charge–charge
interactions and an empirical self-energy term that results from comparing refer-
ence solvation free energies of fully exposed atoms with the actual solvent exposure
of a given atom within a protein. Membrane environments are modeled by adjust-
ing the reference solvation free energies according to experimental transfer energies
depending on whether an atom is located within the hydrophobic region of the mem-
brane or in aqueous solvent [2]. IMM1 is partially empirical because it is not based
directly on PB theory, but it retains a physical force field to describe the protein.
IMM1 includes an implementation of Gouy-Chapman theory that allows modeling
of membranes that are composed of anionic phospholipids [50].

Compared with the other GB-based implicit membrane models described in
Sects. 3.2–3.4, IMM1 is extremely fast, near the cost of vacuum simulations,
because the solvation term adds little extra cost. The united-atom force field
CHARMM19 [56] and short-cutoff distance-dependent dielectric constant electro-
statics that are part of the IMM1 model speed up calculations further. Therefore,
IMM1 is suited best for applications that require very extensive sampling and that
can tolerate the approximate nature of the IMM1 model (see Note 1).

3.2 GBSA/IM

The GBSA/IM model implements a two-dielectric membrane model in which the
solute cavity is extended into the hydrophobic region of the membrane [44]. The
electrostatic contribution is obtained from a slightly modified version of an older GB
model [57] that is fast but less accurate than recent GB versions [25]. The nonpolar
contribution is obtained from atomic solvation parameters according to Eq. 9 with
γi = 0 inside the membrane and a recommended value of γi = 25 cal/(mol Å2

)
outside the membrane. The GBSA/IM model can be used in principle with any force
field, but it is parameterized only for the united-atom CHARMM19 force field [56]
(see Note 2).

3.3 GBSW

The GBSW membrane model [43] is similar to the GBSA/IM model but is based
on a recent GB implementation in which the volume integral in Eq. 5 is calculated
numerically and a higher-order correction to the Coulomb field approximation is
included [58]. The dielectric interface in the GBSW model is based on overlap-
ping van der Waals spheres with a smoothing function instead of the more common
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sharp molecular surface. Because of the smooth interface, the GBSW method is nu-
merically very stable [59]. The membrane model is also a two-dielectric model in
which the integration in Eq. 5 is simply extended into the membrane slab. The non-
polar contribution to the solvation energy is calculated also according to Eq. 9, with
a recommended value of 30 cal/(mol Å2) outside the membrane. The effect of the
membrane is modulated with a switching function across the interface.

The GBSW membrane model has been used successfully in a number of stud-
ies, in particular, peptide–membrane association, peptide folding in the context of a
membrane, and peptide–peptide association within the membrane [43, 45, 46] (see
Note 3).

3.4 HDGB

The HDGB implicit membrane model [40, 47] is based on the GBMV method for
homogeneous dielectric environments [31, 32]. The GBMV method is very similar
to the GBSW method, with the exception that it approximates the sharp molecular
surface instead of a smoothed van der Waals surface. However, the HDGB mem-
brane model implements a multiple dielectric layer model of a biological membrane,
as shown in Fig. 1, rather than a two-dielectric approximation. HDGB uses the mod-
ified GB expression given in Eq. 6, which requires a dielectric profile for assigning a
dielectric constant at a given atom site according to the distance from the membrane
center, z.

The dielectric profile is obtained by solving the PB equation for a spherical probe
within a layered dielectric system at different values of z. A probe radius of 2 Å is
recommended because it matches a typical atom size, and a �z of 0.5 Å is gener-
ally sufficient to sample the dielectric profile. HDGB creates a smooth continuous
dielectric profile from the discrete data points through spline interpolation. Multiple
dielectric layers offer a greater level of detail in describing the membrane environ-
ment; however, it is also more challenging to find appropriate values for the width
and dielectric constants of different layers. Although experimental data alone does
not provide enough detail, explicit lipid simulations may be used to guide setup of
a layered dielectric membrane model. As an example, simulations of DPPC [41]
suggest a three-layer system, with ε = 2 from 0 to 10 Å; ε = 7 from 10 to 15 Å; and
ε = 80 further than 15 Å from the membrane center [47], although other values are
also possible within the uncertainty of the computational data. The corresponding
dielectric profile is shown in Fig. 2.

The nonpolar part is parameterized to match the shape of the free energy of
O2 insertion into a DPPC membrane, but scaled so that the value of γ outside the
membrane approaches the desired surface tension in water. The following double-
switching function is used in HDGB to model the nonpolar profile:
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Fig. 2 Effective dielectric profile obtained from PB equation with 2-Å spherical probe charge for
a 2/7/80 dielectric layer model of DPPC

S(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s(|z| − zs)
2(3zm − 2 |z| − zs)

(zm − zs)3 0 ≤ |z| < zm

(1 − s)(|z|2 − z2
m)2(3z2

t − 2 |z|2 − z2
m)

(z2
t − z2

m)3
zm ≤ |z| < zt

1 otherwise

(10)

with z being the distance from the membrane center and s, zs , zm , and zt the fitted
parameters (see the example below for values appropriate for DPPC).

The HDGB is more complicated and computationally more expensive (see
Sect. 3.5) than the other implicit membrane models. It requires more careful para-
meterization for a given membrane type, but the reward is a quantitatively more
accurate description of membrane environments. The HDGB method has been able
to match amino acid membrane insertion energetics with data from experiments and
explicit lipid simulations [47]. Furthermore, the HDGB method has been applied
successfully in simulations of integral membrane proteins [40] (see Note 4).

3.5 Timing

A major factor in the use of implicit membrane models is the computational ef-
ficiency that can be achieved. Table 1 compares simulation times for the models
described above. The data shows that all of the GB-based membrane models re-
quired much more time than the empirical IMM1 model. Among the GB-based
methods, HDGB is most expensive, and the GBSA/IM model with the united-
atom CHARMM19 force field is only slightly faster than GBSW with the all-atom
CHARMM22 force field [60].
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Table 1 Time for 500 steps of molecular dynamics of melittin with typical parameters for each of
the implicit membrane models available in CHARMM

IMM1 5 s
GBSA/IM 59 s
GBSW 68 s
HDGB 103 s

The HDGB test used the fast GBMV mode and a radial integration grid with Nφ = 4 [31, 32].
Measurements were taken on an Intel Pentium IV (2.8 GHz)

Table 2 Width of hydrophobic layer for selected phospholipid species [64, 65]

DMPC 25.4 Å
DOPC 26.8 Å
DPPC 27.9 Å
POPC 27.1 Å

3.6 Implicit Membrane Geometry

A key parameter in all implicit membrane models is the width of the hydrophobic
layer that depends on the type of the phospholipids. The data compiled in Table 2
based on experiments may be used as a reference.

Commonly, implicit membrane models are set up under the assumption that the
membrane slab is oriented in x-y direction, whereas z is the direction perpendicular
to the membrane, with z = 0 corresponding to the center of the hydrophobic region.

3.7 Langevin Dynamics

Implicit solvent simulations with standard molecular dynamics integrators neglect
friction and stochastic collisions with the environment. This has no consequences
for obtaining correct relative thermodynamics of different conformational states
with sufficient sampling, but it does affect kinetic properties and estimates of transi-
tion state activation barriers. Friction and stochastic collisions with the environment
can be included by carrying out implicit solvent simulations with Langevin dynam-
ics [61, 62]. The use of Langevin dynamics requires the selection of a suitable fric-
tion coefficient. In the case of membranes, the friction coefficient is expected to
vary depending on the local environment, however, as a first approximation, a uni-
form friction coefficient may be used. The best choice for the friction coefficient in
such simulations remains a subject of current research, but values between 5 and
100 ps−1 seem to be reasonable [62].
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4 Outlook

The practical application of implicit membrane models in simulations of proteins
and peptides is still in its infancy. A number of implicit membrane models have
been implemented that offer different advantages and disadvantages from the very
fast IMM1 method to the most complex HDGB model. Further improvements of
the current models are expected to include Gouy-Chapman theory, implicit solute–
solvent van der Waals interactions, and the effect of membrane surface tension.
However, all of the discussed models can already be used for simulations of proteins
or peptides in membrane environments.

5 Notes

Example CHARMM inputs for running simulations with different implicit mem-
brane models (tested with version c33b1) are given in this section.

1. IMM1 is based on the EEF1 model and requires the same modified CHARMM19
force field with neutralized charged side chains. This force field is part of the
CHARMM distribution and loaded at the beginning with:

open read unit 10 form name toph19 eef1.1.inp
read rtf card unit 10
close unit 10
open read unit 10 form name param19 eef1.1.inp
read para card unit 10
close unit 10

After the protein solute has been set up, the IMM1 solvation term is turned on
with:

eef1 setup membrane slvt water slv2 chex width 27.0
temp 300.0 − unit 20 name solvpar.inp

The input file solvpar.inp is also supplied with the CHARMM distribution
and contains the atomic solvation parameters. The main adjustable parameters
are the width of the hydrophobic layer and the temperature. Note that the IMM1
model is used best for temperatures near 300 K.

If anionic phospholipids are modeled, a Gouy-Chapman term can be added
with:

eef1 setup membrane slvt water slv2 chex width 27.0
temp 300.0 − gouy anfr 0.2 area 70 offset 3.0 conc
0.1 valence 1 − unit 20 name solvpar.inp
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where the adjustable parameters are the fraction of anionic lipids (anfr), the
area per lipid in Å2 (area), the concentration (conc) and valence (valence)
of the electrolyte solution, and the location of the charge plane relative to the
hydrophobic layer (offset).

Furthermore, the EEF1/IMM1 model requires that distance dependent dielec-
tric is turned on with a short 9 Å group-based cutoff:

update ctonnb 7.0 ctofnb 9.0 cutnb 10.0 group rdie
switch vswitch

The EEF1/IMM1 implementation in CHARMM is sensitive to the nonbonded
list generator that is used during the dynamics run. One option that does work is
BYGR.

2. The GBSA/IM membrane model is parameterized for the CHARMM19 force
field and, although not strictly required, it is highly recommended to use only
this force field. Use of the GBSA/IM model requires that the polar and nonpolar
components are set up separately. The nonpolar contribution based on atomic
solvation parameters is set up as follows:

read saim unit 5
∗ ASP parameters
∗
1.40 27.0 0. z
ANY C∗ 25.0 2.1 0.0
ANY O∗ 25.0 1.6 0.0
ANY N∗ 25.0 1.6 0.0
ANY H∗ 25.0 0.8 0.0
END

The relevant parameters are the width of the membrane in angstroms given as the
second parameter in the fourth line and the value of γ outside of the membrane
that is specified in the subsequent lines for each atom type. It is recommended to
use the same value of g for all atom types. Typical values of γ in aqueous solvent
may range from 5 to 30 cal/(mol Å2

).
The electrostatic contribution is setup as follows:

gbim p1 0.415 p2 0.239 p3 1.756 p4 10.51 p5 1.1
lambda 0.730 tmemb 27.0

The parameters p1-5 and lambda have to be specified but should not be altered
unless a different force field is used. The thickness of the membrane is given with
tmemb.

3. The GBSW membrane model can be used with any force field. It is activated
with:
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scalar wmain = radius
gbsw sgamma 0.03 tmemb 27.0
msw 2.5

The first command copies the van der Waals radii to be used by GBSW for defin-
ing the dielectric interface. It is possible to use other atomic radii, for example,
the set proposed by Nina et al. [63].

Options of the gbsw command are the membrane width (tmemb), the half-
width of the membrane switching function (msw) and the value of γ for the
nonpolar contribution outside the membrane (sgamma) in kcal/(mol Å2).

The GBSW implementation requires the use of an electrostatic switching func-
tion.

4. The HDGB method is called from within the GBMV command, as in the
following example:

open read unit 10 form name eps.profile
gbmv corr 3 uneps 10 − a1 0.3255 a3 1.085 a4 −0.14
a5 −0.1 - zs 0.5 zm 9.2 zt 25 st0 0.32 sa 0.015

HDGB is turned on with corr 3 and requires the dielectric profile as input from
an external file (the unit is given with uneps). The parameters a1 to a5 determine
how Born radii are calculated in GBMV for different dielectric environments.
The remaining parameters describe the nonpolar contribution to the solvation
free energy, with γ(z) calculated according to Eq. 10 (st0 is “s” in Eq. 10). The
maximum value of γ in aqueous solvent is given with sa.

The membrane width is not explicitly given in HDGB. For each membrane
type, a new dielectric profile has to be generated and the nonpolar parameters
have to be adjusted accordingly. The values given in the example correspond to
DPPC with a membrane width of approximately 28 Å. As a first guess, one can
compress or stretch the dielectric and nonpolar profiles to match the width of
different membrane types.

HDGB also requires the use of an electrostatic switching function.
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Chapter 11
Comparative Modeling of Proteins

Gerald H. Lushington

Summary Three-dimensional analysis of protein structures is proving to be one of
the most fruitful modes of biological and medical discovery in the early 21st century,
providing fundamental insight into many (perhaps most) biochemical functions of
relevance to the cause and treatment of diseases. Fully realizing such insight, how-
ever, would require analysis of too many distinct proteins for thorough laboratory
analysis of all proteins to be feasible, thus, any method capable of accurate, efficient
in silico structure prediction should prove highly expeditious. The technique gener-
ally acknowledged to provide the most accurate protein structure predictions, called
comparative modeling, has, thus, attracted substantial attention and is the focus of
this chapter. Although other reviews have reported on the method development and
research history of comparative modeling, our discussion herein focuses on the gen-
eral philosophy of the method and specific strategies for successfully achieving re-
liable and accurate models. The chapter, thus, relates aspects of template selection,
sequence alignment, spatial alignment, loop and gap modeling, side chain modeling,
structural refinement, and validation.

Keywords: Comparative modeling · Homology · Loop modeling · Proteins ·
Sequence alignment · Structure alignment · Structure refinement · Structure vali-
dation · Threading

1 Introduction

From the first atomic-level resolution of a protein structure (whale myoglobin by
Kendrew et al. [1]) onward, three-dimensional (3D) protein models have provided
a wealth of insight into biomolecular properties and processes, inspiring a grow-
ing thirst for structural detail. For example, the stated mandate of the Structural
Genomics Initiative (http://www.structuralgenomics.org/) is to solve 3D structures
for every unique protein in nature. As for the human genome project, such objectives
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are of a scope (∼100,000 proteins, not counting posttranslational modifications and
conformational variants) that requires not only determination but innovation, in that
conventional resolution methods, such as x-ray crystallography and nuclear mag-
netic resonance (NMR) are too time consuming and demanding to address such
goals. An increasingly viable alternative is efficient and analytically rigorous com-
putational modeling. This chapter, thus, offers a brief discussion of in silico pro-
tein structure prediction, focusing mainly on comparative modeling. Whereas other
papers (e.g., Martı́-Renom et al. [2], Baker and Šali [3]) provide comprehensive re-
views of the underlying method development and research achievements in the field,
this chapter discusses the motivation for using comparative modeling and outlines
the practical considerations to be made in assembling such a model.

A key inspiration for projects such as the Structural Genomics Initiative was the
realization that the human genome sequencing project was not the panacea for bio-
logical understanding that some had hoped for, but, rather, exposed how many fac-
tors other than genetic coding portions of our DNA help to define interspecies and
intraspecies diversity, medical causality, and other key issues of organism-scale biol-
ogy. A more apt currency for characterizing life may lie in proteomics, wherein one
can identify specific units responsible for a given biological function or dysfunction,
and, thus, surmise the underlying molecular mechanisms. A key source of insight
for the latter is protein structure. Combined with simple rules of physics (e.g., ther-
modynamics, electrostatics, etc.) and chemistry (bond formation and breaking), 3D
molecular structure information can be readily extrapolated toward understanding of
intermolecular association, enzyme function, structural response, etc., collectively
covering most of the basic molecular causality behind the functional or dysfunc-
tional processes experienced by an organism.

Pharmaceutical research frequently follows the paradigm of discovering a target
for a given disease, characterizing the target, and finding ways of beneficially mod-
ulating its behavior. Because most targets are proteins, a key tool in the first step
is comparison of protein expression signatures for diseased and healthy tissue sam-
ples. Proteins whose presence is noticeably amplified or suppressed in dysfunctional
tissue are flagged as potential diagnostic biomarkers and as possible therapeutic tar-
gets. Therapeutics are then sought either to restore normal healthy balance in target
function or to compensate for imbalances. 3D structural knowledge of a prospec-
tive target is invaluable for the latter, providing key insight into potential receptors
that might be pharmacologically targeted. Insight into nontarget protein structures
is also very useful for intuiting potential drug side effects, because proteins with
receptors similar to the target are at pronounced risk of inadvertent inhibition by
chemicals designed for the latter. Broad understanding of protein structures should
further aid in expression-based target identification by helping to pinpoint protein–
protein interactions that may obscure whether a deviant expression profile in a pro-
tein is a primary cause of a given dysfunction or a secondary symptom. Specifically,
knowing 3D structures can inform us of which proteins should colocalize in a given
cellular environment, and which are likely to engage in direct (i.e., actual physical
association) or indirect (e.g., exchange of metabolite or transmitter) interactions.
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Protein 3D structures may be obtained in a number of ways. Most high accuracy
structures in the protein databank (PDB; http://www.rcsb.org/pdb) were resolved
through crystallographic techniques, with the rest mainly arising from NMR analy-
sis. Although some proteins have been resolved via both techniques, crystallography
is best suited to high-resolution determination of structures for soluble, predomi-
nantly globular, proteins most amenable to crystallization, whereas NMR affords
more a dynamic interpretation of the structure (i.e., multiple conformers are usually
resolved from the same data) and is viable for many proteins that resist crystalliza-
tion, albeit generally at a lower level of resolution. Theoretically, the entire proteome
should be accessible to either NMR or crystallography. Although some of the most
massive proteins still pose major challenges of data deconvolution, it is reasonable
to expect that analytical enhancements will eventually conquer those holdouts as
well. It is more uncertain, however, whether experimental resolution of the entire
known proteome will ever be practical, because both crystallography and NMR re-
main technically very demanding, time consuming, and expensive. The underlying
assumption of the Structural Genomics Initiative is that computational modeling
may yet accomplish what is spectroscopically impractical.

The main schemes for computational protein structure prediction include: 1) self-
assembly simulations, 2) associative models based on sequence pattern recognition,
and 3) comparative modeling. All of these methods were inspired in part by semi-
nal findings of Christian Anfinsen et al. that an unraveled ribonuclease amino acid
(AA) chain could, in plain solution, coalesce within a reasonable (minutes to hours)
time frame to form a protein functionally indistinguishable from native in vivo ri-
bonuclease [4]. This implied that: 1) a protein can be uniquely identified by its AA
sequence, 2) this sequence uniquely encodes the in vivo protein function, and 3)
the AA sequence is capable of consistent self-assembly into functional form, based
exclusively on intramolecular interactions among sequence AAs plus interatomic in-
teractions with surrounding solvent. The third observation, thus, directly suggested
that assembly simulations could be a reliable mode for protein structure prediction,
whereas the first two observations were key to the eventual formulation of pattern
recognition and comparative modeling techniques.

Practical formulation of associative and comparative modeling methods required
a substantial basis in empirical understanding of protein structure. One key devel-
opment was the accumulation of a reasonable volume of protein sequence data
beginning in the early 1950s, leading to gradual elucidation of strong correlative
patterns between protein sequence similarity on one hand and analogous function
on the other. This permitted the classification of proteins into families and super-
families [5], with an underlying assumption being that members of the same protein
superfamily are all evolutionarily related (a.k.a., homologous), and members of the
same family are closely related.

A second important precursor to protein structure prediction was the acquisition
of crystal structures from the late 1950s onward. These structures generally vali-
dated the earlier family and superfamily classifications in that proteins with simi-
lar sequences and function were usually found to have very similar 3D structures.
Analysis of structural data also revealed that all proteins tended to assemble as a sum
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of a limited number of unique substructure forms. At a fine-grained level, it was
noted that all proteins tended to adopt similar hydrogen bond-stabilized features
such as α-helices, β-sheets, and a number of distinct turn and hairpin structures,
collectively referred to as secondary structure. At coarser levels, it also became
apparent that the full manifold of protein structures could be classified into a rel-
ative small number (∼500 [6]) of unique folds: characteristic self-stabilizing col-
lections of secondary structure elements. Not surprisingly, proteins within the same
family (as classified by sequence) almost invariably possessed similar folds. Such
correspondence between sequence similarity trends versus structural similarity com-
pletes the basis for associative and comparative modeling techniques. Associative
models are, thus, based on probabilistic tendencies of certain AA combinations to
adopt a given secondary structure and tendencies of certain secondary structure
elements to adopt a specific fold, whereas the more general tendency of proteins
with similar sequences to adopt similar 3D structures is the foundation for compar-
ative modeling.

Although each of the different structure prediction methods is potentially ap-
plicable to modeling a given target protein, each has limitations to heed. Self-
assembly simulations, commonly known as protein-folding models, are especially
computationally demanding because of huge numbers of unique conformers that
must be considered for even modest-sized proteins. With such large conformer man-
ifolds, one may also have to empirically choose between multiple unique but compa-
rably favorable structures. A more severe problem exists for the fraction of protein
population whose thermodynamically optimal conformer is not the one observed in
vivo, the most famous example of which is the prion protein cellular (PrPC), whose
native form seems to be higher in energy than a rogue form, prion protein scrapie
(PrPSc). Presence of the latter rogue form of the protein in living tissue is thought to
catalyze the exothermic refolding of healthy PrPC to the biologically inutile PrPSc,
with the result being prion diseases such as scrapie, Creutzfeldt-Jakob Disease, or
bovine spongiform encephalopathy (BSE) [7]. Because of the greater thermody-
namic stability of the latter (PrPSc), a good folding algorithm based on the underly-
ing free energy effects assumed by Anfinsen to drive the assembly process [4] should
converge to the rogue PrPSc form rather than the biologically healthy PrPC. In truth,
energy is often not the sole driving force behind assembly, in that life forms have de-
veloped sophisticated tools called chaperonins that perform protein assembly qual-
ity control, correcting misfolds, and sometimes preferentially effecting assembly of
higher energy structural forms. Relevant interactions between chaperonins and their
client polypeptides are very complex and entail much mechanistic detail that is not
well understood [8]. Folding simulations that explicitly take chaperonin contribu-
tions into account have recently been undertaken [8, 9]; however, it is not yet clear
how effective and practical they will prove to be in de novo structure prediction.

Accurate associative modeling is also fairly challenging because of prospects for
compounding errors. Even for the most sophisticated prediction algorithms, the first
step of secondary structure prediction from raw sequence is generally thought to
be at most approximately 80% successful on a per-residue basis, thus, for a typical
protein (hundreds of AAs), leading to dozens of local errors at the outset. Because
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local errors in backbone torsion can easily extrapolate to large errors in the global
structure (e.g., mislocation of entire lobes), many proteins are poorly predicted. Fur-
thermore, the stated 80% success rate applies primarily to globular proteins, and
indications are that similar predictions for transmembrane proteins are significantly
worse [10].

Results from the 6th Critical Assessment of Techniques for Protein Structure
Prediction competition (CASP6) (Gaeta, Italy, Dec. 4–8, 2004) reveal that compar-
ative models attain better protein structure predictions on average than nontemplate
methods. In the full set of systems for which both comparative and folding models
were generated, with fully automated comparative models achieving a mean root
mean-squared deviation (RMSD) of 2.17 Å relative to experimental crystal struc-
tures, and further improvement to 2.09 Å RMSD given human intervention in tem-
plate selection, alignment modification, etc. By contrast, folding methods (with and
without intervention) attained mean RMSD values of 2.41 Å and 2.51 Å, respec-
tively. Comparative models are also relatively computationally expedient; however,
their dependence on quality 3D templates structurally and functionally similar to the
target precludes many targets from consideration. Fortunately, the proteome has a
relatively small number of unique folds, thus, coordinated pursuit of novel folds by
experimentalists might yield at least one reasonable template structure for any given
protein. The Structural Genomics Initiative, thus, aims to identify and target a key
subset of currently structurally uncharacterized proteins that, according to sequence
family classification, should provide a set of viable templates for all prospective
targets.

2 Methods

In practice, comparative modeling is best viewed not as one technique but rather as
a strategy for assembling information from various component methods (including
assembly and associative techniques) toward a unified 3D structure prediction. In
general, these component steps can be approximately summarized as follows:

1. Identify template proteins with structural similarity to the target as gauged (opti-
mally) from sequence-based homology, or from physicochemical similarity.

2. Align the target sequence with all relevant template sequences.
3. Spatially align all of the template structures into a single framework, and use the

sequence alignment to project the target protein backbone onto this framework.
4. Estimate structures for target protein fragments that are ill represented by the

template manifold, or else omit them from the predicted structure.
5. Align target side chains with analogs within the template structures, or intelli-

gently guess their disposition according to known spatial and torsional prefer-
ences.

6. Ameliorate unphysical contacts and strains via conformational searches.
7. Evaluate the final relaxed model for physical tenability.
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Fig. 1 Flow diagram for comparative modeling of proteins showing standard process (solid
arrows) and feedback/refinement mechanisms (dashed arrows)

Each step above entails various methodological and strategic considerations,
some of which provide opportunities for iterative feedback to previous steps, as
is shown graphically in Fig. 1. These considerations will be elaborated on in the
remainder of the chapter.

2.1 Template Identification

When identifying prospective templates via sequence homology, a reasonable
template–target sequence identity is critical for minimizing the risk of errors in se-
quence alignment and for maximizing the likelihood that the entire template fold is
to the target. The widely used minimum sequence identity criterion is 30% sequence
identity over the extent of the mutual target–template alignment. The precise origin
of this number is difficult to trace, in that the seminal paper typically cited for tem-
plate identification, by Chothia and Lesk, offered a more conservative criterion of
50% identity, although their objective was to find highly similar structures with less
than 1.0-Å RMSD in the position of backbone atoms [11]. Conversely, others have
claimed that identity levels as low as 20 to 22% are frequently still viable [12].
Nonetheless, the empirical 30% criterion is broadly accepted, has stood the test of
recent careful analyses [13], and, given a careful, well-scrutinized sequence align-
ment, seems to offer good odds for reliable structure prediction.

Although many targets exist for which no templates with at least 30% sequence
identity are available, it has been estimated via fold statistics that approximately
70% of all possible targets of interest should have a template of reasonable structural
similarity already present in the PDB. This wealth of templates may be explained
from the fact that structural conservation can often be largely retained even in cases
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of very distant ancestral commonality. Furthermore, shared structure is also possi-
ble courtesy of evolutionary convergence, such that unrelated proteins may grad-
ually adapt similar structures because of an inherently strong functional value of
having such a structure. Thus, if no template meeting the 30% sequence identity
is identified through homology searches, a reasonable model may still be achieved
via a technique known as “threading,” which evaluates target sequences against a
library of unique fold representatives (a collection of structurally unique proteins
such as those collected in the class, architecture, topology, and homologous super-
family [CATH] database [14]) according to residue by residue similarity in terms
of spatial size, hydrophilicity/hydrophobicity, helix- or sheet-forming propensity,
etc. Functionally special residues such as prolines (whose closed-ring structure in-
duces a kink in AA chains), cysteines (well known for their fold-stabilizing disulfide
bonds), and, sometimes, ionic residues (aspartate, glutamate, lysine, and arginine—
all capable of forming salt bridges) are frequently given additional weight in any
assessment. Because sequence identity is generally less useful for assessing thread-
ing templates, a consensus Z-score is instead used to gauge statistical significance
for the quality of one template candidate relative to others being considered. Z-score
scales vary across the manifold of different threading programs, but typically pro-
vide an indication of how likely it is that a given target–template pair are actually
members of a common protein family or super family, whether they merely share
a common fold, or whether they have no obvious relationship. An example of such
ranges, as reported for the widely used PROSPECT-II program [15], is provided in
Fig. 2.

The Z-score provides a reasonable scheme for identifying the plausible tem-
plates, but has a margin of error. A study contrasting performance of PROSPECT-II
with other threading programs found that the top-scoring PROSPECT-II match was
a valid fold-conserving template 84.1% of the time when the template manifold con-
tained species within the same family as the target, 52.6% of the time when super-
familial (but no familial) templates were available, and 27.7% if the best templates
merely shared a common fold [15]. These numbers improved to 88.2%, 64.8%, and
50.3% when examining the top five matches for possible valid templates. These are
reasonably successful ratios relative to competing threading models, but do high-
light the possibility that invalid templates may achieve high scores, and that one
should scrutinize multiple top-scoring candidates, looking for templates known to
prefer similar regions of cells as the target species, known to perform functions at
least vaguely similar to the target, etc.

Fig. 2 Observed correspon-
dence between PROSPECT
Z-scores computed for pairs
of proteins and the likelihood
of their sharing a common
fold or having a familial
relationship
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Note that in cases in which templates have been identified by homology, but
the sequence identity is somewhat below the safe range (i.e., less than 50%, and
especially if less than 30%), threading can provide an excellent point of validation.
If threading analysis on the target template does not rank the target at a level that
seems to assure a conserved fold, the template should be scrutinized with care and
skepticism.

Also note that regardless of whether homology or threading is used for template
identification, there is often strength in numbers. If multiple plausible templates
that exhibit some compositional diversity but have similar 3D folding patterns are
used, the quality of the resulting sequence alignment and comparative model typ-
ically benefits, because multiple sequence alignments are typically more accurate
than pairwise alignments, and simultaneous accounting for multiple structures may
tend to smoothen out local structural aberrations. One should avoid using template
relatives that were resolved in substantially different conformations, however, be-
cause this may result in a final model corresponding to an unphysical hybrid. For
metalloproteins, where the presence or absence of the metal ions can substantially
impact the resulting protein conformation, one should identify the desired metal ion
state of the target and choose templates with analogous ion populations.

2.2 Sequence Alignment

The various programs commonly used to template identification generally also yield
a tentative sequence alignment relative to the target. In homologous cases with
greater than 50% target–template sequence conservation over the mutually aligned
portion of the structure, it is generally assumed that the alignment prediction algo-
rithm will produce a qualitatively reliable alignment with only modest local mis-
alignments (no positional errors more than several residues). Over a data set of
broadly varying protein similarity, the PROSPECT-II assessment of threading re-
liability was that the program could achieve approximately a 60% average accu-
racy in prediction the alignment position of any given residue, and typically located
each residue within four AA positions of the correct spot approximately 80% of
the time [15]. In fairly strong threading models (e.g., PROSPECT Z-scores >10)
one can likely assume better performance, perhaps on par with good homology
alignments. However, in all cases, and especially in those with poorer identity or
Z-scores, careful manual validation is a good policy. This can be achieved by com-
paring the alignment relative to the known 3D (template) structure to identify any
of the following cases:

• Sizeable gaps (i.e., greater than two or three AAs) present in template core
regions

• Gaps greater than one AA in known template sheets or helices
• Target prolines located within known template helices
• Positional displacement of more than one or two AAs for template cysteine

residues known to engage in disulfide bonds
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• Displacement of more than two to three AAs for template ionic residues known
to form salt bridges

Alignments containing instances such as those above can yield unphysical com-
parative models for which fold conservation may be less favored or even no longer
feasible. Manual adjustments may, thus, be made to alleviate such errors, at the
expense of opening or extending gaps in exterior loops, as long as relatively mod-
est penalties are incurred in the overall alignment score. Any templates that have
a significant number of alignment problems that cannot be alleviated through mi-
nor manual adjustment should be viewed with skepticism. Furthermore, the number
of irreconcilable alignment problems observed for a given target–template pair is a
good source of evaluating and prioritizing that template’s suitability relative to other
candidates.

The presence of template gaps in regions that should correspond to solvent-
exposed loops in the target species is rarely a key criterion in evaluating a template
or a target–template alignment. Such loops have a relatively modest impact on
the basic fold of a protein, thus, from an evolutionary perspective, they tend to have
the largest frequency of noncritical point mutations, insertions, and deletions among
homologs. If the gap in such a loop is relative small (less than 5 AAs), and is not
thought to play an important role in properties of interest (i.e., not being part of a
known receptor or protein–protein interaction site) it might be justifiably omitted,
although it is generally more satisfying to piece it together according to empirical
loop libraries (e.g., [16, 17]) or as an arbitrary structure such as a beta turn, with
the expectation that its relatively large mobility will be amenable to subsequent re-
finement steps. For gaps that are significantly longer than 10 AAs, however, the
structural integrity of your predicted model is best served by finding a legitimate
template for the unrepresented loop itself. This can entail addition of a lower-ranked
template that may be less suitable for global alignment, but that does afford a reason-
able alignment to the gapped regions. If such a template is thought to have regions
other than the gap in question that are inappropriate for modeling the rest of the
target (i.e., very poor alignment, or known to have an inappropriate conformation),
one may discard all of the template except that specifically corresponding to the gap
region.

2.3 Spatial Alignment of the Target

Once templates have been selected and a sequence alignment is in place, construc-
tion of a preliminary structural model of the target is straightforward and is typically
available in black-box form in most comparative modeling programs. The assem-
bly methods typically construct a backbone model first, and then incorporate side
chains into the resulting framework. Some methods may assemble the core region
of a protein (solvent-inaccessible portions of the structure plus conserved secondary
structure elements) first, then treat exposed loops.

Most backbone modeling methods begin by superimposing all templates onto
a common framework and computing a consensus framework defined by mean
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positions of corresponding Cαs. One of three different schemes is then typically
used: 1) rigid body assembly of target fragments corresponding to nongapped
portions of the target–template alignment, as is implemented in the COMPOSER
program [18]; 2) segment matching whereby target protein fragments are projected
onto the consensus backbone with torsional angles being established through ref-
erence to fragment polypeptide libraries (e.g., SEGMOD [19]); or 3) construction
of a compromise model that minimizes steric and torsional restraints of the target
backbone as it is projected onto the template framework (e.g., MODELLER [20]).
All of the above methods have proponents, and it is unclear whether the ultimate
model accuracy varies much as a function of method choice, in that subsequent re-
finement is usually required regardless of technique. The restraints-based formalism
is probably the most widely used by comparative modelers at this point.

One major complication to the assembly process may arise when the target pro-
tein contains a terminal domain that is represented by a different template than
is used for the main core of the protein. In such cases, it may be unclear from
the relevant templates how the terminal domain should pack onto the core frame-
work. One method that we have applied for such a scenario [21] is to assemble
the main core and the terminal domain as separate models, and to estimate the pre-
ferred core–terminus packing via protein–protein docking analysis as performed by
GRAMM [22], ZDock [23], and other programs. Protein–protein docking methods
typically offer a suitability score for each predicted complex, thus, helping to guide
the selection of a complex to serve as the packing model. Another practical and crit-
ical consideration is whether a predicted complex places the two units in a position
where it is possible to chemically rejoin the broken AA chain without unphysi-
cal strain on the backbone. Given a very low probability of predicting a complex
that perfectly places the final AA of one unit in covalent binding distance to the
initial AA of the next unit, our strategy has been to omit a portion of the target se-
quence within the core–terminus boundary region during initial model construction
for these two domains, with the intention of re-integrating this portion as a flexibly
modeled gap (see the next section). Specifically, our recommended protocol is to
omit a number of residues (NR) that are not predicted to be part of a defined sec-
ondary structure element (i.e., unstructured coil), and then constrain the choice of
docked complexes to those that place the final Cα of the first domain within a dis-
tance of less than NR × 3.0 Å from the first Cα of the next domain (i.e., somewhat
less than the maximum unstrained Cα to Cα distance of approximately NR ×3.8 Å).
This method has not yet been exhaustively validated, but is based on reasonable
logic and provides a potentially workable solution to an otherwise very challenging
problem.

2.4 Loop and Gap Modeling

Although the previous backbone assembly step should yield structure predictions
for many (hopefully most) of the loops in your target, it is common for some to be
represented by poor sequence conservation or to appear in gapped regions of the
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alignment. Gaps covering 5 AA positions or less pose minimal concerns because
they can typically be patched in with reasonable accuracy by referring to polypep-
tide structure libraries (e.g., [16, 17, 19]), but gaps of greater length are difficult to
reliably model via methods other than template comparison. In cases in which no
template for the gap can be found from either homology searches or threading, it
is still possible to attempt a prediction based either on the same peptide libraries
available for short loops or an algorithmic scheme akin to protein folding strategies
(e.g., for molecular dynamics [MD], see Chap. 1; for Monte Carlo conformational
searches, see Chap. 5, etc.). Neither of these strategies is guaranteed to produce a
model with close correspondence to its real optimal structure, especially for gap
lengths larger than 10 AAs. In general, however, many loops without a suitable tem-
plate remain unresolved precisely because they inherently have high conformational
mobility. In such cases, nonoptimal conformers may well still correspond to in vivo
accessible structures.

2.5 Side Chain Modeling

Conserved disulfide bonds and salt bridges are typically incorporated into the target
model directly during the backbone assembly process. Beyond this, side chain posi-
tions for highly conserved residues may also be inferred directly from the template,
although their conformations are known to vary significantly from one protein to
another when sequence identity is less than 50%, and are considered to be poorly
conserved for identities less than 30% [24]. Fortunately, a number of effective side
chain packing algorithms have been developed and validated (see Huang et al. [25]
for an excellent review), and are often implemented as black-box features in com-
parative modeling programs.

2.6 Refinement

The nature of comparative modeling, whereby protein structures are predicted by
analogy to different but related proteins, invariably leads to some degree of struc-
tural error. If the template (or template manifold) contains no sequence gaps rel-
ative to the target and only minor variations in sequence, the resulting error may
be less than the resolution accuracy of the template(s), thus, further correction to
the predicted target structure would be unnecessary. However if the target–template
alignment contains gaps or has sequence identity less than 70%, some structural re-
finement is advisable. In cases in which some templates have been selected to cover
regions of the sequence poorly represented by primary templates, boundary effects
arise in which one template may significantly perturb the projected target backbone
derived from other templates and vice versa. Library models used for loop patch-
ing lack specific environment information necessary to adapt the loop to the target of
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interest and, thus, yield imperfect backbones. It is finally important to note that most
backbone errors are amplified in the side chain prediction. Fortunately, most models
that have been assembled with care and without unrealistic assumptions will possess
only modest errors that may be corrected in a physically natural manner. In vivo, a
protein that has been perturbed from its native conformation because of some minor
disturbance (e.g., intermolecular interaction, change in ionic state, etc.) stands a rea-
sonable chance of reverting to normal structure when a stable normal environment
is restored. By analogy, one may consider the deviations arising from a careful but
imperfect protein assembly to be comparable to an environmental perturbation, thus,
any simulation that subjects the protein model to conditions akin to a normal in vivo
environment should encourage reversion to a reasonable structure. MD methods are
exceptionally well suited to this task: protein simulation is one of the most common
MD applications (see Chap. 1), and excellent force fields (Chap. 4) have, thus, been
developed for simulating the interactions of proteins (and their constituent cofac-
tors, ions, etc.) with solvent environments comparable to in vivo conditions. Various
reviews on the MD strategies, techniques, and resources applicable to protein struc-
ture prediction and refinement are available (e.g., refs. [26,27]). The main drawback
to MD simulations is computational expense, however; thus, when seeking to mit-
igate unphysical structural aspects arising from model assembly, one may find that
constant-temperature simulations may not accomplish all necessary refinements in
a viable time frame. An alternative is to perform simulated annealing calculations
wherein the protein is gradually warmed up to a fairly hot temperature (1000 K is
a reasonable limit; beyond this one risks inducing potentially irreversible unphysi-
cal structural changes) and then slowly cooled back to ambient temperature. After
multiple thermal cycles of this sort (typically 5–10, with each cycle lasting from
10–100 ps), most errors in the original structure are corrected, generally leaving a
fairly plausible conformer. Some comparative modeling programs, such as MOD-
ELLER [20], contain an embedded MD code and perform annealing as an option of
the structure prediction process.

Special caution is needed when modeling transmembrane proteins. Many MD
methods and parameters have been tailored for the specific case of soluble proteins
immersed in a polar (generally aqueous) media, and may yield unphysical confor-
mations for inherently hydrophobic membrane-binding portions of a protein. Spe-
cial methods for simulating transmembrane proteins are discussed in Chaps. 8 to 10
of this volume and, e.g., in a review by Im and Brooks [28].

