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Preface

In the last 20 years, materials modeling and simulation has grown into an

essential component of research in the chemical and pharmaceutical indus-

tries. Because the field of process design is already quite mature, competitive
advances in chemical synthesis and separation operations occur primarily

through the development and use of material systems with tailored physi-

cochemical characteristics (e.g., metallocene catalysts for polyolefin pro-

duction, polymeric membranes offering a more favorable combination of

permeability and selectivity for separations, and environmentally acceptable

solvents with prescribed thermophysical properties). Furthermore, there is a
shift of emphasis from process to product design, which is intimately related

to materials behavior. With the current trend toward nanotechnology, the

scientist or engineer is often called on to develop new, often hierarchical

material structures with key characteristics in the 0.1–10-nm length scale, so

as to benefit from the unique mechanical, electronic, magnetic, optical, or

other properties that emerge at this scale. Materials that develop such struc-

tures through self-assembly processes, or modify their structure in response
to environmental conditions, are frequently sought.

Meeting these new design challenges calls for a quantitative under-
standing of structure–property–processing–performance relations in mat-
erials. Precise development of this understanding is the main objective
of materials modeling and simulation. Along with novel experimental
techniques, which probe matter at an increasingly fine scale, and new
screening strategies, such as high-throughput experimentation, modeling has
become an indispensable tool in the development of new materials and
products. Synthetic polymers and biopolymers, either by themselves or in
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combination with ceramics and metals, are central to contemporary
materials design, thanks to the astonishing range of properties that can
be achieved through manipulation of their chemical constitution, molecular
organization, and morphology.

Polymer modeling and simulation has benefited greatly from advances in
computer hardware. Even more important, however, has been the deve-
lopment of new methods and algorithms, firmly based on the funda-
mental physical and chemical sciences, that permit addressing the wide
spectrum of length and time scales that govern structure and motion
in polymeric materials. It is by now generally accepted that the suc-
cessful solution of materials design problems calls for hierarchical, or
multiscale, modeling and simulation, involving a judicious combination of
atomistic (<10 nm), mesoscopic (10–1000 nm), and macroscopic methods.
How to best link these methods together, strengthen their fundamental
underpinnings, and enhance their efficiency are very active problems of
current research.

This book is intended to help students and research practitioners in
academia and industry become active players in the fascinating and rapidly
expanding field of modeling and simulation of polymeric materials. Roughly
five years ago, we decided to embark on an effort to produce a ‘‘how-to’’
book that would be coherent and comprehensive, encompass important
recent developments in the field, and be useful as a guide and reference to
people working on polymer simulation, such as our own graduate students.
Rather than attempt to write the whole book ourselves, we chose to draft a
list of chapters and then recruit world-class experts to write them. Con-
tributors were instructed to make their chapters as didactic as possible,
incorporating samples of code, where appropriate; make reference to key
works, especially review papers and books, in the current literature; and
adhere to a more or less coherent notation. In our editing of the chapters, we
tried to enhance uniformity and avoid unnecessary repetition. The result is
gratifyingly close to what we envisioned. We hope that the reader will find
the progression of chapters logical, and that the occasional switches in style
and notation will serve as attention heighteners and perspective broadeners
rather than as sources of confusion.

Chapter 1 introduces basic elements of polymer physics (interactions
and force fields for describing polymer systems, conformational statistics
of polymer chains, Flory mixing thermodynamics, Rouse, Zimm, and
reptation dynamics, glass transition, and crystallization). It provides a brief
overview of equilibrium and nonequilibrium statistical mechanics (quan-
tum and classical descriptions of material systems, dynamics, ergodicity,
Liouville equation, equilibrium statistical ensembles and connections
between them, calculation of pressure and chemical potential, fluctuation
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equations, pair distribution function, time correlation functions, and
transport coefficients). Finally, the basic principles of ‘‘traditional’’
molecular simulation techniques (Monte Carlo (MC), molecular dynamics
(MD), Brownian dynamics (BD), transition state theory (TST)-based
analysis, and simulation of infrequent events) are discussed.

Part I focuses on the calculation of single-chain properties in various
environments. The chapter by E. D. Akten et al. introduces the Rotational
Isomeric State (RIS) model for calculating unperturbed chain properties
from atomistic conformational analysis and develops systematically an
illustrative example based on head-to-head, tail-to-tail polypropylene. The
chapter by Reinhard Hentschke addresses MD and BD simulations of single
chains in solution. It reviews Monte Carlo sampling of unperturbed chain
conformations and calculations of scattering from single chains and presents
a coarse-graining strategy for going from atomistic oligomer or short helix
simulations, incorporating solvent effects, to RIS-type representations and
persistence lengths.

Part II addresses lattice-based Monte Carlo simulations. The chapter by
Kurt Binder et al. provides excellent motivation for why such simulations
are worth undertaking. It then discusses the Random Walk (RW), Non-
Reversal RandomWalk (NRRW), and Self-Avoiding RandomWalk (SAW)
models, presents algorithms for sampling these models, and discusses their
advantages and limitations. In the chapter by Tadeusz Pakula, algorithms
for the Monte Carlo simulation of fluids on a fully occupied lattice are
discussed. Applications to macromolecular systems of complex architec-
ture and to symmetrical block copolymers are presented to illustrate the
power and generality of the algorithms, and implementation details are
explained.

Part III, by Vagelis Harmandaris and Vlasis Mavrantzas, addresses
molecular dynamics simulations. Following an exposition of basic inte-
gration algorithms, an example is given of how MD can be cast in
an unconventional ensemble. State-of-the-art multiple time integration
schemes, such as rRESPA, and constraint simulation algorithms are then
discussed. Examples of using MD as part of a hierarchical strategy for
predicting polymer melt viscoelastic properties are presented, followed by a
discussion of parallel MD and parallel tempering simulations.

Part IV, by Tushar Jain and Juan de Pablo, introduces the
Configurational Bias (CB) method for off-lattice MC simulation.
Orientational CB is illustrated with studies of water in clay hydrates, and
CB for articulated molecules is discussed as part of expanded grand
canonical MC schemes for the investigation of chains in slits and of the
critical behavior of polymer solutions. Topological CB is introduced and
the combined use of CB and parallel tempering is outlined.
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Part V, by Andrey Dobrynin, focuses on simulations of charged polymer
systems (polyelectrolytes, polyampholytes). Chains at infinite dilution are
examined first, and how electrostatic interactions at various salt concentra-
tions affect conformation is discussed, according to scaling theory and to
simulations. Simulation methods for solutions of charged polymers at finite
concentration, including explicitly represented ions, are then presented.
Summation methods for electrostatic interactions (Ewald, particle-particle
particle mesh, fast multipole method) are derived and discussed in detail.
Applications of simulations in understanding Manning ion condensation
and bundle formation in polyelectrolyte solutions are presented. This
chapter puts the recent simulations results, and methods used to obtain
them, in the context of the state of the art of the polyelectrolyte theory.

Part VI is devoted to methods for the calculation of free energy and
chemical potential and for the simulation of phase equilibria. The chapter
by Thanos Panagiotopoulos provides a lucid overview of the Gibbs
Ensemble and histogram reweighting grand canonical MC methods, as
well as of the NPT þ test particle, Gibbs–Duhem integration, and ‘‘pseudo-
ensemble’’ methods. CB and expanded ensemble techniques are discussed,
and numerous application examples to phase equilibria and critical point
determination are presented. The chapter by Mike Kotelyanskii and
Reinhard Hentschke presents and explains a method for performing
Gibbs ensemble simulations using MD.

In Part VII, Greg Rutledge discusses the modeling and simulation of
polymer crystals. He uses this as an excellent opportunity to introduce
principles and techniques of solid-state physics useful in the study of
polymers. The mathematical description of polymer helices and the cal-
culation of X-ray diffraction patterns from crystals are explained. Both
optimization (energy minimization, lattice dynamics) and sampling (MC,
MD) methods for the simulation of polymer crystals are then discussed.
Applications are presented from the calculation of thermal expansion,
elastic coefficients, and even activation energies and rate constants for defect
migration by TST methods.

Part VIII focuses on the simulation of bulk amorphous polymers and
their properties. The chapter by Jae Shick Yang et al. applies a combined
atomistic (energy minimization)-continuum (finite element) simulation
approach to study plastic deformation in glassy bisphenol-A-polycarbonate.
This is an excellent example of multiscale modeling for addressing
mechanical behavior at long time- and length-scales, also discussed in the
next section. It also serves as an introduction to the simulation of glassy
polymers and of materials under strain. The chapter by Wolfgang Paul et al.
addresses polymer dynamics in the melt state: how it can be tracked with
atomistic and coarse-grained models using MD, and what insights it can
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provide about glass transition phenomena. An overview is presented of the
calculation of static scattering patterns, as well as of the observables of
nuclear magnetic resonance (NMR) relaxation and of neutron-scattering
measurements from MD simulation trajectories. Segmental dynamics
and terminal dynamics, as revealed by MD simulations of oligomeric
polyethylenes, are compared against Mode Coupling Theory and Rouse
model predictions. In the chapter by Mike Greenfield, TST-based meth-
ods for the prediction of sorption and diffusion of small molecules in
amorphous polymers are thoroughly discussed. The general approach
followed to obtain the diffusivity, based on atomistic TST-based determina-
tion of rate constants for individual jumps executed by the penetrant in the
polymer matrix and subsequent use of these rate constants within a kinetic
MC simulation to track displacement at long times, is another good exam-
ple of hierarchical modeling. Three TST-based methods (frozen polymer,
average fluctuating polymer, and explicit polymer) for the calculation of
rate constants are presented, with examples. The intricacies of performing
TST analyses in generalized coordinates using the flexible, rigid, or infinitely
stiff polymer models are also explained.

Part IX is devoted to bridging length- and time-scales through multiscale
modeling, whose importance has already been stressed above and brought
forth in some of the earlier sections. The chapter by Ulrich Suter and his
colleagues discusses the key issue of coarse-graining, whereby detailed
atomistic representations can be mapped onto computationally more
manageable models with fewer degrees of freedom, without loss of
significant information. Examples of coarse-graining detailed polyethylene
models into bond fluctuation (discussed in Part I) and bead-and-spring
models are presented. Simultaneous atomistic/continuum calculations
conducted on different scales are also explained, with emphasis on combined
finite element/molecular simulation schemes for tracking inelastic deforma-
tion in polymer solids (introduced in Part VIII). The chapter by Manuel
Laso and Hans Christian Öttinger is devoted to CONNFFESSIT, a
nontraditional multiscale method for simulating polymer flows that
combines finite elements with stochastic simulation of coarse-grained
molecular models. After a dense review of the general field of computational
rheology, algorithms and codes for tracking the particles in the finite
element mesh, integrating the particle stochastic equations of motion, and
reconstructing meshes are treated thoroughly. The chapter by Wouter den
Otter and Julian Clarke introduces dissipative particle dynamics (DPD), a
mesoscopic method for tracking the temporal evolution of complex fluid
systems that fully accounts for hydrodynamic interactions. After a basic
description of DPD and the problems to which it has been applied, the
question is taken up of mapping real systems, or atomistic models thereof,
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onto the coarse-grained models employed by DPD. Applications of DPD
for the simulation of polymer solution dynamics and microphase separation
in block copolymers are presented. Last but not least, the chapter by Andre
Zvelindovsky et al. gives an account of their dynamic density functional
theory (DFT), a mesoscopic functional Langevin approach for tracking
morphology development in complex soft-matter systems. The theoretical
underpinnings of the approach are explained, and applications are presented
from pattern-formation phenomena in complex copolymer systems and
solutions of amphiphilic molecules at rest, under shear, in the presence of
chemical reactions, or confined by solid surfaces.

We are grateful to all the contributors for their dedication and
painstaking work and for sharing our vision of a book on simulation
methods for polymers. Our families are thanked for their patience and
understanding of all the time we dedicated to the book, rather than sharing
it with them. We hope that the book may prove to be of considerable value
to students and practitioners of polymer simulation in academia and
industry.

Michael Kotelyanskii
Doros N. Theodorou
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1
Background

MICHAEL KOTELYANSKII Rudolph Technologies, Inc., Flanders, New
Jersey, U.S.A.

DOROS N. THEODOROU National Technical University of Athens,
Athens, Greece

I. BASIC CONCEPTS OF POLYMER PHYSICS

Polymers consist of very large molecules containing thousands or millions of
atoms, with molecular weights of hundreds of thousands g/mol or more.
They can be synthesized through polymerization or copolymerization
reactions from a wide variety of monomers. These large molecules can have
the simple topology of linear chains, most common for synthetic polymers,
or they can be rings, helices, combs, stars, or large networks. A macroscopic
piece of rubber, such as an automobile tire, is a network made of cross-
linked polymer molecules; it can be regarded as a single molecule built from
small monomer units, each unit containing tens to hundreds of atoms.

The large variety of chemical constitutions and molecular architectures
of polymeric materials is responsible for the wide range of properties they
exhibit. A great number of contemporary technological applications rely on
the peculiar mechanical properties of polymers. Most remarkable among
those is rubber elasticity, i.e., the ability of a material to deform to many
times its original size without breaking and to return to its original shape
when the stress is released. Also important are the toughness and ductility
exhibited by semicrystalline polymers, glassy polymers and blends, and the
strength of oriented semicrystalline and liquid crystalline polymers; these
properties, combined with light weight and processability, have formed
a basis for a great number of plastic, fiber, and structural material
applications. The rheological properties of polymers are key to the design of
processing operations such as extrusion, blow molding, and film blowing,
whereby they are shaped into the multitude of products we use in everyday
life and in advanced technologies. Permeability properties of polymers are
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important in the design of membranes for blood dialysis, water desalination
by reverse osmosis, and industrial gas separations, as well as in packaging
materials with barrier properties towards atmospheric gases. The surface
and interfacial properties of polymers and copolymers are critical to their
widespread use as adhesives, stabilizers of emulsions and suspensions,
compatibilizers of blends, coatings with controlled wettability, and
biocompatible materials. The optical and electronic properties of polymers
are important to common products, such as transparent packaging film and
PlexiglasTM windows, as well as to emerging applications such as polymeric
light-emitting diodes and optical switches.

In most cases, polymer materials with unique and valuable properties are
discovered by chance, or as a result of many years of painstaking trial-and-
error experimentation. The ability to design materials tailored for particular
applications is the major challenge of polymer materials science. In recent
years, computer simulations have proved to be very helpful in meeting this
challenge.

Analytical theory can only solve very simplified models of polymers,
leaving out many details of the polymer molecular structure, and even these
simplified models can be solved only using certain approximations.
Computer simulations allow study of a simplified model directly and thus
identification of whether discrepancies between theory and experiment are
due to the simplifications of the model, to the approximations used in
solving the theory, or to both. The simplified models help identify properties
that are more general and can be observed for polymers with sometimes
very different chemical structure, but having similar chain topology, or
flexibility, or charge distribution.

More realistic models that account for the details of chemical structure
of particular polymers help identify relationships between the ‘‘chemical
personality’’ of each polymer and the values of particular properties. The
use of realistic models has been popular in biological applications.

Polymer simulations started with lattice models, as exemplified by the
pioneering work of Wall and collaborators, first on single chains in the
1950s [1] and then on multichain systems [2], and also by the work of
Alexandrowicz and Accad [3]. Off-lattice Monte Carlo simulations of single
chains were presented by Lal in the late 1960s [4]. Continuum simulations of
multichain systems appeared in the 1970s, as exemplified by the work
of De Vos and Bellemans [5], by the pioneering molecular dynamics study of
liquid butane by Ryckaert and Bellemans [6], and by the work of Balabaev,
Grivtsov, and Shnol’ [7]. In 1980 Bishop et al. [8] presented continuum
simulations of a bulk polymer with chains consisting of freely-jointed
Lennard-Jones segments. An early molecular dynamics simulation of
polyethylene using a realistic model for both bonded and nonbonded
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interactions was presented in 1979 by Weber and Helfand [9], while
Vacatello et al. used a similar model to explore liquid triacontane in 1980
[10]. In parallel, important theoretical investigations pertaining to the
configuration-space distribution of polymer models were conducted by
Fixman [11] and by Go and Scheraga [12,13].

A. Interactions in Polymer Systems

In molecular systems, the potential energy function V(r) includes bonded
interactions between atoms connected by chemical bonds, and nonbonded
interactions between atoms of different molecules, or between atoms of the
same molecule which are not chemically bonded, for example between the
atoms of nonadjacent monomers of the same polymer chain.

Bonded interactions depend on the deviations of the chemical bond
lengths and bond angles from their equilibrium values, as well as on the
values of the dihedral (torsion) angles. The simplest and most often used
approach is to represent the bonded energy as a sum of three separate
contributions, described below:

VB ¼
X

b

Vb þ
X

�

V� þ
X

�

V� ð1Þ

The chemical bonds are very stiff, deviations from the equilibrium bond
length usually being much less than a tenth of an Å at room temperature.
Thus, the energy due to bond stretching is described by a harmonic
potential, proportional to the square of the deviation of the bond length
from its equilibrium value:

Vb ¼
1

2
kbðl � l0Þ

2
ð2Þ

The bond angles are less stiff than the bond lengths; nevertheless, at usual
temperatures they normally do not deviate by more than a few degrees from
their equilibrium values. The bond angle potential is also fairly well
approximated by a harmonic potential

V� ¼
1

2
k�ð� � �0Þ

2
ð3Þ

Torsional potentials describe the energy change due to rotation around a
bond. This energy originates from interactions between the atoms connected
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to the atoms linked by the bond, and possibly spin–spin interactions
between the binding electrons from the adjacent bonds. The torsion angles
define the conformation of the polymer molecule. The torsional potential is
a periodic function* of the torsion angle �. Its minima correspond to the
conformations where the molecule likes to spend most of its time. For
butane, shown in Fig. 1, the minima correspond to the trans-(�¼ p) and the
two gauche-(�¼�p/3) conformations.y

Typically, the torsional potential is represented as a Fourier series

V� ¼
X

n

An cosðn�Þ ð4Þ

Nonbonded interactions between skeletal or pendant atoms connected to
the two ends of the bond, whose relative position changes when � is
changed, may be considered as separate nonbonded components of the
energy or may be incorporated as part of V�.

The constants kb, l0, �0, An differ for different kinds of bonds. They are
usually adjusted to fit experimental data or results of quantum chemical

*Full 360 degrees rotation around the bond does not change the energy. If some of the pendant

atoms happen to be the same, the period can be less than 360 degrees.
yThe reader should be careful about the conventions used in measuring torsion angles. The old

convention places �¼ 0 at trans, the newer convention places �¼ 0 in the energetically most

unfavorable conformation where all four carbon atoms are on the same plane, atoms 1 and 4

being on the same side of the middle bond between 2 and 3 [14]. In both conventions, � is taken

as positive when it corresponds to rotation in a sense that would lead to unscrewing if the

middle bond were a right-handed screw.

FIG. 1 Bond angles (�1, �2), and torsion angle (�) in the butane molecule. For

simplicity, only the carbon atoms are shown.
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calculations, or both. More sophisticated representations of the bonded
interactions, designed to better fit experimental data and ab initio
calculation results, may include cross-terms that simultaneously depend
on bond lengths, bond angles and torsions [15].

Nonbonded interactions are typically modeled as electrostatic interac-
tions between partial charges on the atoms, London dispersion forces due to
correlated fluctuations of the electronic clouds of the atoms, and exclusion
forces at short distances. They depend on the distance between the atoms
rij¼ |ri � rj|, and are represented as a sum of Coulomb and Lennard-Jones
potentials.

VNB ¼
X

ij

VLJðrijÞ þ
X

ij

VqðrijÞ ð5Þ

VLJðrijÞ ¼ 4 �
�

rij

� �12

�
�

rij

� �6
 !

ð6Þ

VqðrijÞ ¼ �
1

4p�0

qiqj

rij
ð7Þ

Here � and � are parameters dependent on the type of atoms. � is the well
depth of the Lennard-Jones potential achieved at rij ¼ r0 ¼

ffiffiffi
26

p
�. The r�6

attractive term in the Lennard-Jones (LJ) potential finds theoretical justifi-
cation in the 1930 quantum mechanical perturbation theory calculation of
London. Recent modeling work has shown that an exponential term,
A exp(�kr), for excluded volume interactions provides a more satisfactory
representation of thermodynamic properties than the r�12 term of the LJ
potential. Such an exponential term for the repulsions also has better
theoretical justification.
�0 is the dielectric permittivity of free space, equal to 8.854�

10�12 C/(mV) in SI units and to 1/(4p) in cgs units. Potential parameters
are not just different for different elements, they also change depending on
what molecule or group the atoms belong to. For example, the values
typically used for the Lennard-Jones � for a carbon in an aromatic ring are
higher by almost a factor of two than the corresponding values for an
aliphatic carbon in the polyvinyl chain backbone. Partial charges on atoms
are determined by the electron density distribution within the molecule.
They are usually obtained from quantum ab initio or semiempirical
calculations and sometimes adjusted to reproduce experimentally measured
multipole moments of low-molecular weight analogs.

The set of parameters describing the interatomic interactions is often
referred to as a ‘‘force field.’’ Most popular force fields [15–17] are adjusted
to fit the experimental and quantum calculation results over a wide range of
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organic compounds. Parameters for the same atoms may be quite different
between different force fields.

The way the potential energy function is split into various kinds of
interactions is quite arbitrary and may vary from one force field to another.
Two different force fields may give very similar energy for the same
molecule in the same conformation, but the individual contributions:
torsional, nonbonded, bond angles, etc. may be quite different in different
force fields. This is why it is generally dangerous to ‘‘mix’’ force fields, i.e.,
take, say, the Lennard-Jones parameters from one force field and bonded
parameters from another.

In polymer simulations energy is usually expressed in kcal/mol or kJ/mol,
distances in Å and angles in radians or degrees, so the dimensions of
the constants are the following—kb: kcal/(mol Å2), k�: kcal/(mol rad2),
An: kcal/mol, �: kcal/mol, rij, �, l, and l0: Å, charges qi: multiples of the
elementary charge e¼ 1.6022� 10�19 C.

B. Simplified Polymer Chain Models

From typical values of bonded and nonbonded interaction parameters one
can conclude that the fastest motions in a polymer system are the chemical
bond stretching vibrations, their frequencies typically being on the order of
1014Hz; bond angle bending vibrations and torsional librations are about 10
times slower. Conformational (e.g., gauche$ trans) isomerizations over the
free energy barriers separating torsional states occur with rates on the order
of 1011Hz or slower at room temperature. The characteristic time for the
end-to-end distance of a sequence of monomeric units to lose memory of its
orientation through these elementary motions grows rapidly with the length
of the sequence. The characteristic time for a chain in a melt of moderate
molecular weight (say, C10,000 linear polyethylene) to diffuse by a length
commensurate to its size and thus forget its previous conformation can well
exceed 1ms.

Most interesting polymer properties are observed at frequency scales of
106Hz and lower* This means that, in order to compare atomistic
simulation results to experiment, one should be able to reproduce the
model behavior at time scales spanning more than 10 orders of magnitude!
This task would be daunting even for a computer 10,000 times faster than
the most powerful supercomputers available today.

*These are the typical working frequency ranges for routine dielectric relaxation and rheological

experiments. More sophisticated techniques, such as NMR relaxation and inelastic neutron

scattering, are sensitive to higher frequencies up to 1012Hz.
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Very large model systems, which are often necessary to track the
morphological characteristics responsible for the peculiar properties of
polymers, also present a great challenge in polymer simulations. Detailed
atomistic multichain polymer models used today seldom contain more than
a few thousands of atoms, although domain decomposition strategies on
parallel machines offer the possibility of going up to millions of atoms.

General computer simulation techniques useful for both low-molecular
weight molecules and polymers have been covered in some excellent
textbooks. We will briefly go over the fundamentals of these techniques in
this chapter. The major focus of the book, however, is on specific
approaches developed to handle the long time- and length scale challenges
of polymer problems. By necessity, these techniques must be hierarchical
ones, involving several levels of description, each designed to address a
specific window of time- and length scales. Going from one level to another
should entail a systematic coarse-graining procedure, wherein the detailed
information from more fundamental (shorter time- and length scale) levels
of modeling is built into some key parameters invoked by the more
macroscopic levels.

Analytical polymer theories usually address simplified models of polymer
chains, which capture universal features such as the chain topology,
flexibility, etc. Despite lacking many fine details, such models still manage to
predict, sometimes even quantitatively, many physical properties of polymer
networks, solutions, and melts. When a simplified general model turns out
to be capable of describing a particular polymer property or phenomenon,
this means that it successfully captures the relevant physics. Such results
provide valuable understanding of which particular features (e.g., chain
length, architecture, stiffness) are mainly responsible for a particular
property. Many polymer-specific effects and properties, such as rubber
elasticity, the viscoelastic rheological response of melts in the terminal
region, and overall molecular shapes in dilute solutions and melts in the
bulk and next to nonadsorbing surfaces, are similar for polymers of different
chemical structures. They can be rationalized with relatively simple argu-
ments based on the decrease of entropy associated with chain extension and
on environment-dependent excluded volume interactions between segments.

Figure 2 shows the most popular simplified models of polymer chains
[18,19].

The freely-jointed chain model (Fig. 2a) is the simplest; it has been
described as the ‘‘ideal gas’’ of polymer physics, as all interactions between
the chain segments, except the chemical bonds connecting them, are
neglected. The model represents a chain as a sequence of steps, or rectilinear
statistical (Kuhn) segments, connected together at their ends. Each
statistical segment represents a sequence of several chemical bonds,
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depending on the conformational stiffness of the chain. The steps can point
in any direction, the directions of different steps being completely
independent, and the chain can intersect itself. Clearly, this model is
identical to the random flight model. It can easily be shown that the
probability to observe a certain value of the vector R connecting the two
ends of a sufficiently long freely-jointed chain obeys a Gaussian distribution
with zero average and mean squared value

hR2i � hR2i ¼ NKb
2
K ð8Þ

for a chain of NK statistical segments, each of length bK. This is one of the
most fundamental results of polymer science; its derivation and corollaries
can be found in polymer textbooks [18–20]. The radius of gyration tensor,
characterizing the average shape of the chain, and its properties can also
be calculated. Once the distribution is known, all the statistical and
thermodynamic properties of the ideal chain can be obtained.

A real chain whose conformation is governed only by local (effective)
interactions along its contour can be mapped onto a freely-jointed chain by
requiring that Eq. (8) is satisfied, and also that the contour length of the
freely-jointed chain, NKbK, matches that of the real chain at full extension.

FIG. 2 The most common simplified models of polymer chains: freely-jointed chain

(a), bead-spring chain (b), rotational isomer model (c), and the typical torsional

potential V(�) for butane molecule (d).
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The distribution of the distance between two points in the freely-jointed
chain is also well approximated by a Gaussian distribution, but with the
chain length NK in Eq. (8) replaced by the number of statistical segments
between the points. This makes a freely-jointed chain self-similar on various
length scales. If we look at it with different spatial resolutions it looks the
same, as long as the resolution is much larger than bK and less than N1=2

K bK .
The bead-spring model (Fig. 2b) represents a polymer chain as a

collection of beads connected by elastic springs. It, too, is a coarse-grained
model. The coarse-graining is based on the polymer chain self-similarity,
with a single bead corresponding to a chain fragment containing several
monomers. Springs reproduce the Gaussian distribution of separations
between monomers connected through a large number of chemical bonds.
The spring constant is given by ð3kBTÞ=hR2

spi, where hR
2
spi is the mean square

end-to-end distance of the actual chain strand represented by the spring. The
spring reproduces the entropic free energy rise associated with the reduction
of conformations of a strand as its two ends are pulled apart.

The rotational isomer model (Fig. 2c) makes a step from the freely-
jointed chain towards the geometry of the real polymer. It invokes fixed,
realistic values for the chemical bond lengths ‘ and the chemical bond angles
�, and a potential energy function Vð�2,� 2, . . .Þ. Figure 2d schematically
shows the torsional potential for a butane molecule, containing only three
backbone C–C bonds, where it is a function of only one angle. The
rotational isomer model addresses unperturbed chains, i.e., chains whose
conformation remains unaffected by nonlocal interactions between topolo-
gically distant atoms along the backbone. Under unperturbed conditions,
V(�2,�3, . . .) can be written as a sum of terms, each depending on a small
number (usually two) of adjacent torsion angles. A rotational isomer chain
of sufficient length also follows the scaling relation of Eq. (8), which can be
written more specifically in terms of the number of chemical bonds N along
the backbone and the length of a bond ‘ as [20,18]:

hR2i ¼ C1N‘2 ð9Þ

The characteristic ratio C1 characterizes chain flexibility. It depends on
the � and torsional potential and is determined by the chemical structure of
the monomers [20]. The rotational isomeric state (RIS) model, introduced
by P.J. Flory [20] is essentially an adaptation of the one-dimensional Ising
model of statistical physics to chain conformations. This model restricts
each torsion angle � to a discrete set of states (e.g., trans, gaucheþ,
gauche�), usually defined around the minima of the torsional potential
of a single bond, V(�) (see Fig. 2d). This discretization, coupled with the
locality of interactions, permits calculations of the conformational partition
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function, the C1, and conformational averages of many properties by
matrix algebra, once a set of statistical weights is available for all pairs of
torsional states assumed by successive bonds. The latter weights can be
determined by atomistic conformational analysis of oligomers. Extensions
to chains containing several types of chemical bonds and to nonlinear
chemical architectures have been made. The RIS model is described in detail
in chapter 2 by E.D. Akten, W.L. Mattice, and U.W. Suter, and in the
book [14].

Unperturbed conditions are realized experimentally in bulk amorphous
polymers and in dilute solutions in specific (rather bad) solvents at specific
temperatures, defining the so-called � point. For a chain dissolved in a good
solvent, nonlocal interactions cannot be neglected; polymer segments strive
to maximize their favorable contacts with solvent molecules, leading to a
repulsive intersegment potential of mean force. These repulsions prohibit
chain self-intersections. The simplest mathematical model describing this
effect is the ‘‘self-avoiding’’ random walk (SAW). The SAW problem can
only be solved numerically using computer simulations. The end-to-end
distance of a SAW follows the scaling hR2

i /N� with � (the excluded volume
exponent) close to 0.6, i.e., significantly different from the value 0.5
characteristic of unperturbed chains. This is easy to understand, as the
repulsion between monomers leads to an increase in coil size.

All major simulation techniques described in the rest of this book are
applicable to these simplified models, as well as to the detailed atomistic
models. Simulations of the simplified models, however, require much less
computer power. They are helpful in studying phenomena where universal
chain characteristics, such as chain length, flexibility, and topology are of
interest.

C. Unperturbed Polymer Chain

As already mentioned, a popular descriptor of the overall size of a polymer
chain is the mean squared end-to-end distance hR2

i. For a chain of Nþ 1
identical monomers, linked by N bonds of length ‘, the end-to-end vector is
a sum of bond vectors ‘i ¼ ri � ri�1, and its mean square is:

hR2i ¼
XN

i¼1

‘i

 !2* +
¼ 2

XN�1

i¼1

XN

j¼iþ1

h‘i � ‘ji þ
XN

i¼1

h‘i � ‘ii

¼ 2
XN�1

i¼1

XN�i

k¼1

h‘i � ‘iþki þN‘2 ð10Þ
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For very long chains, ignoring end effects, we can write

hR2i ¼ N‘2 þ 2‘2
XN�1

k¼1

ðN � kÞh‘1 � ‘kþ1i=‘
2

¼ N‘2 þ 2N‘2
X

k

ð1� k=NÞCðkÞ ð11Þ

Here C(k) is a bond direction correlation function. As the number of mono-
mers separating two bonds increases, their directions become uncorrelated,
and hence C(k) is a decreasing function of k. For a random walk, C(k)¼ 0
for all k� 1. For an unperturbed chain, C(k) falls exponentially with
increasing k at large k and C¼ 1þ 2

P
kC(k).

The mean squared end-to-end distance of a linear unperturbed chain of N
monomers is proportional to N. As R is a sum of a large number of
independent random vectors, the probability density for the end-to-end
separation vector to have a certain value R is given by a Gaussian
distribution:

�NðRÞ ¼
3

2phR2i

� �3=2

exp �
3

2

R2

hR2i

� �
ð12Þ

The quantity �kBT ln �N(R) is a conformational free energy associated
with the fact that a given end-to-end vector R can be realized through a large
number of conformations.

When the chain is deformed, the distribution of end-to-end distance
vectors will change towards less probable values, thus reducing the polymer
chain entropy and causing an increase in free energy.

A rubber is a network built of cross-linked chains; the above reasoning
explains, at least qualitatively, the mechanism of rubber elasticity.

The conformation of a chain of Nþ 1 segments, numbered from 0 to N,
can also be characterized by the mean square radius of gyration:

hR2
gi ¼

1

ðN þ 1Þ2

XN�1

i¼0

XN

j¼iþ1

ðri � rjÞ
2

* +
ð13Þ

or by the hydrodynamic radius

Rh ¼
1

2

1

ðN þ 1Þ2

XN�1

i¼0

XN

j¼iþ1

1

jri � rjj

* +" #�1

ð14Þ
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measured by elastic and inelastic light scattering techniques, respectively.
The former is related to the coil size and shape, while the latter describes a

coil’s hydrodynamic properties, as inelastic light scattering measures the

self-diffusion coefficient of polymer coils in dilute solution.
It can be shown, that, for large chain lengths, both hydrodynamic and

gyration radii of the polymer coil can be expressed in terms of the average
end-to-end distance [19]:

hR2
gi ¼

1

6
hR2i

Rh ¼
3p
128

� �1=2

hR2i1=2 ð15Þ

D. Mixing Thermodynamics in Polymer–Solvent
and Polymer–Polymer Systems

The fact that a polymer molecule consists of a large number of monomers
linked together in a chain is responsible for various properties, which are
specific to polymers in solution and in the melt. Polymer solutions have very
different properties, depending on concentration. As the concentration
increases, a polymer solution changes from the dilute to the semidilute, to
the concentrated regimes.

When the concentration is very small, polymer coils do not contact each
other. The effect of the polymer on the solution properties is additive,
consisting of single-coil contributions.

In the semidilute solution the monomer volume fraction is still very low,
but the polymer coils begin to overlap and entangle with each other. This is
possible because the monomer concentration in the Gaussian coil is
relatively low. Indeed, N monomers in a good solvent occupy a volume of
the order of magnitude of R3 / ‘3N9=5, so that the average monomer
density in a coil is of the order of ‘�3N�4=5. The coils will begin to touch
when the polymer volume fraction in the solution becomes �*/N�4/5. This
concentration, which can be very low for large N, marks the boundary
between dilute and semidilute regimes.

Concentrated solutions with polymer fraction on the order of 1 behave
pretty much like polymer melts.

Polymers are in general much less soluble and miscible with each other,
compared to the corresponding monomers under the same conditions.
Miscibility or solubility is defined by the balance of the entropy gain and
energy loss or gain upon mixing. Consider mixing substance A with
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substance B. If the interactions between molecules of different components
(AB interactions) are stronger than between molecules of the same kind (AA
and BB interactions), mixing is favorable at all temperatures. Such a system
is always miscible. Usually this case is realized when there are some specific
interactions (e.g., acid–base, hydrogen-bonding) between A and B. More
common is the case where AB interactions are energetically less favorable
than AA and BB interactions. This is typically the case for nonpolar
substances held together by London dispersion forces. In this case, mixing
occurs above a certain temperature, when the entropic contribution �T�S
to the free energy of mixing overcomes the unfavorable positive energy of
mixing. The entropy gain upon mixing is due mainly to translational
entropy of the molecules. In the mixture, each A and B molecule can occupy
the whole volume occupied by the mixture, while in the phase-separated case
each molecule is localized in the volume occupied by the particular phase.

In polymer chains large numbers of monomers are linked together,
therefore, the translational entropy gain upon mixing per unit mass or
volume is much smaller than in the case of mixing unlinked monomers. The
entropy gained by a monomer in a liquid of unlinked monomers is now
gained by each polymer molecule, and thus the entropy gained per mole of
monomers is many times less in the polymer case. One of the most
fundamental results of polymer thermodynamics, first derived (indepen-
dently) by Flory and Huggins [20,21] through a lattice-based mean field
theory, states that the free energy change per mole of segments upon mixing
polymer chains made up of A-type segments with chains made up of B-type
segments of lengths NA and NB, respectively is:

�Gmix

RT
¼

1

NA
�A lnð�AÞ þ

1

NB
ð�BÞ lnð�BÞ þ ��A�B ð16Þ

In the theory, A and B segments are envisioned as equal in volume, occupy-
ing sites on a lattice of coordination number Z. �A is the volume fraction of
A-type segments in the system, �B¼ 1��A is the volume fraction of B-type

segments. �¼ (Z/kBT)("AB � 1/2"AA � 1/2"BB) is the Flory interaction
parameter, describing the interaction energy difference between unlike-
and like- segment interactions occupying adjacent sites on the lattice. The
parameter � is positive for most polymer mixtures. From Eq. (16) it is seen

that the entropy gain per mole of segments upon mixing polymers is smaller
than the corresponding gain for mixing monomers (NA¼NB¼ 1) by a factor
equal to the inverse chain length. This explains the difficulty in mixing

different polymers. For NA¼NB¼N, Eq. (16) predicts an upper critical
solution temperature which scales proportionally with the chain length,
�N assuming a value of 2 at the critical point. Traditionally, a strategy
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for achieving miscible blends has been to use systems capable of developing

specific interactions, which can make � negative.
As we discussed above, polymer chains are not rigid bodies, and there is

an entropy associated with the different polymer chain conformations.
Polymer chains usually contain very large numbers of monomers (thousands
or more), and, provided that environmental conditions ensure the same
excluded volume exponent �, all polymers with the same chain topology are
similar at the length scales comparable to the chain radius of gyration.
Flory’s model is the simplest; it assumes that chain conformation does not
change upon mixing, and therefore there is no conformational entropy
contribution in Eq. (16). This contribution is, however, very important in
many cases and has to be taken into account to explain the thermodynamics
and phase behavior of mixtures and solutions where chain conformation is
different in different phases, for example in systems containing block
copolymers, chains next to surfaces or in restricted geometries, in the
swelling of polymer gels etc. [19,22,23].

E. Polymer Chain Dynamics

The motion of a large polymer molecule is quite complex. Even though
individual atoms move about with the same equilibrium distribution of
speeds as if they were disconnected, their motion is constrained by the
chemical bonds keeping the chain together. Longer and longer parts of the
chain need longer and longer times to rearrange, and quantities depending
on overall conformation, such as the end-to-end distance or the radius of
gyration, take a very long time to forget their original values.

A general characteristic of polymer liquids is their viscoelastic response
to flow. Because of the long relaxation times associated with large-scale
conformational rearrangements, chains subjected to a fast flow field are
oriented, or even unraveled by the flow. Part of the energy imparted by the
flow is stored as elastic free energy and is released upon cessation of the
flow, when chains spring back to their unperturbed conformations causing
macroscopic recoil phenomena. Polymeric fluids have memory, and this is
of paramount importance to their processing and applications.

The dynamics of a coil in a low-molecular weight melt can be described
well by an ingeniously simple model, the Rouse model [18]. This model
represents a polymer chain as a set of beads connected by harmonic springs
(compare Fig. 2b). The beads move as (tethered) Brownian particles subject
to random forces and to frictional forces proportional to their velocity
exerted from their environment (see Section I.F). For a linear polymer chain
the Rouse model predicts that the longest relaxation time (time needed for
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the chain center of mass to diffuse by a length commensurate to hR2
i
1/2,

approximately equal to the time needed for the end-to-end vector R to lose
memory of its original orientation) is proportional to the chain length
squared N2. The viscosity of a melt in the molecular weight range described
by the Rouse model is also proportional to N and the self–diffusivity of
a chain is proportional to N�1.

The Rouse model has been extended to deal with the dynamics of chains
in dilute solution [18]. In solution a moving bead perturbs the solvent
flow around another bead, leading to effective, so-called hydrodynamic,
interactions. The Zimm model generalizes the Rouse model by taking
hydrodynamic interactions into account.

As the molecular weight of a polymer melt increases, it is envisioned that
entanglement constraints arise between different polymer coils, making
relaxation even slower. Experimentally, it is found that the viscosity of the
melt rises with increasing chain length as N3.4. The reptation theory of
polymer dynamics [18] postulates that long chains move in a Rouse-like
fashion along their contour (primitive path), while motion normal to the
primitive path is constrained by entanglements. The reptation model in its
original formulation predicts a relaxation time and a melt viscosity which
scale as N3, and a chain self-diffusivity which scales as N�2. Several
extensions and refinements of the reptation model have appeared.

The slow dynamics of polymers presents a formidable challenge for
computer simulations, as on the one hand the most interesting polymer-
specific phenomena occur at time scales comparable with the relaxation
times of the whole chain, but on the other hand to reproduce the motion
correctly one has to solve the equations of motion with a time step smaller
than the period of the fastest monomer motions. Using coarse-grained
models in the simulation is one way in which one may try to overcome this
problem.

F. Glass Transition Versus Crystallization

Low-molecular weight liquids usually crystallize upon cooling. Very fast
cooling rates are usually required to form a glass (amorphous solid).
Contrary to that, because of their very slow relaxation, polymer melts are
much more viscous, and the glassy state is the most common for solid
polymers. Many polymers, such as atactic vinyl polymers, cannot crystallize
due to their irregular stereostructure. In polymers crystallized from the
melt, the crystalline phase is usually only around 10–50%. The degree of
crystallinity and the morphology of semicrystalline polymers are highly
dependent on the conditions of temperature and processing flow under
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which they are formed. A high degree of crystallinity is usually obtained
by cooling the polymer from a highly oriented liquid crystal state, or by
stretching.

Semicrystalline polymers also exhibit very different behavior under
deformation. When stretched, crystals of low-molecular weight substances
usually break at an elongation of several percent. Semicrystalline polymers
can deform up to 100% without breaking; on the contrary, the elastic
modulus increases with increasing elongation (strain-hardening effect). This
is because, at high deformations, polymer chains in the amorphous regions,
which may grow at the expense of the crystalline regions, begin to stretch
and align along the direction of deformation, leading to a higher elastic
modulus.

Our fundamental understanding of glass formation, even in low-
molecular weight fluids, is still incomplete. The mode coupling theory
[24,25] describes the falling out of ergodicity at a critical temperature which
is substantially higher than the glass temperature Tg, where macroscopic
manifestations of solidification are seen in volume, enthalpy, and elastic
constant measurements.

From a practical viewpoint, one can say that glass formation occurs
because the characteristic time of segmental motions (motions associa-
ted with the �-mode of relaxation measurements) is a very strongly
increasing function of temperature. As temperature is decreased, segmental
motions become slower and slower, until there comes a point where the rate
of segmental motion cannot keep up with the rate of change in temperature.
The system is no longer capable of exploring its entire configuration space
over ordinary time scales and is confined within a small region of that
space, containing at least one local minimum of the potential energy V.
Macroscopically, a change in slope is seen in the specific volume vs. tem-
perature and specific enthalpy vs. temperature curves. The glass tempera-
ture, Tg, depends, to a certain extent, on cooling rate. It is typically reported
for cooling rates on the order of 1K/min.

A glassy material is not in thermodynamic equilibrium. Its physical
properties change gradually with time (‘‘physical ageing’’). The time scales
of these changes, however, are enormous a few decades of degrees below Tg,
so that the material can be regarded as a dimensionally stable solid for all
practical purposes.

The temperature dependence of the characteristic time 	 of molecular
motions responsible for the glass transition is strongly non-Arrhenius.
Above Tg it is described by the Vogel–Fulcher law

	ðTÞ ¼ 	0 exp
TA

T � TV
ð17Þ
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with TA (activation temperature) and TV (Vogel temperature) being
constant.

The ratio of characteristic times at two temperatures T�To,
aT¼ 	(T )/	(To) , (shift factor) consequently follows the Williams–Landel–
Ferry (WLF) equation

log aT ¼ �C1
T � To

T � To þ C2
ð18Þ

When the reference temperature To is chosen as the calorimetric glass tem-
perature, Tg, the constants fall in relatively narrow ranges for all polymers:
C1¼ 14 to 18 and C2¼ 30 to 70K [26]. At the glass temperature, 	 is on the
order of 1min.

II. STATISTICAL MECHANICS

A. Trajectories in Phase Space

In classical mechanics, the state of a molecular system is described by
positions of atomic nuclei and their time derivatives—velocities (or
momenta). Each state represents a point in the multidimensional space
spanned by positions and momenta, which is termed the phase space of
the system. The position vectors of the atoms, or the set of generalized
coordinates providing the same information as atomic positions, are called
degrees of freedom; they span the configuration space of the system. The
space spanned by the momenta (or generalized momenta) of the degrees
of freedom is called momentum space. The evolution of the system’s
microscopic state with time can be represented as a set of state points,
corresponding to successive moments in time. This set defines a line in phase
space, which constitutes the system’s dynamical trajectory. The following
Fig. 3 shows the simplest example of state points and trajectories in phase
space. Notice that not just any line can represent a trajectory. The line
crossed out in Fig. 3 cannot be a trajectory. It corresponds to the impossible
situation where the coordinate is increasing with time, while the velocity is
negative.

B. Classical and Quantum Mechanics

In both quantum and classical mechanics, a system is defined by its degrees
of freedom and by its potential and kinetic energy functions. In a quantum
mechanical description, electrons, in addition to nuclei, are included among
the degrees of freedom. Given the potential and kinetic energies as functions
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of the degrees of freedom, we can write the equations of motion and, in
principle, we should be able to predict the system’s motion under any given
initial conditions by solving these equations. Unfortunately, the situation is
not so simple for at least two reasons. First, in the majority of cases, it turns
out that the equations are too complex to be solved, even numerically.
Imagine that to describe the motion of 1 cm3 of water classically we need to
store positions and velocities for about 1022 molecules and solve the same
number of equations. Just the storage is beyond the capacity of the most
powerful computer available today.

A second difficulty is that equations of motion are highly nonlinear
and therefore lead to instability with respect to initial conditions. Small
uncertainties in the initial conditions may lead to large deviations in the
trajectories. Two trajectories starting at almost the same state point will
diverge exponentially with time, a small uncertainty in the initial coordinates
or velocities making the motion completely unpredictable. If we are trying
to describe a molecular system in a cubic container of side L, when the
uncertainty in the calculated particle coordinates becomes of the same order
of magnitude as the characteristic model size L, the prediction becomes
totally worthless.

The latter, however, can be turned into an advantage. The inherent
mechanical instability and complexity of the motion justifies a statistical
description of the system. In contrast to the deterministic approach, i.e.,

FIG. 3 State points at different moments in time t1<t2<t3 and trajectory in the

phase space {x, p} for two free particles traveling along the x axis with different

velocities _xxi ¼ vi and momenta pi¼mivi. Particle 2 goes to the left ( p2<0). The

crossed out trajectory is impossible.
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trying to follow the motion of every molecule as closely as possible, the
statistical approach concentrates on the average properties calculated over
the system’s trajectory or over phase space.y As was demonstrated by the
founding fathers of statistical mechanics, L. Boltzmann and J.W. Gibbs in
the late 19th century, these trajectory or phase space averages are directly
related to the experimentally observed thermodynamic properties.

In general, molecular motion should be described using the laws of
quantum mechanics. In quantum mechanics dynamical trajectories them-
selves are probabilistically defined entities. The state of the system is
described by a probability amplitude function, �, which depends on
coordinates and, possibly, spin states of all nuclei and electrons present in
the system. �*� is the probability density for observing the system in
a particular point in phase space. Motion of the system, or in other words
its change in state with time, is described by the time-dependence of the
�-function. It is determined by solving the Schrödinger equation:

X

i

�
�h2

2mi
r2
ri
�þ V� � ĤH� ¼

@�

@t
ð19Þ

Here, mi is the mass of particle i, V is the potential energy, a function of the

positions of electrons and nuclei, and ĤH is the Hamilton operator.z

Equation (19) is a partial differential equation. The number of its
variables equals the total number of electron and nuclear coordinates and
spin states, or in other words the total number of degrees of freedom.
Solving this equation is a very difficult, virtually impossible task, but
fortunately it can be simplified by the following two approximations.

First, the nuclei of almost all atoms, except maybe hydrogen and helium,
are heavy enough for the classical approximation to describe their motion
sufficiently well at normal temperatures.

Electrons, on the other hand, being several thousand times lighter than
nuclei, move much faster. The second approximation is to assume that the
electrons adjust practically instantaneously to the current positions of the
nuclei. Given a particular set of nuclear coordinates, the electron state is
adjusted to make the total potential energy of the system minimal with
respect to the electron state. This approximation is called adiabatic, or

yThe equivalence of these two averages is the essence of a very important system property called

ergodicity, which deserves a separate subsection further in this chapter.

zA hat is used here to emphasize that, in quantum mechanics, the Hamiltonian is an operator

acting on the � function and not just a function of particle coordinates and momenta, as in

classical mechanics.
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the Born–Oppenheimer approximation; in engineering language, it is a
‘‘quasi-steady state’’ approximation for the electrons. The adiabatic
approximation may not be applicable when electron excitation processes
are important, for example in the case of chemical reactions or conforma-
tional changes induced by the absorption of light.

The adiabatic approximation is very helpful because, if the electron states
are adjusted to the positions of the nuclei, the system’s state can be described
by the coordinates of the nuclei alone. The number of degrees of freedom is
then significantly reduced. Accordingly, in the Schrödinger equation, V is
replaced by the effective potential V(rn)¼V(rn, e0(rn)), where  e0(rn)
describes the electron state providing the lowest potential energy for the
given set of nuclear coordinates rn, and is thus also a function of the nuclear
coordinates. The accuracy of U(rn) determines the accuracy of quantities
calculated from computer simulations.

An approach for tracking electronic degrees of freedom in parallel with a
numerical integration of the classical equations of motion for the nuclei, and
therefore determining V(rn) ‘‘on the fly,’’ has been devised by Car and
Parrinello [27]. This extended ensemble molecular dynamics method, termed
‘‘ab initiomolecular dynamics,’’ solves the electronic problem approximately
using the Kohn–Sham formulation of Density Functional Theory. This
approach proved useful for covalent systems; it still has to be applied to
the systems where the properties of interest are defined by Lennard-Jones
interactions.

C. Classical Equations of Motion

When the interactions in the molecular system are known, the classical
description can be cast in one of three different forms: Hamilton, Newton,
or Lagrange equations of motion. Consider a molecular system with
potential energy Vðq1, q2, . . . , qNf

Þ and kinetic energy Kðq1, q1, . . . , qNf
,

_qq1 , _qq2 , . . . , _qqNf
Þ or Kðq1, q2, . . . , qNf

, p1, p2, . . . , pNf
Þ, where qi are generalized

coordinates with _qqi being their time derivatives, and pi are generalized
momenta. The configuration space and momentum space are both
Nf -dimensional, where Nf is the total number of degrees of freedom. The
phase space is 2Nf -dimensional. When Cartesian coordinates of the atoms
are used as degrees of freedom, a triplet of qi stands for the position vector
of an atom, rk, and a triplet of pi stands for an atomic momentum vector
pk ¼ mk _rrk ¼ mkvk. In this case, the kinetic energy can simply be written as

K ¼
X

i

p2i
2mi

¼
X

k

p2k
2mk

¼
X

i

1

2
mi _qq

2
i ¼

X

k

1

2
mkv

2
k
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The three different forms of the equations describing the motion of

atoms are:

. Hamilton equations

H q1, q2, . . . , qNf
, p1, p2, . . . , pNf

� �
¼ Kþ V

@qi
@t

¼
@H q1, q2, . . . , qNf

, p1, p2, . . . , pNf

� �

@pi

@pi
@t

¼ �
@H q1, q2, . . . , qNf

, p1, p2, . . . , pNf

� �

@qi

ð20Þ

. Newton equations

dri

dt
¼ vi

mi
dvi

dt
¼ f i

f i ¼ �
@V r1, r2, . . . , rNf =3

� �

@ri
ð21Þ

. Lagrange equations

L q1,q2, . . . ,qNf
, _qq1 , _qq2 , . . . , _qqNf

� �
¼K�V

_qqi ¼
dqi

dt

d

dt

@L

@ _qqi
¼
@L q1,q2, . . . ,qN , _qq1 , _qq2 , . . . , _qqN
� �

@qi

ð22Þ

In the above, Hðq1, q2, . . . , qNf
, p1, p2, . . . , pNf

Þ and L q1, q2, . . . , qNf
,

�
_qq1 ,

_qq2 , . . . , _qqNf
Þ stand for the Hamiltonian and Lagrangian functions of the

system, respectively. As an illustration, let us consider these equations for

two examples. The first is a monatomic fluid, and the second is a harmonic

oscillator.
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A monatomic fluid is governed by a potential energy function of the form
V(r1, r2 , . . . , rN). The degrees of freedom are the 3N Cartesian coordinates
{r1, r2 , . . . , rN}. The Newton equations are:

dri

dt
¼ vi

mi
dvi

dt
¼ f i

f i ¼ �
@V

@ri
� �rriV ð23Þ

If we use {r1, r2 , . . . , rN} as the generalized coordinates, the Lagrangian is
a function Lðr1, r2, . . . , rN , _rr1 , _rr2 , . . . , _rrNÞ, and the Lagrange equations of
motion are:

_rri ¼
dri

dt

Lðr1, r2, . . . , rN , _rri , _rr2 , . . . , _rrNÞ ¼ K � V ¼
XN

i¼1

1

2
mi _rr

2
i �Vðr1, r2, . . . , rNÞ

d

dt

@L

@ _rri
¼ mi

d2ri

dt2
¼
@L

@ri
¼ �rriV ð24Þ

The Hamiltonian function and Hamilton equations are:

H r1, r2, . . . , rN , p1, p2, . . . , pN
� �

¼ Kþ V

H ¼
XN

i¼1

p2i
2mi

þ Vðr1, r2, . . . , rNÞ

@ri
@t

¼
@H

@pi
¼

pi

mi

@pi
@t

� mi
dvi

dt
¼
@H

@ri
¼ �rriV ð25Þ

In the special case where V(r1, r2 , . . . , rN)¼ 0 for all configurations, the
above equations describe an ideal monatomic gas. The ideal gas particles
travel with their velocities not changing with time. This is because they do
not interact with each other or with anything else. The ideal gas is a limiting
case of a system with no interactions; it is a simple system, whose statistical
mechanics can be solved exactly. It is used as a reference to build more
complex systems, where interactions are non-negligible.

22 Kotelyanskii and Theodorou



Another very important analytically solvable case is the harmonic
oscillator. This term is used for a mechanical system in which potential
energy depends quadratically on displacement from the equilibrium
position. The harmonic oscillator is very important, as it is an interacting
system (i.e., a system with nonzero potential energy), which admits an
analytical solution. A diatomic molecule, linked by a chemical bond with
potential energy described by Eq. (2), is a typical example that is reasonably
well described by the harmonic oscillator model. A chain with harmonic
potentials along its bonds (bead-spring model), often invoked in polymer
theories such as the Rouse theory of viscoelasticity, can be described as a set
of coupled harmonic oscillators.

The harmonic oscillator is particularly important, because any mechan-
ical system in the vicinity of stable equilibrium can be approximated by a
harmonic oscillator. If the deviations from equilibrium are small, one can set
the origin at the equilibrium point and expand the potential energy in
powers of the displacement. To take a simple example, for a pair of identical
atoms interacting via the Lennard-Jones potential [Eq. (6)], if the distance
between the atoms r is close to the equilibrium value r0 ¼ �

ffiffiffi
26

p
, we can

expand the potential in powers of u¼ r� r0

VLJ ¼ 4�
�

r0ð1þ u=r0Þ

� �12

�
�

r0ð1þ u=r0Þ

� �6
 !

¼ � �1þ 36
u

r0

� �2

þ O
u

r0

� �3
 ! !

� V0 þ
ku2

2

V0 ¼ ��, k ¼
72�

r20
ð26Þ

If u¼ x1� x2� r0, assuming that the y and z coordinates of both atoms
are zero (Fig. 4), Newton’s equations of motion become:

m €xx1 ¼ �
@V

@x1
¼ �kðx1 � x2 � r0Þ

m €xx2 ¼ �
@V

@x2
¼ kðx1 � x2 � r0Þ

m €yyi ¼ 0, i ¼ 1, 2

m €zzi ¼ 0, i ¼ 1, 2 ð27Þ
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Adding and subtracting the first and second equations gives the following
two equations:

m €xx1 þm €xx2 ¼ 0

m €uu ¼ �2ku ð28Þ

The first equation describes the motion of the ‘‘dimer’’ center of mass
xc¼ (mx1þmx2)/2m. Its left hand side, m €xx1 þm €xx2, equals the total mass
2m times the center of mass acceleration. As long as there is no net external
force applied, the acceleration is zero. However, if the initial velocities of
the atoms v1(t¼ 0) and v2(t¼ 0) are such that the center of mass velocity
vc¼ [mv1(t¼ 0)þmv2(t¼ 0)]/2m is not zero, the value of vc does not change
with time, and the ‘‘dimer’’ travels as a whole with constant speed. The
second equation describes the motion of the atoms relative to each other,
as u measures the deviation of their separation from its equilibrium value
r0. The solution of the second equation,

uðtÞ ¼ A cosð!tÞ þ B sinð!tÞ

!2 ¼
2k

m
ð29Þ

with A and B defined from the initial conditions:

A ¼ uðt ¼ 0Þ; B! ¼ _uuðt ¼ 0Þ ¼ v1ðt ¼ 0Þ � v2ðt ¼ 0Þ ð30Þ

describes oscillations around the equilibrium value u¼ 0 with period 2p/!.
A typical period of the vibrations due to Lennard-Jones interactions is on
the order of several picoseconds.

FIG. 4 Harmonic approximation (dashed line) for the Lennard-Jones potential

(solid line).
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To derive the Lagrange and Hamilton equations of motion we need
expressions for the kinetic and potential energies:

K ¼
m1_rr

2
1

2
þ
m2_rr

2
2

2

V ¼
k

2
ð r1 � r2j j � r0Þ

2
ð31Þ

Here we used the harmonic approximation for potential energy (26) and set
the zero energy level at V0¼��. Choosing the x axis along the line connect-
ing the atoms, following the Lagrangian or Hamiltonian formalism, given
by the Eqs. (20) or (22), and remembering that, for simplicity, we consider
here the case m1¼m2¼m, one can arrive at the Newton equations of
motion (27). When Cartesian coordinates are used, Newton, Lagrange,
and Hamilton equations result in exactly the same differential equations
for the coordinates.

Newton equations, however, do require use of Cartesian coordinates,
while Lagrange and Hamilton equations do not. Let us see how the
Lagrange and Hamilton formulations can help us derive the more con-
venient set of Eqs. (28) from the very beginning. All we have to do is choose
the center of mass coordinate xc and the oscillation amplitude u as
generalized coordinates, describing the motion along the x direction in
which we are interested. We leave the Cartesian coordinates y1, z1 and y2, z2
for the other four degrees of freedom. The potential energy is simply
V ¼ ku2/2. The kinetic energy is a little more tricky:

K ¼
m1ð _yy

2
1 þ _zz21Þ

2
þ
m2ð _yy

2
2 þ _zz22Þ

2

þ
ðm1 þm2Þv

2
c

2
þ
1

2

1

m1
þ

1

m2

� ��1

_uu2 ð32Þ

Again, using the above equations in the Lagrange (20) or Hamilton (22)
formalism, working out through all the necessary derivatives, and using
m1¼m2¼m, one arrives directly at Eqs. (28) for u and xc. Figure 5 shows
the harmonic oscillator’s trajectories, corresponding to different initial
conditions.

The harmonic oscillator model is particularly useful in the study of
crystalline solids. Potential energy of the crystal can be expanded around the
state of mechanical equilibrium under given macroscopic dimensions
(quasiharmonic approximation). By diagonalizing the Hessian matrix
of second derivatives of the potential energy with respect to atomic
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displacements, vibrational motion can be analyzed as a set of 3N
independent harmonic oscillators characterized by a spectrum of frequen-
cies. Lower frequencies correspond to longer-range, collective motions. The
Debye model is a good model for this spectrum in the region of low
frequencies [28].

Observing that Lagrange, Hamilton, and Newton equations of motion
lead to exactly the same differential equations for particle coordinates, one
might conclude that the three different forms were invented by arrogant
mathematicians to create more confusion and show off their sophistication.
This is not at all the case, however. Hamilton and Lagrange equations do
reduce to the simple Newton’s law, known from high-school physics, only
when the system’s motion is described using Cartesian coordinates, and
when potential energy is a function of coordinates only, but not momenta or
velocities, and the kinetic energy does not depend on coordinates, but is a
function of only momenta or velocities. This choice is not always the most
convenient, as we tried to demonstrate above for the harmonic oscillator
approximation to the Lennard-Jones ‘‘dimer.’’ The general theorem
concerning the equivalence of Lagrange and Hamilton equations is
beyond the scope of this book; the interested reader is referred to the
excellent books by Arnold [29], Goldstein [30] or any other classical
mechanics text. The power of Lagrange or Hamilton equations is realized in
cases where the generalized, not necessarily Cartesian coordinates, are more
convenient to use. As the chemical bond lengths are usually fixed in
simulations of macromolecules, the bond angles and torsion angles (Fig. 1)
are a natural choice as generalized coordinates. Fixing all or some bond
angles in addition to the bond lengths is also practiced in some cases.