2.7 Validation

Any protein structure determination, from a rough comparative model to a high-
resolution synchrotron-based crystal structure, will differ somewhat from the real in
vivo conformation. A number of validation tools have, thus, arisen to evaluate struc-
tural models and detect aspects that seem to differ conformationally from standard
bond distance, angle, torsion, or contact ranges derived from extensive assessment



Comparative Modeling of Proteins 211

of known structures. Conveniently, many of the best validation tools are available
online, e.g.:

• Anolea: http://www.swissmodel.unibas.ch/anolea/
• Biotech Validation Suite for Protein Structures: http://biotech.ebi.ac.uk:8400/
• EVA: http://maple.bioc.columbia.edu/eva/
• PROCHECK: http://www.biochem.ucl.ac.uk/∼ roman/procheck/procheck.html

In comparing the above tools, one finds some redundant checks, but each of the
above four utilities has unique features, thus, a rigorous structure evaluation should
consider all of them. Among the various warnings that are likely to be issued for a
comparative model, some minor problems may be alleviated by more refinement,
however, care should be exercised in that overrefinement is often itself a source of
error. Errors that are more serious may be indicative of poor (hopefully correctable)
choices in the original sequence alignment or loop assembly in the region high-
lighted. Other issues may arise not from the modeling process but rather from using
templates that themselves contain errors. To reduce instances of the latter, one may
perform similar validation analysis on candidate templates before use and, thus,
screen out inferior structures.

Judgments regarding whether a validation warning warrants countermeasures
hinge on how severe the error seems to be, whether it lies in a particular interest-
ing region of the molecule, and on planned analysis to be performed on the model.
For small molecule docking studies, accurate structures are required in the receptor
region, and side chain conformations can be critical, thus, one would likely try to al-
leviate any appreciable error within reasonable nonbonding radius (typically ∼8 Å)
of the putative binding site. Protein–protein docking studies and MD analyses are
generally much less sensitive.

A well-constructed and validated structure model can open many doors for
subsequent analysis. In addition to valuable insight derived from simple visual
inspection, the model can form a reliable basis for many other modeling analyses,
as is discussed extensively in other chapters of this book.
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2. Baker, D. and Šali, A. (2001) Protein structure prediction and structural genomics. Science.
294, 93–96.

3. Martı́-Renom, M.A., Stuart, A.C., Fiser, A., Sánchez, R., Melo, R., and Sali A. (2000) Com-
parative protein structure modeling of genes and genomes.Biomol. Struct. 29, 291–325.

4. Anfinsen, C.B., Redfield, R.R., Choate, W.I., Page, J., and Carroll, W.R. (1965) Studies on the
gross structure, cross-linkages, and terminal sequences in ribonuclease. J. Biol. Chem. 207,
201–210.

5. Dayhoff, M.O. (1972) Atlas of Protein Sequence and Structure. National Biomedical Research
Foundation, Georgetown University, Washington DC.



212 G.H. Lushington

6. Chothia, C. (1992) Proteins. One thousand families for the molecular biologist. Nature. 357,
543–544.

7. Prusiner, S.B. (1991) Molecular biology of prion diseases. Science. 252, 1515–1522.
8. Takagi, F., Koga, N., and Takada, S. (2003) How protein thermodynamics and folding mecha-

nisms are altered by the chaperonin cage: Mol. Sim. Proc. Natl. Acad. Sci. USA. 100, 11367–
11372.

9. Baumketner, A., Jewett, A., and Shea, J.E. (2003) Effects of confinement in chaperonin as-
sisted protein folding: rate enhancement by decreasing the roughness of the folding energy
landscape. J. Mol. Biol. 332, 701–713.

10. Rost, B. (2001) Protein secondary structure prediction continues to rise. J. Struct. Biol. 134,
204–218.

11. Chothia, C. and Lesk, A.M. (1986) The relation between the divergence of sequence and
structure in proteins. EMBO J. 5, 823–826.

12. Chung, S.Y. and Subbiah, S. (1996) How similar must a template protein be for homology
modeling by side-chain packing methods? Pac. Symp. Biocomput. 126–141.

13. Forrest, L.R., Tang, C.L., and Honig, B. (2006) On the accuracy of homology modeling and
sequence alignment methods applied to membrane proteins. Biophys. J. 91, 508–517.

14. Pearl, F., Todd, A., Sillitoe, I., Dibley, M., Redfern, O., Lewis, T., Bennett, C., Marsden, R.,
Grant, A., Lee, D., Akpor, A., Maibaum, M., Harrison, A., Dallman, T., Reeves, G., Diboun, I.,
Addou, S., Lise, S., Johnston, C., Sillero, A., Thornton, J., and Orengo, C. (2005) The CATH
Domain Structure Database and related resources Gene3D and DHS provide comprehensive
domain family information for genome analysis. Nucl. Acids Res. 33, D247–D251.

15. Dongsup, K., Xu, D., Guo, J.T., Elrott, K., and Xi, Y. (2003) PROSPECT II: protein structure
prediction program for genome-scale applications. Prot. Eng. 16, 641–650.

16. Fernandez-Fuentes, N., Oliva, B., and Fiser, A. (2006) A supersecondary structure library and
search algorithm for modeling loops in protein structures. Nucl. Acids Res. 34, 2085–2097.

17. Kolodny, R., Koehl, P., Guibas, L., and Levitt, M. (2002) Small libraries of protein fragments
model native protein structures accurately. J. Mol. Biol. 323, 297–307.

18. Sutcliffe, M.J., Haneef, I., Carney, D., and Blundell, T.L. (1987) Knowledge-based modelling
of homologous proteins. Part I. Three dimensional frameworks derived from the simultaneous
superposition of multiple structures. Protein Eng. 1, 377–384.

19. Levitt, M. (1992) Accurate modeling of protein conformation by automatic segment matching.
J. Mol. Biol. 226, 507–533.

20. Šali, A. and Blundell, T.L. (1993) Comparative protein modeling by satisfaction of spatial
restraints. J. Mol. Biol. 234, 779–815.

21. Lushington, G.H., Zaidi, A., and Michaelis, M.L. (2005) Theoretically predicted structures of
plasma membrane Ca2+-ATPase and their susceptibilities to oxidation. J. Mol. Graph. Mod-
eling 24, 175–185.

22. Tovchigrechko, A. and Vakser, I.A. (2005) Development and testing of an automated approach
to protein docking. Proteins. 60, 296–301.

23. Wiehe, K., Pierce, B., Mintseris, J., Tong, W., Anderson, R., Chen, R., and Weng, Z. (2005)
ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins. 60, 207–221.

24. Chung, S.Y. and Subbiah, S. (1996) A structural explanation for the twilight zone of protein
sequence homology. Structure. 4, 1123–1127.

25. Huang, E.S., Koehl, P., Leavitt, M., Pappu, R.V., and Ponder, J.W. (1998) Accuracy of side-
chain prediction upon the near-native protein backbones developed by ab initio folding meth-
ods. Proteins. 33, 204–217.

26. Caflisch, A. and Paci, E. (2005) Molecular dynamics simulations to study protein folding and
unfolding. Protein Folding Handbook. 2, 1143–1169.

27. Karplus, M. and Kuriyan, J. (2005) Molecular dynamics and protein function. Proc. Natl.
Acad. Sci. USA. 102, 6679–6685.

28. Im, W. and Brooks, C.L., III. (2005) Interfacial folding and membrane insertion of designed
peptides studied by molecular dynamics simulations. Proc. Natl. Acad. Sci. USA. 102, 6771–
6776.



Chapter 12
Transmembrane Protein Models Based
on High-Throughput Molecular Dynamics
Simulations with Experimental Constraints

Andrew J. Beevers and Andreas Kukol

Summary Elucidating the structure of transmembrane proteins domains with high-
resolution methods is a difficult and sometimes impossible task. Here, we explain
the method of combining a limited amount of experimental data with automated
high-throughput molecular dynamics (MD) simulations of α-helical transmembrane
bundles in an explicit lipid bilayer/water environment. The procedure uses a sys-
tematic conformational search of the helix rotation with experimentally constrained
MDs simulations. The experimentally determined helix tilt and rotational angle of
a labeled residue with site-specific infrared dichroism allows us to select a unique
high-resolution model from a number of possible energy minima encountered in the
systematic conformational search.

Keywords: Alpha helix · Experimental constraints · Infrared spectroscopy · Lipid
bilayer · Membrane proteins · Molecular dynamics

1 Introduction

Membrane protein structures are underrepresented in the Protein Data Bank [1], cur-
rently constituting less than 0.5% of available high-resolution protein structures, yet
they are encoded by approximately 30% of the human genome [2] and are estimated
to form more than half of available drug targets [3]. The most common methods
used, x-ray crystallography and solution-state nuclear magnetic resonance (NMR)
spectroscopy, face enormous obstacles with membrane proteins because of the dif-
ficulties in obtaining crystals diffracting to sufficient resolution and the insolubility
of membrane proteins in aqueous solvents, requiring the use of proteoliposomes or
detergent–protein aggregates, which exceed the size limit of NMR spectroscopy.
Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR)
is the method of choice for the structural analysis of proteins in the lipid mem-
brane environment [4], yielding secondary structure information and information
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regarding the maximum helix tilt angle with respect to the membrane normal of an
α-helical transmembrane protein. Absorption of infrared radiation is caused by the
excitation of vibrational (and rotational) energy levels, and through specific labeling
of atoms in amino acid residues with rare isotopes (e.g., 13C 18O carbonyl group),
vibrations of individual groups can be analyzed, thus, achieving atomic resolution
[5, 6]. This is the basis of the technique of site-specific infrared dichroism (SSID)
allowing determination of the orientation of transmembrane α-helical bundles [5,7],
which has been applied in combination with molecular modeling to the structural
elucidation of the transmembrane domains of various proteins [8–11]. This chap-
ter describes the methodology for a conformational search procedure of α-helical
bundles in an explicit lipid bilayer based on molecular dynamics (MD) simula-
tions incorporating experimental constraints from SSID and conventional ATR-
FTIR spectroscopy. In principle, the methods discussed are applicable to any sort of
experimental constraints, e.g., from solid-state NMR spectroscopy, which is another
emerging technique for structural investigation of transmembrane proteins [12].

The methods are exemplified with the oncogenic mutant ErbB-2 transmembrane
domain. ErbB-2 is an epidermal growth factor receptor involved in the mediation of
cell growth and differentiation [13, 14]. ErbB receptors are composed of an extra-
cellular ligand-binding region, a transmembrane region, and a cytoplasmic tyrosine
kinase. Activation of the tyrosine kinase occurs by ligand-induced dimerization, a
generally accepted activation pathway for all receptor tyrosine kinases [15]. The rat
oncogene neu encodes a mutant ErbB-2 receptor, which contains a single Val664Glu
mutation in the transmembrane domain [16–18]. This mutation causes permanent
association and activation of ErbB-2 that leads, finally, to tumor formation.

2 Theory

MD simulations of biomolecules (discussed in Chap. 1 of this volume) calculate the
thermal fluctuation of a molecule applying Newton’s laws of motion. The force field
(discussed in Chap. 4) for biomolecules is often based on a description of the mole-
cule as hard spheres and harmonic springs and incorporates the interactions between
all particles in the simulation system, yielding the potential energy in dependence
of the coordinates. Compared with the complexity of physical interactions between
molecules in a test tube, computational force fields are oversimplified. Furthermore,
one MD simulation represents the trajectory of one molecule, whereas an exper-
iment in a test tube using 1 mL of a 1 µM solution is the statistical average over
6 × 1014 molecules. Additionally, the modeler has to ensure that the molecule sub-
jected to MD simulations can overcome energy barriers to find the global energy
minimum.

Shortcomings of the force field can be addressed by including experimental data
as constraints, which add to the potential energy of the system. Additionally, MD
simulations of the same molecule should be performed several times, starting with
different initial random atom velocities. The problem of overcoming energy barriers
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Fig. 1 The method of rotating the peptides by increments of the angle φ, resulting in the array of
starting structures used for MD simulation. The angle � represents the helical crossing angle

is sometimes addressed by increasing the temperature of the simulation. It should,
however, be noted that the parameters of the force field are usually optimized for
the thermodynamic standard temperature of 298 K. In this chapter, the approach of
using a systematic array of starting structures is adopted. For the common structural
arrangement of transmembrane α-helical bundles, the structural parameters to vary
are the helix rotation, φ (Fig. 1), and the helix crossing angle, �.

Another important point for the MD simulation is the accurate representation
of the complex system composed of water molecules, protein, and lipid molecules.
With increasing computer power, an explicit atomistic representation of water and
lipid molecules is adopted in current the state-of-the-art simulations, as discussed in
Chap. 8 of this volume.
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2.1 Defining Constraints

As mentioned in the introduction, any experimental method may be used to derive
constraints in proteins. Here, we will concentrate on SSID as an example applied
to the transmembrane domain of the ErbB-2 receptor. This technique allows us to
determine the helix tilt angle, β, and the rotational pitch angle, ω, of specific residues
in an α-helix, while a rotational pitch angle of ω = 0◦ is defined as the position at
which the C O carbonyl bond of the residue points in the direction of the helix
tilt [5] (Fig. 2). From these parameters, the angle of the C O bond to the z-axis,
θ, which is used as an orientational constraint in the MD simulation, is calculated
using the following equation [7]:

cos θ = cos α cos β − sin α sin β cos(ω + 17◦),

Fig. 2 Definition of the helix tilt β, the rotational pitch angle ω, and the angle θ representing the
angle between a particular labeled amide I transition dipole moment P and the z-axis. ω is defined
as 0◦ when the transition dipole moment points in the direction of the helix tilt. The angle α is
defined as 38◦ for all α-helices [19]
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Fig. 3 Plot of the potential energy Var = kar{1 − cos [n(θ − θ0)]} function in J (joule) for orien-
tational constraints with kar = 1, θ0 = 45◦, and n = 1 (solid curve) or n = 2 (dashed curve)

where α represents the angle between the transition dipole moment and the molec-
ular director (given as 38◦ in all α-helices [19]).

The angle θ of a specified C O bond to the z-axis is constrained using the
potential energy term implemented in the GROMACS MD simulation package [20,
21] using the equation:

Var = kar{1 − cos[n(θ − θ0)]},
where kar is the force constant and θ0 represents the experimentally defined angle.
The multiplicity n = 2 is usually chosen to treat parallel and antiparallel vectors
equally (see Fig. 3). The same equation is used to constrain tilt angles by setting the
angle between a vector connecting the Cα atoms of residue i and i + 7 (two full
helical turns) and the z-axis to the experimentally defined angle.

Additional experimental information from FTIR spectroscopy is the secondary
structure of the transmembrane peptide, which has been found to be α-helical in the
case of the ErbB-2 transmembrane domain. This information is added to the force
field by constraining the distance between the carbonyl oxygen of residue i and the
amide hydrogen of residue i + 4; it is these groups that give rise to the well-defined
intramolecular hydrogen bonding of α-helices.

2.2 Creation of Starting States

The first part of the computation is to create the stating states by systematic rotation
of the α-helices around the helical axis (Fig. 1) by defined increments of φ, such
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as 10◦ (36 possible rotations) and adopting two different helical crossing angles
� = ±25◦, which leads to 72 different starting structures. It has been shown that
α-helical homo-oligomers can be treated by symmetric rotation, particularly when,
during the subsequent MD simulations, no symmetry restrictions are applied [22].
Hetero-oligomers must be subjected to asymmetric rotation, which, unfortunately,
generates a far larger amount of starting structures, e.g., 41,572 structures for a
tetramer, if the same search parameters are applied as in the symmetric search.

2.3 MD Simulation

Each starting structure is then subjected to MD simulation, ideally at various random
initial starting velocities. Initially, this was performed in a vacuum [8–10, 22, 23],
but this chapter describes the newest development of including an explicit lipid
bilayer–water environment [24,25]. The current approach inserts each starting struc-
ture into a hole created in a pre-equilibrated bilayer using a modified version of the
GROMACS software, which uses an outward-directed force on the lipid molecules
in the central section of the bilayer to create a hole [26]. This process is shown in
more detail in Chap. 8.

2.4 Clustering

Each starting state will adopt an orientation that minimizes its potential energy dur-
ing the MD simulation. As previously mentioned, it is highly unlikely that the MD
simulation of one α-helical bundle will explore all of its possible rotations. There-
fore, each helical complex will adopt an energy minimum close to its starting point.
However, various structures will converge to a local energy minimum, thus, forming
several clusters of structures, which can be identified by root mean square deviation
(RMSD) comparisons between each pair of structures. Once a cluster is identified,
an average structure is created by averaging the coordinates of each structure within
the cluster. This may generate a slightly deformed structure, which needs to be sub-
jected to energy minimization followed by MD simulations. Alternatively, a repre-
sentative structure of the cluster could be chosen that is most similar to all other
cluster members.

2.5 Analysis

As a result, a number of clusters emerge, from which averages are calculated. The
cluster averages have a variety of rotational pitch angles, because the angle between
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the C O bond and the z-axis is used as orientational constraint. Through slight
deformation of the ideal α-helical geometry, this constraint can be fulfilled at various
rotational pitch angles. Furthermore, the structures are the result of the interplay
between the experimental constraints and the tendency of the structure to adopt
an energy minimum in the “imperfect” computational force field, which also takes
into account side chain packing and protein–lipid interaction for which there is no
experimental data from SSID. Therefore, it is important that the rotational pitch
angles of the labeled sites are calculated for each model structure and compared with
the experiment. The correct model is not necessarily the lowest energy structure, but
the structure that fits the experimental data with the lowest deviation, as was the case
for the structure of the oncogenic neu/erbb-2 dimer [25] and the transmembrane
domain structure of the HIV-1 vpu pentamer [9].

3 Method

The procedure uses the CHI suite of programs [22] for the crystallography and NMR
system [27] (see Note 1), and the GROMACS [21] suite for MD simulations. CHI
programs have been modified for use in the lipid search procedure, and the automa-
tion of the lipid MD simulation is carried out with software developed by the authors
of this chapter (see Note 2). Unmodified CHI programs are identified below by the
prefix “chi,” e.g., chi create, whereas modified CHI programs have the prefix “lchi,”
e.g., lchi search.

3.1 Constraints

The first step of the procedure is to specify the experimental data; these are the
angles between the C O bond and the z-axis from SSID and distance restraints to
specify the experimentally known helix geometry (see Note 3). These form part of
a GROMACS topology file (Fig. 4).

3.2 Starting Structure Creation

chi create generates an α-helical bundle structure according to sequence and dimer-
ization specification in the parameter file chi param. An array of starting structures
is created with lchi search, e.g., for the ErbB-2 example, 36 different rotations at 2
different crossing angles are used for simulation at 4 different initial random veloc-
ities, leading to 36 × 2 × 4 = 288 starting structures.
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[ angle restraints z ]
; ai aj funct th0 fc mult

148 149 1 -64.2 5000 2
83 84 1 -55.6 5000 2
225 226 1 -59.3 5000 2
6 78 1 -28.1 5000 2
78 135 1 -28.1 5000 2
87 143 1 -25.2 5000 2
143 213 1 -25.2 5000 2
152 221 1 -21.9 5000 2
221 282 1 -21.9 5000 2

[ distance restraints ]
; ai aj type index type’ low up1 up2 fac
49 86 1 0 2 0.16 0.21 0.23 5000
58 95 1 0 2 0.16 0.21 0.23 5000
75 101 1 0 2 0.16 0.21 0.23 5000
84 110 1 0 2 0.16 0.21 0.23 5000
93 118 1 0 2 0.16 0.21 0.23 5000
99 129 1 0 2 0.16 0.21 0.23 5000
108 134 1 0 2 0.16 0.21 0.23 5000
116 142 1 0 2 0.16 0.21 0.23 5000
127 151 1 0 2 0.16 0.21 0.23 5000
132 160 1 0 2 0.16 0.21 0.23 5000
140 177 1 0 2 0.16 0.21 0.23 5000
149 186 1 0 2 0.16 0.21 0.23 5000
158 195 1 0 2 0.16 0.21 0.23 5000
175 204 1 0 2 0.16 0.21 0.23 5000
184 212 1 0 2 0.16 0.21 0.23 5000
193 220 1 0 2 0.16 0.21 0.23 5000
202 228 1 0 2 0.16 0.21 0.23 5000
210 236 1 0 2 0.16 0.21 0.23 5000
218 241 1 0 2 0.16 0.21 0.23 5000
226 250 1 0 2 0.16 0.21 0.23 5000
234 259 1 0 2 0.16 0.21 0.23 5000

Fig. 4 An example of an itp file containing constraints for the angle to the z-axis for the CO=
bond, the local helix tilt (between Cα atoms of residues i and i + 7 either side), and distances
between amine hydrogens and carbonyl oxygens of residues i and i + 4 in the transmembrane
region. ai, aj refer to the atom numbers while the other parameters (funct, th0, fc, etc.) specify the
parameters of the potential energy function (see the GROMAC manual for a detailed explanation)

3.3 MD Simulation

A pre-equilibrated lipid bilayer of 128 DMPC molecules is used with the bilayer
normal oriented parallel to the z-axis. The following procedure is performed auto-
matically for each starting structure using GROMACS and software developed by
the authors:

1. A hole is created in the bilayer by applying an outward-directed force on water
and lipid molecules in its center [26].

2. A starting structure is inserted into this hole.
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3. Counterions are added to neutralize overall charge.
4. The resulting lipid/water/ions/peptide system is subjected to energy minimiza-

tion and MD simulation for 100 ps with the peptide atoms restrained in their
current positions.

5. Position restraints are removed. The system is energy minimized and then sub-
jected to a 200-ps MD simulation. Examples of input files for minimization, re-
strained MD, and unrestrained MD are shown in Fig. 5.

6. Finally, the system is subjected to energy minimization and analyzed. Energy,
helix rotation, crossing angle, and helix shift is recorded.

Energy Minimisation

; VARIOUS PREPROCESSING OPTIONS
cpp = /lib/cpp
include = -Ilib
define = -DFLEX_SPC
; RUN CONTROL PARAMETERS
integrator = steep
; start
time and timestep in ps
tinit = 0 dt = 0.002
nsteps = 250
; number of steps for center of mass motion removal
nstcomm = 1

; Energy MINIMIZATION OPTIONS
; Force tolerance and initial step-size
emtol = 100
emstep = 0.01
; Max number of iterations in relax_shells
niter = 0
; Frequency of steepest descents steps when doing CG
nstcgsteep = 1000

; OPTIONS FOR ELECTROSTATICS AND VDW
; Method for doing electrostatics
coulombtype = Cut-off
rcoulomb-switch = 0
rcoulomb = 1.8

Fig. 5 Parameter files for used for energy minimization, position restraint MD, and unrestrained
MD. The parameters specify the algorithm used for simulation, the choice of temperature and
pressure coupling, the treatment of electrostatic and van der Waals interactions, the use of extra
input files for position restraints, and whether random velocities should be generated at the start up
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; Dielectric constant (DC) for cut-off or DC of reaction
field
epsilon-r = 1

; Method for doing Van der Waals
vdw-type = Cut-off
; cut-off lengths =
rvdw-switch = 0
rvdw = 1.0

; OPTIONS FOR BONDS
constraints = none

; Type of constraint algorithm
constraint-algorithm = Lincs
; Do not constrain the start configuration
unconstrained-start = no
; Relative tolerance of shake =
shake-tol = 0.0001

; Highest order in the expansion of the constraint coupling matrix
lincs-order = 4
; Lincs will write a warning to the stderr if in one step a bond
; rotates over more degrees than =
lincs-warnangle = 30
; Convert harmonic bonds to morse potentials
morse = no

Position Restraint MD

; VARIOUS PREPROCESSING OPTIONS
cpp = /lib/cpp
include = -Ilib
define = -DPOSRES

(everything else like Unrestrained MD)

Unrestrained MD

; VARIOUS PREPROCESSING OPTIONS
title =
cpp = /lib/cpp
include = -Ilib

Fig. 5 continued
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; RUN CONTROL PARAMETERS
integrator = md
; start time and timestep in ps
tinit = 0
dt = 0.002
nsteps = 1000000 ; 2 ns
; number of steps for center of mass motion removal
nstcomm = 1

; OPTIONS FOR ELECTROSTATICS AND VDW
; Method for doing electrostatics
coulombtype = Cut-off
rcoulomb-switch = 0

rcoulomb = 1.8
; Dielectric constant (DC) for cut-off or DC of reaction field
epsilon-r = 1
; Method for doing Van der Waals
vdw-type = Cut-off
; cut-off lengths =
rvdw-switch = 0
rvdw = 1.0

; OPTIONS FOR WEAK COUPLING ALGORITHMS
; Temperature coupling =
tcoupl = Berendsen
; Groups to couple separately
tc-grps = DMPC Protein SOL_Cl
; Time constant (ps) and reference temperature (K)
tau-t = 0.1 0.1 0.1
ref-t = 300 300 300
; Pressure coupling =
Pcoupl = Berendsen
Pcoupltype = Isotropic

; Time constant (ps), compressibility (1/bar) and reference P (bar)

tau-p = 1
compressibility = 4.5E-5
ref-p = 1

; SIMULATED ANNEALING CONTROL
annealing = no

; GENERATE VELOCITIES FOR STARTUP RUN
gen-vel = yes
gen-temp = 300
gen-seed = 173529

Fig. 5 continued
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; OPTIONS FOR BONDS
constraints = all-bonds
; Type of constraint algorithm
constraint-algorithm = Lincs
; Do not constrain the start configuration
unconstrained-start = no
; Relative tolerance of shake
shake-tol = 0.0001

; Highest order in the expansion of the constraint coupling matrix

lincs-order = 4
; Lincs will write a warning to the stderr if in one step a bond
; rotates over more degrees than
lincs-warnangle = 30
; Convert harmonic bonds to morse potentials
morse = no

Fig. 5 continued

3.4 Clustering

1. The RMSD between each pair of structures is calculated using chi rmsd.
2. Clusters are then identified by RMSD comparisons between each structure.

Structures are allocated to a cluster if the RMSD between each member of the
cluster is lower than a set limit (2.0 Å for the ErbB-2 example) and a minimum
number of structures (five for ErbB-2) contribute to that cluster.

3. Cluster average structures are calculated by averaging the coordinates, energy
minimization, and experimentally constraint MD simulation of 2 ns after inser-
tion in the lipid bilayer, following the same protocol as detailed in Sect. 3.3.

An overview of the resulting structures and clusters following the steps in
Sects. 3.3 and 3.4 is given in Fig. 6.

3.5 Analysis

The cluster average structure is subjected to energy minimization and analyzed.
Energy, helix rotation, crossing angle, and helix shift is recorded.

The resulting structures are manually compared with experimentally obtained
rotational pitch angles, and the structure with the lowest deviation is the preferred
model, as shown in Fig. 7 for the ErbB-2 example [25] (see Note 4).
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Fig. 6 Polar plot of the energies of structures obtained from an MD simulation of mutant ErbB-2
in dependence of the helix rotation angle, φ. The distance from the center indicates negative energy
(E) in kJ/mol. Each individual structure is indicated by a triangle, whereas the clustered averages
are shown as numbered circles. The arcs represent the movement of structures from their starting
positions with respect to the helix rotation angle, φ, during the MD simulation

Fig. 7 Space-fill rendering of the final ErbB-2 structure. Glu residues are rendered in black and
labeled residues in dark grey [25]
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4 Notes

1. CHI is available from Paul Adams, http://www.csb.yale.edu/userguides/ datama-
nip/chi/html/chi.html and CNS is available from http://cns.csb.yale.edu.

2. The modified CHI programs and the additional software is available on request
from the corresponding author.

3. Distance constraints to maintain helix geometry are normally not necessary for
simulations in an explicit lipid bilayer because helices remain stable if they nat-
urally occur as helices. However, FTIR spectroscopy has been used to determine
the secondary structure, thus, distance constraints are included.

4. At this stage, some structures can be discarded because of significant deforma-
tions caused by the influence of the constraints, which are incompatible with
some helix rotations.
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Chapter 13
Nuclear Magnetic Resonance-Based Modeling
and Refinement of Protein Three-Dimensional
Structures and Their Complexes

Gloria Fuentes, Aalt D.J. van Dijk, and Alexandre M.J.J. Bonvin

Summary Nuclear magnetic resonance (NMR) has become a well-established
method to characterize the structures of biomolecules in solution. High-quality
structures are now produced, thanks to both experimental and computational
developments, allowing the use of new NMR parameters and improved protocols
and force fields in structure calculation and refinement. In this chapter, we give a
short overview of the various types of NMR data that can provide structural in-
formation, and then focus on the structure calculation methodology itself. We dis-
cuss and illustrate with tutorial examples both “classical” structure calculation and
refinement approaches as well as more recently developed protocols for modeling
biomolecular complexes.

Keywords: Docking · NMR · Refinement · Structure calculation · Validation of
structures

1 Introduction

The first step of a structure determination by nuclear magnetic resonance (NMR)
spectroscopy consists in the acquisition of NMR data, typically using heteronuclear
multidimensional experiments that allow the assignment of the chemical shifts of
all atoms/spins of a molecule (1H, 15N, 13C). Once the signals have been assigned,
13C- and 15N-edited three-dimensional (3D) nuclear Overhauser enhancement spec-
troscopy (NOESY) spectra are generally used to obtain interatomic distances from
nuclear Overhauser effects (NOE); these provide the required structural informa-
tion to define the 3D structure of the protein [1, 2]. In addition to distance re-
straints, other parameters, such as J-couplings [3] and residual dipolar couplings
(RDCs) [4] can be measured, providing additional structural information to define
the structure of a protein. The experimental NMR parameters are then typically used
in restrained molecular dynamics simulations following some kind of simulated
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annealing scheme (MD/SA) to generate 3D structures [5]. These are nowadays usu-
ally refined in explicit solvent (water), which has been shown to significantly im-
prove the quality of the structures [6,7]. The resulting ensembles of structures should
satisfy as many restraints as possible, together with general chemical properties of
proteins (such as bond lengths and angles). The whole approach will converge, pro-
vided enough data of sufficient quality are available, allowing the determination of
an ensemble of structures with a given fold.

In the last few years, a lot of attention is directed toward understanding biomole-
cular interactions, and NMR is playing an important role here [8], especially in its
ability to detect weak and transient interactions [9]. When dealing with complexes,
NMR suffers, however, because of the size limitation problem, and, therefore, com-
plementary computational methods, such as docking, are becoming increasingly
popular. Docking is defined as the modeling of the 3D structure of a complex from
its known constituents, and its combination with a limited amount of (NMR-) data
(so called data-driven docking) is extremely powerful and has found a wide range
of applications [10].

In this chapter, we discuss first “classical” NMR structure calculation and refine-
ment methods and then address the modeling of protein–protein complexes. These
will be illustrated with tutorial examples making use of the program CNS [11] with
ARIA-derived [12] scripts from the RECOORD [7] webpage and of the HADDOCK
package [13].

2 Theory

2.1 NMR Structural Information Sources

Several NMR parameters providing structural information can be measured for
use in structure calculations and refinement. These will be briefly reviewed in the
following subsections.

2.1.1 Nuclear Overhauser Effects

Classical protein structure determination by NMR relies on a dense network of
distance restraints derived from NOEs between nearby hydrogen atoms in a pro-
tein [1, 2].

The NOE originates from cross-relaxation between dipolar-coupled spins that in-
volve a transfer of magnetization from one spin to another. The NOE approximately
scales with the distance r between the two spins as 1/r6. Because of this 1/r6 depen-
dency, NOEs are only detected between protons less than 5 to 6 Å away in space.
They provide essential information for defining the tertiary structure of a protein.
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2.1.2 Chemical Shifts

Although chemical shifts are very sensitive probes of the chemical environment of
a spin, their dependency on the 3D structure is complex. Although several soft-
ware packages exist that allow prediction of chemical shifts, such as ShiftX [14],
SHIFTS [15], SHIFTCALC [16], and PROSHIFT [17], both computational and ac-
curacy limits have prevented their common use as restraints in structure calculations,
although direct refinement against chemical shifts has been described [18]. Their de-
viations from random coil values provide, however, valuable information regarding
secondary structure preferences; they can be used to restrict the local conformation
of a residue to a given region of the Ramachandran plot, either through torsion angle
restraints [19] or by special database potential functions [20].

2.1.3 J-Couplings

Scalar or J-couplings are mediated through chemical bonds connecting two spins.
The energy levels of each spin are slightly altered depending on the spin state of
scalar coupled spins (α or β), resulting in splitting of the resonance lines. Particu-
larly informative are the vicinal, three bonds scalar coupling constants, 3J, between
atoms separated by three covalent bonds from each other, which are correlated to the
enclosed torsion angle, �, by an empirical correlation, the Karplus curve [21]. In
particular, 3J(HN-Hα) and 3J(Hα-Hβ) give information regarding the ϕ-angle and
the χ1 angle in an amino acid, respectively. The use of 3J(Hα-Hβ) coupling does
require stereospecific assignments of diastereotopic proton Hβ2/Hβ3 pairs.

The main difference with NOEs is that scalar coupling constants only provide
information regarding the local conformation of a polypeptide chain. J-couplings
have been used as dihedral angle restraints [1] or direct J-coupling restraints [22,23]
in NMR structure calculations.

2.1.4 Hydrogen Bonds

Slow hydrogen exchange indicates that an amide proton is protected from the sol-
vent, which is usually interpreted as involvement in a hydrogen bond [24]. The
acceptor atom cannot, however, be identified directly, and one has to rely on NOEs
around the postulated hydrogen bond or assumptions regarding regular secondary
structures to define it. Hydrogen bond restraints should be used with caution, al-
though they can be very useful in the case of large proteins when not enough NOE
data is available yet. Note that hydrogen bonds can now also directly be detected
from cross-hydrogen bond scalar coupling measured from constant time HNCO
spectra [25, 26]. These can provide useful restraints for structure calculations [27].
Hydrogen bond restraints are introduced into the structure calculation as distance
restraints, typically by confining the donor hydrogen/acceptor distance to a given
range.
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2.1.5 Residual Dipolar Couplings

During the past years, RDCs have become an increasingly important source of struc-
tural information [28,29]. They can be measured in solution by weakly aligning the
molecule using a variety of methods [30]. RDCs provide angular information be-
tween the internuclear vector for which they are measured and a set of globally
defined axes in the molecule, namely those of the alignment tensor. The measured
RDCs are given by:

Di (β iαi ) = 0.5D0[Aa(3 cos2 β i − 1) + 3
2 Ar (cos 2αi sin2 β i )].

Here, Aa is the axially symmetric part of the alignment tensor, equal to [Azz −
1/2(Axx + Ayy)] and Ar is the rhombic component of the alignment tensor, equal
to (Axx − Ayy), where Axx, Ayy, and Azz are the x , y, and z-components of the
alignment tensor, respectively; αi and βi are the azimuthal and polar angles of the
vector for which the RDC is reported, in the frame of the alignment tensor. D0 is
the strength of the (static) dipolar coupling defined as:

D0 = −
(µ0

4π

) γiγ j h

2π2r3
NH

,

which, in the case of N-NH RDCs is equal to 21.7 kHz. rN H is the length of the
NH vector, µo is the magnetic permeability of vacuum, γi is the gyromagnetic ratio
of spin i , and h is Planck’s constant. The structural information is contained in the
angles α and β; note that if an RDC is measured between two atoms that are not at
a fixed distance from each other, there is also a distance dependence (via the r term
in D0). RDCs can be added as orientational restraints to the target function of the
structure calculation algorithm [31]. Usually, only RDCs measured for internuclear
vectors with a fixed distance are used.

2.1.6 Diffusion Anisotropy

Diffusion anisotropy (relaxation) data contain orientational information comparable
to RDCs [32]. NMR relaxation is characterized by relaxation times T1 and T2, and
the ratio T1/T2 can be used to define diffusion anisotropy restraints in NMR struc-
ture calculations [33]. Again, the orientation information comes from the angles of
internuclear vectors in an external frame, which, in the case of diffusion anisotropy
data, corresponds to the orientational diffusion tensor frame.

2.1.7 Paramagnetic Restraints

If a paramagnetic metal ion is present in a protein, the NMR signals of the nuclei
in a shell around it will be affected [34] by several effects, including contact and
pseudocontact shifts, relaxation rate enhancements, and cross-correlation effects.
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In principle, these can provide both distance and orientation information. They have
been implemented as restraints in various structure calculation software packages
[35, 36].

2.2 Structure Calculation Software

The experimental information sources discussed above (Sect. 2.1) can be used as re-
straints in the calculation process. They have been implemented in several computer
programs, among which are CNS [11], Xplor-NIH [37], CYANA [38], SCULP-
TOR [39], the SANDER module of AMBER [40], and even GROMACS [41]. The
most commonly used are CYANA and Xplor/CNS.

Structure calculations are usually based on some molecular dynamic simulated
annealing (SA) protocol performed in torsion angle and/or Cartesian space, fol-
lowed by a final refinement phase in explicit solvent (water). A general feature of
these protocols is that they use a “target function” that measures how well the calcu-
lated structure fits the experimental data and the chemical information; the lower this
function, the better the agreement. The chemical information is defined in the force
field that contains terms such as bond length, bond angles, van der Waals interac-
tions, etc. Often, the description of long-range nonbonded interactions is simplified
to increase the speed of the calculations by considering only repulsions between
atoms and neglecting electrostatic interactions. A full nonbonded representation,
including van der Waals (Lennard-Jones) and electrostatic (Coulomb) interactions,
is typically reintroduced for final refinement in explicit solvent [6].

2.3 Structural Statistics and Structural Quality

The first step in structure validation is the selection of NMR structures from a large
ensemble of calculated structures. The most widely used structure selection proce-
dure is based on the agreement with the experimental data (small number of vio-
lations) and a low energy of the structures; typically ensembles of approximately
20 lowest energy models are selected, although this number is arbitrary. Ideally, the
selected ensemble should represent the available conformational space accessible
to the structure while satisfying the experimental restraints. From this ensemble,
a representative structure is usually defined; no real consensus exists, however, on
how it should be selected. We recommend selection of the structure that differs the
least from all other structures within the ensemble, i.e., the closest to the average
structure.

The final ensemble is subsequently subjected to structural validation to obtain an
indication of the quality and structural statistics. In practice, several quality indica-
tors are often used to assess the quality of the NMR ensembles, such as:
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• The goodness of fit to the experimental data, by analyzing restraint violations
• The precision of the ensemble, measured by positional root mean square devia-

tion (RMSD)
• Several chemical and stereochemical quality indicators that are generally used to

assess the local and overall quality of protein structures, many of them based on
knowledge from high resolution x-ray structures [42]

Table 1 lists the most commonly used validation programs. The use of some of
these programs will be described later in Sect. 3.

Table 1 Internet resources of NMR-related programs and databases mentioned in this chapter

Software Internet address Purpose
CNS http://cns.csb.yale.

edu/v1.1
Multilevel hierarchical approach for the
most commonly used algorithms in
macromolecular structure determination
(NMR, crystallography)

RECOORD http://www.ebi.ac.
uk/msd-
srv/docs/NMR/
recoord/scripts.html

Database of recalculated NMR structures
with the CNS scripts used in the tutorial
example

HADDOCK www.nmr.chem.uu.nl/
haddock/

High ambiguity driven protein–protein
docking based on biochemical and/or
biophysical information

(installation notes:
http://www.nmr.chem.
uu.nl/haddock/
installation.html)

PDB http://www.rcsb.org/
pdb/Welcome.do

An information portal to biological
macromolecules structures

BMRB http://www.bmrb.
wisc.edu

Biological Magnetic Resonance Data Bank

CCPN http://www.ccpn.ac.
uk

A collaborative computing project for NMR

PROCHECK http://www.biochem.
ucl.ac.uk/∼roman/
procheck/procheck.
html

Checks the stereochemical quality of a
protein structure, producing a number of
PostScript plots analyzing its overall and
residue-by-residue geometry

PROCHECK NMR http://www.biochem.
ucl.ac.uk/∼roman/
procheck nmr/manual/
manprochint.html

PROCHECK-NMR is a suite of programs
that have been derived from the
PROCHECK programs to analyze
ensembles of protein structures solved by
NMR

PROCHECK COMP http://www.biochem.
ucl.ac.uk/∼roman/
procheck comp/
procheck comp.html

Compares residue-by-residue geometry of a
set of closely related protein structures

WHATIF http://swift.cmbi.kun.
nl/whatif/

Versatile molecular modeling package that
is specialized on working with proteins and
the molecules in their environment such as
water, ligands, nucleic acids, etc.

web server:
http://swift.cmbi.kun.
nl/WIWWWI
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Table 1 Continued
Software Internet address Purpose
WHATCHECK http://swift.cmbi.ru.

nl/gv/whatcheck
The protein verification tools from the
WHAT IF program

MOLPROBITY http://molprobity.
biochem.duke.edu

Structure validation and all-atom contact
analysis for proteins, nucleic acids, and
their complexes

QUEEN http://www.cmbi.kun.
nl/software/queen/
index.spy?site=queen
&action=Home

Quantitative evaluation of experimental
NMR restraints

TALOS http://spin.niddk.nih.
gov/bax/software/
TALOS/info.html

Protein backbone angle restraints from
searching a database for chemical shift and
sequence homology

profit http://www.bioinf.
org.uk/software/
profit/

Least square-fitting program that performs
the basic function of fitting one protein
structure to another

NACCESS http://wolf.bms.umist.
ac.uk/naccess/
nacwelcome.html

Stand-alone program that calculates the
accessible area of a molecule from a PDB
format file

Xmgrace http://plasma-
gate.weizmann.ac.
il/Grace

Plotting tool

molmol http://hugin.ethz.ch/
wuthrich/software/
molmol

Molecular graphics program

Rasmol http://www.umass.
edu/microbio/rasmol/
index2.htm

Molecular graphics program

2.4 NMR-Based Modeling of Complexes

In principle, the structural information sources discussed above (Sect. 2.1) apply as
well for structure calculation of protein–protein complexes. Again, NOEs are the
most important information source, and, when available, RDCs are very useful as
well [8, 43]. However, it is often difficult to obtain intermolecular NOEs, especially
in the case of weakly interacting and transient complexes. For those cases, how-
ever, NMR remains a powerful method that provides several ways of mapping the
interface between the components of a complex.