Torsion angles are often used as sole coordinates in biological
applications [12,31–33] in which one is interested in refining conformations
of a single protein or DNA molecule, or their complexes, and where large
pieces of the molecules, containing a hundred or more atoms, can be
considered moving as rigid bodies. Movements of these rigid fragments can

FIG. 5 Trajectories of the harmonic oscillator in its two-dimensional phase space,

and positions at different moments of time t2>t1, but t2� t1<T.
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be described by changing a few torsion angles instead of hundreds of
Cartesian coordinates. This approach is sometimes used to simulate
atomistic models of polymer chains [34,35]. If bond lengths and bond
angles are considered constant, the configuration of the system can be
described by the torsion angles, the position of the first atom and the
orientation of the first bond of each chain. It is possible to describe
polyvinyl or polycarbonate chains of a hundred or so monomers and more
than a thousand atoms with just a few hundred variables instead of several
thousand Cartesian coordinates. Such fixed bond length and bond angle
models are particularly effective in energy minimization calculations
(molecular mechanics) used to generate representative configurations for
glassy polymers. In dynamic simulations it is advisable to fix the bond
lengths but let the skeletal bond angles be flexible, to allow for cooperativity
in the motion of bond angles and torsion angles.

As good things never come for free, the reduction in the number of
degrees of freedom when generalized coordinates are used is traded for more
complex equations of motion. The kinetic energy depends on both angles
and angular velocities, and solving the Lagrange equations in generalized
coordinates requires computationally expensive matrix inversions. Besides,
the nonbonded potential energy is usually a function of Cartesian coordi-
nates of the atoms, and it is still necessary to perform transformations
between the generalized and Cartesian atom coordinates every time the
energy and force are evaluated.

The Lagrange equations of motion allow another useful alternative. For
instance, if the freely-jointed chain is described in Cartesian coordinates, the
monomer motions are constrained by the constant bond lengths bK. For a
polymer chain of NKþ 1 segments and NK bonds there is a set of constraint
equations,

gi ¼ ðriþ1 � riÞ
2
� b2K ¼ 0 ð33Þ

for every bond i. The Lagrangian is modified by including additional terms

for the constraints:*

L ¼ K� V þ
XNK

i¼1


igi ð34Þ

*This technique is usually called the Method of Lagrange Multipliers in physical and mathe-

matical literature.

Background 27



The set of Lagrange multipliers 
i is added to the set of 3(NKþ 1) Cartesian

coordinates tracked during the numerical solution of the equations of

motion. Accordingly, NK equations for the 
i’s should be derived from

(22) in addition to the 3(NK þ 1) equations for the Cartesian coordinates.

These additional equations are equivalent to the constraint equations (33).

The physical meaning of the Lagrange multiplier associated with a bond

length constraint is the magnitude of the force that is exerted on the particles

connected by the bond in order to maintain the bond length fixed. Bond

length constraint equations are solved iteratively in the SHAKE and

RATTLE molecular dynamics algorithms, popular in polymer simulations.

These algorithms will be described in detail in the following chapters.
Naturally, the Lagrange multiplier approach can be generalized to

constrain bond angles, or any other geometrical characteristics, e.g.,
distances between particular atoms, as in protein or DNA structure refine-
ment, based on the experimental information obtained from X-ray or NMR
experiments.

Solving the Lagrange equations of motion in the presence of holonomic
constraints for bond lengths and bond angles amounts to sampling the
‘‘rigid’’ polymer model; here, the constraints are considered as being
imposed from the beginning. Alternatively, one can consider the bonds and
bond angles as being subject to harmonic potentials and take the limit of the
properties as the force constants of these potentials are taken to infinity
(‘‘flexible model in the limit of infinite stiffness’’); this model is sampled by
Monte Carlo simulations with constant bond lengths and bond angles. The
two models differ in their kinetic energy function and have nonequivalent
statistical mechanics. One can make the rigid model sample the configura-
tion space of the flexible model in the limit of infinite stiffness by adding to
the potential energy function the ‘‘Fixman’’ potential [13,11].

D. Mechanical Equilibrium, Stability

Equation (21) tells us that force equals negative potential energy gradient,
and therefore points in configuration space tend to move in the direction
of decreasing potential energy. The position of (mechanical) equilibrium
is defined as a point where all forces equal zero, hence the potential energy
gradient must be zero at equilibrium. This, in turn, implies that the equi-
librium point must be an extremum of the potential energy as a function of
the generalized (or Cartesian) coordinates.

Stability of the equilibrium point requires that the system returns back to
the equilibrium state in response to a small perturbation. This excludes
maxima and saddle points, leaving only potential energy minima as
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candidates for stable equilibrium points. Indeed, if we make a small
displacement from a maximum or from a saddle point, we will find a point
with potential energy lower than its value at the extremum.

As the force is directed in the direction of decreasing potential energy, it
points away from the extremum near the maximum or saddle point, pulling
the system out of a state of unstable equilibrium. Only in the vicinity of the
potential energy minima is the potential energy always higher than at the
extremum itself, and the force is directed back towards equilibrium.

Let us consider for example a system with one degree of freedom, q. If the
system has more than one degree of freedom, its Hessian matrix of second
derivatives can be diagonalized, and the problem is reduced to several
independent one-dimensional problems. The kinetic energy being K ¼ 1

2
m _qq2,

the potential energy can be expanded in Taylor series in terms of the
deviation u from the equilibrium point q0:

V ¼ Vðq0Þ þ
@V

@q

����
q0

uþ
1

2

@2V

@q2

����
q0

u2 þOðu3Þ ð35Þ

As q0 is an equilibrium point, the first derivative is zero and the leading term

is quadratic. Setting k ¼ @2V=@q2
��
q0
, the equation of motion becomes

m €uu ¼ �ku

uðtÞ ¼ A expð� �!!tÞ þ B expð �!!tÞ ð36Þ

with coefficients A and B determined by the initial conditions _uuðt ¼ 0Þ ¼ v0,

uðt ¼ 0Þ ¼ u0, and �!! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�a=m

p
. If a<0, ! is real, and the solution for u

contains a term that is exponentially increasing with time, so that, given a

small initial deviation from equilibrium, u0, the deviation will increase expo-

nentially with time. The equilibrium is unstable in this case.
If, on the contrary, a is positive, �!! is imaginary ( �!! ¼ i!Þ. As in the case of

the harmonic oscillator (29), the solution becomes

uðtÞ ¼ A0 sinð!tÞ þ B0 cosð!tÞ ð37Þ

which describes bounded oscillations around the equilibrium configuration.

The equilibrium is stable. These results are in agreement with what we see in

the two-dimensional example of Fig. 6.
When there is more than one degree of freedom, in the vicinity of the

equilibrium, the Hessian matrix of second derivatives of the potential energy
can be diagonalized and the problem can essentially be reduced to a set of
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independent one-dimensional problems by a linear coordinate transforma-
tion u ! �uu. In terms of the new coordinates, in the vicinity of the stationary
point, the potential energy V ¼ 1

2

P
i ki �uu

2
i . When all ki are positive, the

potential energy has a minimum and the equilibrium is stable. When at least
one of ki is negative the equilibrium is unstable, as any small initial
perturbation along the direction �uui will grow exponentially with time, taking
the system away from equilibrium. A maximum of the potential energy
occurs when all ki are negative.

Notice that, if we consider two trajectories starting from two points that
are close to each other in phase space in the vicinity of the stable equilibrium
point, the difference between the two trajectories will always remain of the
same order of magnitude as the initial difference; the two trajectories will
remain about as close to each other as their initial points are.

In contrast to this, if the two points are in the vicinity of an unstable
equilibrium point, the difference between the trajectories will grow
exponentially with time, and the trajectories will diverge. Thus, in the
vicinity of an unstable equilibrium point, the small uncertainty in the initial
condition will grow exponentially, with characteristic time of �!!�1. Any
attempt to predict the system motion for a time much longer than that will
fail. Notice, also, that the same argument applies to any two trajectories, as
soon as they are not confined to the immediate vicinity of the stable
equilibrium. If the system is unharmonic, as almost all systems are, and its
trajectories are not confined to the vicinity of a stable equilibrium, the
trajectories are exponentially divergent.

E. Statistical Description, Ergodicity

In principle, in computer simulations we could specify the initial coordinates
and velocities for all atoms in the system, follow the trajectory by solving the
equations of motion, and calculate some properties of interest from this

FIG. 6 Different potential energy extrema. Minimum (a), saddle point (b), and

maximum (c). Force f ¼ �rV points along the direction of the fastest potential

energy decrease.
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particular realization of the system’s trajectory. A real experiment is very
different; we have no control over the positions, velocities or spin states of
each atom or electron in the molecules. So, it is natural to question if any
relationship exists between the results of such calculations and the values
observed in real experiments. Material properties, such as the equation of
state, the elastic moduli, thermal conductivity, viscosity, etc., originate from
molecular motions and interactions. The relationship between molecular
geometry and interactions and macroscopic properties is established by
statistical mechanics. Statistical mechanics tells us that it is really not
necessary, and moreover it does not even make any sense, to know the exact
system state at any moment of time to predict its observable properties. The
observable properties, such as pressure, temperature, strain, heat con-
ductivity, diffusion coefficients, polarization, etc., are related to the average
values of different functions, which in turn depend on the system
microscopic state, calculated along many different trajectories with different
initial conditions. Therefore, the relevant quantity to look for is the
probability to observe a particular value of the energy, polarization, or any
other observable of interest.

The probabilistic approach of statistical mechanics is justified by the fact
that, except for some special cases, such as the harmonic oscillator or the
ideal gas, system trajectories in phase space are very complex and virtually
unpredictable, as discussed in the previous section.

The very important property of ergodicity states that the time averages
along dynamical trajectories of an equilibrium system are equivalent to
phase space averages. In other words, if we are interested in macroscopic
thermodynamic properties, such as pressure, temperature, stress, average
polarization, etc., it is not necessary to follow the system dynamics exactly.
It is sufficient to sample enough points in phase space and to calculate the
proper average. Ergodicity is based on the assumption (provable for some
Hamiltonians) that any dynamical trajectory, given sufficient time, will visit
all ‘‘representative’’ regions in phase space, the density distribution of points
in phase space traversed by the trajectory converging to a stationary
distribution.

Observed equilibrium properties are time averages over long dynamical
trajectories:

lim
t!1

1

t

Z t

0

Aðqð	Þ, pð	ÞÞ d	 ¼ hAiobs ð38Þ

By virtue of ergodicity, they can also be calculated as averages over phase
space, with respect to an appropriate equilibrium probability density
distribution.
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Ergodicity is very important for the statistical mechanical and
thermodynamic descriptions to be valid for particular systems; it has to
be checked for each particular case. It holds for systems where the
characteristic molecular relaxation times are small in comparison to the
observation time scale. Polymeric and other glasses represent a classical
example of nonergodic systems. They can be trapped, or ‘‘configuration-
ally arrested,’’ within small regions of their phase space over very long
times.

In the context of equilibrium simulations, it is always important to
make sure that the algorithm used in the simulation is ergodic. In other
words, that no particular region in phase space is excluded from sampling
by the algorithm. Such an exclusion would render the simulation wrong,
even if the simulated object itself is ergodic. As an extreme example
consider an algorithm to simulate various conformations of the freely-
jointed chain in three dimensions, which, for some reason, such as a
programming error, never selects bonds parallel to the z axis. Evidently,
many representative conformations will be erroneously excluded. Of
course, such a programming error is easy to find and fix. Often the
situation can be more complex, however. It is quite common for lattice
simulation algorithms to sample only the odd or even numbered lattice
sites, or to be unable to find their way out of particular configurations,
especially in two dimensions [36].

In simulation practice, ergodicity of the system can and should be
checked through reproducibility of the calculated thermodynamic properties
(pressure, temperature, etc.) in runs with different initial conditions.

F. Microscopic and Macroscopic States

The microscopic state of the system defines coordinates, momenta, spins for
every particle in the system. Each point in phase space corresponds to a
microscopic state. There are, however, many microscopic states, in which
the states of particular molecules or bonds are different, but values of the
macroscopic observables are the same. For example, a very large number of
molecular configurations and associated momenta in a fluid can correspond
to the same number of molecules, volume, and energy. All points of the
harmonic oscillator phase space that are on the same ellipse in Fig. 5 have
the same total energy.

The set of values of the macroscopic observables, such as temperature,
pressure, average polarization or magnetization, average chain end-to-end
distance, etc., describes the system’s macroscopic state. One macroscopic
state combines all the microscopic states that provide the same values of the
macroscopic observables, defined by the macroscopic state.
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The probability to observe a certain macroscopic state of the system (or,
in other words, certain values for the observables) equals the sum of the
probabilities of all the corresponding microscopic states.

G. Probability Distribution of the Microscopic States.
Statistical Ensembles

We use the abbreviation � to denote the set of coordinates and momenta
corresponding to one microscopic state.* If a Cartesian description is used,
�¼ (r1, r2 , . . . , rN, p1, p2 , . . . , pN). The probability density for finding a
system in the vicinity of � will be denoted as �(�). �(�) depends on the
macroscopic state of the system, i.e., on the macroscopic constraints
defining the system’s size, spatial extent, and interactions with its environ-
ment. A set of microscopic states distributed in phase space according to a
certain probability density is called and ensemble. According to the
ergodicity hypothesis we can calculate the observables of a system in
equilibrium as averages over phase space with respect to the probability
density of an equilibrium ensemble. Equation (38) for the average can be
rewritten as

hAobsi ¼ lim
t!1

1

t

Z t

0

Aðqð	Þ, pð	ÞÞ d	

¼ hAð�Þj�ð�Þi ¼

Z
Að�Þ�ð�Þ d� ð39Þ

H. Liouville Equation

Imagine that we start with a set of identical systems, whose states are
distributed in phase space according to a density distribution �(�) at time
t¼ 0, and let the systems move according to their equations of motion. The
ensemble constituted by the systems (points in phase space) evolves in time.
As the systems evolve, the density distribution �(�) should, in general,
change with time. However, systems just move, no new systems are created,
and none of the systems is destroyed. Therefore, there should be a
conservation law for the probability density, similar to the continuity
equation (mass conservation) of hydrodynamics. The conservation law in
phase space is called the Liouville theorem. It states that the total time

*Or to one point in phase space.
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derivative of the probability density is zero. For a classical system of Nf

degrees of freedom qi and momenta pi, the Liouville equation is:

@�ð�, tÞ

@t
þ
X

i

_qqi
@

@qi
þ _ppi

@

@pi

	 

�ð�, tÞ ¼ 0 ð40Þ

Combining with the Hamiltonian equations of motion, (20), one obtains:

@�ð�, tÞ

@t
þ
X

i

@H

@pi

@

@qi
�
@H

@qi

@

@pi

	 

�ð�, tÞ ¼ 0 ð41Þ

which is the Liouville equation.
For an equilibrium system there should be no explicit time dependence

for �, i.e., a stationary distribution should be reached by the ensemble.
The main postulate of statistical mechanics states that, for an equilibrium

system of given mass, composition, and spatial extent, all microstates with
the same energy are equally probable [37,38]. This postulate, along with the
ergodic hypothesis, can be justified on the basis of the mixing flow in phase
space exhibited by the dynamical trajectories of real systems [28]. It means
that all microstates of an isolated system, which does not exchange energy
and material with its environment, should occur equally often.

The equilibrium probability density in phase space for a system with total
energy E0 is therefore given by:

�ð�Þ � �ðHð�Þ � E0Þ ð42Þ

The �(x) is a Dirac �-function, which is nonzero only when its argument
equals zero. Here it selects those microscopic states � that have total energy*
H equal to E0.

The above ensemble of systems with constant number of particles N,
occupying constant volume V, with the total energy E conserved, is called
the microcanonical, or (NVE) ensemble.

I. Partition Function, Entropy, Temperature

A very important measure of the probability distribution of an equilibrium
ensemble is the partition function Q. This appears as a normalizing factor in
the probability distribution defined by the ensemble.

*Remember the definition of the Hamiltonian, Eq. (20).
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For the microcanonical ensemble:

QNVE ¼
X

�

�ðHð�Þ � E0Þ

�ð�Þ ¼ Q�1
NVE�ðHð�Þ � E0Þ

hAi ¼ Q�1
NVE

X

�

�ðHð�Þ � E0ÞAð�Þ ð43Þ

The summation over states �� here and in the previous equations is used for
the quantum case, where microscopic states are discrete and �(�) has the
meaning of a probability. For one-component classical systems, on which
we have mainly focused so far, the sum should be replaced by the integral:

X

�

!
1

N!

1

h3N

Z
d�

d� ¼
YN

i¼1

d3rid
3pi ð44Þ

N! here takes care of the indistinguishability of particles of the same species.
For a multicomponent system of N1 particles of type 1, N2 particles of type
2 , . . . ,N! should be replaced by N1!N2! . . . . h is Planck’s constant. It
describes the phase space volume occupied by one state and renders the
product dr dp dimensionless.

The partition function defines the thermodynamic potential. The
partition function is a function of the thermodynamic state variables that
are kept constant in the definition of the equilibrium ensemble. The
expression of the thermodynamic potential in terms of these state variables
constitutes a fundamental equation of thermodynamics.

The proper thermodynamic potential for the microcanonical ensemble is
the entropy:

�S=kB ¼ � lnQNVE ð45Þ

where kB ¼R/NA is the Boltzmann constant. The argument of the logarithm
on the right hand side of Eq. (45) is just the number of states with the energy
E0. We therefore have a statistical thermodynamic definition of entropy as a
quantity proportional to the logarithm of the number of microscopic states
under given N,V,E [37,38]. The proper way to simulate the microcanonical
ensemble is to numerically solve the equations of motion (20) or (21) or (22)
for the closed system. This is done in the simplest versions of molecular
dynamics simulation.
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If the system of N particles is contained in the constant volume V but
is allowed to exchange energy with its environment through diathermal
walls, its energy is not constant any more. The energy is fluctuating, but
the temperature is constant [37,38]. Temperature describes the probability
distribution of energy fluctuations. Such a system is represented by the
canonical or NVT ensemble. The probability density is given by the Gibbs
distribution:

�NVT ð�Þ ¼ Q�1
NVT exp �

Hð�Þ

kBT

� �

QNVT ¼
1

N!

1

h3N

Z
d� exp �

Hð�Þ

kBT

� �

A

kBT
¼ � lnðQNVT Þ ð46Þ

A, the Helmholtz energy, is a thermodynamic potential for the canonical
ensemble. QNVT, often symbolized simply as Q, is the canonical partition
function. The last of Eqs. (46) defines a fundamental equation in the
Helmholtz energy representation by expressing A as a function of N,V,T.
Often in classical systems it is possible to separate the energy contributions
that depend on the momenta only (kinetic energy K) from the potential
energy V, which depends only on the coordinates. When Cartesian coordi-
nates are used as degrees of freedom, for example, the partition function can
be factorized as:

QNVT ¼
1

N!

1

h3N

Z YN

i¼1

d3pi exp �
K

kBT

� �Z YN

i¼1

d3ri exp �
V

kBT

� �

¼ Qig
NVTQ

ex
NVT ð47Þ

into two contributions—the partition function of the ideal gas:

Qig
NVT ¼

VN

N!�3N

� ¼
h2

2�mkBT

� �1=2

ð48Þ

(� being the thermal or de Broglie wavelength), and the excess part:

Qex
NVT ¼ V�N

Z YN

i¼1

d3ri exp �
V

kBT

� �
ð49Þ
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It is also customary to use the configurational integral, defined as

ZNVT ¼

Z YN

i¼1

d3ri exp �
V

kBT

� �
ð50Þ

instead of the Qex
NVT .

As a consequence, all the thermodynamic properties can be expressed as a
sum of an ideal gas part and an excess part. All specifics of systems are
included in the latter, and more attention is usually focused on it. In fact, in
Monte Carlo simulations the momentum part of the phase space is usually
omitted, and all calculations are performed in configuration space. The ideal
gas contribution is added after the simulations to compare to experiments or
to other simulations.

Another important consequence of Eq. (47) is that the total average
kinetic energy is a universal quantity, independent of the interactions in the
system. Indeed, computing the average of K ¼

PN
i¼1 p

2
i =2m with respect to

the probability distribution of Eq. (46) and using the factorization of Eq.
(47) we obtain that Kh i ¼ 3=2 NkBT or, more generally, hKi¼ 1/2 Nf kBT
for a system of Nf degrees of freedom. If the kinetic energy can be separated
into a sum of terms, each of which is quadratic in only one momentum
component, the average kinetic energy per degree of freedom is 1/2 kBT.
The last result is a special case of the equipartition theorem which characteri-
zes classical systems [38,37]. It is often used in simulation practice to test for
system equilibration.

When, in addition to the energy, a system is allowed to exchange volume
with the environment by being contained in (partly) movable boundaries, as
for instance is the gas in a vessel covered by a piston, both the volume and
energy are fluctuating, but the temperature and pressure are constant. Such
a system is represented by the isothermal–isobaric or NPT ensemble. The
probability density is given by the distribution:

�NPT ð�,VÞ ¼ Q�1
NPT exp �

Hð�Þ þ PV

kBT

� �

QNPT ¼

Z
dV=V0 QNVT exp �

PV

kBT

� �

QNPT ¼
1

N!

1

h3N
1

V0

Z
dV

Z
d� exp �

Hð�Þ þ PV

kBT

� �

G

kBT
¼ � lnðQNPT Þ ð51Þ
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The last of Eqs. (51) defines a thermodynamic fundamental equation for

G¼G(N,P,T) in the Gibbs energy representation. Note that passing from

one ensemble to the other amounts to a Legendre transformation in macro-

scopic thermodynamics [39]. V0 is just an arbitrary volume used to keep the

partition function dimensionless. Its choice is not important, as it just adds

an arbitrary constant to the free energy. The NPT partition function

can also be factorized into the ideal gas and excess contributions. The

configurational integral in this case is:

ZNPT ¼

Z
dV exp �

PV

kBT

� �Z YN

i¼1

d3ri exp �
V

kBT

� �
ð52Þ

Some authors also include the N! and V0 factors in the configurational

integral. A simulation in the isothermal–isobaric ensemble should be con-

ducted with the volume allowed to change, but the way these changes are

implemented must provide for the proper probability density distribution

given by Eq. (52).
The grand canonical ensemble describes a system of constant volume, but

capable of exchanging both energy and particles with its environment.
Simulations of open systems under these conditions are particularly useful
in the study of adsorption equilibria, surface segregation effects, and
nanoscopically confined fluids and polymers. Under these conditions, the
temperature and the chemical potentials i of the freely exchanged species
are specified, while the system energy and composition are variable. This
ensemble is also called the VT ensemble. In the case of a one-component
system it is described by the equilibrium probability density

�VT ð�,NÞ ¼ Q�1
VT exp �

Hð�Þ � N

kBT

� �

QVT ¼
X

N

QNVT exp
N

kBT

� �

QVT ¼
X

N

1

N!

1

h3N
exp

N

kBT

� �Z
d� exp �

Hð�Þ

kBT

� �

�=kBT ¼ � lnðQVT Þ ð53Þ

QVT, often symbolized as 	VT, is the grand partition function. � is the

grand potential. For bulk systems, in the absence of interfaces, it can be

shown that �¼�PV [37]. Simulations in the grand canonical ensemble

should allow the total number of particles in the system and its energy
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to fluctuate. These fluctuations should occur according to the �VT(�,N)

probability distribution.
Notice that, to formulate the NPT and VT ensembles starting from the

NVT ensemble, we had to add one more product term to the numerator of
the exponent (�PV and N, respectively). This product contains the
variable of the original ensemble that is allowed to fluctuate in the new
ensemble (V and N for the NPT and VT, respectively) times its conjugate
thermodynamic variable or ‘‘field,’’ which is kept constant in the new
ensemble (�P and , respectively). The partition function of the new
ensemble is derived by integration or summation of the partition function of
the original (NVT) ensemble over all values of the variable allowed to
fluctuate. Of course, these observations are by no means just a coincidence.*
Remember that an ensemble is equivalent to a particular phase space
probability density distribution. Each of these ensembles can be considered
as a superset of another ensemble: the canonical ensemble is a set of
microcanonical ensembles with different energies weighted by the factor
exp(�H/(kBT)); the NPT ensemble is a set of NVT ensembles with different
volumes weighted by exp(�PV/(kBT)); the grand canonical ensemble is a set
of canonical ensembles with different numbers of particles weighted with
exp(N/(kBT)). In the thermodynamic limit (system increasing in size to
become macroscopic, while all intensive variables are kept constant), the
integration or summation operation by which one passes from one ensemble
to the other is equivalent to a Legendre transformation.

To appreciate the generality of this approach, consider, for instance, a
system of N molecular dipoles at constant volume V. We can introduce an
ensemble to describe this system under constant external electric field E,
at constant temperature T. The energy contribution due to the electric field
equals the negative product of the field and the total dipole moment of the
system, �VP �E, where P is the electric polarization of a configuration. The
probability density and the partition function for this ENVT-ensemble is:

�ENVT ð�Þ ¼ Q�1
ENVT exp �

Hð�Þ � VP � E

kBT

� �

QENVT ¼

Z
d� exp

VP � E

kBT

� �
exp �

Hð�Þ

kBT

� �
ð54Þ

The macroscopic polarization P ¼ Ph i resulting from this field will no

longer be zero for nonzero E.

*More detailed and rigorous discussion can be found in [38,37,40], or any other general

thermodynamics or statistical mechanics textbook.
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Many more different ensembles can be introduced; we shall see some of
them in the following chapters. When designing a new simulation technique,
it is always important to understand which ensemble it actually simulates, as
this determines how to interpret the simulation results.

With all the above said, it is natural to expect, that equations of motion,
phase space, statistical ensemble, and other abstract mathematical concepts
we spend so much effort describing in this and previous sections, do indeed
have something to do with computer simulations. In fact, various simulation
techniques are nothing else but methods for the numerical solution of
the statistical mechanics given a Hamiltonian H(�). They allow for
the realization of these abstract concepts. It is through the principles
of statistical mechanics, which we have briefly described above, that the
numbers produced by the computer simulation program are linked to the
results of real-life experiments and to the properties of real materials.

III. PROPERTIES AS OBTAINED FROM SIMULATIONS.
AVERAGES AND FLUCTUATIONS

According to statistical mechanics, physically meaningful results, compar-
able to experiment, are obtained by calculating phase or configuration space
averages, with different microscopic states weighted according to the proper
ensemble probability density distribution. Different simulation techniques
are essentially different ways of sampling the system’s phase space with the
proper probability density in order to calculate the thermodynamic averages.

Given a way to generate microscopic states according to the equilibrium
ensemble distribution, we can calculate any thermodynamic average simply
as an average over these states. This is how thermodynamic averages are
calculated in Monte Carlo simulations. The simplest example is of course
the configurational part of the internal energy in thermodynamics, which
equals the average potential energy over the set of configurations generated
in the Monte Carlo simulation run. Kinetic energy is trivial as soon as the
equipartition theorem holds; its average is just 1/2 kBT for each degree of
freedom, and can be added after the run to compare the total average energy
to the experiments.

Any equilibrium property that has a microscopic quantity associated with
it, such as polarization, stress, average orientation, average specific volume,
average polymer chain conformation, or density in the isobaric or grand
canonical ensembles, can be calculated as a simple average of values for the
corresponding microscopic parameter over the random configurations
generated by the Monte Carlo algorithm, according to the desired ensemble
probability distribution.
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A. Pressure

Pressure is one of the most important thermodynamic properties. According
to the previous subsection, to calculate pressure from a simulation we need a
function of the coordinates and momenta of the particles, whose average
equals the thermodynamic pressure.

In equilibrium thermodynamics, pressure is defined as a negative
derivative of the Helmholtz energy with respect to volume:

P ¼ �
@A

@V

����
N,T

¼ kBT
1

Q

@Q

@V
¼ kBT

1

Z

@Z

@V
ð55Þ

@Z

@V
¼

@

@V

Z

V

. . .

Z

V

exp �V r1, . . . , rNð Þ=ðkBTÞ½ 	d3r1 � � � d
3rN

Here we consider, for simplicity, a classical system described in terms of

Cartesian coordinates. In this case the kinetic energy contribution to the

partition function is independent of the coordinates and volume, and

Eq. (55) allows us to consider only the configurational integral Z [Eq. (50)]

instead of the full partition function Q. To calculate the derivative of the

integral with respect to volume, we also assume, for simplicity, that

particles are in a cubic container* with edge length V1/3. Now let us make

a transformation to the normalized coordinates si: {r1 , . . . , rN}¼

{V1/3
s1 , . . . ,V

1/3
sN}. This transformation changes the integration over the

volume to an integration over a cube with sides of unit length.

@Z

@V
¼

@

@V
VN

Z 1

0

� � �

Z 1

0

exp �V r1, . . . , rNð Þ=ðkBTÞ½ 	d3s1 . . . d
3sN

� �
ð56Þ

¼ NVN�1

Z 1

0
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Z 1

0

exp �V r1, . . . , rNð Þ=ðkBTÞ½ 	d3s1 . . . d
3sN

þ
VN

kBT

Z 1

0

. . .

Z 1

0

exp �V r1, . . . , rNð Þ=ðkBTÞ½ 	

�
XN

k¼1

�
@V

@rk
� rk

1

3
V�1

" #
d3s1 � � � d

3sN

¼
N

V
Z �

1

3

Z
PN

k¼1

�ð@V=@rkÞ � rk

� �

VkBT

*The following argument is obviously valid for any complex container shape, but the calcula-

tions are much longer. In the case of two dimensions the factor 1/3 is to be replaced by 1/2.
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So, from Eq. (55),

PV ¼ NkBT �
1

3

XN

k¼1

�
@V

@rk
� rk

* +
ð57Þ

Usually, V depends on distance vectors ri� rj between sites. Then [41] one

can rewrite Eq. (57) as

PV ¼ NkBT �
1

3

XN�1

i¼1

XN

j¼iþ1

�
@V

@ðri � rjÞ
� ðri � rjÞ

* +
ð58Þ

The quantity @V=@ðri � rjÞ can be taken as a definition of the force fkl on site

k due to site l, even in cases where V is not merely a sum of pairwise-additive

site–site potentials [41]. Then,

PV ¼ NkBT �
1

3

XN�1

i¼1

XN

j¼iþ1

f ij � ðri � rjÞ

* +
ð59Þ

Equation (59) is useful in simulations where periodic boundary equations

are employed. In the presence of periodic boundary conditions Eq. (57)

should not be used [41]. The product of the force acting on a particle

times its position vector is called virial, so Eqs. (57)–(59) are forms of the

(atomic) virial theorem for the pressure.
Equation (59) remains valid in the presence of constraints, such as fixed

bond lengths and/or bond angles. In this case, if i and j are involved in a
constraint, fij is the Lagrange multiplier force acting on i from j due to the
constraint. If the ‘‘rigid model’’ is sampled in the simulation and
properties of the ‘‘flexible model in the limit of infinite stiffness’’ are
desired, fij must additionally incorporate contributions from the Fixman
potential.

In molecular systems one can write an equation similar to (59), with fij
being the total force exerted on molecule i from molecule j (i.e., the sum
of all site–site interactions between the molecules) and ri� rj being
the difference between the position vectors of the centers of mass of the
two molecules (molecular virial equation [41]). The molecular virial
equation is particularly convenient to use in systems of chain molecules,
because it does not require knowledge of intramolecular bonded or
constraint forces.
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B. Chemical Potential

A very important theorem due to Widom [42] allows expression of the excess
chemical potential of a component in a fluid (i.e., the chemical potential of
the component minus the chemical potential it would have if it were an ideal
gas under the temperature and molar density with which it is present in the
fluid) as an ensemble average, computable through simulation. The Widom
theorem considers the virtual addition of a ‘‘test particle’’ (test molecule) of
the component of interest in the fluid at a random position, orientation, and
conformation. If Vtest is the potential energy change that would result from
this addition,

ex
i ¼ �kBT ln exp �

Vtest

kBT

� �� �
� ln exp �

V ig

kBT

� �� �	 

ð60Þ

where the first average is taken over all configurations of the fluid and all
positions, orientations, and conformations of the added test molecule, while
the second average is a weighted average of the intramolecular energy of one
molecule over all conformations adopted in the ideal gas state. Equation
(60) holds in the canonical ensemble. Analogous expressions for the NVE
and NPT ensembles have been derived [43]. Also, bias schemes that can deal
with the difficulties of randomly inserting long flexible molecules in the
simulated phase of interest have been developed [44].

The estimation of the chemical potential is also possible through virtual
‘‘deletion’’ of a real particle (inverse Widom scheme), provided the bias
associated with creating a ‘‘hole’’ in the fluid as a result of the removal is
correctly accounted for [45].

C. Fluctuation Equations

The heat capacity, isothermal compressibility, and other thermodynamic
properties that correspond to second derivatives of the free energy, can be
calculated from the fluctuations in different ensembles [43,38,37]. Let us
consider the heat capacity in the NVT ensemble, as the simplest example.
With E¼hHi the internal energy, computed as an ensemble average of the
Hamiltonian, we have

cV ¼
@E

@T

����
N,V

¼
@hHi

@T

����
N,V

ð61Þ

hHi ¼
1

Q

1

h3NN!

Z
H expð�H=kBTÞ d�
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¼ �
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H

kBT2

� �
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1
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hHiQ

cV ¼
hH2 � hHi2i

kBT2
¼

ð�HÞ
2

kBT2

Similar manipulations in the NPT ensemble lead to equations for the
isobaric heat capacity cp and isothermal compressibility �T

h½�ðH þ PVÞ	
2
iNPT ¼ kBT

2cP ð62Þ

hð�VÞ
2
iNPT ¼ VkBT�T

More fluctuation expressions can be derived using similar manipulations

[38,37,43].
As the expressions for averages are different in different ensembles, so are

the relationships between the free energy derivatives and fluctuations. The
fluctuation equation for cV, (61), is not valid in the NPT or any other
ensemble. Likewise, Eqs. (62) are valid in the NPT ensemble only.

D. Structural Properties

One of the main goals of molecular simulations since their very early days
was to obtain information about structure together with the thermodynamic
properties, given the interaction potentials between the atoms.

The most important structural characteristics are the density distribution
and correlation functions. The n-particle distribution function g(n)(r1 , . . . , rn)
is defined so that �ng(n)(r1 , . . . , rn), with � being the mean density of particles
in a system, is the probability density for finding a particle at position r1, a
particle at position r2, . . . , a particle at position rn.

Particularly important is the pair distribution function, g(2)(r1, r2), or
simply g(r1, r2). In a homogeneous system this is only a function of the
interparticle distance vector r¼ r2� r1. The quantity �g(r) can be interpreted
as the mean local density of particles at position r relative to a particle that is
taken as reference. The quantity h(r) ¼ g(r)� 1 is called the (total) pair
correlation function. If the system is also spherically symmetric, as in the
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case of an unperturbed liquid or glass, g and h depend only on the magnitude
of the separation, r¼ |r|. This of course does not apply to oriented polymers,
or to a polymer melt under flow. In this case g is also called the radial
distribution function, g(r).

The structure of low density gas phases and crystalline solid states is easy
to describe, because the correlation functions for them are easy to obtain. In
low density gases, intermolecular interactions are negligible and there are no
correlations between the particles. g(r) is 1 for all r. At the other extreme, in
crystalline solids correlations are very strong but, due to the lattice
symmetry, the structure and correlation functions can be easily determined.
Correlation functions are particularly important for dense disordered
systems such as liquids and glasses, and hence for polymers, for which the
crystalline state is rather the exception than the norm. Different models used
in classical liquid state theory are essentially different approximations to
calculate the correlation functions. All thermodynamic properties can be
expressed in terms of the structure correlation functions and interaction
potentials [37,46].

The Fourier transform of the pair correlation function, the structure
factor, can be measured experimentally by X-ray, neutron, or light
scattering techniques [37,38,43,47]. Moreover, in the simple and often
used approximation, whereby all the potential energy is expressed as a sum
of pair interaction u(r) over all pairs of atoms, knowing g(r)� g(2)(r) allows
one to calculate all thermodynamic properties.

Energy and pressure, in an isotropic system for instance, are:

E ¼
3

2
NkBT þ

1

2
N�

Z 1

0

uðrÞgðrÞ4�r2 dr ð63Þ

PV ¼ NkBT �
1

6
N�

Z 1

0

r
duðrÞ

dr
gðrÞ4�r2 dr

Essentially, integration with the g(r) replaces sums over all pairs, and similar

expressions can be derived for averages of any pairwise function.
Calculating the pair distribution function in a simulation is straightfor-

ward; all we need to do is count the number of atom pairs separated by a
distance in the range from r to rþ �r, and then normalize it. Usually, g(r) is
normalized by the number of pairs Nig(r, rþ �r) that would be observed
in an ideal gas of the same density, so that, in the limit of large distances,
r!1, where correlations disappear, g(r)! 1. A typical FORTRAN code
to calculate g(r) from 0 to rmax with the resolution deltar is given below.
The separation distance histogram is calculated for nbins¼rmax/
deltar bins, for a model of N particles in a box with sides boxx,
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boxy, and boxz along the x, y, and z directions, respectively, with the
atomic coordinates stored in the arrays x(i),y(i),z(i).*

integer nbins, ibin, N
double precision hist(0:nbins)
double precision g(0:nbins)
double precision x(N),y(N),z(N)
double precision boxx,boxy,boxz,invbx,invby,invbz
double precision anorm, pi
double precision volume, rmax, deltar, dist

pi¼dacos(�1.0d0)
.........................................
volume¼boxx*boxy*boxz
anorm ¼ N*(N�1)/volume * 4.d0/3.d0 * pi
invbx¼1.d0/boxx
invby¼1.d0/boxy
invbz¼1.d0/boxz
nbins¼rmax/deltar

do i¼1,N�1
do j¼iþ1,N
dx ¼ x(i)�x(j)
dx ¼ dx � boxx*anint(dx*invbx)
dy ¼ y(i)�y(j)
dy ¼ dy � boxy*anint(dy*invby)
dz ¼ z(i)�z(j)
dz ¼ dz � boxz*anint(dz*invbz)
dist¼ sqrt(dx*dxþdy*dyþdz*dz)
ibin¼ int(dist/deltar)
hist(ibin) ¼ hist(ibin)þ2.d0
enddo
enddo
do ibin¼1,nbins
r¼ ibin*deltar
g(ibin)¼hist(ibin)/anorm/(r**3�(r-deltar)**3)

enddo

.................

The above code fragment would be run for each configuration of the
simulation run, and the corresponding arrays would have to be averaged
over the configurations.

*This code is not optimized for performance. The periodic boundary conditions are taken into

account using the intrinsic function anint().
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E. Time Correlation Functions. Kinetic Properties

Transport coefficients, such as the diffusion coefficient, the viscosity, and
the thermal conductivity describe a system’s response in the time domain to
time-dependent perturbations. If the perturbation is not very strong, the
response depends linearly on the perturbation and is described by a
corresponding transport coefficient. For instance, if a concentration
gradient is created in the system, the system will respond by developing
a mass flux proportional to the magnitude of the concentration gradient,
which tends to equalize the concentrations everywhere in the system—this
is the well known Fick’s law, and the proportionality coefficient is the
diffusion coefficient. If a velocity gradient is imposed on a liquid, the
liquid responds with a stress (momentum flux) which is proportional to
the velocity gradient, the proportionality coefficient being the viscosity.
Similarly, when an electric field is applied to a conductor, the conductor
responds with an electric current density (charge flux) proportional to the
electric field, and the proportionality coefficient is the conductivity. This
approach is applicable to a wide variety of different phenomena; it is called
‘‘linear response’’ theory, and is described in detail in [40,37,38]. The
coefficients of proportionality between the relaxation rate and the applied
driving force are called kinetic coefficients.

Of course, one way to determine kinetic coefficients from simulation is to
simulate the perturbation and measure the system’s response directly. This is
a feasible approach in some systems, which will be discussed in one of the
following chapters.

One of the most important principles of linear response theory relates the
system’s response to an externally imposed perturbation, which causes it to
depart from equilibrium, to its equilibrium fluctuations. Indeed, the system
response to a small perturbation should not depend on whether this
perturbation is a result of some external force, or whether it is just a random
thermal fluctuation. Spontaneous concentration fluctuations, for instance,
occur all the time in equilibrium systems at finite temperatures. If the
concentration c at some point of a liquid at time zero is hci þ �c(r, t), where
hci is an average concentration, concentration values at time tþ �t at r and
other points in its vicinity will be affected by this. The relaxation of the
spontaneous concentration fluctuation is governed by the same diffusion
equation that describes the evolution of concentration in response to the
external imposition of a compositional heterogeneity. The relationship
between kinetic coefficients and correlations of the fluctuations is derived in
the framework of linear response theory. In general, a kinetic coefficient is
related to the integral of the time correlation function of some relevant
microscopic quantity.
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The time correlation function of two quantities A and B, which are
functions of the phase space point �, is defined as:

CABðtÞ ¼ h�Að�ð0ÞÞ�Bð�ðtÞÞi ð64Þ

Here �A¼A� hAi and �B¼B� hBi are the deviations of A and B from

their average values. The brackets indicate averaging over an ensemble of

systems prepared under the same macroscopic initial conditions and subject

to the same macroscopic constraints; here, equilibrium averages will be

considered. When A and B are the same function, cAA is called the auto-

correlation function of A. A normalized correlation function cAB can be

defined as

cAB ¼
CABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hð�AÞ
2
ihð�BÞ2i

q ð65Þ

The absolute value of this function is bounded between zero and one.
The self-diffusion coefficient D, for instance, is related to the velocity

autocorrelation function. In three dimensions

D ¼
1

3

Z 1

0

dthvið0Þ � viðtÞi ð66Þ

where vi is a center of mass velocity of a single molecule. The shear viscosity

is related to the correlations of the off-diagonal (� 6¼ �) components of the

instantaneous stress tensor [compare Eq. (57)] P��:

P�� ¼
1

V

X

i

pi�pi�=mi þ
X

i

ri� fi�

 !

� ¼
V

kBT

Z 1

0

dthP��ð0ÞP��ðtÞi ð67Þ

Here, �,� stand for the Cartesian components x, y, z of the correspond-

ing quantity—force acting on the particle fi, particle coordinate ri, or

momentum pi.
Equations (66) and (67) are known as Green–Kubo relations for the

transport coefficients.
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Alternative, mathematically equivalent expressions, known as Einstein
relations, may be obtained by carrying out the integration by parts:

D ¼ lim
t!1

1

6t
riðtÞ � rið0Þ
�� ��2
D E

ð68Þ

� ¼ lim
t!1

1

2t

V

kBT
hðL��ðtÞ � L��ð0ÞÞ

2
i ð69Þ

L�� ¼
1

V

X

i

ri�pi� ð70Þ

It is easy to see that P�� is a time derivative of L��.
The above equations provide two alternative routes for calculating

kinetic coefficients from simulations of a system at equilibrium. Averages in
the above equations are ensemble averages, hence the results are ensemble-
sensitive. The time correlation functions contain more information than just
the kinetic coefficients. The Fourier transforms of time correlation functions
can be related to experimental spectra. Nuclear magnetic resonance (NMR)
measures the time correlation functions of magnetization, which is related to
the reorientation of particular bonds in the polymer molecule; inelastic
neutron scattering experiments measure the time correlation functions of the
atom positions; infrared and Raman scattering spectroscopies measure
the time correlation function of dipole moments and polarizabilities of the
molecules.

Using the Einstein relations is generally a more robust way to calculate
the kinetic coefficients. One just has to calculate the average on the right
hand side of the Eqs. (68), (69) as a function of t for long enough times,
when it becomes approximately linear in time, and to determine the slope; in
contrast, application of the Green–Kubo relations requires long dynamic
simulations to accumulate the ‘‘tails’’ of time correlation functions with
sufficient precision.

Usually, in computer simulations the time correlation functions are
calculated after the run is finished, using the information saved during the
run (i.e., in a ‘‘postprocessing’’ stage). One typically saves the instantaneous
values of the quantities of interest during the run in one or several files on
the hard disk, which are processed after the simulation run.

A direct way to calculate the time correlation function from the values
saved during the simulation run* is just to literally implement its definition.
Suppose we have Mþ 1 values of A(t) and B(t), obtained at the regular time
intervals m�t, where m is an integer running from 1 to M, stored in the

*Or calculated from the saved configurations.
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arrays a and b. To calculate the time correlation function CAB(t) one would
have to scan the array, picking up pairs of values a(l) and b(n),
calculating their product, and saving it in the appropriate location in the
array c(j), j¼|n�l|, where the values of CAB( j�t) are to be stored.
Afterwards, the accumulated quantities have to be normalized by the
number of a and b pairs used for each value of l. The following code
fragment implements the subroutine that takes the values of A(t) and B(t)
stored in the arrays a, b, and returns array c, containing the normalized
correlation function values for times from 0 to mcor �t. It also calculates the
averages of A(t) and B(t) a_av and b_av and their root mean squared
deviations delta2a, delta2b, to obtain normalized correlation functions.
A and B are available for time slices 0 to m.

subroutine correl(a,b,c,a_av,b_av,delta2a,delta2b,mcor,m)

double precision a(0:m),b(0:m),c(0:mcor)
double precision a_av, b_av,a2av, b2av, delta2a,delta2b
double precision aux1,aux2, ai
integer mcor, count (0:mcor), maxt, m, i

a_av¼0.0d0
b_av¼0.0d0
a2av¼0.0d0
b2av¼0.0d0

c zero c and count
do i¼0,m
c(i)¼0.0d0
count(i)¼0.0d0

end do

c double loop through the arrays

do i¼0,m
ai¼a(i)
a_av¼a_avþai
b_av¼b_avþb(i)

maxt¼min(iþmcor,m)
do j¼i,maxt
1¼j�i
count(1)¼count(1)þ1
c(1)¼c(1)þai*b(j)

end do
end do

c normalize averages
aux ¼ 1.0d0/dble(mþ1)

a_av¼a_av*aux
b_av¼a_av*aux
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a2av¼a2av*aux
b2av¼b2av*aux

delta2a¼sqrt(a2av-a_av*a_av)
delta2b¼sqrt(a2av-b_av*b_av)

c normalize corr. function
aux1¼a_av*b_av
aux2¼1.0d0/(delta2a*delta2b)

do i¼0,m
c(i)¼(c(i)/count(i) - a_av*b_av)*aux2

end do

return
end

For most of the modern high-speed CPUs, multiplication takes sig-
nificantly fewer cycles than division. This is why division is replaced by
multiplication whenever possible. Also, the values unchanged inside the
loops are calculated in advance outside of the loop.

An alternative method for calculating the time correlation function,
especially useful when its spectrum is also required, involves the fast Fourier
transformation (FFT) algorithm and is based on the convolution theorem,
which is a general property of the Fourier transformation. According to the
convolution theorem, the Fourier transform of the correlation function CAB

equals the product of the Fourier transforms of the correlated functions:

ĈCABð�Þ ¼ ÂAð�Þ 
 B̂Bð�Þ ð71Þ

The direct Fourier transforms ÂAð�Þ and B̂Bð�Þ should be calculated by a
Fourier transform routine that can be found in many scientific program

libraries. Then the Fourier transform of the correlation function is calcu-
lated using (71). In the case where the autocorrelation function is calculated

(A¼B), this Fourier transform represents a frequency spectrum of the
system associated with the property A and can be related to experimental
data, as discussed above. The correlation function in the time domain is

then obtained by an inverse Fourier transformation. Fast Fourier transfor-
mation routines optimized for particular computer architectures are usually

provided by computer manufacturers, especially for the parallel or vector
multiprocessor systems.

IV. MONTE CARLO SIMULATIONS

In a Monte Carlo simulation many microscopic states are sampled using the
generation of random numbers, and averages are calculated over these
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states. It is this random nature of the technique which is responsible for its
name. The Monte Carlo method was developed in the Los Alamos National
Laboratory in New Mexico in the late 1940s–early 1950s and its inventors
named it after Monte Carlo, capital of Monaco, a small country in Southern
Europe famous for its casinos.*

Let us first consider a very simple example—calculation of the area of a
complex shape, such as the polygon � in Fig. 7. The simplest way would be
to set up a mesh that is fine enough to provide the required accuracy, and to
calculate the number of mesh points inside the polygon. If the complex
shape happens to be a hole in the fence, this can be done by covering the
fence with chicken wire and counting the number of knots inside the hole
and the number of knots in a rectangular section ABCD of the fence which
completely surrounds the hole. The ratio of these two numbers times the
area of the rectangular section gives the area of the polygon.

Alternatively, one might draw a rectangle ABCD of known size
around the polygon and start throwing points inside ABCD at random

FIG. 7 Area calculations.

*Maybe, if the technique had been developed several years later, it could have been called Las

Vegas.
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(i.e., according to a uniform distribution in ABCD). Clearly, the probability
for a randomly chosen point to fall inside the polygon equals the ratio of the
hatched area inside the polygon to the known area of the rectangle. Again,
in the spirit of Fig. 7, one might equally well do this by randomly shooting,
or throwing darts, at the brick fence ABCD and counting the number of
shots that went through the hole �. It is important to note that the shooter
must be blind, or at least very inexperienced, to guarantee the randomness
of the shots. Naturally, the accuracy of the area estimate increases with the
number of trial points. According to statistics, the error is inversely
proportional to the square root of the total number of trials. This technique
is the simplest variant of the Monte Carlo method. It can easily be
generalized to calculate an integral of some arbitrary function f(x, y) over a
complex-shaped region. Indeed, if we were to calculate not just the area of
the hatched polygon but an integral of function f(x, y) over the polygon �,
we could do this by first extending the integration region to the whole
rectangular region ABCD and, secondly, by redefining the function F(x, y)
to be equal to f(x, y) inside and on the border of � and F(x, y)¼ 0
everywhere else. Now by throwing M random points in the rectangle (x, y)i
we can estimate:

Z

�

dx dy f ðx, yÞ ffi
1

M

XM

i¼1

Fððx, yÞiÞ ð72Þ

Of course, if � accounts for a very small fraction of ABCD, the random
technique becomes increasingly wasteful. Imagine that the function F(x, y) is
nonzero over less than 1% of the total area ABCD. Then, on the average, 99
out of 100 shots will contribute zeroes to the average, and only one out of a
hundred will deliver a nontrivial contribution.

To take a polymer example, consider simulations of the bead-spring
model of the linear polymer chain from Fig. 2, at temperature T. The
probability density to find it in a particular conformation �, specified by the
set of coordinates of its N monomers, �¼ {r1, r2, . . ., rN}, is a product of
probability densities for the bonds [compare Eq. (12)]; it can be considered
as being a canonical distribution of the form of Eq. (46) (here we use � to
denote a point in configuration space, not in phase space).

�ð�Þ ¼
3

2�

� �3=2
1

b3
exp �

3

2b2

XN

i¼2

ri � ri�1ð Þ
2

" #
ð73Þ

with b2 the mean square distance between successive beads. The quantity
Vð�Þ ¼ ð3kBT=2b

2Þ
PN

i¼2 ri � ri�1ð Þ
2 can be thought of as an elastic ‘‘energy’’
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of the springs, which, as we have pointed out, is entirely of entropic origin.

The mean squared end-to-end distance R2
¼ |rN� r1|

2 should be calculated

as:

hR2i ¼

Z
d��ð�ÞjrN � r1j

2 ð74Þ

The simplest Monte Carlo scheme for simulating this chain, as described
above, would generate random conformations �, scattered with uniform
probability throughout configuration space; each time it would select the N
bead positions randomly within a three-dimensional domain whose
dimensions are much larger than b. Thus, it would calculate an average of
the product �(�)|rN� r1|

2 over all realizations of the chain.
Most of the randomly generated configurations, corresponding to

random positions of the monomers, however, will have a very small
weight, as the distances between connected beads will in most cases be much
longer than b. The probability density of each of these states �(�) will then
be negligibly small, and so will be its contribution to the right hand side of
Eq. (74). This simplest Monte Carlo scheme will then be spending most of
the time calculating zeroes, almost never finding a configuration in which all
the distances between connected monomers are on the order of b, which
would contribute substantially to the average. This simple approach is very
inefficient.

There is a solution, though. Imagine that we have an algorithm that will
generate microscopic states using pseudorandom numbers, but with a
nonuniform probability density, visiting the relevant lower-energy states
more often and almost avoiding the high-energy states. The perfect choice
would be to sample the phase space with the probability density �(�)
directly. Then, ensemble averages can be calculated simply as averages over
the generated conformations:

R2
 �

¼
1

M

XM

i¼1

jrN � r1j
2
i ð75Þ

The core part of the Metropolis Monte Carlo simulation technique is the
algorithm to sample the microscopic states according to the required
ensemble probability distribution. The Monte Carlo algorithm simulates a
stochastic process (Markov chain) producing a sequence of points or states
in configuration space, in which the choice of the next state depends only on
the current state. The original Metropolis (or MR2T2) Monte Carlo
algorithm, proposed by Metropolis et al. [48], was for sampling the
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canonical (NVT) ensemble. The algorithm generates a sequence of random
phase space points according to the following rules: (a) if the state generated
at step k is �k with energy value V(�k), the candidate for the new state �new

is generated randomly with some distribution of ‘‘attempt’’ probabilities
�(�k!�new). In the case of an atomic or molecular system this is usually
realized by adding a random displacement to one or several randomly
chosen atoms. The average displacement is of course zero, and its
components are most often just uniformly distributed inside the interval
between ��max and �max in each coordinate direction. The new state is
accepted with the probability Pacc¼max(1, exp[�(V(�new)�V(�k))/(kBT)]).
If the �new has lower energy than the current V(�k), it is always accepted;
if it has higher energy, it can still be accepted with probability exponentially
decreasing with the energy difference. If �new is accepted, �kþ1 ¼ �new.
Otherwise the old state is counted once again as a new state, �kþ1 ¼ �k.

Given this description of the Metropolis algorithm, how do we make sure
that it does reproduce a canonical ensemble distribution?

A. Microreversibility

Let us assume that the probability density for being at the phase space point
� after completion of step k in the Metropolis algorithm is �ðkÞM ð�Þ. Let the
probability to go from one point � to another �0 in one Monte Carlo step be
W(�!�0). This function W, describing how to proceed from one state to
the next, completely defines the algorithm. The following equation describes
the evolution of the probability density during our random process:*

�kMð�Þ � �k�1
M ð�Þ ¼

X

�0

�k�1
M ð�0ÞWð�0 ! �Þ

�
X

�0

�k�1
M ð�ÞWð� ! �0Þ ð76Þ

The equation is actually quite simple; it is similar to the Liouville equation
(41). As we are looking for a stationary algorithm, producing results inde-
pendent of the initial conditions, we want �M to depend only on �, not time,
and hence we will set the left hand side to zero. The first sum on the right
hand side describes the ‘‘influx’’ to �, the probability to come there from
other states in step k. It is a sumy over all other states �0 of the product of

*This equation is very important in the theory of random processes; it has many different

names, of which master equation is most appropriate. We will not cover this subject in depth

but rather refer the interested reader to the excellent book by van Kampen [49].
yOr an integral, if the phase space is continuous.
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the probability to be at �0 at step k� 1, times the probability of transition
�0 !� at the kth step. The second sum is very similar to the first; it equals
the total probability to leave �. Again it is expressed as a sum of the
probabilities to go from � to any other point �0 at step k over all other
points �0. How can we satisfy Eq. (76) with zero left hand side? Notice that
the right hand side is essentially a sum over different pairs (�,�0). One
possibility is to require the contribution from each pair to be zero. This
leads to the following equation, which describes the detailed balance, also
called microreversibility condition:

�Mð�0ÞWð�0 ! �Þ ¼ �Mð�ÞWð� ! �0Þ

Wð�0 ! �Þ

Wð� ! �0Þ
¼
�Mð�Þ

�Mð�0Þ
ð77Þ

Equation (77) requires that the flux between any two points in phase space
be the same in both forward and reverse directions. We have to emphasize
that Eq. (77) is not equivalent to (76). It provides a sufficient but not neces-
sary condition for the latter to hold. In simple terms, this means that,
if detailed balance is satisfied, Eq. (76) is always satisfied, too. However,
it may also be possible to make Eq. (76) true with �M and W not
satisfying (77).

It is easy to check that detailed balance holds for the Metropolis
algorithm described above with �M(�) equal to the canonical ensemble
distribution in configuration space. In the Metropolis algorithm,
W(�!�0)¼ �(�!�0)min(1, �M(�0)/�M(�)), where �(�!�0) is the prob-
ability of attempting a move from � to �0 and Pacc(�!�0)¼
min(1, �M(�0)/�M(�)) is the probability of accepting that move. In the
classical Metropolis algorithm, the attempt step is designed such that
�(�!�0)¼ �(�0 !�). In the NVT ensemble, the acceptance probability is
min(1, exp[�(V0 �V)/(kBT)]), as described above. One can easily verify that
the detailed balance equation (77) is satisfied under these conditions.

In recent years it has been realized that the sampling of configuration
space may be more efficient if a nonsymmetric attempt probability matrix
�(�!�0) is utilized. In that case, the correct acceptance criterion for
ensuring microscopic reversibility is

Paccð� ! �0Þ ¼ min 1,
�ð�0 ! �Þ�Mð�0Þ

�ð� ! �0Þ�Mð�Þ

� �
ð78Þ

Furthermore, it may be convenient to conduct the moves by introducing
random changes not in the original set of coordinates � (e.g., Cartesian
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coordinates) with respect to which the probability density �M(�) is known,
but rather in a set of generalized coordinates ~��. The correct acceptance
criterion is then

Paccð� ! �0Þ ¼ min 1,
�ð ~��0 ! ~��Þ�Mð�0ÞJð ~��0 ! �0Þ

�ð ~�� ! ~��0Þ�Mð�ÞJð ~�� ! �Þ

 !
ð79Þ

where Jð ~�� ! �Þ is the Jacobian of transformation from the set of coordi-
nates ~�� to the set of coordinates �; Jð ~�� ! �Þ times a differential volume in
~��-space gives the corresponding volume in �-space. The presence of the
Jacobian takes care of the fact that equal volumes in ~��-space may not
correspond to equal volumes in �-space.

Since both MC and molecular dynamics methods are available for
predicting the equilibrium properties of material systems, and since
molecular dynamics can provide kinetic in addition to thermodynamic
properties, one may ask why MC is used at all. The answer is that, by
appropriate selection of the moves employed, MC can achieve a sampling of
configurations many orders of magnitude more efficient than that provided
by MD. This means that the MC simulation can converge to well-
equilibrated averages in a small fraction of the time that would be required
by MD. Another advantage of MC is that it can readily be adapted to
simulations with variable numbers of particles (e.g., grand canonical and
Gibbs ensemble simulations) and is therefore very convenient for phase
equilibrium calculations. Such simulation schemes will be described in the
remainder of this book.

V. MOLECULAR DYNAMICS (MD)

At first glance Molecular Dynamics looks like a simplistic brute force
attempt to literally reproduce what we believe is happening in the real world.
Given a set of the initial velocities and coordinates, it tries to integrate the
equations of motion numerically. Following the trajectory, MD provides
information necessary to calculate various time correlation functions, the
frequency spectra, diffusion coefficients, viscosity, and other dynamic
properties. It also calculates thermodynamic properties (P,T, . . .) as time
averages at equilibrium.

In the simplest version of MD, the Newton (21) or Lagrange equations
(22) are integrated for a closed system, in which the volume, total energy,
and number of particles are conserved. This simulates the microcanonical,
NVE ensemble. Both kinetic and potential energies fluctuate in the
microcanonical ensemble but their sum remains constant.
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For many problems, however, it is more convenient to keep the
temperature, pressure, or chemical potential constant, instead of the total
energy, volume, and number of particles. Generalizations of the molecular
dynamics technique to virtually any ensemble have been developed, and
they will be discussed in the following chapters. Of course, constant
temperature MD does not conserve the total system energy, allowing it to
fluctuate as is required at constant temperature. Similarly, volume is allowed
to fluctuate in constant pressure molecular dynamics. The trick is to make
these quantities fluctuate in a manner consistent with the probability
distribution of the desired ensemble.

There are two different ways of accomplishing this. The first is to
introduce some random perturbations to the system, which emulate its
interaction with the environment. For constant temperature, for instance,
this can be done by randomly [50] changing momenta by some random
increments drawn from the Gaussian distribution. This mimics collisions
between the molecules in the system and the virtual thermostat particles.
The choice of parameters for the Gaussian distribution of momentum
increments is determined by the required temperature.

Alternative techniques were proposed by Nosé [51] and Hoover [52].
Interaction with an external thermostat is described by an extra degree of
freedom s, with associated momentum variable ps. Extra potential energy
Vs¼ ( fþ 1)kBT ln(s) and kinetic energy Ks ¼ 1=2 Qs _ss

2 are added. Here f is
the number of the degrees of freedom in the original system and Qs is a
thermal inertia parameter, with dimensions of energy times time squared.
The degree of freedom s is a scaling factor between real time and simulation
time, s¼ dtsimulation/dtreal. A ‘‘simulation time clock’’ is introduced, in
addition to the real time clock, s being an instantaneous ratio of simulation
time to real time intervals; for a well-designed simulation, s should fluctuate
around 1. In the Nosé version the extended system is conservative, and its
equations of motion can be derived following either a Lagrangian or a
Hamiltonian formalism:

Q€ss ¼
X

i

miv
2
i s� ð f þ 1ÞkBT=s

€rr ¼ f=ðms2Þ � 2_ss_rr=s ð80Þ

The dots denote derivatives with respect to simulation time. The total

energy, including the kinetic and potential energy associated with the addi-

tional degree of freedom, is conserved. It can be shown that the ‘‘original

system’’ samples the canonical ensemble. Hoover [52] proposed a mathema-

tically equivalent scheme in which the coupling parameter is a friction
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factor, whose dynamics is governed by the difference between the current
kinetic energy and its average at the desired temperature T.