In one approach, the so-called chemical shift perturbation (CSP) experiment,
1H15N-HSQC spectra of one 15N-labeled component of the complex are recorded
in the absence and presence of increasing amounts of its partner [9]. Changes in
chemical shift after addition of the partner reveal residues that are possibly involved
in the interaction. In cross-saturation or saturation transfer (SAT) experiments [44],
the observed protein is 15N labeled and perdeuterated with its amide deuterons ex-
changed back to protons, whereas the “donating” partner protein is unlabeled. Sat-
uration of the unlabeled protein leads, by cross-relaxation mechanisms, to signal
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attenuation (typically monitored by 1H15N-HSQC spectra) of those residues in the
labeled protein that are in close proximity. Finally, in the case of paramagnetic sys-
tems, several of the above-mentioned paramagnetic effects can also be used to map
interfaces [45].

To make use of those interface mapping data, NMR-based docking approaches
have been developed [13,46–49]. One of these is HADDOCK [13], which combines
a limited amount of (NMR-)data with docking in so called data-driven docking.
Data-driven docking in HADDOCK follows a three-stage procedure:

1. Rigid body energy minimization.
2. Semiflexible refinement following an SA protocol during which increasing

amounts of flexibility are allowed:

(a) High temperature rigid-body search
(b) Rigid body simulated annealing (SA)
(c) Semiflexible SA with flexible side chains at the interface
(d) Semiflexible SA with fully flexible interface (both backbone and side chains)

3. Final refinement in explicit solvent (water or DMSO).

During the docking, the (NMR-)data are introduced as “ambiguous interaction
restraints” (AIRS). These are defined between active and passive residues, active
residues being the residues that, based on the experimental data, have been identified
to be involved in the interaction, and passive residues being their surface neighbors.
An AIR is defined between each active residue and all active and passive residues of
the partner protein. This restraint is only fulfilled when the active residue will make
contact with at least one of the active or passive residues of the partner protein,
which means that the restraint will indeed drive the docking.

The ranking of the docking solutions is performed using a “HADDOCK-score,”
which is a combination of several terms including restraint energies, intermolec-
ular energies (van der Waals and electrostatic), desolvation energy, buried surface
area, etc.

3 Methods

In this tutorial section, we describe the procedures to generate various type of NMR
restraints and their use in structure calculation using CNS with the RECOORD
scripts. This will be followed by a description of the steps to be followed for NMR-
based modeling of biomolecular complexes using HADDOCK. As a convention, the
commands to be executed are highlighted in grey using a Courier font. Information
regarding the various programs and web pages used in this tutorial can be found in
Table 1.
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3.1 Restraint Generation

The keystone of NMR structure determination consists of three different types of
experimental structure restraints: distance restraints, dihedral angle restraints, and
orientational restraints.

3.1.1 Distance Restraints

A cross-peak in a NOESY spectrum indicates special proximity between two nuclei.
Thus, each peak can be converted into a maximum distance between the nuclei, usu-
ally between 1.8 and 6.0 Å. This distance can be obtained according to the intensity
of the NOESY peak (proportional to the distance to the minus 6th power, 1/r6).
This intensity–distance relationship is only approximate, thus, usually a distance
range is assumed. The assignment of the NOESY peaks to the correct nuclei based
on the chemical shifts is of crucial importance. The manual detection of NOEs is
an intensive and time-consuming job. Some programs, such as CANDID [50] and
ARIA [12], can perform this task in an automated fashion coupled to the structure
calculation protocol.

A common problem in NMR has been the limited availability of software al-
lowing easy conversion between different data formats, which makes data exchange
and use of different programs a tedious process. The CCPN Data Model for macro-
molecular NMR [51] is intended to cover all data needed for macromolecular NMR
spectroscopy from the initial experimental data to the final validation. The ccpNmr
FormatConverter application allows the import and export of data from and to a
large variety of formats (Fig. 1).

Fig. 1 Graphical user interface (GUI) layer of the CCPN FormatConverter (http://www.ccpn.
ac.uk)



238 G. Fuentes et al.

Fig. 2 Example of the input shift table required in TALOS

3.1.2 Dihedral Angle Restraints

J-coupling and secondary chemical shifts can be used to define restraints on the
torsion angles of the chemical bonds, typically the φ, ψ, and χ1 angles can be gen-
erated and included in the protocol. They can be calculated applying the Karplus
equation [21] to the measured J-couplings, or by using chemical shifts in programs
such as TALOS [52] or CSI [53]. We will describe here the use of TALOS.

TALOS is a database system for empirical prediction of φ and ψ backbone torsion
angles using a combination of available chemical shifts (Hα, Cα, Cβ, CO, N) for a
protein sequence. To use TALOS, the following steps should be followed:

1. Create a directory for the predictions from where all the following commands
will be executed.

2. Prepare the input table with the sequence and shift assignments in the required
format. For preparing the input shift table required by TALOS (for example, see
Fig. 2), we can again use the FormatConverter. In this case, we need a sequence
file and the chemical shift table, and the program will export the table in the
proper format for TALOS, taking into account naming conventions and shift ref-
erencing.

3. Run TALOS to perform the database search:

talos.tcl −in myshifts.tab

During the searching phase, a series of files will be created in
“pred/res.*.tab.” Each of these files contains the 10 best matches
in the database for a given residue. In addition, a file “pred.tab” is created,
where a summary of the prediction results is stored.

4. Run VINA to summarize the results. This can be done with one of the following
commands, depending whether a structure template is available or not:

vina.tcl −in myshifts.tab

vina.tcl −in myshifts.tab −ref mystructure.pdb
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Fig. 3 Ensemble of final water-refined structures for PDB entry 1bf0 recalculated with the RECO-
ORD scripts

This step will adjust the individual prediction files to identify outliers in the de-
tected matches and it will prepare a new summary file. This step is optional,
because, in the previous step, a “pred.tab” was already created.

5. Run RAMA to inspect and adjust the predictions made by the program:

rama.tcl −in myshifts.tab

rama.tcl −in myshifts.tab −ref mystructure.pdb

During the manual prediction, you will classify the results for a given residue as
“Good,” “Ambiguous,” or “Bad.” For that purpose, you have to examine the φ/ψ
distributions of the detected matches and decide which ones should be included
in the prediction and which ones are outliers. The prediction files will be over-
written to reflect any changes made interactively, and a final “pred.tab” will
be created containing the classification and predictions (average and standard
deviations) for the φ and ψ angles for each residue.

To convert the TALOS predictions into CNS/Xplor restraints, we can use the perl
script talos2xplor.pl, which can be obtained from the Biomolecular NMR
laboratory at UAH (http://daffy.uah.edu/nmr/analysis.html). The script will ask you
for an input a TALOS prediction file, the minimum ± error (e.g., 20◦) you want to
include in the restraints, and an output CNS/Xplor restraint file.
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3.2 NMR Structure Calculation and Refinement

For the structure calculation part, we are going to describe the use of the program
CNS [11] with an SA protocol derived from ARIA [54], followed by refinement in
explicit solvent [7]. All of the scripts mentioned in this section can be downloaded
from the RECOORD webpage (see Table 1).

Start by creating a folder where you will run the calculations, download there the
tar file containing the RECOORD scripts, and decompress it:

mkdir struct-calc

cd struct-calc/

wget http://www.ebi.ac.uk/msd- srv/docs/NMR/recoord/files/RECOORDscripts.tgz

tar xzfv RECOORDscripts.tgz

In case the wget command does not work, use a web browser to download the
scripts manually from the RECOORD webpage (see Table 1).

Before starting the calculations, you need to set up your current path for the
scripts to work. To do this, you need to edit changeScriptsDir.sh found in
the RECOORDscripts/ folder, change the path for newDir in line 8 by your
current path (you can find it by typing “pwd” in the shell) and execute it:

cd RECOORDscripts

nedit changeScritpsDir.sh #(change line 8 for pwd)

./changeScritpsDir.sh

cd ..

(nedit is a text editor; if not installed, use your preferred editor instead).
Most of the scripts use the CNS executable, so check that CNS is properly

installed.
The last step is to setup a working directory, assigning a project name for the pro-

tein on which you are going to work. This project name will be used to generate the
file names at the different stages of the protocol. We will use the 1bf 0 structure [55]
as an example, with the corresponding NMR restraints available for this entry from
the BioMagResBank (BMRB) [56].

mkdir 1bf0

cd 1bf0

wget http://www.pdb.org/pdb/files/1bf0.pdb.gz

gunzip 1bf0.pdb.gz

The easiest way of obtaining the restraints in a format ready to be used in this
protocol is to go to the BMRB from the PDB entry, select 4-filtered-FRED
in the stage window, select the distance restraints in XPLOR/CNS format by click-
ing on it, and then click on “170823” in mrblock id and copy and paste these
restraints in a text file called unambig.tbl (see Note 1).



NMR Refinement of Proteins 241

3.2.1 Generation of Molecular Topology Files

We can generate the molecular topology of the protein using the RECOORD script
generate.sh (a modified version of the CNS script generate easy.inp),
either from the primary sequence or from a PDB coordinate file, depending on avail-
ability. Here, we will use the downloaded PDB file (see Note 2):

../RECOORDscripts/generate.sh 1bf0.pdb

If you give a name such as 1bf0.pdb, a topology file called 1bf0 cns.mtf
will be generated. You should check the ERRORS generate file created inside
the 1bf0/ folder for possible errors. In this particular case, you can see that the
script reported many errors but they are basically nomenclature errors and they can
be ignored. A new pdb file called 1bf0 cns.pdb is also generated with the proper
CNS nomenclature (display the structure in your favorite molecule viewer to make
sure that it looks reasonable and that the script worked properly).

3.2.2 Generation of Extended Starting Structure

The next step is the generation of an extended starting conformation, which
will be used as input in the SA protocol. For this, use the RECOORD script,
generate extended.sh.

../RECOORDscripts/generate extended.sh 1bf0 cns.mtf

Keeping the name given before, an extended structure called
1bf0 cns extended.pdb will be generated. In addition, it is advisable
to check the ERRORS generate extended file in the same working directory
for errors.

3.2.3 SA Stage

Use the script annealing.sh to start the structure calculation run. This script
will generate a CNS parameter file (run.cns) with all details and specifications of
the protocol that is used. The NMR restraints are contained in table files. We can use
three different types of restraints, depending on their availability: unambig.tbl
(NOE distance restraints), hbonds.tbl, and dihedrals.tbl. Note that the
annealing.sh script should be run from a higher level than the previous two
scripts.

cd ..

../RECOORDscripts/annealing.sh 1bf0

Individual job files will be generated and executed for each model you want to
calculate. By default, two models will be generated in the created str/ folder, with
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names similar to 1bof cns [1-2].pdb. The CNS input and output files can be
found in the directory cnsRef/, together with possible error files (see Note 3).
The header of every PDB file generated contains information regarding violations
and energy values.

3.2.4 Water Refinement Stage

Once the SA phase is finished and all resulting structures have been written into the
str/ directory, we can proceed to water refinement. For this purpose, we are going
to use the script re h2o.sh.

../RECOORDscripts/re h2o.sh 1bf0

In the str/ directory, a new directory called wt/will be created, the best energy
structures will be copied there and subsequently refined (see Note 4). The final
ensemble of structures obtained following this protocol is shown in Fig. 3.

3.3 Structure Validation and Quality Assessment

3.3.1 Restraint Violations

To obtain statistics regarding distance and dihedral angle violations for the water
refined ensemble, use the scripts calcViol.sh and analysViol.sh, which
analyze and summarize violations, respectively.

cd 1bf0

../RECOORDscripts/calcViol.sh 1bf0 cns str/wt/violations
0.3 convertOff 1bf0 cns.mtf unambig.tbl

where the input parameters correspond to the entry name (in this specific case,
1bf0 cns), the directory in which the coordinate files can be found (in this case the
directory containing the water refined structures 1bf0 cns w [1-25].pdb), the
violation distance cut-off (a frequently used value is 0.3 Å), the conversion switch to
CNS format (it is optional and by default set to convertOff), the topology and re-
straint files (these are also optional, with, as the default, ‘entryname’ cns.mtf
and unambig.tbl). Files with violations statistics will be created in the new
violations/ folder, with names as viol 1bf0 cns w 0.3. Once the viola-
tions have been calculated, they can be analyzed with analysViol.sh:

../RECOORDscripts/analysViol.sh 1bf0 cns violations

where violations/ is the directory created previously with the calcViol.sh
script. The results are summarized in the violations folder in the
viol results file.
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3.3.2 Structural Validation

Various software tools are available to assess the stereochemical quality of the gen-
erated protein structures. Some of the most widely used packages are PROCHECK
[57] and WHATIF [58]. Procheck provides a detailed graphical indication of the
quality of a protein structure, giving an assessment of both the overall quality of the
structure, as compared with well-defined structures of the same resolution, and of
highlight regions that may need further investigation.

The command to run PROCHECK, once the program is properly installed, is:

procheck filename [chain] resolution

where filename indicates the coordinates file in Brookhaven format, chain is an
optional one-letter chain-ID, in case several chains are included in the model, and
resolution is a real number giving the resolution of the structure, to select the
structures from the database to compare with our model.

Because PROCHECK only allows the analysis of a single structure at a time, it
is worthwhile to also use PROCHECK COMP or PROCHECK NMR [59], a suite
of programs that have been derived from the original PROCHECK programs, to
compare, residue by residue, the geometry of a set of closely related protein struc-
tures, such as those in an NMR ensemble. To run PROCHECK COMP, you need to
create a file, e.g., 1bf0.list, containing the names of the structures you want to
analyze, and then type the command:

procheck comp 1bf0.list

Both programs produce easily interpreted color postscript files that can be viewed
using ghostview or similar programs. Type, for example, “gs 1bf0 01.ps”
to display the Ramachandran plot showing the φ/ψ torsion angles for all residues
in the structure. The coloring/shading on the plot represents the different regions:
the darkest areas correspond to the “core” regions representing the most favorable
combinations of φ/ψ values. 1bf0 06.ps shows various graphs and diagrams of
protein geometrical properties as a function of the amino acid sequence, allowing
you to possibly distinguish regions with normal geometry from those that might be
poorly defined and present unusual geometry (see Note 5).

Another very useful protein validation tool is WHATCHECK, based on
WHATIF, which also uses reference values from an x-ray database for most of the
checks carried out. A great advantage of WHATCHECK is that the reference data-
base of high-resolution protein structures is larger than in PROCHECK and continu-
ously updated. Further, it provides many more checks and is more critical. WHATIF
is also available as a web server (see Table 1), where a variety of quality parameters
can be obtained by uploading a PDB coordinates file to the server [42].
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3.3.3 Precision of the Ensemble

The precision of a structure can be estimated by measuring the conformational vari-
ance over an ensemble of models. Usually, this variance has been expressed as the
positional RMSD of the individual models from the mean structure. This parameter
is useful for estimating the precision of the calculation, but does not report on the
accuracy. The later can only be calculated if a standard reference is available.

The positional RMSD from the mean and the prediction of secondary structure
elements can be obtained using the molecular graphical program Molmol [60]. The
least-square fitting program Profit can also perform the basic function of fitting a
protein structure to another and allows for much more flexibility. It can be used to
calculate the accuracy of structures, provided a reference structure is known. This
program can be used in a direct interactive fashion in a terminal window or using
scripts. A very simple script called here profit.in could be written as follows:

reference a.pdb
mobile b.pdb

! specifies the residues to fit on

! in this case: 10−20 in the reference with 30−40 in

! the mobile zone 10−20:30−40
! specifies the atom subsets for both

! fitting and RMS calculation.

atom CA,C,N

fit

! writes the fitted coordinates to a file

write b fiton a.pdb

quit

To execute it, simply type:

profit < profit.in

3.4 Modeling of Complexes by Data-Driven Docking
Using HADDOCK

We describe here the use of the HADDOCK2.0 package (see Table 1) for the mod-
eling of a protein–protein complex. In the following, we will use data from the
haddock2.0/examples/e2a-hpr directory. You should first copy this direc-
tory to the directory in which you are working (see Note 6):

cp -r $HADDOCK/examples/e2a-hpr .



NMR Refinement of Proteins 245

3.4.1 Preparation of PDB Files and Input Data

If you are using an ensemble of structures, split the file such that each individual
PDB file contains only one structure (see Note 7). As input data, you should com-
bine CSP data (or other data indicating residues at the interface) and solvent accessi-
bility data calculated with NACCESS; use only those residues that have both a high
enough CSP and a high enough relative accessibility. In the example, the (average)
per residue solvent accessibilities calculated with NACCESS are already provided
in the files e2a 1F3G.rsa and hpr/hpr rsa ave.lis (the latter containing
the average for the 10 starting structures for hpr). From these files, you can select the
residues with high enough (e.g., >40–50%) accessibility (see Note 8). You could
calculate the accessibility values yourself using the following command:

naccess e2a 1F3G.pdb

3.4.2 Definition of Active and Passive Residues

Passive residues are defined as the solvent-accessible surface neighbors of active
residues. To define them you can display your molecule in a space-filling model
using, for example, rasmol:

rasmol e2a 1F3G.pdb

and color the active residues, for example, in red. Then, filter out the residues having
a low solvent accessibility and select all surface neighbors to define the passive
residues (color them, for example, in green), which, again, you should filter with
the solvent accessibility criterion. In the e2a-hpr example, several rasmol scripts
are provided with the respective residues already colored according to this scheme:

e2a rasmol active.script, e2a rasmol active passive.script

and similar for hpr.
You will use the active and passive residues for both molecules to generate AIRs;

for this, go to the HADDOCK project setup section on http://www.nmr.chem.uu.nl,
click on “generate AIR restraint file” and follow the instructions. You should
save the resulting file as ambig.tbl in the working directory; note that, in the
e2a-hpr example directory, ambig.tbl is already present (see Note 9).

3.4.3 Setup of a New Run: new.html

To set up a new run, return to the project setup page on http://www.nmr.chem.uu.nl,
click on “start a new project” and follow the instructions. Depending on the experi-
mental data you have available, you will input various data files, such as ambiguous
restraints, unambiguous restraints, RDCs, etc. After saving the new.html file to



246 G. Fuentes et al.

disk, type “haddock2.0” in the same directory. This will generate a run direc-
tory containing all of the necessary information to run haddock. An example of a
new.html file can be found in the e2a-hpr directory as new.html-example
(see Note 10).

3.4.4 Run.cns

The next step is to define all parameters to perform the docking run. For this, enter
the newly created directory:

cd run1

You will find a file called run.cns containing all the parameters to run the
docking. You need to edit this file and define a number of project-specific para-
meters, such as the semiflexible segments at the interface or fully flexible seg-
ments and other parameters governing the structure docking (see Note 11). You
can edit your run.cns file via “project setup” on http://www.nmr.chem.uu.nl.
More information is available via the “run.cns” option in the manual section on
http://www.nmr.chem.uu.nl.

3.4.5 Docking Run

To actually start the docking run with HADDOCK, in the directory containing the
run.cns file (see Note 12) type:

haddock2.0 >& haddock.out &

As more extensively explained in “The Docking” section in the HADDOCK
manual, the entire protocol consists of four stages:

1. Topologies and structures generation: The resulting topologies (∗.psf) and coor-
dinates (∗.pdb) files are written into the begin/ directory (see Note 13).

2. Randomization and rigid body energy minimization: The generated docked
structures are written into structures/it0/. When all structures have been
generated, HADDOCK will write the PDB filenames sorted according to the cri-
terion defined in the run.cns into file.cns, file.list, and file.nam
in the structures/it0 directory.

3. Semiflexible SA: The best 200 structures after rigid body docking (this number
is defined in run.cns and can be modified) will be subjected to a semiflexible
SA in torsion angle space. The temperatures and number of steps for the var-
ious stages are defined again in the run.cns parameter file. The resulting
refined structures are written into structures/it1. At the end of the calcu-
lation, HADDOCK generates the file.cns, file.list, and file.nam
files containing the filenames of the generated structures sorted accordingly to
the criterion defined in the run.cns parameter file (see Note 14). At the end
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of this stage, the structures are analyzed and the results can be found in the
structures/it1/analysis directory (see Sects. 3.4.6 and 3.4.7).

4. Flexible explicit solvent refinement. The re h2o.inp (or re dmso.inp, if
the chosen solvent is DMSO) CNS script is used for this step. The result-
ing structures are written in the structures/it1/water directory. At the
end of the explicit solvent refinement, HADDOCK generates the file.cns,
file.list, and file.nam files containing the filenames of the generated
structures sorted accordingly to the criterion defined in the run.cns parame-
ter file. Finally, the structures are analyzed and the results can be found in
the structures/it1/water/analysis directory (see Sects. 3.4.6 and
3.4.7).

3.4.6 Automatic Analysis

A number of analysis scripts are automatically run after the semiflexi-
ble and explicit solvent refinement stages, with the results placed into
structures/it1/analysis and structures/it1/water/analysis,
respectively. Here we discuss a few of the most relevant output files.

• e2a-hpr rmsd.disp: Contains the pairwise RMSD matrix; this file is used
as input for RMSD clustering.

• noe.disp: Contains the number of distance restraints violations per structure
and averaged over the ensemble over all distance restraint classes and for each
class (unambiguous, ambiguous, hbonds) separately. Comparable files are gener-
ated when you have RDC restraints (sani.disp) or relaxation data restraints
(dani.disp).

• energies.disp: Contains the various energy terms per structure and aver-
aged over the ensemble.

• ana ∗.lis: There is a set of files called ana∗.lis where ∗ can be
dihed viol, dist viol all,hbond viol, hbonds, nbcontacts,
noe viol all, noe viol ambig, or noe viol unambig. The “viol”
refers to violations, and those files contain listings of violations, including the
number of times a restraint is violated and the average distance and violation per
restraint. In addition, ana hbonds.lis gives a listing of hydrogen bonds, and
ana nbcontacts.lis gives a listing of nonbonded contacts.

• ene-residue.disp: Contains intermolecular energies for all interface
residues.

• nbcontacts.disp: Contains nonbonded contacts.

3.4.7 Manual Analysis

An important part of the analysis needs to be performed manually. A number of
scripts and programs are provided for this purpose in the tools directory. These
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allow collection of various statistics on the generated models and, more importantly,
clustering of solutions and their analysis on a per-cluster basis.

• Collecting statistics of the models with ana structure.csh: Copy
this script from the tools directory into structures/it1 or
structures/it1/water. This script should be run once the
file.list file has been created. It extracts from the various PDB
files various energy terms, violation statistics, and the buried surface
area, and calculates the RMSD of each structure compared with the
lowest energy structure (if the location of ProFit is defined [see instal-
lation and software links on http://www.nmr.chem.uu.nl/haddock]). Sev-
eral files called “structures � .stat” are created, which contain the
same information but sorted in different ways. The most important file is
structures haddock-sorted.stat, which is sorted based on the
HADDOCK-score. You can generate a plot of the HADDOCK-score as
a function of the RMSD (using Xmgrace, for example). A script called
make ene-rmsd graph.csh is provided in $HADDOCKTOOLS for this
purpose. Specify two columns to extract data from and a filename:

$HADDOCKTOOLS/make ene-rmsd graph.csh 3 2
structures haddock-sorted.stat

This will generate a file called ene rmsd.xmgr, which you can display with
xmgrace:

xmgrace ene rmsd.xmgr

• Clustering of solutions using cluster struc: The clustering is run automat-
ically in it1/analysis and it1/water/analysis based on the criteria
defined in the run.cns file. However, try using different cut-offs for the clus-
tering because it is difficult to know a priori the best RMSD cut-off. This will
depend on the system under study and the number of experimental restraints used
to drive the docking (see Note 15).
cluster struc reads the e2a-hpr rmsd.disp file containing the pair-
wise RMSD matrix and generates clusters. The usage is (in the analysis di-
rectory):

cluster struc [−f] e2a-hpr rmsd.disp cut-off
min cluster size>cluster.out

Here, cut-off indicates the RMSD cut-off and min cluster size is the min-
imum number of structures in a cluster (typically a number like 4 or 5) (−f is
optional, see Note 16).
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The output looks like:

cluster 1 → 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 23 24 27 28 43

cluster 2 → 25 26 29 32 34 35 57 71 73 20 21 44 39 46

. . .

The numbers correspond to the structure number in the analysis file. For example,
2 corresponds to the second structure in analysis, i.e, the second structure in
file.list in it1 or it1/water.

• Analysis of the clusters with ana cluster.csh: This script takes the output
of cluster rmsd to perform an analysis of the various clusters, calculating
average energies, RMSDs, and buried surface area per cluster. To run it, type
with as argument the output file of the clustering, e.g.:

$HADDOCKTOOLS/ana cluster.csh [−best #]
analysis/cluster.out

The −best # is an optional argument to generate additional files with cluster
averages calculated only on the best # structures of a cluster. The best struc-
tures are selected based on the criteria defined in run.cns, i.e., the sort-
ing found in file.list. This allows removal of the dependency of the
cluster averages based on the size of the respective clusters (see Note 17).
The ana cluster.csh script analyzes the clusters in a similar way as
the ana structure.csh script, but, in addition, generates average values
over the structures belonging to one cluster. It creates a number of files for
each cluster containing the cluster number clustX in the name (see Note
18). In addition, files containing various averages over clusters are created,
cluster xxx.txt; these contains the average and standard deviation of var-
ious terms such as intermolecular energy (xxx = ene) etc. In addition, files
combining all of the above information and sorted based on various criteria
are provided: clusters.stat that contains the various cluster averages, un-
sorted, and clusters xxx-sorted.stat, where xxx is the energy term
according to which the values are sorted (e.g., xxx = ene for intermolecular
energy, etc.). The most relevant is clusters haddock-sorted.stat.

• Rerunning the HADDOCK analysis on a cluster basis: Having performed the
cluster analysis, you can now rerun the HADDOCK analysis for the best struc-
tures of each cluster to obtain various statistics on a “cluster bests” basis. For this,
one needs the cluster-specific file.nam clust#, file.list clust#,
and file.cns clust# files. A script called make links.csh is pro-
vided that will move the original file.nam, file.list, and file.cns
files to file.nam all, file.list all, file.cns all, and the same
with the analysis directory. It will then create links to the appropriate files
(file.nam clust#, . . . ) and to a new analysis clust# directory.
For example, to rerun the analysis for the best 10 structures of the first cluster
type in the water directory:
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$HADDOCKTOOLS/make links.csh clust1 best10
cd ../../..
haddock2.0

The cd command brings you back into the main run directory, from where you
again start HADDOCK. Only the analysis of the best 10 structures of the first
cluster in the water will be run. Once finished, go to the respective analysis direc-
tory and inspect the various files. The RMSD from the average structures should
now be low (check rmsave.disp).
Having run the HADDOCK analysis on a cluster basis for each clus-
ter, you should now have new directories in the water directory, called
analysis clustX best10. Each analysis directory now contains cluster-
specific statistics. You can also visualize the clusters. For Rasmol, first use the
joinpdb perl script to concatenate the various PDB files into one singe file:

$HADDOCKTOOLS/joinpdb −o e2a-hpr clust1.pdb e2a-
hprfit *.pdb

rasmol - nmrpdb e2a-hpr clust1.pdb

In general, the cluster with the lowest HADDOCK score will be considered the
best model. Scoring in docking is, however, a difficult problem and we recom-
mend, if possible, the use of additional information for validation, such as, for
example, mutagenesis data, if available. The selected model should explain as
much as possible what is known about the system.

4 Notes

1. If dihedrals or any other types of restraints are available, they can be ob-
tained in a similar way. The names assigned will be dihedrals.tbl and
hbonds.tbl.

2. This only works if a PDB coordinates file is available. Otherwise, use
generate seq.inp and generate template.inp from CNS to cre-
ate such a PDB.

3. Once you have everything set up in a proper way to work, you can edit the script
and make some changes for some protocol parameters. You can, for example,
change the number of models to generate. It is set to 2 by default, but more
common numbers would be 100 or 200. For systems that are more complex,
you can switch to a longer annealing protocol, by doubling the number of steps
to be carried out. Depending on whether you are going to use a cluster or your
own computer, you should change the submit command. Remember also to
change the sleeping time between submitting jobs, especially if you are not
using a cluster and you do not want to have 100 jobs running on your computer
at the same time! In such a case, choose a sleep time that matches the time
needed for one structure calculation.
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4. You should also edit this script and change the number of structures to refine
because, by default, it is set to only 1. Increase this number to 25 models. They
will be assigned names such as 1bf0 cns w [1-25].pdb. The CNS input
and output will be directed to the directory cnsWtRef/.

5. For visualizing these plots after running procheck comp, the number tag is
kept for the Ramachandran plot, however, for the residue properties plot, the
number tag is now 07.ps.

6. The $HADDOCK environment variable should be defined if HADDOCK was
properly installed.

7. Make sure that the format of the PDB files containing your starting structures
is correct. There should be an END statement at the end, and there should be
no SEGID (the SEGID is a four character long string at columns 73–76 in the
PDB format) or ChainID (the ChainID is a chain identifier following the residue
name in column 22). If you use a crystal structure, make sure that there are no
missing residues.
Another point concerns ions; if proper care is not taken, they can give problems
in torsion angle dynamics. To deal with this, the script covalions.cns de-
fines artificial bonds to connect the ion to the protein. If you have another ion
than is defined in the first line of the script, add it there. In addition, make sure
that their name in the PDB file matches the ion name defined in the ion.top
file in the toppar directory. To avoid having a N- or C-terminal patch applied to
them, they should also be defined in the topallhdg5.3.pep file (look for
the “first IONS” and “last IONS” statements).

8. The cut-off is not a hard limit; check the accessibilities and possibly include
residues with lower accessibilities but functionally important groups.

9. Distance restraints can be used in HADDOCK in ambig.tbl or
unambig.tbl. These are treated in the same way, except that the random
removal option (noecv=true) only is applied to ambig.tbl. By default,
one would use ambig.tbl; unambig.tbl could be used, for example, to
provide extra NOEs or other data for which one wants to use different force
constants.

10. An important setting in new.html is the value of N COMP. This should be
set to be equal to the number of components of the complex (two in case of a
dimer, three for a trimer, etc.). Note that it can also be set to one, in which case,
HADDOCK could be used for refinement instead of docking.

11. HADDOCK allows the definition of fully flexible regions: these are treated as
fully flexible throughout all stages, except the initial rigid-body docking. This
should be useful for cases in which part of a structure is disordered or unstruc-
tured or when docking small flexible molecules onto a protein. This option also
allows the use of HADDOCK for structure calculations of complexes when
classical NMR restraints are available to drive the folding.

12. This causes the HADDOCK program to run in the background. If, at some
stage, HADDOCK stops producing new structures and the run is not yet fin-
ished, search for error messages in the output files: gunzip xxx.out.gz
where xxx.out.gz is a particular output file, and look for ERR in this file.
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Also, kill the current HADDOCK process:

ps −ef | grep haddock

kill −9 id

Here, id is the process id that is returned by the ps −ef command.
13. The OPLS force field used by HADDOCK is a mixed united/all-atom force

field; all atoms, including protons, are described; the later, however, do not
have vdw parameters but are accounted for in the carbon parameters to which
they are attached. From version 2.0 of HADDOCK, nonpolar hydrogen atoms
are deleted by default to speed up the calculation; this does not really affect
the resulting structures because the missing hydrogens are actually accounted
for in the united atoms parameters. You can change this behavior by setting
delenph=true in run.cns. This should be performed if classical NOE
distance restraints are used.

14. A typical error would be that only one or two structures in it1 are not success-
fully calculated. Often, you can cope with this by changing the random seed in
run.cns (iniseed) and restart HADDOCK. Otherwise, try to decrease
the timestep (e.g., 0.001 instead of 0.002). If none of this works, simply
copy the missing structures from the it0 directory so that the run can proceed.

15. For the RMSD calculation, the structures are superimposed on the interface
backbone atoms of molecule A and the RMSD is calculated on the interface
backbone atoms of molecule B; this might be called ligand interface RMSD.
The resulting RMSD values are larger than would be obtained by fitting the
whole molecule, which explains the large cutoff value that is used by default
(7.5 Å). If only a small fraction of the structures do fall into clusters, try in-
creasing the cut-off.

16. The −f option stands for full linkage, a method that generates larger clusters
in which the structures within a cluster can, thus, differ more.

17. It is better to use a small number of structures (e.g., five) for comparison of
the clusters than to use all structures of each cluster, because, in this way, the
comparison will not depend on the cluster size.

18. The ordering of the structures in the file.nam clustXX files comes from
the clustering. The PDB files might, therefore, no longer be sorted accordingly
to a defined criterion.
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Chapter 14
Conformational Changes in Protein Function

Haiguang Liu, Shubhra Ghosh Dastidar, Hongxing Lei, Wei Zhang,
Matthew C. Lee, and Yong Duan

Summary Conformational changes are the hallmarks of protein dynamics and are
often intimately related to protein functions. Molecular dynamics (MD) simulation
is a powerful tool to study the time-resolved properties of protein structure in atomic
details. In this chapter, we discuss the various applications of MD simulation to the
study of protein conformational changes, and introduce several selected advanced
techniques that may significantly increase the sampling efficiencies, including lo-
cally enhanced sampling (LES), and grow-to-fit molecular dynamics (G2FMD).

Keywords: AMBER · G2FMD · LES · Molecular dynamics · Protein conformation

1 Introduction

Protein functions are mostly dependent on their three-dimensional structures. There-
fore, conformational changes are often intimately linked to their functions. After
protein molecules are first synthesized from the ribosomal machinery, large-scale
conformational changes take place to fold the nascent proteins to their native or
functionally active conformations. Subsequently, conformational changes at smaller
scale are often necessary for many proteins to carry out their functions. Proteins can
switch among different conformations in response to their environment to meet their
functional roles. In many cases, such conformational changes are the results of bind-
ing by other molecules that regulate protein activity. Changes can also be induced by
modifying amino acids (e.g., posttranslational modifications on SH2 domains) [1].
In all of these cases, molecular dynamics (MD) simulations can be applied to study
the conformational changes.

Application of MD to the study of biomolecular dynamics is now a well-
established approach [2]. Over the years, a wide array of MD methods has been de-
veloped to investigate an ever-increasing range of biological phenomena [3]. Some
notable examples include protein folding [4], induced-fit protein–ligand interactions
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[5], and ion-channel flexibility [6]. In recent years, the explosive increase in the
number of available high-quality x-ray crystal structures covering many representa-
tive families of functionally important proteins has presented an unprecedented op-
portunity to carry out comparative studies of protein dynamics. Information amassed
from such comparative studies will, no doubt, help us decipher the principles of
structure–function relationship of proteins. However, studies of protein conforma-
tional dynamics were often constrained by technical limitations of experimental
methods and information regarding functional motions were limited to simple com-
parisons of different crystal conformations of a protein and extrapolating the path
between the various states. In this respect, the methods of MD offer a powerful alter-
native for molecular biologists to explore the conformational landscapes of proteins
in a more rigorous manner.

Conformational changes of proteins can be categorized into four main classes
depending on the time scales of the dynamics and the extent of global structural
change. The major types of changes are as follows: 1) large scale conformational
change of the backbone leading to folding or unfolding, 2) small scale structural
change after change of the environment (e.g., solvent) or after binding with ligand,
3) conformational change of a specific region (e.g., loop) of a large protein with-
out significant global structural change, and 4) conformational changes of the side
chains for fine tuning of the stability of the protein and their complexes. The major
categories of dynamics will be discussed in Sect. 3 of this chapter, whereas folding
and unfolding will be covered in Chap. 15.

Two major bottlenecks limit the applications of MD simulations to the explo-
ration of protein dynamics. The first bottleneck is technological. Despite recent ad-
vances in computer technologies, the overwhelming demand of MD on computa-
tional resources still sets a limit on the practically achievable simulation time scale.
The second bottleneck is thermodynamics in nature. Even if the first bottleneck
may be overcome, proteins may be trapped in their local (free) energy minima, thus,
simulation trajectories may be confined to around specific regions in the confor-
mational space without ever sampling the more interesting and biologically rele-
vant transitions. Fortunately, many techniques have been developed to overcome
these difficulties. For example, techniques such as replica-exchange molecular dy-
namics (REMD), locally enhanced sampling (LES), grow-to-fit molecular dynamics
(G2FMD), and other methods could be brought to bear, depending on the level of
conformational search required. These methods can greatly enhance sampling of the
conformational space.

However, difficulties still exist when dealing with very large conformational
changes. For instance, domain movement may require milliseconds or longer. For
such cases, coarse-grained models provide an alternative to atomic level simulations
for studying the collective motions. One example of such coarse-grained simulation
is elastic network model, which we discuss in Note 1.

In this chapter, we focus on two special techniques that have been successfully
applied to enhance sampling of simulations during the study of conformational
changes. Because REMD is mainly used in protein-folding studies, it will be dis-
cussed in Chap. 15 together with folding and unfolding studies.
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Using the MD simulation techniques mentioned above, we have recently ex-
plored the conformational dynamics associated with the functions of HIV-1 inte-
grase [7] and of HPPK [5]. In the case of HIV-1 integrase, the dynamics of the
catalytic domain surface loop was found to be closely related to its function. In the
case of HPPK, conformational changes associated with three flexible surface loops
not anticipated by x-ray crystal structures were identified. We have also developed
methods to sample protein side chain conformations [8]. The results of these studies
can be found from the cited publications. Here we describe the methods.

2 Theory

The MD simulation is based on Newton’s equation of motion and the details are
discussed in Chap. 1.

2.1 Locally Enhanced Sampling

The LES method was first introduced by Elber and Karplus [9] and was further de-
veloped later [10–12]. As the name suggests, in this method, enhanced sampling
is realized in selected local regions of the system without a significant increase in
the overall computational demand. To achieve this goal, selected regions are repre-
sented in multiple copies. The copies do not feel the presence of each other during
simulation and individually interact with the rest of system. On the other hand, the
rest of the system feels the average effect of the multiple copies. It should be made
clear that the average effect means the average energy, not the average coordinates.
This idea is clearly shown in Fig. 1. Obviously, when the target regions and number

Coordinate

E
ne

rg
y

copy #1
copy #2
copy #3
Average

Energy Surface

Fig. 1 Schematic illustration of the energy surface. The thick solid line is the average energy of
three copies. The energy surface is flattened, which facilitates the energy barrier crossing
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of copies are properly selected, more conformations can be sampled in those regions
without a significant increase in computational time. There are two advantageous ef-
fects taking place in this technique: 1) multiple trajectories of the interested regions
can be generated simultaneously, which directly increases the sampling space; and
2) the average effect of multiple copies smoothes the energy landscape, which re-
duces the energy barriers and allows the conformation to escape from local energy
minima traps more easily (as shown in Fig. 1). With this technique, more conforma-
tions can be sampled in comparison with conventional MD.

2.2 Grow-to-Fit Molecular Dynamics

G2FMD is a recently developed ab initio method [8] for optimizing the side chains
and local structures. In this method, a side chain grows from a reduced size to its
regular size, allowing spontaneous selection of its most favorable conformation gov-
erned by the all-atom based physical interactions in a simulation. Rotamer-based
methods have been developed for side chain assignment [13–20] based on experi-
mental protein structures. In contrast, the grow-to-fit (G2F) method is complemen-
tary to these rotamer-based methods because it has the ability to remove atomic
collisions from the structure predicted by the rotamer-based methods. Such atomic
collisions often occur in structures predicted by rotamer-based methods and are a
major limitation for such methods. In addition, the scaling of the potential energy
term in G2F methods lowers the energy barriers and allows the structures to escape
from their local energy traps.

The code of G2FMD is available on request and will be distributed in the next
release of AMBER. The method is described in detail in the published paper [8]
and is briefly outlined here. In this method, the bond length and van der Waals
radii are simultaneously scaled by a scaling parameter λ(0.6 ≤ λ ≤ 1.0) while the
charges are scaled as

√
λ such that the electrostatic potential is scheduled by λ. A

typical G2FMD simulation comprises multiple (short) simulation time windows. In
each window, the selected side chains are reduced to λ = 0.6 within 1 ps and then
followed by a 10 ps segment in which the side chains grow back to the normal size
(λ = 1.0). A complete G2FMD cycle (i.e., shrink and grow) is followed by energy
minimization. The energies of the minimized conformations of two successive G2F
cycles are to be compared and the conformation having a smaller energy should be
retained for the next cycle.

3 Methods (also see Notes)

3.1 Conformational Changes of Small Proteins and Peptides

The conformational changes in small proteins and peptides often involve the en-
tire protein that can be viewed in terms of unfolding or folding processes. Thus,



Conformational Changes 263

those methods used in studying protein folding problems, including conventional
MD simulations and REMD, are directly applicable to the studies of conforma-
tional changes of small proteins and peptides. The methodologies for setting up
and running the simulation are discussed in detail elsewhere (see Chaps. 1 and 15).
Here, we discuss the data analysis, which should be carried out to understand the
conformational changes.

3.1.1 Analysis

Normal Mode and Principle Component and Essential Dynamics Analyses

Normal mode analysis (NMA) is frequently used to study the collective motions of
proteins. In NMA, the energy profile (near the local minimum) is approximated as a
quadratic energy surface. The frequency and displacements can be calculated from
Hessian matrix of second derivatives of potential energy. Because it is very com-
putationally intensive to calculate the second-order derivatives of potential energies
for full-atom models, coarse-grained models are usually applied. We refer readers
to Note 1 for more information. Here, we focus on the analyses of MD simulation
trajectories by the principle component analysis (PCA) and essential dynamics (ED)
methods.

Principle components are a set of variables that define a projection that encap-
sulates the maximum amount of dynamic variation along a set of orthogonal vec-
tors. Analogous to NMA, in PCA, the dynamics of the system is represented in
the quadratic terms. Principle components can be obtained from diagonalizing the
covariant matrix. The basic procedure is:

1. Calculate the coordinate variance–covariant matrix from the simulation trajecto-
ries.

2. Diagonalize the matrix to obtain eigenvalues and eigenvectors.
3. Project the conformations (trajectories) to the eigenvectors.

This can be done with the ptraj module in the AMBER package. A detailed ex-
planation can be found in the ptraj section in the AMBER manual. One sample script
is shown below:

trajin

rms first ∗

matrix covar name mcovar

analyze matrix mcovar out evec.pev vecs 25

go
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and an example to generate the corresponding set of projections is shown below:

trajin

rms first ∗

projection modes evec.pev out proj.ppj beg 1 end 25

go

A key feature of the PCA is that a small reduced set of principle components
can account for a significant portion of the dynamics and can be used to study the
correlated movement of the molecular systems. This reduced set of principle com-
ponents is also referred to as “ED” and can be used to study the conformational
changes. On the other hand, because the reduced set only partially accounts for the
total dynamics, it is important to examine the coverage, the fraction of the move-
ments represented by the reduced set (see Notes 2 and 3). PCA analysis can also
be applied to the systems discussed in next section, in which global motion of the
protein is also of interest.

Clustering Analysis

Clustering analysis is a versatile tool that can be applied to analyze the confor-
mations sampled during the simulations. A more detailed discussion is presented
in Chap. 15. In the case of local conformational changes, a clustering analysis on
the selected regions can sometimes be more informative than clusters of the entire
protein. Depending on the size of the selected regions, one can use the clustering
analysis to identify the possible conformations and to obtain semiquantitative infor-
mation regarding the conformational preferences.

Secondary Structure Propensity and Dihedral Angle Distribution (Ramachandran
Plot)

Similar to the methods described in Chap. 15, one can also analyze the secondary
structure distributions observed in the simulations. For a detailed description, read-
ers should follow Chap. 15. Conversely, one can also use dihedral angle distribu-
tions, which can provide (semiquantitative) information regarding the conformation
preference of the individual residues. One example is shown in Fig. 2.



Conformational Changes 265

-180 -120 -60 0 60 120 180

Φ

-180

-120

-60

0

60

120

180
Ψ

Wild type Lysine

-180 -120 -60 0 60 120 180

Φ

-180

-120

-60

0

60

120

180

Ψ

Dimethylated Lysine

Fig. 2 Ramachandran plot. The methylation caused the conformation shift from α-helix to β-sheet
region in the N-terminal tail peptide of histone H3

3.2 Conformational Changes of Large Protein with Flexible
Regions

For large proteins, it is often not feasible to model the conformational changes of the
entire protein. Thus, one should try to focus on the key regions whose dynamics can
be closely linked to the functions of the protein. For example, in the case of HIV-1
integrase, the catalytic loop has been identified to play crucial roles in the enzymatic
activity, and the surface loops of HPPK have also been linked to its function. Several
methods have been developed to study the dynamics of focused regions. LES is one
of such powerful techniques. In the following section, we describe the practical
procedures for applying the LES module in the AMBER package.

3.2.1 LES Simulations

Define LES Regions

LES regions must be determined first based on prior knowledge regarding the struc-
tural and functional roles of the proteins. The most common case is that the target re-
gions are the functionally important loops that are prone to conformational changes.
In comparison, hydrophobic core and secondary structures are tightly packed. After
identifying the LES regions, one needs to decide how many copies are needed and
how long each segment should be. Too few copies cannot take full advantage of
the LES technique; too many copies will flatten the energy landscape to the extent
that important structural information may be lost because of the altered energy land-
scape. A typical choice is five copies for each region. The length of each segment
is also crucial. If the segments are too short, the degrees of freedom are limited and
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the differences between the copies are very small, and the full benefit of LES is not
realized. If the regions are too long, the copies may diverge, leading to completely
different conformations among the copies, thereby, making it difficult to achieve
convergence. A typical choice is between two and four amino acids. The basic pro-
cedure of LES simulation is as follows.

Generating Multiple Copies

The multiple copies of the LES regions are generated by the addles program in AM-
BER that takes the topology file and restart file of normal systems and converts them
into the corresponding LES-capable files. We suggest that readers perform energy
minimization and short equilibration before starting LES simulations. Readers may
consult the AMBER manual for detailed instructions and examples on using addles.
The output file of “addles” should be kept because it contains information regard-
ing how the LES segments are partitioned that may be helpful in later analyses for
decomposing the LES simulation data to conventional MD trajectories.

Here is a brief workflow for setting up systems with LES:

1. Build normal system without LES with tleap module.
2. Do energy minimization and system equilibration.
3. Generate LES regions with addles:

addles < addles.in > addles.out
Sample input file: addles.in

file rprm name=(test wat.top) read (Input topology
file)

file rcvb name=(md5.rst) read (Input restart file;
after minimization and equilibration)

file wprm name=(les.parm7) wovr (LES topology file)

file wcrd name=(les.rst7) wovr (LES restart file)

action

(Note: the italic characters specify the file format;
read the manual carefully)

omas (Use original mass, otherwise, use 1/N of
original mass, N is the number of copies)

spac numc=5 pick #mon 1 5 done (Five copies,



Conformational Changes 267

residue numbers 1 to 5 for this region)

spac numc=4 pick #mon 6 10 done (Four copies,
residue numbers 6 to 10 for this region)

The brief explanations are noted in parentheses.

Simulation

LES simulations are performed by Sander.LES in AMBER instead of Sander.
Please note that different initial velocities for different copies of LES regions are
required. Otherwise, all copies will remain identical to one another. This means
that, in a newly started simulation, the initial temperature should NOT be zero. If
the initial temperature is greater than zero, then the difference in the LES copies is
automatically accomplished by Sander.LES because it requires reassignment of
the random velocities. If the velocity information is in the original coordinate file
used for generating the LES files, one can set parameters in addles input to require
different velocities for each copy.

Analysis

Because each LES simulation effectively represents multiple copies of the system,
we need to decompose the multiple trajectories of LES regions into a single con-
ventional MD simulation trajectories before further analysis. Carlos Simmerling
has written a nice program to decompose LES trajectories, which runs on SGI ma-
chines. The command-line version works on Linux workstations [21]. Readers can
also write a simple program based on the output file of addles to decompose the
trajectory. Knowledge of the trajectory file format is important for readers to de-
compose the trajectories. In the case of AMBER, the format of LES restart file is
shown in the following example:

2266 0.1600000E+02 !(Number of atoms, time in
picoseconds)

121.3869588 102.9172601 17.3051739 121.3869588
102.9172601 17.3051739

121.3869588 102.9172601 17.3051739 121.3869588
102.9172601 17.3051739

121.3869588 102.9172601 17.3051739 121.8295428
102.2037738 16.7437825
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121.8295428 102.2037738 16.7437825 121.8295428
102.2037738 16.7437825

121.8295428 102.2037738 16.7437825 121.8295428
102.2037738 16.7437825

121.7201291 103.7754014 16.8896120 121.7201291
103.7754014 16.8896120

121.7201291 103.7754014 16.8896120 121.7201291
103.7754014 16.8896120

121.7201291 103.7754014 16.8896120 120.3851944
102.9844954 17.1954125

.......

Note that in the LES restart file example above, the coordinates of the first five
atoms are the same because they represent the five copies of the same atom. The file
format is:

(X1C1 Y1C1 Z1C1), (X1C2 Y1C2 Z1C2), (X1C3 Y1C3 Z1C3),
(X1C4 Y1C4 Z1C4), (X1C5 Y1C5 Z1C5), (X2C1 Y2C1 Z2C1),
(X2C2 Y2C2 Z2C2), (X2C3 Y2C3 Z2C3), (X2C4 Y2C4 Z2C4),
(X2C5 Y2C5 Z2C5), (X3C1 Y3C1 Z3C1), (X3C2 Y3C2 Z3C2),
(X3C3 Y3C3 Z3C3), (X3C4 Y3C4 Z3C4), (X3C5 Y3C5 Z3C5)

......

We can see that the coordinates are arranged according to atom index first, fol-
lowed by the copy index. With this in mind, it is easy to write a program to de-
compose the trajectories. One can also use the ptraj to do the same work (ptraj can
handle trajectories with single LES region in the AMBER9). After the LES trajecto-
ries are decomposed, analysis of the decomposed trajectories is the same as that in
conventional MD simulations. Readers are referred to Sect. 3.1 of this chapter and
other related chapters.

The amino acids at the boundaries of the LES regions play the role of hinges that
link the neighboring LES regions. For instance, the loops will switch between open
and closed modes. In this respect, Ramachandran plots of hinge residues will be very
useful for analyzing the modes. Because the loop consisting of the multiple copies
tends to move as a whole, simple structural analysis focused on the LES regions
alone will not tell the whole story. Interaction and relative movement between the
LES regions and the rest of the system also need to be studied. The way to analyze
the relative motions will depend on the specifics of each case, but, in general, one
can specify several quantities (e.g., distances and angles) to describe the relative
positions of the LES regions to the rest of the system.
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Generally speaking, this type of conformational change can also be studied with
conventional MD simulations. However, as explained in Sect. 2 (Theory), LES is
much more efficient in sampling larger conformational space. Proper selection of
LES regions and assignment to length and number of copies are important for suc-
cessful application of this technique.

3.3 Conformational Refinement of the Side Chains

The G2FMD method is a method for ab initio side chain assignment. It can also be
applied to refine protein side chains. Setting up a G2FMD run is exactly the same as
other conventional MD simulations with additional input parameters designed for
G2FMD run. To prepare the input file, one first identifies the target residues whose
side chain conformations are to be refined. A sample input file is provided below
(also see Note 4):

&cntrl

imin=2, maxcyc=2000, nstlim=10000,

ntx=1, irest1=0

ntt=1, tempi=100.0, temp0=300, ig=123731,tautp=0.5,

ntc=3, ntf=1, nscm=500,

dt=0.001, ntb=0,

igb=5, saltcon=0.2, gbsa=1, rgbmax = 10.0,

cut=12.0, cut inner=8.0,

intdiel=1.0, extdiel=78.5,

ntr=1, restraint wt=5.0,restraintmask=’@CA,HA,N,H,O,C’,

ntpr=500, ntwx=500, ntwe=500, ntwr=500,

&end

&grown

grow0=0.6, grow1=1.0, igrbond=1, igrvdw=1, igrelec=1,
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ngrowcyc=101, minntc=1,

nrgres=6,

rgres= 37 38 39 40 55 56

lgrow=

531, 532, 533, 534, 535, 536, 537, 538, 539, 540,

541, 542, 543, 544, 551, 552, 553, 554, 555, 556,

557, 558, 559, 560, 561, 568, 569, 570, 571, 572,

573, 574, 575, 576, 577, 578, 579, 580, 581, 588,

589, 590, 591, 592, 795, 796, 797, 798, 799, 800,

801, 802, 803, 804, 805, 812, 813, 814, 815, 816,

&end

# imin=2 Run G2F algorithm

# maxcyc=200 minimization after shrink and grow

# nstlim=10000 MD steps for grow

# &grown = namelist for G2FMD run

# grow0=0.6, grow1=1.0 Shrink to 60% of original size
then grow to 100%

# igrbond,igrvdw,igrelec: each equal to 1 when bond,van

der Waals and

# electrostatic terms are scaled; The value ‘0’ will

switch off the

# scaling of particular term

# minntc=1 no SHAKE during minimization; eq 3 for SHAKE
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# ngrowcyc=101 Number of G2FMD cycles.

# nrgres=6 Number of residues which will shrink and grow

# rgress = list for shrinking and growing

# lgrow = side chain atom list which will shrink and grow.

A recommended range for the scaling parameters is 0.6 ≤ λ ≤ 1.0 (given by
grow0=0.6, grow1=1.0 in the input file). One may individually select the
terms to be scaled, including electrostatic, van der Waals, or bond energy terms.
However, it is usually a reasonable approach to scale them all together. The choice
of number of G2FMD cycles (ngrowcyc) is at the user’s discretion. If there is no
change in the conformation or energy after 5 to 10 cycles, one may stop the run.

3.3.1 Analysis

When G2FMD is applied to side chain refinement, the analysis is focused on the side
chain conformations, which are usually measured by the dihedral angles (χ1, χ2).
Other measurements include the native contacts at the interface and RMSD (with
respect to the native structure) of the side chain heavy atoms. For “blind” pre-
dictions, where the information regarding the native structure is unavailable, one
may examine the increase or decrease of the number of contacts, hydrogen bonds,
etc., at the interface. It should be checked whether the atomic collisions have been

Fig. 3 Example of the refinement of χ1 dihedral angle for a GLN residue along a G2F trajectory.
Shown is the angle difference del chi1 in degrees with respect to the initial structure. (a) Each
point corresponds to an energy-minimized conformation obtained after a complete G2FMD cycle
(shrink + grow). (b) Each point correspond to the lower energy conformation that is retained (for
the next cycle of run) after comparison between two conformations obtained from two subsequent
G2FMD cycles
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removed or not. According to the scheme, the “Accepted” conformations after each
cycle should have decreasing potential energy. Thus, the structure at the end of the
simulation usually has the highest stability and is the optimal structure dictated by
the underlying force field.

4 Conclusions

There has been a vast research effort related to the study of the conformational
changes of proteins. It is, therefore, impossible to cover all aspects in one chapter.
In this chapter, we have been able to discuss only a small portion of the effort,
with the emphasis on recent development and practical applications. Many other
important features of protein conformational changes need to be studied in detail.
For example, it is not possible to model bond formation or breaking with classical
MD, and hybrid MM/QM methods have to be used. These are beyond the scope of
this chapter. Interested readers should refer to Chap. 3 and other literature.

MD simulations are still limited to study either the long time dynamics of small
systems or short time dynamics of large systems. Yet, the application of special tech-
niques, in conjunction with MD simulations, can significantly enhance our ability
to tackle problems of biological relevance of both larger spatial and longer temporal
scales. With the exponential growth in computer power and the development of new
algorithms, MD simulations will be applied to increasingly broader research areas.

5 Notes

1. MD simulation methods can give atomic details. However, in some cases, long
time scale dynamics can be examined by simplified models. One good example
is the coarse-grained model, which has a long and rich history. A large portion
of early models, because of limitations of computer power, are coarse-grained
models, including some of the most celebrated HP lattice [22] models, Gō mod-
els [20], and Takada’s models [23] that have been applied to study protein fold-
ing. These models can also be applied to study large systems and longer time sim-
ulations. Elastic network models (ENM) have drawn a lot of attention recently
because of their ability to predict large-scale collective motions and protein–
protein interactions [24–27]. The basic idea of ENM is to use harmonic springs
to connect neighboring residues. By computing the normal modes, collective mo-
tions can be revealed. For a recent review, please refer to Bahar’s paper [28].

2. The coverage of principle components is important to evaluate the PCA results.
The top eigenvalues correspond to the most significant motions of the protein.
One may inspect the eigenvalues to examine the contributions of each eigen-
vector, which usually decay exponentially. Then, the largest eigenvalues and the
corresponding eigenvectors can be used for ED study.
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3. John Mongan developed a plug-in for VMD to visualize the PCA results [29].
The usage is very straightforward. However, there is a compatibility problem
with the new version of VMD, readers should try different versions (from our
experience, it works well with VMD 1.8 on Linux workstations). Dynamite,
developed by Noble and coworkers, is also very simple to use for nonspecial-
ists [30, 31].

4. The implicit solvent model should be used during G2FMD run. A nonphysical
cavity may transiently exist when the side chains are reduced, which may trap
water molecules if explicit solvent is used. Restraining the backbone atoms of
the protein during the run is optional, but it is good to keep them (relatively)
fixed so that the scaling does not cause a collapse of the structure. In our code,
we have made a provision to switch on or off the scaling of different terms in the
energy expression. For example, it is possible to scale the van der Waals terms
only and mildly (e.g., 90–95%), if that is sufficient for a particular case. Mild
scaling of only the van der Waals term may allow working with a freely moving
or mildly restrained backbone, in which the side chains refinement may couple
with backbone conformational refinement. Another important concern is the ac-
curacy of the force field. Because the optimization proceeds by comparing the
energy of two conformation obtained from two successive G2FMD cycles, the
final structure that will have the lowest energy may differ. Nevertheless, G2FMD
has the potential to give the optimized structure with respect to a specific force
field.
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Chapter 15
Protein Folding and Unfolding by All-Atom
Molecular Dynamics Simulations

Hongxing Lei and Yong Duan

Summary Computational protein folding can be classified into pathway and sam-
pling approaches. Here, we use the AMBER simulation package as an example to
illustrate the protocols for all-atom molecular simulations of protein folding, includ-
ing system setup, simulation, and analysis. We introduced two traditional pathway
approaches: ab inito folding and high-temperature unfolding. The popular replica
exchange method was chosen to represent sampling approaches. Our emphasis is
placed on the analysis of the simulation trajectories, and some in-depth discussions
are provided for commonly encountered problems.

Keywords: Continuum solvation model · Explicit solvent · Molecular dynamics ·
Protein folding · Replica exchange method · Unfolding

1 Introduction

Understanding the molecular mechanisms governing the protein-folding process is
fundamental to molecular and structural biology. In a nutshell, protein folding is
a conformational search problem. Despite the astronomically large conformational
space (3N; N is the number of residues) [1], proteins need to reach the native state in
a very short amount of time (microseconds to seconds). Therefore, exhaustive sam-
pling is not permissive and specific pathway(s) must exist [2]. An enormous amount
of effort has been devoted to search these intriguing pathways. Experimentally, var-
ious techniques have been developed for protein-folding studies, among which, the
laser-induced rapid temperature jump experiments [3] and the rapid-mixing meth-
ods [4], including stopped flow, continuous flow, and quenched flow methods, are
dominant. Effort in methodology development has been focused on reaching higher
temporal resolution, from submillisecond to nanosecond, to enable studies of the
very early events of protein folding. In folding experiments, the progression of pro-
tein folding is usually monitored by circular dichroism (CD) [5], fluorescence sig-
nals [6], nuclear magnetic resonance (NMR) [7], and x-ray scattering [8].

From: Methods in Molecular Biology, vol. 443, Molecular Modeling of Proteins
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Because of the enormous complexity of the conformational space, computational
protein folding demands extreme computing power. Thus, to reduce computing de-
mand, protein folding has been traditionally studied by residue-level models [9, 10]
with the potential to sacrifice the accuracy due the reduced detail of the representa-
tion. Go-type models, that consider only the native contacts at either the residue or
atomic levels, have also been applied [11]. We limit our discussion in this chapter to
the all-atom physics-based models that have gained increasing popularity recently.
Direct simulations of protein folding from the fully denatured state using this ap-
proach is called ab initio folding, referring to the fact that the model does not contain
any a priori information regarding the native protein structure because the parame-
ters have been developed on short peptide fragments. Currently, the application of
conventional molecular dynamics (MD) simulations on protein folding is still lim-
ited to a few model peptides and a dozen super-fast folding proteins [12]. Yet, with
the exponential growth in computer power and the development of power sampling
techniques, simulations of medium-size proteins become increasingly feasible. To
overcome the conformational sampling problem, high-temperature unfolding [13]
and mechanical unfolding [14] have been used to study the reverse process of pro-
tein folding—the unfolding process. Other strategies, such as targeted MD [15]
and self-guided MD [16], have been developed to connect the folded and unfolded
states, but the applications to protein folding have been limited because of technical
challenges.

Complementary to the pathway-oriented approaches, enhanced-sampling
techniques have also been developed that have been applied to study protein folding.
The most popular one of these is the replica exchange method (REM) or parallel-
tempering [17] method. A number of successful folding studies have been reported
based on REM [18–20], which uses temperature hopping to overcome local en-
ergy barrier. One of the major advantages of this technique is that it naturally pro-
vides ways to analyze the temperature-dependent folding properties, such as melting
curve [21]. Another technique is called umbrella sampling, which applies a biased
potential to overcome energy barriers on the free energy landscape [22]. However,
it has not been widely adopted because of the sophisticated technical details. Al-
ternatively, one may perform large number of short simulations using the distrib-
uted computing platforms such as the folding@home projects, which can generate
thousands to millions of short trajectories [23], where the challenge lies in the man-
agement of thousands of heteroplatform computers and the avalanche of data.

Based on the knowledge acquired from the experimental and computational stud-
ies, several models have been proposed for protein folding [24,25]. The hydrophobic
collapse model states that folding is initiated by nonpolar residues moving away
from the polar aqueous environment. Therefore, formation of the hydrophobic core
occurs before the formation of secondary structures [26]. In contrast, the frame-
work model states that formation of the tertiary contacts is preceded by the com-
pletion of the secondary structures [27]. In the diffusion–collision model, protein
folding is interpreted as a stochastic process in which proteins form local struc-
tural elements (both native and nonnative) that coalesce, leading to the global fold-
ing. A key feature of the diffusion–collision model is that it does not require the
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completion of the secondary structures or stabilization of the native contacts during
the diffusion–collision process [28]. The nucleation condensation model states that
protein folding is initiated by the formation of a strong folding nucleus that leads to
the propagation of both secondary structures and tertiary contacts [29, 30], and that
formation of such a nucleus is the rate-limiting step. In the funnel landscape model,
protein folding is considered as a heterogeneous process moving on the (hyper) free
energy surface with numerous pathways and local traps [31, 32]. An important ob-
jective of folding and unfolding simulations is to validate and extend these existing
models [33, 34] and to provide data for the development of new ones.

2 Theory

For more details regarding MD, please refer to Chap. 1. Here, we briefly outline the
underlying theories for REM. In conventional MD simulations at 300 K, conforma-
tional transition is hindered by the slow barrier-crossing events. Higher temperatures
can facilitate local energy barrier crossing and enhance sampling because of higher
kinetic energy. REM implements a number of simulations running simultaneously
at a range of temperatures. After certain steps (for example, 2,000 steps), simula-
tions are halted and the energies of each replica are evaluated. The exchange of
neighboring replicas is attempted based on the metropolis criterion:

ω =
{

1, f or � ≤ 0
exp(−�), f or � > 0

� =
(

1
kB Ti

− 1
kB Tj

)

(E j − Ei ),

where ω is the probability of exchange, Ti and Tj are the reference temperatures,
and Ei and E j are the instant energies at the time of exchange attempt. After each
exchange, temperatures are adjusted to the new target temperatures, and the simula-
tions continue. For more details, please refer to the work of Okamoto and cowork-
ers [17, 35, 36].

3 Methods

In this section, we focus our descriptions on the three most popular techniques,
including two pathway approaches (conventional folding and high temperature un-
folding), and one sampling technique (REM). The availability of popular software
packages, including AMBER [37], CHARMm [38], GROMACS [39], GROMOS
[40], and OPLS [41], has greatly facilitated the studies of protein folding using all-
atom physics-based models. Although file formats and technical details are usually
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different, the general procedures for system setup, simulation, and analysis are very
similar. Please refer to the user manual of the specific simulation package for de-
tailed instructions (see Note 1). For clarity, we use AMBER as an example to out-
line the procedures. Within AMBER package, the “tleap” program is for generating
topology file and initial coordinate file, “sander” is for energy minimization and MD
simulations, and program “ptraj” is for trajectory analysis. We put more emphasis
on the analysis, which is typically less well covered in manuals, and, in many cases,
may require some coding efforts from the readers.

3.1 Ab Initio Folding by Conventional MD

3.1.1 System Setup

Building Topology and Starting Structure

In a typical simulation, a set of files is needed. Some of the files are designed to
keep track of the coordinates, whereas others are for the information of the system,
such as force constants and connectivity of the molecules; the latter is often referred
to as the “topology file.” For simulations with continuum solvent models, such as
generalized Born (GB) models (see Note 2) [42, 43], an extended chain is usually
used as the starting structure. Utility programs can be found in simulation packages
to generate extended polypeptide chain. A topology file should also be generated for
the protein. The default protonation state for the system is for neutral pH condition.
In case of nonneutral solvent pH, different protonation states shall be chosen for
acidic (Asp and Glu) and basic (Lys and Arg) residues. Special attention should be
paid to the protonation state of histidine because of the nearly neutral pKa of the
side chain (pKa 6.04). Occasionally, blocking units are used for terminal residues
to match experimental conditions. Although standard blocking units can be found
in simulation packages, the nonstandard blocking units or amino acids need to be
parameterized. Readers are advised to resort to the developers or user community of
the simulation package for help. The following is an example for setting up a system
for GB simulation using tleap:

>source leaprc.ff03 (specify force field FF03)
>mol = sequence {NMET GLY ASP PRO CPHE} (specify protein

sequence)
>set default PBradii mbondi2 (specify bond radii set for

IGB = 5)
>saveamberparm mol protein.top protein.crd (write out

topology and coordinates)

For simulations with explicit solvent, water molecules are added to the system be-
fore building the topology and coordinate file, and the distance from protein atoms to
the edge of water box should be at least 8 to 10 Å. Note that a truncated octahedron
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box is usually more efficient than a rectangular box that reduces the number of par-
ticles by approximately 40%. For proteins with net charges, counterions should be
added to neutralize the system. Additional ions may be needed to bring the solu-
tion to the targeted salt concentration. Because of the large size of the water box,
an extended chain is not recommended for the starting structure in simulations with
explicit solvent (see Note 3). Rather, the starting structure typically comes from the
collapsed chain generated by simulation with continuum solvation model, or from
unfolding of the native structure.

Minimization

After the construction of the system, energy minimization is performed to remove
potential steric problems that arose during the initial system building. This can be
done in the Sander program of the AMBER package. The minimization method
can be steepest descent itself or combined with conjugate gradient [44]. A simple
input file needs to be prepared as follows for the minimization run. Notice that
the optimization cycle has been set to a maximum of 1,000 steps here, because
the purpose is to remove the potential steric problems rather than complete energy
minimization.

&cntrl

imin=1, maxcyc=1000, ncyc=500,

ntpr=50, ntc=1,

ntb=0, cut=10.0,

&end

When the input, topology, and coordinates files are ready, sander can be invoked
as:

sander -O -i min.in -o min.out -p protein.top -c

protein.crd -r protein.min.crd

Equilibration

After the minimization and before the production phase, an equilibration phase is
needed to further “relax” the system. Because we do not intend to retain the initial
structure in folding simulation, equilibration should be fairly straightforward. We
can simply ramp up the temperature of the system to a target value (300 K, for
example) with a 20 ps MD run. In case of multiple folding trajectories, multiple
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equilibration runs can be performed using different random number seeds to gen-
erate different trajectories. Alternatively, one can have only one equilibration run
and use different random number seeds at the beginning of the production runs to
achieve the same. This is also done in sander, which can be invoked the same way
as in Sect. 3.1.1. A sample input file is given below:

&cntrl

nstlim=10000, cut=12.0,

ntpr=1000, ntwr=10000, ntt=1, ntwx=0,

temp0=300.0, tempi =100.0,

ntx=1, irest=0,

ntc=2, ntf=2, tol=0.00005,

dt=0.002, ntb=0, tautp=2.0, nscm=500,

igb=5, gbsa=1, saltcon=0.2, rgbmax=12.0,

intdiel=1.0, extdiel=78.5,

nrespa=4, nrespai=2,

&end

3.1.2 Production Runs

Depending on the size of the system, the length of production phase usually ranges
from 100 ns to 1 µs. Multiple trajectories are preferred to avoid the potential biased
conclusion from a single trajectory. System coordinates can be saved every 10 ps.
Simulations should be stopped and restarted every 1 ns (for continuum solvent) or
100 ps (for explicit solvent) to allow recovery in case of hardware or software failure
(see Note 4). Whenever possible, parallel execution is always preferred over sin-
gle CPU execution for folding simulations that are implemented in AMBER using
message-passing interface (MPI). For simulation with explicit solvent on parallel
platforms, the program pmemd is more efficient than sander. When using a com-
puter cluster, simulation trajectories and output files should be saved on individual
nodes to reduce the load to the network and to the shared storage area. Here is a
sample input file:
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&cntrl
nstlim=500000, cut=12.0,

ntpr=500, ntwr=500000, ntwx=5000,

ntt=1, temp0=300, tempi =300,

ntx=5, irest=1, ntb=0,

ntc=2, ntf=2, tol=0.00005,

dt=0.002, tautp=2.0, nscm=500,

igb=5, gbsa=1, saltcon=0.2, rgbmax=12.0,

intdiel=1.0, extdiel=78.5,

nrespa=4,nrespai=2,

&end

The following is an example to run parallel sander with MPI (the nodes are spec-
ified in the file $MF):

mpirun -np 4 -machinefile $MF sander -O -i input -p
protein.top \

-c run0045.rst -o run0046.out -x run0046.crd -r run0046.rst

3.1.3 Trajectory Analysis

Root Mean Square Deviation

The closeness to (or deviation from) the native structure is usually assessed by the
root mean square deviation (RMSD) of Cα atoms, main chain atoms, or heavy atoms
from the native structure. Although the RMSD criterion for folding depends on the
system being studied, a distance of 3.0 to 4.0 Å RMSD with respect to the initial
structure has been widely used as a typical indication for a reaching a folded confor-
mation. In the case of partial folding, RMSD of certain fragments can be evaluated.
When the protein reaches the folded state, one can obtain information regarding how
long it stays in the folded state, whether reversible folding occurs, and, in the case
of multiple trajectories, how many trajectories reach the folded state.
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Clustering of Sampling Space

The conformational space sampled during the folding simulation can be evaluated
by clustering. Hierarchical clustering [45] is a common approach, in which snap-
shots are separated into different clusters based on the pairwise RMSD. Again, the
cutoff value depends on the system (the first try can be 3.0 Å), and a few termi-
nal residues can be excluded during the clustering because of their general ten-
dency to be disordered in the native structures. Clusters are ranked by population,
and representative structures from highly populated clusters should be carefully ex-
amined. In the case of multiple long simulation trajectories, heuristic clustering
methods [46] need to be applied because of the large memory consumption by
hierarchical clustering.

Formation of Secondary Structures

α-helices and β-sheets are the most prominent secondary structures in proteins (see
Note 5). The formation of secondary structures can be monitored by main chain
hydrogen bonds, main chain dihedral angles, and local RMSD. The criterion for a
hydrogen bond is usually a combination of distance cutoff (3.5 Å between donor and
acceptor) and angle cutoff (120◦ for the donor hydrogen-acceptor angle). For he-
lices, helicity can be measured based on φ/ψ(−57◦,−47◦)± 40◦. The observations
include the folding time, initiation site, and dynamics of the secondary structure.

Development of Native Contacts

Native contacts refer to the close contacts between residues in the native state.
There are a variety of ways to evaluate native contacts. Native contacts can be mea-
sured by the distances between Cα atoms with a 6- to 7-Å cutoff for nonadjacent
residues, on which residue–residue contact maps can be constructed to reveal the
structural features. For example, the continuous grids parallel and next to the diago-
nals are signs of helices and those perpendicular to the diagonals correspond to the
anti-parallel β-sheets. One can also measure the native contacts by the closest dis-
tances between side chain atoms of two nonadjacent residues. Cutoff value can be
based on van der Waals distance or a simple 5.0-Å distance between heavy atoms.
Observations include the initiation and dynamics of each contact.

Change of Solvent-Accessible Surface Area

Folding process is usually accompanied by the significant decrease in solvent-
accessible surface area (SASA) [47]. Therefore, the change of SASA (or the al-
ternative “radius of gyration”), although not deterministic, is an indication of the
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folding process. Additionally, atoms can be separated into polar and nonpolar ones
so that the burial of polar and nonpolar surfaces can be uncoupled. Furthermore, the
SASA of individual residues can be monitored during the folding process. For sim-
ulations with explicit solvent, analyses that are more sophisticated can be performed
on the solvent distribution, which could include the first and second solvation shell,
residence time of solvent, etc.

Energetic Analysis

The most difficult analysis for protein folding lies in the dissection of the energetic
contributions [48] because the close coupling of different energetic terms together
determine the dynamics of the system, and protein folding is determined by free
energy, which consists of potential energy and entropy. It is rather challenging to
calculate the entropy change during folding (see Note 6) [49], which is further hin-
dered by the insufficient sampling in most simulations. For simulations with explicit
solvent, the potential energy can be separated into protein internal energy, solvent
internal energy, and protein–solvent energy. Because of the existence of a large num-
ber of water molecules, when the total sums over the entire systems are under con-
sideration, the energy components involving solvent tend to have large fluctuation
and render more difficulty for interpretation.

Folding Landscape

Because protein folding is a multidimensional problem, analyses based on one-
dimensional reaction coordinates often give an incomplete (and overly simplified)
picture of the folding process. Therefore, various two-dimensional free energy land-
scapes have been contemplated to improve the pictorial presentation of the complex
process. The choice of the two reaction coordinates, however, is rather arbitrary.
The commonly used coordinates include RMSD, radius of gyration, and percent-
age of native contacts, as well as RMSD of structural segments. Other coordinates
can be used as long as they can improve the understanding of the folding mecha-
nism. It should be noted that any two-dimensional maps are still incapable of rep-
resenting the hyperdimensional nature of the protein folding process [46]. Alterna-
tively, one may apply principle component analysis [50]. However, the results are
less intuitive.

Figure 1 shows a sample analysis of a folding trajectory of a three-helix protein
villin headpiece subdomain. The analyses shown are the overall RMSD compared
with the native structure, the formation of secondary structure (main chain hydro-
gen bonds) and tertiary contacts (side chain contacts), SASA, and the potential en-
ergy. A stepwise folding can be clearly seen from the RMSD and hydrogen bond
plots.
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Fig. 1 An example for trajectory analyses from folding study with GB solvation model. From top
to bottom, root mean square deviation (RMSD) using the native structure as reference (Å), number
of native main chain hydrogen bonds (HB), number of native tertiary side chain contacts (SIDE),
SASA in Å2, and potential energy (kcal/mol)

3.2 High-Temperature Unfolding

Most of the procedures, including the analyses, should be similar to the ones de-
scribed in Sect. 3.1. Here, we only emphasize the difference.

3.2.1 System Setup

For unfolding simulations, coordinates are usually taken from a PDB file. Before
generating coordinates and topology files, the coordinates of the heavy atoms of the
protein should be extracted from the PDB file. The target temperature is usually set
to 400 to 500 K (see Note 7), and restraints should be applied during the minimiza-
tion and equilibration process so that the protein can stay in the native conformation
before the production run. This is especially important for simulations with contin-
uum solvent. Longer and stepwise equilibration may be applied in case the initial
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system is not stable. It is also typical to run a comparative simulation at the room
temperature.

3.2.2 Production Runs

The length for unfolding simulation is usually shorter than that of folding simula-
tion, 10 to 50 ns should be sufficient. Multiple trajectories are still preferred to avoid
biased observations of the unfolding process.

3.2.3 Trajectory Analysis

Average properties can be calculated for the evaluation of the overall trend. Spe-
cial attention should be paid to the initiation of the unfolding: melting of secondary
structure or loss of tertiary contacts. Because of better sampling in unfolding simu-
lation than folding simulation, transition state may be easily identifiable from a two-
dimensional landscape map (Fig. 2). However, because of the elevated temperature,
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Fig. 2 A protein-unfolding landscape from simulation of a small designed ββα protein FSD with
explicit solvent at 500 K shown as the free energy in dependence of RMSD with reference to the
native structure (PDB code: 1FSD) and radius of gyration. The transition state can be identified
and a representative structure is shown. According to the unfolding landscape, the native basin
corresponds to the region with RMSD less than 3.0 Å, and the unfolded state corresponds to the
region with RMSD greater than 5.0 Å. The transition state is the sparsely sampled region that links
the native state and unfolded state
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it is possible that the observed transition state is shifted in comparison with that at
room temperature.

3.3 Folding by REM

In contrast to protein folding/unfolding simulations by conventional MD, replica
exchange molecular dynamics (REMD) requires a large number of devoted nodes
within the same computer cluster running simultaneously. In return, REMD gives
much better sampling than conventional MD. Therefore, there is higher confi-
dence regarding the derived folding landscape. However, convergency may still
be a potential problem for REMD, which has not been extensively tested be-
cause of the limited computing resources [51]. Therefore, longer simulation is still
preferred.

3.3.1 System Setup

The number of replicas should be chosen according to the size of the system. Ide-
ally, the number of replicas is decided by the square root of atoms of the system.
Realistically, a set of 20 to 30 replicas is typically used for folding studies of small
proteins with continuum solvent. Each replica can occupy a specified node (two or
four CPUs). Significantly more replicas are needed for REMD with explicit solvent.
For example, 80 replicas were used in a folding landscape study of protein A [52].
Target temperatures should be carefully selected to have an exchange rate near 20
to 30%. The temperatures usually range from 250 K to 500 K or 600 K, with ex-
ponential distribution as the common choice. The initial structures for REMD with
continuum solvent can simply be extended chains. In case of explicit solvent simula-
tions, caution should be taken for the choice of initial structures for the same reason
illustrated in Sect. 3.1.1. For instance, sometimes a mixture of folded and unfolded
structures is the preferred choice.

3.3.2 Production Runs

Currently, the length of production runs for REMD is 100 to 200 ns for contin-
uum solvent and 50 to 100 ns for explicit solvent, limited by available computing
resource. Ab initio protein folding by REMD with explicit solvent has yet to be
reported, other than a miniprotein named trp-cage [21]. Because of the frequent in-
formation exchange across the nodes, the stability of the network of the computer
cluster is critical for the success of REMD. Thus, simulation trajectories should be
saved on individual nodes to reduce the load of the network.
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3.3.3 Trajectory Analysis

In REMD, the exchange is typically performed by swapping the temperatures to
minimize the communication overhead. Therefore, each trajectory may record
simulations at a range of temperatures. After the simulations, trajectories are
collected from the individual nodes and sorted according to the recorded temper-
atures at each step so that each trajectory retains information of a specific target
temperature. All of the analyses described in Sect. 3.1.3 are applicable to REMD.
Temperature-dependent properties can also be obtained in a straightforward fashion
where the time-dependent properties are masked by the altered kinetics. Analyses
are first performed on each of the sorted trajectories individually. When those
analyses are combined, the temperature-dependent folding should become apparent.
The most important of which is the melting curve based on the population of folded
and denatured states at each temperature where the folded and the denatured states
are identified typically by RMSD in reference to the experimental native structure.
Both �H and the melting temperature, Tm, can be derived by fitting the melting
curve. In addition, the heat capacity profile can be generated from the fluctuation
of the potential energy at each temperature in which the peak indicates the melting
temperature (see Fig. 3).
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Fig. 3 Sample analyses from folding simulations with REMD, including a heat capacity profile
(left) and a melting curve (right)
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4 Notes

1. In folding simulations, as well as any other MD simulations, the choice of force
field is critical. Unbalanced force field could lead to biased simulation results,
such as excessive formation of α- or β-conformations. This is a particularly im-
portant issue in folding simulations. The most widely tested force fields include
AMBER [53], CHARMm [54, 55], GROMOS [56, 57], and OPLS [58]. Even
within AMBER, there are choices of various force fields, including FF94, FF96,
FF99, and the more recent FF03. Extensive tests have shown that FF03 is more
balanced than previous AMBER force fields. For a detailed comparison of force
fields, please refer to Chap. 4 and other references [59–61].