_rr ¼ p=m

_pp ¼ f � sp

_ss ¼
1

Qs

X

i

miv
2
i =2� fkBT=2

 !
ð81Þ

In the Hoover scheme, the distinction between real time and simulation time
disappears. Again here, f is the number of degrees of freedom and Qs

is a parameter that determines how strongly the system interacts with the
‘‘thermostat.’’ It is chosen by trial and error for a particular system. If it
is too large, the system dynamics is strongly perturbed and is dominated by
the coupling to the ‘‘thermostat.’’ If Qs is too small, the coupling is weak,
and equilibration takes too long.

For the above techniques it is possible to prove that they reproduce the
canonical ensemble distribution.

There are, however, some not so rigorous but still very practical methods,
based on velocity rescaling. One ‘‘obvious’’ and the most crude method to
simulate constant temperature in MD would be to just rescale all the
velocities, so that the kinetic energy corresponds to the desired temperature
according to K¼ 1/2 Nf kBT, where Nf is the number of degrees of freedom.
This, of course, is a caricature of the real NVT ensemble, where kinetic
energy is allowed to fluctuate and is not always constant. Even though this
approach is totally unsuitable for production runs, it is quite practical and is
often used to equilibrate the model at a required temperature, starting from
an initial configuration. Some gentler variations on this theme have been
suggested in [53]. There, the kinetic energy is not kept constant at every step.
Velocities are rescaled by a factor chi, which is dependent on the difference
between the current and desired kinetic energy values. Deviations of the
kinetic energy from the desired value relax to that value with a predefined
characteristic time:

� ¼ 1þ
�t

tT

T

T
� 1

� �� �1=2

T ¼
1

f =kB

X

i

miv
2
i ð82Þ

Here �t is the time step and tT is a parameter that determines how strong the
perturbation is. Similar to the parameter Qs in the Nosé and Hoover
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schemes, it has to be chosen by trial and error, so that the perturbation of

the original system dynamics is not too strong, but at the same time is strong

enough to equilibrate the system. This scheme is reminiscent of the method

of Hoover (81). The important difference between them is that here it is the

rescaling factor itself which depends on the difference between the instant

and desired temperatures, while in Eq. (81) it is its time derivative. Unlike

the stochastic and Nosé–Hoover methods, velocity rescaling with the factor

described by Eq. (82) does not rigorously sample the canonical ensemble.

Nevertheless, this method is widely used in practice for equilibration pur-

poses. It was also shown to provide results similar to Hoover’s thermostat

(81) [54].
Every technique that involves velocity rescaling contains a parameter,

adjustments in which determine how strong is the perturbation to the
system dynamics. An inappropriate choice can lead to very interesting
phenomena, which unfortunately can be passed unnoticed if special care is
not taken. Rescaling particle velocities makes the average kinetic energy
correspond to the required temperature, but still relies on the system’s
internal mechanisms to redistribute the kinetic energy between different
degrees of freedom to provide equipartitioning. Usually the energy is
redistributed due to the interactions between the particles and due to the
anharmonicity of the system. Such mechanisms are absent in the extreme
cases of the ideal gas and of the system of coupled harmonic oscillators,
discussed earlier in this chapter. As there are no interactions between the
particles in the former case and no interactions between the vibrational
modes in the latter, the energy of each degree of freedom remains at its
initial value. Imagine that some initial coordinates and velocities are
assigned to the particles in the ideal gas. If the kinetic energy happens to
be less than K0¼ 3/2 NkBTset, the scaling factor for the velocities will be
greater than one, and ‘‘hot’’ faster particles will get more energy than
slower particles. Similarly, in the harmonic oscillator, ‘‘hotter’’ vibrational
modes will gain more energy than the ‘‘colder’’ ones. If errors in the time
integration scheme are such that the total energy decreases with time,*
together with velocity rescaling, they may lead to an unequal kinetic
energy distribution between different degrees of freedom. Of course, the
modeled systems are never ideal, and there is always interaction between
different degrees of freedom, which redistributes energy between them.
However, care must be taken as, if these channels are not fast enough,

*This is common for many stable integration algorithms. It is a well known fact that when the

most popular Verlet algorithm is used to numerically integrate the equations of motion, in very

long MD runs the system gets colder, due to the integration errors.
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undesired effects may occur [55]. One of the most common is the so-called
‘‘flying ice cube’’ effect. The translational motion of the system as a whole
is often decoupled from other degrees of freedom, as potential energy does
not depend on it. There is no way for energy exchange between this degree
of freedom and the rest. Velocity rescaling can lead to the energy being
pumped into the overall translational motion, while being taken away
from other degrees of freedom. Nominally the kinetic energy of the system
is 1/2NkBT, but most of it is in the translational motion of the system’s
center of mass. With no kinetic energy left in the other modes, the system
looks like a frozen cube flying in space at a rather high velocity. This can
be taken care of by correcting for the center of mass motion during the
run. If the initial velocities are chosen at random, there is always some
nonzero center of mass velocity component, which has to be subtracted in
the beginning of the run.* Overall center of mass motion can also
accumulate in very long MD runs due to the rounding errors.

With this said we see that, when using any one of the thermostats
described by Eqs. (80), (81), and (82), the time constant chosen should not
be too small to allow the energy to redistribute equally between the different
degrees of freedom after it is artificially pumped into the system or taken
from it by velocity rescaling.

VI. BROWNIAN DYNAMICS

The Brownian Dynamics technique is based on the Langevin equation of
motion, originally proposed to describe the Brownian motion of a heavy, for
instance colloidal, particle in a solvent. The Brownian particle is subjected to
a random force from many collisions with solvent molecules. In addition,
the solvent exerts a ‘‘friction’’ force which is assumed to be proportional to
the particle’s velocity.

_pp ¼ ��pþ frðtÞ ð83Þ

Here � is a friction coefficient and fr is the random force, which is also

assumed to exhibit no directional preference: hfrðtÞi ¼ 0, to be uncorrelated

with the particle’s momentum: hfrðtÞ � pð0Þi ¼ 0 for all t, and to be uncorre-

lated with previous and future values of itself, hfr(t)�fr(t
0)i¼Ro�(t� t0).

The Langevin equation (83) is a stochastic differential equation. It can be
derived formally from the full set of dynamical equations describing the

*Unless it affects the goal of the simulation, of course.
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particle and solvent system by projecting out the motion of the fast solvent
particles [56,57].

Multiplying both sides of Eq. (83) by p(0) and averaging over all
stochastic trajectories consistent with the same initial conditions, taking into
account the delta-correlation of the random force, we obtain:

d

dt
hpð0Þ � pðtÞi ¼ ��hpð0Þ � pðtÞi

hpð0Þ � pðtÞi ¼ hp2i expð��tÞ ð84Þ

We see that the velocity autocorrelation function of a free Brownian particle

falls exponentially with time. The time required for an arbitrary initial

velocity distribution of the particle to settle down to the Maxwell–

Boltzmann form corresponding to the temperature of the bath (thermaliza-

tion of velocities) is on the order of ��1.
For the diffusion coefficient we calculate the mean square displacement

of the particle:

hðrðtÞ � rð0ÞÞ2i ¼
1

m2

Z t

0

dt0
Z t

0

dt00hpðt00Þ � pðt0Þi

¼ 2
hp2i

m2

Z t

0

dt0
Z t0

0

dt00 expð��ðt0 � t00ÞÞ

¼ 2
hp2i

m2

Z t

0

dt0 expð��t0Þ

Z t0

0

expð�t00Þ dt00

¼ 2
hp2i

m2

t

�
� 2

hp2i

m2

1

�2
ð1� expð��tÞÞ ð85Þ

In the limit of long times (�t� 1), invoking the equipartition theorem for

kinetic energy,

lim
t!1

hðrðtÞ � rð0ÞÞ2i ¼ 2
hp2i

m2

t

�
¼ 6

kBT

m

t

�
¼ 6Dt ð86Þ

[compare Eq. (68)]. So, the diffusion coefficient of the particle D is related

to the friction constant � as

D ¼
kBT

m�
ð87Þ
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Equation (87) is an Einstein relation for Brownian motion. There is a con-
nection between the friction factor � and the quantity Ro, measuring the
mean squared magnitude of the random force. Solving Eq. (83) just like a
deterministic ordinary differential equation gives

pðtÞ ¼ pð0Þ expð��tÞ þ expð��tÞ

Z t

0

expð�t0Þfrðt
0Þ dt0 ð88Þ

Squaring and taking the ensemble average,

hp2ðtÞi ¼ hp2ð0Þi expð�2�tÞ þ 2 expð�2�tÞ

Z t

0

expð�t0Þ frðt
0Þ � pð0Þ

 �
dt0

þ expð�2�tÞ

Z t

0

dt0
Z t

0

dt00 exp �ðt0 þ t00Þ½ 	 frðt
0Þ � frðt

00Þ
 �

ð89Þ

Using the properties frðt
0Þ � pð0Þ

 �
¼ 0 and frðt

0Þ � frðt
00Þ

 �
¼ Ro�ðt

0 � t00Þ,
we obtain

hp2ðtÞi ¼ hp2ð0Þi expð�2�tÞ þ
Ro

2�
1� expð�2�tÞ½ 	 ð90Þ

As t!1, the particle will become thermally equilibrated with the bath and
so, by equipartition, limt!1hp2i ¼ 3mkBT . We have already used this in
deriving (86). On the other hand, Eq. (90) gives limt!1 p2

 �
¼ Ro=2�.

Equating,

Ro ¼ 6�mkBThfrðtÞ � frðt
0Þi ¼ 6�mkBT�ðt� t0Þ ð91Þ

This is the fluctuation-dissipation theorem. It requires that the mean energy
given to the particle by the random force be equal to the mean energy taken
out of the particle by the frictional forces with its environment. For a more
rigorous formulation, the reader is referred to [58].

If the particle is in an external potential, or if there are many interacting
particles, another deterministic force term describing this interaction is
added to the right hand side of the Langevin equation:

_pp ¼ ��p� rV þ frðtÞ

p ¼ _rr=m ð92Þ

Let us try to derive an equation for the evolution in time of the phase
space probability density �(p, r, t) for a random process generated by
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numerical integration of the Langevin Eq. (92) with some time step �t. As
in the Monte Carlo master Eq. (76), we should write down the balance of
the incoming and outgoing fluxes for the phase space point �¼ {p, r} after
the time increment �t, taking into account that the coordinate increment
equals �r¼ (p/m)�t [59] and the momentum increment equals �p ¼

�ð�p� rVÞ�tþ ���p, with ���p the momentum increment due to the random
force. P(�p) is the probability density of the momentum increment �p

�ðp, r, tþ �tÞ ¼ � ð p, r, tÞ �

Z
d3�p � ð p, r, tÞPð�pÞ

þ

Z
d3�p �ðp��p, r��r, tÞPð�pÞ ð93Þ

The first two terms on the right hand side cancel each other, as �(p, r, t) can
be pulled out from the integral and

R
d3�pP(�p) ¼ 1. Expanding � around

{p, r} under the integral of the third term on the right hand side,

�ðp, r, tþ �tÞ ¼

Z
d3�pPð�pÞ�ðp, r, tÞ �

X

i

�t
pi

m

@�

@ri

Z
d3�pPð�pÞ

�
X

i

@�

@pi

Z
d3�pPð�pÞ�pi

þ
1

2

X

i, j

@2�

@pi@pj

Z
d3�pPð�pÞ�pi�pj

	

þ ð�tÞ2
@2�

@ri@rj

pipj

m2

Z
d3�pPð�pÞ

þ �t
@2�

@ri@pj

pi

m

Z
d3�pPð�pÞ�pj



ð94Þ

The indices i, j run over all coordinate directions. Taking into account the

following relationships, which are a consequence of h ���pi ¼ 0 and the lack

of correlation between the random force and momentum or position:

Z
d3�pPð�pÞ�pi ¼ �tð��pi � riVÞ

Z
d3�pPð�pÞ�pi�pj ¼ ð�tÞ2ð��pi � riVÞð��pj � rjVÞ þ 1=3hð ���pÞ2i�ij

ð95Þ
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we obtain

�ðp, r, tþ �tÞ � �ðp, r, tÞ ¼ �t �
X

i

pi

m

@�

@ri
þ
X

i

riV
@�

@pi

þ
X

i

@

@pi

�pi�

2

4

3

5

þ
1

6

X

i

@2�

@p2i
h ���p2i

þ
1

2
ð�tÞ2

X

ij

pi

m

@

@ri

@�

@pj
ð�pj � rjVÞ þ

@�

@rj

pj

m

	 


ð96Þ

In the limit of �t! 0, using the fact that h ���p2i ¼ 6�tmkBT� fluctuation-
dissipation theorem, compare Eq. (91), Eq. (96) reduces to:

@�ðp, r, tÞ

@t
¼ �

X

i

pi

m

@�

@ri
þ
X

i

riV
@�

@pi
þ
X

i

@

@pi
�pi�þmkBT�

X

i

@2�

@p2i

ð97Þ

which is a Fokker–Planck equation [59]. By direct substitution one can
check that the Boltzmann distribution

�ðp, r, tÞ ¼ Const: exp �
p2

2m
þ V

� �
=ðkBTÞ

	 


is its stationary solution. This means that a Brownian dynamics method
solving the Langevin equation reproduces the canonical ensemble. Notice,
however, that such numerical schemes are approximate, with accuracy on
the order of (�t2). This error is called discretization error. To obtain exact
canonical ensemble averages from a Brownian dynamics simulation it is
necessary to run simulations with different time steps and to extrapolate
the results to �t! 0 [58].

Another interesting and important fact is that it is really not necessary
for the random momentum increments to be drawn from a Gaussian
distribution. Any distribution with zero mean and appropriate mean square
deviation satisfying the condition h ���p2i i ¼ 2mkBT��t along each coordinate
direction will be appropriate.

Brownian dynamics was first introduced by Ermak et al. [60,61] and is
commonly used to simulate polymers, ions, or colloidal particles in solution.
The monomer dynamics is modeled by the Langevin equation, with the
solvent modeled as the medium providing the frictional and random forces.
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If the evolution of the system over times �t� 1/� is of interest
(thermalization of velocities in each time step—‘‘high friction limit’’), the
friction term is dominant and the inertia term on the left hand side of the
Langevin equation can be neglected. Then the equation becomes first order:

_rr ¼
D

kBT
�rV þ frðtÞð Þ ð98Þ

The configuration-space probability distribution in this case is defined by
the Smoluchowski equation, which can be derived in the same way as the
Fokker–Planck equation above.

@

@t
�ðr, tÞ �

D

kBT
rðrV�ðr, tÞÞ ¼ Dr2�ðr, tÞ ð99Þ

This equation describes diffusion in the external potential V(r). If the poten-

tial is constant (or zero), it reduces to the usual diffusion equation.

VII. TECHNIQUES FOR THE ANALYSIS AND
SIMULATION OF INFREQUENT EVENTS

Molecular dynamics is a useful technique for probing transport and
relaxation processes in materials, provided the relevant time correlation
functions decay appreciably over times shorter than 100 ns. Unfortunately,
many dynamical processes in real-life materials, especially polymers, are
governed by time scales appreciably longer than this. Techniques alternative
to ‘‘brute force’’ MD must be developed to predict the kinetics of such
processes from molecular constitution.

Many important dynamical processes in materials occur as successions of
infrequent events. The material system spends most of its time confined
within relatively small regions or ‘‘states’’ in its configuration space, which
are surrounded by high (relative to kBT) energy barriers. Only infrequently
does the system jump from one state to another through a fluctuation that
allows it to overcome a barrier. Once initiated, the jump process occurs quite
quickly (on a time scale that can be followed by MD). The mean waiting
time between jumps, however, is very long. A MD, or even BD, simulation
would exhaust itself tracking the relatively uninteresting motion of the
system as long as it is confined in a few states, but would be unable to
sample a sufficient number of the jumps. Examples of infrequent event
processes include conformational transitions of chains in solution and in the
melt, diffusion of small molecules in glassy polymers, structural relaxation
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in the glassy state, the formation of stable nuclei at the onset of
crystallization, and the conversion from reactants to products in a chemical
reaction.

By shifting attention towards the energy barriers that must be overcome
for a transition between states to occur, special techniques for the analysis
and simulation of infrequent events manage to calculate a rate constant for
the transition utilizing the machinery of common MD and MC simulation.
These techniques are based on the principles of Transition-State Theory.

Envision a system whose free energy as a function of a generalized
coordinate q looks as shown in Fig. 8. Defining an appropriate reaction
coordinate in an Nf-dimensional configuration space is in itself an
interesting problem, which we will address briefly below. The free energy
plotted in Fig. 8 incorporates the effects of thermal fluctuations in directions
orthogonal to the reaction coordinate. The barrier at qz defines two states,
centered around local free energy minima: A state A with q<qz and a state
B with q>qz. Macroscopically, if the barrier is high relative to kBT, there
will be a wide range of times that are long relative to the correlation times

FIG. 8 Free energy profile as a function of the reaction coordinate q showing two

states separated by a barrier. The lines in the upper part of the figure show different

ways in which dynamical trajectories can cross the barrier region.
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governing the motion of the system in each of the states, but still very short
compared to the residence time of the system in either state (time scale
separation). Over this range of times, the probabilities of occupancy pA, pB
of the states evolve according to the master equations:

dpA

dt
¼ �kA!BpA þ kB!ApB

dpB

dt
¼ �kB!ApB þ kA!BpA ð100Þ

A microscopic expression for the rate constant kA!B is [62]

kA!BðtÞ ¼
_qqð0Þ�ðqz � qð0ÞÞ �ðqðtÞ � qzÞ
 �

�ðqz � qÞ
 � ð101Þ

where � and � stand for a Dirac delta function and a Heaviside function,
respectively. The numerator in Eq. (101) is an average rate of motion along
the reaction coordinate taken over all dynamical trajectories that cross the
barrier at time 0 and end up in state B after time t. Trajectories crossing the
barrier in the direction from A to B at time 0, such as (a) and (c) in Fig. 8,
contribute positively to the average in the numerator, while trajectories
crossing in the opposite direction, such as (b), contribute negatively. The
denominator is simply the equilibrium probability of occupancy of state A.
When time scale separation holds, the kA!B calculated through Eq. (101)
turns out to exhibit a plateau value, independent of t, over a wide range of
(not too short) times. Eyring’s Transition-State Theory (TST) rests on an
approximation: It assumes that any trajectory crossing the barrier in the
direction from A to B will eventually lead the system to state B. That is, it
ignores barrier recrossing trajectories along which the system ultimately
thermalizes in the state in which it originated [such as trajectory (b) in
Fig. 8]. In more formal terms, TST replaces q(t) in the numerator of
Eq. (101) with q(0þ), i.e., with its limit for t! 0þ, at which the system is
bound to be in the state towards which _qqð0Þ is pointing. The TST estimate
of the rate constant thus reduces to the ratio of two equilibrium ensemble
averages:

kTSTA!B ¼
_qqð0Þ �½qð0þÞ � qz	 �½qz � qð0Þ	
 �

�ðqz � qÞ
 � ð102Þ

¼
_qq�ð _qqÞ�½qz � qð0Þ	
 �

�ðqz � qÞ
 �
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kTSTA!B emerges essentially as an average velocity in the direction from A to B
along the reaction coordinate, which can readily be computed in most cases
from the momentum-space distribution of the system, times the ratio of
probabilities of being at the barrier and of residing in the origin state A.
The latter ratio can be calculated by MC or constraint MD methods
designed to sample the barrier region.

It is customary to express the rate constant kA!B of Eq. (101) in terms
of its TST estimate, kTSTA!B, as

kA!BðtÞ ¼ kTSTA!B�ðtÞ ð103Þ

where the ‘‘dynamical correction factor’’ or ‘‘transmission coefficient’’ �(t)
is given by:

�ðtÞ ¼
_qqð0Þ �½qz � qð0Þ	 �ðqðtÞ � qzÞ
 �

_qqð0Þ �½qz � qð0Þ	 �ðqð0þÞ � qzÞ
 � ð104Þ

In a two-state system with time scale separation, �(t) quickly settles to a
plateau value within a time comparable to the correlation time of molecular
velocities and much shorter than 1/kA!B. This value is less than unity, for
TST overestimates the rate constant by neglecting dynamical recrossing
events. k(t) can be calculated straightforwardly by generating a number of
MD trajectories initiated on the barrier with an equilibrium distribution
of velocities resulting in a _qq value pointing from A to B. Each trajectory
quickly thermalizes in state A or state B. The fraction of trajectories which
thermalize in state B provides the plateau value of �. A variant of the
method is to initiate the trajectories with random velocities, integrate
them both forward and backward in time, and count the fraction of them
that are effective in bringing about an A!B or B!A transition [63,64].

The possibility of calculating kTSTA!B and � with modest computational
means offers a way out of the problem of long times in the case of dynamical
processes occurring as sequences of infrequent events. Note, however, that,
to apply TST-based approaches, one must have a good idea of the states and
reaction coordinates, i.e., one must already know something about the (free)
energy landscape of the system.

To illustrate these ideas with a simple example, consider a one-
dimensional particle of mass m moving in an external field V(q) of the
form depicted by the curve in Fig. 8. In this case, the ordinate is merely
potential energy, rather than free energy. The field V(q) could be generated
by the atoms of a medium, in which the particle is diffusing. We will
implicitly assume that there is a mechanism for weak energy exchange
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between the particle and the medium (heat reservoir), as a result of which
the particle velocity _qq is distributed according to the requirements of
equilibrium at temperature T. By virtue of the separability of momentum
and configuration-space distributions, and realizing that positive and
negative values of _qq are equally probable, we can recast Eq. (102) for this
problem as

kTSTA!B ¼
1

2

_qq
�� �� �

�½qz � qÞ	
 �

�ðqz � qÞ
 �

¼
kBT

2�m

� �1=2 exp �VðqzÞ=kBT
� �

R
q2A exp �VðqÞ=kBT½ 	 dq

ð105Þ

The integral in the denominator of Eq. (105) is taken over the entire state A,

to the left of qz. At low temperatures, the major contribution to this integral

comes from the immediate vicinity of the energy minimum qA, where the

function V(q) can be approximated by its Taylor expansion around qA
truncated at the second order term [compare Eq. (35)]. Setting

kA ¼ @2V=@q2jqA , we obtain

Z

q2A

exp �
VðqÞ

kBT

	 

dq ’ exp �

VðqAÞ

kBT

	 
 Z þ1

�1

exp �
kAðq� qAÞ

2

2kBT

	 

dq

¼
2�kBT

kA

� �1=2

exp �
VðqAÞ

kBT

	 

ð106Þ

Using Eq. (106) in Eq. (105), we are led to the harmonic approximation for

the transition rate constant, kTST ,HA
A!B :

kTST ,HA
A!B ¼

1

2�

kA

m

� �1=2

exp �
VðqzÞ � VðqAÞ

kBT

	 


¼ �A exp �
VðqzÞ � VðqAÞ

kBT

	 

ð107Þ

The harmonic approximation to the rate constant emerges as a product of

the natural frequency �A of oscillation of the system within the well of the
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origin state A times the Boltzmann factor of the barrier height measured
from the minimum of state A.

An ingenious analysis of the transition rate in systems such as the one
of Fig. 8, which takes explicitly into account energy exchange with the
degrees of freedom not participating in the reaction coordinate, was
carried out by Kramers [59]. In Kramers’ analysis, these degrees of
freedom are envisioned as comprising a Brownian bath which exerts
Langevin and frictional forces on the degree of freedom q. The motion of
q is described by a one-dimensional Langevin equation of the form (92).
This, of course, presupposes that the motion of the bath degrees of
freedom is fast relative to the evolution of q. The potential (or, more
generally, free energy) function V(q) is approximated by its Taylor
expansion truncated at the second order term both around the bottom of
the well of the origin state (qA) and around the top of the barrier qz.
Symbolizing by � the friction coefficient, as in Eq. (92), by �A the
curvature of the potential at qA, as above, and by kz>0 the opposite of
the curvature of the potential at the barrier, kz ¼ �@2V=@q2jqz , Kramers’
result for the rate constant is:

kA!B ¼ �A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
� �

� �
exp �

VðqzÞ � VðqAÞ

kBT

� �
ð108Þ

where �A ¼ ð1=2�Þ
ffiffiffiffiffiffiffiffiffiffiffi
�A=m

p
[natural frequency of oscillation in the harmonic

region of the well, as in Eq. (107), and � ¼ ð�=2Þ
ffiffiffiffiffiffiffiffiffiffiffi
m=�z

p
is a dimensionless

parameter which increases with the friction coefficient and decreases with
the curvature of the potential at the barrier. When the coupling between
the reaction coordinate and the other degrees of freedom is weak, � 1
and the Kramers result, Eq. (108), reduces to the harmonic approxi-
mation TST estimate, kTST ,HA

A!B . Note that the transmission coefficient

� ¼ kA!B=k
TST
A!B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
� � predicted by Kramers’ theory is always

smaller than 1, as it should be. In the case �� 1 (‘‘strong friction limit’’),
the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
� � is well approximated by 1/2� and the Kramers

result becomes

kA!B ¼
�A

�

ffiffiffiffiffi
kz

m

r
exp �

VðqzÞ � VðqAÞ

kBT

� �
ð109Þ

In this limit (strong coupling between q and the bath and/or flat barrier)
kA!B can be orders of magnitude lower than the TST estimate.

The exact location where qz is chosen affects the values of kTSTA!B and �,
but not their product kA!B. Nevertheless, in practice every effort should be
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made to define the reaction path so that the transition-state theory estimate
of the rate constant is minimized and the dynamical correction factor is
maximized.

How does one define the reaction path and the transition state given the
potential energy function of a system with many degrees of freedom? We
will assume here that the configuration is described in terms of the Nf mass-
weighted Cartesian coordinates xi ¼ m1=2

i ri for all atoms. We will use the
symbol x to refer to all these degrees of freedom collectively. ‘‘States,’’ such
as A and B in the examples above, are constructed around local minima of
the potential energy, at which the gradient vector gðxÞ ¼ rVðxÞ

��
x
is 0 and

the Hessian matrix HðxÞ ¼ @2V=@x@xTjx is positive definite. Between two
neighboring local minima xA and xB there will be at least one saddle point
x
z, at which g(xz)¼ 0 and the Hessian H(xz) has one negative eigenvalue

with associated unit eigenvector nz. This saddle point is the highest energy
point on the lowest energy passage between xA and xB; it is usually a good
choice for the transition state z between A and B. The reaction path between
A and B, along which the reaction coordinate is measured, is a line in
Nf-dimensional space connecting xA and xB. To construct it, one initiates
two steepest descent trajectories at x

z, one in the direction þn
z and the

other in the direction �n
z. Each such trajectory consists of small steps

dx¼�(g(x)/|g(x)|) dq parallel to the direction of the local gradient vector
and terminates in one of the two minima connected through z (see Fig. 9).
The dividing surface between states A and B is defined as an (Nf� 1)-
dimensional hypersurface with equation C(x)¼ 0, with the following
properties: (a) it passes through the saddle point, i.e., C(xz)¼ 0; (b) at the
saddle point it is normal to the eigenvector nz corresponding to the negative
eigenvalue of the Hessian (and, therefore, to the reaction path); (c) at all
points other than x

z, it is tangent to the gradient vector. Conditions (b) and
(c) can be expressed mathematically as:

rCðxÞ

rCðxÞ
�� ��

�����
xz

¼ nz ð110Þ

rCðxÞ � gðxÞ ¼ 0, x 6¼ xz ð111Þ

With this definition of the dividing surface, the TST estimate of the transi-

tion rate constant becomes [65]

kTSTA!B ¼

Z

x2A

dNf x

Z

nðxÞ�p>0

dNf p nðxÞ � p½ 	 � CðxÞ½ 	jrCðxÞj�NVT ðx, pÞ ð112Þ
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FIG. 9 Reaction paths and dividing surfaces in a two-dimensional configuration

space. Hypersurfaces (lines in this case) of constant V are shown as thin closed

curves. There are three minima with corresponding states A, B, and C, labeled from

left to right. (Top) Reaction paths from A to B and from B to C are drawn as a thick

line. Note that the direction of the reaction path may curve away from the straight

line connecting two minima. (Bottom) The three minima and the two saddle points

between them are shown as bold dots. The dividing surface (line) between states A

and B is drawn as a solid line of medium thickness running from bottom left to top

right. The hyperplane (line) approximation to the dividing surface is shown as a

broken straight line. The thick curve traces an approximation to the dividing surface

constructed through a local criterion. (After Ref. [65].)
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where p is the vector of mass-weighted momenta conjugate to x, �NVT(x) is

the canonical ensemble probability density in phase space, and the Dirac

delta function selects configurations on the dividing surface. Upon perform-

ing all momentum-space integrations, one obtains from Eq. (112)

kTSTA!B ¼
kBT

2�

� �1=2
R
x2A dNf x � CðxÞ½ 	 rCðxÞ

�� �� exp �VðxÞ=kBT½ 	R
x2A dNf x exp �VðxÞ=kBT½ 	

� �
ð113Þ

As in Eq. (105), kTSTA!B emerges as a velocity associated with moving

across the dividing surface times a ratio of configurational integrals, one

taken over the dividing surface and the other taken over the origin state.

[To reconcile the dimensions in Eq. (105), remember that the coordinates x

are mass-weighted.]
In practice, the definition of the dividing surface C(x) ¼ 0 that we

introduced above may be difficult to use in systems with large Nf, because it
is nonlocal. [If an analytical expression for C(x) is not available, one cannot
judge whether a point x belongs on the dividing surface, unless one initiates
a steepest descent trajectory at that point and sees where it ends up].
Approximate local criteria have been devised [65]. When the pass between
states A and B is narrow, most of the contribution to the integral in the
numerator of Eq. (113) comes from the immediate vicinity of xz, and the
dividing surface can be approximated by a hyperplane tangent to it at xz.
That is, one may use for the dividing surface the approximate equation

CðxÞ ’ nz � ðx� xzÞ ¼ 0 ð114Þ

The ratio of configurational integrals appearing in Eq. (113) can then be

computed through a free energy perturbation technique which involves

calculating free energy differences for the system being confined on a

succession of hyperplanes normal to the reaction path [66].
If, in addition, a harmonic approximation is invoked for V(x), Eq. (113)

leads to:

kTSTA!B ¼

QNf

i¼1 �
A
iQNf

i¼2 �
z

i

exp �
VðxzÞ � VðxAÞ

kBT

	 

ð115Þ

where the eigenfrequencies �Ai are the square roots of the eigenvalues of the

Hessian matrix of second derivatives of V with respect to the mass-weighted
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coordinates x in the origin state A and, similarly, �zi are the square roots

of the Nf� 1 positive eigenvalues of the Hessian matrix at the saddle

point. Equation (115), first derived by Vineyard [67], is a useful general-

ization of Eq. (107). In case the eigenfrequencies �Ai or �zi are too high for

the corresponding vibrational motion to be describable satisfactorily by

means of classical statistical mechanics, a more appropriate form of

Eq. (115) is

kTSTA!B ¼
kBT

h

QNf

i¼1 1� exp �h�Ai =kBT
� �� �

QNf

i¼2 1� exp �h�zi =kBT
� �h i exp �

VðxzÞ � VðxAÞ

kBT

	 

ð116Þ

(In the latter equation, classical partition functions for the harmonic

oscillators representing the modes have been replaced with quantum

mechanical ones. Zero point energy contributions are considered as being

part of the V’s.) The latter equation is a special case of the more general TST

expression

kTSTA!B ¼
kBT

h
exp �

Gz � GA

kBT

� �
ð117Þ

where Gz is the Gibbs energy of the system confined to the dividing surface

and GA is the Gibbs energy of the system allowed to sample the entire origin

state.
The above discussion concerned ways of calculating the rate constant

for a transition between two states, A and B. The evolution of real
material systems (e.g., by diffusion or relaxation) often involves long
sequences of transitions between different states. Once the rate constants
are known between all pairs in a network of connected states, ensembles of
dynamical trajectories for the system can readily be generated by Kinetic
Monte Carlo simulation [64]. In such a simulation, the times for the next
transition to occur are chosen from the exponential distribution of waiting
times governing a Poisson process. If the rate constants are small, these
times are long; the evolution of the system can be tracked over time
periods many orders of magnitude longer than can be accessed by MD.
Thus, the long-time problem of MD is eliminated. The challenge in such
an approach is to identify the states and saddle points between them and
to include all relevant degrees of freedom in the transition rate constant
calculations.
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VIII. SIMULATING INFINITE SYSTEMS, PERIODIC
BOUNDARY CONDITIONS

Even the most powerful supercomputers available today can only handle up
to about a million atoms. If we are interested in the properties of single
molecules or small drops or clusters of diameter 100 Å or less, this is not a
problem. Most of the time, however, one is interested in the properties of
bulk materials.

When the simulated system is bounded by walls or by free surfaces, a
substantial fraction of the atoms is located next to the surface, in an
environment different from the bulk. Interactions with about half of the
neighbors are replaced by interactions with the bounding wall, or are just
absent. The effect of the surface is roughly proportional to the fraction of
atoms in its vicinity, relative to the total number of atoms in the model. An
obvious way to reduce the effect of the surface is to increase the system size,
which is however limited by computational resources. This limitation was a
lot more severe in the early days, when simulations were run on mainframes
capable of handling only about a hundred particles. A very good solution to
the problem was found back then and is still in wide use today.

System size effects are substantially reduced by using periodic boundary
conditions [68,43,69]. A ‘‘primary’’ box, containing the particles, is
replicated in space in all directions to form an infinite lattice of boxes
with lattice parameters equal to the box lengths in the corresponding
directions, Lx, Ly, and Lz. Each particle with coordinates ri in the ‘‘primary’’
simulation box has an infinite number of periodic images with coordinates
riþ nxLxexþ nyLyeyþ nzLzez, where (nx, ny, nz) is a set of three integers
ranging from minus to plus infinity and ei are the unit vectors along the
three coordinate directions.

Thus, a bulk material is simulated by an infinite periodic array of the
simulation cells. Interactions are calculated taking into account the periodic
images of particles. When a particle moves, all its periodic images move
by exactly the same displacement. A two-dimensional example of periodic
boundary conditions is shown in Fig. 10.

Unfortunately, periodic boundary conditions do not eliminate size effects
completely. Imposing periodicity on the system cuts off its fluctuation
spectrum. In the solid state the longest wavelength with which density
fluctuations (sound) can propagate equals the box size. Density or
composition fluctuations with characteristic lengths larger than the box
size are impossible. Such long-range fluctuations play an important role in
phase transitions. Thus, accurate simulations of phase transitions or phase
coexistence, especially near critical points, require large system sizes and the
use of finite size scaling techniques [70].
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If interparticle interactions are long range, the interactions between
a particle and its own periodic images are substantial, and the symmetry of
the lattice, artificially imposed by the periodic boundary conditions, affects
properties of the otherwise isotropic system.

It is absolutely necessary to check for size effects on the simulation results
by performing simulations with different model system sizes.

Periodic boundary conditions can be implemented in two different ways.
One can keep track of the particles in the central (or primary) box, switching
attention to the particle’s periodic image entering the primary box from the
opposite side whenever the particle crosses the box boundary. Alternatively,
one can follow the coordinates of particles initially located inside the
primary box and calculate coordinates of their images inside the primary
box when necessary. The computational cost is about the same in both
cases. The latter choice is more convenient when calculating diffusion
coefficients, as the particle trajectory remains unperturbed, while one box
length is added or subtracted to a particle coordinate when switching
between the periodic images.

A. Calculating Energy and Forces with Periodic
Boundary Conditions

The core part of any molecular dynamics, Brownian dynamics, or Monte
Carlo simulation is the calculation of the interaction energy and forces.

FIG. 10 Two-dimensional system with periodic boundary conditions.
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In general, the energy in the periodic system encompasses interactions
between all periodic images, and thus constitutes an infinite sum over all
periodic images. The potential energy contribution from pairwise inter-
actions u (ri� rj) is given by:

V ¼
X

i

X

j>i

X

nx, ny, nz

uðri � rj þ nxLxex þ nyLyey þ nzLzexÞ ð118Þ

þ
X

i

X

nx 6¼0, ny 6¼0, nz 6¼0

uðnxLxex þ nyLyey þ nzLzezÞ

The sum over pairs of particles includes summation over the periodic images

of the second particle. The second term describes the contribution from a

particle interacting with its own periodic images.
If the interaction potential u is long range, all terms in the infinite sum

should be taken into account. The ‘‘brute force’’ approach here is to
truncate the summation at some large enough values of nx, ny, nz. Efficient
ways to do this for Coulombic interactions—the Ewald summation, fast
multipole, and particle–mesh methods—will be described in the following
chapters.

A much simpler technique is used for Lennard-Jones potentials or other
short-range interactions. The Lennard-Jones potential, Eq. (6), drops down
to only �0.016 � at rc¼ 2.5�. If we just cut the potential off at this distance,
assuming that u¼ 0 at r>rc, the error we make is less than 2%. We will see
later, how it can be accounted for. If such a cutoff is used, the sums in Eq.
(118) are limited only to the pairs of images that are closer to each other
than the cutoff distance rc. If rc is smaller than one half of the smallest of Lx,
Ly, or Lz, only the closest of images are taken into account in the first sum,
and there is no second summation over the self-images. This approximation
is called ‘‘the minimum image convention.’’ The intermolecular potential
energy is then given by:

V ¼
X

i

X

j>i

uðri � rj þ n0
x
Lxex þ n0

y
Lyey þ n0

z
LzezÞ ð119Þ

In this equation, n0
x
n0yn

0
z stands for the set of integers that correspond to the

pair of closest images of particles i and j. Notice that the circle centered

at particle A (Fig. 10) with radius rc may include a periodic image BN of

particle B, but not B itself.
The following fragment of FORTRAN code illustrates the implementa-

tion of the minimum image convention. It calculates the x, y, and z
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components of the separation vector ri� rj, stored in the variables dx, dy,
dz, given that particle coordinates are stored in the arrays x,y,z, and box
sizes Lx,Ly,Lz are stored in the variables boxx, boxy, boxz.

..............................
invbx¼1.d0/boxx
invby¼1.d0/boxy
invbz¼1.d0/boxz

...............................
dx ¼ x(i)�x(j)
dx ¼ dx—boxx*anint(dx*invbx)
dy ¼ y(i)�y(j)
dy ¼ dy � boxy*anint(dy*invby)
dz ¼ z(i)�z(j)
dz ¼ dz � boxz*anint(dz*invbz)

............................

This piece of code is used throughout the modeling program with the
periodic boundary conditions whenever the distance between two particles is
needed: in the energy and force calculation, in the calculation of the pair
correlation function, etc. The code uses the standard Fortran function*
anint(a), which returns the nearest integer to the real or double
precision number a. Note that anint(0.51)¼1, anint(0.49)¼0,
anint(�0.51)¼�1, anint(�0.49)¼0.

To fold all the particles inside the ‘‘primary’’ simulation cube,
�Lx/2<xi<Lx/2, �Ly/2<yi<Ly/2, �Lz/2<zi<Lz/2, we can use similar
code:

..................................
invbx¼1.d0/boxx
invby¼1.d0/boxy
invbz¼1.d0/boxz

...............................
x(i) ¼ x(i) � boxx*anint(x(i)*invbx)
y(i) ¼ y(i) � boxy*anint(y(i)*invby)
z(i) ¼ z(i) � boxz*anint(z(i)*invbz)

............................

When a chemical bond crosses the box boundary, its periodic image
reenters the box from the opposite side, as shown in Fig. 10. Unlike
intermolecular interactions, the intramolecular interactions should be
calculated between atoms of the same image of a molecule and not between

*anint(a) is also available in some C compiler libraries.
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their periodic images. Nevertheless, it is also safe to use the minimum image
convention for the intramolecular interactions. As chemical bonds are
always shorter than half the box length, the convention will automatically
provide the right separation vectors, no matter whether the particle
coordinates are always folded back in the ‘‘primary’’ box, or whether the
particle trajectory in space is preserved.

When the potential energy is cut off at distance rc, interactions between
particles separated by a distance larger than rc are neglected. If these
interactions are described by spherically symmetric pairwise potentials, the
energy can be expressed in terms of the pair distribution function, as in
Eq. (63). If the rc is large enough, such that we can assume that there are
no structural correlations beyond this distance (gðrÞ ’ 1), then the
long-distance part of the integration can be replaced by the integration of
the potential for r>rc:

V ¼ Vsum þN�

Z 1

rc

gðrÞuðrÞ4�r2 dr ð120Þ

’ Vsum þN�

Z 1

rc

uðrÞ4�r2 dr

PV ¼ PsumV �
1

6
N�

Z 1

rc

gðrÞ r
duðrÞ

dr
4�r2 dr

’ PsumV �
1

6
N�

Z 1

rc

r
duðrÞ

dr
r4�r2 dr

Vsum and Psum are the values obtained from explicit summation over the
pairs within the cutoff radius rc. Similar equations can be derived for any
other property obtained via the summation over pairs of particles. The
integrals on the right hand sides of the above equations can easily be calcu-
lated for any pair potential u(r).*

Setting g(r)¼ 1 corresponds to replacing the material at long distances
from the particle by a uniform background, with the average interaction
properties. Thus, on the one hand one would like the cutoff radius to be not
very large, to reduce the amount of calculations necessary for obtaining
the energy, on the other hand rc should be chosen large enough, so that
structural correlations can be negligible at distances r>rc. The latter
assumption has to be checked by calculating g(r).

Even though the interaction potential value u(rc) is quite small, the effect
of the cutoff can be quite substantial. For instance, using the Lennard-Jones

*They might be nonconverging for the long-range potentials or in fewer than three dimensions.
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(6-12) potential with cutoff rc¼ 2.5� in the simple monatomic model of the
noble gas lowers the critical temperature by about 30% [54] compared to the
value obtained with a much longer cutoff or with the long-range corrections
given by Eq. (120).

If the interaction is not pairwise, similar expressions can be obtained using
the corresponding multiparticle correlation functions. If the interaction
potential u depends on the direction of the separation vector r as well as on
its length r, a multidimensional integration over the components of r is to be
performed instead of the spherical averaging leading to integration over
r¼ |r|.

IX. ERRORS IN SIMULATION RESULTS

Although simulations are often associated with ‘‘theory,’’ they have a lot in
common with experiments. In particular, simulations are subject to errors.

There are systematic and statistical errors. The sources of the systematic
errors are system size effects, inaccuracy of the interaction potentials, poor
equilibration, deficiency in the random number generator, etc. Systematic
errors are estimated by performing simulations with different system sizes,
using different random number generators, and varying the interaction
potentials, equilibration conditions, and starting configurations.

Properties calculated in computer simulations are obtained as statistical
averages, and therefore are inherently subject to statistical errors. The
average is calculated as a sum over many steps. According to the central
limit theorem of probability theory, the average value obtained in the
simulation is sampled from a Gaussian distribution, with average at the true
mean. The variance of this distribution provides an estimate of the
difference between the average estimate obtained in the simulation and
the true mean value. According to statistics, given N uncorrelated values of
Ai obtained during the simulation, with average hAirun ¼ 1=N

PN
i¼1 Ai and

variance hð�AÞ
2
irun ¼ 1=N

PN
i¼1 ðAi � hAirunÞ

2, the variance of the estimated
average hAi, �2(hAirun), equals h(�A)2irun)/N. The probability to observe a
certain value of hAirun in a sample of N uncorrelated configurations is
described by a Gaussian distribution with average at the true mean and
variance h(�A)2irun/N. The expected error in the simulation estimate of A is
thus hð�AÞ2i1=2run=N

1=2.
The configurations obtained in successive steps of a molecular dynamics,

Monte Carlo, or Brownian dynamics simulation are usually not very
different from each other. Hence, one should expect the energy, virial, or
any other function of the microscopic state obtained from the successive
configurations to be correlated. These correlations disappear after some

Background 81



time, or number of steps. The correlation time depends on the modeled
system and on the quantity evaluated. For instance, in solids or liquids,
where collisions between particles are very frequent, velocities usually have
much shorter correlation times than any structural characteristics. The
correlation time is usually defined as an integral of the normalized time
correlation function [43]: 	 ¼

R1
0 cAAðtÞ. Values separated by at least

one correlation time must be used to estimate the error in the average. If
A-values are saved every time interval �t, each kth value, with k¼ 	/�t,
should be used. Thus, instead of N we have only N/k uncorrelated values,
and b¼N/k must replace N in the expression for the expected error in the
average. A common practice is to take averages over blocks of data of
length k, hAi

ðkÞ
i , and use them as b independent values to estimate the

variance (squared expected error in the simulation estimate) [43]:

hð�hAirunÞ
2
i ¼

k

N

Xb

i¼1

ðhAi
ðkÞ
i � ðhAirunÞ

2
Þ ð121Þ

The correct block size k that ensures statistical independence of the hAi
ðkÞ
i

can be determined through systematic analysis for different k [43].
To estimate errors in structural or other properties, expressed not just

as numbers but as functions of either distance (e.g., g(r)), or time (e.g.,
time correlation functions), a similar analysis should be carried out for
different values of the argument. For instance, when the time correlation
function is calculated, much better statistics is obtained for short times,
as there are much more data available. The time correlation function
values for times comparable to the length of the simulation run are
obtained with larger errors, as the average is taken over only a few pairs
of values.

When the property calculated is a single particle property, such as the
velocity autocorrelation function, or the particle’s mean squared displace-
ment, averaging over the particles does help a lot. Averaging over even a
moderate number of particles of about 1000 decreases the error by more
than an order of magnitude. Unfortunately, this is not possible for all
properties. For instance, the calculation of viscosity calls for the stress
correlation function [Eq. (67)], which is not a single particle property. This
is why self-diffusion coefficients are usually estimated with much better
accuracy than viscosity.

A major challenge in polymer simulations is to produce a large number
of uncorrelated configurations, to sample various chain conformations. In
molecular dynamics, each time step involves small changes in the monomer
positions. Significantly changing the chain conformation involves large
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monomer displacements and requires many steps. The same thing happens
in Monte Carlo simulations involving only small monomer displacements
at each step. Global updates, involving large fragments of the polymer
molecules, which are used, e.g., in Configurational Bias Monte Carlo
techniques, help overcome this problem. Monte Carlo strategies for the
rapid equilibration of polymer systems will be discussed in subsequent
chapters of this book.

X. GENERAL STRUCTURE OF A SIMULATION
PROGRAM

A typical computer simulation ‘‘experiment’’ consists of the following
stages:

. Initial Configuration Generation

. Main Simulation Run
— Read the initial configuration and the run parameters: total

number of simulation steps, frequency of saving configurations,

cutoff parameters, temperature, pressure, etc.
— For the required number of simulation steps:

* Advance coordinates (according to the chosen MD, MC, or BD

algorithm)
* Increment volume or number of particles if NPT or Grand

Canonical ensemble simulation
* Calculate averages monitored during the run (energy, atomic

and molecular pressure, total momentum, atomic and molecu-

lar temperature)
* Save configuration on disk for further analysis.

. Analysis of the obtained configurations. Calculate g(r), time correla-

tion functions, diffusion coefficients, etc.

Different simulation packages may have these stages implemented as
one large program, or as separate modules, controlled by a common user
interface.

Sophisticated commercial simulation packages usually also include a
database of force field parameters, and prebuilt monomer units.

Generating an initial structure is fairly easy for the crystalline state, as
one just has to arrange molecules according to the structure of the crystal.
Liquid or glassy configurations of small molecules are usually generated
by ‘‘melting’’ a crystalline structure. This happens quite fast when the
molecules are small. For dense polymers it is impossible, due to the very
long relaxation times. Polymer chains have a very specific conformation in
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the crystal, which is far from the random coil conformation prevailing in
the polymer glass or melt. Therefore, special techniques are used to generate
realistic models of polymer melts or glasses [34,71].
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I. INTRODUCTION

The Rotational Isomeric State (RIS) model is excellent for the analysis of
conformation-dependent physical properties of chain molecules in their
unperturbed state. Its special strength is the incorporation of detailed
information about the covalent structure (bond lengths, bond angles,
torsion angles, and torsion potential energy functions) in a formalism that
can be evaluated quickly by the smallest computer. The answer is the exact
result for the specific model, as defined by the geometry and energies of the
short-range intramolecular interactions.

The most frequently calculated property is the mean square unperturbed
end-to-end distance, hr2i0. Other properties susceptible to rapid computa-
tion include the average of the end-to-end vector, hri0, and the mean square
unperturbed radius of gyration, hs2i0. The viscosity of a dilute solution in a
� solvent can be estimated from hs2i0 or hr2i0 via the equivalent sphere
model for hydrodynamic properties. Several higher even moments, hr2pi0
and hs2pi0, p¼ 2, 3, . . . , provide information about the shape (width,
skewness) of the distribution functions for r2 and s2. When combined with
information about the electronic charge distribution within individual rigid
units, the RIS model can calculate the mean square dipole moment, h2

i0.
Also accessible are optical properties that depend on the anisotropy of the
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polarizability tensor (optical anisotropy) in conjunction with r (stress-
optical coefficient), k (molar Kerr constant), or the magnetic susceptibility
(Cotton–Mouton constant).

The speed of the calculations derives from the use of efficient generator
matrix techniques that were introduced six decades ago [1]. These techniques
were adapted to the study of macromolecules a decade later [2]. Therefore
the description of conformation-dependent physical properties of macro-
molecules with the RIS model predates the widespread availability of
computers and simulation methods that require enormous computational
power for their implementation. A strong increase in the use of the RIS
model over the decade from 1959 to 1969 culminated in the publication of
Flory’s classic book on the subject [3]. Some of the subsequent develop-
ments are contained in two books published in the 1990s. One book has an
emphasis on self-instruction in the use of the RIS model [4]. The other book
is a compilation, in standard format, of RIS models for over 400 polymers
that have appeared in the literature through the mid-1990s [5].

II. THREE FUNDAMENTAL EQUATIONS
IN THE RIS MODEL

A. The First Equation: Conformational Energy

This equation describes the conformation partition function, Z, as a serial
product of statistical weight matrices, Ui, that incorporate the energies of all
of the important short-range intramolecular interactions.

Z ¼ U1U2 . . .Un ð1Þ

There is one statistical weight matrix for each of the n bonds in the chain.
The dimensions of the statistical weight matrices depend on the number of
rotational isomers assigned to each bond. The continuous range for the
torsion angle, �, is replaced by a finite set of torsion angles, i.e., a contin-
uous conformational integral is replaced by a discrete summation. The sum
should be designed so that the terms include all regions of the local con-
formational space that have a significant population. Many unperturbed
chains have pairwise interdependence of their bonds, causing each Ui to
have a number of columns given by the number of rotational isomers at
bond i (denoted �i), and a number of rows given by the number of rotational
isomers at the preceding bond. Each element in Ui is the product of a
statistical weight for a ‘‘first-order’’ interaction (which depends only on
the state at bond i) and the statistical weight for a ‘‘second-order’’ inter-
action (which depends simultaneously on the states at bonds i� 1 and i).
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Each statistical weight is formulated as a Boltzmann factor with the appro-

priate energy and temperature. Sometimes there is inclusion of a preexpo-

nential factor that accounts for the differences in conformational entropy of

the various rotational isomeric states.
The first equation incorporates all of the energetic information that will

be employed in the calculation. It incorporates structural information only
indirectly, via the assignment of the numbers of rotational isomers at the
various bonds, and the assignment of numerical values for the statistical
weights.

B. The Second Equation: Structure

The second equation describes a conformation-dependent physical property
of a chain in a specific conformation as a serial product of n matrices, one
matrix for each bond in the chain.

f ¼ F1F2 . . .Fn ð2Þ

There is no concern here about the probability of observation of this con-

formation; we are ignoring, for the moment, the energetic information con-

tained in Z. Each Fi includes the information about the manner in which

bond i affects f. The details, of course, depend on how we have chosen f. If f

is the squared end-to-end distance, we need to know the length of bond i, the

angle between bonds i and iþ 1, and the torsion angle at bond i. These three

properties are denoted li, �i, and �i, respectively. The square of the end-to-

end distance is written in terms of these local variables as

r2 ¼ 2
Xn�1

k¼1

Xn

j¼kþ1

lTk TkTkþ1 . . .Tj�1lj þ
Xn

k¼1

l2k ð3Þ

where li denotes the bond vector, expressed in a local coordinate system for

bond i,

li ¼

li
0
0

2

4

3

5 ð4Þ

and Ti is a transformation matrix. A vector expressed in the local coordinate

system of bond iþ 1 is transformed into its representation in the local
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coordinate system of bond i through premultiplication by Ti,

Ti ¼

� cos � sin � 0
� sin � cos� � cos � cos � � sin�
� sin � sin� � cos � sin� cos�

2

4

3

5

i

ð5Þ

The single and double sums in Eq. (3) are evaluated exactly via Eq. (2) using

F1 ¼ 1 2lT1T1 l21
� �

ð6Þ

Fi ¼

1 2lTi Ti l2i

0 Ti li

0 0 1

2

664

3

775, 1 < i < n ð7Þ

Fn ¼

l2n

ln

1

2

664

3

775 ð8Þ

C. The Third Equation: Conformational Energy
Combined with Structure

The third equation combines the energetic information from Eq. (1) with the
structural information in Eq. (2), in order to average f over all of the
conformations in the RIS model. The combination is achieved in a
generator matrix, G.

h f i0 ¼
1

Z
G1G2 . . .Gn ð9Þ

Gi ¼ ðUi � IFÞdiagðF�,F�, . . . ,F�i Þ ð10Þ

The generator matrix contains the energetic information in an expansion of
the statistical weight matrix (via its direct product with an identity matrix of
order equal to the number of columns in F). This energetic information is
multiplied onto the structural information (in the form of a block-diagonal
matrix of the �i expressions for F for the rotational isomers at bond i). The
efficiency of the calculation arises from the fact that the conformational
average of the property of interest is obtained as a serial product of matrices
via Eq. (9).
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The remainder of this chapter is devoted to a case study. Readers who
seek more detailed or general information on the origin, structure, and
usage of the equations for Z, f, and hfi0 are referred to books on the RIS
model [3,4].

III. CASE STUDY: MEAN SQUARE UNPERTURBED
DIMENSIONS OF HEAD-TO-HEAD, TAIL-TO-TAIL
POLYPROPYLENE

Polypropylene is an important polymer that is usually assembled with the
monomer units arranged in head-to-tail sequence, producing -CH(CH3)-
CH2- as the repeat unit. Several RIS models, based on three [6–12], four [13],
five [14,15], or seven [16] states per rotatable bond, have been described for
this common form of polypropylene. Head-to-head, tail-to-tail units have
been considered briefly [11] in order to assess how the incorporation of a few
such units, as defects, alters the unperturbed dimensions of the conventional
head-to-tail polypropylene.

Two experimental investigations of head-to-head, tail-to-tail polypropy-
lene, obtained by reduction of poly(2,3-dimethylbutadiene), give discordant
results [17,18]. Values of 4.5 and 6.1–6.4, respectively, are obtained for the
characteristic ratio, Cn, of samples of high molecular weight.

Cn �
hr2i0
nl2

ð11Þ

Can an analysis with the RIS model assist in the resolution of this
discrepancy in the experimental results? A three-state RIS model for the
head-to-head, tail-to-tail form of polypropylene, with a repeating sequence
given by -CH2-CH(CH3)-CH(CH3)-CH2-, is constructed and analyzed here.
The mean square unperturbed dimensions of exclusively head-to-head, tail-
to-tail polypropylene are determined for chains with various stereochemical
compositions and stereochemical sequences. The critical parameters in the
model are identified, and the predicted mean square unperturbed dimen-
sions are compared with experiment.

A. Construction of the RIS Model

Rotational Isomeric States. The model assumes three states (trans and
gauche�, abbreviated t and g�) for each rotatable bond. The torsion angle,
as defined on page 112 of Mattice and Suter [4], is 180� for a t placement.
It increases with a clockwise rotation.
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Short-Range Interactions. The model is limited to first- and second-order
interactions. The repulsive first-order interactions are variants of the one that
occurs in the g� conformations of n-butane. The second-order interaction
included is the one commonly described as the ‘‘pentane effect,’’ which is
generated by the repulsive interaction of the terminal methyl groups in the
conformations of n-pentane with g placements of opposite sign. The
statistical weight matrices are constructed under the simplifying assumption
that methyl, methylene, and methine groups are equivalent insofar as first-
and second-order interactions are concerned. This assumption reduces the
number of distinguishable parameters in the model.

Description of the Stereochemical Sequence. The stereochemical sequence
is described using dl pseudoasymmetric centers, as defined on page 175 of
Mattice and Suter [4]. The C–C bonds in the chain are indexed sequentially
from 1 to n. A local Cartesian coordinate system is associated with each
bond. Axis xi lies along bond i, with a positive projection on that bond. Axis
yi is in the plane of bonds i� 1 and i, with a positive projection on bond
i� 1. Axis zi completes a right-handed Cartesian coordinate system. The
chain atom at the junction of bonds i� 1 and i is a d pseudoasymmetric
center if it bears a methyl group with a positive coordinate along zi; it is
an l pseudoasymmetric center if this coordinate is negative.

General Form of the Statistical Weight Matrices. First the statistical weight
matrices are formulated in symbolic form. Later numerical values will be
assigned to the various symbols.

The 3� 3 statistical weight matrix for bond i has rows indexed by the
state of bond i� 1, columns indexed by the state of bond i, and the order
of indexing is t, gþ, g� in both cases. Each statistical weight matrix is
assembled as Ui¼ViDi, where Vi is a 3� 3 matrix that incorporates the
statistical weights for second-order interactions, and Di is a diagonal matrix
that incorporates the statistical weights for first-order interactions. Efficient
description of the interrelationships between selected pairs of matrices
employs a matrix Q with the property Q

2
¼ I3.

Q ¼

1 0 0
0 0 1
0 1 0

2

4

3

5 ð12Þ

Statistical Weight Matrices for the CH2–CH2 Bond. This statistical weight
matrix incorporates short-range interactions that occur in the fragment
-CH-CH(CH3)-CH2—CH2-CH-, where the longest dash denotes bond i.
The matrix is denoted by UCC;x, where x denotes the stereochemistry (d or l )
of the attachment of the methyl group. Figure 1 depicts this fragment when
the methyl group produces an l pseudoasymmetric center. Internal rotation
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about bond i establishes the position of the terminal CH group with
respect to the remainder of the fragment. A diagonal matrix incorporates
the first-order interactions between the pair of bold CH groups in
-CH-CH(CH3)-CH2—CH2-CH-.

DCC ¼ diagð1, �, �Þ ð13Þ

This matrix is independent of the stereochemistry of the attachment of the
methyl group, because it only involves carbon atoms that are in the main
chain. In Eq. (13), � is the statistical weight for a g� placement at the
CH2–CH2 bond, the t placement being assigned a statistical weight of 1.

The second-order interactions in UCC;x take place between the terminal
bold CH group in -CH-CH(CH3)-CH2—CH2-CH- and the two groups in
this fragment that are bold in the previous paragraph. Involvement of the
methyl group in the second-order interactions demands two forms of V,
depending on whether the fragment contains a d or l pseudoasymmetric
center.

VCC;l ¼

1 1 !

1 ! !

1 ! 1

2

64

3

75 ð14Þ

VCC;d ¼ QVCC;lQ ð15Þ

Here ! is the statistical weight for the second-order interaction of the term-
inal chain atoms when the conformation has two g placements of opposite
sign (the ! in the 2,3 and 3,2 elements), or the equivalent interaction of the
methyl group with the terminal CH (the remaining two !, which occur in the
1,3 and 2,2 elements of VCC;l, but in the 1,2 and 3,3 elements of VCC;d). The
full statistical weight matrices, incorporating both first- and second-order
interactions, are

UCC;l ¼ VCC;lDCC ¼

1 � �!

1 �! �!

1 �! �

2

64

3

75 ð16Þ

UCC;d ¼ QUCC;lQ ð17Þ

FIG. 1 Fragment considered in the construction of UCC;l.
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Statistical Weight Matrices for the CH2–CH Bond. This statistical weight
matrix, denoted by UCM;x, incorporates statistical weights for short-range
interactions that occur in the fragment -CH-CH2-CH2—CH(CH3)-CH-,
where the longest dash denotes the bond that is now considered as bond i.
An example of this fragment is depicted in Fig. 2. Rotation about bond i
establishes the position of the bold CH and bold CH3 in -CH-CH2-CH2—
CH(CH3)-CH- with respect to the remainder of the fragment. The first-
order interactions now occur between the bold CH2 and the other two bold
groups. Involvement of the methyl group demands two forms of the matrix
for the first-order interactions.

DCM;l ¼ diagð1, 1, 	Þ ð18Þ

DCM;d ¼ QDCM;lQ ð19Þ

Here 	 is the statistical weight for two simultaneous first-order interactions,
relative to the case where there is a single first-order interaction.

The second-order interactions occur between the initial CH and the other
two bold groups in the fragment -CH-CH2-CH2—CH(CH3)-CH-. Rotation
about bond i alters the position of the methyl group, which was not true in
the prior consideration of the second-order interactions that are incorpo-
rated in UCC;x. The matrices of second-order interactions differ for the two
bonds.

VCM;l ¼

1 1 1

! 1 !

1 ! !

2

64

3

75 ð20Þ

VCM;d ¼ QVCM;lQ ð21Þ

The statistical weight matrices are

UCM;l ¼

1 1 	

! 1 	!

1 ! 	!

2

64

3

75 ð22Þ

UCM;d ¼ QUCM;lQ ð23Þ

FIG. 2 Fragment considered in the construction of UCM;l.
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Statistical Weight Matrices for the CH–CH Bond. This statistical weight
matrix incorporates short-range interactions in the fragment -CH2-CH2-
CH(CH3)—CH(CH3)-CH2-, depicted in Fig. 3. The matrix is denoted by
UMM;xy, where x and y define the stereochemistry of the attachments of the
two methyl groups, in the order that they occur in the fragment. The first-
order interactions occur between pairs of bold groups in -CH2-CH2-
CH(CH3)—CH(CH3)-CH2-, with a member of the pair being selected from
among the bold groups on either side of bond i. Involvement of two methyl
groups demands four forms of the diagonal matrix for the first-order
interactions. Two of these forms are identical.

DMM;dd ¼ DMM;ll ¼ diagð1, �, �Þ ð24Þ

DMM;dl ¼ diagð�, 1, �Þ ð25Þ

DMM;ld ¼ QDMM;dlQ ð26Þ

Here � is the statistical weight for three simultaneous first-order inter-
actions, relative to the case where there are two first-order interactions.

The second-order interactions occur between the initial methylene and
the other two bold groups in -CH2-CH2-CH(CH3)—CH(CH3)-CH2-.
Involvement of only one of the methyl groups means that there are only
two forms of the matrix of second-order interactions. These two matrices
were encountered in the consideration of the previous bond.

VMM;ll ¼ VMM;dl ¼ VCM;l ð27Þ

VMM;ld ¼ VMM;dd ¼ VCM;d ð28Þ

The statistical weight matrices are

UMM;ll ¼

1 � �

! � �!

1 �! �!

2

664

3

775 ð29Þ

UMM;dd ¼ QUMM;llQ ð30Þ

FIG. 3 Fragment considered in the construction of UMM;ll.
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UMM;dl ¼

� 1 �

�! 1 �!

� ! �!

2

664

3

775 ð31Þ

UMM;ld ¼ QUMM;dlQ ð32Þ

Statistical Weight Matrices for the CH–CH2 Bond. This matrix incorpo-
rates statistical weights for short-range interactions in the fragment -CH2-
CH(CH3)-CH(CH3)—CH2-CH2-, depicted in Fig. 4. It is denoted by
UMC;xy, where x and y define the stereochemistry of the attachments of the
two methyl groups, in the order that they occur in the fragment. The first-
order interactions involve the bold groups in -CH2-CH(CH3)-CH(CH3)—
CH2-CH2-, and the second-order interactions involve the bold groups in
-CH2-CH(CH3)-CH(CH3)—CH2-CH2-. All of the short-range interactions
have been encountered previously, as have all of the matrices of first- and
second-order interactions.

DMC;ll ¼ DMC;dl ¼ DCM;d ð33Þ

DMC;dd ¼ DMC;ld ¼ DCM;l ð34Þ

VMC;ll ¼ VMC;ld ¼ VCC;l ð35Þ

VMC;dd ¼ VMC;dl ¼ VCC;d ð36Þ

These matrices combine to give statistical weight matrices distinct from

those obtained with the other bonds.

UMC;ll ¼

1 	 !

1 	! !

1 	! 1

2

664

3

775 ð37Þ

UMC;dd ¼ QUMC;llQ ð38Þ

FIG. 4 Fragment considered in the construction of UMC;ll.
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UMC;ld ¼

1 1 	!

1 ! 	!

1 ! 	

2

664

3

775 ð39Þ

UMC;dl ¼ QUMC;ldQ ð40Þ

None of the statistical weight matrices for head-to-head, tail-to-tail
polypropylene is found also in a three-state RIS model for the conventional
head-to-tail polypropylene. This result follows immediately from the fact
that none of the fragments in Figs. 1–4 is also a fragment found in head-to-
tail polypropylene.

Conformational Partition Function. The conformation partition function
for a chain of n bonds (see, e.g., pp. 77–83 of Ref. [4]) is given by Eq. (1)
where U1, U2, and Un adopt special forms.

U1 ¼ 1 0 0
� �

ð41Þ

U2 ¼

1 1 1

1 1 1

1 1 1

2

6664

3

7775D2 ð42Þ

Un ¼

1

1

1

2

6664

3

7775 ð43Þ

Any ! that appears in U2 is replaced by 1, because the chain has been

initiated in a manner that eliminates any possibility of second-order inter-

actions at bonds 1 and 2.
For long chains in which all of the pseudoasymmetric centers have the

same chirality (isotactic chains), Z is dominated by the terms

UCC;lUCM;lUMM;llUMC;ll

� �a
ð44Þ

or

UCC;dUCM;dUMM;ddUMC;dd

� �a
ð45Þ
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where a is the number of successive configurational repeat units in the
chain. Using Eqs. (17), (23), (30), and (38), along with Q

2
¼ I3,

UCC;dUCM;dUMM;ddUMC;dd

� �a
¼ Q UCC;lUCM;lUMM;llUMC;ll

� �a
Q ð46Þ

which demonstrates the equivalence of the Z’s for these two chains (they are
enantiomers). The two chains with perfectly alternating (dl or ld) pseudo-
asymmetric centers also have the same Z [which, however, is different from
the Z in Eq. (46)] because the two structures are identical; they constitute
different representations of a mesoform, which is syndiotactic.

B. Behavior of the RIS Model

1. Preliminary Estimates of the Values
of the Statistical Weights

The foregoing matrices contain four distinct statistical weights. Three (�, 	,
and �) are statistical weights for first-order interactions that appear in the
diagonal D matrices. The V matrices contain another statistical weight, !,
for a second-order interaction. Two of the statistical weights, � and !, are
for interactions that are similar to the short-range interactions considered
many years ago in RIS models for polyethylene. Model B of Abe et al.
[19] estimates the corresponding energies as E�¼ 1.8–2.5 kJ/mol and
E!¼ 7.1–8.0 kJ/mol. The first-order interaction with statistical weight 	
occurs also in the head-to-tail variety of polypropylene. The corresponding
energy has been estimated as E	¼ 3.8� 1.7 kJ/mol [9]. The statistical weight
denoted here by � was previously estimated as 0.6, from a CNDO
investigation of the conformations of 2,3-dimethylbutane [11].

A provisional set of values of statistical weights is defined at this point in
the development of the model. Then the sensitivity of the model to each of
the initial estimates can be determined. Our provisional initial set is �¼ 0.43,
	¼ 0.22, �¼ 0.6, !¼ 0.034. These values are Boltzmann factors computed
from the corresponding energies at 300K. For the geometry, we adopt a
bond length (l) of 1.53 Å, a bond angle (�) of 109.5� for all C-C-C angles in
the backbone, and torsion angles (�) of 180� and �60� for the trans and
gauche� states at each rotatable bond. The geometry enters the calculations
via the matrices in Eqs. (6)–(8) [20].

2. Unperturbed Dimensions of Chains with
Simple Stereochemical Sequences

The two simplest stereochemical sequences are those in which all
pseudoasymmetric centers have the same chirality (either ll. . .ll or
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dd. . .dd), or where there is a strict alternation in chirality (either ld. . .ld or
dl. . .dl). The values of C1 can be calculated using the program in Appendix
C of Mattice and Suter [4]. This short program computes the mean square
unperturbed end-to-end distance, hr2i0, for a repeating unit of m bonds
embedded in a chain of n bonds, using a special case of Eq. (VI-66) of
Ref. [4], which for present purposes can be written as

r2
 �

0
¼

1

Z
G1G2 G3 . . .GmG1G2ð Þ

n=m�1G3 . . .Gm�1Gm ð47Þ

Z ¼ U1U2 U3 . . .UmU1U2ð Þ
n=m�1U3 . . .Um�1Um ð48Þ

The internal bold italic G matrices in Eq. (47) are of dimensions 15� 15,

formulated as described in Eq. (10) (see, e.g., pp. 122–126 and 128–130 of

Ref. [4]). The first and last matrices in Eqs. (47) and (48) take special forms

of a row and column, respectively [20]. The hr2i0 are discussed here using the

asymptotic limit for the dimensionless characteristic ratio, which is deter-

mined by linear extrapolation of Cn vs. 1/n (see pp. 19–20 of Ref. [4]).

C1 � lim
n!1

Cn ð49Þ

Table 1 shows that identical results are obtained for a chain and its
mirror image, as expected, but different C1 can be obtained for pairs of
chains in which the stereochemical sequences are not mirror images. The
relationship between the two distinct results in Table 1 can be rationalized
qualitatively by identification of the preferred conformation of the sequence
of four rotatable bonds. Identification can be achieved by inspection of the
pattern of the appearance of �, 	, �, and ! in the U matrices, realizing that
each statistical weight has a value smaller than 1.

Equations (16), (22), (29), and (37), or, equivalently, Eqs. (17), (23), (30),
and (38), show that the preferred conformation is tttt when a single chirality
is propagated along the chain. The all-trans conformation has a statistical
weight of 1, and all other conformations have a statistical weight of less

TABLE 1 Characteristic Ratios with the Provisional Set of Statistical Weights

Sequence U’s (equation numbers) C1

ll . . . ll¼ dd . . . dd 16, 22, 29, 37 (17, 23, 30, 38) 7.94

ld . . . ld 16, 23, 31, 39 7.30

dl . . . dl 17, 22, 32, 40 7.30
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than 1. The preferred conformation becomes either ttgþt or ttg�t when there
is a strict alternation in chirality of the pseudoasymmetric centers. The g
conformation is preferred at the CH2CH(CH3)–CH(CH3)CH2 bond, due to
the pattern of the statistical weights denoted by 1 and � in the D matrices in
Eqs. (24)–(26), and hence in the U matrices in Eqs. (29)–(32). Therefore, on
the basis of the preferred conformations, one would expect the first entry
in Table 1 to have a higher C1 than the last two entries.

3. Sensitivity Tests for the Statistical Weights

The sensitivity of the unperturbed dimensions to each of the statistical
weights was assessed using chains with the two distinct types of
stereochemical sequences presented in Table 1. The values of C1 were
recalculated by variation of one of the statistical weights, the other three
statistical weights being retained at their provisional values. This informa-
tion can be summarized in a tabular form as

@ lnC1

@ ln x

� �

x0

ffi
C1, x0þ�x � C1, x0��x

2�x

x0

C1, x0

ð50Þ

Here x is the statistical weight being varied, x0 is its value in the provisional

set, and all other parameters are held constant at their values in the provi-

sional set. The values of this partial derivative are summarized in Table 2.
An increase in the value of any of the statistical weights produces a

decrease in C1 if all pseudoasymmetric centers are either d or l. Changes in �
affect C1 relatively more than comparable changes in any of the other three
statistical weights. In contrast, a mixed pattern is seen with the chain
in which there is strict alternation in the pseudoasymmetric centers. C1

increases with an increase in � or �, or a decrease in 	 or !, with the greatest
sensitivity seen upon a change in 	. Table 2 also shows how C1 is affected
by an increase in all bond angles, or by increasing only that half of the bond

TABLE 2 Sensitivity to the Statistical Weights and Bond Angle

Parameter Single chirality Strictly alternating chirality

� �0.14 0.028

	 �0.069 �0.106

� �0.22 0.055

! �0.11 �0.067

All � 3.8 4.6

� at methylene 0.65 1.3
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angles that is centered on a methylene group. Opening up the bond angles
produces an increase in C1, as expected from the behavior of the simple
freely rotating chain.

It is worthwhile to also consider the consequences of minor adjustments
in the torsion angles assigned to the rotational isomers. The preferred
conformations of n-butane have torsion angles of 180� and �(60� þi�),
where i� is positive [19]. Displacement of the gauche states arises because
of the weak onset at �¼�60� of the repulsive interaction characteristic of
the cis state of n-butane, thereby displacing the dihedral angle for the gauche
states slightly toward the trans state. Therefore the gauche states at the
CH2–CH2 bond in head-to-head, tail-to-tail polypropylene can be adjusted
to torsion angles of �(60� þi�). A displacement of similar origin occurs
for the trans and one of the gauche states at the bonds between CH2 and
CH. For example, when all of the pseudoasymmetric centers are l, torsion
angles associated with the columns of UCM;l are 180� �i�, 60� þi�, and
�60�, and those associated with the columns of UMC;ll are 180� þi�, 60�,
and �60� �i�. An increase in all of the i� by 1� increases C1 by about
1.5% when all pseudoasymmetric centers are of the same chirality, but the
increase is only about 0.3% when the pseudoasymmetric centers alternate
between d and l.

C. Comparison with Experiment

Arichi et al. [17] reported an estimate of 4.5 for the characteristic ratio of
predominantly head-to-head, tail-to-tail polypropylene in isoamylacetate
at 316K, which is the � temperature for this polymer–solvent system. This
number is significantly smaller than the result of 5.9 (at 311K) reported
for atactic head-to-tail polypropylene [21]. The sample studied by Arichi
et al. was prepared by reduction of poly(2,3-dimethyl-1,3-butadiene). The
parent polymer was composed predominantly (94%) of units arising from
1,4 addition, with the remaining 6% of the units arising from 1,2 addition.
Upon reduction, the latter units yield chain atoms that bear both an
isopropyl group and a methyl group.

Recently neutron scattering has been used to determine the mean square
unperturbed dimensions for the polymer in its melt [18]. The samples were
hydrogenated poly(2,3-dimethyl-1,3-butadiene), with deuterium introduced
during the reduction. The parent polymers had 3% 1,2-units. The
polymer had a characteristic ratio of 6.1–6.4 when studied over the range
27–167�C [18].

A characteristic ratio of 4.5 is lower than either number in Table 1. The
values in Table 1 might be too high for an atactic polymer. The strictly
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alternating chirality imposes preferred conformations that are either
ttgþt . . . ttgþt or ttg�t . . . ttg�t, depending on whether the sequence is
written as ld . . . ld or dl . . . dl. In both of these preferred sequences, the
gauche placement at every fourth bond is always of the same sign. In
contrast, a random sequence of l and d, with equal amounts of each, would
not perpetuate a gauche placement of a single sign at every fourth bond.

The consequences for the unperturbed dimensions are brought out in
Table 3, which contains results for six distinguishable chains with equal
numbers of l and d pseudoasymmetric centers, arranged in different
repeating sequences. The first entry, taken from Table 1, is for the shortest
such repeating sequence, where there is a strict alternation of l and d along
the chain. The next two entries have a strict alternation of a pair of l’s and a
pair of d’s. This sequence can be embedded in the chain in two distinct ways,
which differ in whether two bonded carbon atoms with methyl substituents
have the same or opposite chirality. The fourth entry has a repeating pattern
of three l’s followed by three d’s. The fifth and sixth entries have a homopair
(e.g., ll) followed by the opposite homopair (e.g., dd), and then a heteropair
(e.g., ld), which can be embedded in the chain in two ways.

The results in Table 3 show that the strictly alternating dl polymer does
indeed overestimate the C1 expected for a truly atactic polymer, but the size
of the overestimate is small. If one averages over the first three entries in
Table 3, the result is 6.77. The average is only slightly smaller (6.73) if one
considers all repeating sequences of three -CH2-CH(CH3)-CH(CH3)-CH2-
units, assuming equal numbers of d and l pseudoasymmetric centers in each
repeat unit, and equal probability that any pseudoasymmetric center is d
or l. We infer that the C1 considering all possible sequences with equal
numbers of d and l pseudoasymmetric centers cannot be smaller than 6, and

TABLE 3 Characteristic Ratios for Six Repeating

Sequences, Each of Which Contains the Same Number

of l and d Pseudoasymmetric Centers

Repeating sequence of pseudoasymmetric centersa C1

(ld) 7.30

(ld)(dl) 6.03

(ll)(dd) 6.97

(ll)(ld)(dd) 6.94

(ll)(dd)(ld) 6.74

(ld)(dl)(dl) 6.32

aParentheses enclose symbols for two bonded carbon atoms

that each bear a methyl group.
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is probably in the range 6.0–6.7. The predictions from the model are
definitely larger than the experimental estimate of 4.5 [17], but are consistent
with the experimental estimate of 6.1–6.4 [18].

1. Plausible Adjustments in Parameters

We now inquire whether reasonable adjustment in any of the parameters in
the model reduces C1 for the atactic chain from 6.0–6.7 down to 4.5. First
consider reasonable adjustments in the statistical weights. Table 2 shows
that C1 for the chain with alternating chirality is more sensitive to 	 than to
any of the other statistical weights. An increase in 	 will produce a decrease
in C1. However, while it is conceivable that 	 might be nearly as large as �
[22], there are strong physical arguments for assuming that 	� �, because
two simultaneous repulsive interactions are unlikely to be weaker than two
times a single interaction. An increase in 	 to 	¼ � reduces C1 by only
about 10%, which is insufficient to explain the difference between the model
and experimental result of 4.5. We conclude that reasonable adjustments in
the statistical weights cannot account for the difference.

Reasonable adjustment in the bond angles would increase them above
their provisional values of 109.5�, which would lead to an increase in C1.
Similarly, any reasonable change in the torsion angles would assigni�� 0�,
which would also increase C1. It appears that no reasonable adjustment in
the model, either in its energetics (�, 	, �, !) or in its geometry (�, i�), will
bring the calculated C1 into the range reported in the experiments that find
a characteristic ratio of 4.5. No adjustment is necessary in order to
rationalize the experiment that reports a characteristic ratio in the range
of 6.1–6.4.

The experiments were performed with a predominantly head-to-head,
tail-to-tail chain that contained defects, arising from the 1,2 addition of 3 or
6% of the monomer units in the parent poly(2,3-dimethyl-1,3-butadiene).
When short branches are present as defects in a polyethylene chain, they
produce a decrease in C1, by disrupting the preferred conformation
consisting of short sequences of trans placements [23]. The defects present
in the chains examined in the experiment, illustrated in Fig. 5, may play

FIG. 5 A fragment showing the defect arising from the 1,2 addition in the parent

polymer.
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a similar role. However, it does not seem likely that an increase in defects
from 3 to 6% could depress the characteristic ratio from 6.1–6.4 to 4.5.

D. Conclusion

The construction and analysis of a RIS model for a homopolymer have been
illustrated by consideration of head-to-head, tail-to-tail polypropylene.
Statistical weight matrices, incorporating first- and second-order inter-
actions, are formulated for all bonds, and for all configurations of the
attachments of the methyl groups to the chain. Preliminary estimates of the
values of the statistical weights in these matrices could be obtained by
reference to prior work, which in turn is based on conformational energy
calculations for small hydrocarbons. Along with preliminary estimates of
the geometry in the three rotational isomeric states for each rotatable bond,
this information permits calculation of C1 for chains with simple repeating
sequences.

The influence of the individual energetic and structural parameters on
C1 is determined in the sensitivity tests.

The values of C1 specified by the model for an atactic homopolymer of
head-to-head, tail-to-tail polypropylene are in excellent agreement with
those reported by Graessley et al. [18]. Reasonable adjustments of the
parameters in the RIS model cannot reduce Cn into the range reported by
Arichi et al. [17].
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3
Single Chain in Solution

REINHARD HENTSCHKE Bergische Universität, Wuppertal, Germany

I. PHENOMENOLOGICAL FORCE FIELDS
AND POLYMER MODELING

Perhaps the simplest theoretical approach to polymers in solution is
molecular dynamics, i.e., the numerical integration of Newton’s equations
of motion, mi

€~rr~rri ¼ � ~rr~rriUð~rr1, . . . , ~rrnÞ, where i extends over all n atoms in the
simulation box. Common integrators like the Verlet or predictor corrector
algorithms [1], yield trajectories consisting of positions and velocities of
the interaction centers (usually the nuclei) stored at regular time intervals
on the picosecond time scale. Positions and velocities can be tied to the
thermodynamic quantities like pressure and temperature via the equiparti-
tion theorem. The forces in the above equations of motion may be derived
from a potential of the form

U ¼
X

bonds

fbðb� boÞ
2
þ

X

valence
angles

f�ð�� �oÞ
2

þ
X

torsion
angles

Xp

k¼1

f#, k½1þ cosðmk#� �kÞ	

þ
X

i<j

Aij

r12ij
�
Bij

r6ij
þ
qiqj

rij

 !
ð1Þ

The first three terms describe potential energy variations due to bond (b),

valence angle (�), and bond torsion angle (#) deformations. The remaining

(nonbonding) terms are Lennard-Jones and Coulomb interactions between
interaction sites separated by a distance rij ¼ j~rri � ~rrjj. Nonbonded interac-

tions usually exclude pairs of sites belonging to the same bond or valence

109



angle. A model of this type is appropriate to study the dynamics of a system

with maybe 10,000 interaction centers in a time window of about 10 ns, on

current workstation computers. Figure 1 gives an impression of the typical

size of such a system. Figure 2 on the other hand shows how slow (global)

conformation changes may be, even for a short oligomer, compared to the

accessible time window.
Clearly, Eq. (1) is a crude approximation to molecular interactions. It

basically constitutes the simplest level on which the chemical structure of a
specific polymer can still be recognized. The development of more complex
molecular and macromolecular force fields is still ongoing, and the reader is
referred to the extensive literature (a good starting point is Ref. [2]).

Fully atomistic molecular dynamics simulations quickly require excessive
computer time as systems become large. This is despite the fact that the
computational effort for large n, governed by the calculation of the
nonbonded forces or interactions, scales as O(n) for short-range interactions
and as O(n ln n) for long-range interactions. This improvement over the
naively expected O(n2) behavior (assuming simple pairwise additive
interactions) is achieved by the use of various cell techniques, which are
discussed in this book. Actually, a more severe restriction than the limited

FIG. 1 Snapshot taken during the initial stage of a molecular dynamics simulation

of oligo(vinylpyrrolidone) (20mer) in an ionic solution. The box indicates the cubic

simulation volume. Periodic boundary conditions are used to extend the system to

(quasi-)infinity. The arrows indicate (from left to right) Naþ, C6H5SO
�
3 , Oligomer,

and water.
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number of interaction centers is the time step in the integration algorithm,
which is governed by the highest frequency in the system. Here multiple-
time-step concepts [3–5] as well as the mapping of the real polymer onto a
much simpler model with less complicated interactions (coarse graining) are
used to speed up the calculations. Coarse graining reduces high frequencies
effectively but the reverse procedure, i.e., going from the simplified
model back to the specific polymer, is anything but straightforward [6,7].
Again, these techniques as well as sampling of conformation space with

FIG. 2 A sequence of conformations obtained for the oligomer in Fig. 1 in pure

water at room temperature. The water molecules are omitted.
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sophisticated Monte Carlo techniques, are discussed in this book, and the
reader is referred to the pertinent chapters.

Force fields contain numerous parameters (here: fb, bo, f�, �o, f#, k, mk, �k,
Aij, Bij, and qi). Parameterization procedures employ training sets, e.g.,
amino acids in the case of proteins or relevant monomer-analogous
molecules in the case of technical polymers. The parameters are adjusted
using thermodynamic, spectroscopic, or structural data, and increasingly
quantum chemical calculations (most importantly in the case of the torsion
potential in the valence part of a force field) available for the training set.

Probably the most difficult parameters are the partial charges, qi, usually
located on the nuclei, since they are influenced by a comparatively large
number of atoms in their vicinity. Let us consider the case of an oligomer
in explicit solution (cf. Fig. 1). One may start with the vacuum values for
the qi determined for the training molecules via an ESP procedure
(ElectroStatic Potential fitting) based on fast semiempirical methods like
AM1 (Austin Model 1) [8]. Polarization effects due to solvent are included
roughly in a mean field sense via a scaling factor multiplying the charges.
The scaling factor may be determined by comparison with suitable
experimental data (e.g., the density of a solution consisting of the solvent
of interest and a monomer-analogous solute as function of temperature and
solute concentration [9]). The same scaling factor is subsequently applied to
the charges on the oligomer, which also can be determined in vacuum using
AM1 (possibly including conformational averaging, which, if it is done
correctly, of course requires information not available at this point). A more
systematic and maybe in the long run more promising approach is the
fluctuating charge method [10,11]. Here the qi are dynamic variables just like
the positions, ~rri. Their equations of motion follow from the Lagrangian

L ¼
1

2

X

m

X

im

mim
_~rr~rr
2
im
þ
1

2

X

m

X

im

mq _qq
2
im
�Uðfrg, fqgÞ ð2Þ

The index m labels all molecules in the system, and im indicates the ith atom
or charge center in the mth molecule. The quantity mq is a mass parameter,

which, for simplicity, is the same for all charges. The potential energy is

Uðfrg, fqgÞ ¼ Unon-CoulombðfrgÞ þ Eðfrg, fqgÞ ð3Þ

Here {r} means all positions, and {q} means all partial charges. The first
term includes all non-Coulomb contributions [cf. Eq. (1)]. The second term,
the Coulomb part of the potential, is approximated in terms of a truncated
expansion in qi, E({r}, {q})¼

P
i ðEio þ �

o
i qiÞ þ

1
2

P
i, j qiqjJij . The quantities
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Eio and �oi are single atom parameters, and Jij ¼ Jijðrij;�i, �jÞ is a Coulomb
integral (note: Jij !

rij!1
r�1
ij ) computed from two charge distributions mod-

eled in terms of single Slater orbitals with the exponents �i and �j. The
equations of motion, i.e.,

mim
€~rr~rrim ¼ � ~rr~rrimUðfrg, fqgÞ ð4Þ

and

mq €qqim ¼ �im � 
m ð5Þ

follow from �
R t2
t1
ðL�

P
m lm

P
im
qim Þ dt ¼ 0, where the lm ¼ �N�1

m

P
im
im

are Lagrange parameters, i.e., the conditions
P

im
qim ¼ 0 ensure that the

total charge on a molecule is zero. The quantity im ¼ @E=@qim assumes
the role of the chemical potential of the charges, and Nm is the total
number of charge sites in the mth molecule.

The additional computational effort, compared to fixed partial charges, is
rather minor, i.e., about 15% for simulations of neat water [10,11] (the
authors consider the TIP4P and SPC/E water models). Figure 3 shows an
application of this technique to oligo(ethyleneoxide) in water [12]. This
simulation contained a 7mer immersed in 1000 water molecules at ambient

FIG. 3 Simulation of oligo(ethyleneoxide) in water using the fluctuating charge

model. Solid line: pair distribution function, g2ðrOp�Ow
Þ, where rOp�Ow

denotes the

distance between oxygen sites in the oligomer and in water. Broken line:

corresponding magnitude of the water dipole moment, H2O.
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conditions. The figure exemplifies the variation of the magnitude of the
water dipole moment corresponding to the structure in the Op�Ow pair
correlations. Here rOp�Ow

is the separation between oligomer oxygen atoms
and water oxygen atoms. Note that the bulk dipole moment of this
polarizable water model is 2.7D. (The calculation included long-range
interactions in terms of the particle mesh Ewald method.)

II. SOLVENT SPECIFIC POLYMER CONFORMATIONS
IN SOLUTION BASED ON OLIGOMER
SIMULATIONS

Probably the most powerful technique for sampling the conformation space
of real polymers is the transfer matrix approach in combination with the
RIS approximation discussed in the previous chapter. The approach was
pioneered by Flory (e.g., [13]), but its potential for generating configura-
tional averages was recognized very early (cf. the reference to E. Montrol in
the seminal paper by Kramers and Wannier [14]). In the transfer matrix
approach the partition function of a polymer is expressed in terms of a
product of matrices, whose elements in the simplest case, e.g., polyethylene,
have the form

t
ð�Þ
ij � exp �

1

kBT

1

2
UM #ð�Þi

� �
þUMM #ð�Þi ,#ðÞj

� �
þ
1

2
UM #ðÞj

� �� �	 

ð6Þ

The lower indices indicate neighboring monomers along the chain, and the
upper indices indicate RIS values of the corresponding torsion angles #i.
Here the total potential energy of the polymer is

U ¼
X

i

UM #ið Þ þ
X

i

UMM #i,#iþ1ð Þ ð7Þ

where UMð#iÞ is the potential energy of the isolated monomer (assumed to
depend on #i only) and UMMð#i,#iþ1Þ is the coupling between adjacent
monomers. For long chains the conformation free energy becomes

Fconf��kBTNln l(max), where l(max) is the largest eigenvalue of the transfer
matrix, and N is the chain length.

This approach also allows the computation of correlation functions along
a polymer chain, e.g., the conditional probability, pð#j#0Þ ¼ pð##0Þ=pð#0Þ,
that a torsion angle #0 is followed by a torsion angle #. Here pð#0Þ is the
probability of occurrence for the main chain torsion angle #0. Similarly,
pð##0Þ is the probability of occurrence for the neighbor pair ##0. Assuming
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the general case of m distinct rotational isomeric states #ð�Þ
� �m

�¼1
this allows

the following simple construction procedure for polymer conformations:

1. Compute a random number z2 [0,1].
2. Following the torsion angle #ðkÞ extend the chain with

#ð1Þ if z � Pð1jkÞ
#ð2Þ if Pð1jkÞ < z � Pð1jkÞ þ Pð2jkÞ
#ð3Þ if Pð1jkÞ þ Pð2jkÞ < z � Pð1jkÞ þ Pð2jkÞ þ Pð3jkÞ

..

. ..
. ..

.

#ðmÞ if Pð1jkÞ þ � � � þ Pðm� 1jkÞ < z

3. If #ðlÞ is selected in (2) then generate the coordinates of the new bond

vector, ~bb ¼ bb̂b, via b̂biþ1 ¼ �b̂bi cos�þ b̂bi � b̂bi�1 sin#
ðlÞ � ðb̂bi � b̂bi�1Þ �

b̂bi cos#
ðlÞ. Note that all valence angles � are assumed to be identical,

and that the cis conformation defines # ¼ 0. Starting vectors may be

arbitrary but not parallel.
4. Continue from (1).

It should be noted that in general the conformation of a polymer back-
bone is characterized by a periodic sequence of nonequivalent torsion
angles, #A,#B,#C, . . . ,#A,#B, . . . , rather than by merely one (type of)
torsion angle, #, as in the present example. Nevertheless, the generalization
is straightforward.

A Mathematica implementation of the above algorithm for m¼ 3
(polyethylene) is:

CP[i_,j_]:¼PP[[i,j]]/P[[j]];
k¼1;
b1¼{1,0,0};
b2¼{0,1,0};
R¼{0,0,0};
f¼112/180 Pi;
tab[n_]:¼Line[Table[z¼Random[ ];
If[z<¼CP[1,k],l¼1,If[z<¼CP[1,k]þCP[2,k],l¼2,l¼3]];
k¼l;
t¼(2 l-1) Pi/3;
b3¼N[-b2 Cos[f] þ CrossProduct[b2,b1] Sin[t] -

CrossProduct[CrossProduct[b2,b1],b2] Cos[t]];
b3¼b3/Sqrt[b3.b3];
R¼Rþb3;
b1¼b2;
b2¼b3;
R,{n}]];
Show[Graphics3D[tab[10000]]]
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CP is the above conditional probability computed from the normal prob-

abilities P and PP. The indices i and j may assume the values 1, 2, and 3,

here corresponding to the rotational isomeric states gauche(�), trans, and

gauche(þ).
An example for polyethylene, using the Jorgensen potential [15] to model

the potential in Eq. (7), is illustrated in the upper panel of Fig. 4. Here
n(r, �r) is the average number of united atom carbon pairs, i.e., pairs of
effective methylene groups, divided by N, whose separation is between
r��r/2 and rþ�r/2. Here N is the total number of methylene groups in
the chain. For small r the distribution is discrete. The first pronounced peak

FIG. 4 (Top) Monomer–monomer distribution, n(r,�r), here truncated at 1,

averaged over 100 conformations generated for N¼ 1000 at T¼ 140�C. The inset

shows a single conformation constructed using the Mathematica program in the text.

(Bottom) Corresponding Kratky plot of the scattering intensity, q2I=ðIoNÞ, vs. q for

different chain lengths, i.e., N¼ 20 (a), 50 (b), 200 (c), 1000 (d). The crosses are

experimental data taken from [34].
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occurs at r¼ 1 corresponding to the bond length in the units used here [note:
n(1, �r)¼ 2]. As r increases the distribution becomes continuous. An
important quantity based on n(r, �r) is the scattering intensity

I

Io
¼ N 1þ

Ximax

i¼1

sin½q�ri	

q�ri
nð�ri,�rÞ

 !
ð8Þ

allowing the direct comparison with X-ray and neutron scattering experi-
ments. Here Io is a constant independent of the polymer structure, r ¼ �r i,
and q is the magnitude of the scattering vector. For simplicity we have set
the form factors for each scattering site equal to one. The scattering intensity
corresponding to the above n(r, �r) is shown in the lower panel of Fig. 4. At
large q all curves come together, because the relevant lengths (� 2�q�1) are
small compared to any of the chain lengths considered. The effect of the
chain length is most pronounced for q values around 0.15, where a plateau
develops as N is increased. It is worth emphasizing that in general scattering
curves are more complex due to the more complex chemical architecture of
most polymers in comparison to polyethylene [16]. With some experience,
however, it is possible to relate many features of the scattering curve to
underlying conformational features, e.g., helical conformations. In the pre-
sent very simple example there are two easily distinguishable q-regimes (for
large N), i.e., the linear increase beyond q� 0.3, which reflects the simple
chemical structure of our model chain, and the initial increase with a
subsequent development of a plateau below q� 0.3, which reflects the
statistical chain behavior. In this q-regime the scattering intensity of a
simple Gaussian chain is a good approximation to the shown scattering
intensity (for large N). The Gaussian chain in particular yields the plateau
q2I=ðIoNÞ ! 12=CN for large q (referring to the continuum limit, i.e., there
is no atomic structure no matter how large q is). The quantity

CN ¼
R2

N

 �

Nb2
ð9Þ

is the characteristic ratio, and RN is the end-to-end distance of the polymer
consisting of N monomers. Note that RN is a useful quantity to monitor
during an oligomer simulation if one wants to decide whether configura-
tional equilibration is possible or not. CN, or rather its asymptotic value for
N!1, C1, is used commonly to characterize the shape or unperturbed
dimension of polymers in different solvents in terms of a single number.
Here the 1000mers come close to yielding a plateau at C1�C1000� 7. One
may also obtain this value by direct evaluation of Eq. (9) using the above
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construction procedure to generate a large number of single chain confor-
mations. The above value actually corresponds to polyethylene in a melt,
an example which we have chosen for its simplicity. For most dilute polymer
solutions one obtains larger values usually between 10 and 20. Notice that
C1 obtained in this fashion describes the shape of a polymer on an inter-
mediate length scale, on which self-avoidance has no significant effect yet.
Because the above model includes short-range interactions only, a chain
may intersect itself. Polymers modeled with this method eventually obey
hR2

Ni / N2v with v¼ 1/2.
Powerful as the transfer matrix approach is, it suffers from certain

deficiencies. Including coupling beyond nearest neighbors is difficult.
Accounting for solvent effects also is difficult. In a crude approximation
solvent effects may be included via an effective dielectric constant in a
Coulomb term integrated into the coupling in Eq. (7) [17], which itself could
be improved to include local solvent–polymer interactions in terms of
effective interactions (e.g., [18]). On the other hand, it is of course possible to
extract the probabilities pð#Þ and pð##0Þ directly from oligomer simulations
in explicit solvent, and feed them into a construction procedure like the one
outlined above [19]. Applications of this general idea to poly(isobutene)
in vacuum (!) or to poly(vinylpyrrolidone) in water are discussed in [20]
and [9]. Thus, other than in the usual transfer matrix calculations of these
probabilities, molecular solvent effects are included on the length scale of
the oligomer. Some care must be taken to diminish end effects, however.
Moreover it is possible to include couplings beyond nearest neighbors, i.e.,
next-nearest neighbor effects may be introduced analogously via conditional
probabilities of the type pð#j#0#00Þ ¼ pð##0#00Þ=pð#0#00Þ. An example can be
found again in [9].

Before leaving the subject we briefly mention one common approximate
calculation of CN. The central assumption is the uncoupling of adjacent
monomers along the chain, i.e., UMM¼ 0, which allows us to derive the
expression

CN ¼ ðIþ hTiÞ � ðI� hTiÞ�1
�

2

N
hTi � I� hTiN

� �
� ðI� hTiÞ�1
� �2

� �

1,1

ð10Þ

which is discussed in many polymer textbooks. Here I is a unit matrix, and
T, in cases where the polymer backbone contains one type of torsion angle
only (e.g., polyethylene), is given by

T ¼

� cos� sin� 0
� cos# sin� � cos# cos� � sin#
� sin# sin� � sin# cos� cos#

0

@

1

A ð11Þ
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using the above convention. The index 1,1 indicates that CN is the 1,1-
element of the matrix. More complex polymer architectures may be accom-
modated by dividing the polymer into repeating sequences of effective bonds
(chemical units), again assumed to be independent, where T is the product
of the respective T-matrices for each effective bond. The conformation
averages (e.g., hcos �i or hcos# sin�i) again may be computed directly
from the corresponding oligomer simulations. Despite its crude approxima-
tions this method appears to yield reasonable first guesses for CN [21].

Frequently the molecular structure and dynamics of the polymer–solvent
interface also are of interest. Structural information may be derived via pair
correlation functions of the general type considered in Fig. 3. For instance,
g2(r) may be calculated via g2(r)¼ (4pr2�r�)�1n(r, �r), where n(r, �r) is the
average number of solvent atoms of a certain type within a spherical shell of
radius r and thickness �r centered on a polymer atom, and � is the density
of the same solvent atoms in the bulk solvent. A dynamic quantity of
interest is the average residence time of a solvent atom or molecule in a
certain distance and/or orientation relative to a polymer atom or atom
group, e.g., hydrogen bonds between certain polar groups in a polymer and
water. Here n(t, te; r,�r) is the average number of solvent atoms or molecules
again within a spherical shell (omitting the orientation dependence) at time
t, under the condition that the same solvent molecules were present in the
shell at t¼ 0. The quantity te is an excursion time allowing a solvent
molecule to leave the shell and return within the excursion time without
being discarded. The result may be fitted via nðt, te; r,�rÞ ¼

P�max

�¼1 n�e
�t=	� ,

which is sensible for �max � 2 (cf. Ref. [9]). For large �max, i.e., a broad
distribution of residence times, 	�, the dynamics assumes glasslike behavior.

There are important systems, where one is interested in the intrinsic
stiffness of polymers, which in solution possess a regular superstructure—
most commonly helical conformations. Here the above approaches are
less useful, and a method called the segment method, is more applicable.
A periodic section of the helix of interest is simulated in explicit solvent
using molecular dynamics. The top and bottom of the segment are
connected via suitable periodic boundary conditions. These are different
from the usual periodic boundary conditions, because they include a
covalent bond of the backbone. The simulation box should be large enough
(a) to ensure that the solvent attains its bulk structure at large perpendicular
distances from the helix, and (b) that the important undulatory wavelengths
along the helix backbone should be included. Provided the simulation run is
long enough one may extract sufficient independent segment (backbone)
conformations to ‘‘Build up’’ realistic and solvent specific helix conforma-
tions of a desired molecular weight. ‘‘Build up’’ means that an existing piece
of the helix may be extended by an extracted segment provided that a certain
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smoothness condition is fulfilled. The smoothness condition may be that the
last torsion angle in the helix matched the first corresponding torsion angle
in the segment fulfilling a certain accuracy condition. More complex
conditions involving additional constraints can be employed also of course.
Ideally there should be no correlation between k, where k is the kth segment
conformation extracted from the simulation, and l, where l is the position
of the segment along the constructed helix. Figure 5 shows high molecular
weight fragments of poly(�-benzyl-L-glutamate) (PBLG), a helical poly-
peptide, which were constructed in this fashion from the trajectory of a
27 Å-helix segment immersed in about 1000 dimethylformamide (DMF)
molecules [22].

The contour flexibility of molecular helices, such as in the case of PBLG,
is best described as persistent flexibility or homogeneous bend-elasticity.
The measure of this type of flexibility is the persistence length, P, defined via

~uuð0Þ � ~uuðsÞ
 �

¼ exp �s=P½ 	 ð12Þ

FIG. 5 Four PBLG backbone conformations (I–IV) constructed via the above

segment method. The inset illustrates the transformation of the explicit local

chemical structure into a persistent flexible rod.
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where the ~uu are unit vectors tangential to the backbone contour, and s is
their separation along the contour [23] (cf. the inset in Fig. 5). Note that P in
certain cases may be related to CN [24]. Via direct application of Eq. (12)
to contours like those shown in Fig. 5 one obtains P� 1000 Å for PBLG
in DMF at T¼ 313K, in good accord with the experiments [22].

III. POLYMER CONFORMATIONS IN SOLUTION
VIA DIRECT SIMULATION

Langevin dynamics is a method to simulate molecules in contact with a heat
bath or solvent without considering the explicit structure of the solvent.
An important application of this approach is conformation sampling for
macromolecules in solution, because the expensive integration of the solvent
trajectories is omitted—as well as solvent specific effects of course. Here the
equations of motion are given by

€~rr~rri ¼ m�1
i ð� ~rriUeff þ ~ZZiÞ � �i

_~rr~rri ð13Þ

Ueff is a potential of mean force of the solvent molecules including the
explicit intramolecular interactions of the polymer. ~ZZi is a stochastic force
simulating collisions of polymer site i with the solvent molecules. It is
assumed that ~ZZi is uncorrelated with the positions and the velocity of the
sites i. Moreover ~ZZi has a Gaussian distribution centered on zero with
variance h ~ZZiðtÞ � ~ZZjðt

0Þi ¼ 6mi�ikBTB�ðt� t0Þ�ij , where TB is the temperature
of the solvent, and �i is a friction parameter. In practice the components �
of ~ZZi are extracted from a Gaussian distribution with hZi, �ðtÞZi, �ðt

0Þi ¼

2mi�ikBTB=�t, where �t is the integration time step. A simple leapfrog
Verlet implementation of the equations of motion is the following

~uui tþ
1

2
�t

� �
¼ ~uui t�

1

2
�t

� �
1� �i�tð Þ þ

� ~rriUeff þ ~ZZiðtÞ

mi
�t

þOð�t2Þ ð14Þ

~rriðtþ�tÞ ¼ ~rriðtÞ þ ~uui tþ
1

2
�t

� �
�tþOð�t3Þ

A detailed analysis of different algorithms in the context of Langevin
dynamics may be found in [25] (see also [26]).

A nice application of Eq. (14), which compares simulations for
poly(ethyleneoxide) in the explicit solvents water and benzene with
Langevin dynamics simulations, can be found in [27,28]. The authors use
a modified Stokes relation, �i¼ l 4pRi,eff �/mi, where l is a parameter
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(0.01<l<0.1) related to the transition rates between the rotational isomeric
states, Ri,eff is an effective radius corresponding to the solvent accessible
surface of the atom or atom type, and � is the experimental viscosity
coefficient of the solvent. It is probably fair to say that Langevin dynamics
works for unspecific solvent interactions, whereas specific solvent inter-
actions, e.g., hydrogen bonding, require explicit inclusion of molecular
solvent.

Langevin dynamics in its above form is useful for sampling the
conformations of a polymer, but it does not yield the correct dynamics.
To see this we consider a simple polymer chain consisting of N monomers
with masses m and total mass M¼Nm. Using �i¼ � for simplicity the
equation of motion of the polymer center of mass is €~rr~rrcm ¼

M�1
PN

i¼1
~ZZi � �

_~rr~rrcm or _~uu~uucm ¼ M�1
PN

i¼1
~ZZi � �~uucm. Note that the net force

due to the gradient term in Eq. (13) vanishes. The analytic solution is
~uucmðtÞ ¼ M�1 exp½��t	

R t
o dt

0
PN

i¼1
~ZZiðt

0Þ exp½�t0	 with ~uucmð0Þ ¼ 0. Subsequent
partial integration yields ~rrcmðtÞ, and using the above expression for
h ~ZZiðtÞ � ~ZZjðt

0Þi we obtain h~rrcmðtÞ
2
i ¼ 6Dcmt for large t. The diffusion

coefficient, Dcm ¼ kBTðM�Þ�1, is proportional to M�1. Experimentally,
however, one observes exponents in the range from 0.5 to 0.6 instead
of 1 [29]. The reason for this discrepancy is the neglect of hydrodynamic
interactions. The latter may be included via the Oseen tensor [30,31], leading
to a modified dynamics [32]. For a discussion of hydrodynamic effects in the
context of single chain dynamics see for instance [33].
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4
Polymer Models on the Lattice

K. BINDER and M. MÜLLER Johannes-Gutenberg-Universität Mainz,
Mainz, Germany

J. BASCHNAGEL Institut Charles Sadron, Strasbourg, France

I. INTRODUCTION

Simple random walks (RWs) and self-avoiding random walks (SAWs) on
lattices have been used as models for the study of statistical properties of
long flexible polymer chains, since shortly after the important sampling
Monte Carlo method was devised [1]. Figure 1 explains the meaning of
RWs, of SAWs, and of a further variant, the nonreversal random walk
(NRRW), by giving examples of such walks on the square lattice [2]. The
idea is that each site of the lattice which is occupied by the walk is
interpreted as an (effective) monomer, and the lattice constant (of length a)
connecting two subsequent steps of the random walk may be taken as an
effective segment connecting two effective monomers. Thus, the lattice
parameter a would correspond physically to the Kuhnian step length bK.
For a RW, each further step is completely independent of the previous step
and, hence, the mean square end-to-end distance hR2

i after N steps simply is

R2
 �

¼ a2N ð1Þ

and the number of configurations (i.e., the partition function of the chain
ZN) is (z is the coordination number of the lattice)

ZN ¼ zN ð2Þ

Although the RW clearly is an extremely unrealistic model of a polymer
chain, it is a useful starting point for analytic calculations since any desired
property can be calculated exactly. For example, for N� 1 the distribution
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of the end-to-end vector is Gaussian, as it is for the freely-jointed chain
(see Chapter 1), i.e., (in d¼ 3 dimensions),

PðRÞ ¼
3

2� R2
 �

 !3=2

exp �
3

2

R2

R2
 �

 !
ð3Þ

FIG. 1 (a) Construction of a 22-step random walk (RW) on the square lattice.

Lattice sites are labeled in the order in which they are visited, starting out from the

origin (0). Each step consists in adding at random an elementary lattice vector

[(�1, 0)a, (0,�1)a, where a is the lattice spacing] to the walk, as denoted by the

arrows. (b) Same as (a) but for a non-reversal random walk (NRRW), where

immediate reversals are forbidden. (c) Two examples of self-avoiding walks (SAWs),

where ‘‘visiting’’ any lattice site more than once is not allowed: trials where this

happens in a simple random sampling construction of the walk are discarded. From

Kremer and Binder [2].
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which implies that the relative mean square fluctuation of R2 is a constant,

�2
R �

ðR2Þ
2

 �
� hR2i2

hR2i2
¼

2

3
ð4Þ

Equation (4) shows that one encounters a serious problem in computer
simulations of polymers, which is not present for many quantities in simple
systems (fluids of small molecules, Ising spin models, etc.; see Binder and
Heermann [3]), namely the ‘‘lack of selfaveraging’’ [4]. By ‘‘selfaveraging’’
we mean that the relative mean square fluctuation of a property decreases to
zero when the number of degrees of freedom (i.e., the number of steps N
here) increases towards infinity. This property holds, e.g., for the internal
energy E in a simulation of a fluid consisting of N molecules or an Ising
magnet with N spins; the average energy is calculated as the average of the
Hamiltonian, E ¼ hHi,�2

E � ðhH2i � hHi2Þ=hHi2 / 1=N ! 0 as N!1,
at least for thermodynamic states away from phase transitions. This
selfaveraging does not hold for the mean square end-to-end distance of a
single polymer chain, as Eq. (4) shows for the RW (actually this is true for
more complicated polymer models as well, only the constant �R may differ
from

ffiffiffiffiffiffiffiffi
2=3

p
, e.g., �R� 0.70 for the SAW in d¼ 3 [3]).

This lack of selfaveraging is one of the reasons why one is forced to
use such extremely simplified models, as shown in Fig. 1, under certain
circumstances. If it is necessary for the physical property under study to
work with large chain lengths N or if a good accuracy is to be reached in the
estimation of hR2

i (and/or the gyration radius Rg, single-chain scattering
function S(k) at wavevectors k of the order kRg� 1, etc.), a huge number
of (statistically independent!) configurations of single chains need to be
generated in the simulation. This is because the relative error of R2 simply
is �R/(number of generated chains)1/2. Correspondingly, high precision
estimates of R2 for very long chains exist only for simple lattice models
(see Sokal [5], also for a tutorial overview of programming techniques and
a comprehensive comparison of different algorithms).

Another motivation why lattice models are useful for polymer simulation
is the fact that analytical theories have often been based on lattice models
and the resulting concepts are well defined in the lattice context. For
instance, the Flory–Huggins theory of polymer mixtures [6] constructs the
thermodynamic excess energy and the entropy of mixing precisely on the
basis of a (many chain-) lattice model of the type of Fig. 1. Experimentally
widely used quantities like the Flory–Huggins parameter � have in the
lattice context a well-defined meaning, and thus a critical test of this theory
via simulations could be performed rather straightforwardly by Monte
Carlo simulation of a corresponding lattice model [7]. Similarly, the

Polymer Models on the Lattice 127



Gibbs–Di Marzio entropy theory of the glass transition [8,9], also based on a
lattice description, has been critically examined by a corresponding
simulation recently [10]. The key point is that not only has the
‘‘configurational entropy’’ a well-defined meaning for a lattice model, but
also algorithms can be devised to accurately sample the entropy S of many-
chain systems [10], while in general the entropy is not a straightforward
output of computer simulations [3]. In addition, the simulation can then
extract precisely the quantities used in the theoretical formulation from the
simulated model as well, and hence a stringent test of the theory with no
adjustable parameters whatsoever becomes possible.

A third motivation is that with present day computers even for medium
chain length N of the polymers it is very difficult to study collective long-
wavelength phenomena (associated with phase transitions, phase coexis-
tence, etc.), since huge linear dimensions L of the simulation box and a huge
number Nm of (effective) monomers in the simulation are required. For
example, for a finite size scaling [11] study of the nematic–isotropic phase
transition in a model for a melt of semiflexible polymers a lattice with
L¼ 130 was used, and with the bond fluctuation model [12,13] at volume
fraction of about �� 1/2 occupied sites this choice allowed for 6865 chains
of length N¼ 20, i.e., 137,300 effective monomers, to be simulated [14].
Similarly, for a study of interfaces between unmixed phases of polymer
blends a lattice model with 512� 512� 64 sites was used, i.e., more than 16
million sites, and more than a million effective monomers (32,768 chains
of length N¼ 32) [15]. Dealing with such large systems for more realistic
off-lattice models would be still very difficult.

Finally, we emphasize that lattice models are a very useful testing ground
for new algorithms that allow more efficient simulations of polymer
configurations under suitable circumstances. Many of the algorithms that
now are in standard use also for off-lattice models of polymers—such as the
‘‘slithering snake algorithm’’ [16,17], the ‘‘pivot algorithm’’ [18,19], the
‘‘configurational bias algorithm’’ [20] (see also Chapter 7 by T.S. Jain and
J.J. de Pablo), and the ‘‘chain breaking algorithm’’ [21,22]—were first
invented and validated for lattice models.

Why is there a need for these many different algorithms at all? Of course,
there would be no need for these algorithms if one wanted to simulate only
the simple random walk of Fig. 1a. But in fact, this is not a useful model for
polymer chains in most cases, since it allows arbitrarily many effective
monomers to sit on top of each other, ignoring excluded volume interactions
completely. A slightly better variant of the RW is the NRRW, Fig. 1b,
where immediate reversals are forbidden, but it is possible that loops are
formed where the NRRW crosses itself. The NRRW is still straightforward
to program—at each step there are z� 1 choices to proceed, from which one
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selects a choice at random. The partition function is hence simply
ZNRRW

N ¼ ðz� 1ÞN , and also hR2
i can be worked out exactly. The problem

is reminiscent of the RIS model of a single chain [23], and Chapter 2 by E.D.
Akten, W.L. Mattice, and U.W. Suter, where three choices occur at each
step, the long-range excluded volume along the backbone of a chain also
being ignored. One believes that the Gaussian statistics, Eq. (3), which holds
for both the RW and the NRRW, is true both in dense polymer melts, where
the excluded volume interaction between monomers of the same chain is
effectively screened by monomers of other chains [24] and in dilute solutions
at the so-called Theta temperature �, where the repulsive excluded volume
interaction is effectively compensated by an attractive interaction between
monomers. However, this does not mean that effective monomers can sit on
top of each other at any point of the lattice to faithfully model these
situations. In the cases of dense melts or theta solutions, Eq. (1) is not
directly valid, but rather involves a nontrivial constant C1,

R2
 �

¼ C1a2N, N ! 1 ð5Þ

Therefore, the construction of appropriate equilibrium configurations of
polymer chains in a lattice model is always a problem. For a dilute solution
under good solvent conditions the excluded volume interaction between all
monomers of the chain can no longer be ignored. It leads to a swelling of the
chain with respect to its size in the melt or in theta solution. Thus, Eq. (5)
does not hold, but has to be replaced by

R2
 �

¼ C0
1a2N2�, N ! 1 ð6Þ

where C1 is another constant, and the exponent � differs from 1/2, �’ 0.59
in d¼ 3 dimensions and �¼ 3/4 in d¼ 2 dimensions [24,5]. The behavior of
Eq. (6) is reproduced by the SAW model (Fig. 1c), and one can also predict
the corresponding chain partition function,

ZN / N��1zNeff , N ! 1 ð7Þ

where zeff<z� 1 is a kind of ‘‘effective coordination number’’ that depends
on the type of lattice, and the exponent � takes the values �¼ 43/32 in d¼ 2
dimensions [5] and �’ 1.16 in d¼ 3 dimensions [25].

Equation (7) is the reason why the sampling of SAWs is so difficult. Note
that all configurations of chains with N steps on the lattice that obey the
excluded volume condition should have equal a priori probability to occur
in the generated sample. A straightforward way to realize this is ‘‘simple
random sampling’’: One carries out a construction of a RW, as in Fig. 1a,
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or better of a NRRW (see Fig. 2 for pseudo-codes), and whenever the walk
intersects, thus violating the SAW constraint, the resulting configuration
has to be discarded, and a new trial configuration is generated (see Fig. 3 for
pseudo-code). Obviously, for large N the fraction of trials that is successful
becomes very small, since it is just given by the ratio of the respective
partition functions,

fraction of successful constructions ¼
ZSAW

N

ZNRRW
N

/ N��1 zeff

z� 1ð Þ

	 
N
ð8Þ

Since zeff<z� 1 (e.g., zeff� 2.6385 for the square lattice, zeff � 4.6835 for

the simple cubic lattice, see Kremer and Binder [2] for various other lattices),

the fraction of successful constructions decreases exponentially with increas-

ing N, namely as exp(�
N) with 
¼�ln[zeff/(z� 1)]� 0.1284 (square lattice)

and �0.08539 (simple cubic lattice). This problem that the success rate

becomes exponentially small for large N is called the ‘‘attrition problem,’’


 is the so-called ‘‘attrition constant.’’
Of course, the problem gets even worse when considering many chains on

a lattice: for any nonzero fraction � of occupied lattice sites, the success rate
of this simple sampling construction of self- and mutually avoiding walks
will decrease exponentially with increase in the volume of the lattice. As a
consequence, other methods for generating configurations of lattice models
of polymers are needed. We discuss some of the algorithms that have been
proposed in the following sections.

II. STATIC METHODS

A very interesting approach to overcoming the attrition problem was
already proposed by Rosenbluth and Rosenbluth in 1955 [26] (‘‘inversely
restricted sampling’’). The idea is to avoid failure of the simple sampling
construction of the SAW by not choosing at random blindly out of z� 1
choices at each step, but by choosing the step in a biased way only out of
those choices that avoid failure of the construction at this step. Consider a
SAW of i steps on a lattice with coordination number z. To add the (iþ 1)th
step one first checks which of the z0¼ z� 1 sites are actually empty. If ki
(with 0<ki� z0) sites are empty, one takes one of those with equal
probability 1/ki to continue the simple sampling construction. Only for
ki¼ 0 is the walk terminated and one has to start from the beginning. The
probability of each N-step walk then is PNðfrigÞ ¼

QN
i¼1ð1=kiÞ, ri being the

site of the ith monomer. One immediately sees that dense configurations of
SAWs are more probable than less dense ones. To generate a sample of

130 Binder et al.



FIG. 2 Pseudo-code for the simulation of a random walk (RW; code above the line)
and a non-reversal random walk (NRRW; code below the line) via simple sampling.

In both cases, the walks consist of N steps (innermost for loop), and the construction

of the walks is repeated M times (outer for loop) to improve statistics. Whereas these

repeated constructions always lead to a walk of N steps for the RW, they are not

always completed successfully for the NRRW because immediate back-folding can

occur. Then, the hitherto generated walk has to be discarded and the construction

must be resumed from the beginning (jump to start). In both cases, a new step is

appended to the walk by the subroutine add-next-step, in which ranf denotes a

random number uniformly distributed between 0 and 1 i.e., 0� ranf<1.
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equally probable walks, one has to correct for this bias by not counting each
chain with the weight WN¼ 1 in the sampling, as one would do for simple
sampling, but rather with a weight,

WN rif gð Þ ¼
YN

i¼1

ki=z0 ð9Þ

For large N, this weight varies over many orders of magnitude, however,

and hence the analysis of the accuracy reached is rather difficult in practice.

In fact, Batoulis and Kremer [27] demonstrated that the expected errors

increase exponentially with increasing N.
In principle, this method can also be applied to multichain systems, but

the problem of correcting for the bias becomes even more severe. In practice,
one therefore has to resort to the ‘‘configurational bias’’ method which is
an extension of the Rosenbluth sampling (see Chapter 7). But, inversely
restricted sampling is still one of the possible options for not too large

FIG. 3 Pseudo-code for the simulation of a self-avoiding random walk (SAW) by
simple sampling. For a SAW, it is necessary to keep track of all lattice sites that have

already been occupied by a monomer during the construction of the walk, since one

has to discard the hitherto obtained walk and restart the construction if the present

step attempts to place a monomer on an already occupied lattice site (jump to
start). A possibility to take into account the history of the walk is to define a

(large) (2Nþ 1)�(2Nþ 1) lattice whose sites are initialized by 0 and updated to 1 if a

monomer is successfully added. For more details and further algorithms see Binder

and Heermann [3], Sokal [5], or the excellent textbook of Kinzel and Reents [62].
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chain length N and volume fraction � in order to generate a configuration of
a multichain system that can be used as a starting point for a dynamic
simulation method.

There are many variants of biased sampling methods for the SAW, for
instance the idea of ‘‘scanning future steps’’ [28] but these techniques will
remain outside of consideration here.

A different approach to overcoming attrition is the ‘‘dimerization
method’’ [29], i.e., the idea of assembling long chains out of successfully
generated short chains. Assume two (uncorrelated) walks of length N/2.
Both walks are taken out of the ZN/2/ (zeff)

N/2(N/2)��1 different config-
urations. The probability that they form one of the ZN SAWs of N steps is
simply [2,5]

P ¼
ZN

ZN=2

� �2 /
N��1

N=2ð Þ
2 ��1ð Þ

¼ 22 ��1ð ÞN� ��1ð Þ ð10Þ

Thus the acceptance rate decreases only with a (small) power of N rather
than exponentially.

Still another useful technique is the ‘‘enrichment method’’ [30]. This early
work presented the first and compelling evidence that the exponent �
[Eq. (6)] has the value �� 0.59 (d¼ 3) and �� 0.75 (d¼ 2), and hence is a
nice example of important discoveries made by Monte Carlo simulation.

The simple idea of the enrichment method is to overcome attrition by
using successfully generated short walks of length s not only once, but p
times: one tries to continue a chain of s steps to 2s steps by p different simple
sampling constructions. Then, the number N2s of 2s step chains is

N2s ¼ pNs exp �
sð Þ ð11Þ

where 
 is the attrition constant. This process is continued for blocks of s

steps up to the desired chain length. One must fix p ahead of time to avoid a
bias. The best choice is p¼ exp(
s), since taking p exp(
s) does not reduce
the attrition problem enough, while p>exp(
s) would lead to an exploding
size of the sample and all walks are highly correlated. The fact that the
generated chains are not fully statistically independent and that therefore
the judgement of the accuracy of the procedure is a subtle problem is the
main disadvantage of the method.

There exist many extensions and variants for all these algorithms. For
example, for a star polymer with s arms one can use an enrichment
technique where one tries to add one step at each arm, and at each size of the
star this attempt is repeated p times [31]. It is also possible to combine
various methods suitably together. For example, Rapaport [32] combined
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the dimerization method with the enrichment technique, while Grassberger
[33] combined the Rosenbluth–Rosenbluth method with enrichment
techniques. With this so-called ‘‘Pruned-Enriched Rosenbluth Method’’
(PERM) simulations of polymers at the Theta temperature up to a chain
length of a million were performed, in order to clarify the nature of
logarithmic correction factors to Eq. (1) predicted by renormalization group
theory [34]. Note that the SAW, modeling a swollen chain in good solvent,
can be extended from an athermal situation to describe temperature-
dependent properties by adding, for instance, a nearest neighbor energy "
that occurs if two (nonbonded) effective monomers occupy adjacent sites at
the lattice. If a chain has n such nearest neighbor contacts in a sample
generated by simple sampling, one takes the statistical weight of this chain
configuration as proportional to exp(n"/kBT).

In PERM, enrichment is implemented in the Rosenbluth–Rosenbluth
framework by monitoring the weight Wn of partially grown chains of n
steps. If Wn exceeds some preselected upper threshold W>

n , we make two or
more copies of the chain, divide Wn by the number of copies made, place all
except one onto a stack and continue with the last copy. In this way the total
weight is exactly preserved, but it is more evenly spread on several
configurations. This is done at every chain length n.