2. For conventional folding simulations, another critical choice is the solvation
model. Continuum solvent models provide a few advantages over explicit sol-
vent, among which, the most important is the much longer accessible simula-
tion time. The fastest folding known today is on the time scale of microseconds,
which is still difficult to reach by simulations with explicit solvent. The easier
access of microsecond time scale by simulations with continuum solvent models
allows extensive testing and tuning of current force fields. Please note that it has
been shown that the free energy landscapes of β-hairpins obtained from contin-
uum solvent could be different than those from explicit solvent simulations [62],
implying that the solvation effect in continuum models is somewhat less accu-
rate. Nevertheless, with the constant improvement, the difference is expected to
be reduced. The GB model is the most widely used continuum solvent model.
The polar effect of solvent in GB model is parameterized based on the Poisson-
Boltzmann electrostatic calculation. The nonpolar effect of solvent, on the other
hand, is usually based on surface area and is typically more empirical than the
polar counterpart.

3. Explicit solvent is generally considered as the “state of art” solvation model for
MD simulation. However, despite the heroic microsecond folding simulation on
villin headpiece [63], simulations with explicit solvation are still too slow for the
observation of a complete folding process. Ab initio folding usually starts from
an extended chain, which is also troublesome for simulation with explicit solvent
because of the requirement of a solvent box covering the whole protein and extra
space between protein and box edge. Therefore, a practical approach is to start
from a somewhat collapsed structure(s). However, caution should be taken when
choosing the initial structure(s), because it could take a long time to unfold the
compact nonnative structure, and this unfolding process may have nothing to do
with the actual folding mechanism.

4. SHAKE [64] failure is the most common and lethal problem in MD simula-
tions. SHAKE is an algorithm for maintaining constant bond lengths during MD
simulations allowing for larger time steps, and SHAKE failure is caused by the
large deviation from the reference bond length and orientation. It occurs more
in simulations with continuum solvent models because of the larger conforma-
tional change in a single step. A simple solution is to switch to smaller step
size (1 fs) for a short period of time and then switch back to the original step size
(2 fs). Careful scripting may be needed to maintain a non-interrupting simulation.
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Alternatively, one may use the smaller step size for the entire simulation, which
means much slower simulation. In REMD with continuum solvent, however, a
typical approach is to use a small step size for the entire simulation because of
the existence of high-temperature replicas and frequent exchange among repli-
cas. In simulations with explicit solvent, SHAKE failure is usually caused by
bad initial structure where atom overlaps exists. In this case, manual intervention
is needed to remove atom overlap before simulation. This usually does not hap-
pen to folding simulation with explicit solvent because the initial structures are
usually not compact.

5. VMD software [65] is widely used for the visualization of simulation trajecto-
ries. A movie of the folding process observed in simulation can be generated
for presentation. Some of the analyses can also be performed by VMD, includ-
ing the development of secondary structures in the simulation trajectory. PyMol
is another visualization software [66] that can facilitate generation of publication
quality graphics. In addition, RasMol [67] is also handy when a quick assessment
on a specific structure is needed.

6. Quantitative information regarding entropy is usually extracted indirectly by sub-
tracting enthalpy landscape from free energy landscape. When the extensive sam-
pling of the conformational space is not available, estimation of entropy change
can be made based on the loss of conformational freedom of residues in regu-
lar secondary structures, which can be separated into main chain and side chain
entropy loss. Main chain entropy loss is roughly 4.8 cal/(mol K residue) [68]
from fully denatured to fully folding state. There are various statistical indexes
for the loss of side chain entropy on folding that is usually derived from protein
structures in PDB [69, 70].

7. Folding mechanism could be obtained from unfolding simulations if folding fol-
lows the reverse pathway of the unfolding process. This hypothesis, however,
has not been proven and is unlikely to be true for the folding of most proteins.
Higher temperature is more efficient for unfolding simulations because it leads
to faster unfolding. However, it has been demonstrated that, as the applied un-
folding temperature changes in simulation, so does the unfolding landscape [71].
Therefore, readers are advised to stay away from excessive high temperatures if
the goal is to understand the folding landscape at room temperature. On the other
hand, the rapid growth in computer technology allows simulations to be con-
ducted for much longer time. Thus, unfolding simulations at lower temperatures
also become possible.
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Chapter 16
Modeling of Protein Misfolding in Disease

Edyta B. Małolepsza

Summary A short review of the results of molecular modeling of prion disease
is presented in this chapter. According to the “one-protein theory” proposed by
Prusiner, prion proteins are misfolded naturally occurring proteins, which, on in-
teraction with correctly folded proteins may induce misfolding and propagate the
disease, resulting in insoluble amyloid aggregates in cells of affected specimens.
Because of experimental difficulties in measurements of origin and growth of insol-
uble amyloid aggregations in cells, theoretical modeling is often the only one source
of information regarding the molecular mechanism of the disease. Replica exchange
Monte Carlo simulations presented in this chapter indicate that proteins in the native
state, N, on interaction with an energetically higher structure, R, can change their
conformation into R and form a dimer, R2. The addition of another protein in the
N state to R2 may lead to spontaneous formation of a trimer, R3. These results re-
veal the molecular basis for a model of prion disease propagation or conformational
diseases in general.

Keywords: Amyloid · Molecular dynamics · Molecular modeling · Monte Carlo
dynamics · Peptide · Prion disease · Replica Exchange Monte Carlo

1 Introduction

The prion diseases became widely known a few years ago, when a human version
of mad cow disease, Creutzfeldt-Jakob disease, appeared. A prion disease can be
caused, for example, by eating infected bovine meat and is, therefore, pertinent to
a wide group of people. Presently, there are no vaccines or medicines that prevent
the disease and no effective treatments to halt or slow its progress. This disease
is one of the neurodegenerative diseases, like Alzheimer’s or Parkinson disease.
A common feature of such illnesses is the accumulation of misfolded proteins in
cells that leads to the appearance of insoluble amyloid plaques and, as a result, to

From: Methods in Molecular Biology, vol. 443, Molecular Modeling of Proteins
Edited by Andreas Kukol c© Humana Press, Totowa, NJ

297



298 E.B. Małolepsza

various clinical manifestations. The mechanism of amyloid aggregation is still un-
known, however, experimental and theoretical investigations point to the refolding
of cellular proteins from their native conformations into other isoforms with very
different three-dimensional (3D) structures as a main cause of neurodegenerative
diseases. The reason behind such behavior may be the interaction of native proteins
with disease-causing agents leading to wrongly folded proteins. In this chapter, a
model of amyloid propagation induced by interactions with such misfolded protein
is presented.

The model is based on the assumption that the presence of other species, in this
case misfolded proteins, can induce large conformational changes in the studied
species. Thus, the energetic features of an isolated molecule (monomer) and its
oligomers (dimer and trimer) will be presented in the context of prion disease prop-
agation.

1.1 Protein Structure

Proteins are built from amino acids linked through peptide bonds. The polypeptide
chain forms a backbone structure in proteins (Fig. 1).

Four levels of a protein’s structure are defined:

1. Primary structure: the amino acid sequence.
2. Secondary structure: locally defined substructures (motifs): α-helix and β-sheet.
3. Tertiary structure: the overall structure of a single protein molecule (the spatial

relationship of the secondary motifs to each other).
4. Quaternary structure: the structure that is a result of cooperation of more than

one protein molecule.

1.2 Prions and Prion Diseases

The native structure of a protein, which is necessary for its biological activity, is
not a unique conformation, rather, there are a number of possible structures very
close in energies and very similar in shapes. They collectively form the so-called

Fig. 1 The polypeptide chain forms a backbone structure in proteins. The gray-colored part of the
protein scheme is an example of a peptide bond. Ri describes a side chain of amino acid (there are
20 different amino acids in natural proteins)
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energy basin. Within the potential energy hypersurface of the protein, many other
minima are possible. Geometries of the protein corresponding to various minima
can differ widely in their 3D structures. When the protein adopts a structure beyond
a basin of native conformation, it usually looses its activity or becomes active in
another direction. Such a behavior may be destructive for a host organism. The
theory of protein folding states that globular proteins possess smooth, funnel-like
conformational energy landscapes, and folding leads to stable native states [1], and,
fortunately, the amino acid sequence specifies one biological active conformation.

In mammals, prions are normal cellular prion proteins called PrPC [2–4] located
on the extracellular face of the plasma membrane. In contrast with other proteins
they can adopt two structures, coming from different energy basins, which may
act in cells. Such an event is in disagreement with the theory of protein states
(funnel effect) and their relations to biological activity. The native (healthy) forms
of prion proteins, PrPC, can convert into conformational disease-causing isoforms
called scrapie prion proteins, PrPSc [5–15]. Both forms have exactly the same amino
acid sequence, but completely different 3D structures [16–19]. The PrPSc isoform
is formed from the cellular protein PrPC by a posttranslational process [20–23]. Pri-
ons in PrPSc form can be characterized by a resistance to protease. PrPSc is partially
hydrolyzed by proteases to form fragments, which are called PrP 27–30 (their mole-
cular weights are between 27 and 30 kDa), whereas PrPC is completely degraded
under the same conditions [2, 16]. The protease-resistant fragments of PrPSc aggre-
gate [6, 20] and produce insoluble amyloid plaques [6, 24–28] which are typical for
neurodegenerative diseases.

The main structural differences between native and scrapie forms of prion pro-
teins are explain in a paper by Prusiner [29]. The structure of the native protein was
solved experimentally (using NMR and x-ray techniques), but, because of prob-
lems obtaining a PrPSc crystal, the scrapie form is presented as a model of its
conformation (PrPSc appears as insoluble amyloids). A fragment of Syrian ham-
ster prion protein PrPC contains three α-helices and a small piece of β-sheet. The
model of its scrapie isoform, PrPSc, is less rich in α-helices and has many more
β-sheets. The model of PrPSc isoform is based on experiments by Pan et al. [7],
Gasset et al. [30,31], Huang et al. [32,33], and others [34–42]. Their results indicate
that PrPC is highly helical (42%) with some β-sheet structure (3%). In contrast,
PrPSc contains a large amount of β-structure (42%) and less helical structure (30%).
Changes in protein conformation on the conversion from α-helices to β-sheets are
typical for the prion diseases [3, 6, 43–46].

Such abnormalities in protein structures, especially when referring to neural cells
or, in general, to cells forming the central nervous system, lead, in particular, to
neurodegenerative diseases to which the prion disease belongs [28,47–49]. The hu-
man prion diseases are: kuru, Creutzfeldt-Jakob disease (CJD) and its new vari-
ant (vCJD), Gerstmann-Sträussler-Scheinker syndrome (GSS) and the fatal familial
insomnia, whereas other neurodegenerative diseases are: Alzheimer’s, Parkinson,
Pick, and Huntington diseases, amyotrophic lateral sclerosis, and frontotemporal
dementia. Neuropathology, etiology, and pathogenesis of prion diseases have been
presented in numerous papers [9, 50–64].
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The feature that distinguishes prion diseases from other neurodegenerative ill-
nesses is their infectiousness: prions are infectious proteins [65]. The events of
transmissions of such proteins between the same or different animal species (sheep,
goats, chimps, mice, hamsters, and others) that have succumbed to prion diseases
have been presented in many papers [66–78]. The other mentioned illnesses are not
infectious and have not been transmitted to the bodies of laboratory animals [29].

Prions are interesting from the medical point of view for other reasons. They do
not use nucleic acid to propagate in host organisms, unlike every other infectious
pathogen with their duplication control based on DNA or RNA [79, 80]. The clini-
cal manifestations of prion diseases are the most numerous among diseases caused
by single factor: dementia (a condition of deteriorated mentality, often with emo-
tional apathy), ataxia (an inability to coordinate voluntary muscular movements),
insomnia, paraplegia (paralysis of the lower half of the body including both legs),
and paresthesia (a sensation of pricking, tingling, or creeping on the skin that has no
objective cause). Each of these are related to damage to the central nervous system
that corresponds to the accumulation of wrongly folded proteins. The scrapie forms
of prion proteins may occur in various wrongly folded conformations [81–84] and
each of these seem to cause a specific disease version.

In healthy cells, the misfolded proteins are broken down and removed from
cells, whereas, in neurodegenerative diseases, the wrongly folded proteins or their
protease-resistant fragments aggregate into insoluble plaques [6, 16, 17, 20, 24].
Therapy for prion diseases is very difficult because presymptomatic diagnosis is
impossible and the earliest possible diagnosis is based on clinical manifestations
and symptoms. However, the diagnosis of prion diseases have improved recently
[85–88], with the search for therapy agents very well expressed in the following
statement taken from a review paper by Wiessmann and Aguzzi [89]: “Based on
the assumption that PrPSc is the infectious agent, or at least the pathogenic entity,
compounds have been sought that in a cell-free system would stabilize PrPC, desta-
bilize PrPSc, or prevent conversion and thereby decrease the level of PrPSc.” This
paper also contains a table with representative compounds used in therapy. Details
of therapies may be found in [90–93].

The prion diseases problem has been widely discussed in many review articles
written by Prusiner’s group [84, 94–98] and others [4, 48, 99–101].

1.3 Molecular Background of Prion Diseases

Prion diseases and other neurodegenerative diseases are induced by propagation of
wrong conformations of cellular proteins and by the formation of hard, insoluble
plaques. Conformational conversion of the two most popular motifs of the protein
secondary structure, α-helix and β-sheet, and the formation of amyloids, should be
considered as the main cause of prion disease [6–9, 11, 13, 14, 45, 47, 102]. There-
fore, prion disease can be called a conformational disease, although the propagation
mechanism is still unknown [7, 48, 103, 104]. Prion stability experiments take into
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account temperature, pressure, pH, and detergent dependence [8, 105–113], as well
as sequence substitution effects [114, 115]. General considerations of protein fold-
ing, misfolding, and aggregation may be found in a review article by Markossian
and Kurganov [116].

Theories regarding the causes of prion disease were first constructed from med-
ical reports. The first one was proposed by Bjørn Sigurdsson in 1954 who indicated
so-called “slow viruses” as a cause of scrapie and visna in sheep [117] because of
a long incubation time. Many scientists also pointed out some unknown viruses.
However, detailed studies made by Prusiner allowed him to introduce “proteina-
ceous and infectious” particles that lack nucleic acid [2] and this discovery of the
prion protein accelerated his original “protein only hypothesis.” It stated that the
posttranslational misfolding of prion proteins in cells caused the prion diseases.
The work of Prusiner and its importance were honored by the Nobel Committee in
1997 [118]. The other theory assumes the presence of an unknown protein X, “a
factor defined by molecular genetic studies that binds to PrPC and facilitates PrPSc

formation” [47, 119, 120]. It is possible that protein X is a chaperone, a protein that
assists other proteins in achieving proper folding. The next hypothesis, contradictory
to the Prusiner “protein only hypothesis” and less popular, supposes that PrPC is a
receptor for a hitherto unknown virus, whose ablation induces antiviral resistance.
In a paper by Soto [121], some critical arguments against Prusiner’s hypothesis are
presented including protease-resistant forms of prion proteins interacting with RNA,
and a lack of infectious particles in other neurodegenerative diseases. Details can be
found in [122–124].

Two models of conformational conversion of PrPC into PrPSc are based on
Prusiner’s theory of prion disease [102]. The first model is called template-directed
refolding [33, 125], and the second is called seeded nucleation [126–130].

The template-directed refolding model supposes that the PrPSc isoform is a tem-
plate for the PrPC isoform and the presence of scrapie conformation leads to struc-
tural changes of the native prion protein. The seeded nucleation assumes that both
isoforms exist in equilibrium, but strongly shifted toward the PrPC isoform. A single
PrPSc is harmless, however, it can be a bud in aggregation of other PrPSc proteins
and becomes an infectious agent.

1.4 Theoretical Investigations

Many papers present theoretical considerations at various levels regarding unclear
aspects of prion disease.

1.4.1 Mathematical Models of Prion Diseases

The simplest model of prion disease, based on linear nucleated polymerization, was
presented by Masel and coworkers [131]. PrPC and PrPSc proteins were treated as
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mathematical units (without any physical features) and their abundances were calcu-
lated according to differential equations. Quantifying parameters of the model, they,
e.g., estimated minimal nucleation size and the mean length of polymer. Their model
was extended by Pöschel et al. [132] to include time dependence of the monomer
concentration. This allowed them to observe several possible evolutions of prion
disease, namely the unlimited exponential growth of fibril, their complete disap-
pearance, the initial exponential growth of a number of PrPSc polymers, and, finally,
numerical saturation. Slepoy and coworkers [133] applied a simple two-dimensional
(2D) lattice-cell model of prion disease: PrPC and PrPSc isoforms were represented
by boxes with a very simple energy landscape. The authors constructed a hypoth-
esis that a long prion protein incubation time is related to fluctuation-dominated
growth, seeded by a few nanometer scale aggregates. This work was later ex-
tended [134, 135]. Another mathematical model of prion propagation, explored by
Rieger and coworkers [136], was based on differential equations describing several
processes. After including the activity of chaperones, the authors observed the ag-
gregation of scrapie form as a bistable process.

1.4.2 Molecular Dynamics Simulations

The next group of papers relate to the molecular dynamics (MD) of prion proteins.
The starting geometries were taken from the Protein Data Bank (PDB). The force
fields came from the AMBER, CHARM, Encad, and Discover programs, being the
most popular tools in the MD field, with protein representation varying from all-
atom to united-atom models. Such studies allowed predictions of scrapie isoform
conformations, unobtainable through experiment, by examining prion protein sta-
bility in various conditions (e.g., changes in pH) and allowed a protein flexibil-
ity [114, 137–147].

A paper published in 1995 by Kazmirski et al. [114] presented results of MD
simulations of a human prion peptide (residues 109–122) in water with respect to
mutation in position 117. The authors suggested that alanine to valine mutation in
this position destabilizes the PrPC isoform and would expose the hydrophobic core
to solvent, which may facilitate conversion into the scrapie form. Similar mutations
were examined by Okimoto and coworkers [141]. Zuegg and Gready [137, 140] in-
dicated that oligosaccharides connected to N terminus of the human prion protein
stabilize native isoform, PrPC, whereas a glycosyl–phosphatidyl–inositol anchor
linking the prion protein to membrane (GPI anchor) has a much smaller influence on
the structure of PrP; however, its flexibility allows freedom for the orientation of the
prion protein. Guilbert et al. [139] also stated that the “N-terminal region of prion
protein could feature in the conversion to PrPSc by template-assisted formation of
β-structure,” whereas the “β-sheet region of PrPC may be the nucleation site for the
conformational transition to the infectious.”

During the simulation of eight-amino acid fragments of Syrian hamster PrP,
Ma and Nussinov [145] observed that amyloid aggregation begins with an initial
slow lag phase followed by a subsequent rapid growth of aggregate with octamer
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as a stabile template for fibril propagation. Similar aggregations were presented by
Kuwata et al. [143] for 10-amino acid fragments of mouse PrP. Barducci et al. [147]
have performed simulations of mouse prion protein in hydrophobic solvent (CCl4)
to prove that monomer fold is hydrophobic. DeMarco and Daggett [144] presented
results of MD simulations for an all-atom protein representation of Syrian hamster
prion protein in low pH. They observed an increase of β-structures and a decrease
of helical parts. Starting from these conformations, they modeled the formation of
fibrils and then they reproduced the electron crystallography image of PrP 27–30
crystals.

Armen and coworkers [148] have simulated the formation of α-pleated sheets
(carbonyl groups are located on one side of the sheet and amide groups on the
other side) from prion protein in low pH, which were protected against denatura-
tion conditions (urea). The authors suggested that such structures can be intermedi-
ates in amyloid formation. Stork and coworkers [149] studied the stability of small
β-helices in an aqueous solution and, according to experimental results, fibrils of
poly-glutamines were formed from such blocks. Langella et al. [146] presented the
results of simulations of human PrP in acidic pH. Protonation of four histidines
in such conditions lead to significant destruction of one of the helices. They sug-
gested that conformational changes of this helix are crucial in the formation of the
scrapie isoform. Simulations carried out by Tsai et al. [150] pointed out interactions
between asparagines as a “glue” in the formation of fibrils from fragments of hu-
man calcitonin, a protein that is able to form ordered amyloids. The importance of
such interactions was verified when mutation of asparagine to alanine significantly
decreased the stability of β-sheets.

1.4.3 Monte Carlo Simulations: Mathematical Model of Amino Acids

Another treatment is presented in the works of Harrison et al. [151], Derreumaux
[152], Peng and Hansmann [153], Dima and Thirumalai [154], Kammerer et al.
[155], and Ding and coworkers [156]. Instead of MD, they used Monte Carlo dy-
namics. Harrison, Chan, Prusiner, and Cohen [151] used a very simple 2D lattice
model of 16-amino acid proteins built from four types of monomers (hydrophobic,
polar, and positively and negatively charged) with pair interaction energies as an
energetic score. They took into account three processes of protein refolding:

2N → R2 (1)
R2 + N → R3 (2)
3N → R3 (3)

N indicates the native conformation (the structure with the lowest free energy),
R indicates stable conformation with energy higher than N. The first and third re-
actions are spontaneous refolding of native states N into dimer R2 and trimer R3,
respectively. Equation 2 describes template propagation of the wrong form (R); na-
tive conformation N refolds into R in the presence of dimer R2. In the presented
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model, the process in Eq. 2 was five times slower than the process in Eq. 1, and
five times faster than the process in Eq. 3. The authors showed that, without R2, the
template conversion of N state into R takes infinite time, thus, the process of propa-
gation of R structures is autocatalytic. One of the suggestions in [151] was that “the
R2 dimer should be in the dimeric ground state to enable efficient propagation of
the R conformation to a third chain.” A very small ratio of decay to formation rates
of R3 allowed them to conclude that the R structure can propagate to Rn and form
amyloid.

Dima and Thirumalai [157] used the model of Harrison et al. [151] to formulate
general characteristics of a self-propagating model:

1. Native conformation is preferentially formed at temperatures below the folding
temperature (definition is given below).

2. Besides the native state, there exists another state that can polymerize.
3. Polymerization is induced by interaction with other proteins.
4. Conformational changes of proteins should be permitted.

The simple model applied by Dima and Thirumalai allowed exact calculation of
partitioning functions and thermodynamic properties for reactions:

Rn−1 + U → Rn; n = 3–7, (4)

where U represents the unfolded state. In the template assembly model, the
growth rate is independent of protein concentration C , whereas, in the nucleated-
polymerization model, it increases as Cα (α unknown). The model considered by
Dima and Thirumalai did not allow them to distinguish between the two models.
They determined dimer R2 as a minimal template for aggregation and calculated a
phase diagram in the temperature–concentration plane for two-state folding. They
also obtained several distinct dimers separated by energetic barriers and observed
that the choice of structures occurs early in the dynamics and depends on the initial
conditions.

1.4.4 Monte Carlo Simulations: Real Amino Acids

Peng and Hansmann [153] have observed the folding of seven-amino acid peptides
in the presence of a β-sheet and resulting in aggregation. Because they used just one
chain in the simulation, two interacting proteins were represented by one peptide
composed of two seven-amino acid fragments connected by several glycines. In
fact, such a model of two interacting proteins does not allow the free movement of
both studied fragments.

Dynamics (united atom representation of protein, force field as a sum of short-
and long-range interactions) performed by Derreumaux [152] have shown that the
middle part of mouse prion protein (PrP 127–164) can form two distinct and isoener-
getic conformations with β- or αβ-like structures. Kammerer with coworkers [155]
and Ding et al. [156] have presented results of Monte Carlo dynamics of a de novo
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designed 17-amino acid peptide that can be called a molecular switch: in low tem-
peratures, it adopts the α-shape, whereas, at higher temperatures, it forms amyloid
fibrils.

2 Model of Conformational Disease

The main hypothesis of the chapter is that the presence of spatial restrictions may
cause different properties of the molecule. The spatial restrictions may also be rein-
forced by the intermolecular electrostatic, induction, and dispersion interactions. In
cases of conformational change, this leads to what is known as the template effect.

Based on experimental and theoretical investigations mentioned in the Introduc-
tion, in particular, the one-protein theory of Prusiner and work by Dima and Thiru-
malai [157], a hypothesis of the model of conformational diseases was built and
presented in [158]. The model is based on the hypothesis that some misfolded pro-
teins may induce misfolding of other protein molecules.

The main assumption of this hypothesis is that wrongly folded proteins that inter-
act with native proteins may cause them to fold or refold into misfolded structures
and, in some cases, the misfolded conformations can aggregate. Here are the most
important facts concerning prion diseases:

• The most probable cause of prion disease is the change in spatial conformations
of cellular prion proteins, PrP, such that the native prion protein, PrPC, refolds
into its scrapie form, PrPSc

• Native PrPC isoforms contain more α-helices than scrapie PrPSc, whereas PrPSc

have more β-sheets than PrPC

• Scrapie isoforms of prion proteins are partly degraded by protease into fragments
that aggregate

• Amyloid aggregates found in infected cells are insoluble and difficult to examine
experimentally, however, it is known that they contain β-sheets

The approach presented in [158] postulates that a protein can have the following
properties:

• It rapidly folds into its global energy minimum structure
• It can exist in a metastable conformation with higher energy and a different

structure
• It exhibits a strong autocatalytic effect leading to the formation of a metastable

structure when in the presence of another protein

The presence of proteins with the properties mentioned above may lead to con-
formational diseases like the prion diseases. To prove the hypothesis, a series of
proteins with the required properties were designed, and then subjected to in silico
simulations of their folding.

In contrast to many attempts in the past, the present approach aims to predict
the 3D structures of the proteins, because 2D models have been excluded as too
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simple. The prediction follows from extensive Monte Carlo simulations that have
proved to be very successful in blind prediction of the 3D structures of real proteins,
and from powerful numerical techniques that have allowed the study of the total
conformational space of the proteins composed of several dozen amino acids.

For the sake of simplicity, a two α-helix bundle was chosen for the native state
and a higher-energy β-hairpin for the metastable structure. Thus, the proposed sec-
ondary structures correspond to what has been found in the prion proteins: α-helices
prevail in the native form and β-like structures prevail in the scrapie form.

The third postulate is the most important and the basis of the hypothesis. Namely,
a high-energy minimum in a potential energy hypersurface of the protein (misfolded
protein, β-sheet) decreases its energy when it interacts with another molecule (tem-
plate), so that the energy of the wrongly folded protein and template is lower than
the energy of the native conformation and template protein.

The model of conformational disease described will be presented with details in
the next section.

3 Methods

3.1 Protein Representation

Protein molecules are usually composed of hundreds of amino acid residues. The
prion proteins have approximately 200 to 300 amino acid residues [159]. In the
PDB, where protein structures are collected, 105- to 140-amino acid fragments
of prion protein are available. These fragments seem to be responsible for con-
formational changes leading to amyloid aggregation and they are usually used in
modeling.

The length of prion protein chains or their fragments indicate that the number of
atoms is on the order of thousands. This number is prohibitively large if the explo-
ration of the entire conformational space is to be considered. Therefore, it is nec-
essary to simplify the protein molecule in such a way as to make such calculations
feasible.

First, 32 amino acid protein chains were considered, and de novo designed for
the calculations presented in this chapter. Second, the united-atom approach was
used to reduce the number of atoms. A simple explanation of the reduced protein
model is shown in Fig. 2, with the details in [160, 161].

Because the peptide bonds connecting neighboring amino acids are very rigid,
the protein backbone can be represented as a chain of Cα atoms linked only by
virtual bonds with constant lengths equal to 3.8 Å. Side chains of amino acids are
represented by one or two united atoms, depending on their size.
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Fig. 2 A united-atoms representation of a protein. Top: the scheme of a 9-amino acid peptide.
Middle: Cα atoms are connected by virtual bonds, side chain atoms are grouped into united atoms,
whereas glycines on both chain ends (instead of NH2 and COOH groups) are needed to describe
the orientation of these parts. Bottom: united-atoms model of the protein used in the present work.
Courtesy of Dr. Michal Boniecki

3.2 Replica Exchange Monte Carlo Dynamics

Monte Carlo dynamics (see Chap. 5) is a technique to explore the whole conforma-
tional space of molecules and was used to perform the first numerical simulation of a
molecular system [162]. The method is based on sampling the conformational space
by drawing conformations with random changes of atom positions using a random
number generator. In Monte Carlo simulations, the so-called “importance sampling
technique” described by Metropolis [163] is usually used. This technique prefers
low-energy configurations, which make a large contribution to the partition function
because of the high probability of such states—large values of Boltzmann factor,
exp(−E/kBT), where E is the energy of the configuration, kB is the Boltzmann
constant, and T is the temperature of the dynamics. Each conformation can be char-
acterized by a corresponding energy computed using a force field. In each iteration,
a new configuration is generated. If the new configuration is lower in energy than the
old configuration, then the new configuration is accepted and becomes the starting
configuration for next iteration. If the energy of the new conformation is higher than
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the energy of its predecessor, then the Boltzmann factor equal to exp(−�E/kBT)
is calculated and compared with a random number between 0 and 1. �E is the dif-
ference between energies of the new configuration and the old conformation. If the
Boltzmann factor is greater than the random number, the new conformation is ac-
cepted. If not, the new configuration is rejected and the initial configuration is used
in the next step.

In the present work, a modified Monte Carlo technique was used, known as the
replica exchange Monte Carlo method [160,161]. The simulations presented in this
chapter were carried out with the REFINER program.

The replica exchange Monte Carlo method allows the simultaneous execution
of several independent Monte Carlo dynamics, called replicas. Each replica is car-
ried out in isothermal conditions with their temperature T, and changes in geometry
of a protein in each replica being accepted or rejected according to the Metropolis
criterion, as described above. Simulations are performed for a series of tempera-
tures and the replicas are ordered according to increasing temperature. The mag-
nitude of change of the united-atom position within the proteins increase with the
temperature. A wide range of replica temperatures were chosen to facilitate very
small geometry changes (corresponding to proteins with well-defined secondary
structures at the bottom of the low-energy minima of the energy landscape), and
to describe the large movement characteristics of denatured proteins. Every fixed
number of Monte Carlo steps, the two neighboring replicas are randomly chosen.
Between them, the generalized Metropolis criterion is applied. This criterion is used
to compare energies of conformations taken from replicas performed at different
temperatures (in contrast to the standard Metropolis criterion comparing energies
at the same temperature). If the energy E2 of the protein in the higher-temperature
T2 replica is lower than the energy E1 of the structure in the lower-temperature T1
replica, their geometries are exchanged. In the other case, exchange is performed
with a probability equal to:

exp(E2/kBT2 − E1/kBT1). (5)

If, during the folding, the protein is trapped at the local minimum, the geometry
exchanges mentioned above allow it to escape, thus, increasing the chance of finding
the global minimum.

To obtain reliable results, each run consisted of at least one million Monte Carlo
steps. Each type of dynamic (differing by range of temperatures, number of proteins,
or secondary structure starting geometries) was carried out by performing many runs
with different random seeds.

3.3 Force Field

The force field used in calculations presented in this chapter was a statistical force
field designed by the Kolinski group, Faculty of Chemistry, Warsaw University. The
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force field has a complex formula and is an effective potential taking into account
the following physical effects:

• Electrostatics
• Induction
• Dispersion
• Hydrogen bonds
• Hydrophobic interactions
• Interactions with solvent molecules (water)
• Other effects

The total effect is expressed by the frequency of appearance of amino acid pairs
in chosen sets of proteins and by the characteristics of the local 3D geometry of
these molecules. This statistical analysis of structural regularities in crystallographic
structures of globular proteins taken from the PDB was done for a set of approxi-
mately 1,500 proteins. The energy form is described in detail in [164, 165].

In general, the terms of the force field can be divided into two groups:

• Short-range potentials that depend, for example, on the identity of interacting
amino acids and the distances between i th and i + 3, i th and i + 4, and i th and
i + 5 Cα atoms along the chain and between torsional angles

• Long-range potentials, for example, contact-type potentials of side chain atoms
(inter alia hydrophobic interactions)

In the presented approach, a solvent (water) does not enter explicitly into the
formula for energy, but is treated as an effective medium. Because structures of
proteins taken from PDB to obtain the potentials were solved for crystals containing
water molecules, the water influence is effectively included in the force field and,
therefore, potentials mimic “averaged” physiological conditions.

The quality of the force field used was examined in the worldwide protein struc-
ture prediction experiment (CASP-6). In this contest, the Kolinski group is placed
in the highest positions [166].

4 Results

Three main types of simulation were performed: Monte Carlo dynamics with one,
two, and three chains. One-chain dynamics were carried out to design sequences
with requested properties. Two- and three-chain simulations were essentially aimed
at studying intermolecular interactions. All calculations were performed using the
program and force field designed by Boniecki and Kolinski from Laboratory of
Theory of Biopolomers at Warsaw University.

Replica exchange Monte Carlo dynamics with 10 replicas, generally, were used
to perform the simulations. Each type of dynamics was repeated with different
random seeds, with different initial protein conformations and with different mu-
tual positions of protein starting geometries in cases of multichain dynamics. The



310 E.B. Małolepsza

temperatures of the replicas were distributed around the folding temperature cor-
responding to the maximum of the first derivative of mean energy with respect
to the temperature (constant-volume heat capacity). Thus, a few initial dynamics
for every type of simulation were performed to determine the folding temperature.
Figure 3 presents representative plots for one-chain dynamics. Detailed information
regarding the folding temperature and properties of replicas are presented in the next
section.

Fig. 3 Representative plot of mean energy (left) and heat capacity (right) of replicas in one-chain
dynamics as a function of temperature
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4.1 Designing the Sequence: One-Chain Dynamics

Because of computational costs, the length of protein was limited to 32 amino acids.
The goal was to design a sequence of 32 amino acids that simulates a two-helix bun-
dle in the global minimum conformation, and a β-sheet in the metastable conforma-
tion. When designing the amino acid sequence, some empirical facts were taken into
account:
• Natural amino acids appear in α and β structures in proteins with different fre-

quency:

◦ Alanine, leucine, and glutamic acid are known as α-helix makers
◦ Valine, isoleucine, and threonine are known as β-structure makers

• Short peptides fold easier to α-helices than to β-forms, thus, the required se-
quence should contain a larger number of β-type amino acids than α-helical-type
amino acids

• The presence of glycines should hopefully facilitate the formation of loops,
which are necessary for α-helix bundles and β-sheets

• α-helix and β-sheet structures are known to have different polar–hydrophobic
patterns: (HPPHHPP)n and (HP)nn, respectively, where P and H stand for polar
and hydrophobic amino acids, respectively
Based on this information, some sequences were proposed and examined in

Monte Carlo simulations regarding whether they satisfied the structural and ener-
getic requirements according to the hypothesis. When the global minimum for the
chosen sequence corresponded to the α-helix, but the β-sheet was not stable enough
even at low temperatures, or when the β-sheet had lower energy than the α-helix, or
when the energy difference between both conformations were too small or too large,
a trial-and-error method was used to change the amino acids by point mutation to

Table 1 Thirty-two amino acid sequences designed to fulfill two conditions: the global minimum
corresponds to an α-helix, and a metastable β-sheet local minimum exists

1 GVE I AVKGAEVAAKVGGVE I AVKAGEVAAKVG
2 GVE I AVKGGEVAAKVGGVE I AVKGGEVAAKVG
3 GVE I A I KGGE I AAKVGGVE I AVKGGEVAAKVG
4 GVE I AVKAGEVAAKVGGVE I AVKAGEVAAKVG
5 GVE I A I KGGE I AAKVGGVE I AVKGGE I AAKVG
6 GVE I AVKGGEVAAKVGGVE I AVKGGE I AAKVG
7 I KVA I EVGGVKAAVEGGKVA I EVGGVKAAVE I
8 I KVA I EVAGVKAAVEGGKVA I EVAGVKAAVE I
9 I KVA I EVAGVKAAVEGGKVA I EVGAVKAAVE I

10 I KVA I E I GGVKAAVEGGKVA I EVGGVKAAVE I
11 I KVA I EVGG I KAAVEGGKVA I EVGGVKAAVE I
12 I KVA I EVGG I KAAVEGGKVA I E I GGVKAAVE I
13 I KVA I EVAGVKGAVEGGKVA I EVGGVKAAVE I
14 I KVA I EVAGVKAAVEGGKVA I EVAGVKAA I E I

A one-character code describes the amino acids: G, glycine; A, alanine; V, valine; E, glutamic
acid; I, isoleucine; K, lysine
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improve their behavior. As a result, 14 sequences were preselected. They are col-
lected in Table 1.

All of the sequences in Table 1 fulfilled the first and second hypothesis as-
sumptions (see Section 2). Regardless of the starting geometry (α-helix, β-sheet,
or extended chain) and a random seed, the lowest energy conformation and the
most frequent structure for all sequences was an α-helix. The β-sheet conformations
for all sequences were obtained in low-temperature dynamics using β-sheets as the
starting geometry. β-sheets from the sequences in Table 1 were stable at low temper-
atures, however, when a wide range of dynamics were applied (higher temperatures
were available) they unfolded and refolded into α-helices. This result proves that
the β-form basin is separated from the global minimum basin by a barrier.

Both geometries are presented in Fig. 4 as an example of Sequence #1 in Table 1.
The energies of both structures for Sequence #1, equal to −85.3 and −75.8 in

kBT units for an α-helix and a β-sheet, respectively, were taken from the lowest
temperature replica (temperature = 0.25 units).

Fig. 4 The global minimum, α-helix, and metastable minimum, β-sheet conformations, found for
Sequence #1. White corresponds to glycine (G); pink, valine (V); blue, lysine (K); green, alanine
(A); dark green, isoleucine (I); and crimson, glutamic acid (E). For clarity, only the backbone of
the protein is shown
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Fig. 5 Some of the millions of conformations (α-helices and β-sheets) obtained in one-chain
dynamics

The global minima for the chosen sequences usually correspond to two-helix
bundles, however, other α-helical structures were also found. Similarly, a few other
β-type conformations were obtained. Four of them are presented in Fig. 5. In the first
structure, two fragments of the α-helix are coiled, in the second, secondary protein
structure contains three α-helices. The third conformation differs from β-sheets in
Fig. 4, with different chain flexions and, in the last structure, the protein fragments
form one flat sheet built to form a three-member β-barrel instead of a two-stranded
sheet as in Fig. 4.

The determination of the folding temperature is important to the dynamics pre-
sented in this chapter, because, in temperatures close to the folding temperature, the
most important processes are observed. Usually, the dynamics with a wide range
of temperatures were performed in the first instance to find the best temperature
interval. As an example, the energies of structures during some of the one-chain
dynamics for Sequence #1 with an α-helix as the starting geometry are presented in
Fig. 6 (for better clarity, 4 replicas out of 10 are presented). In Fig. 7, the energies of
structures in the folding temperature replica in this dynamic are shown with some
representative conformations.
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Fig. 6 Energies of structures in 4 of 10 replicas for one-chain dynamics for Sequence #1 over a
wide range of temperature. Temperatures of dynamics are as follows (from the bottom): 0.25, 0.4,
0.55, and 0.7. The energies of every 300 conformations are presented

Fig. 7 Conformations and the corresponding energies in the folding temperature (0.55) replica in
one-chain dynamics for Sequence #1. The presented conformations correspond to the white circles.
Energies of every 300 conformations are shown

Figure 6 shows the energies of conformations for various temperature replicas.
The mean energy increases with the temperature of the dynamics. For the low-
est temperature replica (0.25 units), after a few steps from the beginning of the
dynamics, the protein is trapped in a local minimum of the α-type. Because the
changes of geometry depend on the temperature, the protein changes its conforma-
tions slowly (small changes between energies of neighboring structures). For the
highest-temperature replica (0.7 units), the protein is fully denatured and no sec-
ondary structures (α-helix, β-sheet) are observed. The changes of geometry between
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the subsequent structures are large; too large to allow second-order structures to
form. The standard deviation of energy is very small.