The last entry to the stack is fetched if the current chain has reached its
maximal length N, or if we ‘‘prune’’ it . Pruning (the opposite of enrichment)
is done when the current weight has dropped below some lower threshold
W<

n . If this happens, a random number rnwith prob {rn¼ 0}¼prob {rn¼ 1}¼
1/2 is drawn. If rn¼ 1, we keep the chain but double its weight. If not, it is
discarded (‘‘pruned’’), and one continues with the last entry on the stack. If
the stack is empty, a new chain is started. When the latter happens, one says
a new ‘‘tour’’ is started. Chains within one tour are correlated, but chains
from different tours are uncorrelated.

III. DYNAMIC METHODS

Dynamic Monte Carlo methods are based on stochastic Markov processes
where subsequent configurations X� are generated from the previous one
(X1!X2! X3 � � � ) with some transition probability W(X1!X2). To some
extent, the choice of the basic move X1!X2 is arbitrary. Various methods,
as shown in Fig. 4, just differ in the choice of the basic ‘‘unit of motion.’’
Furthermore, W is not uniquely defined: We only require the principle of
detailed balance with the equilibrium distribution Peq(X),

Peq Xð ÞW X1 ! X2ð Þ ¼ Peq X2ð ÞW X2 ! X1ð Þ ð12Þ
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In the athermal case (the standard SAW problem) each configuration has
exactly the same weight (for single chains the normalized probability simply
is Peq(X)¼ 1/ZN). Then, Eq. (12) says that the probability to select a motion
X1!X2 must be the same as the probabilty for the inverse motion,
X0

1 ! X1. One has to be very careful to preserve this symmetry in the
actual realization of the algorithm, in particular if different types of move
are carried out in the simulation (e.g., Fig. 4). This can be achieved by
randomly choosing one of the possible moves and the new lattice sites to
which it should shift the monomer (or monomers), and by rejecting this
choice if it violates the excluded volume constraint. It would be completely
wrong if one first checked for empty sites and made a random choice only
between such moves that lead the monomers to these sites.

FIG. 4 Various examples of dynamic Monte Carlo algorithms for SAWs: bonds

indicated as wavy lines are moved to new positions (broken lines), other bonds are

not moved. (a) Generalized Verdier–Stockmayer algorithms on the simple cubic

lattice showing three types of motion: end-bond motion, kink-jump motion,

crankshaft motion; (b) ‘‘slithering snake’’ (‘‘reptation’’) algorithm; (c) ‘‘pivot’’

(‘‘wiggle’’) algorithm.
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If there is an additional energy H(X) in the problem depending on the
configurationX, the equilibrium distribution is Peq(X)¼ exp(�H(X)/kBT)/Z,
where Z¼

P
x exp(�H(X)/kBT). Hence, Eq. (12) leads to (�H�H(X2)�

H(X1) is the energy change caused by the move)

WðX1 ! X2Þ

WðX2 ! X1Þ
¼ exp �

�H

kBT

� �
ð13Þ

Following Metropolis et al. [1] one can take the same transition probability

as in the athermal case if �H� 0, but multiplied by a factor exp(��H/kBT)
if �H > 0. Then, Eq. (13) is automatically satisfied at finite temperature,
if it was fulfilled in the athermal case.

Thus, at every step of the algorithm one performs a trial move X1!X2.
IfW(X1!X2) is zero (excluded volume restriction being violated), the move
is not carried out, and the old configuration is counted once more in the
averaging. If W(X1!X2) is unity, the new configuration is accepted,
counted in the averaging, and becomes the ‘‘old configuration’’ for the next
step. If 0<W<1 we need a (pseudo-) random number x uniformly
distributed between zero and one. We compare x with W: If W� x,
we accept the new configuration and count it, while we reject the trial
configuration and count the old configuration once more if W<x.

In the limit where the number of configurations M generated tends to
infinity, the distribution of states X obtained by this procedure is
proportional to the equilibrium distribution Peq(X), provided there is no
problem with the ergodicity of the algorithm (this point will be discussed
later). Then, the canonical average of any observable A(X) is approximated
by a simple arithmetic average,

Ah i � A ¼
1

M �M0

XM

�¼M0

AðX�Þ ð14Þ

where we have anticipated that the firstM0 configurations, which are not yet
characteristic of the thermal equilibrium state that one wishes to simulate,
are eliminated from the average. Both the judgements of how large M0

should be taken and how large M needs to be chosen to reach some desired
statistical accuracy of the result, are hard to make in many cases. Some
guidance for this judgement comes from the dynamic interpretation of the

Metropolis algorithm [5,35], to which we turn next. This interpretation also
is very useful to evaluate the efficiency of algorithms.

We associate a (pseudo-) time variable t0 � �=eNN with the label � of
successively generated configurations, where eNN is the total number of
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monomers in the system, eNN¼ (chain length Nþ 1)� (number of chains nc).
Then, t0 ¼ M0=eNN, t ¼ M=eNN, and Eq. (14) becomes a time average,

A ¼
1

t� t0

Z t

t0

A t0ð Þ dt0 ð15Þ

Since a move X1! X2 typically involves a motion of a single monomer or
of a few monomers only (see Fig. 4), we have chosen one Monte Carlo step
(MCS) per monomer as a time unit, i.e., every monomer has on average one
chance to move.

The precise interpretation of the ‘‘dynamics’’ associated with the Monte
Carlo procedure is that it is a numerical realization of a Markov process
described by a master equation for the probabilty P(X, t) that a
configuration X occurs at time t,

d

dt
P X, tð Þ ¼ �

X

X2

W X1 ! X2ð ÞP X, tð Þ þ
X

X2

W X2 ! X1ð ÞP X2, tð Þ ð16Þ

Obviously, the principle of detailed balance, Eq. (13), suffices to guarantee
that Peq(X) is the steady-state solution of Eq. (16). If all states are mutually
accessible, P(X, t) must relax towards Peq(X) as t!1 irrespective of the
initial condition.

This dynamic interpretation is useful in two respects: (i) One can deal to
some extent with the dynamics of polymeric systems [36]. For example, a
basic model is the Rouse model [37] describing the Brownian motion of a
chain in a heat bath. The heat bath is believed to induce locally stochastic
changes of the configuration of a chain. In a lattice model, this is
qualitatively taken into account by motions of the types shown in Fig. 4a.
Since the Rouse model is believed to describe the dynamics of not too long
real chains in melts, there is real interest in investigating the dynamic
properties of models such as that shown in Fig. 4a, using lattices filled
rather densely with many chains. In fact, the related bond fluctuation
model [12,13,38,39], see Fig. 5, has been used successfully to study the
dynamics of glass-forming melts [40,41], the Rouse to reptation crossover
[42–44] etc. (ii) One can understand the magnitude of statistical errors (see
below).

The fact that the algorithm in Fig. 4a should be compatible with the
Rouse model can be understood from a simple heuristic argument: As a
result of only local motion of beads in a chain, we expect that the center of
gravity moves a distance of the order of a/N, where a is a vector connecting
two nearest neighbor sites on the lattice, and whose direction is random.
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These random displacements add up diffusively. If we define the relaxation
time 	N so that after 	NN such motions a mean square displacement of the
order of the end-to-end distance is reached, we have from Eq. (6)

a=Nð Þ
2	NN ¼ R2

 �
¼ C1a2N2�¼)	N / N2�þ1 ð17Þ

FIG. 5 Schematic illustration of the bond fluctuation model in three dimensions.

An effective monomer blocks a cube containing eight lattice sites for occupation by

other monomers. The length ‘ of the bonds connecting two neighboring cubes along

the chain must be taken from the set ‘ ¼ 2,
ffiffiffi
5

p
,

ffiffiffi
6

p
, 3, and

ffiffiffiffiffi
10

p
lattice spacings.

Chain configurations relax by random diffusive hops of the effective monomers by

one lattice spacing in a randomly chosen lattice direction. For the set of bond vectors

possible for the bond lengths ‘, quoted above, the excluded volume constraint that

no lattice site can belong to more than one cube automatically ensures that bonds

can never cross each other in the course of their random motions. From Deutsch and

Binder [13].
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Note that the unit of time has been chosen such that each monomer on

average attempts to move once, and we have implied that the slowest modes

involve long distance properties of the order of the chain’s linear dimension.

Thus, the chain configuration should be fully relaxed when the center of

mass has traveled a distance of the order of
ffiffiffiffiffiffiffiffiffi
hR2i

p
. This argument implies

that the diffusion constant of the chain scales with chain length as

DN / N�1 ð18Þ

irrespective of excluded volume restrictions.
However, one must be rather careful with such arguments and with

the use of algorithms as shown in Fig. 4a in general. For instance, if only
end-bond and kink-jump motions are permitted, as in the original
Verdier–Stockmayer algorithm [45], Eq. (17) does not hold for the SAW,
rather one finds reptation-like behavior 	N/N3 [46]. As pointed out by
Hilhorst and Deutsch [47], the kink-jump move only exchanges neighboring
bond vectors in a chain and does not create any new ones—new bond
vectors have to diffuse in from the chain ends, explaining that one then finds
a reptation-like law [24]. In fact, if one simulated a ring polymer with an
algorithm containing only the kink-jump move, the bond vectors contained
in the initial configuration would persist throughout the simulation, and
clearly good equilibrium could not be established! Thus, when using a new
algorithm one has to check carefully whether it has some undesirable
conservation laws.

When considering the ‘‘slithering snake’’ algorithm of Fig. 4b, one can
argue by an analogous argument as presented above that the center of mass
vector moves a distance of kRk/N at each attempted move. If we require
again that the mean square displacement is of order hR2

i at time 	N (	NN
attempted moves), we find (hR2

i/N2)	NN¼hR2
i, i.e., 	N/N and DN is of

order unity. This argument suggests that the slithering snake algorithm
is faster by a factor of N compared to any algorithm that updates the
monomer positions only locally (kink-jump, etc.).

While such a faster relaxation is desirable when one is just interested
in the simulation of static equilibrium properties, the slithering snake
algorithm obviously is not a faithful representation of any real polymer
dynamics even in a coarse-grained sense. This argument holds for the pivot
algorithm (Fig. 4c) a fortiori: Due to the ‘‘global moves’’ (i.e., large parts of
the chain move together in a single step) the relaxation of long-wavelength
properties of the coil is very fast, but the dynamics does not resemble the
real dynamics of macromolecules at all.

Nevertheless, the pivot algorithm has one distinctive advantage. It
exhibits very good ergodicity properties [5], while slithering snake and
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Verdier–Stockmayer type algorithms are manifestly nonergodic [48].
One can show this failure of ergodicity by constructing counterexample
configurations that cannot relax at all by the chosen moves (Fig. 6). Such
configurations also cannot be reached by the algorithms shown in Fig. 4a
and b, and thus represent ‘‘pockets’’ of phase space simply left out
completely from the sampling. There is good evidence [2,7,49] that in
practice the systematic errors induced by this lack of ergodicity are rather
small and are even negligible in comparison with the statistical errors of
typical calculations. Nevertheless, in principle the lack of full ergodicity is
a serious concern. While the pivot algorithm for single-chain simulations
is the method of choice, both because of this problem and because it yields a
very fast relaxation, it clearly cannot be used for simulations of dense
polymer systems, and therefore algorithms such as those of Fig. 4a and b are
still in use.

Irrespective of whether the chosen moves (Fig. 4) resemble the physically
occurring dynamics (case (a)) or not (cases (b), (c)), Eqs. (15), (16) always
apply and imply that observations of observables A, B are dynamically
correlated. A dynamic correlation function, defined as

�AB tð Þ ¼
A 0ð ÞB tð Þ
 �

� Ah i Bh i

ABh i � Ah i Bh i
ð19Þ

is implemented in a Monte Carlo simulation using the estimate (tobs¼ total
observation time)

A 0ð ÞB tð Þ
 �

� Að0ÞBðtÞ ¼
1

tobs � t� t0

Z tobs�t

t0

A tð ÞB t þ tð Þ dt ð20Þ

FIG. 6 (a) Example of a SAW on the square lattice that cannot move if the

slithering snake algorithm is used. (b) Example of a SAW on the square lattice

that cannot move if a combination of the slithering snake algorithm and the

Verdier–Stockmayer algorithm is used.
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Even if one is not interested in the study of these correlations per se, they are
important because they control the statistical error of static observables.

Thus, if we estimate the error �A of an average A [Eqs. (14), (15)] as follows

(there are n observations of A, i.e., A(t)¼A, ¼ 1, . . . , n)

�Að Þ
2

 �
� �Að Þ

2
¼

1

n

Xn

¼1

A � A
� �

 !2

ð21Þ

one can to show that [35,3]

�Að Þ
2

 �
�

1

n
A2
 �

� Ah i2
� �

1þ 2
	AA
�t

n o
, for tobs ¼ n�t � 	AA ð22Þ

where �t is the time interval between subsequent observables included in the

sum in Eq. (21) and the relaxation time is defined as follows

	AA ¼

Z 1

0

�AA tð Þ dt ð23Þ

Applying these concepts to the sampling of the end-to-end vector R, for
instance, we recognize that statistically independent observations for R are
only obtained if �t>	N, a time that can be very large for very long chains
{cf. Eq. (17)}. In the simulation of models for dense polymer systems with
local algorithms of the type of Fig. 2(a) or Fig. 3, the reptation model [24,50]
implies that 	N/N3, and in addition, the prefactor in this law can be rather
large, because the acceptance rate of all moves decreases very strongly with
increasing density of occupied sites in the lattice. Thus, in practice one has to
work with a volume fraction � of occupied lattices that does not exceed 0.8
for the simple SAW model on the simple cubic lattice [7] or 0.6 (d¼ 3) or 0.8
(d¼ 2) for the bond fluctuation model [12,13]. If one wishes to work with
higher volume fractions (or with the fully occupied lattice, �¼ 1, in the
extreme case), no motion at all would be possible with any of the algorithms
shown in Figs. 4 and 5. Then the only alternative is to use either ‘‘bond-
breaking algorithms’’ [21,22], which have the disadvantage that one does not
work with strictly monodisperse chain length, or the ‘‘cooperative motion’’
algorithm (CMA), see the following Chapter 5 by T. Pakula. Neither of
these algorithms has any correspondence with the actual chain dynamics,
of course.

An intricate problem is how to obtain initial configurations of the system
of chains for the dynamic Monte Carlo algorithms. Several recipes have
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been advocated in the literature. For a system of many short chains, where
the linear dimension of the box L is much larger than the length Rmax¼ bN
of a chain fully stretched to its maximal extension, one can put all chains in
this fully stretched state parallel to each other in a lattice direction onto the
lattice. Excluded volume interactions can then be trivially respected. The
time t0 necessary to ‘‘forget’’ the initial state that is not characteristic of
equilibrium can then simply be measured via the decay of the orientational
order of the chains, which is initially present in the system. Although in
principle this is a good method, it is clear that for large N and � close to
volume fractions that correspond to melt densities (i.e., �0 0.5) the
resulting time t0 is rather large. But the most important drawback is that it
cannot be used at all for systems where bN exceeds L (note that in the bond
fluctuation model b is between 2 and

ffiffiffiffiffi
10

p
lattice spacings, and simulations

up to N¼ 2048 for semidilute solutions using lattice linear dimensions
L� 400 have been carried out [51]). In this case one has the following
alternatives: Either the chains in the initial state are put on the lattice with
the Rosenbluth–Rosenbluth method or the configurational bias method, or
one uses NRRW chains, ignoring excluded volume initially. Then during the
initial equilibrium run only moves are accepted that do not increase the
number N� of lattice sites for which the excluded volume constraint is
violated, and one has to run the simulation until N� ¼ 0. There is no
guarantee, of course, that this latter algorithm works at all for every initial
configuration. An alternative would be to replace the hard excluded volume
constraint by a soft one, introducing an energy penalty �U for every double
occupancy of a lattice site, and gradually increase �U!1 during the
initial equilibration run. Despite the fundamental importance of producing
well-equilibrated initial configurations of many-chain (athermal) systems,
we are not aware of any systematic comparative evaluation of the efficiency
of the various approaches outlined above.

It should also be emphasized that the best method of choosing an initial
state for the simulation of a dense polymer system may depend on the
physical state of the system that one wishes to simulate. For example, the
configurational bias method is a good choice for creating initial configura-
tions of long flexible chains in semidilute solutions [51] or melts [43], but not
for melts of stiff chains in a nematic state [14]: In this case, it is much better
to start with a monodomain sample of a densely filled lattice of fully
stretched chains, remove at random chains such that the desired volume
fraction of occupied lattice sites is reached, and then start a relaxation run
with slithering snake and local moves. Conversely, if we start from a
configuration with no initial nematic order, it already takes a very long time
to create small nematic domains out of chain configurations that are initially
random-walk like, and relaxing the system further so that the multidomain
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configuration turns into a nematic monodomain configuration would be
prohibitively difficult [14].

As the last point of this section, we briefly comment on several variations
of lattice models, such as the SAW (Fig. 4c) or the bond fluctuation model
(Fig. 5). What are the respective merits of these models?

The simple SAW has the advantage that it has been under study for more
than 40 years, and thus a large body of work exists, to which new studies can
be compared. For single short chains, exact enumerations have been carried
out, and for some Monte Carlo techniques, e.g., the PERMmethod, one can
proceed to particularly long chains. However, there are some disadvantages:
(i) In d¼ 2 dimensions, the moves of Fig. 4a do not create new bond vectors,
and hence the local algorithm does not yield Rouse dynamics in d¼ 2. (ii)
Branched chains (stars, polymer networks) cannot be simulated with the
dynamic Monte Carlo methods of Fig. 4, since the junction points cannot
move. (iii) Since there is a single bond length (one lattice spacing) and only a
few bond angles (0� and 90� on square or cubic lattices, respectively), there is
little variability in the model.

The bond fluctuation model has been used for about 12 years only, but it
has numerous advantages: (i) There is a single type of move in the ‘‘random
hopping’’ algorithm, namely an effective monomer is moved by a lattice
spacing in a randomly chosen lattice direction. It is easy to write a very fast
code that executes this move. This move almost always creates new bond
vectors, also in d¼ 2 dimensions. (ii) If the set of bond vectors is suitably
restricted, the noncrossability constraint of bonds is automatically taken
into account. (iii) In simulations of branched chains, junction points can
move. (iv) Since there exist (in d¼ 3 dimensions) 108 bond angles �, the
model in many respects mimics the more realistic behavior of off-lattice
models in continuous space. (v) The different choices of bond lengths b
allow introduction of an energy function U(b), and this opens the way to
modeling the glass transition of polymers [10], or carrying out a mapping
of specific polymers to bond fluctuation models with particular choices of
potentials U(b), V(�) [52]. (vi) While the ‘‘random hopping’’ algorithm of
Fig. 5 is not strictly ergodic, the class of configurations that are not sampled
is much smaller than that of the algorithms in Fig. 4a, b.

Finally, we also mention models that are in some way intermediate
between the SAW and the bond fluctuation model. For example, Shaffer
[53,54] has used a model where the monomer takes only a lattice site like the
SAW, but the bond length can be 1,

ffiffiffi
2

p
, and

ffiffiffi
3

p
lattice spacings, and then

moves can be allowed where bonds cross each other, junctions can move,
etc. This model is useful to separate the effect of excluded volume (site
occupancy) from entanglement constraints (noncrossability of chains) in
the dynamics [53,54]. Since because of the chain crossability a rather fast
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relaxation is provided, this ‘‘diagonal bond model’’ is also advocated for the
study of ordered phases in models of block copolymers [55].

IV. CONCLUDING REMARKS

Although lattice models of polymers are crudely simplified, they have the
big advantage that their study is often much less demanding in computer
resources than corresponding off-lattice models. Therefore, a huge activity
exists to study the phase behavior of polymer mixtures and block copolymer
melts [56,57], while corresponding studies using off-lattice models are scarce.
In this context, a variety of specialized techniques have been developed, to
extract quantities such as chemical potential, pressure, entropy, etc. from
lattice models, see e.g., [58–60]. An important consideration in such
problems also is the best choice of statistical ensemble (e.g., semi-grand
canonical ensemble for mixtures, etc.) [7,56]. We refer the reader to the more
specialized literature for details.

The lattice models of polymers reach their limits when one wants to study
phenomena related to hydrodynamic flow. Although study of how chains
in polymer brushes are deformed by shear flow has been attempted, by
modeling the effect of this simply by assuming a smaller monomer jump rate
against the velocity field rather than along it [61], the validity of such
‘‘nonequilibrium Monte Carlo’’ procedures is still uncertain. However, for
problems regarding chain configurations in equilibrium, thermodynamics
of polymers with various chemical architectures, and even the diffusive
relaxation in melts, lattice models still find useful applications.
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5
Simulations on the Completely
Occupied Lattice

TADEUSZ PAKULA Max-Planck-Institute for Polymer Research, Mainz,
Germany, and Technical University of Lodz, Lodz, Poland

I. INTRODUCTION

There is a large number of different methods (algorithms) used for simula-
tion of polymers on the coarse grained molecular scale [1–6]. Models of
polymers considered in this range usually disregard the details of the che-
mical constitution of macromolecules and represent them as assemblies of
beads connected by nonbreakable bonds. In order to speed up recognition
of neighboring beads, the simplified polymers are often considered to be on
lattices with beads occupying lattice sites and bonds coinciding with lines
connecting neighboring sites. The methods used for simulation of the lattice
polymers can be considered within two groups. The first group includes
algorithms that can operate only in systems with a relatively large fraction
of lattice sites left free and the second group includes algorithms suitable for
lattice systems in which all lattice sites are occupied by molecular elements.
Whereas, the systems considered within the first group should be regarded
as lattice gases, the systems treated within the second group of methods can
be considered as lattice liquids. This reflects the differences in the mechan-
isms of molecular rearrangements used within these two groups to move the
systems through the phase space in order to reach equilibrium. The latter
problem concerns the physical nature of molecular rearrangements in dense
polymer systems and is related to the microscopic mechanism of motion in
molecular liquids. Unfortunately, this is not yet solved entirely. The most
popular picture is that a molecule, or a molecular segment in the case of
polymers, needs a free space in its neighborhood in order to make a transla-
tional step beyond the position usually occupied for quite a long time. Most
simulation methods assume this picture and consequently a relatively large
portion of the space in the form of free lattice sites has to be left free to allow
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a reasonable mobility [1–5]. On the other hand, there is only one simulation

method that assumes a cooperative nature of molecular rearrangements on

the local scale and which does not require such a reserve space to allow the

molecular mobility. The method, which uses the mechanism of cooperative

rearrangements for polymer systems is the Cooperative Motion Algorithm

(CMA) suggested originally in [6] and presented in improved form in sub-

sequent publications [7–10]. A mechanism of this kind has been formulated

recently also for low molecular weight liquids, based on assumptions taking

into account both a dense packing of molecules interacting strongly due to

excluded volume and a condition of preservation of local continuity of the

system. The later version of the microscopic mechanism, called the Dynamic

Lattice Liquid (DLL) model, has been described in detail [11–14].
The aim of this chapter is to present a background to the simulations of

molecular lattice systems on a completely filled lattice (the DLL model) as

well as to show some examples of application of the CMA method for

simulation of static and dynamic properties of various polymers.

II. THE DYNAMIC LATTICE LIQUID MODEL

Macroscopically, liquids differ from solids by the absence of rigidity and

from gases by having a tensile strength. On a microscopic level, this means

that the molecules in a liquid can move more easily than in a solid but they

remain condensed due to attractive interactions, which are almost negligible

in a gaseous phase. Owing to the dense packing of molecules, the dynamic

properties of liquids become complex and the relaxations extend over var-

ious, usually well distinguishable, time scales. On the short time scale, 	V,
the molecules oscillate around some quasi-fixed positions, being temporarily

‘‘caged’’ by neighbors. It is believed that more extensive translational

motions of molecules take place on a much longer time scale, 	�, due to

the breaking down of the cages by cooperative processes. Trajectories of

molecules consist, therefore, both of oscillatory components and of occa-

sional longer range translational movements between subsequent quasi-

fixed states, as illustrated in Fig. 1a. The macroscopic flow of the liquid is

related to the longer time scale (	�), in which the arrangement of molecules

becomes unstable because each molecule wanders through the material

changing neighbors during the translational motion steps.
Although the picture of motion in a liquid shown above is documented

by computer simulations of dense Lennard-Jones systems [15,16], it is not

quite clear under which conditions single diffusional steps can occur.

Theories of transport phenomena in liquids do not consider this problem

explicitly [17–22].
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The model that has been proposed to answer this question is based on a
lattice structure and is called the Dynamic Lattice Liquid model [11,12]. The
positions of the molecules are regarded as coinciding with the lattice sites.
The lattice is, however, considered only as a coordination skeleton defining
the presence of nearest neighbors but not precisely the distances between
them. Under the condition of uniform and constant coordination (z), all
lattice sites are assumed to be occupied. It is assumed that the system has
some excess volume so that molecules have enough space to vibrate around
their positions defined by lattice sites but can hardly move over larger dis-
tances because all neighboring lattice sites are occupied. The vibrations are
assumed to take place with a mean frequency �V¼ 1/	V, related to the short
time scale (	V). Each large enough displacement of a molecule from the
mean position defined by the lattice is considered as an attempt to move
to the neighboring lattice site. For simplicity, the attempts are assumed to
take place only along the coordination lines but are independent and ran-
domly distributed among z directions. Most of the attempts remain unsuc-
cessful, because it is assumed that all the time the system remains quasi-
continuous, which means that no holes of molecular sizes are generated
and multiple occupations of lattice sites are excluded (excluded volume
condition). The continuity condition of the system, for the vector field of

FIG. 1 Schematic illustration of a molecule trajectory in a liquid. (a) A trajectory

consisting of vibrations around quasi-localized states and occasional translational

steps. (b) Local correlated motions of neighboring molecules contributing to the

translational step of the single molecule by a cooperative rearrangement.
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attempted displacements r, can be written as follows

rJ þ
@�

@t
¼ " with "! 0 ð1Þ

where J is the current of displacing molecules and � is the density and should

not deviate considerably from 1 if all lattice sites remain occupied; " is
introduced as a small number allowing density fluctuations but excluding
generation of holes. Consequently, most of the attempted displacements
have to be compensated by a return to the initial position within the

period 	V. Only those attempts can be successful that coincide in such a
way, that along a path including more than two molecules the sum of the
displacements is close to zero. In the system considered, only the paths in a
form of closed loops can satisfy this condition (Fig. 1b). The probability

to find an element taking part in such coincidences will determine the
probability of longer range rearrangements and the slower time scale (	�).

A determination of this probability reduces to counting the number of
self-avoiding ‘‘n-circuits’’ on a given lattice, i.e., to a problem that has
already been extensively considered in the literature [23]. The generally
accepted result describing the probability to find the self-avoiding circuits

is given by

pðnÞ ¼ Bn�hn ð2Þ

where B is a lattice dependent constant,  plays the role of an effective
coordination number (called the ‘‘connective constant’’) of the lattice, and

the exponent h is positive and dependent on the dimensionality d of the
lattice, but is presumably largely independent of the detailed structure of
the lattice. Related theories predict only bounds for the exponent h (h� d/2).
More detailed information is obtained from enumerations performed for

various lattices [23].
The model discussed can easily be implemented as a dynamic Monte

Carlo algorithm. A system of beads on the fcc lattice is considered. The
beads occupy all lattice sites. It is assumed that the beads vibrating with a
certain frequency around the lattice sites attempt periodically to change
their positions towards nearest neighboring sites. The attempts are repre-

sented by a field of unit vectors, assigned to beads and pointing in a direc-
tion of attempted motion, chosen randomly. Attempts of all beads are
considered simultaneously.

An example of such an assignment of attempted directions of motion is
shown in Fig. 2, for a system of beads on a triangular lattice, taken here as a
two-dimensional illustration only. From the field of attempts represented in
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this way, all vectors that do not contribute to correlated sequences (circuits)

satisfying the continuity condition Eq. (1) are set to 0. This concerns, for

example, such situations as attempts of displacements in opposite directions

(e.g., area 1 in Fig. 2) or attempts of motion starting from lattice sites,

towards which any other bead is not trying to move at the same time

(e.g., area 2 in Fig. 2). What remains after this operation are vectors con-

tributing to a number of closed loop traces, which are considered as paths of

possible rearrangements (e.g., areas 3 in Fig. 2). If the system is considered

as athermal, all possible rearrangements found are performed by shifting

beads along closed loop traces, each bead to the neighboring lattice site.
The above procedure, consisting of (1) generation of motion attempts, (2)

elimination of unsuccessful attempts, and (3) displacing beads within closed

loop paths, is considered as a Monte Carlo step and assumed to take place

within the time scale 	V. The procedure is exactly repeated in subsequent

time steps always with a new set of randomly chosen directions of attempted

displacements.
The system treated in this way can be regarded as provided with the

dynamics consisting of local vibrations and occasional diffusional steps

resulting from the coincidence of attempts of neighboring elements to

displace beyond the occupied positions. Within a longer time interval, this

kind of dynamics leads to displacements of individual beads along random

walk trajectories with steps distributed randomly in time. Small displace-

ments related to vibrations of beads could be considered explicitly but are

neglected here, for simplicity.

FIG. 2 An illustration of the vector field representing attempts of molecular

displacements towards neighboring lattice sites in the lattice liquid model. Shaded

areas represent various local situations: (1) unsuccessful attempt when neighboring

elements try to move in the opposite direction, (2) unsuccessful attempt because the

element in the center will not be replaced by any of the neighbors, and (3) successful

attempts, in which each element replaces one of its neighbors. System elements

taking part in cooperative translational rearrangements are shown in black.
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Models of macromolecular melts are considered, in analogy to models of
simple liquids, as systems of structureless beads occupying lattice sites. In
the case of polymers, the beads are connected by bonds to form linear chains
or other more complex assemblies regarded as macromolecules. An exten-
sion of the algorithm to simulation of systems representing polymer melts
appears to be straightforward. The presence of bonds between beads influ-
ences only the second step of the described procedure. Assuming that the
bonds are not breakable, only attempts that would not lead to bond break-
ing can be considered as possible. Therefore, the selection of rearrangement
possibilities is made under this additional condition, i.e., after having found
all possible rearrangement paths, in parallel, as for nonbonded beads, all
those ones are rejected that would lead to a disruption of polymer chains.
All other steps in the algorithm are identical with those described for sys-
tems representing simple liquids. The procedure results in local cooperative
conformational rearrangements of polymers, which can take place simulta-
neously at various places of the system; however, within a single time step
one bead can be moved only once and only to a neighboring lattice site. It is
a characteristic feature of this algorithm that types of local conformational
changes are not precisely specified. All changes of chain conformations that
satisfy the assumed conditions of system continuity and nonbreakability of
bonds are allowed. This makes the algorithm nonspecific for any type of
polymer architecture. During motion, the identities of polymers given by
numbers and the sequences of beads within chains are preserved. Local
chain moves in this algorithm are probably similar to those in the CMA
but some other conformational rearrangements are probably also possible,
when two or more displacement loops influence neighboring parts of a chain
simultaneously (within a single time step).

Ergodicity has not been shown for any polymer algorithm. But for
dimers, it was shown, for instance, for the CMA [24,25]. Therefore, in the
DLL algorithm, which leads to the same types of cooperative moves,
the ergodicity can be assumed for dimers, as well. The additional types
of moves mentioned above can only improve the accessibility of various
conformational states.

The requirement of a detailed balance in the athermal polymer system,
as considered here, reduces to showing that the transition probabilities
between two neighboring states A and B are equal. In this algorithm,
two such states are always reversible and are separated by cooperative
rearrangements along loops of the same size and form but different
motion directions. Because loops consist of vectors that are pointing equally
probably at any direction, this condition is satisfied. Moreover, it remains
valid for any polymer system because the loops are independent of the
structure.
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Here, only the athermal version of the DLL model has been described. It

has been shown elsewhere [11–13] that the model is able to represent the

temperature dependent dynamics of systems as well. This, however, requires

additional assumptions concerning free volume distribution and related

potential barriers for displacements of individual elements. It has been

demonstrated [11–13] that in such a version the model can describe a broad

class of temperature dependencies of relaxation rates in supercooled liquids

with the variety of behavior ranging between the extremes described by the

free volume model on one side and the Arrhenius model on the other side.

III. THE COOPERATIVE MOTION ALGORITHM

Cooperative rearrangements based on displacements of system elements

(beads) along closed loops have been introduced originally for dense lattice

polymer models within the Cooperative Motion Algorithm (CMA). In this

algorithm rearrangements are performed along random self-avoiding closed

trajectories generated sequentially in randomly chosen places of the simu-

lated systems. Each attempt to perform a rearrangement consists of a

random choice of an element in the system and of searching for a self-

avoiding non-reversal random walk in the form of a closed loop, which

starts and ends at that element. Subsequent attempts are counted as time.

Any distortion in searching loops, such as a reversal attempt or a cross point

in the searching trajectory, breaks the attempt and a new attempt is started.

If a loop is found, all elements lying on the loop trajectory are translated by

one lattice site so that each element replaces its nearest neighbor along the

loop. In systems representing polymers, only rearrangements that do not

break bonds and do not change sequences of segments along individual

chains are accepted. Chains can rearrange only by displacements involving

conformational changes. As a result of a large number of such rearrange-

ments, elements of the system move along random walk trajectories. The

motion takes place in the system in which all lattice sites are occupied but the

system remains continuous and the excluded volume condition is satisfied.
In this algorithm, both the time step definition and the distribution of

rearrangement sizes are different than in the previously described DLL

model. The time step in the CMA has usually been chosen as corresponding

to the number of attempts to perform cooperative rearrangements resulting

on average in one attempt per system element (bead). This can be considered

as comparable with the time step definition in the DLL algorithm in which

each element attempts to move within each time step. This involves, how-

ever, a difference in distributions of waiting times. A more distinct difference

between these two algorithms is in the distribution of sizes of performed
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rearrangements, which has only been tested precisely for an athermal non-
polymeric system. The distribution of rearrangement sizes within the DLL

algorithm is well described by Eq. (2) with parameters ¼ 0.847, h¼ 3, and
B¼ 0.4, whereas the distribution of rearrangement sizes in the CMA is

considerably broader. It has been established that the two distributions
differ by the factor n2. This difference results in much higher efficiency of

simulation by means of CMA, achieved however at the expense of some
simplifications concerning short time dynamics of the system with respect to

that in the DLL model.
On the other hand, it has been proven for melts of linear polymers that

switching between DLL and CMA does not influence static properties of the
system. The CMA, similarly to the DLL algorithm, involves only conforma-

tional changes within polymers which all the time preserve their identities
given by the number of elements and by their sequences in individual chains.

In the CMA as in the DLL, a variety of conformational rearrangements
results from the algorithm and cannot be precisely specified. An important

advantage of both DLL and CMA methods with respect to other simula-
tion algorithms of polymers on lattices, consists in allowed moves of chain

fragments both along contours of chains and transversally to the chain
contours. This probably makes both algorithms ergodic.

The CMA has been applied successfully for simulation of static and

dynamic properties of a variety of dense complex polymeric systems. Some
examples of such applications are presented in subsequent sections.

IV. EXAMPLES OF APPLICATION

A. Melts of Linear Polymers

Systems representing melts of linear polymers have been simulated using
both DLL and CMA methods. Linear polymers of various lengths N have

as usual been represented as chains of beads connected by nonbreakable
bonds. The face-centered cubic lattice has been used in both cases with

chains occupying all lattice sites. Analysis of static properties of such sys-
tems has shown that, using both methods, Gaussian chain conformations

are generated as indicated by the characteristic scaling laws for chain dimen-
sions represented by the mean square values of the end-to-end distances or

by radii of gyration (e.g., [26,27]).
Dynamic properties of such systems have been analyzed using the DLL

method in the range of short chains (up to N¼ 32) [11–14] and the CMA
for larger chains (up to N¼ 800) [26,27]. In the DLL method the pre-

sence of bonds between beads imposes additional limits on rearrangement
possibilities, which can be considered as an additional reduction of the
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connectivity constant of the lattice. This results in a strong effect of the

number of bonds and consequently chain length on bead relaxation rates.

It has been shown that the chain length dependence of the end-to-end vector

relaxation time is much stronger, especially for short chains, than the Rouse

model and other simulations predict. On the other hand, when the chain

relaxation times are normalized by the segmental mobility described by 	S
they nearly satisfy the N2 dependence, as expected for the Rouse chains.

This suggests that the 	S vs. N dependence represents the effect of chain

length on local dynamics, which in the Rouse model is included in the

friction coefficient and is not considered explicitly. It has been tested experi-

mentally that the effects observed in model systems are also seen in real

polymer melts of polyisobutylene samples with chain lengths in a range

comparable with that of the simulated systems [11,12]. The simulation

results used for the comparison with experiments have been obtained for

systems at athermal states. This means that the effects of the influence of

chain lengths on rates of segmental relaxation are obtained without any

additional assumptions, such as, for example, additional free volume effects

at chain ends [28]. In the model described, they are only caused by a reduc-

tion of the connectivity constant within the lattice involved by introduction

of nonbreakable bonds between lattice elements. Nevertheless, the range of

changes of segmental relaxation times with the chain length is comparable

with the corresponding range of changes observed in experiments.
In application to polymers, the DLL algorithm has many similarities with

the CMA [11–14,26]. There is, however, an important difference between

them, consisting in a parallel treatment of all system elements in the case

of DLL in contrast to the sequential treatment in the CMA. This difference

results in differences in distributions of rearrangement sizes and conse-

quently in some specific effects related to the local dynamics. The effects of

chain length on the local relaxation rates observed in systems simulated using

DLL are, therefore, not seen in systems simulated by means of the CMA. On

the other hand the higher computational efficiency of the CMA allows the

study of systems with longer chains and within a broader time range.
The dynamical properties of the model systems, with n chains of length

N, are usually characterized by the following quantities:

1. the autocorrelation function of a vector representing bond

orientation

�bðtÞ ¼
1

Nn

X

n

XN

i

ðbiðtÞbið0ÞÞ ð3Þ

where bi are unit vectors representing bond orientation;
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2. the autocorrelation function of the end-to-end vector of chains

�RðtÞ ¼
1

n

X

n

Rð0Þ � RðtÞ ð4Þ

with end-to-end vectors R(0) and R(t) at time t¼ 0 and t, respec-
tively; and

3. the mean squared displacements of monomers and of the centers of

mass of chains

hr2mi ¼
1

Nn

X

n

X

N

rmðtÞ � rmð0Þ½ 	
2

ð5Þ

hr2cmi ¼
1

n

X

n

rcmðtÞ � rcmð0Þ½ 	
2

ð6Þ

where rm(t) and rcm(t) are monomer and chain center of mass coor-
dinates at time t, respectively.

The first two quantities allow determination of relaxation times of
corresponding objects in the model (bonds and chains) and the last two
allow determination of diffusion constants. Chain length dependencies of
the self-diffusion constant and of the relaxation times of bonds and chains
are presented in Fig. 3. These results show that the dynamic behavior of

FIG. 3 Chain length dependencies of (a) self-diffusion constants of chains and (b)

relaxation times of bonds and end-to-end vectors in model systems of linear chain

melts.
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simulated systems corresponds well to the behavior of real polymer melts, as
detected experimentally. In the simulation, the diffusion constants for long
chains reach the well known scaling dependence D�N�2 and the relaxation
times of chains reach the scaling law 	�N!, with !>3, as observed in chain
length dependencies of melt viscosities for long chains. Simulation of models
with chain lengths much longer than these presented here becomes unrea-
listic at the moment because of limits imposed by the calculation speed.
More detailed analysis of the static and dynamic behavior of polymer
melts simulated by means of the CMA has already been presented in
other publications [26,27], but this problem still remains not completely
understood and further results concerning the mechanism of motion of
polymer chains will be published elsewhere. Models considered as polymer
melts have been simulated by many other methods [4,29,30], in which, how-
ever, a dense packing of molecules under the excluded volume condition is
hard to achieve.

B. Melts of Macromolecules with Complex Topology

The advantages of the CMA—its high efficiency and high flexibility in the
representation of complex molecular objects—can be well demonstrated in
simulations of melts of stars and microgels. Experimental observations of
melts of multiarm polymer stars [31,32] and microgels [33] generate ques-
tions concerning the dynamics of molecular rearrangements in such systems.
As an illustration of the application of the CMA to such systems, fragmen-
tary results concerning the structure and dynamics of three systems illu-
strated in Fig. 4 are presented here. All three systems consist of nearly the
same number of monomer units (N¼ 500) but the units are joined together
to form different molecular objects. In the first case they form a linear chain,
in the second a multiarm star (24 arms), and in the third case the linear chain
is crosslinked internally by additional bonds (25 per chain) to a kind of
microgel particle. The structure and dynamics of such systems in the melt
have been studied [34,35]. Figure 4 shows a comparison of mass distribu-
tions, �(r), in such objects around their centers of mass as well as a compar-
ison of the pair correlation functions, g(r), of the centers of mass of different
chains. The first quantity, �(r), describes the averaged fraction of space
occupied by elements of a given molecule at the distance r from the mass
center of that molecule, and the second, g(r), describes the probability that
at the distance r from the mass center of one molecule a mass center of
another molecule will be found. A considerable difference in the structure of
stars and microgels in comparison to linear chains can be seen when these
characteristics are considered. Whereas, the linear chains are loosely coiled
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and interpenetrate each other, the stars and microgels constitute compact
objects with intramolecular density almost reaching the density of the
system. This means that the latter molecules do not interpenetrate each
other and remain at well correlated distances as indicated by the center
of mass pair correlation functions with distinct maxima at preferred
intermolecular distances (Fig. 4b).

The dynamics of the three systems is characterized in Fig. 5, where
various correlation functions are compared. For the linear chain system
the segment position (�s) and the end-to-end vector (�R) [see Eq. (4)]

FIG. 4 Illustration of molecular objects of the same total chain length but different

topology and a comparison of intrachain segment densities (a) and center of mass

pair correlation functions (b) for three computer simulated melts with different

molecular objects: linear chains, multiarm stars, and microgels.

158 Pakula



autocorrelation functions represent the local and the longest relaxation

rates, respectively. The third correlation function (�pos) describing a cor-

relation of chains with their initial positions (at t¼ 0) characterizes the

translational motion. The position correlation of a structural element, a

chain segment, or the whole molecule, is defined as

�posðtÞ ¼
1

Nn

X

n

XN

i

Cið0ÞCiðtÞ ð7Þ

where Ci¼ 1 at all places occupied by a given structural element and Ci¼ 0

everywhere else. For linear chains, this correlation with the initial position

FIG. 5 Dynamical properties of three simulated polymer melts with various mole-

cules: (a) linear chains, (b) stars, and (c) microgels. Various correlation functions

are shown: �s — segment position autocorrelation, �R — end-to-end vector auto-

correlation for linear chains, �A — arm end-to-end autocorrelation for stars, �B
— autocorrelation of microgel chain segments of length N¼ 20, �pos — position

autocorrelation for all types of molecules.
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decays much faster than the orientation correlation of chains described by

the end-to-end vector relaxation. Quite different behavior than for linear

chains is observed both for the stars and microgels with the same local

mobility indicated by the bond autocorrelation. In the case of stars, the

orientation relaxation of arms [�A, the autocorrelation function of the

vector connecting star center with arm end, defined analogously to �R,
Eq. (4)] is much faster than the position correlation of the whole star. The

position correlation shows two well distinguishable modes, the first prob-

ably related to the shape relaxation and the second, the slower one, related

to the translational motion of stars. This indicates that the flow of melts of

stars should be dominated by rearrangements involving displacements of

stars, which have to be cooperative because of their well correlated posi-

tions. Microgels behave similarly to stars when the position autocorrelation

is considered. They differ, however, in the intramolecular flexibility.

Whereas the arms of stars relax relatively fast, chain elements of microgels

of corresponding length relax only when the whole molecule can relax by

changing position and orientation.
The results concerning multiarm stars and microgels have been presented

in detail elsewhere and the influence of parameters of their molecular struc-

ture, such as arm number and arm length in stars [34,35] or size and cross-

link density in microgels, on the mechanism of motion are discussed. The

results presented here demonstrate, however, the possibilities of the simula-

tion method used in studies of structure and dynamics of melts of these

complex molecules. The high efficiency of the CMA method has allowed

the first simulations of melts of such molecules. Other simulations of

dynamic properties of star molecules [36] have been performed for single

stars and in a rather narrow time range.

C. Block Copolymers

In order to illustrate the application of the CMA to simulate heterogeneous

systems, we present here results concerning properties of a diblock copoly-

mer melt considered in a broad temperature range including both the homo-

geneous and the microphase separated states. Only symmetric diblock

copolymers, of composition f¼ 0.5 of repulsively interacting comonomers

A and B, are shown here. The simulation, in this case, allows information

about the structure, dynamics, and thermodynamic properties of systems

[9,37–40] to be obtained.
In the case of copolymers, two types of partially incompatible monomers

(A and B) are considered, characterized by direct interaction parameters "ij,
and often it is assumed that the energy of mixing is given only by the
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interaction of monomers of different types, i.e., that "AA¼ "BB¼ 0 and
"AB¼ 1. The effective energy of a monomer Em is given by the sum of
"AB over z nearest neighbors and depends in this way on the local structure.
The moving of chain elements alters the local energy because the mono-
mers contact new neighbors. In order to get an equilibrium state at a given
temperature the probability of motion is related to the interaction energy of
the monomers in the attempted position in each Monte Carlo step.
This means that at a given temperature, the Boltzmann factor p¼
exp(�Em, final/kBT ) is compared with a random number r, 0<r<1. If
p>r, the move is performed, and another motion is attempted. Under
such conditions, at low temperatures, the different types of monomers
tend to separate from each other in order to reduce the number of AB
contacts and consequently to reduce the energy. The simulation performed
in this way allows information about the structure, dynamics, and thermo-
dynamic properties of systems to be obtained. It is worthwhile to notice that
the frequently used Metropolis method of equilibration of systems can lead
to a nonrealistic dynamics, therefore it should not be used in cases when the
dynamics is of interest.

Examples of temperature dependencies of the thermodynamic quantities
recorded during heating of the initially microphase separated system of a
symmetric diblock copolymer are shown in Figs. 6a and 6b. The following
quantities have been determined: (1) the energy of interaction of a mono-
mer, Em, determined as the average of interactions of all monomer pairs at a
given temperature

Em ¼
Xz

i¼1

"klðiÞ=z ð8Þ

and (2) the specific heat calculated via the fluctuation-dissipation theorem

cV ¼
hE2i � hEi2

kBT2
ð9Þ

where the brackets denote averages over energy of subsequent states
sampled during simulation of the system at constant temperature. The tem-
perature at which a stepwise change in the energy and the corresponding
peak in the specific heat are observed is regarded as the temperature of the
order-to-disorder transition, TODT.

The nature of the transitions corresponding to structural changes
in copolymers can be well established from an analysis of distributions
of local concentrations, which are directly related to the free energy. An
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example of such distributions for a symmetric diblock copolymer, in a broad
temperature range, is shown in Fig. 6c, by means of contour lines of equal
composition probability projected on the composition–temperature plane.
Such contour plots reflect many details of the thermodynamics and struc-
ture of the system. It is easily seen that, at high temperatures, the system can
be considered as homogeneous because locally the most probable concen-
tration corresponds to the nominal composition in the diblock. This is

FIG. 6 Temperature dependencies of: (a) the average interaction energy per

monomer, (b) the specific heat, and (c) concentration distributions in small volume

elements consisting of the nearest neighbors of each chain segment. Characteristic

structures corresponding to various temperature ranges are illustrated.
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changed at temperatures close to TODT where at first a plateau and later two
maxima corresponding to two coexisting phases are detected. At TODT, a
sudden change transforms the system to a state with well defined micro-
phases indicated by the most probable local concentrations corresponding
to pure components. These results indicate three characteristic ranges of
thermodynamic behavior of the system assigned as (1) disordered, (2)
weakly segregated, and (3) strongly segregated regimes appearing with
decreasing temperature. Structures of simulated systems corresponding to
these regimes are illustrated in Fig. 6 by assuming different colors for dif-
ferent copolymer constituents.

The structure of the simulated block copolymer systems has been char-
acterized in detail [38–40]. Temperature dependencies of various structural
parameters have shown that all of them change in a characteristic way in
correspondence to TODT. The microphase separation in the diblock copoly-
mer system is accompanied by chain extension. The chains of the diblock
copolymer start to extend at a temperature well above that of the transition
to the strongly segregated regime. This extension of chains is related also to
an increase of local orientation correlations, which appear well above the
transition temperature. On the other hand, the global orientation correla-
tion factor remains zero at temperature above the microphase separation
transition and jumps to a finite value at the transition.

In order to get information about dynamic properties of the system
various quantities have been monitored with time at equilibrium states cor-
responding to various temperatures [38–40]: the mean squared displacement
of monomers, hr2mi, the mean squared displacement of the center of mass of
chains, hr2cmi, the bond autocorrelation function, �b(t)), the end-to-end
vector autocorrelation function, �R(t), and the autocorrelation of the end-
to-end vector of the block, �bl(t). On the basis of these correlation functions,
various quantities characterizing the dynamic properties of the systems can
be determined, i.e., the diffusion constant of chains and various relaxation
times corresponding to considered correlations.

Examples of various correlation functions for the diblock copolymer
system at high and at low temperatures are shown in Fig. 7. It has been
observed that at high temperatures (T/N¼ 1), the systems behave like a
homogeneous melt. All correlation functions show a single step relaxation.
The fastest is the bond relaxation and the slowest is the chain relaxation
described by the end-to-end vector autocorrelation function. The relaxation
of the block is faster than the whole chain relaxation by a factor of approxi-
mately two. Such relations between various relaxation times in the disor-
dered state of the copolymer can be regarded as confirmed experimentally
for some real systems, in which the dielectric spectroscopy allows distinction
of the different relaxation modes [41]. At low temperatures, drastic changes
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can be noticed for the dynamics of the block copolymer. At temperatures
T/N<0.45 (see Fig. 6) the diblock system is in the microphase separated
regime and most of the correlation functions determined show bifurcation
of the relaxation processes into fast and slow components. The fast compo-
nents of chain, block, and concentration relaxations are attributed to the
almost unchanged in rate, but limited, relaxation of chains when fixed at the
A–B interface and the slow components indicate the part of relaxation
coupled to the relaxation of the interface within uniformly ordered grains
with the lamellar morphology. The concentration relaxation becomes the
slowest one in such a state of the system. The dynamic behavior of diblock
copolymers is presented in detail and discussed in [38–40], where the spectra
of various relaxation modes have been determined in order to compare
simulation results with dielectric spectra determined for real copolymer
systems in the vicinity of the microphase separation transition [41].

FIG. 7 Various correlation functions determined at various temperatures for the

symmetric diblock copolymer melt. The two extreme temperatures correspond to

the edges of the temperature range within which the system has been simulated. The

high temperature (T/N¼ 1.0) corresponds to the homogeneous regime and the low

temperature (T/N¼ 0.3) to the strongly segregated limit. The intermediate tem-

perature (T/N¼ 0.5) is only slightly higher than the temperature of the order-

to-disorder transition for this system.
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The diffusion in the systems studied has been detected by monitoring in

time the mean squared displacements of monomers and centers of mass of

chains. Typical results for the diblock copolymer system are shown in Fig. 8.

They indicate that the short time displacement rates are not sensitive to

temperature but the long time displacements are influenced slightly by the

microphase separation. The self-diffusion constants of chains determined at

the long time limit are shown in the inset of Fig. 8a, where the effects of the

microphase separation in the diblock can be clearly noticed. The slowing

down observed at the microphase separation of the system is, however,

rather small and indicates a considerable mobility of chains left even

when the chains are confined at interfaces. The nature of this mobility has

been analyzed by monitoring the correlation between orientation of chain

axes and directions of chain displacements (Fig. 8b). It is established that

FIG. 8 (a) Mean square displacements of monomers and mean square displace-

ments of chain centers of mass vs. time for the diblock copolymer system at various

temperatures. Temperature dependence of the self-diffusion constant of block

copolymer chains is shown in the inset. (b) Orientation correlation factor between

the end-to-end vector and the center of mass displacement vector of copolymer

chains at various temperatures above and below the ODT.
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in the phase separated regime the chains diffuse easily in directions parallel

to the interface. This is indicated by negative values of the orientation

correlation factor and means that the limitations in mobility of diblock

chains imposed by the morphology concern only the diffusion through the

interface.
Besides the above presented example, the CMA has been applied for

simulation of various other copolymer systems with more complex topology

[42] of macromolecules and other distributions of comonomers along chains

[43,44]. In all cases, the high computational efficiency of the method has

enabled detailed information about the structure and dynamics to be

obtained, including also the microphase separated states, in which the

dynamics becomes considerably slower.

V. IMPLEMENTATION DETAILS

There are essentially several versions of algorithms that are based on similar

ideas of performing cooperative rearrangements in dense molecular systems.

All versions are equally suitable both for simulation of assemblies of non-

bonded beads representing small molecules and for simulation of assemblies

of lattice structures, which mimic polymer skeletons with various complex-

ities. Some details essential for implementation of these methods for com-

plex polymers on the fcc lattice, taken as an example, will be described

here. The efficiency of an algorithm strongly depends on details concerning

methods used for description of system elements, methods of recognition

and description of systems states, methods of rearranging the elements,

and finally on the programming methods, which allow fast accessibility to

large data arrays.

A. Description and Generation of Model Systems

The architecture of complex polymers can be represented by simplified

models consisting of beads connected by nonbreakable bonds in a way

that corresponds to backbone contours of the macromolecules. Such mole-

cules consist usually of a large number of beads assuming specific positions

within a complex bond skeleton characteristic for each type of macromole-

cule. In this simplified representation of macromolecular structures, sizes of

monomers are not distinguishable. With this approximation, the macromo-

lecules can, however, be represented on lattices. The lattice plays the role of

a topological skeleton of space and allows fast identification of neighbors.

An example of such a representation of a linear macromolecule on the face-

centered cubic (fcc) lattice is shown in Fig. 9a.
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FIG. 9 Illustration of details concerning description of polymer chains and coding

directions in the fcc lattice: (a) Fragment of a simplified linear polymer chain on the

fcc lattice with beads occupying lattice sites and bonds of constant length connecting

only nearest neighbors. The size of the model system is given by numbers nx, ny, and

nz of length units in the x, y, and z directions, respectively. (b) The coordination cell

of the fcc lattice illustrating the orientation code of the site–site vectors. The vector

shown has the direction code cd¼ 4. (c) Description of a linear chain of length nw by

means of numbering of beads and using two sets of vectors a and b pointing in

opposite directions for defining of the chain contour.
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In a model system with all lattice sites occupied, each bead at a position

(x, y, z) is described by a sequence of numbers defining its position in the

chain, m(x, y, z), the chain to which it belongs, k(x, y, z), and the connectivity

with other beads by means of up to four vectors, a(x, y, z), b(x, y, z),

c(x, y, z), and d(x, y, z), which point towards the bonded neighbors. Vector

orientation is given by a code number, cd, assuming values from 1 to 13,

which describe the 12 possible orientations of the site–site vectors in the 12

coordinated fcc lattice, as illustrated in Fig. 9b. The value d¼ 13 is used as a

code for the vector of length equal to 0, which is used to describe chain ends

and single beads representing elements of simple liquid (e.g., solvent). An

example of a linear chain of length nw is illustrated in Fig. 9c. It is seen that

each bond is described by two vectors (a and b) pointing in opposite direc-

tions. This has the advantage that, at each position, (x, y, z), the connectivity

and consequently the local conformation can immediately be established.

Table 1 shows the conformation code, con(b,a), used for the description of

various angles between the neighboring bonds along the chain contour.

Positions of beads are described by the coordinates (x, y, z). It has appeared

useful to introduce matrices xnp, ynp, and znp by means of which coordi-

nates (xn, yn, zn) of neighboring lattice sites in direction cd can be found as

xn¼ xnp(x, cd ), yn¼ ynp( y, cd ), and zn¼ znp(z, cd ). These matrices can

consider system sizes and the type of boundary conditions (e.g., periodic).

TABLE 1 Conformation Code used in the DLL and CMA Simulations

Code (con)

Angle between

neighboring

bonds Illustration Range of application

1 180�

Chain interior

1<m<nw

a<13 and b<13

2 120�

3 90�

4 60�

5 — b¼ 13, m¼ 1
Ends of chains

6 — a¼ 13, m¼ nw

7 — a¼ 13, b¼ 13; free bead (e.g., solvent)

9
>>>>>>>=

>>>>>>>;

�
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The initial states of model systems can generally be obtained in two

ways: (1) by generating ordered structures of uniform polymers and

subsequent ‘‘melting’’ of the ordered systems or (2) by polymerization in

bulk, which can be performed according to various polymerization mechan-

isms leading in this way to systems with realistic nonuniformities of

molecular parameters. The first method has mainly been used in pub-

lished papers [26,27,34,35,37], whereas the second method has been used

recently [45].

B. Implementation of the DLL Model

This is the simplest version of the cooperative algorithm. It has minimum

assumptions concerning types of moves and has no limits in complexity of

the macromolecular structures. Moreover, it represents probably the most

plausible dynamics on the local scale.
An implementation of the DLL model for nonbonded beads is extremely

simple. In an athermal case, it consists in periodic repetition of the following

sequence of steps: (1) generation of the vectors (one per bead) representing

attempts of bead motion to neighboring lattice sites, (2) recognition of

attempts forming circuits for which the continuity condition in the

simplest form applies, and (3) performing rearrangements by displacing

elements along the found circuits, each to a neighboring position. In the

non-athermal case and in the case when beads are bounded to more complex

structures (macromolecules), additional conditions immobilizing some

system elements should be taken into account before the second step

[11–14]. One period including the above described steps is considered in

this algorithm as a unit of time. The second step of the procedure is the

step that controls the computational efficiency. It has been recognized that

the vectors of attempted moves form highly branched structures sporadi-

cally including closed loops. When the branches, which usually end with

situation 2 illustrated in Fig. 2, are declared as nonmobile, only the loops

remain. Further details of implementation are dependent on the type of

hardware and software used. Large fragments of the algorithm based on

this model (steps 1 and 3) can be vectorized, therefore an implementation on

a vector computer may be efficient as well.
It is worthwhile to mention that the DLL model can be considered as

defining a special purpose parallel computer. A large number of micro-

processors, each controlling the logic of a single lattice site, when arranged

in an architecture of a spatial, highly coordinated lattice system could con-

stitute a machine, the size of which and consequently the size of the simu-

lated system will be limited less by the computation time than by the cost of
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corresponding investment. A microprocessor with the single lattice site logic

has already been designed [46] and further steps of corresponding develop-

ment depend on availability of financial support.

C. The CMA (Cooperative Motion Algorithm)

In contrast to the parallel DLL algorithm the CMA, as most other known

lattice simulation methods, uses a sequential searching for motion possibi-

lities in randomly chosen fragments of the system. A virtual point, called

the ‘‘searching point’’ is introduced to search for the mobile loops. The

searching procedure will be described here for a simple, two-dimensional

example (Fig. 10) of nonbonded beads on a triangular lattice. This proce-

dure is applied periodically and consists of the following steps: (1) random

choice of the initial position of the searching point (1 in Fig. 10), (2) random

choice of the direction to one of the nearest neighbors (2 in Fig. 10), (3)

moving of a bead from position 2 to 1 (a temporary double occupation

defect is created in this way in position 1 and the site denoted as 2 becomes

temporarily empty), (4) moving the searching point to position 2, (5)

random choice of a new direction (e.g., vector pointing to position 3 in

Fig. 10), (6) bead from position 3 moves to position 2, (7) searching point

moves to position 3, (8) random choice of a new direction from position 3

(e.g., position 1), and (9) the bead from position 1 moves to position 3. With

the last step the loop is closed, each element along the loop has been moved

by one lattice site–site distance, and the temporary defects are relaxed. The

procedure can be repeated again starting with the random choice of the new

searching point position. Not all attempted loops are successful as in the

illustrated example. The acceptability depends on further conditions

imposed on the type of random walk allowed. Various assumptions here

lead to various versions of the algorithm. The following possibilities have

been considered: (1) random walk, (2) non-reversal random walk, and (3)

self-avoiding walk. The case (3) leads to the dynamics which is the closest to

that of the DLL model, whereas the case (2) can be very efficiently used for

studies of the static properties of systems or for dynamic effects much slower

than the single local rearrangements.
For motion of chains, the searching becomes more complicated because

of the demands imposed on the system such as nonbreakability of chains,

conservation of sequences of beads along chains, conservation of chain

lengths and architecture, etc. There are two possibilities (illustrated in Fig.

11) to move chain parts satisfying the above conditions: (i) the searching

path is crossing the chain contour (Fig. 11a) and a displacement of the bead

involved is possible just by rotation of bonds connecting that bead to the
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remaining chain structure and (ii) the searching path enters the chain con-
tour and leaves it after a short walk along the chain (Fig. 11b). In the first
case, the motion can be performed without extending any bonds, whereas, in
the second case, in each step of the searching point, one and only one bond
is attempted to be extended but this extension must immediately be relaxed
by motion of other beads along the chain as long as the searching point
leaves the chain at places with suitable local conformations or through chain
ends. The latter forces the searching point to go along the chain contour for
some time. In fact, the first possibility can also be considered as a special

FIG. 10 An example of a simple rearrangement loop as searched using the CMA

for a system of nonbonded beads (shown as rings) on a two-dimensional lattice

(thick points represent lattice sites). The virtual ‘‘searching point’’ is denoted by

means of a gray circle. The initial state is shown in the upper left figure. The

searching point is located at position 1 by a random choice and the direction to

position 2 is chosen randomly as well. Shifting the bead from position 2 to 1 creates

two temporary defects: a double occupancy at position 1 and a vacancy at position 2,

as illustrated in the upper right figure. In this state, the searching point is shifted to

position 2 and by chance the position 3 is chosen. As the lower right part illustrates

the bead from position 3 moves to position 2 and the searching point moves in the

opposite direction. Finally, again by chance from position 3, the position 1 is found

and the bead located originally at this position is moved to position 3. This closes the

loop and relaxes the temporary defects. As a result of such a single rearrangement the

state shown in the lower left figure is obtained, in which all lattice sites are occupied

but at positions 1, 2, and 3 the elements (beads) changed their positions with respect

to the original state replacing each other along the closed loop.
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case of the second possibility, in which the path of the searching point along
the chain is reduced to zero.