The most important changes happen in the replica that is at the folding tempera-
ture or close to it (second line from the top in Fig. 6). The folding temperature is high
enough to allow proteins to refold (to change local minimum or, in the other words,
to pass through the saddle of the energy hypersurface), but is low enough to preserve
low-energy motifs (α-helix, β-sheet). Conformations in this replica vary from very
well-defined helices or sheets to geometries corresponding to denatured molecules.
Therefore, a large standard deviation of energy is observed. Figure 7 presents con-
formations corresponding to chosen points in the dynamics in the 0.55 temperature
replica (second line from the top in Fig. 6).

The lowest-energy structures are α-helix bundles (Structures #1, 2, 6, 9, 11, and
15). Geometry #10 is an example of a completely denatured chain without even
small helical or β-sheet fragments. Conformations #4 and 12 contain fragments of
α-helix, whereas structures #3, 5, 7, and 13 have small amounts of β-sheet. Low-
lying conformation #8 (however, still higher energetically than α-helix bundles) is
an example of a mixed structure. It contains well-defined α-helix and β-sheet frag-
ments and, therefore, has relatively low energy.

Similar pictures of dynamics appear for the remaining 13 sequences from Table 1.
The results prove that the hypersurfaces of potential energy for the designed se-
quences have the required profiles, as shown in Fig. 8.

Fig. 8 A schematic view of the simplified potential energy hypersurface of each sequence. The
lowest minimum corresponds to the native structure, α-helix bundle, whereas the higher corre-
sponds to the β-sheet
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4.2 Two-Chain Dynamics

The next step was the dynamics of two interacting proteins.
The results presented in this chapter were obtained using a program written by

Boniecki and Kolinski allowing simulations of several chains, not just a simple one.
Such an approach leads to results that are more reliable because the folding proteins
can freely change their mutual positions and they are not restricted by the amino
acids connecting them, as in work in reference [153].

One may assume that 1 of the 32 amino acid proteins is frozen in its metastable
β-type conformation. This freezing may occur for a number of reasons, such as a
chemical link [167]. The second protein molecule (of identical amino acid sequence)
folds in the presence of the frozen metastable form.

Such dynamics of a single chain in the presence of the frozen protein were per-
formed for all sequences in Table 1. For Sequences #2 to #14, a freely moving pro-
tein folded into an α-helix. The presence of a β form did not strongly influence the
behavior of these proteins. For Sequence #1, the situation was completely different.
When the second chain was a β-sheet, the folding of this peptide led to the formation
of the next β-sheet (Fig. 9).

The folding into a β-sheet for Sequence #1 was independent of the starting geom-
etry. In the case of a β form as an initial conformation, in high-temperature replicas
(above the folding temperature), the chain remained unfolded. However, in low-
temperature replicas, only β-sheet conformations appeared for a long time, and only
these conformations were stable and independent of a random seed, the number of
steps in the dynamics, or small differences in the replica’s temperature distribution.
In addition, starting from an extended chain led to the β-dimer. The crucial test re-
ferred to an α-helix as the initial geometry. For Sequence #1, the refolding from a
helical form into a β-sheet was observed. This numerical experiment suggests that
the presence of a misfolded (metastable) form causes misfolding of other protein
molecules. Both molecules interact strongly, forming a β dimer. For the presented
model of wrong conformation propagation, the most important factors affecting the
dynamics are the presence of frozen β-sheets with an α-helix as the initial confor-
mation.

In the case of the other sequences, they manifested independence of the initial
conditions: independent of the starting geometry, the proteins fold into α-helices in
the presence of their β forms.

Energies of well-formed β dimers for Sequence #1 in a 0.25 temperature replica
are located between −195.5 and −200.4 in kBT units, depending on the details
of the side chains. These values are much lower than twice the energy of a single
α-helix or single β-sheet equal to −170.6 and −151.6 in kBT units, respectively.
This comparison indicates that the interactions between both β-sheets forming a
dimer are strong and may decrease the energy of the two-monomer system.

The next point of calculation was the examination of ββ and αα dimer stabil-
ity. Dynamics runs were carried out for both dimers, and both dimer chains were
allowed to move. For all sequences, except Sequence #1, α-helical dimers were sta-
ble, but β-sheet dimers occurred only at the beginning of the simulations and then
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Fig. 9 β-type dimer as the lowest energy conformation for two-chain dynamics for Sequence #1. A
freely moving α-helix in the presence of a frozen β-sheet (starting point of dynamics in left panel)
folds into a β-sheet forming a β dimer. For clarity, only the protein backbones are shown

either two α-helices or mixed structures were formed. Mixed structures are con-
formations in which some protein fragments exhibit helical shape, whereas other
protein fragments are similar to the β form. For Sequence #1, both dimers were
stable over very long simulations and the conversion from one dimer to another in
replicas performed at temperatures lower than the folding temperature was not ob-
served in any direction. Such a situation can be explained by a high energy barrier
between energy basins of both dimers.

Figure 10 presents energies of conformations and selected structures obtained
during a 0.56 temperature replica run for two-chain dynamics for Sequence #1 with
an α-helix dimer as the initial structure. Both molecules were allowed to move.
In low-temperature replicas (T lower than the folding temperature which equals
∼ 0.55), only two α-helices were observed. At the folding temperature, the α-helix
dimer had the lowest energy and the longest lifetime (Structures #1, 4, 6, 8, 10,
and 13). However, other conformations were observed at this temperature: some of
them corresponding to denatured proteins (#5 and 11), with others having β-sheet
fragments (#3 and 7) or α-helix origins (#2 and 7).

Dynamics for Sequence #1 with a β-sheet dimer as a starting conformation at the
folding temperature gives a similar picture, but this time, the lowest energy struc-
tures are the β-sheet dimers.

4.3 Three-Chain Dynamics

The conclusion of two-chain dynamics for 14 designed sequences is the ability to
form stable β-sheet dimers using Sequence #1. The other sequences fold to two
α-helical structures. To answer the question of how stable longer β-sheet clusters are
and how the folding proceeds for more than one chain in the presence of a template
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Fig. 10 α-helix dimer stability in two-chain dynamics in a 0.56 temperature replica for Sequence
#1. Energies of every 100 conformations are presented. The numbers of the structures correspond
to the white circles in the plot

(metastable conformation containing a β-sheet), three-chain dynamics were carried
out.

Four types of conditions were taken into account:

1. As the first one, dynamics with one frozen molecule, a β-sheet, and two freely
moving proteins were performed. Initial geometries were chosen as either one
α-helix and one β-sheet or two α-helices, as is shown in Fig. 11.

For Sequence #1, the lowest energy conformation and the most stable struc-
ture was a β trimer, whereas, for the other sequences, some mixed conformations
formed. Progress of the 0.65 temperature replica (close to the folding tempera-
ture) for Sequence #1 is presented in Fig. 12, with representative conformations
obtained during one of the dynamics.

The starting geometry (Structure #1) was chosen as two α-helices and one
β-sheet, the last molecule was frozen in the dynamics. The frozen protein was
placed in the middle of the trimer or as an external molecule. The system quickly
formed a β-sheet trimer (Structure #2). These conformations occurred in several
mutual orientations (Structure #2, 4, 6, and 8). As previously noted, denatured
conformations were observed (Structure #3) as were the formation of helical
origins (Structure #5, 7, and 9).

2. One α-helix and one β-sheet dimer, with all molecules allowed to move, repre-
sents the second type of three-chain dynamics (initial conformation as per the
right panel of Fig. 11). For Sequence #1, with replicas at temperatures lower than
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Fig. 11 Three initial geometries of molecules in three-chain dynamics with a frozen β-sheet
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Fig. 12 Three-chain dynamics for Sequence #1 (0.65 temperature replica) when one molecule was
frozen in β-sheet conformation. Energies of every 100 conformations are presented. Numbers of
structures correspond to the white circles in a plot

the folding temperature, the formation of a β trimer was observed, except dur-
ing the initial steps of dynamics. In the folding temperature replica, the other
structures were also formed. The β-sheet dimer was stable and the third mole-
cule either formed a β-sheet or had helical fragments. Two representative β-sheet
trimers are shown in Fig. 13.

The trimer presented in the left panel of Fig. 13 has a very regular structure.
The monomers aggregated, forming a cuboid. Monomers in the second trimer
(right panel) exhibited, to a small degree, a disorder with respect to the cuboid
structure.

The remaining sequences did not aggregate to a β-sheet trimer, rather, mixed
conformations with fragments of both motifs formed.

3. The third dynamics had two α-helices and one β-sheet as starting geometry, with
all molecules allowed to move. The energies and representative conformations
obtained by a 0.6 temperature replica are shown in Fig. 14.

The structures formed in such dynamics were more often mixed conforma-
tions compared with cases 1 and 2, however, the β-sheet trimers were stable for
Sequence #1 when they occurred. The other sequences formed α-helices.

4. The goal of the last type of three-chain dynamics was to check the stability of
β trimers. Such trimers were stable for Sequence #1 during very long dynamics.
Very surprisingly, similar properties were demonstrated by the β-sheet trimer for
Sequence #2. Trimers for the other sequences dissociated and refolded into sep-
arate α-helices or mixed structures. This means that sequence #1 can aggregate
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Fig. 13 Two representative β-sheet trimers obtained in three-chain dynamics with all molecules
freely moving and with an α-helix and β-sheet dimer as the starting conformation. For both struc-
tures, two side and top views are shown
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Fig. 14 Energies and representative conformations in the 0.6 temperature replica for three-chain
dynamics with two α-helices and one β-sheet as the starting geometry. Energies of every 100
conformations are presented. Numbers of structures correspond to the white circles in the plot

even when only one template molecule with β-structure exists and the β-sheet
dimer is stable, whereas, for Sequence #2, the β-sheet trimer is the nucleus of
aggregation.

To check the influence of concentration effects, these dynamics were repeated
in increasingly accessible system volumes. The accessible volume was calculated
as a sphere with the center being the mass center of the studied system with a ra-
dius equal to 5.5∗ exp[0.38∗ log(N)], where N is the number of amino acids in the
system. The penalty function, being a quadratic polynomial with the distance to
the sphere as an argument, was added to the energy formula for every united atom
lying outside the sphere. The dynamics were performed for a system with accessi-
ble volume increased by 50% and 125% of the initial volume. β-sheet trimers for
Sequences #1 and #2 were stable in every situation, whilst the other sequences re-
folded into more helical structures. This means that concentration may influence the
kinetics of protein aggregation, and, more importantly, the ability of amyloids to
form may depend on the concentration of the β-form proteins.

Detailed studies of all designed sequences and their hydrophobic–polar patterns
from the point of view of their tendency to aggregate, cannot indicate the features re-
sponsible for this ability. It seems that the final effect results from a subtle interplay
among various interactions and sequence features.
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5 Conclusions

The common feature of degenerative diseases is the presence of hard and insoluble
amyloid plaques in neural cells. The main component of such plaques is protein
fragments rich in β-sheet structures. The “one-protein theory” proposed by Prusiner
states that they come from normal cellular prion proteins. After their synthesis and
folding into native forms in cells, they may succumb to refolding into their iso-
forms, which contain more β-sheets and are resistant to protease activity; an enzyme
that breaks peptide bonds between protein amino acids to remove wrongly folded
peptides.

The results presented in this chapter point out that some proteins considered as
monomers adopt a structure, called the native state, N, whereas, in the presence of
an energetically higher structure, R, they can change their native geometry into R
and form a dimer R2. The energies of both kinds of dimers, N2 and R2, are sim-
ilar, however, between respective minima in potential energy hypersurface, a high
energetic barrier is located, with both dimers being long-lived structures. The addi-
tion of another protein in the N state to the system containing R2 dimers leads to
spontaneous formation of trimer R3. Such behavior can be a model of prion disease
propagation, or, more generally, a model of a conformational disease.
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Chapter 17
Identifying Putative Drug Targets and Potential
Drug Leads
Starting Points for Virtual Screening and Docking

David S. Wishart

Summary The availability of three-dimensional (3D) models of both drug leads
(small molecule ligands) and drug targets (proteins) is essential to molecular dock-
ing and computational drug discovery. This chapter describes an emerging method-
ology that can be used to identify both drug leads and drug targets using three newly
developed web-accessible databases: 1) DrugBank; 2) The Human Metabolome
Database; and 3) PubChem. Specifically, it illustrates how putative drug targets and
drug leads for exogenous diseases (i.e., infectious diseases) can be readily identified
and their 3D structures selected using only the genomic sequences from pathogenic
bacteria or viruses as input. It also illustrates how putative drug targets and drug
leads for endogenous diseases (i.e., non-infectious diseases or chronic conditions)
can be identified using similar databases and similar sequence input. This chapter is
intended to illustrate how bioinformatics and cheminformatics can work synergisti-
cally to help provide the necessary inputs for computer-aided drug design.

Keywords: Bioinformatics · Chemical similarity · Disease · Drug · Drug target ·
Endogenous disease · Exogenous disease · Metabolite · Sequence comparison

1 Introduction

As most readers have already seen, protein modeling is a rapidly developing field
that allows many interesting biological questions to be addressed using only a com-
puter. Insights gained through computational modeling have helped us better under-
stand proteins and their many important structure/function relationships. Although
macromolecular modeling has helped enormously to advance basic biology, one of
the central justifications for the enormous resources that have gone into this field
during the past 25 years is the hope that molecular modeling could, one day, accel-
erate drug discovery [1–3]. Computational drug discovery is a subfield of macro-
molecular modeling that involves the docking or virtual screening of one or more
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small molecule compounds against a chosen protein target. The small molecule lig-
ands are called drug leads and the protein of interest is called the drug target. Both
computer-aided docking and virtual screening use a variety of algorithms that allow
the small molecule(s) to be rapidly rotated and translated around the protein surface
or active site and scored on the basis of their steric fit and/or predicted free en-
ergy [4–7]. In more advanced packages, the ligand (and even the protein) is allowed
to exhibit some conformational flexibility. When an optimal orientation is found or
a particularly high-scoring molecule is identified, a drug lead or a drug mechanism
is said to have been “discovered.” The results of these computational experiments
are used in an iterative fashion by synthetic organic chemists to help design or select
improved lead compounds.

What distinguishes virtual screening from docking is the number of molecules
used (screening uses 1000s, docking uses 1), the objective of the search process
(screening identifies drug leads, docking identifies active sites or mechanisms), and
the robustness or complexity of the docking energy function (docking uses a com-
plex force field, screening does not). There are now many excellent docking and/or
virtual screening software packages, such as Dock [8], AutoDock [9], Gold [10],
and Glide [11]. Almost all are freely available. These will be discussed in more
detail in the next chapters.

However, it is important to remember that before either virtual screening or
macromolecular docking can begin, a protein target needs to be identified (and mod-
eled) and a set of potential drug leads needs to be assembled. This chapter describes
how both drug targets and drug leads can be identified through several easily ac-
cessible web resources. Specifically, this section shows how putative drug targets
for pathogenic viruses or bacteria can be identified directly from their genomic se-
quences and how the three-dimensional (3D) structures of putative drug leads and
drug targets can be subsequently extracted from two newly developed databases:
DrugBank [12] and PubChem [13]. This chapter also illustrates how human drug
targets and potential drug leads for prostate cancer can be similarly identified and
extracted for docking/screening programs using the Human Metabolome Database
(HMDB) [14], DrugBank, and PubChem. The intent of this chapter is to give read-
ers the necessary input files and knowledge to proceed to the next steps (docking
and screening) in computational drug discovery.

2 Theory

When medicinal chemists or pharmaceutical scientists think about drugs and drug
targets they generally classify them into two separate groups: 1) those that are asso-
ciated with “endogenous” human diseases and 2) those that are associated with in-
fectious or “exogenous” diseases. Endogenous diseases are typically chronic human
disorders or conditions that arise because of germ-line mutations (genetic diseases),
somatic mutations (cancer), age (atherosclerosis, immune disorders), or other inter-
nal factors. On the other hand, exogenous diseases are typically temporary diseases



Finding Drug Targets and Drug Leads 335

or conditions that arise from external, nonhuman agents, such as viruses, bacteria,
fungi, protozoans, or poisonous animals (snakes, insects). The vast majority of drug
targets (97%) and drugs (89%) are associated with endogenous diseases, whereas
only a tiny minority of drug targets (3%) and drugs (11%) are actually associated
with exogenous or infectious diseases [12, 15].

2.1 Identifying Drug Targets and Drug Leads for Exogenous
Diseases

The identification of putative drug targets and drug leads for exogenous diseases
can take one of two paths, both of which depend substantially on bioinformatics
and sequence database comparisons. One can either attempt to identify a completely
novel drug target/drug lead or one can attempt to identify a drug target/drug lead that
is similar (or even identical) to an existing class of drug targets or drug leads. In both
cases, one needs either the complete protein or DNA sequence of the pathogen of
interest. Fortunately, these days the entire DNA sequence of many infectious agents
of interest is already known or can be determined in as little as a week.

If one chooses to identify a completely novel drug target or drug lead, the task
is then to identify those genes or proteins in the genome that are: 1) essential
to viability; 2) disease causing; or 3) presented on the surface of the organism.
Surface-bound proteins may be identified by sequence analysis by looking for trans-
membrane segments using such tools as TMHMM [16] or PSortB [17]. Essential
genes, especially for bacteria, may be identified by comparing sequences with ex-
isting databases of essential genes, such as in the Database of Essential Genes [18].
Likewise, disease-causing genes can be identified by comparing sequences between
nonpathogenic forms of the microbe with pathogenic forms (say Escherichia coli
O157 versus E. coli MG1655). Alternately, essential genes or disease-causing genes
may be experimentally identified through knock-out mutations or deletions. Gener-
ally, all viral genes in a viral genome are essential whereas only 200 to 300 bac-
terial genes in a given bacterial genome are essential. Furthermore, among most
pathogens, only a small fraction of proteins or genes (<20) are typically disease
causing. Once these “druggable” genes or protein targets are identified, one must
select for those that are sufficiently different (<35% identity) from any human ho-
mologs. This prevents any cross-reactivity or potentially adverse drug interactions.
After these nonhomologous protein targets are found, one can either search or screen
for an inhibitory molecule or develop a vaccine (using parts of the surface proteins).
When working with completely novel drug targets, it is often difficult to know which
lead compounds might work, therefore, widespread chemical library screening is
often used.

If one wishes to find matches to an existing class of drug targets or drug leads,
the task involves identifying those genes or proteins in the genome of the organism
that are similar to known drug targets. The underlying assumption is that if a novel
virus or a newly identified pathogenic bacterium shares some significant sequence
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similarity to a protein that is a known drug target from another organism, then the
same (or similar) drugs may be used to combat or kill this pathogen. Alternately,
these previously known drugs may serve as potential drug leads for further syn-
thetic modification to develop therapies that are more effective for the organism of
interest. What is needed for this process to work is a database of known drug target
sequences, each of which is linked to a set of associated drugs. Ideally, this data-
base should also include the 3D structures (known or predicted) of the drug targets
and the drugs themselves. Fortunately, such a database exists. It is called Drug-
Bank [12]. DrugBank is an online database that combines detailed drug (i.e., chem-
ical) data with comprehensive drug target (i.e., protein) information. The database
contains more than 4,300 drug entries including more than 1,100 FDA-approved
small molecule and biotech drugs as well as more than 3,200 experimental drugs.
Each compound entry contains detailed structure files in SDF, MOL, and PDB for-
mats. Additionally, more than 16,000 protein or drug target sequences are linked
to these drug entries, many of which have 3D structures or 3D homology models
associated with them.

DrugBank supports standard BLAST sequence queries, including appropriately
formatted multiple sequence inputs (i.e., complete proteomes). The output from
these queries includes the name(s) and hyperlinks to the associated drugs and the 3D
structures of the drug targets. Once the drugs are identified, it is possible to use
DrugBank again to search for similar drugs (based on structure similarity) or to use
PubChem to search for similar chemicals (also based on structure similarity). The
structures of all of these chemical “hits” may be downloaded, either as PDB files
(DrugBank) or as SDF files (PubChem). PubChem’s SDF files can then be converted
to PDB files using the freely available tools MolConverter (ChemAxon), CACTVS
[19], or the Cactus online converter (http://cactus.nci.nih.gov/services/translate/).
Thus, by using both DrugBank and PubChem, it is possible to rapidly obtain 3D
structures of putative drug targets and the 3D structures of 100s or even 1,000s of
drug leads. These data sets would obviously serve as the basis for docking or virtual
screening studies.

2.2 Identifying Drug Targets and Drug Leads for Endogenous
Diseases

Identifying drug targets for endogenous diseases is often far more challenging than
identifying drug targets for infectious or exogenous diseases. This is because most
endogenous human diseases have a complex etiology. With the exception of ap-
proximately 400 [20, 21] relatively rare, monogenic (single gene) disorders, the
vast majority of endogenous diseases are multifactorial or polygenic (multigene)
in origin. Nevertheless, with the advent of such techniques as microarray analy-
sis or high-throughput proteomics, it is now possible to identify large numbers
of disease-associated genes relatively rapidly [22]. Likewise, high-throughput se-
quencing, comparative genomic hybridization (CGH) arrays, and single nucleotide
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polymorphism (SNP)-typing are also allowing the rapid identification of the genes
associated with many inherited monogenic (and even polygenic) diseases. This in-
formation is being cataloged in many online databases such as OMIM [20], the
HMDB [14], and GeneCards [23]. It is also possible to find disease–gene associ-
ations directly through PubMed-Entrez [13], or other web servers, such as Med-
Gene [24] and PolySearch [25]. Current estimates put the number of “druggable”
gene targets in humans at approximately 3,050 [26].

Once a list of genes or proteins associated with a given disease is available (along
with their sequences), then it is a matter of performing a series of similar kinds of
sequence searches against DrugBank, as described for Sect. 2.1. However, it is also
possible to find additional or even novel drug leads by looking through the HMDB.
The HMDB, like DrugBank, is a multipurpose bioinformatics–cheminformatics
informatics database containing detailed information regarding metabolites, their
associated enzymes or transporters, and their disease-related properties. The useful-
ness of the HMDB in drug discovery lies in the fact that most drugs are actually
analogs of existing metabolites, cofactors, or signaling molecules. Therefore, if one
identifies a protein or proteins in a disease-specific pathway that requires a certain
metabolite or cofactor, then these proteins may prove to be good drug targets and
their cofactors or metabolites could prove to be good drug leads. Indeed, many in-
born errors of metabolism (phenylketonuria, alkaptonuria, and galactosemia) are
treated through the addition or removal of metabolites in the diet.

Both DrugBank and the HMDB support single and multiple protein sequence
queries, and both produce results that include the name(s) and hyperlinks to the
associated drugs or metabolites and the 3D structures of the corresponding pro-
teins. Once the small molecule leads are identified, it is possible to use DrugBank
or HMDB again to search for structurally similar drugs or metabolites. Alternately,
one may use PubChem to search for similar chemicals (also based on structure sim-
ilarity). The structures of all of these chemical “hits” may be downloaded, either
as PDB files (DrugBank and HMDB) or as SDF files (PubChem). PubChem’s SDF
files can then be converted to PDB files using the freely available tools MolCon-
verter (ChemAxon) or the Cactus web server. Thus, by judiciously using DrugBank,
HMDB, and PubChem, it is possible to rapidly obtain 3D structures of putative drug
targets and the 3D structures of numerous drug leads for endogenous diseases.

2.3 Sequence Matching and Chemical Compound Matching

This chapter focuses on using two different matching protocols, one for sequence
matching and another for chemical structure matching. Sequence matching, or se-
quence alignment, is a central feature to much of bioinformatics, whereas chemical
structure matching is a central feature to much of cheminformatics.

Sequence alignment is often based on a technique called dynamic programming.
Strictly speaking, dynamic programming is an efficient mathematical technique that
can be used to find optimal “paths” or routes to multiple destinations or to locate
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paths that could be combined to score some maximum value. The application of
dynamic programming to sequence alignment was first demonstrated longer than
35 years ago by Needleman and Wunsch [27]. As these two researchers demon-
strated, dynamic programming allows two or more sequences to be efficiently and
automatically lined up, permitting gaps to be inserted, extended, or deleted to make
an optimal pairwise alignment. In dynamic programming, the two sequences being
compared (say, sequence A and sequence B) are put on either axis of a table. Se-
quence A might be on the x-axis, whereas sequence B might be on the y-axis. Each
letter in the query sequence is compared to each letter the reference sequence and
a number (based on a scoring matrix and a special recursive function) is placed in
every box or cell that intersects each pair of letters. Once the table of numbers is
filled out, a second stage (called the traceback stage) is undertaken, wherein the ta-
ble is scanned in a diagonal fashion from the lower right to upper left to look for the
highest scores. The path that is chosen is actually a series of “maximum” numbers.
When all of the scores in this optimal path are added together, it gives a quantitative
measure of the pairwise sequence similarity, while, at the same time, defining which
letters in sequence A should be matched with the letters in sequence B.

Dynamic programming is a relatively slow, memory intensive process. However,
it can be sped up considerably. For instance, if look-up tables are used, if advanced
statistics are used, if more than one letter at a time (a “tuple”) is scored, and if
the traceback search is limited to sections close to the diagonal line, then you have
the essence of the BLAST algorithm [28]. This is the very fast algorithm used to
perform most alignments against large sequence databases. It is also the algorithm
used in the sequence searches for DrugBank and HMDB.

Chemical compound matching shares some similarities to sequence match-
ing. Thanks to the development of standardized text representations of chemical
compounds through IUPAC International Chemical Identifer (InChI) strings and
SMILES strings [29], it is possible to give every chemical a unique character
string. In other words, InChI and SMILES strings uniquely define chemical com-
pounds much like a protein can be uniquely defined by its sequence. Therefore, if
one converts a standard chemical database (which may have been assembled using
chemical names or structural MOL files) into a collection of SMILES strings or
InChI identifiers, then it is possible to use character string comparison to perform
compound matching. Several web-based conversion sites, including the Molecu-
lar Structure File Converter (http://iris12.colby.edu/∼www/sconv.cgi), the Cactus
Structure File Converter (http://cactus.nci.nih.gov/services/translate/), and the file
converter at InChI.info (http://inchi.info/converter en.html) are now available to fa-
cilitate conversion between MOL, SDF, PDB, SMILES, and InChI formats. The
actual search algorithm requires that both the query compound and the database of
searchable compounds be expressed in SMILES or InChI strings. By using simple
string parsing and string matching utilities, it is often possible to identify structurally
similar compounds by looking for shared character strings or substrings between the
query and the database compounds. Unfortunately, this approach is not always fool
proof. The scoring schemes for chemical substring matching are not yet as sophis-
ticated as they are with sequence matching algorithms. Likewise, there are several
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different “flavors” and dialects of SMILES strings, which makes it difficult to ex-
change databases or search algorithms.

More sophisticated chemical structure matching algorithms also exist. These are
based on the idea of matching substructures. This is somewhat similar to the idea
of structure superposition, which is done with protein structure comparison. How-
ever, because the structures of chemical compounds are far more diverse than what
is seen for proteins, the structure-matching utilities in chemistry have to be slightly
more sophisticated. In particular, chemists must use the concept of subgraph isomor-
phisms [30] and adjacency matrices to identify chemical similarity. For substructure
searching, the two-dimensional (2D) chemical structures of both the query and data-
base compounds must be recast as tables that indicate the bond connectivity between
each pair of atoms. These tables, which have 1s for connected atoms and 0s for un-
connected atoms are called adjacency matrices. The name comes from the fact that
they indicate which atoms are adjacent (connected) to each other. Once prepared, the
adjacency matrix from the query structure is compared with every adjacency matrix
in the database. If substantial sections of the query matrix match to an adjacency
matrix (or portion thereof) in the database, then it is likely that the two structures
are similar. Different scoring schemes and adjustable threshold cutoffs may be used
to distinguish strong matches from weak matches or to identify compounds with
particularly important substructures.

As will be seen in the examples to follow, both sequence searching and chem-
ical structure searching play an important role in drug target and lead compound
identification.

3 Methods

In this section, we describe two protocols. One describes the identification of drug
targets and drug leads for a novel retrovirus that exhibits strong similarity to the ac-
quired immune deficiency syndrome (AIDS) virus (human immunodeficiency virus
[HIV]). The other describes the identification of drug leads (from a preexisting list
of putative drug targets) for prostate cancer.

3.1 Identifying Drug Targets and Drug Leads for a Novel Virus

In this example, we use sequence data derived from a recently sequenced, but un-
named virus that exhibits strong sequence similarity to HIV. This particular virus
has a total of 16 identifiable open reading frames, which have been fully translated.
We will use this sequence information, in combination with DrugBank, to identify
several drug targets, several drug leads, and the necessary coordinate files to conduct
rational drug design efforts via docking and virtual screening (see Note 1).
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1. Start your local web browser and go to the DrugBank website at http://
www.drugbank.ca/. The DrugBank homepage should be visible, as should the
blue menu bar located near the top of the page with the eight clickable titles:
Home, Browse, PharmaBrowse, ChemQuery, TextQuery, SeqSearch, Data
Extractor, and Download.

2. Click on the SeqSearch link. A window with the title “DrugBank BLAST
Search” should appear (Fig. 1). As seen in Fig. 1, the window contains a stan-
dard online BLAST search form with a text box window, Submit and Reset

Fig. 1 Screen shot of the DrugBank BLAST search page
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buttons, as well as pull-down menus offering a choice Programs (BLASTP
or BLASTN), Databases (14 choices), and scoring Matrices (BLOSUM or
PAM). In almost all cases, users can leave everything (except the Database se-
lection) in the default position. A unique feature of the SeqSearch program is
its capacity to handle multiple FASTA-formatted sequences. This allows users
to BLAST multiple sequences—or even entire proteomes.

3. For this example, we are looking for potential drug targets to a newly isolated
retrovirus. To obtain the set of sequences to paste into the SeqSearch text box,
launch a new browser window and go to: http://cpicanada.org/bioinfo2007/.
Click on the Virus hyperlink. A list of 16 viral sequences should be visible.
Select all 16 sequences by clicking and dragging through the window with your
mouse. Copy the sequences (using the Copy option on your browser or using
Ctrl + C).

4. Now click on the SeqSearch browser window to activate it and paste the se-
quences into the SeqSearch text box by clicking your mouse in the text box
and using the Paste option on your browser (or Ctrl + V). You have now pasted
16 different protein sequences from the newly sequenced retrovirus. Use the
scroll bars on the right side of the text box to see whether all 16 sequences are
there.

5. Press the Submit button. Within a few seconds, the BLAST search for all 16
input sequences should be completed. The program will return a concatenated,
text-based BLAST summary for each of the 16 proteins that were submitted.
The top portion of the SeqSearch output consists of a summary of the submitted
sequences. Below that is the BLAST result for the first sequence (Sequence 1,
with 231 residues). The output should indicate ∗∗∗∗∗ No hits found ∗∗∗∗∗∗.
Scrolling further down, the output for Sequence 2 should be seen for Enfu-
virtide (a peptide drug) and further down is the output for Sequence 3 (a series
of reverse transcriptase inhibitors—see Fig. 2).

6. Click on the hyperlink listed beside the word Nevirapine (users may select any
one of the many hyperlinks in this list). This should take you to the DrugCard for
Nevirapine or Viramune. This page describes the drug and its mode of action in
detail and it suggests that Nevirapine may also be able to target this viral protein
target.

7. Scroll down further through the SeqSearch output page and look for other se-
quences that exhibit hits to known DrugBank compounds and for drugs that
would be likely to work on these protein targets. You should find that most of
the 16 proteins in this virus seem to be potential drug targets and that multiple
existing drugs could be effective against it.

8. For each of the proteins listed in the output from Step 5, click on the corre-
sponding drug hyperlink(s). Scroll down the DrugCard page that is displayed
(Fig. 3) and click on the field titled PDB File Calculated Text and download
the PDB text file of the drug lead (Nevirapine, in this case). You may also obtain
additional drug leads by going to the top of each DrugCard page and clicking
on the button located on the top right corner, called Find Similar Structures.
This will generate a table of chemically similar drugs that may exhibit potential
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Fig. 2 Screen shot of the output from the DrugBank BLAST search using the 16 viral protein
sequences belonging to a novel retrovirus

Fig. 3 A view of the tabular output found in the DrugCard for Viramune
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activity against these viral proteins. Download these compounds as well. You
should now have a large collection of PDB files (i.e., 3D structures) of possible
drug leads for each of the unique proteins associate with the virus (see Note 2).

9. Scrolling up from the PDB File Calculated Text field, you will locate the Pub-
Chem ID field. Click on the Substance hyperlink (197039) listed in this field.
This will take the user to the specific PubChem Substance page for that com-
pound (Nevirapine in this case). PubChem is the largest online, open access
collection of chemical compounds on the web. You can use PubChem to locate
dozens or even hundreds of novel compounds that may have structural similar-
ities to your compound (or drug lead) of interest. On the PubChem Substance
page, you will find the Structure Search hyperlink beside the color diagram
of the chemical’s structure (Fig. 4). Clicking on this will take the user to Pub-
Chem’s structure search tool. Go to the PubChem Chemical Structure Search
located at the lower half of the page, because this is the type of search you
wish to perform. Click on the Search button to activate the structure search
tool. Users have several options to search for similar compounds (with different
percent identity thresholds), identical compounds, matching chemical formulas,
or matching substructures. The default of “Similar compounds, score ≥90%” is
usually adequate. Note that the 2D structure files obtained from these PubChem

Fig. 4 A screen shot of the PubChem Substance page for Nevirapine or Viramune. The Structure
Search link is on the bottom of the list located beside the structure
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searches (SDF files) must be converted to 3D PDB files using a conversion and
automated 3D modeling program, such as Cactus or MolConverter.

10. To perform docking or virtual screening experiments, it will be necessary
to generate 3D structures of each of the protein targets identified through
Steps 5 and 6. For many of the proteins identified in this exercise it is pos-
sible to generate a 3D homology model using either Modeller (3) or Swiss-
Model (see Chap. 11). Swiss-Model users may go to the Swiss-Model website
(http://swissmodel.expasy.org//SWISS-MODEL.html), paste in a sequence,
provide an email address, and submit. An accurate 3D structure model, if it
is possible to build, should be emailed to you within 30 minutes. Once you have
done this for all of the proteins that can be modeled (not all will have 3D ho-
mologs) you should have a large collection of PDB files (i.e., 3D structures) of
the key drug targets for this virus.

11. Use these two sets of structures (one for the drug leads, the other for the drug
targets) to initiate a virtual screening run or to attempt to dock selected com-
pounds into their corresponding protein targets using the methods described
in Chapters 18 and 19. It is expected that the whole process (lead compound
identification, lead compound structure generation, target protein structure gen-
eration) might take 1 to 2 hours, depending on how thorough one wishes to be
(see Note 3).

3.2 Identifying Drug Targets and Drug Leads for Prostate Cancer

Prostate cancer is the second most common type of cancer in men in North Amer-
ica. It is responsible for more male deaths than any other cancer except lung cancer.
It is a disease that generally strikes men older than the age of 50 years, however
many factors beyond age, including genetics and diet, have been implicated in its
development. In this example, we show how a large list of candidate target proteins
can be easily obtained and then quickly reduced. From this list, we show how poten-
tial drug candidates or (anti)metabolites may be identified using DrugBank and the
HMDB. We also demonstrate how the necessary coordinate files can be obtained to
conduct rational drug design efforts via docking and virtual screening.

1. Start your local web browser and go to the UniProt website at http://
www.pir.uniprot.org/. In the Text Search box at the top of the page (Fig. 5)
type in the term “prostate cancer” and press the return key. A list of nearly 200
proteins that are associated with prostate cancer should be returned in a few sec-
onds. UniProt is not necessarily the best source for identifying known disease
genes, although it is very fast and the data are very reliable. Users could con-
sider using the Prostate Gene Database or PGDB (http://www.ucsf.edu/pgdb/),
a general PubMed/Entrez literature search or a search through PolySearch [25],
or data obtained through a microarray experiment. Nevertheless, the UniProt
list being used here is not only adequate for this example, it is also easy to
manipulate and assess.



Finding Drug Targets and Drug Leads 345

Fig. 5 Screen shot of the UniProt Knowledge Base search page

2. Scanning down the list of proteins, select those proteins that seem to be: 1) en-
zymes; 2) soluble proteins; and 3) able to bind or act on relatively unique small
molecules. The reason for these selection criteria is that if one wants to develop
a small molecule drug, the drug target should exhibit some propensity to bind a
small molecule. Furthermore, if one wants to perform docking or virtual screen-
ing studies, the protein structure needs to be known or at least modeled. Because
99% of all proteins in the PDB are of soluble proteins or soluble fragments, the
need for soluble protein targets is obviously very important. Readers may select
the proteins of interest by clicking on the check boxes on the left side of the list.
The complete list can be accessed by using the arrows at the top of the page.
Once the desired proteins have been selected, users may save the sequences by
clicking on the FASTA box on the upper right side of the screen under the Save
Options tab. A reasonably good list of candidate protein targets that fit these
three criteria is given below:

(a) β-1, 3-galactosyltransferase 2
(b) FK506-binding protein 5
(c) Glutathione peroxidase 1
(d) Nicotinamide mononucleotide adenylyltransferase 2
(e) NADPH oxidase 5
(f) Retinol dehydrogenase 11
(g) 3-oxo-5-α-steroid 4-dehydrogenase 2
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(h) Uridine-cytidine kinase 1
(i) α-methyl-acyl-CoA racemase
(j) Androgen receptor

The FASTA sequence file for all 10 proteins is available for download at
http://cpicanada.org/bioinfo2007/. To obtain them, click on the Prostate hyper-
link. Select all 10 sequences by clicking a dragging through the window with
your mouse. Copy the sequences (using the Copy option on your browser or
using Ctrl + C).

3. Launch a new window within your current browser and go to the HMDB web-
site at http://www.hmdb.ca. The HMDB home page should be visible, as should
a simple menu bar located near the top of the page with the 12 clickable titles
Home, Browse, Biofluids, ChemQuery, TextQuery, SeqSearch, Data Ex-
tractor, MS Search, NMR Search, Download, HML Home, and Explain.

4. Click on the SeqSearch link. A window with the subtitle HMDB BLAST
Search should appear. As with the DrugBank search system, the window con-
tains a standard online BLAST search form with a text box window, Submit
and Reset buttons, as well as several Advanced Options. In almost all cases,
users can leave everything in the default position. The SeqSearch program for
the HMDB is able to handle multiple FASTA-formatted sequences. This allows
users to BLAST multiple sequences—such as those that might be obtained from
a microarray experiment.

5. Now click on the SeqSearch browser window to activate it and paste the se-
quences into the SeqSearch text box by clicking your mouse in the text box
and using the Paste option on your browser (or Ctrl + V). You have now pasted
10 different protein sequences that are potential drug/metabolite targets. Use the
scroll bars on the right side of the text box to see whether all 10 sequences are
there.

6. Press the Submit button. Within a few seconds, the BLAST search for all 10
input sequences should be completed. The program will return a concatenated,
text-based BLAST summary for each of the 10 proteins that were submitted.
The top portion of the SeqSearch output consists of a summary of the submitted
sequences. Below that is the BLAST result for the first sequence (Sequence 1,
with 422 residues) should be seen (Fig. 6).

7. Click on the hyperlink HMDB04968 listed beside the word Tetrahexosylce-
ramide. . . . This should take you to the MetaboCard for tetrahexosylceramide
(d18:1/25:0). This page describes the lipid, its structure, its metabolic impor-
tance, and the enzymes that act on it. For this particular example, more than 20
ceramides are listed, along with several UDP sugars. Although the ceramides
may not be ideal drug candidates in terms of cost and lipophilicity, this result
does suggest some candidate compounds that may prove to be either agonists
or antagonists.

8. Scroll down further through the SeqSearch output page and look for other se-
quences that exhibit hits to known human metabolites and for metabolites that
would be likely to work on these protein targets. You should find that most
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Fig. 6 Screen shot of the output from a BLAST search against the HMDB using the 10 protein
sequences identified as potential prostate cancer drug targets

of the proteins in this list seem to have interesting or unusual metabolites that
could serve as the starting points to develop agonists or antagonists. Some of
these (the androgens) have long been used as drug leads to treat prostate can-
cer. Among the most interesting novel compounds are the phytanic acids and
pristanic acids identified for α-methyl-acyl-CoA racemase.

9. For each of the proteins listed in the output from Step 5, click on the correspond-
ing HMDB hyperlink(s). Scroll down the MetaboCard page that is displayed
(Fig. 7) and click on the field titled PDB File Calculated Text and download
the PDB text file of the metabolite (or drug lead). You may also obtain addi-
tional drug leads by going to the top of each MetaboCard page and clicking
on the button located on the top right corner called Find Similar Structures.
This will generate a table of chemically similar compounds that may exhibit
potential activity against these target proteins. Download these compounds as
well. You should now have a large collection of PDB files (i.e., 3D structures)
of possible drug leads for each of the prostate cancer-associated proteins.

10. Users may also want to use DrugBank and PubChem (as described in Sect. 3.1)
to identify additional drug leads. Indeed, these efforts would prove to be very
fruitful for this particular example. To generate models for the protein targets,
we suggest that users follow Steps 10 and 11, as described in Sect. 3.1. This
will allow them to complete the necessary steps required to set up docking and
virtual screening efforts. It is expected that the whole process (target identifi-
cation, lead compound identification, lead compound structure generation, and
target protein structure generation) might take 2 to 3 hours.
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Fig. 7 Screen shot of the MetaboCard for pristanic acid. The hyperlinks for the PDB structure files
and PubChem Substance identifications are located further down the card

4 Notes

1. The examples given in Sects. 3.1 and 3.2 are realistic but somewhat simplified
compared with what might be necessary for “real life” drug discovery. In partic-
ular, the identification of drug targets always requires some critical assessment of
the usefulness and viability of the drug target or drug lead. This typically requires
a good deal of library research and additional experimentation. For instance, one
must determine whether the drug target(s) should be inhibited (therefore, requir-
ing an antagonist) or activated (therefore, requiring an agonist). As a general rule,
the development of antagonists is generally much easier than agonists. Likewise,
it is usually a good idea to determine whether the putative drug target has been
previously identified and whether experimental lead compounds have already be
explored. Even if a drug target appears viable, one should take particular care
to determine whether the protein is essential, unique, or conditionally expressed
for the associated disease or condition. Non-essential, non-unique, or continu-
ously expressed proteins are generally not good drug targets. Likewise, proteins
with generally weak affinities (i.e., most carbohydrate-binding proteins) or poor
turnover rates often turn out to be poor drug targets.

2. The selection of drug leads also requires some careful consideration. Although
DrugBank, HMDB, and PubChem can offer many useful suggestions, they are
not the only sources for drug leads. Surveys through the literature or careful
searches through specialized drug-screening databases can often yield very use-
ful ideas. Once a collection of drug leads has been identified, it is usually prudent
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to assess the suitability of the compound as a drug. Drug compounds must not
be too soluble, too lipophilic, too unstable, or too toxic. These requirements are
closely related to their physicochemical properties, which are also related to their
absorption, distribution, metabolism, excretion, and toxcity (ADMET). ADMET
prediction is becoming increasingly common in early stage drug discovery, drug
screening, and drug design. Indeed, many computational chemists would argue
that ADMET prediction is something that should always be done in the early
phases of drug-lead selection. Fortunately, there are now a number of software
packages, online servers, and standardized rules (Lipinski’s Rule of Five) to de-
termining the likely success or drug-likeness that a compound might have.

Examples of freely available ADMET prediction servers include the Actelion
Property Prediction server (Google “Actelion Property Explorer”) and the Pre-
ADME web server (http://preadmet.bmdrc.org/preadmet/index.php). The Acte-
lion Property Explorer is a web-enabled Java applet that allows users to draw
chemical structures and then rapidly calculates various drug-related properties,
including toxicity risks (mutagenicity, tumorigenicity, irritancy, and reproductive
effect), solubility, logP, molecular weight, drug-likeness, and overall drug score.
Pre-ADME is a web server that uses three classes of predictors, a molecular
descriptors calculation, a drug likeness predictor, and an ADME predictor. The
molecular descriptor calculator can predict nearly 1,000 molecular properties,
including constitutional, topological, physicochemical, and geometrical descrip-
tors, many of which are needed for ADME prediction. The drug likeness pre-
dictor uses Lipinski’s rules (Rule of Five) and lead-like rules in its predictions.
The ADME predictor is unique and can predict cell permeability, plasma protein
binding, and skin permeability using an artificial neural network.

3. Perhaps the most important point to remember for each of the methods outlined
here is that one is generating computer-based predictions. There is no guarantee
that any of these predictions (drug targets or drug leads) will turn out to yield
a viable therapeutic or even an interesting lead compound. As with any pre-
diction in life science, one must always be prepared to thoroughly test the pre-
dictions using in vitro assays and animal models. In many cases, the computer
predictions will turn out to be wrong. In rare cases, the initial predictions may
prove to be very promising. Nevertheless, the results from any well-constructed
wet-bench experiments can and should be used to help guide subsequent steps
involved in the computational design, docking, and selection of drug leads.
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Chapter 18
Receptor Flexibility for Large-Scale In Silico
Ligand Screens
Chances and Challenges

B. Fischer, H. Merlitz, and W. Wenzel

Summary An important contribution to today’s computer-aided drug design is the
automated screening of large compound databases against structurally resolved pro-
tein receptors targets. The introduction of ligand flexibility has, by now, become
a standardized procedure. In contrast, a general approach to treat target degrees of
freedom is still to be found, a consequence of the extreme increase of computational
complexity, which comes along with the relaxation of protein degrees of freedom.

In this chapter, we discuss in some detail both benefits and present limitations of
target flexibility for high-throughput in silico database screens. Among the benefits
are an improved diversity of binding modes, which allows one to identify a wider
class of drug candidates. The limitations are related to a diminishing docking accu-
racy and an increased number of false hits. Using the thymidine kinase receptor and
ten known inhibitors as an example, we describe in detail how target flexibility was
implemented and how it affected the screening performance.

Keywords: FlexScreen · Side chain flexibility · Simulation · Thymidine kinase ·
Virtual screening

1 Introduction

The key–lock principle, primarily focused only on geometric criteria [1], is the start-
ing point for rational drug design. If either one ligand of the enzymatic process is
known, or the x-ray crystallographic structure of a binding site of the protein has
been determined, then a blueprint of a potential drug candidate, a pharmacophore
model, can be constructed and molecules can be designed that share a certain simi-
larity with that blueprint. This strategy has been applied during the last two decades
in many successful drug design projects [2]. Current efforts focus on increasing the
reliability of the predictions, which, to a large degree, depends on the viability of
the underlying pharmacophore model.
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With increasing computational power, a new strategy for computer-aided drug
design has become the focus of interest [3] in recent years: the screening of large
virtual compound databases to a receptor of known structure. The chemical and
pharmaceutical industry have compiled large libraries of chemical compounds that
were synthesized over the years, and it was realized that it would save time and costs
to start a drug design process from molecules that can be readily purchased instead
of being designed from scratch. In the following sections, we discuss the ingredients
and some applications of FlexScreen, a tool for virtual database screening that has
been developed in recent years at the Karlsruhe Research Center [4].

2 Theory: The Screening Tool FlexScreen

There are two major ingredients to an in silico screening method: 1) a scoring
function that approximates the binding energy (ideally the affinity) of the receptor–
ligand complex as a function of the conformation of this complex, and 2) an efficient
optimization method that is able to locate the binding mode of a given ligand to the
receptor as the global optimum of the scoring function. In a database screen, all lig-
ands are assigned an optimal score, which is then used to sort the database to select
suitable ligands for further investigations.

2.1 The Scoring Function

For virtual database screening, it is mandatory to model the receptor–ligand system
as accurately as possible to obtain a precise representation of the key–lock principle.
This is best achieved using a scoring function of atomistic resolution. FlexScreen
contains an interaction-based scoring function, which is constructed from first prin-
ciples, although major approximations are presently required to keep the computa-
tions feasible:

S =
∑

Protein

∑

Ligand

(
Ri j

r12
i j

− Ai j

r6
i j

+ qi q j

ri j

)

+
∑

h–bonds

cos �i j

(
R̃i j

r12
i j

− Ãi j

r10
i j

)

. (1)

Equation 1 contains the empirical Pauli repulsion (first term), the Van de Waals
attraction (second term), the electrostatic potential (third term) and an angular de-
pendent hydrogen bond potential (terms four and five). The Lennard-Jones parame-
ters Ri j and Ai j were taken from OPLSAA [5], the partial charges qi were computed
with Insight II and esff force field, and the hydrogen bond parameters R̃i j and Ãi j
were taken from AutoDock [6]. This force field lacks solvation terms to model en-
tropic or hydrophobic contributions. The omission of such terms has been argued
to be appropriate for constricted receptor pockets in which all ligands with high
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affinity displace essentially all water molecules. In a database screen, such a scoring
function may, therefore, preserve the correct ranking of the compounds, whereas the
absolute scale of their binding energy is far from being accurate.

2.2 The Global Optimization Engine

As another important constituent of a screening tool, the global minimum of the
potential energy surface (PES) of the protein–ligand complex has to be determined.
For systems that contain high-dimensional conformational spaces, the stochastic ap-
proach to global optimization has turned out to be a most suitable tool [7]. Here, the
conformation is modified in a random walk [8], and new conformations are accepted
using a statistical method based on thermodynamic principles. Consequently, these
methods are not exact and their results exhibit a statistical noise, the error of which
has to be analyzed to judge the final accuracy of the database screen [9]. Among this
class of methods, the stochastic tunneling (STUN) technique [10] has been proven to
be especially effective for the receptor–ligand problem [11]. In STUN, the dynam-
ical process explores not the original, but a transformed PES, which dynamically
adapts and simplifies during the simulation. For the simulations reported here, the
following transformation was applied:

ESTUN = ln
(

x +
√

x2 + 1
)

. (2)

Here, x = γ (E − E0), E is the energy of the present conformation and E0
is the best energy found so far (in this particular simulation cycle). The problem-
dependent transformation parameter γ controls the steepness of the transforma-
tion. The general idea of this approach is to flatten the PES in all regions that lie
significantly above the best estimate for the minimal energy (E0). Even at low
temperatures, the dynamics of the system becomes diffusive at energies E � E0
independent of the relative energy differences of the high-energy conformations in-
volved. The dynamics of the conformation on the untransformed PES then seems to
“tunnel” through energy barriers of arbitrary height, whereas low metastable con-
formations are still well resolved. Applied to receptor–ligand docking, this mecha-
nism ensures that the ligand can reorient through sterically forbidden regions in the
receptor pocket.

3 Method: Flexible Docking to Thymidine Kinase

The following docking simulations were performed using the thymidine kinase (TK)
receptor as an example. This enzyme has long been a focus of pharmaceutical re-
search because of its role in reproduction of the herpes simplex virus. Since then,
it has emerged as a useful benchmark system in rational drug design, because not
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just one, but ten active inhibitors are known and the x-ray structures of their binding
modes have been identified [12]. When mixing these ten inhibitors into a database
of randomly selected compounds, the screening tool should be able to identify as
many of them as possible as being “good” ligands, i.e., it should assign a high rank
to these benchmark ligands. The present receptor is of particular interest, because
the measured target conformations of the various complexes are significantly differ-
ent, as we have discussed elsewhere [13].

The following project, using FlexScreen as a docking tool, could be partitioned
into the following basic steps, which will be discussed in more detail in the upcom-
ing paragraphs:

1. Preparation of the ligand database and the ten benchmark ligands.
2. Preparation of the docking site.
3. Database screen using a rigid receptor.
4. Identification of important side chains for individual binding modes.
5. Database screen with selected receptor degrees of freedom.
6. Evaluation of the selective power of different screens.

3.1 Preparation of the Ligands

First, 10,000 compounds were randomly chosen from the open NCI database [14].
Because, at this stage, no partial charges were assigned to these compounds, we
used the Insight II package with ESFF forcefield [15] and an automated script to
evaluate partial charges for each ligand atom. The compounds were then stored in
Sybyl mol2 format, which is the standard format used by FlexScreen. The flexible
bonds of the ligands are identified by FlexScreen using a set of simple standard
rules. The ten benchmark ligands were taken out of the original files of the protein
database (PDB) [16] and prepared in a similar manner using Insight II (see Note 1).

3.2 Preparation of the Docking Site

For our analysis, the uncomplexed x-ray TK receptor structure (1e2h [17]) was
taken from the PDB database, partial charges were assigned using Insight II, and
the structure was stored as a mol2 file. The uncomplexed structure was chosen to
avoid any conformational bias, created by the ligand closely interacting with flexible
side chains inside the binding pocket. FlexScreen creates grids for the Coulomb po-
tential and lists of nearest Lennard-Jones interaction sites, to speed up the docking
simulations (see Note 2).
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3.3 Screen Using a Rigid Receptor

The database screen was carried out using the following strategy. The total number
of simulation steps is divided into three partitions (cascadic approach [9]). We start
with a population of 100 different conformations, for which we do short docking
simulations with 7,500 steps. The energetic best five conformations are selected for
further simulations on the next stage with 30,000 simulation steps each. Finally, the
two best energetic conformations are again refined with 75,000 simulation steps. In
each further stage of the cascade, the side group and ligand movement decreases
until it matches, in the final stage, more or less the rotational and translational dis-
placement of a free Brownian diffusion at 300 K. All ligands that score better than
the energy of 10,000 kJ/mol (with our scoring function) are defined as docked and
are potential candidates for further cascadic stages.

In this screen, 3,291 database ligands attained a stable conformation with neg-
ative binding affinity within the receptor pocket. The resulting ranks for the ten
inhibitors during this screen are summarized in Table 1 (second column). The lig-
ands dhbt and hpt were ranked with a very high affinity. The ligands hmtt and mct
docked poorly. Hmtt has barely reached a negative binding energy, whereas mct has
never been bound. The majorities of the benchmark ligands were energetically more
or less close to each other but did not score especially well. Repeating the docking
simulations for these ligands did not substantially improve their rank in the data-
base, eliminating the possibility of statistical fluctuations of the docking algorithm
as the source for this difficulty. This enrichment rate is comparable to the results
of other scoring functions that were previously investigated for this system, but the
overall performance is very disappointing [12] (see Note 3).

Table 1 Ranking of the TK inhibitors in a screen of 10,000 randomly chosen ligands of the NCI
database

Inhibitor Rigid 6 flex 6 flex + SO4

Acv 221 55 38
Ahiu 1,454 1,315 794
Dhbt 2 2 1
Dt 308 172 45
Hmtt 3,117 2,934 2,076
Hpt 8 13 7
Idu 612 97 23
Mct nd 4,180 4,054
Pcv 437 71 25
Gcv 187 14 4
Score 5,225 6,576 7,063

The top row designates the docking receptor model that was used in the screen. Nd, not docked
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3.4 Identification of Important Side Chains

It is immediately clear that a relaxation of all side chains that are located near the
binding site is not feasible with today’s computational resources, a consequence of
the combinatorial explosion of the conformation space. Instead, those side chains
that would play an important role in the binding modes have to be identified and
partially released.

For this particular prestudy, the x-ray structure of TK in complex with the lig-
and hmtt [18] was used. The side chain GLN125 was quickly identified as an
important hotspot for the binding motif, forming two hydrogen bonds with hmtt.
When comparing different receptor structures with one another, GLN125 turned out
to be highly flexible; its conformation was significantly changed with the ligand
with which it was interacting. To simulate such a system, three chemical bonds of
GLN125 (among others) were made flexible to allow the ligands to find their indi-
vidual binding motifs.

Figure 1 shows two final conformations of a docking simulation for the two lig-
ands dt (left) and gcv (right). Similar to the measured x-ray structures, in our dock-
ing study, the side chain GLN125 has also changed its conformation. Dt, using the
same binding mode as hmtt, did not modify the side chain orientation significantly
compared with the x-ray side chain orientation. On the other hand, when gcv was
docked into our flexible receptor structure, the side chain was moved to form the
two important hydrogen bonds with the ligand, as can be seen in the right figure.

In the following, we analyze the dihedral angle population of the side chain
GLN125 for the final receptor–ligand conformations after a docking run of the
ten known active substances [12]. For each of the active compounds, 32 indepen-
dent simulations were performed, and those two conformations with lowest energies
were selected. For each dihedral angle, the number of occurrences at the different

Fig. 1 The x-ray structure (dark grey) along with the simulated conformation of GLN125 and the
docked ligand. Left: dt (deoxythymidine) docked into 1e2n. The side chain movement is insignifi-
cant because the binding pattern of this side chain matches to this ligand. Right: gcv (ganciclovir)
is docked to 1e2n. Because the original crystal binding motif of GLN125 did not allow the ligand
to form its individual interaction pattern, a new side chain conformation was energetically more
favorable
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Fig. 2 Histogram of the three dihedral angles of GLN125. For 640 final conformations, the number
of occurrences for each dihedral is plotted

angles is plotted in Fig. 2, which also contains a representation of the side chain
with its three changing dihedral angles (�1, �2, and �3).

The histogram does, in fact, show more than just three peaks for the different
dihedrals. The dihedrals �1 and �2 formed two separate peaks, but the dihedral
distribution of �3 separated into two heaps. To allow for individual binding modes
for these two ligands, this side chain had to flip around by 180 degrees, as was also
observed in the x-ray structure.

In a similar manner, other side chains whose flexibility would contribute to in-
crease the diversity of the database screen could be identified. For the following
screen, four side chains with a total of six receptor degrees of freedom were in-
troduced into the structure 1e2h, namely, dihedral rotations of the amino acids
GLN125(3), TYR101(1), ARG222(1), and HIS58(1) (the numbers in parentheses
denote the respective numbers of flexible bonds) (see Note 4).

3.5 Flexible Receptor Screen

Each step in the stochastic search now consisted of an additional random rotation
for each side chain. The results of this screen are summarized in Fig. 3 (right panel),
and the scores of the individual inhibitors are listed in the column labeled “6 flex”
in Table 1. Now all ten ligands achieved a negative binding energy. As expected,
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Fig. 3 Histogram of the binding energies of the docked ligands after a screen to the TK receptor
(positions of the known inhibitors are highlighted). Left: Screen to the rigid uncomplexed receptor
structure. Right: Screen using a flexible target

the number of database compounds that achieved a negative and higher binding
energy increased as well, because a flexible conformation of the receptor reduced
the bias of the screen against a specific binding pattern. Because 4,251 compounds
had now got a negative binding energy (compared with 3,291 ligands of the rigid-
receptor run), the diversity of the docking tool had increased by roughly 30%. At
the same time, the specificity had decreased because the “lock” now allowed for a
broader class of “keys” to fit into it. It was also observed that the accuracy of the
flexible receptor screen was lower than that of the rigid receptor screen (with the
same number of function evaluations), because the number of degrees of freedom
increased. In Fig. 3, the docking inaccuracy is proportional to the width of the cone
of the corresponding ligand.

The second flexible receptor screen, summarized in Fig. 4, includes additional a
cofactor (SO4) that was present in all investigated x-ray receptor pockets, but left
out during the previous run. Because its position seemed to be almost invariant in
the observed x-ray structures, it was kept fixed during the simulation. As a result,
4,078 of 10,000 ligands now docked to the target, a little less than before because of
sterical restrictions. Comparing Fig. 4 with the flexible screen of Fig. 3 shows that
the binding energies of the ten active compounds are not altered very much with the
additional cofactor. It seems that the interaction with SO4 could be neglected for
such a database screen (see Note 5).

3.6 Comparison: Rigid Screen Versus Flexible Screens

To quantitatively compare different screens against the same ligand database, it is
sensible to assign an overall score to each screen, which rates its performance [19].
We computed such a “score” for the entire screen from the ranks of the docked
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Fig. 4 Histogram of the binding energies of the docked ligands after a screen to the TK receptor
(positions of the known inhibitors are highlighted). Screen using a flexible target including the
cofactor SO4

known inhibitors among the N = 1,000 best ligands (uppermost 10%). This score
is computed as the sum of N − P , where P is the rank of the known inhibitor and
shown in the bottom row of Table 1. An inhibitor ranking in the top of the screen
contributes a score of 1,000 to the sum, a badly ranked inhibitor, comparatively little.
Because the best N ligands are evaluated, screens that dock many known inhibitors
with moderate rank may have comparable scores with screens that perform perfectly
for one inhibitor, but fail for all others.

As expected, the rigid receptor screen with a score of 5,225 displayed the poorest
performance among all screens because, here, the individual binding patterns of the
inhibitors could not be supported. The flexible receptor screens performed much
better. With a score of 6,576 and 7,063 for the screen with the additional cofactor,
these results indicate that the increase in diversity of the technique had outbalanced
the decrease in specificity, leading to an overall better docking performance of the
screening tool.

4 Conclusions

The development of methods for high-throughput in silico screening has come a
long way in the last decade. Fueled by both method development and the availability
of computers that are more powerful, these methods have been established as a
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standard tool in modern preclinical drug development. Their success rate, measured
by their ability to select medium affinity ligands from a large database of ligands
now rivals that of wet-screening methods.

Much work, however, remains to be done. The treatment of receptor flexibil-
ity and induced fit remains one of the systematic challenges to these methods, as
does the flexible treatment of semiconserved water molecules in the receptor. For
the treatment of side chain flexibility, FlexScreen now offers a viable approach at
moderate computational cost.

Open questions concern the development of accurate and transferable force fields
and the treatment of large scale, i.e., backbone, receptor motion. For these reasons,
it is not surprising that some of the known inhibitors do not dock well, even when
side chain flexibility is accounted for.

With continued development of methods that address the points mentioned
above, however, we are optimistic that further improvements will continue the trend
of increased reliability and accuracy of in silico screening tools, which make an
increasing impact in modern drug development.

5 Notes

1. As a matter of fact, there exists no semiclassical electrostatic force field that is
generally acknowledged as being accurate for a widely diverse class of ligands.
On the other hand, fully quantum mechanical ab initio methods are still too slow
to be applicable to ten thousands of compounds. Hence, we have to accept in-
accuracies of the scoring as a result of these force field deficiencies. Another
quantum effect that has to be neglected is related to torsional potentials of semi-
flexible rotational bonds. In the present model, bonds are either rigid or freely
rotatable (apart from steric restrictions).

2. Compared with the ligand case, the assignment of partial charges to the side
chains inside the binding pocket is less prone to errors, because force fields
are fairly well established for amino acids. However, many binding sites con-
tain metal ions, so that binding energies that are more accurate would ask for
the inclusion of quantum effects. Another unsolved problem is the inclusion of
water molecules, which mediate hydrogen bonds between receptor and ligand.
Their exact positions would depend on the ligand’s properties, so that these wa-
ter molecules should be made movable. Unfortunately, the excessive number of
degrees of freedoms of such a system is prohibitive considering present compu-
tational resources.

3. In a previous study [20], we compared different database screens to different
rigid receptor structures. In these cases, a high specificity of the receptor to its
complexed ligands could be observed. The only ligands that scored well were
those that were similar in their structure to the ligand with which the receptor
formed the complex. This “memory effect” is a straight consequence of the key–
lock principle. Such a high degree of selectivity is spurious, however, because
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the natural receptor, the “key,” contains a certain degree of flexibility to accom-
modate a variety of ligand structures. The rigidity of the model is, thus, causing
a lack of diversity of the screen, and, consequently, the majority of potentially
good drug candidates are rejected in such a simulation. The introduction of tar-
get degrees of freedom delivers an important tool to recover the diversity of the
screening method.

4. In the more general case of screening projects without any known binding modes,
the following strategy seems suitable. Starting with the rigid receptor, a subset
of the database is docked and the hotspots (i.e., those side chains that formed
the majority of high affinity bonds) are monitored. Side chains that carry most of
these hotspots are defined as being important and are subsequently made flexible.

5. This could well be the result of lacking water molecules, which could mediate
interactions between the ligands and the cofactor.

Acknowledgements We thank the Fond der Chemischen Industrie, the BMBF, the Deutsche
Forschungsgemeinschaft (grant WE 1863/11-1), and the Kurt Eberhard Bode Stiftung for finan-
cial support.

References

1. Fischer, E. (1894) Einfluss der Konfiguration auf die Wirkung der Enzyme. Ber. Dtsch. Chem.
Ges. 27:2985–2993

2. Cramer III, R.D., Patterson, D.E. and Bunce, J.D. (1998) Comparative molecular field analy-
sis (comfa). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.
110:5959–5967

3. Abagyan, R. and Totrov, M. (2001) High-throughput docking for lead generation. Curr. Opin.
Chem. Biol. 5:375–382

4. Merlitz, H., Burghardt, B. and Wenzel, W. (2003) Application of the stochastic tunneling
method to high throughput database screening. Chem. Phys. Lett. 370:68–73

5. Jorgensen, W.L. and McDonald, N.A. (1997) Development of an all-atom force field for het-
erocycles. Properties of liquid pyridine and diazenes. Theochem-J. Mol. Struct. 424:145–155

6. Morris, G.M., Goodsell, D.S., Halliday, R., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J.
(1998) Automated docking using a lamarckian genetic algorithm and an empirical binding
free energy function. J. Comput. Chem. 19:1639–1662

7. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated annealing.
Science 220:671–680

8. Metropolis, N. and Stanislaw, U. (1949) The Monte Carlo method. JASA 44:335–341
9. Merlitz, H., Herges, T. and Wenzel, W. (2004) Fluctuation analysis and accuracy of a large-

scale in silico screen. J. Comp. Chem. 25:1568–1575
10. Wenzel, W. and Hamacher, K. (1999) Stochastic tunneling approach for global optimization

of complex potential energy landscapes. Phys. Rev. Lett. 82:3003–3007
11. Merlitz, H. and Wenzel, W. (2002) Comparison of stochastic optimization methods for

receptor-ligand docking. Chem. Phys. Lett. 362:271–277
12. Bissantz, C., Folkerts, G. and Rognan, D. (2000) Protein-based virtual screening of chemical

databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem. 43:4759–
4767

13. Merlitz, H. and Wenzel, W. (2004) Impact of receptor flexibility on in silico screening perfor-
mance. Chem. Phys. Lett. 390:500–505



364 B. Fischer et al.

14. Milne, G.W.A., Nicklaus, M.C., Driscoll, J.S., Zaharevitz, D. and Wang, S. (1994) National
cancer institute drug information system 3d database. J. Chem. Inf. Comput. Sci. 34:1219–
1224

15. Shi, S., Yan, L., Yang, Y., Fisher-Shaulsky, J. and Thacher, T. (2003) An extensible and sys-
tematic force field, ESFF, for molecular modeling of organic, inorganic, and organometallic
systems. J. Comput. Chem. 24:1059–1076

16. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, Jr. M.D., Rodgers, J.R.,
Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) The Protein Data Bank: A computer-
based archival file for macromolecular structures. J. Mol. Biol. 112:535–542

17. Vogt, J., Perozzo, R., Pautsch, A., Prota, A., Schelling, P., Pilger, P., Folkerts, G., Scapozza, L.,
and Schulz, G.E. (2000) Nucleoside binding site of herpes simplex type 1 thymidine kinase
analyzed by x-ray crystallography. Proteins 42:545–553

18. Wurth, C., Kessler, U., Vogt, J., Schulz, G.E., Folkers, G. and Scapozza, L. (2001) The effect
of substrate binding on the conformation and structural stability of herpes simplex virus type
1 thymidine kinase. Protein Sci. 10:60–73

19. Knegtel, R.M.A. and Wagnet, M. (1999) Efficacy and selectivity in flexible database docking.
Proteins 37:334–345

20. Fischer, B., Merlitz, H. and Wenzel, W. (2005) Increasing diversity in in silico screening with
target flexibility. CompLife 186–197



Chapter 19
Molecular Docking

Garrett M. Morris and Marguerita Lim-Wilby

Summary Molecular docking is a key tool in structural molecular biology and
computer-assisted drug design. The goal of ligand–protein docking is to predict the
predominant binding mode(s) of a ligand with a protein of known three-dimensional
structure. Successful docking methods search high-dimensional spaces effectively
and use a scoring function that correctly ranks candidate dockings. Docking can be
used to perform virtual screening on large libraries of compounds, rank the results,
and propose structural hypotheses of how the ligands inhibit the target, which is
invaluable in lead optimization. The setting up of the input structures for the dock-
ing is just as important as the docking itself, and analyzing the results of stochastic
search methods can sometimes be unclear. This chapter discusses the background
and theory of molecular docking software, and covers the usage of some of the
most-cited docking software.

Keywords: AutoDock · Computer-assisted drug design · DOCK · FlexX · GOLD ·
ICM · Molecular recognition · Protein–ligand docking

1 Introduction

The field of molecular docking has emerged during the last three decades driven by
the needs of structural molecular biology and structure-based drug discovery. It has
been greatly facilitated by the dramatic growth in availability and power of comput-
ers, and the growing ease of access to small molecule and protein databases [1–4].
The goal of automated molecular docking software is to understand and predict
molecular recognition, both structurally, finding likely binding modes, and energet-
ically, predicting binding affinity. Molecular docking is usually performed between
a small molecule and a target macromolecule. This is often referred to as ligand–
protein docking, but there is growing interest in protein–protein docking. In this
chapter, we will focus on ligand–protein docking, and use the more generic term
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“target” to refer to the protein, DNA, or RNA macromolecule to which a much
smaller molecule (or “ligand”) is being docked.

Molecular docking has a wide variety of uses and applications in drug discov-
ery, including structure–activity studies, lead optimization, finding potential leads
by virtual screening, providing binding hypotheses to facilitate predictions for mu-
tagenesis studies, assisting x-ray crystallography in the fitting of substrates and in-
hibitors to electron density, chemical mechanism studies, and combinatorial library
design.

Virtual screening on the basis of molecular descriptors and physicochemical
properties of (in)active ligands has great usefulness in finding hits and leads through
library enrichment for screening [5], a strategy that is also well-used for reducing
and enriching the library of ligands for molecular docking; there are recent reports
that ligand shape-matching does as well as, if not better than, docking [6]. However,
molecular docking when used as the final stage in virtual screening helps to provide
a three-dimensional (3D), structural hypotheses of how a ligand interacts with its
target.

Given the limitations of space, and in the interests of fairness, we are not
able to survey the details of specific docking tool, except where illustrative, and
we, therefore, refer the reader to the documentation provided with each of these
tools. Instead, we aim to provide an overview comparing and contrasting the
methodologies of the most cited [7] docking tools, namely AutoDock [8–10]
http://autodock.scripps.edu; DOCK [11, 12] http://dock. compbio.ucsf.edu/; FlexX
[13] http://www.biosolveit.de/FlexX; GOLD [14, 15] http://www.ccdc.cam.ac.uk/
products/life sciences/gold/; and ICM [16] http://www.molsoft.com/docking.html.

2 Theory

There are a number of excellent reviews of molecular docking methods [7,17] and a
large number of publications comparing the performance of a variety of molecular
docking tools [18–29], often for virtual screening. It should be stressed that com-
paring docking methods is difficult [28], and because there is evidence that some
docking methods do better with certain classes of target than others, the reader is
encouraged to try several docking methods to determine which one(s) work best for
their target of interest. The process of taking a known crystal structure of a complex
of the target of interest, separating the ligand, and then docking the ligand back into
the apo-form of the target is known as “re-docking.” The reader should compare
the ability of their chosen docking methods and parameters to re-dock a variety of
ligands to the target of interest. Success is often measured in terms of root mean
square deviation (RMSD) of the Cartesian coordinates of the atoms of the ligand in
the docked and crystallographic conformations; a docking is generally regarded as
successful if this is less than the somewhat arbitrary threshold of 2 Å; there are al-
ternative measures of success, such as whether the correct ligand–target interactions
are recovered.
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Fig. 1 A typical docking workflow. This flowchart shows the key steps common to all docking
protocols. The 3D structures for the target macromolecule and the small molecule must first be
chosen, and then each structure must be prepared in accordance with the requirements of the dock-
ing method being used. Following the docking, the results must be analyzed, selecting the binding
modes with the best scores

Figure 1 shows the key steps in docking that are common to all protocols. Dock-
ing involves finding the most favorable binding mode(s) of a ligand to the target of
interest. The binding mode of a ligand with respect to the receptor can be uniquely
defined by its state variables. These consist of its position (x-, y-, and z-translations),
orientation (Euler angles, axis-angle, or a quaternion), and, if the ligand is flexible,
its conformation (the torsion angles for each rotatable bond). Each of these state
variables describes one degree of freedom in a multidimensional search space, and
their bounds describe the extent of the search. Rigid body docking is faster than
treating the ligand as flexible, because the size of the search space is much smaller,
but if the conformation of the ligand is not correct, then there will be a lower prob-
ability of finding a complementary fit.

All docking methods require a scoring function to rank the various candidate
binding modes, and a search method to explore the state variables. Scoring functions
can be empirical, force field based, or knowledge based, whereas search methods
fall into two major categories: systematic and stochastic. Systematic search meth-
ods sample the search space at predefined intervals, and are deterministic. Stochas-
tic search methods iteratively make random changes to the state variables until a
user-defined termination criterion is met, so the outcome of the search varies; Sousa
et al. discuss these classes of algorithms in more detail [7]. Search methods can
also be classified by how broadly they explore the search space, as either local or
global. Local search methods tend to find the nearest or local minimum energy
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to the current conformation, whereas global methods search for the best or global
minimum energy within the defined search space. Hybrid global–local search meth-
ods have been shown to perform even better than global methods alone, being more
efficient and able to find lower energies [8].

In AutoDock 4, for example, there is the choice of two local search methods
(Solis and Wets [30] and Pattern Search [31]); two global search methods: Monte
Carlo (MC) simulated annealing (SA) [32], and the genetic algorithm (GA) [33–35];
and one hybrid global–local search method, the Lamarckian GA (LGA) [8]. DOCK
uses a systematic search method to match chemical features between the ligand and
the negative image of the binding site. FlexX matches ligand features with com-
plementary interaction sites. GOLD’s global search method is a GA. The search
method of ICM combines a biased MC procedure and a local energy minimization.

2.1 Target Selection and Preparation

Ideally, the target structure should be experimentally determined, usually by either
x-ray crystallography or nuclear magnetic resonance. Docking has been performed
successfully against homology models [36–39], although the reliability of the dock-
ing results depends heavily on the quality and bias of the homology model.

In some cases, the biologically relevant form of the target structure—the biolog-
ical unit—is a multimer, which means that the appropriate symmetry-related mole-
cules must also be included in the target structure. The online database Binding
MOAD, for example, provides target structures as a biological unit [2] suitable for
docking studies.

Many docking tools do not allow the target to be flexible, although this is a
very important aspect of molecular recognition [40]. A target may adopt differ-
ent conformations in the unbound and bound states, and with different classes of
ligands; examples of different degrees of structural change on ligand binding are
given in [41]. To tackle this and other problems, molecular dynamics has found an
increasing number of applications in conjunction with molecular docking. These
range from preparing the target before docking, to accounting for receptor flexibil-
ity, solvent effects, and induced fit, to calculating binding free energies and ranking
docked ligands [42]. The so-called “relaxed complex method” developed in the lab-
oratory of McCammon [43] generates snapshots from molecular dynamics simula-
tions [44–46] of the apo form of the target, and then applies AutoDock to dock the
ligand of interest; the technique effectively takes into account induced fit, and has
been applied to develop novel inhibitors of HIV integrase [47].

In all x-ray crystal structures, there is a range of certainty with which atomic
positions are defined. This is quantified by the temperature factors (also known as
B-values) assigned to each atom in the PDB file. It is possible in some molecule
viewers to color the atoms by B-value, which can visually indicate regions with
more structural ambiguity. For a given x-ray crystal structure, atomic positions that
may be suspect are those with 1) B-values higher than their surroundings, or 2)
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incomplete side chains (some atom positions are not assigned by the crystallogra-
pher). Furthermore, in certain crystal structures, alternate locations of atoms may be
observed: in such cases, both alternatives must be tested.

To accelerate the scoring calculation, some docking methods precalculate grid
maps to represent the receptor when calculating interaction energies with a ligand. A
set of grid maps for a given receptor can be reused for docking of a library of ligands,
also saving time. In general, grid maps are not transferable from one docking tool
to another. For AutoDock, a grid map needs to be computed for each atom type in
the ligand or set of ligands being docked, in addition to electrostatic potential and
desolvation grid maps.

2.2 Ligand Selection and Preparation

The type of ligands chosen for docking will depend on the goal: for lead discov-
ery, crude filters such as net charge, molecular weight, polar surface area, solubil-
ity, commercial availability, and price-per-compound can be applied to reduce the
number of molecules to be docked. For lead optimization, filters such as similar-
ity thresholds, pharmacophores, synthetic accessibility, and absorption, distribution,
metabolism, excretion, and toxicology (ADME-Tox) properties are additionally ap-
plied. For focused lead optimization, a custom library of analogs that are related
to the lead compound(s) is often constructed for docking, to inform and prioritize
medicinal chemistry efforts [48]. Refer to Chap. 17 for more information regarding
filtering libraries of compounds.

AutoDock uses a united-atom model for the ligand and receptor, in which only
polar hydrogens are present. It also requires partial atomic charges to be assigned
to the ligand. The AutoDock scoring functions were calibrated using Gasteiger
charges [49] on the ligand, thus, to use the scoring functions correctly, the ligand
must be assigned Gasteiger partial charges. It should be noted that alternative charge
calculation methods for ligands have been successfully used in AutoDock [24].

Most docking tools treat ligands flexibly, with the exception of ring conforma-
tions. In general, the more rotatable bonds in a ligand, the more difficult and time
consuming the docking will tend to be. This is because the size of the search space
increases exponentially with the number of torsions. More highly branched torsion
trees lead to more difficult searches than do linear torsion trees. Rotation of con-
jugated bonds, such as in amides, carbamates, ureas, etc., should be limited. One
strategy to explore ring flexibility is to perform conformational analysis on any
ring-containing ligands before docking [50–52]; another strategy is to compute the
conformations of flexible ring systems during the docking, as can be done using
FlexX [53] with either CORINA [54, 55] or Confort [56].
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2.3 Docking

Molecular docking involves computationally exploring a search space that is defined
by the molecular representation used by the method, and ranking candidate solutions
to determine the best binding mode. Thus, docking requires both a search method
and a scoring function.

Search methods can be divided into two main categories: systematic and stochas-
tic. In the former case, the outcome of the search is deterministic, but the quality
of the solution depends on the granularity of sampling of the search space. Sto-
chastic methods rely on an element of randomness, therefore, the outcome varies.
Systematic search methods are commonly used in rigid protein–rigid protein dock-
ing, where there are only six degrees of freedom, in programs such as DOT [57],
GRAMM [58, 59], and ZDOCK [60]. Stochastic search methods are more suitable
for higher-dimensional problems, such as flexible ligand–protein docking. Stochas-
tic search methods include MCSA [10], GAs [8, 14, 15], and hybrid global–local
search methods [8].

Scoring functions can be empirical, knowledge based, or molecular mechanics-
based, see [17] for a review. In addition, some docking strategies use one scoring
function during the docking, and a different one postdocking to rerank the results;
such retrospective scoring, however, cannot affect the efficiency and accuracy of the
primary scoring function [61].

The AutoDock scoring function is based on the molecular mechanics force field
AMBER [62], with two additional terms: one to model the desolvation free energy
change on binding, which is based on atomic solvation parameters [63]; and one
empirical term to model the loss of conformational entropy on binding [8, 63]. The
AutoDock scoring function in version 3 and later was inspired by the work of Böhm
[64]. The individual contributions to the total energy of binding, namely van der
Waals, hydrogen bonding, electrostatic, desolvation, and number of rotatable bonds
in the ligand, were treated as independent variables. These were used to train a linear
regression model given the observed free energy of binding, using a training set that
included 30 protein–ligand complexes for AutoDock 3 [8] and 188 complexes for
AutoDock 4 [63].

2.4 Evaluating Docking Results

Regardless of the ligand–protein docking tool used, docking results should be
evaluated by considering the chemical complementarity between ligand and pro-
tein. Are all possible hydrogen bond donors and acceptors in the ligand satisfied?
Are the charged groups in the ligand interacting with oppositely charged side chains
in the receptor, or are they buried in hydrophobic pockets? Are hydrophobic groups
in the ligand buried in hydrophobic pockets in the receptor?

Furthermore, the parameters chosen for the docking can be judged by the docking
tool’s ability to reproduce the binding mode of a ligand to protein, when the structure



Molecular Docking 371

of the ligand–protein complex is known. The criterion usually used is the all-atom
RMSD between the docked position and the crystallographically observed binding
position of the ligand, and success is typically regarded as being less than 2 Å.