A very high efficiency of the implementation of the CMA for polymers
has been achieved, when it was recognized that there is a limited number of
situations in which the searching point can meet while making a walk
through a system containing beads bonded to polymers. A specific situation
code, pat¼ cr(cd, a, b), is used in order to recognize these situations for
various orientations of bonds, various directions of chains, and various
local conformations. There are 15 situations distinguished; these are listed
in Table 2. From these 15 cases, one corresponds to the case, when propa-
gation of motion of the searching point becomes impossible ( pat¼ 1),
because the attempted movement would extend two bonds simultaneously.
Two cases, pat¼ 2 and pat¼ 3, describe the motion of the searching point
along a chain in two different directions. In cases pat¼ 4, 5 and pat¼ 10, 11,
the searching point can enter the chain contour through a chain end or
through a suitable local conformation, respectively. When pat¼ 6, 7 or
pat¼ 13, 14, the searching point leaves the chain contour. The other cases
correspond to situations of the type (i) illustrated in Fig. 11a. In all cases,

FIG. 11 Illustration of two types of rearrangements, which are considered in a

system of beads bonded to chains: (a) the path of the searching point (gray arrows)

crosses the chain contour and the resulting rearrangement takes place by rotation of

bonds connecting the moved bead with the remaining parts of the chain and (b) the

path of the searching point enters the chain contour, goes locally along the chain,

and leaves it after shifting several beads. In both cases, the chain is neither broken

nor extended and the sequence of beads along the chain is preserved. The only result

is a local conformational change incorporating one or several beads.
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TABLE 2 The Situation Code [pat¼ cr(cd, a, b)] used in the CMA Procedures

Code (pat) Situation before! after Description

1 Motion impossible—the searching point

attempts to stretch two bonds

2 Motion of the searching point along the

chain in direction of vector a

3 Motion of the searching point along the

chain in direction of vector b

4 Searching point enters the chain contour

in direction of a via the end of chain

(b¼ 13)

5 Searching point enters the chain contour

in direction of b via the end of chain

(a¼ 13)

6 Searching point leaves the chain contour

via the end of chain (b¼ 13)

7 Searching point leaves the chain contour

via the end of chain (a¼ 13)

8 Rotation of bond with the chain end

(b¼ 13)

9 Rotation of bond with the chain end

(a¼ 13)

10 Searching point enters the chain contour

along the direction of b

11 Searching point enters the chain contour

along the direction of a

12 Searching point crosses the chain

contour

13 Searching point leaves the chain in

direction a

14 Searching point leaves the chain in

direction b

15 Searching point meets a single bead

—Temporarily free lattice site.
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when the searching point is not forced to move along the chain, the direction
of motion is chosen randomly. Coding of situations and resulting rearran-
gements can considerably speed up the simulation. The described codes
should be considered as suitable examples. Other, maybe more effective,
solutions are certainly possible.

The various versions of the CMA are suitable for implementation and
usage on personal computers. With recently available technology, dense
polymeric systems of up to one million beads organized in various macro-
molecular architectures can be simulated in a reasonably inexpensive way.

VI. CONCLUDING REMARKS

It has been demonstrated that a lot of problems concerning the behavior of
complex polymer systems can be analyzed successfully by the methods dis-
cussed. Difficulties in simulations of dense systems and systems with com-
plex molecular topologies seem to be overcome in the DLL and CMA
algorithms. Both can be very efficiently applied to the study of static and
dynamic properties of polymer melts with consideration of various topolo-
gies of molecules and various interactions between molecular elements.

This success has been achieved by an application of a reasonably simpli-
fied dynamic model of cooperative rearrangements, which cuts off details of
the dynamics characteristic for shorter time ranges. Such treatment, consist-
ing in a simplification of the dynamics to features characteristic to a given
time range, should be considered as analogous to simplifications of the
structure in relation to various size scales. Unfortunately, a scheme of
dynamic simplifications over a broad time range corresponding to the
scheme of structures considered with variable size resolution is generally
not as complete as the latter.

The DLL model can be considered as defining a special purpose parallel
computer, the development of which could solve the problem of strong size
limits for simulated systems caused usually by strong dependencies of
computation times on system sizes.
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6
Molecular Dynamics Simulations
of Polymers

VAGELIS A. HARMANDARIS and VLASIS G. MAVRANTZAS Institute
of Chemical Engineering and High-Temperature Chemical Processes, and
University of Patras, Patras, Greece

I. THE MOLECULAR DYNAMICS TECHNIQUE

Molecular dynamics (MD) is a powerful technique for computing the
equilibrium and dynamical properties of classical many-body systems.
Over the last fifteen years, owing to the rapid development of compu-
ters, polymeric systems have been the subject of intense study with MD
simulations [1].

At the heart of this technique is the solution of the classical equations
of motion, which are integrated numerically to give information on the
positions and velocities of atoms in the system [2–4]. The description of a
physical system with the classical equations of motion rather than quantum-
mechanically is a satisfactory approximation as long as the spacing h�
between the successive energy levels described is h�<kBT. For a typical
system at room temperature this holds for <�0.6� 1013Hz, i.e., for
motions of time periods of about t>� 1.6� 10�13 sec or 0.16 ps.

A simple flow diagram of a standard MD algorithm is shown in Fig. 1
and includes the following steps:

1. First, a model configuration representing a molecular-level snapshot

of the corresponding physical system is chosen or constructed, and

is initialized (initial positions, velocities of each particle within the

system).
2. Then the total force acting on each particle within the system

is computed. For polymer systems such a force has two
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FIG. 1 A simple flow diagram of a standard MD algorithm.
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components: intermolecular (from atoms belonging to different poly-

mer chains) and intramolecular (from atoms belonging to the same

chain).
3. The integration of the equations of motion follows with an appro-

priate method. The most popular of these will be described in detail

in the next section.
4. Actual measurements are performed (positions, velocities, energies,

etc., are stored) after the system has reached equilibration, periodi-

cally every Nk steps.
5. After completion of the central loop (N steps), averages of the mea-

sured quantities and of the desired properties are calculated and

printed.

II. CLASSICAL EQUATIONS OF MOTION

As stated above, at the heart of an MD simulation is the solution of the
classical equations of motion. Let us consider a system consisting of N
interacting molecules described by a potential energy function V. Let us also
denote as qk and _qqk the generalized coordinates describing the molecular
configuration and their time derivatives, respectively. The classical equa-
tions of motion for this system can be formulated in various ways [5]. In the
Lagrangian formulation, the trajectory q(t) (¼q1(t), q2(t), . . . , qk(t), . . .)
satisfies the following set of differential equations:

@L

@qk
¼

d

dt

@L

@ _qqk

� �
ð1Þ

where L is the Lagrangian of the system. This is defined in terms of the
kinetic energy, K, and potential energy, V, as L ¼ Lðq, _qq, tÞ � K � V . The
generalized momenta pk conjugate to the generalized coordinates qk are
defined as

pk ¼
@L

@ _qqk
ð2Þ

Alternatively, one can adopt the Hamiltonian formalism, which is cast in
terms of the generalized coordinates and momenta. These obey Hamilton’s
equations

_qqk ¼
@H

@pk
, _ppk ¼ �

@H

@qk
ð3Þ
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where H is the Hamiltonian of the system, defined through the equation

H p, qð Þ ¼
X

k

_qqkpk � L ð4Þ

If the potential V is independent of velocities and time, then H becomes
equal to the total energy of the system: H(p, q)¼K(p)þV(q) [5]. In
Cartesian coordinates, Hamilton’s equations of motion read:

_rri � vi ¼
pi

mi
, _ppi ¼ �rriV � �

@V

@ri
¼ Fi ð5Þ

hence

mi€rri � mi _qqi ¼ Fi ð6Þ

where Fi is the force acting on atom i. Solving the equations of motion then
involves the integration of the 3N second-order differential equations (6)
(Newton’s equations).

The classical equations of motion possess some interesting properties, the
most important one being the conservation law. If we assume that K and V
do not depend explicitly on time, then it is straightforward to verify that
_HH ¼ dH=dt is zero, i.e., the Hamiltonian is a constant of the motion. In
actual calculations this conservation law is satisfied if there exist no
explicitly time- or velocity-dependent forces acting on the system.

A second important property is that Hamilton’s equations of motion
are reversible in time. This means that, if we change the signs of all
the velocities, we will cause the molecules to retrace their trajectories
backwards. The computer-generated trajectories should also possess this
property.

There are many different methods for solving ordinary differential
equations of the form of Eq. (6). Criteria for the proper choice of an
algorithm include the following:

. The algorithm must not require an expensively large number of force

evaluations per integration time step. Many common techniques for

the solution of ordinary differential equations (such as the fourth-

order Runge–Kutta method) become inappropriate, since they do

not fulfill this criterion.
. The algorithm should satisfy the energy conservation law. It is also

desirable that it be time reversible and conserve volume in phase space

(be symplectic).

180 Harmandaris and Mavrantzas



. The algorithm should permit the use of a large time step dt.

. The algorithm should be fast and require little memory.

Concerning the solution of equations of motion for very long times,
it is clear that no algorithm provides an essentially exact solution. But
this turns out to be not a serious problem, because the main objective
of an MD simulation is not to trace the exact configuration of a system
after a long time, but rather to predict thermodynamic properties as
time averages and calculate time correlation functions descriptive of the
dynamics.

In the following we briefly describe the two most popular families of
algorithms used in MD simulations for the solution of classical equations of
motion: the higher-order methods and the Verlet algorithms.

A. Higher-Order (Gear) Methods

The basic idea in the higher-order methods is to use information
about positions and their first, second, . . . , nth time derivatives at time t
in order to estimate positions and their first, second, . . . , nth time deriva-
tives at time tþ dt [2]. If we consider the Taylor expansion of the position
vectors of a given particle at time tþ dt including terms up to fourth-order
we have

r pðtþ dtÞ ¼ r tð Þ þ dt v tð Þ þ
dt2

2
€rr tð Þ þ

dt3

6
���
r tð Þ þ

dt4

24
����r tð Þ þ � � � ð7Þ

v pðtþ dtÞ ¼ v tð Þ þ dt €rr tð Þ þ
dt2

2
���
r tð Þ þ

dt3

6
����r tð Þ þ � � � ð8Þ

€rr pðtþ dtÞ ¼ €rr tð Þ þ dt ���r tð Þ þ
dt2

2
����r tð Þ þ � � � ð9Þ

���
r pðtþ dtÞ ¼ ���

r tð Þ þ dt ����r tð Þ þ � � � ð10Þ

In the above equations, the superscript p is used to denote ‘‘predicted’’

values and the dots, time derivatives. Equations (7)–(10) do not generate

classical trajectories, since we have not as yet introduced the equations of

motion. To do this we estimate the size of the error incurred by the exp-

ansion, �x, by calculating the forces (or, equivalently, the accelerations) at

the predicted positions

�x � €rr r pðtþ dtÞð Þ � €rr pðtþ dtÞ

¼ �diag 1=m1, 1=m2, . . . , 1=mNð ÞrrV r pðtþ dtÞð Þ � €rr pðtþ dtÞ ð11Þ

Molecular Dynamics Simulations 181



The error is accounted for and corrected in a ‘‘corrector’’ step, that is

rcðtþ dtÞ ¼ r pðtþ dtÞ þ c0�x ð12Þ

vcðtþ dtÞ ¼ v pðtþ dtÞ þ c1�x ð13Þ

€rrcðtþ dtÞ ¼ €rr pðtþ dtÞ þ c2�x ð14Þ
���
r cðtþ dtÞ ¼ ���

r pðtþ dtÞ þ c3�x ð15Þ

where ci, i¼ 1, . . . , n are constants. The values of ci are such that they yield

an optimal compromise between desired level of accuracy and algorithm

stability [2].
The general scheme of an algorithm based on the predictor-corrector

method goes as follows:

1. Predict positions and their first, second, . . . , nth time derivatives at

time tþ dt using their values at time t.
2. Compute forces using the predicted positions and then the corre-

sponding error �x from the differences between accelerations as

calculated from forces and accelerations as predicted by the predic-

tion scheme.
3. Correct the predicted positions and their first, second, . . . , nth time

derivatives guided by �x.

B. Verlet Methods

Algorithms in this family are simple, accurate, and, as we will see below,
time reversible. They are the most widely used methods for integrating the
classical equations of motion. The initial form of the Verlet equations [3] is
obtained by utilizing a Taylor expansion at times t� dt and tþ dt

rðtþ dtÞ ¼ r tð Þ þ dt v tð Þ þ
dt2

2
€rr tð Þ þ

dt3

6
���
r tð Þ þ Oðdt4Þ ð16Þ

r t� dtð Þ ¼ r tð Þ � dt v tð Þ þ
dt2

2
€rr tð Þ �

dt3

6
���
r tð Þ þ Oðdt4Þ ð17Þ

Summing the two equations gives

rðtþ dtÞ ¼ 2r tð Þ � r t� dtð Þ þ dt2€rr tð Þ þ Oðdt4Þ ð18Þ

with €rr tð Þ calculated from the forces at the current positions.
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Two modifications of the Verlet scheme are of wide use. The first is the
‘‘leapfrog’’ algorithm [3] where positions and velocities are not calculated at
the same time; velocities are evaluated at half-integer time steps:

rðtþ dtÞ ¼ r tð Þ þ dt v tþ
dt

2

� �
ð19Þ

v tþ
dt

2

� �
¼ v t�

dt

2

� �
þ dt €rr tð Þ ð20Þ

In order to calculate the Hamiltonian H at time t, the velocities at time t are

also calculated as averages of the values at tþ dt/2 and t� dt/2:

v tð Þ ¼
1

2
v tþ

dt

2

� �
þ v t�

dt

2

� �� �
ð21Þ

The problem of defining the positions and velocities at the same time can
be overcome by casting the Verlet algorithm in a different way. This is the
velocity-Verlet algorithm [3,6], according to which positions are obtained
through the usual Taylor expansion

rðtþ dtÞ ¼ r tð Þ þ dt v tð Þ þ
dt2

2
€rr tð Þ ð22Þ

whereas velocities are calculated through

vðtþ dtÞ ¼ v tð Þ þ
dt

2
€rr tð Þ þ €rrðtþ dtÞ½ 	 ð23Þ

with all accelerations computed from the forces at the configuration corre-

sponding to the considered time. To see how the velocity-Verlet algorithm is

connected to the original Verlet method we note that, by Eq. (22),

rðtþ 2dtÞ ¼ rðtþ dtÞ þ dt vðtþ dtÞ þ
dt2

2
€rrðtþ dtÞ ð24Þ

If Eq. (22) is written as

r tð Þ ¼ rðtþ dtÞ � dt v tð Þ �
dt2

2
€rr tð Þ ð25Þ
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then, by addition, we get

rðtþ 2dtÞ þ r tð Þ ¼ 2rðtþ dtÞ þ dt½vðtþ dtÞ � vðtÞ	 þ
dt2

2
½€rrðtþ dtÞ � €rrðtÞ	

ð26Þ

Substitution of Eq. (23) into Eq. (26) gives

rðtþ 2dtÞ þ r tð Þ ¼ 2rðtþ dtÞ þ dt2 €rrðtþ dtÞ ð27Þ

which is indeed the coordinate version of the Verlet algorithm. The calcula-
tions involved in one step of the velocity algorithm are schematically shown
in [2, figure 3.2, page 80].

A sample code of the velocity-Verlet integrator is shown in Algorithm 1.
In this algorithm, N is the total number of atoms in the system and the
subroutine get_ forces calculates the total force on every atom within the
system.

Algorithm 1: Velocity-Verlet Integration Method

. . . . . .

do i¼ 1,N

r(i)¼ r(i)þ dt * v(i)þ dt * dt/2 *F(i) ! update positions at tþ dt

using velocities and forces at t

v(i)¼ v(i)þ dt/2 *F(i) ! update velocities at tþ dt using

forces at t

end do

call get_ forces (F) ! calculate forces at tþ dt

do i¼ 1, N

v(i)¼ v(i)þ dt/2 *F(i) ! update velocities at tþ dt

using forces at tþ dt

end do

. . . . . .

In general, higher-order methods are characterized by a much better
accuracy than the Verlet algorithms, particularly at small times. Their
biggest drawback is that they are not reversible in time, which results in
other problems, such as insufficient energy conservation, especially in very
long-time MD simulations. On the other hand, the Verlet methods are not
essentially exact for small times but their inherent time reversibility
guarantees that the energy conservation law is satisfied even for very long
times [4]. This feature renders the Verlet methods, and particularly the
velocity-Verlet algorithm, the most appropriate ones to use in long atomistic
MD simulations.
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III. MD IN OTHER STATISTICAL ENSEMBLES

The methods described above address the solution to Newton’s equations
of motion in the microcanonical (NVE) ensemble. In practice, there is
usually the need to perform MD simulations under specified conditions of
temperature and/or pressure. Thus, in the literature there exist a variety
of methodologies for performing MD simulations under isochoric or
isothermal conditions [2,3]. Most of these constitute a reformulation of the
Lagrangian equations of motion to include the constraints of constant T
and/or P. The most widely used among them is the Nosé–Hoover method.

A. The Nosé–Hoover Thermostat

To constrain temperature, Nosé [7] introduced an additional degree of
freedom, s, in the Lagrangian. The parameter s plays the role of a heat bath
whose aim is to damp out temperature deviations from the desired level.
This necessitates adding to the total energy an additional potential term of
the form

Vs ¼ gkBT ln s ð28Þ

and an additional kinetic energy term of the form

Ks ¼
Q

2

_ss

s

� �2

¼
p2s
2Q

ð29Þ

In the above equations, g is the total number of degrees of freedom.
In a system with constrained bond lengths, for example, g¼ 3 Natoms�

Nbonds� 3, with Natoms and Nbonds standing for the total numbers of atoms
and bonds, respectively; the value of 3 subtracted in calculating g takes care
of the fact that the total momentum of the simulation box is constrained to
be zero by the periodic boundary conditions. Q and ps represent the ‘‘effec-
tive mass’’ and momentum, respectively, associated with the new degree of
freedom s. Equations of motion are derived from the Lagrangian of the
extended ensemble, including the degree of freedom s. Their final form,
according to Hoover’s analysis [8], is

_rri ¼
pi

mi
ð30Þ

_ppi ¼ �
@V

@ri
�

_ss

s
pi ð31Þ

_pps ¼
XN

i¼1

p2i
mi

� gkBT

 !
=Q, ps ¼ Q

_ss

s
ð32Þ
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An important result in Hoover’s analysis is that the set of equations of
motion is unique, in the sense that no other equations of the same form can
lead to a canonical distribution.

The total Hamiltonian of the system, which should be conserved during
the MD simulation, is

HNos 
ee�Hoover ¼
XN

i¼1

p2i
mi

þ V rN
� �

þ gkBT ln sþ
p2s
2Q

ð33Þ

To construct MD simulations under constant P, an analogous refor-
mulation of the Lagrangian was proposed by Andersen [9]. The constant-
pressure method of Andersen allows for isotropic changes in the volume
of the simulation box. Later, Hoover [8] combined this method with the
isothermal MD method described above to provide a set of equations for
MD simulations in the NPT ensemble. Parrinello and Rahman [10] extended
Andersen’s method to allow for changes not only in the size, but also in the
shape of the simulation box. This is particularly important in the simulation
of solids (e.g., crystalline polymers) since it allows for phase changes in the
simulation involving changes in the dimensions and angles of the unit cell.

B. The Berendsen Thermostat—Barostat

Berendsen proposed a simpler way for performing isothermal and/or iso-
baric MD simulations without the need to use an extended Lagrangian, by
coupling the system into a temperature and/or pressure bath [11]. To achieve
this, the system is forced to obey the following equations

dT

dt
¼ T � Textð Þ=	T ð34Þ

and

dP

dt
¼ P� Pextð Þ=	P ð35Þ

where Text and Pext are the desired temperature and pressure values and 	T
and 	P are time constants characterizing the frequency of the system cou-

pling to temperature and pressure baths. T and P are the instantaneous

values of temperature and pressure, calculated from the momenta and con-

figuration of the system [2]. The solution of these equations forces velocities
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and positions to be scaled at every time step by factors �T and xP, respec-

tively, with

xT ¼ 1þ
dt

	T

T

Text
� 1

� �� �1=2

ð36Þ

xP ¼ 1� �T
dt

	P
P� Pextð Þ ð37Þ

and �T being the isothermal compressibility of the system.
The method proposed by Berendsen is much simpler and easier to

program than that proposed by Nosé and Hoover. It suffers, however, from
the fact that the phase-space probability density it defines does not
conform to a specific statistical ensemble (e.g., NVT, NPT). Consequently,
there exists no Hamiltonian that should be conserved during the MD
simulation.

C. MD in the NTLxryyrzz Ensemble

To further illustrate how extended ensembles can be designed to conduct
MD simulations under various macroscopic constraints, we discuss here the
NTLx�yy�zz ensemble. NTLx�yy�zz is an appropriate statistical ensemble for
the simulation of uniaxial tension experiments on solid polymers [12] or
relaxation experiments in uniaxially oriented polymer melts [13]. This
ensemble is illustrated in Fig. 2. The quantities that are kept constant during
a molecular simulation in this ensemble are the following:

. the total number of atoms in the system N,

. the temperature T,

. the box length in the direction of elongation Lx, and

. the time average values of the two normal stresses �yy and �zz.

FIG. 2 The NTLx�yy�zz statistical ensemble.
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The NTLx�yy�zz ensemble can be viewed as a hybrid between the NVT
ensemble in the x direction and the isothermal–isobaric (NPT) ensemble in
the y and z directions. The temperature T is kept fixed at a prescribed value
by employing the Nosé–Hoover thermostat; the latter introduces an addi-
tional dynamical variable in the system, the parameter s, for which an
evolution equation is derived. Also kept constant during an MD simulation
in this ensemble is the box length Lx in the x direction; on the contrary, the
box lengths in the other two directions, Ly and Lz, although always kept
equal, are allowed to fluctuate. This is achieved by making use in the
simulation of an additional dynamical variable, the cross-sectional area
A(¼LyLz) of the simulation cell in the yz plane, which obeys an extra
equation of motion involving the instantaneous average normal stress
(�yyþ �zz)/2 in the two lateral directions y and z, respectively; (�yyþ �zz)/2
remains constant on average and equal to �Pext throughout the simulation.

The derivation of the equations of motion in theNTLx�yy�zz ensemble has
been carried out in detail by Yang et al. [12], and goes as follows: Consider a
system consisting of N atoms with rik being the position of atom i belonging
to polymer chain k. The bond lengths are kept fixed, with gik denoting the
constraint forces on atom i. The Lagrangian is written as a function of
the ‘‘extended’’ variables { ~RRk, xik,A, s} where ~RRk is the scaled (with respect
to the box edge lengths) position of the center of mass of every chain k, and
xik is the position of atom i in chain kmeasured relative to the chain center of
mass. This ensemble is ‘‘extended’’ in the sense that it invokes the additional
variables A and s, makes use of a scaled coordinate system, and is formulated
with respect to a ‘‘virtual’’ time t0. The equations of motion are derived from
the extended Lagrangian by exactly the same procedure as for the other
statistical ensembles. The final equations are further recast in terms of real
coordinates and real time and have the following form:

mi €rrxik ¼ Fxik þ gxik �
_ss

s
pxik ð38Þ

mi €rryik ¼ Fyik þ gyik �
_ss

s
pyik þ

miRyk

2A
€AA�

_AA2

2A

 !
ð39Þ

mi €rrzik ¼ Fzik þ gzik �
_ss

s
pzik þ

miRzk

2A
€AA�

_AA2

2A

 !
ð40Þ

Q€ss ¼ Q
_ss2

s
þ s

X

k

X

i

p2xik þ p2yik þ p2zik

mi
� gþ 1ð ÞkBT

" #
ð41Þ

W €AA ¼ W
_ss _AA

s
þ s2Lx

1

2
��yy
� �

þ ��zzð Þ
� �

� Pext

	 

ð42Þ
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where the forces with two indices indicate center of mass forces, while those

with three indices are forces on atoms within a particular polymer chain. Rk

denotes the center of mass of molecule k, while Q and W are inertial con-

stants governing fluctuations in the temperature and the two normal stresses

�yy and �zz, respectively. The total Hamiltonian of the extended system,

derived from the Lagrangian, has the form:

HNTLx�yy�zz ¼
X

i

p2i
2mi

þ V rð Þ þ
Q

2

_ss

s

� �2

þ gþ 1ð Þ
ln s

�
þ
W

2

_AA

s

 !2

þPextLxA

ð43Þ

The first term on the right hand side represents the kinetic energy, the

second term is the potential energy, and the last four terms are the contribu-

tions due to the thermostat and the fluctuating box cross-sectional area

in the plane yz. Conservation of HNTLx
�yy�zz is a good test for the

simulation.
For the solution of equations of motion, a modification of the velocity-

Verlet algorithm proposed by Palmer [14] can be followed.

IV. LIOUVILLE FORMULATION OF EQUATIONS OF
MOTION—MULTIPLE TIME STEP ALGORITHMS

In Sections II.A and II.B we presented the most popular algorithms for
integrating Newton’s equations of motion, some of which are not reversible
in time. Recently, Tuckerman et al. [15] and Martyna et al. [16] have shown
how one can systematically derive time reversible MD algorithms from the
Liouville formulation of classical mechanics.

The Liouville operator L of a system of N degrees of freedom is defined in
Cartesian coordinates as

iL ¼
XN

i¼1

_rri
@

@ri
þ Fi

@

@pi

	 

ð44Þ

If we consider the phase-space of a system, �¼ {r, p}, the evolution of the

system from time 0 to time t, can be found by applying the evolution

operator

� tð Þ ¼ exp iLtð Þ� 0ð Þ ð45Þ
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The next step is to decompose the evolution operator into two parts
such that

iL ¼ iL1 þ iL2 with iL1 ¼
XN

i¼1

Fi
@

@pi

	 

, iL2 ¼

XN

i¼1

_rri
@

@ri

	 

ð46Þ

For this decomposition, a short-time approximation to the evolution
operator can be generated via the Trotter theorem [16] as

exp iLtð Þ ¼ exp i L1 þ L2ð Þt=Pð Þ
P

¼ exp iL1 dt=2ð Þð Þ exp iL2dtð Þ exp iL1 dt=2ð Þð Þð Þ
P
þO t3=P2

� �
ð47Þ

where d t¼ t/P. Thus, the evolution operator becomes

exp iLdtð Þ ¼ exp iL1
dt

2

� �
exp iL2dtð Þ exp iL1

dt

2

� �
þO dt3

� �
ð48Þ

The evolution of the system at time t using the above factorization, Eq.
(48), is described through the following scheme [16]

r dtð Þ ¼ r 0ð Þ þ dt v 0ð Þ þ
dt2

2m
F r 0ð Þ½ 	 ð49Þ

v dtð Þ ¼ v 0ð Þ þ
dt2

2m
F r 0ð Þ½ 	 þ F r dtð Þ½ 	ð Þ ð50Þ

which can be derived using the identity exp½að@=@gðxÞÞ	x ¼ g�1½g xð Þ þ a	.

The result is the well-known velocity-Verlet integration scheme, described
before, which is now derived in a different way.

Based on the previous factorization a very efficient algorithm can be
developed, through the use of different time steps for integrating the
different parts of the Liouville operator. This is the so-called reversible
REference System Propagator Algorithm (rRESPA).

A. The rRESPA Algorithm

In the rRESPA algorithm, the above factorization is employed together
with an integration of each part of the Liouville operator with a differ-
ent time step. In addition, the forces F are also decomposed into fast
(short-range) forces F

f, and slow (long-range) forces F
s, according to
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F(r)¼F
f(r)þFs(r). The total evolution operator is broken up into

iL¼ iL1þ iL2þ iL3 with

iL1 ¼
XN

i¼1

F
f
i rð Þ

@

@pi

	 

, iL2 ¼

XN

i¼1

_rri
@

@ri

	 

, iL3 ¼

XN

i¼1

Fs
i rð Þ

@

@pi

	 

ð51Þ

The heart of the rRESPA algorithm is that the equations of motion are
integrated by using two different time steps, it is therefore a Multiple
Time Step (MTS) method: the slow modes (slow forces, iL3) are integrated
with a larger time step, �t, whereas the fast modes (fast forces and
velocities, iL1, iL2) with a smaller time step, �t(�t¼�t/n). In this case the
evolution operator becomes [16]

exp iL�tð Þ¼exp iL3
�t

2

� �
exp iL1

�t

2

� �
exp iL2�tð Þexp iL1

�t

2

� �	 
n
exp iL3

�t

2

� �

þO �t3
� �

ð52Þ

The force calculated n times (fast force) is called the reference force. A
sample code of an MTS integrator is given in Algorithm 2.

Algorithm 2: rRESPA Integration

. . .. . ..

do i¼ 1, N

v(i)¼ v(i)þ�t/2 *Fs(i) ! update velocities using

! slow forces at t

end do

do j¼ 1, n

do i¼ 1, N

v(i)¼ v(i)þ �t/2 *Ff(( j�1)�t) ! update velocities using

! fast forces at tþ ( j�1)�t
r(i)¼ r(i)þ �t * v(i) ! update positions at tþ j�t
end do

call fast_ forces (Ff ) ! get fast forces at tþ j�t

do i¼ 1, N

v(i)¼ v(i)þ �t/2 *F f( j�t)
end do

end do

call slow_ forces (Fs) ! get slow forces at tþ�t

do i¼ 1, N

v(i)¼ v(i)þ�t/2 *Fs(i) ! update velocities using

! slow forces at tþ�t

end do

. . .. . ..
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B. rRESPA in the NVT Ensemble

For MD simulations in NVT ensemble, a modification of the rRESPA
algorithm has been proposed. The method uses a modification of the
Lagrangian of the system based on the Nosé–Hoover approach, described in
Section III.A. The difference from the standard rRESPA scheme described
before is that now the total Liouville operator is decomposed as

iL ¼ iL1 þ iL2 þ iL3 þ iLNH ð53Þ

with

iL1 ¼
XN

i¼1

F
f
i rð Þ

@

@pi

	 

, iL2 ¼

XN

i¼1

_rri
@

@ri

	 

, iL3 ¼

XN

i¼1

Fs
i rð Þ

@

@pi

	 


ð54Þ

Also,

iLNH ¼ �
XN

i¼1

��vi �
@

@vi
þ ��

@

@�
þ G

@

@��
ð55Þ

where

G ¼
XN

i¼1

p2i
mi

� gkBT

 !
=Q, �� ¼ � ð56Þ

and � is a transformation of the additional degree of freedom s, log s¼N�.
Two modifications of the standard RESPA method exist, depending on

the application of the extended operator exp(iLNHt). The first variant of
RESPA is useful when the evolution prescribed by the operator exp(iLNHt)
is slow compared to the time scale associated with the reference force. It is
formed by writing

exp iL�tð Þ ¼ exp iLNH
�t

2

� �
exp iL3

�t

2

� �

� exp iL1
�t

2

� �
exp iL2�tð Þ exp iL1

�t

2

� �	 
n

� exp iL3
�t

2

� �
exp iLNH

�t

2

� �
þO �t3

� �
ð57Þ
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and is named XO-RESPA (eXtended system Outside-REference System
Propagator Algorithm). In general, XO-RESPA can be applied to systems

characterized by fast vibrations, as the time scale associated with the
extended system variable is usually chosen to be quite slow compared

with these motions.
If the motion prescribed by the operator exp(iLNHt) occurs on the same

time scale as that generated by the ‘‘fast’’ forces, then a useful RESPA
algorithm includes the application of this operator for the small time step dt.
The evolution operator takes then the form

exp iL�tð Þ

¼ exp iLNH
�t

2

� �
exp iL3

�t

2

� �
exp �iLNH

�t

2

� �

� exp iLNH
�t

2

� �
exp iL1

�t

2

� �
exp iL2�tð Þ exp iL1

�t

2

� �
exp iLNH

�t

2

� �	 
n

� exp �iLNH
�t

2

� �
exp iL3

�t

2

� �
exp iLNH

�t

2

� �
þO �t3

� �
ð58Þ

The resulting integrator is named XI-RESPA (eXtended system Inside-
REference System Propagator Algorithm).

Modifications of the RESPA method for MD simulations in the NPT
statistical ensemble have also been formulated in an analogous manner.
More details can be found in the original papers [15,16].

V. CONSTRAINT DYNAMICS IN POLYMERIC
SYSTEMS

One of the most important considerations in choosing the best algorithm for
the solution of the classical equations of motion is, as we saw above, the
time step of integration. This should be chosen appreciably shorter than the
shortest relevant time scale in the simulation. For long-chain polymeric
systems, in particular, where one explicitly simulates the intramolecular
dynamics of polymers, this implies that the time step should be shorter than
the period of the highest-frequency intramolecular motion. This renders the
simulation of long polymers very expensive. One solution to this problem
is provided by the MTS algorithm discussed above. Another technique
developed to tackle this problem is to treat bonds between atoms,
characterized by the highest-frequency intramolecular vibrations, as rigid.
The MD equations of motion are then solved under the constraint that bond
lengths are kept constant during the simulation. The motion associated with
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the remaining degrees of freedom is presumably slower, permitting the use
of a longer time step in the simulation.

In general, system dynamics should satisfy many constraints (e.g., many
bond lengths should be constant) simultaneously. Let us denote the
functions describing the constraints by �k¼ 0 with �k ¼ r2ij � d2

ij , meaning
that atoms i and j are held at a fixed distance dij. A new system Lagrangian is
introduced that contains all constraints

Lc ¼ L�
X

k


k�k rð Þ ð59Þ

where k denotes the set of constraints and 
k the corresponding set of
Lagrange multipliers. The equations of motion corresponding to the new
Lagrangian are

mi€rri ¼ Fi �
X

k


k
@�k
@ri

¼ Fi � gi ð60Þ

where the second term on the right hand side of Eq. (60) denotes the con-
straint forces. The question then is how to calculate the set of Lagrange
multipliers 
k. Two methods that have widely been used in our MD simula-
tions are discussed here: The Edberg–Evans–Morriss method and the
SHAKE method.

A. The Edberg–Evans–Morriss Algorithm

This algorithm [17] starts by considering a set of a linear system of equations
in {
ij}, which are formulated by taking the second derivatives of the
constraint equations in time:

r2ij � d2
ij ¼ 0 ) 2rij � _rrij ¼ 0 ) rij � €rrij þ _rrij

� �2
¼ 0 ð61Þ

One then solves the following set of algebraic and differential equations
simultaneously:

mi€rri ¼ Fi þ gi ð62Þ

gi ¼
X

k


k
@�k
@ri

ð63Þ

rij � €rrij þ _rrij
� �2

¼ 0 ð64Þ
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Note that site velocities enter this formulation explicitly. Upon
substitution of the site accelerations from Eq. (60) into Eq. (64) one obtains
a system of linear equations in {
ij}; thus, the determination of the 
ij’s
reduces to the solution of a linear matrix equation which should be
addressed at each time step.

B. The SHAKE–RATTLE Algorithm

The approach described above suffers from the problem that it is
computationally expensive, since it requires a matrix inversion at every
time step. The problem gets worse with increasing chain length, with the
algorithm becoming practically inappropriate for chains of more than about
100 atoms long. Ryckaert et al. [18] developed a simpler scheme, named
SHAKE, to satisfy the constraints in this case.

If one considers the classical form of the Verlet algorithm, then in the
presence of constraints

rci ðtþ dtÞ ¼ rui ðtþ dtÞi �
dt2

mi

X
k

k
@�k tð Þ

@ri
ð65Þ

where rci are the constrained and rui the unconstrained positions. If the
constraints are satisfied at time tþ dt, then �ckðtþ dtÞ ¼ 0. But if the
system moved along the unconstrained trajectory, the constraints would
not be satisfied at tþ dt. In this case, by performing a Taylor expansion
around the unconstrained positions, we get

�ckðtþ dtÞ ¼ �ukðtþ dtÞ þ
XN

i¼1

@�k
@ri

� �

ru
i
ðtþdtÞ

� rci ðtþ dtÞ � rui ðtþ dtÞ
� �

þOðdt4Þ

ð66Þ

and by using Eq. (65)

�ukðtþ dtÞ ¼
XN

i¼1

dt2

mi

X

k0


k0
@�k
@ri

� �
@�k0

@ri

� �
ð67Þ

The above equation has the structure of a matrix equation

�ukðtþ dtÞ ¼ dt2M, ð68Þ

By inverting the matrix, one can solve for the vector ,. However, since
the Taylor expansion in Eq. (66) has been truncated, the �’s should be

Molecular Dynamics Simulations 195



computed at the corrected positions, and the preceding equations should be
iterated until convergence is reached.

This procedure is also computationally expensive, because it requires a
matrix inversion at every iteration, as does the Edberg–Evans–Morriss
algorithm. Ryckaert proposed a new method, SHAKE, where the iterative
scheme is not applied to all constraints simultaneously but to each
constraint in succession. Thus the need to invert a large matrix is avoided.
The key point is that rci � rui is approximated as

rci ðtþ dtÞ � rui tð Þ � �
dt2
k
mi

@�k tð Þ

@ri
ð69Þ

By inserting the above equation into Eq. (66), one gets

�ukðtþ dtÞ ¼ dt2
k
XN

i¼1

1

mi

@�kðtþ dtÞ

@ri

@�k tð Þ

@ri
ð70Þ

from which


kdt
2 ¼

�ukðtþ dtÞ
PN

i¼1 ð1=miÞ ð@�kðtþ dtÞ=@riÞð@�k tð Þ=@riÞ
ð71Þ

In an MD simulation, the constraints are treated in succession during one
cycle of the iteration and the process is repeated until all constraints have
converged to the desired accuracy. An improvement of the SHAKE
algorithm is the RATTLE algorithm, which was proposed by Andersen [19].
In RATTLE, the velocity-Verlet algorithm is employed to integrate the
dynamical equations.

As was also stated above, there are several applications of MD
simulations in polymer science. An example taken from a recent study of
polymer melt viscoelasticity is presented in the following section.

VI. MD APPLICATIONS TO POLYMER MELT
VISCOELASTICITY

Despite its simplicity and unquestionable utility, a brute-force application of
the atomistic MD technique to polymeric systems is problematic, due to the
enormously large computation time needed to track the evolution of such
systems for times comparable to their longest relaxation times [1,2]. This is

196 Harmandaris and Mavrantzas



the well-known problem of long relaxation times. To overcome this problem,
a number of approaches have been proposed over the years. The first is to
develop new, more efficient, ‘‘clever’’ algorithms, such as the multiple time
step algorithms for the integration of equations of motion described in
Section IV, which have allowed extension of the simulation to times almost
an order of magnitude longer than what is usually achieved with
conventional algorithms. The second is to increase the range of length
scales simulated with MD by using a number of processors (nodes) and
special parallelization techniques; such techniques are described in detail
in the next section.

Alternatively, a hierarchical approach can be adopted, which uses
information from many different levels of abstraction, ultimately connecting
to the atomistic level, and a combination of different molecular simulation
methods and theoretical approaches. Such a methodology can be followed,
for example, for the atomistic MD simulation of the viscoelastic properties
of polymer melts. The methodology has been described in a number of
publications [13,20] and includes two variants. In the first, equilibrium
atomistic MD simulations are conducted on model polymer melt con-
figurations preequilibrated with the powerful connectivity-altering end-
bridging Monte Carlo (MC) algorithm; the latter algorithm is not subject to
the limitations associated with long relaxation times faced by MD.
Dynamical as well as viscoelastic properties are then extracted either
directly from the MD simulations or indirectly through a mapping of the
atomistic trajectories accumulated in the course of the MD simulation onto
an analytical coarse-grained model [20–22], such as the Rouse model for
unentangled melts or the reptation model for entangled melts. In the second
variant, nonequilibrium MD simulations are conducted on model polymer
melt configurations which have been preoriented and thoroughly equili-
brated with a field-on MC method [23,24] which generates configurations
representative of a melt under conditions of steady-state uniaxial elonga-
tional flow. The MD tracks the relaxation of the preoriented chains back to
equilibrium upon cessation of the flow. In this case, again, the linear
viscoelastic properties of the melt are extracted either directly by the
simulation or indirectly by utilizing a mapping onto an analytical coarse-
grained model [13].

A. Study of Polymer Viscoelasticity Through
Equilibrium MD Simulations

In detail, the methodology followed for the prediction of the viscoelastic
properties of polymer melts under equilibrium conditions is a three-stage
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hierarchical approach, whereby the dynamical properties of polymer melts
are calculated through the following procedure:

1. First exhaustive end-bridging Monte Carlo (EBMC) simulations

[23,24] are conducted to equilibrate the melts at all length scales.

The EBMC algorithm employs moves that modify the connectivity

among polymer segments, while preserving a prescribed (narrow) molecular

weight distribution. It can thus equilibrate the long-length scale features of a

polymer melt orders of magnitude more efficiently than MD or other MC

methods, its relative efficiency increasing rapidly with increasing chain

length.
2. Relaxed configurations thus obtained are subjected to equilibrium

MD simulations to monitor their evolution in time and extract dynamic

properties. During the atomistic MD simulations, a large number of dynami-

cal trajectories are accumulated.
3. Finally, the trajectories accumulated are mapped onto theoretical

mesoscopic (coarse-grained) models to extract the values of the parameters

invoked in the mesoscopic model description of the same systems.

With the above methodology, atomistic MD simulations were performed
on united-atom model linear polyethylene (PE) melts with molecular length
ranging from N¼ 24 up to N¼ 250 in the canonical NVT ensemble
(T¼ 450K, P¼ 1 atm). To speed-up the MD simulations the multiple time
step rRESPA algorithm, presented in Section IV, was used. The overall
simulation time ranged from 100 ns to 300 ns, depending on the chain
lengths of the systems studied. Many of the dynamical properties (such as
the self-diffusion coefficient D) were calculated directly from the MD
simulations. Others, however, such as the zero-shear rate viscosity �0,
required mapping atomistic MD data upon a mesoscopic theoretical model.
As such one can choose the Rouse model for relatively short PE melts and
the reptation model for the longer-chain melts.

Figure 3 shows the mean square displacement of the chain center of mass,
hðRcmðtÞ � Rcmð0ÞÞ

2
i, in time for the longer-chain systems, C156, C200, and

C250. From the linear part of these curves the self-diffusion coefficient D can
be obtained using the Einstein relation,

D ¼ lim
t!1

Rcm tð Þ � Rcm 0ð Þð Þ
2

 �

6t
ð72Þ

Figure 4 presents predictions for the self-diffusion coefficient D
as a function of mean chain length N. For comparison, also shown in
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FIG. 3 Mean square displacement of the center of mass for the C156 (solid line),

C200 (dotted line), and C250 (dashed line) systems.

FIG. 4 Predicted and experimental [25] self-diffusion coefficients D vs. chain length

N in a log–log plot (T¼ 450K, P¼ 1 atm).
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the figure are experimental data [25]. Three distinct regions appear in
the figure:

1. A region of a small-MW, alkane-like behavior (N<60), where D
follows a power-law dependence D�M�b, with b>1. In this regime chain
end effects, which can be described through a free volume theory, dominate
system dynamics [21].

2. An intermediate, Rouse-like regime (from N¼ 60–70 up to N¼ 156)
where b� 1. System dynamics in this regime is found to obey the Rouse
model, at least for the overall relaxation of the chain [20].

3. A long chain-length, reptation-like regime (N>156), where chain
diffusivity exhibits a dramatic slow down, b� 2.4. According to the original
formulation of reptation theory, the latter exponent should be 2.
Phenomena such as contour length fluctuations (CLF) and constraint
release (CR) typically accelerate the escape of the chain from the tube,
causing an increase in D and a decrease in �0 [26]. A recently proposed
theory that incorporates CLF and CR phenomena predicts a stronger expo-
nent, between �2.2 and �2.3 [27]. These values agree with recent experi-
mental results for concentrated polymer solutions and melts, which suggest
an exponent between �2.2 and �2.4 for a variety of polymer systems [25].

In contrast to D, the prediction of other viscoelastic properties, such as
the friction coefficient � or the zero-shear rate viscosity �0, requires that the
atomistic MD data be mapped upon a mesoscopic theoretical model. For
unentangled polymer melts, such a model is the Rouse model, wherein a
chain is envisioned as a set of Brownian particles connected by harmonic
springs [25,28]. For entangled polymer melts, a better model that describes
more accurately their dynamics is the tube or reptation model [26].
According to this model, the motion of an individual chain is restricted by
the surrounding chains within a tube defined by the overall chain contour or
primitive path. During the lifetime of this tube, any lateral motion of the
chain is quenched.

The Rouse model is formulated in terms of three parameters: the number
of beads N, the length of the Kuhn segment b, and the monomeric friction
coefficient �. The friction coefficient � can be calculated directly from the
diffusion coefficient D through

� ¼
kBT

ND
ð73Þ

while the zero-shear rate viscosity �0 can be calculated from the density �,
the end-to-end distance hR2i, and the diffusion coefficient D through

�0 ¼
�RThR2i

36MD
ð74Þ

200 Harmandaris and Mavrantzas



Reptation theory is formulated in terms of four parameters: N, b, �, and
the entanglement spacing (or, alternatively, the tube diameter) �. If � were
known, � and �0 could be calculated through:

� ¼
kBT�

2

3NhR2iD
ð75Þ

and

�0 ¼
�RT

36M

hR2i

D

hR2i

�2
ð76Þ

The calculation of the tube diameter � is a formidable task and can be
addressed either through a topological analysis of accumulated polymer
melt configurations thoroughly equilibrated with an efficient MC algorithm
[29] or by utilizing a geometric mapping of atomistically represented chain
configurations onto primitive paths [22,30]. The latter mapping is realized
through a projection operation involving a single parameter �, which gov-
erns the stiffness of the chain in the coarse-grained (primitive path) repre-
sentation. The parameter � is mathematically defined as the ratio of the
constants of two types of Hookean springs: The first type connects adjacent
beads within the projected primitive path, and the second type connects the
projected beads of the primitive path with the corresponding atomistic units
[30]. Different values of � lead to different parameterizations, i.e., to differ-
ent primitive paths and, consequently, to different values of the contour
length L. Once a value for � has been chosen, the primitive path is fully
defined which allows the calculation of the tube diameter � through the
following equation of reptation theory

L� ¼ hR2i ð77Þ

To find the proper value of the projection parameter �, one can follow a self-
consistent scheme based on the mean square displacement of the primitive
path points �(s, s; t) [22]. �(s, s; t) is defined as

� s, s; tð Þ � R s, tð Þ � R s, 0ð Þð Þ
2

 �
ð78Þ

where R(s, t) is the position vector of the primitive segment at contour length
s at time t, and R(s, 0) is the position vector of the primitive segment at
contour length s at time 0. According to reptation theory

� s, s; tð Þ ¼ 6Dtþ
X1

p¼1

4hR2i

p2�2
cos

p�s

L

� �
1� exp �

tp2

	d

� �	 

ð79Þ
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where the sum is over all normal modes p and 	d denotes the longest relaxa-
tion or disengagement time. For small times (t<	d), �(s, s; t) is dominated
by the terms with large p and the above equation becomes

� s, s; tð Þ ¼ 6Dtþ

Z 1

0

dp
4La

p2�2
1

2
1� exp �

tp2

	d

� �� �

¼ 6Dtþ 2
3

�
R2
 �

D

� �1=2

t1=2 ð80Þ

Equation (80) offers a nice way of mapping atomistic MD trajectories
uniquely onto the reptation model, through a self-consistent calculation of
the parameter �. First, a value of � is chosen and the mapping from the
atomistic chain onto its primitive path is carried out by following the
procedure described by Kröger [30]. Then, Eq. (78) is used to calculate
�(s, s; t) for the primitive path points, averaged over all s values. For times
t<	d, the resulting curve is compared to that obtained from Eq. (80), using
the values of hR2i and D (long-time diffusivity of the centers of mass)
calculated directly from the atomistic MD simulations. The procedure is
repeated until convergence is achieved, that is until a � value is found for
which the two curves coincide. This mapping is performed self-consistently,
without any additional adjustable parameters or any experimental input. It
allows a reliable estimation of the tube diameter �, by utilizing atomistically
collected MD data only for times shorter than 	d. Thus, the total duration of
the MD simulations required is governed solely by the time needed reliably
to calculate the center-of-mass diffusion coefficient D. With the values of
hR2i, D, and �, those of � and �0 can be calculated using Eqs. (75) and (76).

With the above procedure the tube diameter � was calculated to be
�� 60 Å for the longer-chain systems C200 and C250, whereas for the shorter
systems, N<200, no proper value of the parameter � could be identified [22].

Figure 5 shows results for the monomeric friction factor � as a function of
mean chain length N, over the entire range of molecular lengths studied.
Filled squares depict results obtained by mapping atomistic MD data onto
the Rouse model, whereas open circles depict results obtained from map-
ping the atomistic MD data onto the reptation model. According to its
definition, � should be independent of chain length, its value determined
solely by the chemical constitution of the melt. The figure shows clearly that,
at around C156, a change in the mechanism of the dynamics takes place,
which cannot be accommodated by the Rouse model unless a chain-length
dependent � is assumed. In contrast, in this regime (N>156), the reptation
model provides a consistent description of the system dynamics character-
ized by a constant (0.4� 10�9 dyn s/cm) chain-length independent � value
per methylene or methyl segment.
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Figure 6 presents the zero-shear rate viscosity �0 as a function of
molecular weight for all systems studied here. For systems of chain length
less than C156 the Rouse model, Eq. (74), was used, whereas for the longer
systems the reptation equation, Eq. (76), was used. Also reported in the
figure are experimental �0 values from measurements [22] conducted in
a series of linear monodisperse PE melts. The �0 predictions from the
reptation model were obtained using the value of �¼ 60 Å for
the entanglement spacing. The agreement of the simulation results with
the experimental ones is remarkable.

B. Study of Polymer Viscoelasticity Through
Nonequilibrium MD Simulations—Simulation
of the Stress Relaxation Experiment

An alternative way to learn about viscoelastic properties of polymer melts in
the linear regime is to conduct MD simulations of preoriented polymer melt

FIG. 5 Monomer friction coefficient � vs. chain length N, obtained from mapping

the atomistic MD data onto the Rouse model (squares) or the reptation model

(circles).
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configurations generated by a field-on MC algorithm. It involves three
stages:

1. First, a coarse-grained description of the polymer melt is invoked

through the definition of the conformation tensor, c, which is a global

descriptor of the long-length scale conformation of polymer chains. The

conformation tensor c is defined as the second moment tensor of the end-

to-end distance vector of a polymer chain reduced by one-third of the

unperturbed end-to-end distance and averaged over all chains in the system:

c tð Þ ¼ 3
R tð ÞR tð Þ

hR2i0

� �
ð81Þ

In the above equation, R stands for the end-to-end vector of a macromole-
cule and hR2i0 is the mean-squared magnitude of that vector in the equi-
librium, quiescent state, where chains are unperturbed to an excellent

FIG. 6 Zero-shear rate viscosity �0 vs. molecular weight M, obtained from the MD

simulation and the Rouse model for small M (circles) or the reptation model for high

M (squares). Also shown in the figure are experimentally obtained �0 values

(triangles).
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approximation. With the above definition, a series of detailed atomistic MC

simulations can be initiated on model melt systems at various values of the

orienting thermodynamic field �xx, starting from the zero value (�xx¼ 0,

equilibrium, quiescent, field-free state) that drive the tensor c away from

equilibrium [23,24].
2. In the second stage, the isothermal relaxation of these configurations

to thermodynamic equilibrium is monitored, keeping their dimension along

the x direction constant and the average normal pressure in the y and z

directions equal to the atmospheric pressure. The experiment simulated is

that of stress relaxation upon cessation of a steady-state uniaxial elonga-

tional flow. The MD simulation takes place in the NTLx�yy�zz statistical

ensemble discussed in Section III. The macroscopic variables kept constant

in this ensemble are the typical macroscopic constraints encountered in the

process of fiber spinning at the end of the spinning operation, when the

fibers are under constant extension and the stress �xx in the direction of

pulling is allowed to relax from its initial value to the equilibrium, field-free

value, equal to �Pext [i.e., �xx(t!1)¼�Pext]. In addition to monitoring the

temporal evolution of the stress component �xx(t) during the NTLx�yy�zz
MD simulation, also recorded is the evolution of certain ensemble-averaged

descriptors of the chain long-length scale configuration. These descriptors

include the diagonal components of the chain conformation tensor (cxx, cyy,

and czz) and the chain mean square end-to-end distance hR2i.
3. The third stage includes the development of expressions describing

analytically the time evolution of these quantities by solving the Rouse

model under the initial and boundary conditions corresponding to our

atomistic computer experiment.

Results are presented here from averaging over about 100 NTLx�yy�zz
MD trajectories for each stress relaxation experiment, initiated at ensembles
of strained configurations of two PE melt systems: a 32-chain C24 and a
40-chain C78 PE melt.

Figures 7a and 7b show the time evolution of the diagonal components
cxx, cyy, and czz of the conformation tensor for the C24 and C78 melts,
respectively. For both systems, the initial value of cxx is significantly higher
than 1, whereas those of cyy and czz are a little less than 1, indicative of the
oriented conformations induced by the imposed steady-state elongational
structure of flow field �xx. As time evolves, cxx decreases whereas cyy and czz
increase continuously, approaching the steady-state, field-free value of 1,
indicative of fully equilibrated, isotropic structures in the absence of any
deforming or orienting field.

Figure 8 shows the time evolution of the stress tensor component �xx for
the C24 PE melt systems studied. The stress tensor is calculated in two ways.
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FIG. 7 Evolution of the diagonal components cxx, cyy and czz of the conformation

tensor c with time t for (a) the C24 and (b) the C78 PE melt systems. Results are

averaged over all NTLx�yy�zz trajectories (T¼ 450K, Pext¼ 1 atm).
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The first (thin broken line) tracks the evolution of �xx as obtained from
applying the molecular virial theorem on the relaxing configurations and
averaging over all dynamical trajectories. The second way (thick solid line)
uses the Helmholtz energy function and an affine deformation assumption
for chain ends [23,24]. According to the latter approach, the stress tensor at
every time t is calculated from the ensemble-averaged values of mass density
�, conformation tensor cxx, and partial derivative of the Helmholtz energy
function with respect to cxx at time t, through

�xx tð Þ ¼ �Pext þ 2
R

M
T� tð Þcxx

@ A=Nchð Þ

@cxx

����
T , �, c xxj j

" #

cxx¼cxx tð Þ

ð82Þ

where Pext denotes the equilibrium (atmospheric) pressure and M the

number average MW of the system. This approach tracks the evolution of

�xx as obtained from applying the thermodynamic stress equation, Eq. (82),

FIG. 8 Evolution of the component �xx of the stress tensor with time t for the C24

system. The results at every time t have been obtained either by applying the virial

theorem and averaging over all dynamical trajectories (broken line) or by using a

thermodynamic expression based on the free energy as a function of the

conformation tensor (thick solid line) (T¼ 450K, Pext¼ 1 atm).
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based on the current values of cxx and @ A=Nchð Þ=@cxx, the latter taken from
the melt elasticity simulations presented in [23,24]. As expected, in the
estimates based on the virial theorem are subject to much higher statistical
uncertainty, owing to the fluctuations in the instantaneous configurations.
Clearly, averaging over many configurations is needed in order to improve
the statistical quality of the virial theorem results. Apart from high-
frequency noise, the virial theorem results display an oscillatory character.
When the noise and oscillations are smoothed out, the ensemble-averaged
stress �xx(t) from the virial theorem is in very good agreement with the
thermodynamic estimate obtained from cxx and @ A=Nchð Þ=@cxx. This is an
important result, as it opens up the possibility of calculating stress with high
precision directly from ensemble average conformational properties, based
on a free energy function accumulated via efficient MC runs. The transverse
components �yy and �zz are displayed in Fig. 9. Both �yy and �zz fluctuate
continuously around the constant value �Patm, as required by the macro-
scopic restrictions placed on the NTLx�yy�zz ensemble. The plots for the C78

system are similar. Relaxation times extracted from these stress relaxation
computer experiments are identical to those determined from equilibrium
MD simulations (Section VI.A).

FIG. 9 Evolution of the components �yy and �zz of the stress tensor with time t for

the C24 system (T¼ 450K, Pext¼ 1 atm).
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VII. PARALLEL MD SIMULATIONS OF
POLYMER SYSTEMS

In the previous sections, we presented two different approaches for
addressing the problem of long relaxation times, which plagues the
conventional MD method: the multiple time step algorithm and a
hierarchical methodology that leads to the prediction of the dynamical
and rheological properties of polymer melts by mapping simulation data
onto analytical theories. Enhanced MD simulation algorithms can further
be developed by resorting to special parallelization techniques that allow
sharing the total simulation load over a number of processors or nodes. The
key idea in all these techniques is to compute forces on each atom or
molecule and to perform corresponding velocity/position updates indepen-
dently but simultaneously for all atoms. It is also desired that the force
computations be evenly divided across the processors so as to achieve the
maximum parallelism.

MD simulations of polymer systems, in particular, require computation
of two kinds of interactions: bonded forces (bond length stretching, bond
angle bending, torsional) and nonbonded forces (van der Waals and
Coulombic). Parallel techniques developed [31–33] include the atom-decom-
position (or replicated-data) method, the force-decomposition method, and
the spatial (domain)-decomposition method. The three methods differ only
in the way atom coordinates are distributed among the processors to
perform the necessary computations. Although all methods scale optimally
with respect to computation, their different data layouts incur different
interprocessor communication costs which affect the overall performance
of each method.

A. Parallel MD Algorithms

Here we will focus on a discussion of algorithms for parallelizing MD
simulations with short-range interactions where the nonbonded forces
are truncated, so that each atom interacts only with other atoms within a
specified cutoff distance. More accurate MD models with long-range forces
are more expensive to deal with. Thus, special techniques are required for
parallelizing MD simulations with long-range interactions.

1. Atom-Decomposition (Replicated-Data) Method

The most commonly used technique for parallelizing MD simulations of
molecular systems is the replicated-data (RD) method [33]. In the literature
there are numerous parallel algorithms and simulations that have been
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developed based on this approach [34]. The key idea of this method is that
each processor is assigned a subset of atoms and updates their positions and
velocities during the entire simulation, regardless of where they move in the
physical domain.

Let us consider a polymeric system with a total number of atoms N,
where both intramolecular and intermolecular interactions are present. The
system is simulated in a parallel system of P processors. We first define x

and f as vectors of length N, which store the position and total force on
each atom, respectively. We also define the force matrix F, of dimensions
N�N, with Fij denoting the force on atom i due to atom j. In the RD
method each processor is assigned a group of N/P atoms at the beginning of
the simulation. Each processor is also assigned a subblock of the force
matrix F which consists of N/P rows of the matrix, as shown in Fig. 10. If z
indexes the processors from 0 to P� 1, then processor z computes forces in
the Fz subblock of rows. It also is assigned the corresponding position and
force subvectors of length N/P denoted as xz and fz.The computation of the
nonbonded force Fij requires only the two atom positions, xi and xj. But to
compute all forces in Fz, processor Pz will need the positions of many atoms
owned by other processors. In Fig. 10 this is represented by having the
horizontal vector x at the top of the figure span all the columns of F,
implying that each processor must store a copy of the entire x vector, hence
the name replicated-data. This also implies that, at each time step, each
processor must receive updated atom positions from all other processors
and send the positions of its own atoms to all other processors, an
operation called all-to-all communication.

FIG. 10 Division of the force matrix among P processors in the atom-

decomposition method.
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A single time step of an RD algorithm comprises the following steps:

1. First every processor z computes its own part of the nonbonded
forces Fz. In MD simulations this is typically done using neighbor
lists to calculate nonbonded interactions only with the neighboring
atoms. In an analogous manner with the serial algorithm, each pro-
cessor would construct lists for its subblock Fz once every few time
steps. To take advantage of Newton’s third law (that Fij¼�Fji), each
processor also stores a copy of the entire force vector f. As each
pairwise nonbonded force between atoms i and j is calculated, the
force component is summed for atom i and negated for atom j. Next,
the bonded forces are computed. Since each processor z knows the
positions of all atoms, it can compute the nonbonded forces for its
subvector xz and sum the resulting forces into its local copy of f.
Calculation of both bonded and nonbonded forces scales as N/P,
i.e., with the number of nonbonded interactions computed by each
processor.

2. In this step, the local force vectors are summed across all processors
in such a way that each processor ends up with the total force on each
of its N/P atoms. This is the subvector fz. This force summation is a
parallel communication over all processors, an operation known as
fold [35]. In the literature there are various algorithms that have been
developed for optimizing this operation. The key characteristic is that
each processor must receive N/P values from every other processor to
sum the total force on its atoms. This requires total communication
of P times N/P; i.e., the fold operation scales as N.

3. Once each processor has the total force on its subvector xz in step
(3), it can update the positions and the velocities of each atom
(integration step) with no communication at all. Thus, this operation
scales as N/P.

4. Finally the updated positions of each processor xx should be shared
among all P processors. Each processor must send N/P positions to
every other processor. This operation is known as expand [35] and
scales as N.

A crucial aspect in any parallel algorithm is the issue of load-balance.
This concerns the amount of work performed by each processor during the
entire simulation, which ideally should be the same for all processors. As we
saw before, the RD algorithm divides the MD force computation (the most
time consuming part in a typical MD simulation) and integration evenly
across all processors. This means that steps (1) and (3) scale optimally as
N/P. Load-balance will be good so long as each processor’s subset of atoms
interacts with roughly the same number of neighbor atoms. This usually
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occurs naturally if the atom density is uniform across the simulation domain
(e.g., bulk simulations). In a different case (e.g., polymer chains at interfaces
or adsorbed polymers) load-balance can be achieved by randomizing the
order of the atoms at the start of the simulation or by adjusting the size of
the subset of each processor dynamically during the simulation to tune the
load-balance; these are called dynamical load-balancing techniques [36].

In summary, the RD algorithm divides the force computation evenly
across all processors. At the same time, its simplicity makes it easy to
implement in existing codes. However, the algorithm requires global
communication in steps (2) and (4), as each processor must acquire
information from all other processors. This communication scales as N,
independently of the number of processors P. Practically this limits the
number of processors that can be used effectively.

2. Force-Decomposition Method

The next parallel MD algorithm discussed here is based on a block-
decomposition of the force matrix rather than the row-wise decomposition
used in the RD algorithm. The partitioning of the force matrix F is shown in
Fig. 11 and the algorithm is called the force-decomposition (FD) algorithm
[37]. The method has its origin in block-decomposition of matrices, which is
commonly encountered in linear algebra algorithms for parallel machines.

The block-decomposition, shown in Fig. 11, is actually applied on a
permuted force matrix F0, which is formed by rearranging the columns of the
original F in a particular way. The (ij) element of F is the force acting on
atom i in vector x due to atom j in the permuted vector x0. Now the F 0

z

subblock owned by each processor z is of size (N/P1/2)� (N/P1/2). As shown

FIG. 11 The division of the force matrix among P processors in the force-

decomposition method.
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in the figure, to compute the nonbonded forces in F 0
z, processor zmust know

one N/P1/2-length piece of each of the x and x0 vectors, i.e., the subvectors xa
and x0b. As these elements are computed they will be accumulated into
the corresponding subblocks fa and f 0b. The subscripts a and b each run
from 0 to P1/2 and reference the row and the column position occupied by
processor z.

As in the RD algorithm, each processor has updated copies of the atom
positions xa and x0b needed at the beginning of the time step. A single time
step of the FD algorithm consists of the following steps:

1. The first step is the same as that of the RD algorithm. First the
nonbonded forces F 0

z are computed. The result is summed into
both fa and f 0b. Next, each processor computes a fraction N/P of
the bonded interactions. A critical point here is that in a preprocess-
ing step of the run, we should guarantee that each processor knows
all the atom positions needed for the bonded (intramolecular) inter-
actions. This step again scales as N/P.

2. Step (2) is also the same as that of the RD algorithm. The key
difference is that now the total force on atom i is the sum of the
elements in row i of the force matrix minus the sum of the elements in
column i0, where i0 is the permuted position of column i. Thus this
step performs a fold of fa ( f

0
b) within each row (column) of processors

to sum-up these contributions. The important point is that now the
vector fa ( f

0
b) being folded is only of length (N/P1/2) and only the P1/2

elements in one row (column) are participating in the fold. Thus, this
operation scales as N/P1/2 instead of N as in the RD algorithm.
Finally, the two contributions are jointed to yield the total forces fz
( f 0z) on the atoms owned by processor Pz.

3. The processor can now perform the integration for its own atoms,
as in the RD case. This operation scales as N/P.

4. Step (4) shares these updated positions with the processors that
need them for the next time step. As with the fold operation the
processors in each row (column) expand their xa (x0b) subvectors
within the row (column) so that each acquires the entire xa (x0b).
This operation scales again as N/P1/2 instead of N, as in the RD
algorithm.

The FD algorithm, as the RD algorithm, divides the force computation
evenly across all processors. The key point is that the communication and
memory costs in steps (2) and (4) scale as N/P1/2, rather than as N as in the
RD algorithm. When large number of processors are used, this can be very
important. At the same time, although more steps are needed, the FD
algorithm retains the overall simplicity and structure of the RD method.
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3. Domain-Decomposition Method

The third parallel method discussed here for MD simulations of systems
with short-range interactions is domain-decomposition (DD) method
[31,38–40]. In this method the physical simulation box is divided into
small 3D boxes, one for each processor. The partitioning of a simulation
box of length L in a DD algorithm is shown in Fig. 12 (2D projection). Each
processor z owns a sub-box labeled Bz with edge length Lz (Lz¼L/P) and
updates the positions of all atoms within its own box, xz, at each time step.
Atoms are reassigned to new processors as they move through the physical
domain. In order to compute the forces on its atoms, a processor must
know the positions of atoms in nearby boxes (processors), yz. Thus the
communication required is local in contrast to global in the AD and FD
algorithms. As it computes the force fz on its atoms, the processor also
computes the components of forces f nz on the nearby atoms.

A single time step of a DD algorithm consists of the following steps:

1. For each processor Pz, the first step concerns the calculation of

bonded and nonbonded forces for atoms within box Bz. This step

scales with the numbers of atoms N/P per processor.
2. In step (2) the forces gz are shared with the processors owning neigh-

boring boxes. The received forces are summed with the previously

computed fz to create the total force on the atoms owned by the

processor. The amount of data exchanged in this operation (and

consequently the scaling of this step) is a function of the force

cutoff distance and box length.
3. After computing fz, the atomic positions xz are updated. This

operation also scales as N/P.

FIG. 12 Partitioning of the simulation domain in a DD algorithm.
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4. Next the updated positions are communicated to processors owning

neighboring boxes so that all processors can update their yz list of

nearby atoms.
5. Finally, periodically, atoms that have left box Bz are moved into the

appropriate new processor.

The scaling of steps (1) and (3) in the DD algorithm is again the optimal
N/P. The communication cost involved in steps (2), (4), and (5) is more
complicated. It proves to be dependent on the relative value of the cutoff
distance rc in comparison with the subdomain edge length Lz [31]. More
specifically, if Lz>rc the scaling goes as the surface-to-volume ratio
(N/P)2/3. If Lz� rc, then the communication scales as N/P. In practice,
however, in the MD simulations of polymer systems there are several
obstacles to minimizing communication costs in the DD algorithm.

. If Coulombic interactions are present then, because of the 1/r depen-

dence, long cutoffs should be used. Thus Lz<rc and extra commu-

nication is needed in steps (2) and (4). Data from many neighboring

boxes must be exchanged and the communication operation scales as

r3c . Special techniques such as Ewald summation, particle–particle, or

particle–mesh methods can be implemented in parallel [41].
. As atoms move to new processors in step (5) the molecular connec-

tivity information should be exchanged and updated between proces-

sors. This requires extra communication cost, depending on the type

of the bonded interactions.
. If macromolecular systems are simulated uniformly in a simulation

domain, then all boxes have a roughly equal number of atoms (and

surrounding atoms); load-balance occurs. This will not be the case if

the physical domain is nonuniform (e.g., for polymers in vacuum or

with surrounding solvent). In this case it is not trivial to divide the

simulation domain so that each processor has an equal number of

atoms. Sophisticated load-balancing algorithms have been developed

[36] to partition an irregular or nonuniformly dense physical domain,

but the result is subdomains which are irregular in shape, or con-

nected in an irregular fashion to their neighboring boxes. In both

cases the communication operation between processors becomes

more costly. If the physical atom density changes with time, then

the subject of load-balance becomes more problematic. Dynamical

load-balancing schemes are again needed, which require additional

computational time and data transfer.

In general, the DD algorithm is more difficult to integrate to existing
serial codes than the RD and FD ones. This fact, coupled with the specific
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problems for macromolecular systems, has made DD implementations less
common than RD in the simulations of polymer systems. For simulations
with very large systems, however, and in terms of optimal communication
scaling, DD is more advantageous. It allows distribution of the computa-
tional work over a large number of processors, and this explains why it is
nowadays preferred in commercial MD packages such as LAMMPS [41,42],
NAMD [43], and AMBER.

B. Efficiency—Examples

Examples of applications of the above techniques can be found in various
articles that describe parallel MD applications for systems consisting of
many thousands (or even millions) of atoms performed on a large number of
processors [31,40]. Here we focus on the implementation of the parallel
algorithm for the united-atom polyethylene melt MD simulations described
in the previous section [44].

A critical point in any parallel implementation of an existing serial code
is the percentage of the code that can be parallelized. To measure the
performance of parallel implementations of existing sequential algorithms,
the speed-up parameter S is used. This is defined as the ratio of the execution
time of the serial (sequential) algorithm on a single processor to the
execution time of the parallel algorithm running on P processors

S Pð Þ ¼
	s
	p

ð83Þ

where 	s and 	p denote the execution time of the algorithms on one and P

processors, respectively. For a fully parallel code running on P processors,

	p¼ 	s/P and S(P)¼P (linear speed-up).
A typical example where parallel implementation of atomistic MD

algorithms can substantially speed-up code execution is in NTLx�yy�zz
simulations described in Section VI.B (stress relaxation simulations). In this
case the simulated systems are independent and parallelism is straightfor-
ward to achieve by assigning each relaxing configuration to a different node
(processor). Since no data communication between different systems is
required in this case, excellent speed-up should be achieved.

This has been verified with trial runs on a Cray T3E 900 machine at the
Edinburgh Parallel Computing Center (EPCC) using the standard MPI
approach [45]. Figure 13 presents a graph of the speed-up of the (parallel)
code for a number of simulations, each one being executed with a model
system containing 40 chains of C78 PE melt. As was expected, the speed-up
is practically perfect (linear).
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Figure 14 presents the corresponding speed-up graph for a system
containing 24 chains of a C1000 PE melt (a total of 24,000 atoms). The runs
were executed on a shared memory machine (Sun Enterprise 3000/3500
cluster at EPCC) using OpenMP Fortran [46], which is suitable for
developing parallel MD applications in machines with shared memory
architecture. Results are shown from parallel runs with different numbers of
processors, ranging from 1 to 8 (dotted line) [44]. For comparison, the
optimal (linear) speed-up is also shown (solid line). A speed-up of 5.5 is
easily reached by using just eight processors.

C. Parallel Tempering

A trend in modern MD (and MC) simulations is to enhance system
equilibration at low temperatures by the use of novel parallel techniques.
One such technique which has recently attracted considerable attention in
different variations is ‘‘parallel tempering’’ (PT) [47,48]. PT was introduced
in the context of spin glass simulations, but the real efficiency of the method
was demonstrated in a variety of cases, such as in the study of the
conformational properties of complex biological molecules [49,50]. Sugita

FIG. 13 Speed-up graph of the parallelization of the NTLx�yy�zz MD simulation

runs and the optimal (linear) speed-up.
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and Okamoto [51] used a similar method called ‘‘replica exchange molecular
dynamics’’ to simulate protein folding and overcome the multiple-minima
problem. They also used multiple-histogram reweighting techniques to
calculate thermodynamic quantities in a wide temperature range. Recently,
Yamamoto and Kob [52] used the same method to equilibrate a two-
component Lennard-Jones mixture in its supercooled state. They found that
the replica-exchange MC method is 10–100 times more efficient than the
usual canonical molecular dynamics simulation.

PT has also been used successfully to perform ergodic simulations with
Lennard-Jones clusters in the canonical and microcanonical ensembles
[53,54]. Using simulated tempering as well as PT, Irbäck and Sandelin
studied the phase behavior of single homopolymers in a simple hydro-
phobic/hydrophilic off-lattice model [55]. Yan and de Pablo [56] used
multidimensional PT in the context of an expanded grand canonical
ensemble to simulate polymer solutions and blends on a cubic lattice. They
indicated that the new algorithm, which results from the combination of a
biased, open ensemble and PT, performs more efficiently than previously
available techniques. In the context of atomistic simulations PT has been
employed in a recent study by Bedrov and Smith [57] who report parallel

FIG. 14 Speed-up graph of the parallelization of the NVT MD simulation runs

(dotted line). Also shown is the optimal speed-up (solid line).
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tempering molecular dynamics simulations of atomistic 1,4 polybutadiene
polymer melts, in the 323–473K temperature domain at atmospheric
pressure. It has also been employed in the context of MC strategies in
order to access the regime of low temperatures in the simulations of cis-1,4
polyisoprene melts [58]. In both of these works, it was shown that for a
polymer melt well above the glass transition temperature, PT ensures a
thorough sampling of configuration space, which is much more effective
than afforded by conventional MD or MC simulation methods.

In PT, not a single system but an extended ensemble of n systems, labeled
as i¼ 1, . . . ,n, is considered. Each such system is viewed as a copy of the
original system, equilibrated, however, at a different temperature Ti,
i¼ 1, . . . ,n, with T1<T2<� � �<Tn. The partition function of this extended
ensemble is given by

Q ¼
Yn

i¼1

Qi ð84Þ

where Qi denotes the individual partition function of the ith system in its

relevant statistical ensemble. The strategy of simultaneously equilibrating

not a single but a number of systems at different temperatures accelerates the

equilibration of the lowest temperature systems by accepting configurations

from the higher temperature systems, for which the rate of the system equi-

libration is higher. Thus, in the PT method, configurations are swapped

between systems being equilibrated at adjacent temperatures. The accep-

tance probability of a swapping move between system configurations

i and j¼ iþ 1 within a parallel tempering series of NPT simulations is

given by:

acc i, jð Þ ! j, ið Þ½ 	 ¼ min½1, expf�iðUj þ PjVjÞ � �jðUi þ PiViÞ

þ �j Ui þ PiVið Þ þ �j Uj þ PjVj

� �
g	 ð85Þ

¼ min 1, expf��� U þ PVð Þg½ 	

with U, P, and V symbolizing the potential energy function, pressure, and

volume, respectively [58].
For swapping to occur between two systems, it is important that their

UþPV ‘‘instantaneous enthalpy’’ histograms overlap, since only then can
there be a nonzero probability to exchange configurations. In this case, the
success rate of configuration swapping can increase by performing the
simulation with smaller-size systems characterized by larger (UþPV)
fluctuations or with systems whose temperatures are not too wide apart.
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PT is ideal to implement in parallel architectures by assigning each system
to a single node, and by using standard MPI libraries [45] for inter-node
communication.
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7
Configurational Bias Techniques for
Simulation of Complex Fluids

T. S. JAIN and J. J. DE PABLO University of Wisconsin–Madison,
Madison, Wisconsin, U.S.A.

I. INTRODUCTION

Monte Carlo methods offer a useful alternative to Molecular Dynamics
techniques for the study of the equilibrium structure and properties,
including phase behavior, of complex fluids. This is especially true of
systems that exhibit a broad spectrum of characteristic relaxation times; in
such systems, the computational demands required to generate a long
trajectory using Molecular Dynamics methods can be prohibitively large. In
a fluid consisting of long chain molecules, for example, Monte Carlo
techniques can now be used with confidence to determine thermodynamic
properties, provided appropriate techniques are employed.

A generic algorithm for carrying out a Monte Carlo simulation
constructs a weighted walk in the configuration space of the system, and
samples different states according to their equilibrium probability distri-
bution function. This is typically achieved by proposing a small, random
change (about some original state) in one or more degrees of freedom of the
system, which is subsequently accepted or rejected according to specific
probability criteria [1] pertaining to the statistical ensemble of interest.
In a canonical ensemble, for example, random trial displacements of the
particles’ positions would be accepted according to

Pacc ¼ min½1, expð���UÞ	 ð1Þ

where �U is the change in energy in going from one state of the system to

another, and � is the inverse of kBT, with kB being Boltzmann’s constant

and T the temperature.
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For many complex systems, ‘‘blind,’’ or naive random displacements
of the particles’ coordinates can lead to inefficient algorithms. Poor
sampling can in turn yield simulated properties that are not representative
of the system under study. Configurational bias techniques provide a
fairly general means of biasing trial moves in such a way as to guide the
system to favorable states, thereby sampling configuration space more
effectively.

We begin this chapter by providing a few illustrative examples and by
discussing some of the typical problems that can be encountered in a
simulation. We then explain, in general terms, how an arbitrary bias can
be incorporated in a Monte Carlo simulation by introducing the concept
of detailed balance and that of rejection algorithms. We then present a
number of different techniques, all based on biased sampling ideas, that
can facilitate considerably the simulation of complex systems. This is
done in the context of specific examples taken from our own recent work
and that of others. Here we note that the goal of this chapter is not to
provide a review of configurational bias techniques, but rather to intro-
duce these methods to the reader and to present a broad view of how
these ideas can be used in a wide variety of systems to improve sampling
efficiency.

II. SHORTCOMINGS OF METROPOLIS SAMPLING

As mentioned above, the main drawback of a naive, Metropolis-sampling
based simulation is that trial moves are proposed at random, without ever
taking into account the specific nature of the system. Unless the random
trial moves are small, most of them will be rejected. If the trial displacements
are small, trial moves are more likely to be accepted, but successive
configurations end up being highly correlated; the averages obtained from
the resulting trajectories may not provide an accurate description of the
system as a whole. This problem can be particularly acute in molecular
systems, where topological constraints (e.g., as in long polymeric molecules)
cause most random displacements of an entire molecule to be rejected. In the
case of polar systems (e.g., water), a molecule in a new, trial position (and
orientation) must not only conform to its new geometrical environment but,
if the move is to have a reasonable probability of being accepted, the
energetic contributions arising from polar or electrostatic effects must be
comparable to those for the original state.

The above examples serve to illustrate that for complex systems, or
even for simple systems at elevated densities, a naive random sampling of
configuration space does not provide an efficient simulation algorithm. In
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order for the system to ‘‘evolve’’ to different states, it will have to be guided
out of local energy minima by biasing proposed trial moves. These biases
will in general be system specific; they can be designed in such a way
as to influence the position of a molecule, its orientation, or its internal
configuration. Whatever the bias is, however, it must be subsequently
removed in order to generate the desired, correct distribution of states
dictated by the ensemble of interest. The next section discusses how this can
be achieved.

III. DETAILED BALANCE AND CONFIGURATIONAL
BIAS

The condition of detailed balance ensures that the states of the system are
sampled according to the correct probability distribution in the asymptotic
limit, i.e., in the limit of a large number of proposed transitions. The
condition of detailed balance [2] simply ensures that the probability of going
from one state of the system to another is the same in the forward and
reverse directions. To introduce the concept of detailed balance, we denote
the overall state of a system (e.g., the coordinates of all of the particles
for the canonical, NVT ensemble or the coordinates of all of the particles
and the volume of the system for the NPT ensemble) collectively by X. This
probability can be constructed as the product of two probabilities: the
probability of being in a particular state X, and the conditional probability
of moving from that state to another state Y. This can be written as

KðX jYÞ f ðXÞ ¼ KðY jXÞ f ðYÞ ð2Þ

where f(X) is the probability of being in state X and K(X|Y) is the prob-

ability of moving to Y given that the system is at X. The latter probability

can be further decomposed into the product of two factors: the probability

of proposing the transition, T(X|Y), and that of accepting the transition,

A(X|Y). With this separation, Eq. (2) becomes:

AðX jYÞTðX jYÞ f ðXÞ ¼ AðY jXÞTðY jXÞ f ðYÞ ð3Þ

The way in which the moves are proposed is arbitrary; any function T(X|Y)

can be used as long as it is properly normalized, i.e.,

Z
TðX jYÞ dY ¼ 1 ð4Þ
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In order to satisfy detailed balance, the function A(X|Y) must have a specific

form. In the prescription of Metropolis et al. [1], moves are accepted with

probability

AðX jYÞ ¼ min 1,
TðY jXÞ f ðYÞ

TðX jYÞ f ðXÞ

� �
ð5Þ

where ‘‘min(x, y)’’ is used to denote the smaller of its two arguments. It can

be shown that in the limit of a large number of trial moves, the sequence of

states generated by accepting trial moves according to Eq. (5) follows the

desired probability distribution function f.
In the particular case of a naive algorithm, i.e., the case in which

displacements are proposed at random, one can see that the transition
probabilities T(X|Y) and T(Y|X) are the same. For a canonical, NVT
ensemble, the function f takes the form

f ðXÞ ¼
1

Q
expð��UðXÞÞ ð6Þ

where Q is the partition function of the system. For the canonical ensemble

Eq. (5) therefore reduces to Eq. (1).
In a Configurational Bias algorithm, a bias is introduced in the forward

or reverse direction; as a result of the bias, the forward and reverse
transition probabilities are no longer equal to each other. This leads to
additional flexibility in the construction of a trial move, and can result in
considerable improvements of sampling efficiency. This bias is removed in
the acceptance criteria according to Eq. (5), thereby leading to sampling
according to the correct, original equilibrium probability distribution f.

A few illustrative examples on the use of Eq. (5) are discussed in the next
section. In each case, the correct acceptance criteria are arrived at by
establishing the form of the functions T(X|Y) and T(Y|X).

IV. CASE STUDIES

A. Orientational Configurational Bias

Orientational bias moves are useful for the study of fluids that exhibit highly
directional forces. A prime example of such a fluid is water, where strong
hydrogen bonding interactions lead to well defined, relatively stable low-
energy molecular structures. Cracknell et al. [3] were among the first to use
orientational bias for the study of water. A typical orientational bias
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algorithm consists of the following steps:

1. Displace the center of mass of the molecule at random to a new

position
2. If the potential energy can be separated into orientation-dependent

and -independent parts, calculate the orientation independent part,

U 0
new.

3. Generate a set of k orientations OF
¼ {o1, o2, . . . ,ok} about the new

center of mass for the forward move. Calculate the orientation

dependent potential energy Uo(l ) for each orientation in OF. Note

that henceforth, superscripts F and R will be used to denote corre-

sponding quantities for the forward and reverse moves respectively.
4. Evaluate the so-called ‘‘Rosenbluth’’ weight for the new position as

follows

RF
W ¼

Xk

l¼1

exp ��Uoðl Þð Þ ð7Þ

5. Select one orientation j, from the set OF, according to the probability

distribution

pð jÞ ¼
exp ��Uoð jÞð Þ

RF
W

ð8Þ

This implies that

TðX jYÞ ¼ pð jÞ ð9Þ

6. For the reverse move construct a new set of k� 1 orientations

OR
¼ {o1, o2, . . . ,ok� 1} and calculate the orientation dependent

energy of the molecule in its old, or original orientation Uo(k).

Calculate the Rosenbluth weight for the old position:

RR
W ¼

Xk�1

l¼1

exp ��Uoðl Þð Þ þ exp ��UoðkÞð Þ ð10Þ

For the reverse move we have

TðY jXÞ ¼
exp ��UoðkÞð Þ

RR
W

ð11Þ
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7. This leads to the following acceptance criteria for this move

AðX jYÞ ¼ min 1,
RF

W

RR
W

exp ��ðU 0
new �U 0

old Þ
� �� �

ð12Þ

where subscripts old and new are used to denote quantities evaluated

in the original (old) and the trial (new) configurations, respectively.

The above algorithm can be applied to both lattice and continuum
simulations. One important difference, however, must be noted. In the
case of a lattice, all possible trial orientations of the molecule can be
considered explicitly; the sets OF and OR are therefore the same (on a
cubic lattice, a simple dimer or a bond can adopt an orientation along the
coordinate axes, and n¼ 6). In a continuum, a molecule can adopt one of
an infinite number of trial orientations. By restricting the trial orientations
to the finite sets OF and OR, the probability of generating these sets also
enters the transition matrix along with the probability of choosing
a direction from the probability distribution (which itself is a function
of these sets [4]). The acceptance criteria are therefore also a function of
these two sets:

AðX jY ,OF ,ORÞ ¼ min 1,
TðY jXÞPðORÞ f ðYÞ

TðX jYÞPðOF Þ f ðXÞ

	 

ð13Þ

The a priori probabilities, P(OF) and P(OR), of generating these sets of trial

orientations are the same and drop out of the final expression. In order to

satisfy detailed balance, the condition of ‘‘super-detailed balance’’ is

imposed, i.e., detailed balance should be obeyed for every pair of sets

chosen. Hence the acceptance criteria of Eq. (12) generate the true equili-

brium distribution.

1. Continuum Example: Simulation of Water Clay Hydrates

Bulk water has been the subject of a large number of simulation studies.
Water in confined environments has been studied less extensively and, more
importantly to the goals of this chapter, it represents a case where
orientational bias moves are particularly helpful.

The question at hand is to determine the structure of water in the
presence of geometrical constraints, at elevated densities. For concreteness,
we consider an example taken from our studies of clay hydrates. At small
length scales, these hydrates can be viewed as a stack of closely spaced disk-
like particles, having a thickness of a few nanometers. The disks are
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negatively charged, and electroneutrality is maintained by the presence of
compensating cations such as sodium or calcium. The interstitial spaces
between different disks (also called galleries) are occupied by water;
depending on pressure, temperature, and ionic strength, more or less water
can enter the galleries and swell the hydrate. Configurational bias is helpful
because the presence of charged species and strong confinement restrict
considerably the freedom of water molecules.

Figure 1 depicts a typical configuration of a hydrated sodium
montmorillonite clay [5]. The structure and partial charges of the model

FIG. 1 Representative equilibrium configuration of a system comprising two clay

sheets, twelve sodium ions, and interlayer water. Sodium ions are not shown for

clarity.
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clay were taken from Skipper et al. [6]. The interaction parameters for the
clay–water system were based on the TIP4P and MCY models of water
[7–9]. Simulations suggest that the swelling of clays occurs through the
formation of discrete layers of water. The resulting basal spacings as a
function of number of water molecules (Fig. 2) agree with experiment. The
use of a grand canonical formalism, in which water is inserted into the clay
galleries via a configurational bias algorithm, permits calculation of the
water content of the clay (Fig. 3b) as a function of thermodynamic
conditions. The disjoining pressure can also be calculated as a function of
basal distance to provide reliable estimates of the mechanically stable basal
spacings (Fig. 3a), which is important in many applications of clays. In
addition to providing information on the swelling of the clay, these simu-
lations reveal that, in general, the compensating cations (e.g., sodium or
calcium) are fully hydrated (Fig. 4). Arriving at such conclusions on the
basis of conventional Monte Carlo simulations would require considerable
computational resources; using an orientational bias increases efficiency
considerably and lends credence to the results.

B. Configurational Bias (CB) for Articulated or
Polymeric Molecules

Polymer molecules can be studied at various levels of detail, from highly
coarse-grained lattice representations to fully atomistic models. Whatever
the level of detail, however, the connectivity of a complex molecule imposes

FIG. 2 Swelling curve for two clay sheets of sodium montmorillonite from NPzzT

simulations.
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severe constraints on the types of trial moves that can be used to generate
distinct configurations of the system. At liquid-like densities, it is clear that a
random displacement of the center of mass of a molecule (while maintaining
the internal configuration) would lead to overlaps with other molecules, and
a rejection of the trial move.

This problem can be partially alleviated by conducting highly localized
trial moves. On a simple cubic lattice, for example, the conformation of a
linear polymeric molecule can be explored by resorting to ‘‘local’’ trial
moves such as ‘‘kink-jumps,’’ ‘‘end-rotations,’’ or ‘‘crankshafts’’[10]. These
moves typically displace one or two sites of the chain. The so-called
‘‘reptation’’ [11] moves involve displacing an entire chain in a slithering,
snake-like motion along its contour. In a continuum, simple random moves
of individual sites can be used to sample the configuration space of the

FIG. 3 Grand canonical ensemble simulation results at T¼ 300K and chemical

potential �¼�17.408, which is the value that corresponds to TIP4P water in the

bulk (at T¼ 300K and P¼ 1 bar). (a) Normal component of the pressure tensor. (b)

Average number of water molecules per clay.

Configurational Bias Techniques 231



system. These moves, however, are generally insufficient to achieve
appreciable relaxation of the intramolecular conformation of long chain
molecules [12]. Configurational bias ideas can be used to probe energetically
favorable configurations over length scales of several sites, thereby
accelerating the relaxation of configurations.

In its simplest form, a configurational bias trial move for a linear poly-
mer chain involves cutting off a terminal part of the chain, and regrowing
the end sites using an energetic bias (Fig. 5). Such a move is inspired by
the seminal work of Rosenbluth and Rosenbluth [13]. In the canonical
ensemble, the algorithm for this move is as follows [14,15]:

1. Select one end of the chain of length L at random and remove n
interaction sites.

2. Use i to denote the current site to be added back to the chain.
3. Calculate the energy of site i, in k trial positions.

FIG. 4 Distribution of oxygens, hydrogens, and sodium ions inferred from an

NPzzT simulation at Pzz¼ 1 bar and T¼ 300K, using two clay sheets: (a) Nw¼ 40, (b)

Nw¼ 64.
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4. Select one of the trial positions, j, from the probability distribution

given by

p
ð jÞ
i ¼

e��U
ð jÞ
i

Pk
l¼1 e

��Uðl Þ
i

ð14Þ

5. After all the sites have been grown calculate the Rosenbluth weight

of the chain as follows:

RF
W ¼

YL

i¼L�nþ1

Xk

l¼1

e��U
ðl Þ
i ð15Þ

The construction of the move was such that

TðX jYÞ ¼
YL

i¼L�nþ1

p
ð jÞ
i ð16Þ

6. Similarly, to construct the reverse move, a new set of k� 1 orienta-

tions is generated about the old positions, and the Rosenbluth factor

of the original configuration of the molecule, RR
W , is calculated.

7. Substitution into Eq. (5) gives acceptance criteria of the form:

AðX jYÞ ¼ min 1,
RF

W

RR
W

� �
ð17Þ

A number of remarks are in order. First, we note that there is no
restriction on the number of sites that can be cut and regrown for this move.
In fact, an entire chain can be removed and regrown at another point if so

FIG. 5 Illustration of configurational bias move.
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desired (such a ‘‘large’’ trial move, however, would be computationally
demanding and inefficient at elevated densities). Second, we note that a
piece of the chain could be cut from one side of the chain and appended
to the other end of the molecule. Third, it is important to point out that
to arrive at Eq. (17) care must be exercised in the construction of a
hypothetical, reverse move that would lead to the original configuration of
the molecule (the calculation of RR

W ). The question to ask at a given state of
the system is: If we had used a (hypothetical) configurational bias move to
arrive at the precise, current state of the system, what would the Rosenbluth
weight of the molecule in question have been? The answer is of course RR

W ,
but the concept of conducting a hypothetical process to recreate the original
state of the molecule can be difficult to grasp.

The algorithm outlined above is equally applicable to chains on a lattice
or chains in a continuum. In the particular case of models having strong
intramolecular interactions (e.g., bond-stretching or bond-bending poten-
tial-energy functions), minor alterations of this algorithm can be imple-
mented to improve sampling. The k trial orientations for i can be
generated using the Boltzmann distribution arising from the intramolecular
potential [16]

p
ðl Þ
i ¼ Ce��U

bondedðlÞ
i l ¼ 1, 2, . . . , k ð18Þ

where C is a normalization constant. For each of these trial positions, the

external Boltzmann factor arising from intermolecular interactions, external

fields, and intramolecular nonbonded interactions is calculated. The subse-

quent procedure to be followed is the same as above, but the Rosenbluth

weight is calculated from the sum of the external Boltzmann factors. For

the reverse move, a new set of k� 1 orientations is generated and the

Rosenbluth weight is calculated. The arguments of super-detailed balance

presented for the Orientational Bias algorithm in the continuum are applic-

able to the growth of each site. The acceptance criteria reduce to Eq. (17).

1. Expanded Grand Canonical Ensemble Simulation of
Polymer Chains Using Configurational Bias

In the case of long polymer chains, the insertion or deletion of entire
molecules required for grand canonical ensemble simulations is difficult,
even when configurational bias techniques are employed. In that case it is
beneficial to implement configurational bias moves in the context of an
expanded ensemble formalism [17], which essentially allows one to create or
delete a smaller number of sites of a molecule (as opposed to an entire chain)
in each trial move, thereby increasing the likelihood of acceptance. The
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combination of an expanded grand canonical technique with configura-
tional bias can lead to highly effective insertion schemes, even for long chain
molecules at elevated densities [18].

Formally, an expanded grand canonical ensemble can be defined through
the partition function:

� ¼
X1

N¼0

XM

y¼1

QðN, y,V ,TÞ expð yÞ expð�NÞ ð19Þ

where  is the chemical potential, and Q is the canonical partition function
for a system of volume V, temperature T, and N full molecules and one
tagged molecule in state y. States 1 and M correspond to a fully decoupled
and a fully coupled molecule, respectively. The  y’s are arbitrary weighting
factors whose relevance is discussed below. The probability of finding the
system in a configuration described by a particular set ofV,T,N, y is given by

pð yÞ ¼
1

�
expð�NÞ expð��UðN, yÞÞ expð yÞ ð20Þ

The ensemble average probability of finding the system in a state given
by N, y is

pð yÞ
 �

¼
QðN,V ,T , yÞ

�
expð�NÞ expð yÞ ð21Þ

The goal of the algorithm is to sample fluctuations of the number of mole-
cules effectively. If the molecules of interest consist of L sites, this can be
done by allowing a tagged chain to fluctuate in length; at the two extremes
of the spectrum these fluctuations can cause the tagged chain to comprise L
interaction sites and become a real, full chain, or they can cause the tagged
chain to have zero sites and disappear. In order for these sequential insertion
or deletion processes to be effective, the probability with which terminal
states of the tagged chain are visited should be appreciable. This can
be controlled by judicious assignment of the weighting factors appearing
in Eq. (19). The ratio of the probabilities for two states x and y of the system
is given by

pðxÞ
 �

pð yÞ
 � ¼ expð x �  yÞ

QðN,V ,T , xÞ

QðN,V ,T , yÞ

	 

ð22Þ

The logarithm of the ratio of the partition functions, under identical values
of N, V, and T, is equal to the difference in the chemical potential for a
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transition from state x to state y. In order to avoid a ‘‘bottleneck’’ at any

one state, we can prescribe that the probabilities of visiting different states of

the expanded ensemble be equal, which leads to

 x �  y ¼ ���exðx ! yÞ ¼ �exðx,NÞ � �exð y,NÞ ð23Þ

where ex( y,N) denotes the excess chemical potential of a system having N

regular molecules and a tagged chain in state y.
A natural choice for the weights  y is therefore:

 y ¼ �exð y,NÞ ¼ �y�
exðNÞ ¼ �y �� ln

�3Ny

V

� �	 

ð24Þ

where ex(N) is the chemical potential required to insert an entire chain in a

system with N full chains, and Ny is the number of chains in the system

including the tagged chain if it is of nonzero length. The physical signifi-

cance of the weights  y is now apparent: They are chemical potentials for

particular states of the growing chains. The prefactors �y should satisfy

�1¼ 0 and �M¼ 1. These factors can be approximated as �y¼Ly/L for

homonuclear, monodisperse polymer chains, where Ly is the length of the

polymer molecule in state y. This approximation is based on the result that,

in a simple polymer melt, the incremental chemical potential (chemical

potential required to insert one additional site in the chain) of a polymer

chain is relatively insensitive to chain length [19,20]. In other cases, they can

be determined from a preliminary run so that eventually each state is uni-

formly sampled. If the number of states of the system is reduced to two, then

the method reduces to the simple Grand Canonical method.
The algorithm for performing a trial move in an expanded grand

canonical ensemble is as follows:

1. Given that the system is in state x, propose a move to a neighboring

state y.
2. If the transition involves

a. Adding n sites to the chain, then calculate the Rosenbluth weight

of the added sites as discussed previously.
b. Removing n sites from the chain, then calculate the Rosenbluth

weight of the existing sites.
3. Normalize the Rosenbluth weight by dividing by nk, where k is the

number of trial positions proposed.
4. The modified acceptance criteria for the move are

AðX jYÞ ¼ min 1,R�
W expð y �  xÞ

� �
ð25Þ
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where �¼þ 1 if the move involves a growth process and �¼� 1 if

the move involves a deletion.

The choice of intermediate states for the expanded ensemble can vary for
different systems. In certain cases, the interaction of the entire tagged
molecule with the system can be ‘‘turned on’’ through a gradual progression
from an ideal noninteracting state to a fully interacting one [21–23],
characterized by the parameter y.

2. Adsorption of Hard-Core Flexible Chain Polymers
in a Slit-Like Pore

As with the previous example concerning simulations of clay hydrates, a
striking demonstration of the efficiency of an expanded ensemble/confi-
gurational bias algorithm is provided by the study of long chain molecules
confined to narrow slit pores. One of the goals of that work would be to
investigate how polymeric molecules can segregate between a bulk solution
or melt and a porous system. The use of EGCMC can alleviate the problems
associated with the insertion and relaxation of molecules in such a porous
system.

Simulations of hard-core flexible tetramers, hexadecamers, and 100-mers
have been performed by Escobedo and de Pablo [18] to study the equi-
librium segregation of large molecules between a pore and bulk fluid.
The width of the pore was kept constant at 5�. The pore walls were
impenetrable. Figure 6 shows some of the results. It can be seen that, in spite
of the fact that the packing fractions in the pore are relatively high (above
0.4), EGCMC is able to provide reliable estimates of the concentration of
long chains in the pore. For small chains (tetramers), simple molecular
dynamics simulations can be used to follow the actual diffusion of the
molecules into the pore, and in that case good agreement is found between
EGCMC and MD [24].

3. Critical Behavior in Polymer Solutions

The EGCMC formalism has been used extensively to investigate the phase
behavior of chain molecules. One recent application which is particularly
instructive is concerned with the critical scalings of large-molecular weight
polymer solutions [25]. Polymer solutions (e.g., polystyrene in methylcyclo-
hexane) often exhibit an upper critical solution temperature, whose precise
location depends on molecular weight [26]; the nature of that dependence is
of interest for both theoretical and practical considerations. Using EGCMC
simulations of lattice polymers, it has now been possible to show that the
scaling of the critical density with molecular weight follows a scaling relation
of the form �c�MW�, with �¼ 0.5 in the limit of high molecular weights.
Figure 7a shows simulated and experimental phase diagrams for several
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polystyrene solutions. It can be seen that simulations are consistent with
experiment, and that a good mapping of the actual data onto a cubic lattice
model can be achieved. The chain lengths examined in simulations are found
to be comparable with, and in many cases longer than, those considered
in experiments. Most experimental studies had indicated that �¼ 0.38;
simulations of long chains were necessary to show that a gradual crossover
occurs from 0.38 to 0.5 (Fig. 7b), and that it occurs at large molecu-
lar weights (polystyrene of about MW� 1,000,000). These findings are
consistent with theoretical arguments [27], and serve to illustrate that even
for large molecules Monte Carlo simulations can be a useful complement to
experimental data, provided appropriate techniques are employed.

C. Topological Configurational Bias

The methods described so far for study of polymeric molecules rely on
the presence of end sites. For long chain molecules or for cyclic or ring
molecules, they are of little use. It turns out that in such cases it is also
possible to construct configurational-bias based algorithms in which the
source of the bias is not only the potential energy of individual sites in
the new, trial position, but also a connectivity constraint. Topological

FIG. 6 Simulated adsorption isotherms for hard-sphere chains of 4, 16, and 100

sites in a slit-like pore. Reference refers to [24].
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configurational bias moves are similar in spirit, but different in implemen-
tation, to concerted rotation (CONROT) moves [28,29], which are not
elaborated upon here.

In a ‘‘topological’’ configurational bias move, an arbitrary number of
inner sites of a chain are excised and regrown by taking into account
energetic biases, as well as geometric (topology) considerations that ensure
that connectivity is preserved. Detailed balance is satisfied by determining
the number of fixed-end random walks that exist between two sites of the
molecule. While different schemes may vary in the way in which the number
of random walks, N( j), is estimated, the general idea remains the same.
We begin by discussing the implementation on a lattice, and then describe
several more recent methods suitable for a continuum.

1. Lattice Case

An algorithm to perform such a move on a cubic lattice [30] could be:

1. A piece of the chain consisting of n sites is cut starting from site s of

the chain. The sites to be regrown are numbered from 1 to n.
2. The current site to be regrown is labelled i.
3. Each of the possible k trial orientations for site i are visited and the

following quantity is calculated:

Nðl Þði, nþ 1Þe��U
ðl Þ
i ð26Þ

where N(l )(i, nþ 1) is the number of random walks (this quantity is

discussed below) from site i in trial position l to site nþ 1, and U
ðl Þ
i is

the energy of site i in trial position l.
4. A position, j, is selected for site i from the following probability

distribution:

p
ð jÞ
i ¼

Nð jÞði, nþ 1Þe��U
ð jÞ
i

Pk
l¼1 N

ðl Þði, nþ 1Þe��U
ðl Þ
i

ð27Þ

5. The modified Rosenbluth weight and Random Walk weight for the

chain are constructed as follows:

RF
W ¼

Yn

i¼1

Xk

l¼1

Nðl Þði, nþ 1Þe��U
ðl Þ
i ð28Þ

GF
RW ¼

Yn

i¼1

Nð jÞði, nþ 1Þ ð29Þ
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6. To estimate the weight of the original configuration, the same pro-

cedure is repeated for the original positions of the sites that were

excised.
7. The modified acceptance criteria for this move then take the form

AðXjYÞ ¼ min 1,
RF

WGR
RW

RR
WGF

RW

� �
ð30Þ

In the case of a lattice model, the expression for N( j) is given by [30]:

Nð jÞði,sþnÞ¼
XN�� �yy

�xx¼0

XN�

�yy¼0

Ns!

�xx!ð �xxþ�xÞ! �yy!ð �yyþ�yÞ!ðN�� �xx� �yyÞ!ðNþ� �xx� �yyÞ!

ð31Þ

N� ¼
ðNs��x��y��zÞ

2
ð32Þ

Nþ ¼
ðNs��x��yþ�zÞ

2
ð33Þ

where �x¼ x� �xx, �y¼ y� �yy, �z¼ z� �zz are the difference in the coordi-
nates between site i and site nþ 1, Ns is the number of steps, n� iþ 1, along
the chain between sites i and nþ 1, and x, y, z are the number of steps along
the positive coordinate axes and �xx, �yy, �zz are the steps along the negative
coordinate axes.

In order to assess the performance of this algorithm, we have studied the
decay of the bond autocorrelation function as a function of CPU time. The
bond autocorrelation function is defined by

bðtÞ ¼
h ~BBðtÞ � ~BBð0Þi

h ~BBð0Þ � ~BBð0Þi
ð34Þ

where ~BBðtÞ denotes the vector along a bond of the molecule at time t.
Figure 8 shows the bond autocorrelation function corresponding to a simu-
lation for cyclic chains consisting of 100 sites, in which only local moves
(kink-jump and crankshaft) were employed, and one in which topological
configurational bias moves were implemented. One can clearly see that the
decay in the latter case is much faster, thereby resulting in a much more
efficient simulation algorithm. In the case of ring molecules, care must
be exercised in the selection of the number of sites to be cut and regrown.
This is because the topological nature of the molecule can change (e.g., from
unknotted to knotted) if a large number of sites are selected. In the case
of linear chains this restriction is irrelevant and, in principle, any number
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of sites can be used in an individual trial move. It turns out that an optimum
number of sites can be identified because the computational expense of the
trial move increases with the number of cut sites. This point is illustrated by
Fig. 9, which depicts the decay of the bond autocorrelation function for
linear chains of 500 sites on a lattice. For a fixed amount of CPU time, the

FIG. 7 (a) Phase diagram for solutions of polystyrene in methylcyclohexane. The

lines correspond to results of expanded ensemble simulations, and the symbols refer

to experimental data [26]. (b) Scaling of the critical volume fraction with chain

length. The squares and the circles correspond to literature simulation data [49,50];

the diamonds and the triangles correspond to expanded ensemble simulations for a

simple cubic lattice and for a bond fluctuation model, respectively [25].
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decay of the bond autocorrelation function is plotted as a function of the

number of sites used in the topological configurational bias move. As indi-

cated above, there is a clear optimum number of sites for the move. These

simulations correspond to thin polymer films at relatively high volume frac-

tions (�� 0.95); they are of relevance for the study of glass transition phe-

nomena in polymeric films, where the presence of free interfaces introduces

pronounced departures from bulk behavior [31]. Recently, configurational-

bias techniques have also been combined with a density of states formalism

to calculate thermodynamic properties over a wide range of temperature

from a single simulation [32].

2. Continuum Case

In the continuum case, various strategies can be used to achieve closure. In
the case of Extended continuum configurational bias (ECCB) Monte Carlo
[33], a simple geometric constraint is employed to ensure that the chain is
correctly closed. Since the geometric constraint does not take intramolecular

FIG. 8 Rate of decay of the bond autocorrelation function (b(t)) for cyclic (ring)

chains of 100 sites, using local moves and topological configurational bias moves, as

a function of CPU time.
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interactions into account, the ECCB method is efficient for molecules with
relatively flexible backbones. This method is described in some detail below.

1. Select a chain at random to be moved.
2. Select two sites, a and b, at random within the chain such that the

number of sites between them (including the two chosen sites), n, is
less than or equal to some specified maximum Nmax. The number of
sites to be cut and regrown for a particular move is n.

3. If one of the sites happens to be an end site, then the usual config-
urational bias move is performed.
a. If n¼ 1, then a simple crankshaft move is carried out.
b. If the current site to be appended is i, then lower and upper

bounds exist for the angles, �min and �max. These can be deter-
mined from the line joining sites i and i�1 with the line joining

FIG. 9 Decay of the bond autocorrelation function (b(t)) for linear chains of

length 500 as a function of number of sites cut and regrown, for a given amount of

CPU time.
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i�1 and b, where b is the first uncut site on the side of the cut

opposite to the growing end (see Fig. 10).
4. Once the bounds for � have been established, several orientations of

the bond vector bi, i�1 are sampled according to the usual configura-

tional bias method, and one is selected from the probability distribu-

tion given by Eq. (14).
5. The same procedure is repeated for the reverse move. There is a

temporary change in degrees of freedom used to generate the new

configuration because of the restricted sampling of � (Fig. 11). In

order to correct for this, the Jacobian determinants must be incor-

porated into the acceptance criteria. The acceptance criteria for this

move become

AðXjYÞ ¼ min 1,
RF

WJF

RR
WJR

� �
ð35Þ

where JF and JR are the Jacobian determinants for the forward and
reverse moves, respectively. For a detailed explanation on the calcu-
lation of the bound of � and the Jacobians readers are referred to [33].

FIG. 10 Limiting cases for the bounds of the � angle for the two regrowing sites

(1 and 2) involved in an extended configurational bias move (ECCB). (a) Neighbor

sites a and b in the configuration of maximum separation, (b) and (c) neighbor sites a

and b in the configuration of closest approach.
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This algorithm can also be extended to simulation of branched chains and
cross-linked structures [34]. In some cases, it is useful to target or restrict
ECCB moves to a particular region of space. If such a region is spherical, for
example, sites within that sphere can be regrown into new positions by using
ECCB (if they are inner sites) or configurational bias (if they are terminal or
end sites). This approach has been referred to as the HOLE method in the
literature (Fig. 12). Figure 13 shows the bond and end-to-end relaxation
functions for a system of 16-mer hard spheres.

Another strategy for topological bias moves involves the use of an
analytical probability distribution function (for ideal, non-self-avoiding
random walks) to bias the choice of trial orientations [4,35]. Again, this
algorithm is applicable to relatively flexible molecules.

For molecules with strong intramolecular interactions, inner sites can be
regrown using the concerted rotation (CONROT) method [28,29]. This
method is particularly useful for molecular models that exhibit rigid
constraints (e.g., rigid bonds or rigid angles). It involves cutting a trimer
from the inner sites of the chain. Before the trimer is regrown, either one
or both of the sites adjacent to the ends of the trimer are displaced.
The problem of regrowing the trimer is handled by solving a system of
simultaneous equations [28,29,36].

Configurational Bias methods have now also been used to simulate
molecules with strong intramolecular potentials [37,38]; in that case, it is
necessary to incorporate such potentials in the biasing factors used to
generate trial orientations. If the trial orientations are proposed at random,
the efficiency of the trial move is low, due to high intramolecular energies

FIG. 11 The entire spherical sampling space is not accessible for selection of the

trial orientation of site 1, because the � angle must lie within the bounds [�min, �max]

(see Fig. 10). Note that there are no bounds on the spherical angle � for the bond

vector.
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for a significant number of the proposed positions. The use of intramo-
lecular potentials along with the probability distribution for distances
between sites has been successful in biasing the random walk and achieving
closure [37]. A preliminary run is necessary in order to generate a
probability distribution for site separations as a function of site spacing
along the chain. A brief outline of the implementation as proposed by
Escobedo and Chen is provided below:

1. A chain is selected at random, and part of the chain consisting of n

sites is cut, starting from site s of the chain. The sites to be regrown

are numbered from 1 to n.
2. Assume that the current site to be regrown is i.
3. Select k trial orientations for i, using the Boltzmann distribution

arising from the intramolecular potential

p
ðl Þ
i ¼ Ce��U

bondedðl Þ
i l ¼ 1, 2, . . . , k ð36Þ

FIG. 12 Illustration of the HOLE method. (a) Local configuration before the

move; (b) configuration after the move.
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FIG. 13 Correlation functions for crankshaft, Configurational bias, ECCB-3,

and HOLE moves for a system of 16-mer hard spheres at �¼ 0.3. (a) Bond

autocorrelation function (b(t)); (b) end-to-end autocorrelation function (e(t)).
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where C is a normalization constant. Contributions to U
bondedðl Þ
i can

result from bond-stretching, bond-bending or bond-torsion.
4. The contribution to a site’s energy arising from external interactions

and intramolecular nonbonded interactions is calculated for each

trial position; one position, j, is selected from the following probabil-

ity distribution:

p
ð jÞ
i ¼

Po
i ðrj, nþ1Þe

��Uext
i ð jÞ

wi
ð37Þ

wi ¼
Xk

l¼1

Po
i ðrl, nþ1Þe

��Uext
i ðl Þ ð38Þ

where rl, nþ 1 is the distance from site i in trial position l to site nþ 1,
and Po

i ðrl, nþ1Þ is the separation probability distribution for two sites
that are n� iþ 1 bonds apart along the chain.

5. This process is repeated for all but the last two sites, n� 1 and n,

which are grown using a look-ahead strategy (Fig. 14). Two such

strategies, RCB1 and RCB2, have been considered by Escobedo

and Chen [37].
a. RCB1

i. Since the bending angle, �n (formed by n� 1, n, and nþ 1),

and the Jacobian factor, Jn� 1, of the crankshaft rotation of

site n are known as soon as the trial position for n� 1 is

known, they can be used to bias the selection of the position

for site n� 1 out of kn� 1 trial positions according to

p
ð jÞ
n�1 ¼

e��U
ext
n�1

ð jÞe��U
bend ð�ð jÞn ÞJ

ð jÞ
n�1

wn�1
ð39Þ

wn�1 ¼
Xkn�1

l¼1

e��U
ext
n�1

ðl Þe��U
bend ð�ðl Þn ÞJ

ðl Þ
n�1 ð40Þ

ii. Having grown site n� 1, site n can be selected by the usual

configurational bias technique out of a set of kn trial posi-

tions according to Eq. (14).
iii. After all the sites have been grown, the Rosenbluth weight

for the entire chain is constructed:

RF
W ¼

Yn

i¼1

wi ð41Þ
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iv. The modified acceptance criteria for this move are

AðX jYÞ ¼ min 1,
RF

W

Qn�2
i¼1 P

o
i ðrjnþ1Þ

� �R

RR
W

Qn�2
i¼1 Po

i ðrjnþ1Þ

� �F

2

64

3

75 ð42Þ

b. RCB2

i. In this variation, instead of selecting one trial position for

n� 1, a total of m final trial positions are selected from

mkn� 1 trial choices, using the following probability distri-

bution:

p
ð jÞ
n�1, t ¼

e��U
bend ð�ð jÞn, tÞJ

ð jÞ
n�1, t

wn�1, t
t ¼ 1, 2, . . . ,m ð43Þ

wn�1, t ¼
Xkn�1

l¼1

e��U
bend ð�ðl Þn, tÞJ

ðl Þ
n�1, t ð44Þ

where subscript index t runs over the m sets of trial

positions.
ii. For each final trial position of n� 1, jn� 1, t , one trial

position of n is chosen from kn trial choices, just as in (a).

This gives a set of Rosenbluth weights, wn,t, and a set of final

trial orientations, jn,t.

FIG. 14 Illustration and notation of the reconstruction process of the last two sites

(n¼ 1 and n) of an ECCB move for a chain that exhibits stiff intramolecular energy

functions [37].
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iii. Out of the m position pairs of sites n� 1 and n, one pair, j,

is finally selected from the probability distribution:

p
ð jÞ
n�1, n ¼

e��U
ext
n�1

ð jÞe��U
ext
n ð jÞwn�1, jwn, j

wn, n�1
ð45Þ

wn, n�1 ¼
Xm

t¼1

e��U
ext
n�1

ðtÞe��U
ext
n ðtÞwn�1, twn, t ð46Þ

iv. After all the sites have been grown, the Rosenbluth weight

for the entire chain is constructed:

RF
W ¼ wn, n�1

Yn�2

i¼1

wi ð47Þ

v. The acceptance criteria are the same as given by Eq. (42).

3. Simulation of Linear and Cyclic Alkanes Using
Configurational Bias Approach

Escobedo and Chen [37] have used this technique to study linear and cyclic
alkanes (using a united-atom force field [39]). In order to test the efficiency
of these algorithms, a model system consisting of one isolated linear alkane
molecule at T¼ 400K was simulated. A ‘‘half-chain end-to-end vector’’
autocorrelation function was used as a measure of the relaxation of the
chain. This function was measured in the simulation as a function of number
of sites regrowing in every RCB2 move (Fig. 15). The dependence of the
autocorrelation function on the choice of Po

i ðrl, nþ1Þ was considered (Fig. 16).
A comparison between RCB1, RCB2, and simple crankshaft moves was also
considered (Fig. 17). One can see that the improvement over the simple
crankshaft move is significant for both the RCB1 and RCB2 moves. The
optimum number of sites to be regrown depends on the system conditions,
but in general the improvements tend to be large for the first sites that are
excised, and they taper off gradually.

D. Parallel Tempering and Configurational Bias

A problem that pervades simulations of complex fluids, particularly at
elevated densities and low temperatures (e.g., near the glass transition
temperature), is that the system gets trapped in local energy minima from
which it is unable to escape. In such cases Configurational Bias moves
are often insufficient, and additional ‘‘tricks’’ are necessary to improve
sampling. One class of methods that is particularly helpful and easy to
implement is provided by ‘‘Parallel Tempering’’ techniques.
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FIG. 16 Half-chain end-to-end correlation function (h(t)) for RCB1 for an isolated

C30 molecule at 250K for 4 and 8 site moves. Three different forms of Po
i ðrl, nþ1Þ are

used: the Continuous Unperturbed Chain (CUC) Po
i ðrl, nþ1Þ (dash-dot line), the

uniform Po
i ðrl, nþ1Þ implied by conventional ECCB moves (dashed line), and Po

i ðrl, nþ1Þ

for a fully flexible Guassian chain (solid line).

FIG. 15 Half-chain end-to-end correlation function (h(t)) for RCB2, regrowing

exclusively 2, 4, 6, or 8 sites in a system consisting of one isolated C30 chain at 400K.
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Just as configurational bias moves, parallel tempering methods come in a
number of flavors. We begin by discussing briefly Parallel Tempering in one
dimension, and we then proceed to discuss its implementation in several
dimensions or in combination with expanded ensemble ideas.

In parallel tempering, a series of noninteracting replicas of the system
are simulated simultaneously. The temperature of each replica of the system
is different. The partition function of the overall system is given by

Q ¼
YNr

i¼1

QiðN,V ,TiÞ ð48Þ

where Nr denotes the number of replicas and Ti denotes the temperature of
replica i. In addition to the equilibration moves carried out in the canonical
ensemble (configurational bias moves, local moves, etc.), the identity of two
replicas is also allowed to mutate along the T axis (Fig. 18). For any two
replicas, i and j, the probability of accepting such a mutation (or swap) is
given by

AðX jYÞ ¼ min½1, expð��i, j�Ui, jÞ	 ð49Þ

where ��i, j is the difference in the inverse temperatures of the two replicas
and �Ui, j is the difference in the potential energies. It can be seen from
Eq. (49) that the trial move will have a reasonable chance of being accepted
only if the energy distributions for the two replicas overlap to some extent.

FIG. 17 Half-chain end-to-end correlation function (h(t)) for crankshaft, RCB1,

and RCB2 moves for an isolated linear C70 molecule at 400K. The number of sites

regrown ranged from 2 to 10.
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A preliminary run may therefore be necessary to determine appropriate

temperature spacings between replicas. Parallel tempering in temperature

has been used to study simple glasses and isolated biological molecules

[40–43]. It has also been used in conjunction with topological configura-
tional bias to study linear and cyclic alkanes [37].

1. Multidimensional and Hyperparallel Parallel Tempering

In many cases Parallel Tempering in temperature does not provide
significant improvements over a conventional, one-replica simulation. It
turns out that the performance of parallel tempering can be improved
considerably by considering several dimensions, e.g., replicas having
different T and  or different T and P. We refer to such methods as
Multidimensional Parallel Tempering. In a grand canonical ensemble, for
example, different replicas i can have different values of chemical potential
i and temperature Ti; configuration swaps between any two replicas are
accepted with probability:

Pacc ¼ min½1, expð��i, j�Ui, j ��Ni, j�ð�ÞijÞ	 ð50Þ

where ��i, j¼ �i� �j, �Ui, j¼Ui�Uj, �Ni, j¼Ni�Nj and �(�)i, j¼ (�)i�
(�)j. Multidimensional Parallel Tempering has been employed successfully

to study the phase behavior of electrolytes at low temperatures [44,45]. It has

also been used to investigate the behavior of glass-forming disaccharides
near the glass transition [46].

In the particular case of polymeric molecules, it is also possible to
combine multidimensional parallel tempering and expanded ensemble
ideas into a powerful technique, which we call hyperparallel tempering
(HPTMC) [47]. In that method, a mutation along the number of sites of a
tagged chain is also considered (see Section IV.B.1); Fig. 19 provides a
schematic representation of the algorithm. Two of the axes refer to replicas
having different chemical potentials or different temperatures. A third axis
or dimension is used to denote the fact that, in each replica of the system,

FIG. 18 Illustration of Parallel Tempering Monte Carlo.
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one can have Ni full molecules and one tagged molecule of length y (recall
Section IV.B.1). When two replicas exchange configuration, they also swap
a tagged chain. Within each of the replicas, however, the tagged chain is
allowed to grow or shrink according to a conventional expanded ensemble
formalism.

This technique has been applied to the study of phase behavior of long
polymeric molecules. Figure 20 compares the performance of various
simulation techniques to that of Hyperparallel Tempering Monte Carlo. It
can be seen that the decay of the end-to-end autocorrelation function for
HPTMC is considerably faster than that for conventional canonical or
grand canonical simulations. However, it is important to point out that
much of the performance of that method is due to the efficiency of the
underlying moves, namely the expanded ensemble configurational bias
gradual growth or deletion of sections of the molecules.

V. FUTURE DIRECTIONS

Configurational bias trial moves offer significant improvements in efficiency
over conventional, blind trial moves. As discussed throughout this chapter,
local random moves usually provide small displacements of the system,
whereas biased moves can efficiently displace several sites per move while

FIG. 19 Schematic representation of the implementation of hyperparallel Monte

Carlo. Each box in the figure represents a distinct replica of the system; these replicas

are simulated simultaneously in a single run. In addition to traditional Monte Carlo

trial moves within each replica, distinct replicas can (1) change their state variables

in the expanded dimension and (2) exchange or swap configuration with each other,

thereby visiting different values of T and .

254 Jain and de Pablo



preserving a high acceptance rate. As illustrated by the variety of systems
and moves discussed here, configurational bias techniques offer consider-
able flexibility; new implementations will surely be proposed as researchers
continue to explore increasingly complex systems.

In the particular context of polymeric molecules, recent developments
with end-bridging and double-bridging moves [48] indicate that a powerful
algorithm could be arrived at by using topological configurational bias
to cut simultaneously several chains, and to reconnect them in different
ways, thereby achieving considerable molecular relaxation in just a few
moves. The details of such moves remain to be worked out, particularly
for the more complex case of highly branched molecules. But it is a
direction in which we are likely to see interesting new developments in the
near future.
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8
Molecular Simulations
of Charged Polymers

ANDREY V. DOBRYNIN University of Connecticut, Storrs,
Connecticut, U.S.A.

I. INTRODUCTION

Considerable theoretical and experimental work during the past half century
has been devoted to charged polymers [1–9]—macromolecules with ion-
izable groups. Under appropriate conditions, such as in aqueous solutions,
these groups dissociate, leaving ions on chains and counterions in solutions.
If the charges on the polymers are all positive or all negative, these polymers
are called polyelectrolytes. Common polyelectrolytes are polyacrylic and
methacrylic acids and their salts, cellulose derivatives, sulfonated polysty-
rene, DNA and other polyacids and polybases. If after dissociation of the
charged groups the polymers carry both positive and negative charges, they
are called polyampholytes. Examples of polyampholytes include proteins,
for example gelatin, and synthetic copolymers made of monomers with
acidic and basic groups. If these groups are weak acids or bases, the net
charge of polyampholytes can be changed by varying the pH of aqueous
solutions and at high charge asymmetry these polymers demonstrate
polyelectrolyte-like behavior.