When docking using stochastic methods, it is recommended that the experiment
be run at least 50 times with different initial conditions. The similarity of the pre-
dicted binding modes can be assessed by computing a matrix of pairwise RMSD
values, and clustering docked conformations according to an RMSD threshold, typ-
ically 2 Å. If all of the dockings cluster into one family, this indicates that the search
parameters were sufficient for each docking to converge. If there is no clustering
at all, then the dockings should be repeated but with increased sampling: either in-
creasing the number of iterations per search, increasing the number of searches, or,
if the method is population based, increasing the population size.

If the scoring function were perfect, the docked conformation with the lowest en-
ergy would always correspond to the crystallographically observed binding mode,
assuming that there are no bad contacts in the crystal structure. This is not always
the case, and sometimes a different binding mode is observed significantly more
often than the lowest energy binding mode. Furthermore, current docking meth-
ods will tend to find the binding mode with the lowest possible interaction energy
for a given ligand: this score does not necessarily indicate whether the ligand even
binds. There has been growing interest in developing methods to distinguish binders
from nonbinders. One of the earliest reports that used docking to successfully dis-
criminate binders from nonbinders [65] considered a simple metric that combined
the mean binding energy for all of the conformations in the cluster, and the total
number of conformationally distinct clusters found out of 100 dockings. The more
clusters and the weaker the mean energy, the less likely the ligand was to bind. By
building on statistical mechanical foundations, new methods are emerging that esti-
mate the contributions of translational and rotational entropy to binding affinity, by
approximating the configurational entropy using the sizes of the clusters [66, 67].

3 Methods

No matter which docking method is selected, the user needs to prepare the appro-
priate input files. This will depend on the docking method used, and in particular,
on the molecular representation used in that method. To assist the user in setting
up and in postdocking analysis, many docking programs include auxiliary tools,
scripts, and graphical user interfaces (GUI); Table 1 summarizes some of these.

Docking methods that do not use a force field, such as FlexX and GOLD, do
not require partial charges to be assigned to the atoms in the ligand and recep-
tor molecules. AutoDock and UCSF DOCK, on the other hand, use an AMBER-
derived force field and, therefore, require partial atomic charges. The AutoDock
3 scoring function was calibrated using Kollman united-atom partial charges on
the macromolecule, unlike AutoDock 4, which uses Gasteiger PEOE charges for
both ligand and macromolecule. It is important to note that other AutoDock users
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Table 1 Ligand input requirements for the most commonly cited docking software

Docking
tool

Auxiliary tools File format Hydrogen
atoms

Partial
charges

AutoDock 4 AutoGrid, ADT, BDT mol2,
PDBQT

United atom Gasteiger
PEOE1

DOCK 6 Chimera, Grid, Docktools,
Nchemgrids, Sphgen,
ANTECHAMBER

mol2 Explicit or
united atom

AM1-BCC,
Gasteiger

FlexX 2 FlexV mol2, SD United atom Formal
charge only

GOLD 3 GOLD Front End, SILVER mol2, SD2 Explicit None
ICM 3.4 ICM-Pro, ICM-VLS mol2, SD Explicit MMFF,

ICM
1Alternative partial charge calculations can be used (for example, AMSOL [68, 69] with the
AM1-CM2 Hamiltonian; see [24])
2PDB format is also possible, but not recommended

have investigated the use of alternative partial charges on the ligand: e.g., Evans and
Neidle concluded that the best charges to be used in AutoDock 3 for virtual screen-
ing of DNA minor groove binders came from calculations using AMSOL [68, 69]
with the AM1-CM2 Hamiltonian for nonpolar organic solvent [24].

AutoDock is distributed with a GUI called AutoDockTools (ADT; see
http://autodock.scripps.edu/resources/adt). ADT helps to prepare the ligand and
receptor input files, and to set up the AutoGrid and AutoDock calcula-
tions. BDT [70] is an alternative preparatory tool to ADT (see http://www.
quimica.urv.cat/∼pujadas/BDT/) that helps in setting up virtual screening runs with
AutoDock, and in setting up collections of AutoGrid maps for blind docking and
also in combining grid maps to incorporate structural variability in the receptor.
AutoDock’s AutoGrid program and DOCK’s Grid program precompute the neces-
sary grid maps that describe the chemical potential at regular intervals around the
target. In addition, DOCK’s Sphgen program uses spheres to create the required
“negative image” of the binding site.

The key stages in docking are: 1) target selection and preparation, 2) ligand se-
lection and preparation, 3) docking setup, and 4) evaluating docking results; these
are discussed in the following sections.

3.1 Target Selection and Preparation

1. Gather structures of the target, ideally with bound ligands, from internal and
external sources. Good publicly available sources include the Protein Data Bank
[4], http://www.rcsb.org/pdb; ReLiBase [1], http://relibase.ccdc.cam.ac.uk; and
Binding MOAD [2, 71] http://www.bindingmoad.org. See Note 1.
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2. Discard any structures that lack the biologically necessary cofactors, if any are
required for biological activity. Structures that are incomplete or missing side
chains should also be disregarded.

3. If there is more than one target structure, overlay them by superimposing the
key residues in the binding site or region of interest using a least-squares
superimposition method. SwissPdbViewer [72], a freely available tool from
http://www.expasy.org/spdbv, offers several superimposition options under its
“Fit” menu, such as “Magic Fit” and “Fit molecules (from selection)”. Note
also that SwissPdbViewer can also automatically reconstruct incomplete side
chains.

4. Identify the extent of the structural variability and select a representative struc-
ture (see Note 2).

5. Add all hydrogen atoms to the target at the desired pH; under physiological
conditions at pH 7.2, the following residues have ionized side chains: arginine,
lysine, aspartic acid, and glutamic acid. This defines the formal charges (see
Note 3). Each histidine side chain can be either neutral or positively charged at
physiological pH. If it is neutral, either the delta or the epsilon nitrogen can be
protonated (see Note 4).

6. The atomic assignments of imidazole rings in histidine and amido groups in as-
paragine and glutamine side chains can be ambiguous; tools such as REDUCE
and its web interface, MOLPROBITY [73, 74] can evaluate 180◦ flips of these
groups to optimize the hydrogen-bond network, and add hydrogen atoms ap-
propriately.

7. Remove all water molecules, except those that are integral to your binding
hypothesis(see Note 5).

8. If the representative target structure is complexed with a ligand, remove the
ligand.

9. Calculate the partial charges, if required by the docking tool (see Table 1). Some
tools may use a dictionary of amino acid partial charges to simply assign the
charges. If there are any cofactors in the target structure, it will be necessary to
compute the appropriate partial charges if required by the docking method.

10. When using AutoDock, merge nonpolar hydrogens, because it uses a united-
atom representation (see Table 1 and Note 6).

11. AutoDock uses grid maps that must be calculated using AutoGrid. Each map
describes a 3D grid of interaction energies with the target, one for each atom
type in the ligand (see Note 7).

3.2 Ligand Selection and Preparation

Most docking tools require a 3D structure for each ligand, including explicit hy-
drogens. Depending on the source of the ligands—real molecules, molecules that
have yet to be synthesized, or vendor libraries—the steps required to process the
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molecules will vary. The following steps exemplify how to obtain these structures,
and how to process them for use in AutoDock.

1. ZINC is one of the largest collections of commercially available compounds; it
is well curated and has 4.6 million compounds (http://blaster.docking.org/zinc;
see also [3]). It is particularly useful for molecular docking because it provides
3D structures in SYBYL MOL2 formats, and is also free of charge. Subsets of
compounds can be created by composing a query that specifies constraints on
both molecular properties and two-dimensional (2D) molecular topology.

2. Ligands in the form of SMILES strings [75] can be converted into full 3D
atomic coordinates, including hydrogens, using tools such as CORINA [54, 55]
or ZINC [3].

3. Ligands in 2D SD format [76] can be converted into full 3D atomic coordi-
nates using CORINA [54, 55] or Ghemical [77–79]. Ghemical can be used to
sketch the ligand in 3D and then perform energy minimization, molecular dynam-
ics, or conformational search to identify low energy conformations. PRODRG
[80–82] can take PDB format, MDL MOL files, or even ASCII–text drawings of
the molecule, instead of SD format. PRODRG is available as a standalone exe-
cutable or as a web service, where the user can sketch the molecule in 2D and
then convert the molecule into 3D; PRODRG is convenient for AutoDock 2.4
and 3, because it outputs PDBQ format.

4. It is important that the protonation, tautomeric, and stereoisomeric forms of the
ligand be correct, otherwise subsequent calculations will be highly suspect. The
enumeration of all possible ligand tautomers can be achieved with such programs
as QUACPAC (Open Eye) [83], TAUTOMER (Molecular Networks), and Lig-
Prep (Schrödinger).

5. When preparing ligands for AutoDock, the GUI AutoDockTools (ADT) can be
used to set up the necessary input files. The first step for AutoDock is to calculate
Gasteiger partial charges [49] and assign AutoDock atom types to each atom in
the ligand (see Notes 8–10).

6. Define the “root” of the torsion tree and the rotatable bonds interactively using
ADT. The “Ligand > Torsion Tree > Detect Root. . . ” option automatically ex-
amines all the rotatable bonds in the ligand and chooses the atom that is nearest
to the center of the torsion tree. The “Ligand > Torsion Tree > Choose Tor-
sions. . . ” option displays all rotatable bonds as green or magenta, indicating that
they are active or inactive, respectively. Clicking on these bonds toggles whether
they are active or not. Make sure any conjugated bonds are not rotatable.

7. AutoDock 4 requires the ligand to be in PDBQT format, which is very similar to
PDB format, but also includes the partial atomic charge and the AutoDock atom
type for each atom. The ligand should be saved using the “Ligand > Output >
Save as PDBQT. . . ” option in ADT.
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3.3 Docking

1. Define the search space. There are two possibilities, depending on how much is
known about the binding site:

(a) If there is no previous information regarding the location of the binding site,
then the translational search space should encompass the entire surface of the
receptor. This is known as “blind docking,” and is possible with AutoDock
[84]. If the docking tool cannot encompass the whole target, then probable
sites such as cavities large enough to contain the ligand(s) should be investi-
gated separately; the third-party tool BDT [70] can be used to set up staggered
grid boxes for AutoGrid.

(b) If there is previous information, such as ligands with known binding modes,
active site residues, or mutagenesis data, then the search space can be reduced
to focus on the region of interest, thus, simplifying the search problem.

2. Set the target to be docked to, using the ADT menu item “Docking > Macro-
molecule > Set Rigid Filename. . . ”

3. Select the search method (if there is more than one), and set the appropriate
parameters. AutoDock offers MCSA, a traditional GA, and a hybrid global–local
search method called LGA. The best search algorithm was shown to be LGA [8],
therefore, we recommend this for most dockings (see Note 11).

4. Save the input parameter file for the docking tool, if necessary. For AutoDock,
use the “Docking > Output > Lamarckian GA. . . ” option in ADT to save an
AutoDock docking parameter file (DPF) set up to perform LGA dockings.

3.4 Evaluating Docking Results

When evaluating the results of dockings, there are two main criteria to consider: 1)
how well did the binding mode predicted by the docking match known structural
data, where available; and 2) how well did the docking rank the ligands? If the
method’s scoring function is designed to predict binding affinities, how well did it
match experimental binding data?

To answer the first criteria, a crystal structure of the complex of the ligand bound
to the target must be known, and then the RMSD between the docked and the “ref-
erence” crystallographic binding mode of the ligand can be calculated; success is
usually counted as RMSD less than 2 Å. To answer the second criteria, inhibition
constants, or Ki values, must be known for the ligands and the target system.

When the search method used is stochastic, it is important to consider how often
a given binding mode was predicted across all the dockings that were run. This is
usually achieved using conformational clustering, building families of related con-
formations using RMSD tolerances to decide whether two conformations belong in
the same cluster.
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1. Read in all of the docked conformations into the docking analysis tool. For
AutoDock, use ADT with the menu option “Analyze > Dockings > Open. . . ”
for one docking log (DLG) (see Note 12).

2. It is useful to view the dockings in the context of the target, therefore, if neces-
sary, load the structure of the target. In ADT, use “Analyze > Macromolecule >
Open. . . ” to read in the target PDBQT structure used to compute the AutoGrid
maps.

3. Perform conformational cluster analysis on the dockings to assess the level of
agreement in the results. In ADT, use “Analyze > Clusterings > Recluster. . . ”,
and type in a list of RMSD tolerances in angstroms separated by spaces. This
performs clustering for each RMSD tolerance value, grouping the docked con-
formations accordingly.

4. Display the conformational clustering as a histogram, and visually inspect each
cluster. In ADT, use “Analyze > Clusterings > Show. . . ” and then choose the
RMSD tolerance value. This displays a histogram of number of docked confor-
mations in the cluster, versus the energy of the most tightly binding conformation
in that cluster. The histogram is interactive, thus, clicking on a histogram bar sets
up the “play” buttons in the “Conformation Player” window to play through the
conformations in that cluster. This window has buttons to play forward and back-
ward, and to step through the conformations one at a time.

5. It is possible to examine AutoDock-docked conformations in more detail using
the “Conformation Player” in ADT, by clicking on the “&” button. This displays
a panel in which it is possible to show more information regarding the current
docking, by clicking on the “Show Info” check-button. It is also possible to mon-
itor which hydrogen bonds are formed between the ligand and the target using
the “Build H-bonds” check-button. The atoms in the ligand can be colored by a
color scale that goes from dark blue to green to yellow to orange to red, indicat-
ing more favorable to less favorable interaction energies, using the “Color by”
option; “vdw” colors by van der Waals or H-bond plus desolvation free energy,
“elec stat” colors by electrostatic interaction energy, and “total” colors by the to-
tal interaction energy; and “atom” returns to the default color-by-atom coloring.

6. If the docking results do not cluster into at least one significantly populated clus-
ter, with an RMSD tolerance of between 2 and 3 Å, this is an indication that the
dockings did not search for long enough. In AutoDock and ADT, increase the
number of energy evaluations used in the LGA, and rerun the dockings. To get
decent statistics, it is advisable to repeat the docking at for at least 50 runs. See
Sect. 3.3, Step 3.

7. If the docked conformations are too far from the target structure, make sure that
the AutoGrid grid box is centered on or near the target; the grid box can be
visualized in ADT using the “Analyze > Grids > Open. . . ”, then choosing one
of the grid map files. The x-, y-, and z-axes are color-coded red, green, and
blue, respectively. The energy values in the grid map can be isocontoured by
dragging the blue solid triangle on the “IsoValue” slider, with lower energy values
indicating pockets of tighter binding affinity, and higher-resolution isocontours
can be plotted using a “Sampling” value of 1 instead of the default value, 3.
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4 Notes

1. It is preferable to use only high-resolution structures where available, ideally
better than 2.5 Å.

2. As an alternative to Steps 1 to 3 in Sect. 3.1, Target Selection and Prepa-
ration, a representative structure or “leader” for a 90% homology family of
structures is already precalculated and available from Binding MOAD [2]
http://www.bindingmoad.org.

3. In AutoDockTools, use the “Edit > Hydrogens > Add” then choose “All Hy-
drogens”; all hydrogens are required for the initial Gasteiger partial charge cal-
culation, but the nonpolar hydrogens will be merged later on.

4. AutoDockTools offers a tool to help set the desired protonation state of each His
side chain, under the “Edit > Hydrogens > Edit Histidine Sidechains” menu.
Which protonation state a His adopts will depend on its environment in the
target.

5. Consolv[85], freelyavailable fromhttp://www.bch.msu.edu/labs/kuhn/software.
html, “predicts whether water molecules bound to the surface of a protein are
likely to be conserved or displaced in other, independently solved crystallo-
graphic structures of the same protein.”

6. AutoDockTools calculates the partial charges and merges the nonpolar hy-
drogens automatically when the user selects the “Grid > Macromolecule >
Choose. . . ” menu items.

7. AutoGrid requires the target to be saved in PDBQT format, and it requires a
Grid Parameter File (GPF). To save the receptor, use the “File > Save > Write
PDBQT. . . ” option. Set which types of grid maps should be calculated using
either “Grid > Set Map Types > Directly. . . ” or “Grid > Set Map Types >
Choose Ligand. . . ”. To set up the location and grid spacing of the grid maps,
use “Grid > Grid Box. . . ”. Finally, to save the GPF, use “Grid > Output > Save
GPF. . . ”.

8. Note that ADT can read in a ligand with partial charges using SYBYL mol2
format. Use “File > Read Molecule. . . ” and change the “Files of type” button
to “MOL2 files (∗.mol2)”.

9. If the ligand is missing hydrogen atoms, then they must be added before calcu-
lating the Gasteiger charges. After selecting the ligand in ADT, use the menu
option “Edit > Hydrogens > Add”. It is very important to consider the tau-
tomeric and ionization states when adding hydrogens, or use one of the tools in
Step 4 in Sect. 3.2.

10. AutoDock atom types are assigned automatically in ADT by choosing the “Lig-
and > Input > Choose. . . ” option. This command will also merge the nonpolar
hydrogens, making the ligand suitable for use with the united-atom force field
in AutoDock.

11. It is important to make sure that the number of energy evaluations is increased
from the default value of 250,000 if the ligand has any rotatable bonds. Use the
ADT menu option “Docking > Search Parameters > Genetic Algorithm. . . ”
and change the “Maximum number of energy evaluations” to at least 2,500,000.
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It is also possible to increase the “Number of GA runs” in the panel from the
default value 10. One other important parameter is the “Population Size”; the
default is 150, although Hetenyi et al. showed that larger values up to 300 can
improve the efficiency of the search [84]. Note also that this panel works for
both the traditional and LGA search methods.

12. Alternatively, if the same ligand has been docked to the same target, but separate
runs of AutoDock have produced uniquely named DLG files, as is the case when
running dockings in parallel on computational clusters, use the “Analyze >
Dockings > Open All. . . ” option to read in all the dockings.
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Ab initio folding, 278

production runs, 282, 283
system design, 280–282
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Active residues, 245
ADME-Tox. See Absorption, distribution,

metabolism, excretion, and toxicology
ADT. See AutoDockTools
AIRS. See Ambiguous interaction restraints
Alanine racemase (AlaR), 54
AM1. See Austin Model 1
Amber force field, 64, 66–69, 75

in carbohydrate simulations, 79
in DNA and RNA simulations, 77
in lipid simulations, 78

AMBER program, role in protein folding
studies, 279–281

Ambiguous interaction restraints, 236
Amino acid sequence designing, empirical

facts, 311
Amyloids formation in prion disease, 300
ana cluster.csh, 249
ana structure.csh script, 248
Antennapedia homeodomain, 162, 163
Aromatic order parameters, 169
Ataxia, 300
ATR-FTIR. See Attenuated total reflection

Fourier-transform infrared spectroscopy
Attenuated total reflection Fourier-transform

infrared spectroscopy, 213, 214
Austin Model 1, 44

AutoDock
for ligand, 369
scoring function, 370

AutoDockTools, 372, 374

B
BioMagResBank, 240
Biomolecular systems dynamics time scales

range of, 4
BMRB. See BioMagResBank
Bonded interactions

force fields, 64, 65
potential energy, 5

Born-Oppenheimer approximation, in enzyme
reactions, 40

Bovine spongiform encephalopathy (BSE),
202

β-structure maker, 311
Bulk solvation, 150

C
Cartesian coordinate space, NMA in, 90
CCK1R. See Cholecystokinin
CD. See Circular dichroism
Centroid path integral simulations, 47–49
CG. See Coarse-grained model
CGH. See Comparative genomic hybridization
CG simulation of KcsA, dipalmitoylphos-

phatidylcholin in, 154
Chaperone, role in protein folding, 301
CHARMM force field, 64, 66–69, 71, 75

carbohydrate simulations, 79
DNA and RNA simulations, 77
lipid simulations, 77, 78
organic small molecules simulations, 80
protein-ligand binding constant calculation,

112
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Chemical compund matching, in drug target
and drug lead findings, 337–339

Chemical shift perturbation, 235
Chemical shifts, 231
Cholecystokinin, 132
Circular dichroism, 277
CJD. See Creutzfeldt-Jakob disease
Classical mechanical, 38
Clustering analysis, 264
CM. See Classical mechanical
CMAP. See Correction map
Coarse-grained model, 148, 153–155
Comparative genomic hybridization, 336
COMPOSER program, in protein modeling,

208
Computational protein structure prediction,

schemes for, 201
Computer simulation methods and membrane

proteins, 148
Configurational-bias Monte Carlo method,

29, 30
Conformational disease model, 305, 306
Conformational Free Energy Gc(bulk) and

Gc(site), 115–117
Confort, 369
CORINA, 369, 374
Correction map, 69
Coulomb electrostatics in nonbonded

interactions, 5
Coulomb’s law in electrostatic interaction

modelling, 66
Creutzfeldt-Jakob disease, 299
CSP. See Chemical shift perturbation
CYANA program in protein structure

determination, 233

D
Debye-Huckel screening factor κ(r), 182
Dementia, 300
Density functional theory, 41
Density of states methods, 33
DFT. See Density functional theory
Diffusion anisotropy restraints, NMR protein

structure calculations, 232
Diffusion–collision model, 278, 279
Dipalmitoylphosphatidylcholine, 78
DLG. See Docking log
DOCK, 368
Docking, 355, 367, 370

site preparation for in silico screening
method, 356

Docking log, 376
DOT program, 370

DPPC. See Dipalmitoylphosphatidylcholine
Drosophila melanogaster, 162
DrugBank, 336
Drug lead and target, 333

methods for
novel virus identification, 339–344
prostrate cancer identification, 344–348

theory, 334, 335
chemical compound matching, 337–339
identification of drug target and lead,

335–337
DSSP program, in molecular simulation, 15
Dynamic programming, in drug target and

drug lead findings, 337, 338

E
EAVTST/ MT. See Ensemble-averaged

variational TST with multidimensional
tunneling

Elastic network models, 90, 91, 94, 272
methods in, 97
theories of, 94

Empirical valence bond model, 41
Endogenous diseases, drug target and drug

leads identification, 336, 337
Energetic analysis for protein folding, 285
Energy minimization in standard NMA, 96
ENM. See Elastic network models
Ensemble-averaged variational TST with

multidimensional tunneling, 47
Enzymatic reactions modeling, QM/MM

methods, 38, 39, 42–45
ErbB-2 structure, 226
Escherichia coli, 135
Essential dynamics and principal components

analysis, 91, 92
methods in, 97–102
theories of, 94, 95

Euler angles, orientational constraint for, 114
EVB. See Empirical valence bond model
Exogenous diseases, drug target and drug leads

identification, 335, 336

F
FEP. See Free energy perturbation techniques
Flexible ligand–protein docking, 370
Flexible receptor screen, 359, 360
FlexScreen, 354, 356
Fluorescence resonance energy transfer, 138
Force fields

functional forms of, 64–69
potential energy calculation, 5
proteins molecular dynamics simulations in,

63, 64
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Free energy perturbation techniques
for membrane proteins calculation, 121

convergence properties and error analysis,
129–132

methods for, 123–129
for protein–ligand binding constant

methods in, 112–118
processes in, 110, 111

FRET. See Fluorescence resonance energy
transfer

G
GA. See Genetic algorithm method
GAFF. See General Amber Force Field
g arom, aromatic order parameters calculation,

169
Gaussian network model, 94
GB. See Generalized Born approximation
GBSA/IM model, 187
GBSW membrane model, 187, 188
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General Amber Force Field, 80
Generalized Born approximation, 183, 280
Genetic algorithm method, 368
Gerstmann-Sträussler-Scheinker syndrome,

299
G2FMD. See Grow-to-Fit Molecular Dynamics
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chemical bonds and x-ray structure, 358
histogram, 359

Global optimization engine, 355
GlpF. See Glycerol transport facilitator
GLYCAM force field, 79
Glycerol transport facilitator, 135
Glycophorin A, inter–helical and reversible

associations, 137, 138
Gouy-Chapman theory, 185
GpA. See Glycophorin A, inter-helical and
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GPCRs. See G protein-coupled receptors
GPF. See Grid Parameter File
G protein-coupled receptors, 121
GRAMM program, 370

in protein–protein docking analysis, 208
Graphical user interfaces, 371, 372
Grid Parameter File, 377
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in molecular simulation, 8, 15
with VMD, 151, 152

GROMOS force field, 64, 66–69, 75
in carbohydrate simulations, 79
in lipid simulations, 78
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for ab initio side chain assignment

input file for, 269–271
side chain conformation, 271, 272

protein side chain optimization, 262
solvent model for, 273

GSS. See Gerstmann-Sträussler-Scheinker
syndrome

GUI. See Graphical user interfaces
g under program, 170, 171
g xycoor program, 173
g zcoor program, 172, 173

H
HADDOCK, data-driven docking in, 236
HADDOCK 2.0 package

for protein–protein complex modeling, 244
automatic analysis, 247
clustering using cluster struc, 248, 249
docking run with, 246, 247
file (run.cns) editing, 246
manual analysis, 247–250

Hamiltonian free energy, estimation, 123–125
HDGB implicit membrane model, 188, 189
α-Helix maker, 311
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138, 139
Helmholtz free energy, calculation, 123
Hessian matrix calculation, in standard NMA,

96
Hitherto virus, 301
HMDB, 337. See Human Metabolome

Database
Homeodomain proteins, 162, 163
Human Metabolome Database, 334
Hybrid global–local search method, 368, 370
Hybrid Monte Carlo method, 31, 32
Hydrogen bonds restraints and protein

structure determination, 231
Hydrophobic collapse model, 278

I
IMM1 model, 187
Implicit membrane geometry, 190
Implicit membrane models, theory of

electrostatic interactions, 182–185
nonpolar interactions, 185, 186
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InChI. See International Chemical Identifer
Insomnia, 300
International Chemical Identifer, 338

J
J-couplings, 231. See also Protein 3D-structure

and complexes, NMR-based modeling
and refinement of

K
KcsA potassium channel, CG model for, 154
Key–lock principle, 353
KIE. See Kinetic isotope effects
Kinetic isotope effects, 38

computation of, 49, 50
EAVTST/MT method, 55, 56

L
Lamarckian GA method, 368
Langevin dynamics, 190
Lennard-Jones equation, 65
Lennard-Jones repulsion and dispersion, 5
LES. See Locally enhanced sampling
LES regions, 265
LGA. See Lamarckian GA method
Ligand in bulk, free energy calculation, 115,

116
Ligand input for docking, 372
Ligand-protein docking, 365

tool, usages, 370, 371
Ligand-receptor complex

free energy calculation, 116, 117
solvation in MD simulations, 112, 113

Ligands preparation for in silico screening
method, 356

Lipid bilayers simulation, 150, 151
Lipid configurations, for download, 157
Lipid deuterium order parameters, 171, 172
Lipid topology creation, methods of

analysis
aromatic residues orientation, 169, 170
bilayer structure, 171, 172
coordinate frame in bilayer simulations,

172–174
downloadable files, 174
helical axis calculation, 168
lipids interaction with peptide, 170, 171

system setup
bilayer structure modificaton, 165
downloadable files, 168
lipid bilayer, 164
lipid topology modificaton, 164, 165
material used, 163

peptide structure incorporation, 165, 166
single-residue mutations, 166, 167

LJ. See Lennard-Jones equation
Locally enhanced sampling

advantageous effects of, 262
simulation, 267–269

Loop and gap modeling of protein, 208, 209

M
MC. See Monte Carlo dynamics
MCMM. See Multiconfiguration molecular

mechanics method
MCSA in stochastic search methods, 370, 375
MD simulation. See Molecular dynamics

simulation
Membrane proteins

recognition and association of, 137–139
simulations methods of, 149

CG methods, 153–155
lipid preparation, 150, 151
protein preparation, 149, 150
protein setup in membrane, 151, 152
simulation running, 156

Message-passing interface, 282, 283
Metropolis acceptance criterion, 28
Misfolded proteins, 300
Mixed quantum and classical molecular

dynamics, 46
MM. See Molecular mechanical methods, in

enzyme reactions modeling
MM-PBSA. See Molecular mechanics/

Poisson-Boltzmann surface area
techniques

MODELLER program in protein modeling,
150, 210

Molecular docking
goal of, 365
methods of, 371, 372

docking, 375
docking results, 375, 376
ligand and target selection and preparation,

372–374
theory of, 366–368

docking, 370
docking results, 370, 371
ligand and target selection and preparation,

368, 369
use of, 366

Molecular dynamics simulation, 148, 213, 214
advantages of, 5
for carbohydrates, 78, 79
challenges in, 7
importance of, 3, 4
limitiations of, 2
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methods in

input data and simulation box preparation,
9, 10

lysozyme structures determination, 8, 9
position-restrained equilibration, 12, 13
production simulation, 13, 14
solvent water addition and energy

minimization, 10–12
trajectory analysis, 14–16

for nucleic acids and lipids, 77, 78
for organic small molecules, 80
protein conformation, 259
for protein–ligand binding constant

calculation, 110, 112–115
and protein modeling, 210, 211
of proteins force field, 63, 64
software packages of, 75, 76
for transmembrane protein model, 218,

220–224
Molecular mechanical methods, in enzyme

reactions modeling, 41, 42
Molecular mechanics/Poisson-Boltzmann

surface area techniques, 109
Monte Carlo dynamics, 307–310

one chain dynamics, 311–315
three chain dynamics, 317–322
two chain dynamics, 316, 317

Monte Carlo simulations, 5, 25
advantages and disadvantages of, 26
for protein simulation and analysis, 28–34
statistical errors, 34, 35
theoretical studies in, 26–28

MPI. See Message-passing interface
MQCMD. See Mixed quantum and classical

molecular dynamics
Multiconfiguration molecular mechanics

method, 42
Mutating selected residues to alanine, 166, 167

N
NAMD program, 151, 152
Native contacts, 284
NMA. See Normal mode analysis
N -methyl picolinate decarboxylation in water,

51–53
NMR. See Nuclear magnetic resonance
NMR-based docking approaches, 236
NMR-based structural calculation and

refinement methods, for proteins
RECOORD scripts, 240
structural information sources for

chemical shifts, j-couplings, and hydrogen
bonds, 231

nuclear overhauser effects, 230
paramagnetic restraints, 232, 233
residual dipolar couplings and diffusion

anisotropy, 232
structure calculation software, 233
structure restraints for

dihedral angle restraints, 238, 239
distance restraints, 237, 238

water refinement stage, 242
NMR for target structure, 368
NMR-related programs and databases, internet

resources of, 234, 235
NMR spectroscopy. See Nuclear magnetic

resonance spectroscopy
NOEs. See Nuclear Overhauser Effects
Nonbonded interactions

force fields, 64–66
potential energy, 5

Nonpolar interactions between proteins and
membranes, 186

Normal mode analysis (NMA), 89
protein folding, 263

Novel virus, drug target and drug leads
identification, 339–344

Nuclear magnetic resonance, 34, 138, 200
Nuclear Overhauser Effects, 230
Nuclear tunneling in potential of mean force,

46, 47

O
OMIM, 337
ONIOM model in QM/MM simulations, 44
OPLS-AA force field, 64, 66–69

in carbohydrate simulations, 79
in lipid simulations, 78
in organic small molecules simulations, 80
protein-DNA complex simulation, 77

Orientational/Axial Free Energy Go(site) and
Ga(site), 117

Orientational Free Energy Go(bulk), 116

P
Palmitoyloleylphosphatidylcholine, 132
Palmitoyloleylphosphatidylethanolamine, 135
pAntp peptide. See Penetratin
Parallel tempering method, 32, 33, 278
Paramagnetic restraints, NMR protein structure

calculations, 232, 233
Parameterized Model 3, 44
PARAM 27 force field in protein-ligand

binding constant calculation, 112
Paraplegia, 300
Paresthesia, 300
Particle-mesh Ewald methods, 7, 73
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Path integral-free energy perturbation and

umbrella sampling method, 37, 49
Path integral quantum TST, 47
Pattern Search method, 368
PCA. See Principal component analysis
PDB. See Protein Data Bank; Protein data

bank; Protein database
Penetratin, 162, 163
Peptide-interacting lipids, 170, 171
PES. See Potential energy surface
PI-FEP/UM. See Path integral-free energy

perturbation and umbrella sampling
method

PI-QTST. See Path integral quantum TST
PLP. See Pyridoxal 5-phosphate
PM3. See Parameterized Model 3
PME. See Particle-mesh Ewald methods
PMF. See Potential of mean force
PMF calculation, umbrella sampling MD, 117
Poisson-Boltzmann (PB) theory, 182, 183, 185
POPC. See Palmitoyloleylphosphatidylcholine
POPC bilayer replacement, 165
POPE. See Palmitoyloleylphos-

phatidylethanolamine
POPG lipid topology, 164, 165
POPx family of lipids, structure of, 164
Potential energy function in enzyme reactions

modeling, 41
Potential energy surface, 38, 355
Potential of mean force, 40, 114
Prefactor S∗ calculation, umbrella sampling

MD, 117, 118
Principal components analysis, 91

basic procedure of, 263
Prion and neurodegenerative diseases,

difference, 299, 300
Prion diseases

molecular background, 300, 301
theoretical investigation

mathematical model of amino acids, 303,
304

mathematical models of, 301, 302
molecular dynamics simulations of, 302,

303
monte carlo simulations of, 303–305

therapy, 300
Prion protein scrapie, 202
Prions, diseases caused by, 298–300
Probability vector in Monte Carlo algorithm,

27
PROCHECK (software), 243
PRODRG, 374

PROSPECT-II assessment in protein modeling,
205, 206

Prostate cancer, drug target and drug leads
identification, 344–348

Protein Data Bank, 8, 121, 149, 201, 302
Protein database, 356
Protein 3D-structure and complexes,

NMR-based modeling and refinement of
calculation and refinement of, 240–242
complexes modeling, 235, 236

by data-driven docking using HADDOCK,
244–250

computer programs used for assessment,
233

NMR structural information sources in,
230–233

procedures used for restraint generation and
structure calculation

dihedral angle restraints, 238, 239
distance restraints, 237, 238

structural statistics and quality determina-
tion, 233–235

validation and quality assessment of,
242–244

Protein folding and unfolding
methods of, 279, 280

ab initio folding, 280–286
folding by REM, 288, 289
high-temperature unfolding, 286–288

theory of, 279
Protein folding, folding temperature role, 304,

310, 313–318, 320
Protein-folding models, 202
Protein folding theory, 299
Protein–ligand binding constants, free energy

perturbation techniques in, 109
methods in, 112–118
processes in, 110, 111

Protein-ligand complex structure in MD
simulations, 112

Protein misfolding methods
force field, 308, 309
monte carlo dynamics, 307, 308
protein representation, 306, 307

Protein modeling
comparative modeling

loop and gap modeling, 208, 209
sequence alignment, 206, 207
side chain modeling, 209
structural refinement, 209, 210
target structural model, 207, 208
template identification, 204–206
validation, 210, 211

three-dimensional analysis, 199–201
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Protein molecular topology generation, 241
Protein–protein complex modeling

using HADDOCK2.0 package, 244
automatic analysis, 247
docking run with, 246, 247
file (run.cns) editing, 246
manual analysis, 247–250
new.html file setup, 245, 246
PDB files and CSP data, preparation of,

245
Protein refolding, process, 303
Protein(s)

conformational changes of, 259
clustering analysis of, 264
large protein with flexible regions, 265
LES regions of, 265, 266
LES simulation of, 267–269
normal mode analysis (NMA) of, 263
principle component analysis (PCA) of,

263, 264
unfolding or folding processes, 262, 263

secondary structure and dihedral angle
distribution, 264, 265

setup in lipid bilayer, 151, 152
Protein secondary structure

monitoring, 284
and stability measurement, 15, 16

Protein solvation in CG simulations, 153
Protein structure, 298

calculation software (See Structure
calculation software)

Protein-unfolding landscape, 287
Protein validation tool, 243
PrPC, 299, 301, 302
PrPSc. See Prion protein scrapie
PrPSc, 299, 301, 302
PubChem, 336
PubMed-Entrez, 337
PyMOL program, 150
Pyridoxal 5-phosphate, 54

Q
QCMD. See Quantum-classical molecular

dynamics
QCP. See Quantized classical path
QC-PMF. See Quasiclassical PMF
QM. See Quantum mechanical
QM/MM method in enzyme reactions

modeling, 42–45
QSAR. See Quantitative structure-activity

relationship
QUACPAC, 374
Quantitative structure-activity relationship,

3, 4

Quantized classical path, 48
Quantum-classical molecular dynamics, 47
Quantum mechanical, 38

in modeling enzyme reactions, 42
Quasiclassical PMF, 45, 46, 48, 49

R
Radial factor I ∗ calculation, umbrella sampling

MD, 118
Ramachandran plot

conformation shift, 265
of hinge residues, 268
torsion angles for residues, 243

RDCs. See Residual dipolar couplings
Rebridging and fixed end Monte Carlo method,

30, 31
RECOORD scripts

annealing.sh, 241, 242
generate extended.sh, 241
generate.sh, 241
objective of, 234
script re h2o.sh, 242
tar file containing, 240

Re-docking, 366
Relaxed complex method, 368
REM. See Replica exchange method
REMD. See Replica exchange molecular

dynamics
Replica exchange method, 278, 279
Replica exchange molecular dynamics, 288,

289
Replica exchange Monte Carlo method, 308,

309
Residual dipolar couplings, 232
Rigid screen versus flexible screens,

comparison, 360, 361
RMSD. See Root mean square deviation
RMSF. See Root mean square fluctuation
Root mean square deviation (RMSD), 115,

149, 218, 224, 283–286, 289, 366, 371,
375

Root mean square displacement (RMSD), 14
Root mean square fluctuation, 15

S
SASA. See Solvent accessible surface area
SAT. See Saturation transfer
Saturation transfer, 235
Scalar coupling. See J-couplings
Schrödinger equation, 4
Scoring function, 354, 355, 367, 368
Scrapie prion proteins, 299
Screening Tool FlexScreen, 353, 354

method, 355, 356
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database screen, 357
docking site preparation, 356
flexible receptor screen, 359, 360
ligand preparation, 356
rigid screen versus flexible screen

comparison, 360, 361
side chain identification, 358, 359

theory
global optimization engine, 355
scoring function, 354, 355

SCT. See Small-curvature tunneling
approximation

Seeded nucleation model, 301
Sequence matching for drug target and drug

lead findings, 337–339
SHAKE algorithm in MD simulation, 290, 291
Side chain modeling of protein, 209
Simulation times, for implicit membrane

models, 189
Single nucleotide polymorphism, 336, 337
Site-specific infrared dichroism, 214
Slow viruses, 301
Small-curvature tunneling approximation, 47
SMILES strings role in drug target and drug

lead findings, 338, 339
SNP. See Single nucleotide polymorphism
Solvent accessible surface area, 186, 284, 285
SSID. See Site-specific infrared dichroism
Standard monte carlo method, 28, 29
Standard Normal mode analysis, 89, 90

methods in, 95, 96
theories of, 92, 93

Stochastic tunneling, 355
Structure calculation software

molecular dynamic simulated annealing
(SA) protocol, 233

Structure validation, protein
extended starting conformation, 241
least-square fitting program for, 244
NMR structure selection, 233
programs, NMR-related, 234, 235
restraint violations, 242
software tools for, 243
using annealing.sh script, 241, 242

STUN. See Stochastic tunneling
Symmetric eckart barrier, 50, 51
Syrian hamster prion protein, 299

T
TALOS (database system)

CNS/Xplor restraints, perl script for, 239
torsion angle prediction, 238, 239

TAUTOMER, 374
Template-directed refolding model, 301

Thermodynamic integration, 126, 127
Thymidine kinase (TK) receptor, 355
TI. See Thermodynamic integration
TK inhibitors, ranking, 357
TK receptor, histogram, 360, 361
TM. See Transmembrane protein
TM domain GPCRs, x–ray crystallography,

132
Transition state theory, 38
Transmembrane protein, 122

method of
analysis, 224
clustering, 224
constraints, 219
creation of starting structure, 149, 219,

220
data specification, 219
MD simulation, 149–156, 220–224

theory of, 214, 215
analysis, 218, 219
clustering, 218
constraints, 216, 217
free energy calculations, 123–132
MD simulation, 218
starting state creation, 217, 218

TST. See Transition state theory
Two dimensional (2D) model of prion diseases,

302

U
Umbrella sampling, 278
Umbrella sampling MD simulations, 114, 115

V
Variant CJD, 299
vCJD. See variant CJD
Virtual database screening, 354
Virtual screening, 366

W
Weighted histogram analysis method, 115
WHAM. See Weighted histogram analysis

method
WHATCHECK (protein validation tool), 243
What-If program, 150, 156

X
Xplor/CNS program in protein structure

determination, 233
X-ray crystallography for target structure, 368
X-Ray structure deviation, 14, 15

Z
ZDOCK program, 370
ZINC, 374
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