Despite these extensive efforts we are still far away from a complete
understanding of the behavior of polymeric systems with electrostatic
interactions. The main factor hindering our progress is the long-range
nature of the Coulombic forces between charged species. At this stage
computer simulations have proven to be a valuable tool for the elucidation
of structural and physical properties of charged systems as well as for
verification of old and creation of new theoretical models. The explosive
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growth of computer power over the last few years has led to development of
large scale simulation techniques whose goal is to reproduce and simulate
processes on the molecular level. It is possible now to simulate thousands of
atoms over nanosecond time scales. But such detailed molecular simulations
are still impractical for the simulation of real polymeric systems, for which
typical time scales to reach thermal equilibrium vary from microseconds to
seconds.

The coarse-grained models of polymers (see [10] for a review) allow the
extension of molecular simulations beyond nanosecond time scales by
leaving aside the atomistic details of the solvent and polymers and
concentrating on their macroscopic properties. In this approach the mono-
mers are not chemical monomers, but rather groups of chemical units, and
solvent molecules are represented by a continuum with macroscopic phys-
ical properties. Figure 1 shows an example of such mapping by presenting
the snapshots of sodium polystyrene sulfonate in water and its representa-
tion as a coarse-grained chain with counterions in a continuum with
macroscopic physical properties. Of course, the challenging part is to relate
the parameters of the coarse-grained models with the real atomistic ones by
calculating the parameters of intermolecular and intramolecular coarse-
grained potentials [10].

FIG. 1 Illustration of the mapping procedure of sodium polystyrene sulfonate

(NaPSS) in water where the repeat units of the NaPSS chain are replaced by

spherical monomers connected by springs and the solvent molecules are represented

by a continuum with dielectric constant ".
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II. COMPUTER SIMULATIONS OF
SINGLE CHAIN PROPERTIES

A. Models and Methods

We begin our discussion by considering the conformation of a single chain
in solution under the influence of the long-range electrostatic and short-
range Ush (|ri� rj|) monomer–monomer interactions. The potential energy
U({ri}) of the charged polymer chain of the degree of polymerization N in
a solvent with dielectric permittivity " with monomers located at positions
r1, r2, . . . , rN and carrying the charges eq1, eq2, . . . , eqN is*

U frigð Þ ¼
X

bond

Ubond frigð Þ

þ
X

i

X

i<j

kBTlB
qiqj

ri � rj
�� �� exp �� ri � rj

�� ��� �
þUsh ri � rj

�� ��� �
 !

ð1Þ

where Ubond ({ri}) is the bond potential describing the effect of the connec-

tivity of monomers into the polymer chain, kB is the Boltzmann constant, T

is the absolute temperature, and lB is the Bjerrum length (lB¼ e2/"kBT,
y the

length scale at which the electrostatic interaction between two elementary

charges e in the medium with dielectric permittivity " is of the order of the

thermal energy kBT). The electrostatic interactions between free ions and

charged monomers are not explicitly included in the chain potential energy;

instead, their effect is treated through the dependence of the inverse

Debye–Huckel screening length � on the electrolyte concentration

�2 ¼ 4�lB
X

s

q2s cs ð2Þ

where cs is the concentration of small ions of type s and qs is their valence.
As discussed in previous chapters, the choice of the bond Ubond ({ri}) and

short-range Ush(|ri� rj|) potential varies from simulation to simulation. Off-
lattice models, for example, have used the harmonic-spring potential, the
FENE (finitely extendable, nonlinear elastic) potential, the rigid bond with
fixed valence angles, and the freely-jointed chain model to represent the
bonding interaction between adjacent monomers. For the short-range

*CGS units are used in this chapter, unless specifically indicated.
yIn SI units it is lB¼ e2/(4�""0kBT).
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monomer–monomer interactions the Lennard-Jones and hard-core type
potentials are commonly used in simulations of charged polymers.

To sample the chain configurational space one can perform canonical
Monte Carlo (MC) [11–16] or molecular dynamics (MD) simulations
[15–17]; see also the discussions in previous chapters in this book. The
Monte Carlo method involves generation of successive ‘‘trial’’ chain
configurations which are then accepted or rejected with the correct statistical
weight. The trial configurations are generated by randomly modifying the
monomer positions. For example, a new chain conformation may be
obtained by reptation [18,19] and pivot [20–22] moves or by local moves
randomly displacing a single monomer. In reptation or the ‘‘slithering
snake’’ algorithm one chooses an end of the chain at random and transfers
a monomer from this end to other end. Applied to an N-bead chain this
method leads to a statistically independent configuration after N2 attempts
to exchange the ends of a chain. In the pivot algorithm a new chain
configuration is obtained by rotating a part of the chain around a randomly
selected bond by a randomly selected angle. The pivot moves are very
radical: only after a few accepted moves may a chain reach an essentially
new configuration. (For lattice models of a chain the moves have to be
modified to preserve the lattice structure.)

To decide whether or not a trial conformation should be accepted or
rejected, the change in energy, �U, associated with the move is calculated,
and the move is accepted or rejected according to the Metropolis algorithm
with probability

acc old ! newð Þ ¼ min 1, exp �
�U

kBT

� �	 

ð3Þ

If the new conformation is rejected then the current configuration is
recounted in the averaging process.

The choice of one or another type of move or combination of moves is
dictated by the most efficient sampling of the configurational space of the
chain during the course of simulations. The art is to find their optimal
combination. Below we give a theoretical estimate of the computational
efficiency for different types of moves defined as the CPU time required
to generate a new statistically independent chain configuration. The less
computationally efficient are the local moves, when a new chain con-
figuration is generated by random displacement of a single monomer. This
MC scheme describes the Verdier–Stockmayer dynamics [25] of a polymer
chain, for which a chain renews its configuration after N2 successful moves
per monomer. Since the monomers are chosen at random, each monomer
moves on average after N elementary steps. This leads to an increase of
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relaxation time 	 with the number of monomers on a chain N as 	 ’ N3.
After each move one has to recalculate the electrostatic interactions with
N�1 monomers, assuming that each monomer is charged and Coulomb
interactions are unscreened. The total CPU time required for chain
relaxation will grow with the number of monomers N as 	flip ’ 	N ’ N4.
For pivot moves with acceptance probability pacc, the new configuration is
reached after 	 ’ p�1

acc attempts. After each pivot move, a part of a chain
with, say, n monomers is displaced with respect to the remaining N� n
monomers. And (N� n) n new pairs are created for which the electrostatic
interactions have to be reevaluated. Since the number of new pairs cannot
exceed N2/4, the CPU time for pivot moves cannot increase faster than
	pivot�N2/pacc. It is important to point out that the efficiency of the pivot
moves is strongly dependent on the acceptance probability pacc. In a system
with a high acceptance rate, pacc’ 1, the CPU time may grow as N2.
However, for low acceptance probability it can grow faster than N3. For
reptation moves the CPU time grows as 	rep’N3, because a chain renews its
configuration after N2 steps and at each step one has to recalculate the
electrostatic interactions with N� 1 monomers. Examples of computational
efficiency of different types of moves for a polyelectrolyte chain are shown
in Fig. 2.

Molecular dynamics simulations [16,17] are based on numerical integra-
tion of the equations of motion of the system. During the course of
simulation the system moves in phase space generating new chain

FIG. 2 Variation of the total energy of the system Etot versus the number of MC

steps for different types of moves. (From Ref. [69].)
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conformations along its physical trajectory determined by the equations of
motion. The equation of motion of the ith monomer with mass m is

m€rriðtÞ ¼ �riU frjðtÞg
� �

�m�_rriðtÞ þ FiðtÞ ð4Þ

where the first term describes the deterministic forces between monomers
and the last two terms implicitly take into account the effect of the solvent
by coupling the system to a Langevin thermostat [23,24] which maintains a
constant average temperature of the system. In Eq. (4) the parameter � is
the friction coefficient and Fi(t) is a random force with zero average value
FiðtÞ
 �

and delta-functional time correlations

hFiðtÞFjðt
0Þi ¼ 6kBTm��ij� t� t0ð Þ ð5Þ

The MD simulation coupled with the Langevin thermostat simulates
Rouse dynamics of a polymer chain. The Rouse relaxation time scales with
the number of monomers on a chain as N2 and it is necessary to perform at
least cN2 (where constant c depends on the value of the integration time step
�t) integrations of the equation of motion for a chain to completely renew
its configuration. During each time step, �t, N(N� 1)/2 calculations of
forces between monomers are performed. The CPU time required to do cN2

integrations of the equations of motion will grow with the number of
monomers on a chain as 	MD ’ N4. Thus, the computational efficiency of
MD simulation has the same N dependence as a MC simulation with only
local moves.

In a salt solution the electrostatic interactions are exponentially screened
over distances larger than the Debye screening length. In this case the
simulations may be significantly speed up by considering electrostatic
interactions between only those monomers that are within a cutoff distance
rcut. The choice of the cutoff distance is dictated by the desired accuracy.

After generating a set of chain conformations during the course of MC or
MD simulations, the analysis of the effect of electrostatic and short-range
interactions on global properties of a polymer chain can be achieved by
looking at the mean square end-to-end distance hR2

ei ¼ hðrN � r1Þ
2
i and the

mean square radius of gyration hR2
gi ¼ N�2

P
i< j hðri � rjÞ

2
i.

The internal structure of a polyelectrolyte chain can be obtained from the
chain structure factor, defined as

SðqÞ ¼ N�1
XN

j¼1

exp iq � rj
� �

�����

�����

2* +
ð6Þ

where q is the wave vector.
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B. Polyelectrolyte Chain in h and Good Solvents

1. Chain Conformation in Dilute Salt-Free Solutions

In a �-solvent the short-range interactions cancel to zero and only bonded
and electrostatic potentials are present in the chain potential energy U({ri}),
Eq. (1). In spite of its simplicity, this model already contains two important
ingredients responsible for the unique behavior of polyelectrolytes—chain
connectivity and the long-range electrostatic interactions. In salt-free
solutions (�!0) the size L0 of a polyelectrolyte chain with fN charged
monomers can be estimated from a simple Flory argument by balancing the
chain elastic energy kBTL

2
0=ðb

2NÞ (here b is the bond length) and
electrostatic energy kBTlB f

2N2 ln (L0) /L0; the logarithm in the electrostatic
energy is accounting for chain elongation. This leads to the well known
result that in salt-free solutions the chain size

L0 � b uf 2
� �1=3

N ln1=3ðNÞ ð7Þ

is proportional to the number of monomers N with weak logarithmic cor-

rection. In Eq. (7) u is the ratio of the Bjerrum length lB to the bond length b.

The parameter uf 2 is sometimes called the coupling parameter. In fact,

polyelectrolytes are classified according to the strength of this parameter.

Polyelectrolyte chains with small values of the coupling parameter uf 2  1

are referred to as weakly charged polyelectrolytes, while ones with uf 201

are considered to be strongly charged. The larger the value of the coupling

parameter uf 2, the more elongated the polyelectrolyte chain is.
To better understand the different length scales involved in the problem,

it is useful to introduce the concept of the electrostatic blob [26–31]. The
conformation of a chain inside the electrostatic blob is almost unperturbed
by electrostatic interactions, with the number of monomers in it being
ge� (De/b)

2 in a �-solvent. The size of the electrostatic blob De containing ge
monomers can be found by comparison of the electrostatic energy of a blob
e2g2e f

2="De with the thermal energy kBT. This leads to the electrostatic
blob size

De � b uf 2
� ��1=3

ð8Þ

and the number of monomers in it

ge � uf 2
� ��2=3

ð9Þ

For weakly charged polyelectrolytes (uf 2 1) there is more than one

monomer in an electrostatic blob (ge>1). At length scales larger than the
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electrostatic blob, electrostatic interactions are much stronger than the
thermal energy kBT and the chain configuration is that of a fully extended

array of N/ge electrostatic blobs of length L0

L0 �
N

ge
De � bN uf 2

� �1=3
ð10Þ

However, for a polyelectrolyte chain to be elongated, the number of mono-
mers in a chain N should be larger than the number of monomers in an

electrostatic blob ge ½N > ðuf 2Þ�2=3
	. Thus, short chains with number of

monomers N smaller than NG� (uf 2)�2/3 will still be Gaussian.
Of course, this simple scaling picture does not account for the

nonuniform stretching of a polyelectrolyte chain. In reality the chain is
more strongly stretched in the middle than at the ends. Logarithmic
corrections to the chain size may be obtained by allowing the blob size to
vary along the chain.

The generalization of this scaling approach to the case of the good
solvent is straightforward by replacing the relation between the blob size De

and the number of monomers in it ge from random to self-avoiding random
walk statistics [26–31].

The conformational properties of an isolated polyelectrolyte chain in a
salt-free solution have been investigated by lattice Monte Carlo simulations
[32–35], and by off-lattice Monte Carlo simulation of a chain made of hard
spheres connected by rigid bonds with fixed valance angles [36], of a freely-
jointed chain [37], and of a bead-spring chain [38–42]. These simulations
support the trivial scaling prediction that the chain crosses over from a coil
to a rod-like conformation with increasing the strength of the electrostatic
interactions (increasing value of the coupling parameter uf 2). This was done
either by adding ionized groups to a chain or by increasing the Bjerrum
length lB.

Quantitative analysis of the scaling model of a polyelectrolyte chain as a
chain of electrostatic blobs was done by Higgs and Orland [37] and by
Barrat and Boyer [38]. Figure 3 shows the mean square end-to-end distance
as a function of the degree of polymerization N for different values of the
coupling parameter uf 2 (in references [37,38] the parameter f was kept
constant and equal to unity). For each curve there is a crossover between
two regimes. For small N the electrostatic interactions between charges have
little or no effect at all on the conformation of the polyelectrolyte chain
and the chain remains Gaussian hR2

ei ’ N. For large N the electrostatic
interactions dominate and the chain adopts an elongated conformation with
size hR2

ei ’ N2.
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In Fig. 4 the dependence of the mean square end-to-end distance hR2
ei is

shown as a function of the coupling parameter uf 2 for several values of N.
As expected from the blob model, the chain size hR2

ei demonstrates only
weak dependence on the coupling parameter for small values of uf 2 and
increases with uf 2 for larger values of the coupling parameter. For large
values of the coupling parameter the increase in the mean square end-to-end
distance hR2

ei follows the scaling law with the exponent 2/3 [see Eq. (10)].
In their simulation Barrat and Boyer [38] gave a quantitative definition of

the electrostatic blob. Using the model of the chain under tension they
established the quantitative relation between the number of monomers n in a
section and its size R(n). The electrostatic blob size De was directly related to
the prefactor of n2 in the expression for the mean square section size
hRðnÞ2i ¼ nb2 þ n2b2=ge. To verify the dependence of the blob size on the
value of the coupling parameter uf 2 Barrat and Boyer also calculated the
ratio Deðuf

2Þ
�1=3=b. This ratio varies between 1.45 and 0.92 when the value

of the coupling parameter uf 2 changes between 0.01 and 1, providing
reasonable agreement with the blob model [26–31].

Systematic MC studies of the chain size dependence on its degree of
polymerization, performed by different groups [38–42], have shown that the

FIG. 3 Mean square end-to-end distance hR2
ei as a function of number of

monomers N for a polyelectrolyte chain in a �-solvent. Curves are for three different
values of the parameter u¼ 0.02, 0.05, and 0.2. The dashed–dotted lines have

gradients 1 and 2. (From Ref. [37].)
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chain size grows faster than linearly, L0 ’ NðlnNÞ
1=3, with the degree

of polymerization N. Figure 5 shows the dependence of the normalized
root-mean-square end-to-end distance

ffiffiffiffiffiffiffiffi
hR2

e

p
i=N on the parameter

ðuf 2Þ1=3ðlnðN=eÞÞ1=3 for the chains with N ranging from 20 to 2000. The
nature of this deviation from the scaling law, L0 ’ N, is due to nonuniform
(logarithmic) stretching of the polyelectrolyte chain.

2. Effects of Added Salt on Chain Conformation and
Electrostatic Persistence Length

When a finite concentration of salt is present in a solution the electrostatic
interactions between charged monomers are screened by salt ions and fall
off exponentially with distance. However, at distances smaller than the
Debye screening length ��1 the charges still interact through a bare
Coulomb potential. A polyelectrolyte chain will not feel the presence of the
salt until the Debye screening length is larger than the chain size L0. On the
other hand, at very high salt concentrations such that the Debye screening
length ��1 is smaller than the electrostatic blob size De, the electrostatic
interactions can be viewed as short-range ones with the effective monomeric
second virial coefficient �el � f 2lB�

�2. At these salt concentrations a
polyelectrolyte chain has the same structure as a neutral polymer in a
good solvent with chain size depending on the Debye screening length and
degree of polymerization as L ’ ��2=5N3=5. But the question is what

FIG. 4 Scaling of hR2
ei with the parameter u for a polyelectrolyte in a �-solvent.

Chain lengths between 10 and 100 are shown. The dashed–dotted line shows the

theoretical prediction hR2
ei ’ u2=3. (From Ref. [37].)
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conformation is adopted by the polyelectrolyte chain at intermediate salt
concentrations De<��1<L0.

It was first shown independently by Odijk [43] and by Skolnick and
Fixman [44] (OSF) that for intrinsically stiff chains, the intrachain
electrostatic repulsion can induce additional chain stiffening beyond the
Debye screening length ��1. To understand this result let us consider the
variation in the electrostatic energy between two consecutive chain sections
of length ��1 due to bending by small angle �. This energy variation is

�E� � kBTlBZ
2
���

2 ð11Þ

where Z� is a charge carried by a section of size ��1, which for weakly

charged polyelectrolytes is Z� � fge�
�1=De. The typical mean square value

of the bending angle � caused by the thermal fluctuations (�E�� kBT ) is

h�2i � De�. The bending of each pair of sections along a polyelectrolyte

chain can be considered to be statistically independent, because electrostatic

interactions are exponentially weak at these length scales. A chain section

containing l units of size ��1 will deviate from its initial direction by an angle

h�2ðlÞi � lh�2i � lDe� and forgets its initial orientation after 1/De� ‘‘steps’’

when the value of h�2ðlÞi becomes of the order of unity. Multiplying the

FIG. 5 Root-mean-square end-to-end distance
ffiffiffiffiffiffiffiffiffi
hR2

ei
p

divided by N vs.

ðuf 2Þ1=3ðlnN=eÞ1=3, for chains with N¼ 20, 80, 320, 1000, and 2000 (filled circles,

open squares, filled triangles, open circles, and filled squares, respectively). (From

Ref. [39].)
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number of sections 1/De� by their length ��1 one finds the following expres-
sion for the electrostatic persistence length [27,45–47]

Le � ��2=De ð12Þ

Indeed for salt concentrations such that ��1>De the chain is stiffened at
the length scales larger than the Debye screening length Le>��1. The size
of a chain with persistence length Le and a contour length of a chain of
electrostatic blobs L0 is

L2 � LeL0 � ��2N=ge ð13Þ

and crossover from a rod-like chain to a Gaussian chain with bond length Le

occurs at ��1 � De

ffiffiffiffiffiffiffiffiffiffiffi
N=ge

p
� bN1=2. For even higher salt concentrations the

number of the persistence segments increases, making it more probable for
interactions between segments separated by larger distances along the chain
contour to occur. The second virial coefficient � for these interactions can
be estimated as that between two rods of length Le and thickness
��1ð� � L2

e�
�1Þ. The excluded volume effect becomes important, when the

interaction parameter z of a polyelectrolyte chain

z �
L0

Le

� �1=2 �

L3
e

� ��2DebN
1=2 ð14Þ

becomes larger than unity. In this range of salt concentrations
(��1 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DebN1=2

p
) the chain size scales as L / ��3=5N3=5. This regime con-

tinues until the Debye radius is larger than the electrostatic blob size De.
However, the predictions of this model are still challenged in the

literature. Computer simulations of weakly charged polyelectrolyte chains
[38,58–61] and some experiments [6,48–54] as well as analytical calculations
[55–57] indicate that the exponent for the dependence of the electrostatic
persistence length Le on the Debye screening length is closer to 1 rather than
to 2 or even shows sublinear [62] dependence.

The most complete analysis to date of the electrostatic persistence length
dependence on the Debye screening length was performed by the Kremer
group [62]. Micka and Kremer have performed hybrid MC and MD
simulations of a polyelectrolyte chain with Debye–Hückel interaction
bonded by harmonic springs. For different bond lengths (b¼ 2, 4, 8, 10, 16)
and chain lengths (N¼ 16, 32, 64, 128, 256, 512) they investigated the
dependence of the chain dimensions and electrostatic persistence length on
the Debye screening length in the interval 0.001� ��1

� 0.48. The data for
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the mean square end-to-end distance can be collapsed into universal curves
reasonably well by either assuming linear or quadratic dependence of the
electrostatic persistence length Le on the Debye radius ��1. Both of these
plots show crossover from a rod-like chain ðhR2

ei ’ N2Þ to a chain with
excluded volume interactions ðhR2

ei ’ N6=5Þ as the value of the Debye radius
decreases. In order to differentiate between the models, the persistence
length of the chain was calculated from the bond angle correlation function
G(n). This function is defined by the scalar product of two normalized bond
vectors b(k) and b(kþ n)

GðnÞ ¼ b kð Þ � b kþ nð Þ
 �

ð15Þ

where the brackets hi denote the ensemble average over all chain conforma-

tions. The averaging procedure was improved by moving reference point k

along the chain. The persistence length was estimated from the exponential

decay of the function G(n). This method lead to sublinear dependence of the

electrostatic persistence length on the Debye radius (see Fig. 6). Similar

sublinear dependence was obtained by analyzing the chain structure

factor S(q).
The effect of internal chain stiffness on the dependence of the

electrostatic persistence length on the Debye radius was studied in [63,64].

FIG. 6 Persistence length Le dependence on the Debye screening length ��1. The

two lines in the upper left corner indicate the slopes predicted by OSF (dashed) and

the variational method (solid). (From Ref. [62].)
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It was shown that with increasing internal chain stiffness the effective
exponent y for Le ’ ��y crosses over from a value of one toward two as the
internal stiffness of a chain increases. The quadratic dependence of the
electrostatic persistence length on the Debye radius for the discrete
Kratky–Porod model of the polyelectrolyte chain was recently obtained in
[65]. It seems that the concept of electrostatic persistence length works better
for intrinsically stiff chains rather than for flexible ones. Further computer
simulations are required to exactly pinpoint the reason for its failure for
weakly charged flexible polyelectrolytes.

C. Polyelectrolyte Chain in a Poor Solvent

In a poor solvent, the chains have a negative second virial coefficient,
corresponding to an effective attraction between monomers. This attraction
causes a neutral polymer chain without charged groups to collapse into
dense spherical globules in order to maximize the number of favorable
monomer–monomer contacts. The size R of such a globule scales with the
number of monomers on a chain as N1/3 [31]. By charging the polymer chain
one forces the polymeric globule to change its shape. The shape of a
polyelectrolyte in a poor solvent is determined by the interplay between
long-range electrostatic and short-range attractive interactions [68,71,72]. It
is interesting to point out that the problem of the shape of a charged globule
bears similarities with the classical problem of the instability of a charged
droplet, considered by Lord Rayleigh over a hundred years ago [66].
Rayleigh showed that a charged droplet is unstable and breaks into smaller
droplets if the electric charge exceeds some critical value. The value of the
critical charge is controlled by the electrostatic energy of the charged droplet
of size R and carrying charge Q, Q2/R, and its surface energy �R2, where � is
the surface tension. Balancing those two energies one finds that the critical
charge Qcrit scales with the size of a droplet as R3/2. [For a charged globule
with size R ’ bN1=3 the value of the critical charge Qcrit is proportional to
the square root of the number of monomers on a chain N ðQcrit �

ffiffiffiffi
N

p
Þ:]

The equilibrium state of the charged droplet with Q>Qcrit is a set of smaller
droplets with charge on each of them smaller than the critical charge and
placed at infinite distance from each other. This final state is impossible for
a charged polymer because it consists of monomers connected into a chain
by chemical bonds. In this case the system reduces its energy by splitting into
a set of smaller charged globules connected by strings of monomers—the
necklace globule. The number of monomers mb in each bead is determined
by Rayleigh’s stability condition—the surface energy of a bead �D2

b is of the
order of its electrostatic energy kBTlB f

2m2
b=Db. For dense beads with
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� � kBT=b
2 and Db � bm1=3

b this results in the number of monomers in a
bead mb � 1=uf 2. Those beads are separated by strings whose length lstr is
obtained by equating the surface energy of a string �blstr with the
electrostatic repulsion between two consecutive beads kBTlB f

2m2
b=lstr. The

string length lstr is proportional to the critical charge on a bead fmb

(lstr � b=
ffiffiffiffiffiffiffi
uf 2

p
).

The qualitative features of an abrupt conformational transition in a
polyelectrolyte chain in a poor solvent were first studied by Hooper et al.
[67] and by Higgs and Orland [37] by performing lattice Monte Carlo
simulations of a polyelectrolyte chain with attractive segment–segment
interactions. These authors find that with increasing charge, the chain
undergoes an abrupt transition from collapsed to extended conformations.
As the strength of the segment–segment attraction decreases, the transition
becomes less pronounced [67].

The details of the transition and conformations of the polyelectrolyte
chain above the transition were studied by Dobrynin, Rubinstein, and
Obukhov [68]. Performing Monte Carlo simulations of a freely-jointed
uniformly charged polyelectrolyte chain with fractional charge on each
monomer f, they have shown that the critical charge Qcrit on a chain at
which the charged globule becomes unstable is proportional to

ffiffiffiffi
N

p
(see

Fig. 7). For charge on the chain Q above the critical value Qcrit, the
polyelectrolyte chain first assumes a dumbbell configuration (see Fig. 8). At
still higher charge, the polymer forms a necklace with three beads joined by
two strings (see Fig. 8). These simulations have shown that in fact there is a

FIG. 7 Reduced mean square radius of gyration hR2
gi=N

2=3 as a function of reduced

valence fN1/2 for chains with degrees of polymerization N¼ 16, 32, 64, 128, and 200.
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cascade of transitions between necklaces with different numbers of beads as
charge on the chain increases.

The effect of solvent quality and salt concentrations on the cascade of
transitions between different pearl-necklace structures was investigated by
Monte Carlo [69] and by molecular dynamics [70] simulations. In these
simulations the effect of the salt has been taken into account through the
Debye–Huckel potential. In [69] the authors have investigated the full
domain of stability of pearl-necklace globules in the solvent quality/salt
concentration plane. They found necklaces with up to twelve beads for a
polyelectrolyte chain with degree of polymerizationN¼ 200. With increasing
salt concentration the necklace transforms into a cylindrical globule and at
very high salt concentrations, when electrostatic interactions are completely
screened, a polyelectrolyte globule takes once again a spherical shape.

These results of computer simulations are in a good qualitative agreement
with theoretical models [68,71,72] of a polyelectrolyte chain in a poor
solvent.

D. Conformational Properties of a
Polyampholyte Chain

Polyampholytes are charged polymers with both positively and negatively
charged monomers. In this case the Coulombic interactions between charges
are not only repulsive, as in the case of polyelectrolytes, but are also

FIG. 8 Typical configurations of a freely-jointed uniformly charged chain with

N¼ 200 interacting via Coulomb and Lennard-Jones potentials (with "LJ¼ 1.5 and

u¼ 2) for three different charge densities: (a) spherical globule for f¼ 0; (b) dumbbell

for f¼ 0.125; (c) necklace with three beads for f¼ 0.15.
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attractive in nature. The overall size and shape of polyampholytes is
determined by the balance of four factors [73–78].

1. Chain entropy tends to keep the polymer configuration as close to
the Gaussian statistics as possible.

2. Fluctuation-induced attractions between charges (similar to those
observed in electrolyte solutions [79]) tend to collapse the chain
into a globule.

3. Excluded volume interactions between monomers stabilize the size
of globule.

4. If the chain has a nonzero total charge (either positive or negative)
the overall Coulomb repulsion between excess charges tends to
elongate the chain.

The relative importance of these factors depends on the number of
positive Nþ and negative N� charges on the chain, on the degree of
polymerization N, and on the ratio of the Bjerrum length lB to the bond size
b, defining the strength of the electrostatic interactions.

The effect of the overall excess charge �Q ¼ ej
P
i

qij ¼ ejNþ �N�j on the
ensemble averaged properties of polyampholyte chains was the central point
of lattice Monte Carlo simulations of polyampholytes [80–84], of off-lattice
Monte Carlo simulations of a bead-spring model of a polyampholyte chain
[85], and of the MD simulations [86,87]. These simulations have shown that
nearly symmetric random polyampholytes with small charge asymmetry,
�Q smaller than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nþ þN�

p
, collapse into a globule as the temperature

decreases. This collapse is caused by fluctuation-induced attraction between
charged monomers. Assuming that the charges of both signs are distributed
with average concentration cch ’ ðNþ þN�Þ=R

3
0 within the volume of

a polymer coil, the fluctuation-induced attraction energy Watt ’

�kBTðlBcchÞ
3=2R3

0 [73–75] of a Gaussian polyampholyte chain with size
R0 � b

ffiffiffiffi
N

p
. A polyampholyte chain collapses when the fluctuation-induced

attraction energy Watt becomes stronger than the thermal energy kBT. This
happens for a value of the interaction parameter u larger thanffiffiffiffi
N

p
=ðNþ þN�Þ.
Polyampholytes with charge imbalance, �Q larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nþ þN�

p
, form

a necklace globule at low temperatures. There is a striking similarity
between the instability of a polyampholyte globule with excess charge
�Q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nþ þN�

p
and the necklace instability of a polyelectrolyte chain in a

poor solvent [68]. But for polyampholytes the factors responsible for the
shape of a globule are all electrostatic in nature. The main difference
between polyampholytes and uniformly charged polyelectrolytes is the
randomness in the charge sequence. For polyampholytes the structure of the
necklace is predetermined by the initial charge distribution. Monte Carlo
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studies by Kantor and Kardar [82,83] showed that the necklace may consist
of a few almost neutral globules connected by charged necks, or even of one
big neutral globule with a tail sticking out of it. The necklace instability was
also observed in MC simulation of circular polyampholytes by Lee and
Obukhov [88].

The effect of charge sequences on the collapse of polyampholytes was
studied by lattice MC simulations [89,90]. Polyampholytes with alternating
distribution of charges behave like polymers with short-range interactions
and can be characterized by an effective second virial coefficient [91]. The
collapse transition of these polyampholytes is similar to the coil–globule
transition of a neutral polymer [89]. A qualitatively different picture of the
collapse transition was discovered for diblock polyampholytes. The collapse
of these polymers happens in two stages. First, at high temperatures, a
zipping transition occurs that corresponds to the formation of dipolar pairs
between oppositely charged monomers. Second, at lower temperatures this
preassembled zipped structure undergoes an ordinary coil–globule transi-
tion. The possibility of a freezing transition in random polyampholyte
globules was investigated in computer simulations [92].

The influence of a uniform external electric field E on the conformation
and dynamics of polyampholyte chains has been studied by the MD
simulations of Soddemann et al. [87]. These simulations have shown that
the polyampholyte globule becomes unstable above the critical external
electric field Ec1 and breaks up forming a random necklace structure. A
polyampholyte collapses back into a globule as the strength of the external
electric field E is lowered below Ec2. The strength of the electric field Ec2 at
which a polyampholyte collapses back into a globule is weaker than that
required to break up a globule Ec1 (Ec2<Ec1). There is a hysteresis in
chain size dependence on the external electric field. This hysteresis is
a manifestation of the coexistence of two states of a chain—collapsed and
elongated—separated by a barrier.

III. SIMULATION METHODS FOR SOLUTIONS
OF CHARGED POLYMERS

Molecular simulations of polyelectrolyte solutions at finite concentrations
with explicit counterions and salt ions require special handling of the
Coulombic interaction between the charges. These simulations are
commonly performed under periodic boundary conditions to ensure that
small sample surface effects are suppressed and that the results obtained for
systems with various numbers of particles can be considered as approxima-
tions of properties of the hypothetical infinite system. The earliest computer
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simulations of polyelectrolyte solutions [93–97] were done by using the
minimum image convention for electrostatic interactions, which includes
Coulombic interactions only between charges within the first periodic
image. The minimum image convention is usually sufficient for short-range
interactions, but the long-range nature of Coulombic interactions causes a
pair of charges to interact far beyond their first periodic image. The Ewald
summation method [98] allows us to overcome this problem and properly
account for contributions from all periodic images. We begin this section
by describing methods such as the Ewald summation method, particle—
particle particle—mesh method (P3M), particle—mesh Ewald method, and
Fast Multipole Method. These methods have become the standard tool
for evaluation of long-range electrostatic interactions in simulations of
molecular systems [102,103].

A. Lattice-Sum Methods for Calculation
of Electrostatic Interactions

1. Ewald Summation

Consider an electroneutral system of Np charges eq1, eq2, . . . , eqNP
such that

q1þ q2þ � � � þ qNP
¼ 0, located at positions r1, r2, . . . , rNP

within the unit cell
of size L. For simplicity we will use a cubic unit cell with primitive vectors
a�, �¼1, 2, 3 forming the edges of the unit cell, however the methods
described below are valid for any Bravais lattice. [For the cubic lattice these
vectors are a1¼ (L, 0, 0), a2¼ (0,L, 0) and a3¼ (0, 0,L).] The charges {eqj}
interact according to Coulomb’s law with each other and with their infinite
number of replicas in periodic boundary conditions (see Fig. 9). The point

FIG. 9 2D periodic system of 3� 3 periodic lattice built from unit cells.
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charge eqk located at point rk interacts with all other charges eqj at positions
rj (k 6¼ j ) within the cell as well as with all of their periodic images located at
rjþ n1a1þ n2a2þ n3a3 where n1, n2, n3 are all integer numbers between �M
and M. The electrostatic energy of the unit cell interacting with an infinite
number of periodic images can be written as follows

Uel frjg
� �

kBT
¼ lim

M!1

lB

2

X


n

X

k, j

qkqj

rkj þ n
�� �� ð16Þ

where we introduced rkj¼ rk� rj. The first sum in Eq. (16) is over all vectors

n¼ n1a1þ n2a2þ n3a3, and the asterisk indicates that the terms with k¼ j

for n¼ 0 are excluded from the summation.
The sum (16) is only slowly and conditionally convergent—the result

depends on the order in which the terms are added. The original method for
summation of the lattice sum was introduced by Ewald [98], who replaced
the sum in Eq. (16) by the sum of two absolutely convergent series—a direct
sum in Cartesian space and a reciprocal sum in Fourier space. There is a
simple physical interpretation of this decomposition of the lattice sum
(see Fig. 10). In the direct sum each charge in the system qi is viewed as
being surrounded by a Gaussian charge distribution of the opposite sign
[�ðrÞ ¼ �qi�

3 expð��2r2Þ=�3=2, where the parameter � determines the width
of the distribution], such that the net charge of this cloud exactly cancels qi.
The electrostatic interaction between screened charges is a rapidly decaying
function of distance, and is effectively reduced to short-range interactions in
the direct space. To counteract this diffuse cloud around each charge, a
second Gaussian charge distribution of the same sign as the original charge
is added for each point charge. This second distribution varies smoothly in
space and acts as a source term in a Poisson equation for the reciprocal
potential with periodic boundary conditions.

However, these most commonly used Ewald transformation formulas are
correct for centrosymmetric crystal structures but give results [98–101] that

FIG. 10 The Ewald sum components of a one-dimensional point charge system.

The vertical lines are unit charges.
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disagree with the explicit evaluation of sum (16) in the case where the unit
cell has a net dipole moment [104–107]. The discrepancy is due to uncritical
use of the Fourier transformation converting the conditionally convergent
lattice sum in direct Cartesian space into a sum in reciprocal Fourier space.

The evaluation of the lattice sum (16) is cumbersome and details of
this calculation are given in the Appendix. The final expression for the
electrostatic energy of the cell interacting with all its periodic images (16)
can be represented as a sum of four terms: sums in the direct Udir ({rj}) and
reciprocal Urec ({rj}) space, self-energy term, and shape term that depends
on the net dipole moment of the cell

Uel frjg
� �

kBT
¼

lB

2

X


n

X

k, j

qkqj
erfc rkj þ n

�� ���
� �

rkj þ n
�� ��

þ
lB

2�L

X

m 6¼0

exp ��2m2=L2�2
� �

m2
SðmÞSð�mÞ

�
�lBffiffiffi
�

p
X

j

q2j þ
2�lB
3L3

X

j

qjrj

�����

�����

2

ð17Þ

where erfcðxÞ ¼ 2=
ffiffiffi
�

p R1
x dt expð�t2Þ is the complementary error function

which tends to zero as x ! 1 and S(m)¼
P
j

qj exp ði2�m � rj=LÞ is the
charge structure factor.

The Coulombic forces on charge k are obtained by differentiating the
electrostatic energy of the system Uel({rj}) with respect to rk. The resulting
force

Fk ¼ Fdir
k þ Frec

k þ F
shape
k ð18Þ

has three contributions: the real space part

Fdir
k ¼ kBTlBqk

X

j

qj
X


n

2�ffiffiffi
�

p exp � rkj þ n
�� ��2�2

� �
þ
erfc rkj þ n

�� ���
� �

rkj þ n
�� ��

 !

�
rkj þ n

rkj þ n
�� ��2 ð19Þ

the reciprocal (Fourier) space part

Frec
k ¼ kBT

2lBqk

L2

X

m 6¼0

im exp ��2m2=L2�2
� �

m2
exp

2�im � rk

L

� �
S �mð Þ ð20Þ
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and the dipolar contribution

F
shape
k ¼ �kBT

4�lBqk
3L3

X

j

qjrj ð21Þ

The value of the parameter � controls the rate of convergence of the
direct Udir ({rj}) and reciprocal Urec ({rj}) sums. Increasing � causes the
direct sum Udir ({rj}) to converge more rapidly, at the expense of slower
convergence in the reciprocal sum Urec ({rj}). The usual method is to take a
value of � such that only one term with n¼ 0 is necessary in the direct sum.
Thus, the first sum reduces to the normal minimal image conversion. To
achieve the same accuracy in the reciprocal sum, a subset of m0 m-vectors
has to be used. Usually, in practice the parameter � is set to 5/L and it is
required to use on the order of 100–200 wave vectors for reasonable
convergence of the reciprocal sum. This choice of parameter leads to a linear
increase of the computational time for evaluation of the reciprocal sum with
the number of particles in the system Np. The major computational
overhead comes from evaluation of the direct sum, which requires
evaluation of N2

p=2 error functions. For large systems, Np>104, this
method becomes computationally very inefficient.

A more efficient algorithm for evaluation of the lattice sum was designed
by Perram et al. [108]. In this algorithm each side of the unit cell is divided
into K equal segments, each of length L/K. This leads to tessellation of the
original cell into MB¼K3 identical cubic subboxes, each containing on
average Np/MB particles. If we apply the minimum image convention for
each subbox for evaluation of the direct space contribution to the lattice
sum, such that the interactions between particles separated by distances
larger than L/K (� ’ K=L) are neglected, the number of operations required
for this evaluation will decrease with the number of subboxes MB as
MBðNp=MBÞ

2
¼ N2

p=MB. To maintain the same accuracy in evaluation of
the reciprocal sum, the number of wave vectors in the reciprocal space
should be proportional to the volume of a sphere of size �. (The
contributions from the vectors with modulus mj j > �L ’ K are exponen-
tially suppressed.) The number of operations involved in the evaluation of
the reciprocal sum will be of the order of NpK

3
¼NpMB and will increase

with the number of boxes MB. By determining the number of boxes for
optimal computational efficiency of this method one finds that MB ’

ffiffiffiffiffiffi
Np

p
.

If the boxing is implemented with the optimum value
ffiffiffiffiffiffi
Np

p
the computer

time for lattice sum evaluation increases only as N3=2
p . This is a considerable

improvement over the N2 rate for traditional methods with fixed value of �.
Before closing this section, let us comment on the parallel implementa-

tion of the Perram et al. algorithm [108]. In practice the computation of the
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direct and reciprocal space contributions to the Ewald sum are done
separately. Since the direct sum represents short-ranged interactions
between particles, the parallelization of the summation in the direct sum
is handled by three-dimensional spacial domain decomposition based
upon blocks of chaining cells, considering the interactions only between
neighboring cells. The computation of the sum in the reciprocal (Fourier)
space is ideal for parallel implementation. The required charge structure
factor S(m) is rewritten as follows

SðmÞ ¼
X

j

qj exp i2�m � rj=L
� �

¼
X

P

X

j2P

qj exp i2�m � rj=L
� �

¼
X

P

SPðmÞ

ð22Þ

where P denotes processors. Particles are distributed to the processors and

the partial charge structure factor SP (m) is computed on each processor for

all m vectors. These partial charge structure factors SP (m) are then summed

across the processors to obtain the total charge structure factor S(m).

Computation of the reciprocal forces, where summation of factors

2�imS(m) is involved, does not require further computer communications.

The factors 2�imSP(m) can be summed on each processor for the whole

range of m vectors.

2. Particle Mesh Ewald Method (PME)

The particle mesh Ewald (PME) method [109–113] is based on approxima-
tions that turn the structure factor S(m) into discrete Fourier transforms,
making the evaluation of the reciprocal sum more computationally efficient.
This is achieved by substituting the real charge distribution by a weighted
charge distribution on a regular three-dimensional grid.

Consider a grid of length L with K subintervals along L with the lattice
spacing of the grid being h¼L/K. Let us rescale all lengths in the system by
the grid spacing h, such that u¼ r/h. Due to periodic boundary conditions
the rescaled coordinates u vary in the interval 0� u�<K for �¼ 1, 2, 3. After
rescaling, the charge structure factor is

SðmÞ ¼
X

j

qj exp i
2�m � uj

K

� �
ð23Þ

In the PME algorithm, the complex exponentials

exp i
2�m � u

K

� �
¼ exp i

2�m1u1

K

� �
exp i

2�m2u2

K

� �
exp i

2�m3u3

K

� �
ð24Þ
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are replaced by the linear combination of their values at the nearby grid

points. For example, let [u�] denote the integer part of u�. Then, using linear

interpolation, we can approximate the individual exponents in the r.h.s. of

Eq. (24) by their linear combination at the nearest grid points [u�] and

[u�]þ 1

exp i
2�m�u�

K

� �
� 1� u� � u�½ 	ð Þð Þ exp i

2�m�

K
u�½ 	

� �

þ u� � u�½ 	ð Þ exp i
2�m�

K
u�½ 	 þ 1

� �
ð25Þ

Similar interpolation can be done for each term in the Eq. (24), with

�¼ 1, 2, 3. Let us define W2(x), the linear hat function given by

W2(x)¼ 1� |x| for |x|�1, and W2(x)¼ 0 for |x|>1. Then Eq. (25) can be

rewritten as

exp i
2�m�u�

K

� �
�

X1

k¼�1

W2 u� � kð Þ exp i
2�m�

K
k

� �
ð26Þ

The sum in the last equation is finite, because the function W2(x) is nonzero

only within the interval |x|� 1. The accuracy of the approximation can be

improved by including more grid points in the interpolation scheme.
In the original implementation of the PME algorithm [109,111],

Lagrangian weight functions W2p(x) [116] were used for interpolation of
the complex exponents, by using values at 2p points in the interval |x|� p.
Unfortunately, these functions W2p(x) are only piecewise differentiable,
so the approximate reciprocal lattice sum cannot be differentiated to arrive
at the reciprocal part of the Coulomb forces. Thus, the forces were
interpolated as well.

Instead of the Lagrangian weight functions W2p(x), the Cardinal
B-splines Mn(x) [117,118] were utilized in later versions of the PME
method [110,112,113]. These weight functions are continuously differentia-
ble and allow the forces to be obtained from analytical differentiation of the
approximation of the reciprocal lattice sum. The Cardinal B-spline of
the second order M2(x) gives the linear hat function M2(x)¼ 1� |x� 1| in
the interval 0� x� 2 and M2(x)¼ 0 for x<0 and x>2. The nth order
B-spline satisfies the following properties:

1. Mn(x)>0 for 0� x� n and Mn(x)¼ 0 for x<0 and x>n.
2. Mn(x)¼Mn(n� x).

3.
P1

j¼�1 Mnðx� jÞ ¼ 1.
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4. MnðxÞ ¼ ðx=ðn� 1ÞÞMn�1ðxÞ þ ððn� xÞ=ðn� 1ÞÞMn�1ðx� 1Þ.
5. ðd=dxÞMnðxÞ ¼ Mn�1ðxÞ �Mn�1ðx� 1Þ.

The interpolation of the complex exponential, called the Euler
exponential spline, has a simple solution that, for even n, has the form

exp i
2�m�u�

K

� �
� b� m�ð Þ

X1

k¼�1

Mn u� � kð Þ exp i
2�m�

K
k

� �
ð27Þ

where the coefficient b�(m�) is given by

b� m�ð Þ ¼ exp i
2�m�

K
n� 1ð Þ

� � Xn�2

k¼0

Mn kþ 1ð Þ exp i
2�m�

K
k

� �" #�1

ð28Þ

This approximation for the complex exponential in the charge structure

factor leads to the following approximation for S(m)

SðmÞ �
XNP

j¼1

qj
Y3

�¼1

b� m�ð Þ
X1

k�¼�1

Mn uj, � � k�
� �

exp i
2�m�

K
k�

� �

¼
Y3

�¼1

b� m�ð Þ
X

k2V�

Q kð Þ exp i
2�

K
m � k

� �

¼ b1 m1ð Þb2 m2ð Þb3 m3ð ÞbQQðmÞ ð29Þ

where k is the vector with components (k1, k2, k3), VK¼ {0� k��K� 1,

for �¼ 1, 2, 3}, and bQQðmÞ is the discrete Fourier transform of the charge

array Q, defined as

QðkÞ ¼
XNP

j¼1

qj
Y3

�¼1

X

s�

Mn uj, � � k� � s�K
� �

ð30Þ

where the inner sum is over all integers s�. Using this spline representation

of the charge structure factor S(m), the approximate reciprocal energy can

now be rewritten as

Urec fujg
� �

kBT
�

lB

2�L

X

m 6¼0

exp ��2m2=L2�2
� �

m2
BðmÞbQQðmÞbQQð�mÞ ð31Þ
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where we introduce

BðmÞ ¼
Y3

�¼1

b� m�ð Þ
�� ��2 ð32Þ

The last expression can be simplified further by introducing the reciprocal
pair potential

’rec 1ð Þ ¼
1

�

X

m 6¼0

BðmÞ
exp ��2m2=L2�2

� �

m2
exp i

2�

K
1 �m

� �

¼ bCCð1Þ ð33Þ

where C is defined as

CðmÞ ¼

1

�
BðmÞ

exp ��2m2=L2�2
� �

m2
, for m 6¼ 0

0, for m ¼ 0

8
<

: ð34Þ

with vector m, defined as m ¼ m0
1,m

0
2,m

0
3

� �
, where m0

� ¼ m� for 0�m��K/2
and m0

� ¼ m� � K=2 otherwise. It is important to point out that
C ¼ ðd’rec’recÞ

�1, where (d’rec’rec)
�1 is the inverse discrete Fourier transform defined

as AðmÞ ¼ K�3
P

k2V�
bAAðkÞ expð�ið2�=KÞm � kÞ. Using the property of the

Fourier transformation bAAð�mÞ ¼ K3AðmÞ, after some algebra, the recipro-
cal lattice sum reduces to

Urec fujg
� �

kBT
�

lB

2L

X

m2V�

QðmÞ ’rec 
Qð ÞðmÞ ð35Þ

where ’rec 
Q denotes the convolution of ’rec and Q defined as

’rec 
QðmÞ ¼
XK�1

k1¼0

XK�1

k2¼0

XK�1

k3¼0

’rec m1 � k1,m2 � k2,m3 � k3ð ÞQ k1, k2, k3ð Þ

ð36Þ

To obtain the reciprocal part of the Coulomb forces, Eq. (35) has to be
differentiated with respect to rj.

Frec
j ¼ �

@Urec fujg
� �

@rj
¼ �

kBTlB

L

X

m2V�

@QðmÞ

@rj
’rec 
Qð ÞðmÞ ð37Þ
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The numerical implementation of this algorithm involves the following steps

[110,111]:

1. Determine B-spline coefficients b�(m�).
2. Fill the charge grid array Q, using coefficients Mn(uj,�� k) for

j¼ 1, . . . ,Np, �¼ 1, 2, 3, and j¼ 1, . . . , n, computed from scaled

fractional coordinates of the particles uj,�. The cost of this step is

O(Nn3), where n is the order of Cardinal B-spline.
3. Calculate the inverse 3DFFT of the charge grid array Q. The

cost of this step is O(K3 log K3). For dense systems K3 is of the

order of N.
4. The approximate expression of Urec ({uj}) is computed by using

Eq. (35). At the same time the transformed Q array is overwritten

by the product of itself with the arrays C and B.
5. Forward 3DFFT on the new Q array to evaluate the convolution

 rec*Q. The cost of this step is again O(K3 log K3).
6. Generate forces by using convolution and Eq. (37). The cost of this

step is O(N).

Thus, the overall cost of the PME algorithm is O(NlogN). Direct
comparison of the Ewald [108] and PME methods has shown that the PME
method is significantly faster than the Ewald method for Np>104 [110,111].

The PME method with Cardinal B-spline interpolation scheme is
included as a standard routine in the AMBER [115] and DL_POLY [114]
simulation packages.

3. Particle–Particle Particle–Mesh Method (P3M)

The key to the P3M method lies in splitting the interparticle Coulombic
forces into a smoothly varying long-range component and a short-
range component that is nonzero only for particles whose separation
is less than the cutoff distance [119–124]. These two forces must be properly
matched for the total force to be correctly reproduced. The total short-
range force on the particle is computed by the direct summation of
the particle–particle (PP) forces, while the smoothly varying long-
range component is approximated by a particle–mesh (PM) force calcula-
tion. A key feature of the PM calculation is the use of the FFT convolution
method to solve for the electrostatic potential at a given particle
distribution.

The traditional Ewald representation of the Coulombic lattice sum as a
sum of the two fast converging series is a perfect example of such splitting
into the short-range and smoothly varying long-range components. In
the Ewald sum the direct sum is due to the point charge and Gaussian
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counter-ion cloud and is short ranged, while the reciprocal sum is due to the
Gaussian charge cloud and is a smooth function, with its Fourier transform
rapidly convergent. Below we outline the general steps of particle–mesh
calculations of the long-range component.

In the P3M method the Gaussian charge clouds surrounding each charge
within the unit cells are substituted by finite range weight functions Wn(x)
[123,124] that interpolate the original charge density over the n grid points,
with spacing between them h¼L/K.

QðrÞ ¼
X

j

qj�
3

�3=2
exp ��2 r� rj

� �2� �
) QgðkÞ ¼

X

j

qjWn uj � k
� �

ð38Þ

where k is the radius vector of the grid point and vector k¼(k1, k2, k3) with

all 0� k��K� 1 being integers. As before, we rescale all lengths in the

system by the grid spacing h, such that uj¼ rj/h. Due to periodic boundary

conditions, the rescaled coordinates u vary in the interval 0� u�<K for

�¼ 1, 2, 3.
The simplest one-dimensional weight function W1(x) [W1(x)¼ 1, for

|x|� 1/2 and W1(x)¼ 0, for |x|>1/2] assigns the charge densities to the
nearest grid point. The full 3D weight function is a product of weight
functions in the x, y, and z directions. Higher order weight functions are
convolutions ofW1ðxÞ,WnðxÞ¼W1 
Wn�1ðxÞ¼

R1
�1

W1ðx�x1ÞWn�1ðx1Þ dx1,
and span n grid points in each direction. One can also use the Cardinal
B-splines, introduced for interpolation of the exponentials in the PME
method, as the weight functions for charge assignment. The higher order
Cardinal B-splines can also be generated by convolutions of the hat
function M1(x) [M1(x)¼ 1, for 0� x� 1 and M1(x)¼ 0 otherwise]. In fact,
the charge assignment functions Wn(x) and Mn(x) are identical up to
translation.

Since the original charge density Q(u) has been replaced by charge
density over the grid points Qg(k), Hockney and Eastwood [119] suggested
to minimize the effect of such substitution by replacing the Coulomb
Green’s function by function Gn(q), which will minimize the mean square
error in forces due to the new assignment function Wn and finite size grid
errors.

Consider two charges q1 and q2 placed at random positions u1 and
u2 in the unit cell. The mean square error in force due to charge assignment is

� ¼

Z
du1

K3

Z
du2

K3
FEW u2, u1ð Þ � FPM u2, u1ð Þ
�� ��2 ð39Þ
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where F
EW (u2, u1) is the exact reciprocal force and F

PM (u2, u1) is the

approximated force. The optimal Green’s function bGGnðqÞ that minimizes

the functional (39) is [119,122–124]

bGGnðqÞ ¼
lB

�L

P
b q � bþ qð ÞbAAðqÞ bWWnðbþ qÞ

���
���
2

q2
P

b
bWWnðbþ qÞ

���
���
2

	 
2 ð40Þ

where bAAðqÞ ¼ 1=q2 expð��2q2=�2Þ and bWWnðqÞ is the Fourier transform of the

3D assignment function. The sum in Eq. (40) is taken over a Brillouin zone

vector b¼ (b1, b2, b3) with b1, b2, b3 all integers and the vector q belongs to

the first Brillouin zone with components �K/2� q�<K/2, �¼ 1, 2, 3. Since

this expression does not depend on the particle positions, it has to be eval-

uated only once at the beginning of the simulation.
The usual PM calculations of the long-range forces between particles in

the P3M consist of the following steps (see Fig. 11):

1. Form an effective grid charge density Qg(k) by assigning the charges

over the grid points. This charge density is Fourier transformed by

using the forward discrete Fourier transform

bQQgðqÞ ¼
X

k

QgðkÞ expðik � qÞ ð41Þ

FIG. 11 A 2D schematic of the particle—mesh technique. (i) System of charged

particles. (ii) Charges are interpolated on a 2D grid. (iii) Using FFT, to solve for the

potential and forces at grid points. (iv) Interpolation of forces back to particles.
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where vector q is the vector with components (q1, q2, q3) with each
q�¼ 2�m�/K and 0�m��K� 1.

2. Using the modified Green’s function bGGnðqÞ and charge distribution
bQQgðqÞ solve for the electrostatic potential b’’gðqÞ over the grid points

b’’gðqÞ ¼ bGGnðqÞbQQgðqÞ ð42Þ

and find the Fourier transform of the electric field

bEEgðqÞ ¼ iqb’’ðqÞ ¼ iqbGGnðqÞbQQgðqÞ ð43Þ

3. Using the inverse Fourier transform find the electric field at the grid

points Eg(k)

EgðkÞ ¼
1

K3

X

q

bEEgðqÞ expð�ik � qÞ ð44Þ

Note, that three inverse three-dimensional Fourier transforms have
to be calculated to obtain the electric field distribution over the grid
points because bEEgðqÞ is a vector.

4. Finally, the electric field Eg(k) is interpolated back to the positions of

the particles giving the long-range component of the forces on them

FPM uj
� �

¼ qj
X

k

Wnðuj � kÞEgðkÞ ð45Þ

The interpretation of the back interpolation is very simple, since each
charge was replaced by several subcharges located at surrounding
grid points. The force acting on each subcharge is given by its
charge qjWn(uj� k) times the electric field at its grid point Eg(k).
Thus, the net force on the original charge qj is the simple sum of
all forces acting on its subcharges.

As one can see from the description of the algorithm for the P3M method,
it is very close to the one presented for the PME method in the previous
section. The PME differs in the final steps, in which the potential is first
interpolated onto the particles and the resulting potential is differentiated
with respect to the particle positions to give the electric field and forces. The
PME uses half as many FFTs as P3M; it is more efficient where the cost of
the FFT becomes an issue, such as in the parallel implementations. The
number of FFT transformations in the P3M method can be reduced by first
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calculating the electrostatic potential over the mesh points by applying the
inverse FFT to the electrostatic potential ’g(q). The electric field at the mesh
points is then obtained by numerical differentiation of the electrostatic
potential at the neighboring grid points. However, this implementation of
the P3M is less accurate than ones that use direct differentiation in the
Fourier space [125,126]. Extensive comparisons and analysis of both
methods can be found in [112,113,125,126].

B. Fast Multipole Method for Ewald Summation

The Fast Multipole Method (FMM) was originally introduced by
Greengard and Rokhlin [127–130] for efficient simulation of Np particles
interacting through a Coulomb-like potential confined in a nonperiodic cell.
The FMM relies on the standard multipole expansion for the electrostatic
potential (forces) by separating the pairwise interactions into two
components: one due to nearby particles, computed directly, and another
due interaction with distant particles, approximated by their multipole
expansions.

Consider a set of point charges qj ( j¼ 1, . . . , k), see Fig. 12, within a
sphere of radius R, whose center is at distance r far away, r¼ |r|>R, from a
test charge located at point Q. The electrostatic potential ’(r) at point Q due
to all charges qj at locations (�j, �j, �j) is given by the infinite multipole
expansion if, for all j, �j<r

’ðrÞ ¼ kBTlB
X1

n¼0

Xn

m¼�n

Mm
n

rnþ1
Ym

n �, ’ð Þ ð46Þ

where Mm
n are multipole moments, defined as

Mm
n ¼

Xk

j¼1

qj�
n
j Y

�m
n �j,�j
� �

ð47Þ

FIG. 12 The multipole expansion method.
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where Ym
n �, ’ð Þ is the spherical harmonic polynomial [131]. If we approx-

imate this expansion by first pþ 1 terms, the truncation error � is bounded
by (r/R)�p [127,128]. Thus, fixing a precision �, the number of terms in the
multipole expansion is estimated to be p ¼ � log��, where �¼ r/R.

There is a duality inherent in the situation depicted in Fig. 12; if the
location of test charge Q and a system of charges qj ( j¼ 1, . . . , k) were
interchanged, we may write another expansion that represents the potential
due to particles outside the sphere of radius r and is correct as long as �j>r,

’ðrÞ ¼ kBTlB
X1

n¼0

Xn

m¼�n

rnLm
n Y

m
n ð�, ’Þ ð48Þ

where Lm
n are coefficients of the local expansion defined as

Lm
n ¼

Xk

j¼1

qj�
�n�1
j Y�m

n �j,�j
� �

ð49Þ

To illustrate the method, let us consider a square simulation box with
sides of length one centered about the origin of the coordinate system and
containing Np particles inside. Fixing the precision �, we choose r/R¼ 2,
leading to the number of terms in the multipole expansion to be p � � log2�,
and specify that no interactions be computed for clusters of particles which
are not separated by distances r<2R. In order to impose such a condition,
we introduce a hierarchy of meshes which refine the computational box into
smaller and smaller regions (Fig. 13). Mesh level 0 is equivalent to the entire
box, while mesh level lþ 1 is obtained from level l by dividing each box into
four equal parts. The number of distinct boxes at mesh level l is equal to 4l.
A tree structure is imposed on this mesh hierarchy; the four boxes obtained
on level lþ 1 by subdivision of the box on level l are considered to be its
children. Now consider some box S at level n. It is not justifiable to apply
the multipole expansion to nearest neighbor boxes, because particles in

FIG. 13 Hierarchical subdivision of the full simulation space (2D case) into

children, grandchildren, etc.
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neighboring cells might be within the cutoff distance 2Rn for this level.
Nearest neighbor cells are defined as cells sharing an edge or a corner
(in 3D also a face) with a given cell. The interactions between charges in cell
S with its nearest cells are taken by summing the electrostatic interactions
directly. We apply this approximation at each step to at least next nearest
neighbors and skip squares which lie in the regions that have been treated
at previous levels. Therefore, the boxes with which the particles in box S
interact at the present level, are (1) those that are not nearest neighbors of
S and (2) those whose parents were a nearest neighbor of the parent of S
at level n� 1. Figure 14 shows the squares that are in the interaction list
of cell S.

The realization of the Fast Multipole Method involves six steps.

1. The computational cell is subdivided into a hierarchy of meshes. (For

a three-dimensional cubic cell the root of the hierarchy is the simula-

tion box itself, which is divided into 8 cubes. Each of these cubes is

then subdivided and so on for a prescribed number of subdivisions, l,

so that at the finest level there are 8l cubes.)
2. Compute the multipole moments about the center of each cell at the

finest level of hierarchy.
3. Upward pass. Sweep up from the smallest cells to the largest cell to

obtain the multipole moments Mm
n for cells at each subdivision level.

This is done by using the translation operators that allow us to

obtain the multipole moment of the parent cell from multipole

moments of children cells (see for details [123,128,132]).
4. Downward pass. Sweep down from the largest (single) cell to cells

at the next hierarchy level to obtain the local expansion coefficients

Lm
n by multipole-to-local and local-to-local translations. This local

FIG. 14 Interaction list of cell S at level n. The squares at level n are separated by

thin lines, their parents at level n� 1 by heavy lines. The cells in the interaction list

are labeled by I. The nearest neighbor cells are labeled by N.
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expansion describes the field due to all particles in the system that are

not contained in the current cubic box, its nearest neighbors and

second nearest neighbors.
5. Evaluate the potential and fields for each particle using the local

expansion coefficients on the finest level.
6. Add the contributions from other charges in the same cell and

near cells that are not included in the multipole expansion by

direct summation.

This method was later generalized to systems with nonuniform charge
distribution by using an adaptive grid [133].

The FMM was extended by Schmidt and Lee [134,135] to systems with
periodic boundary conditions. This approach combines both FMM and
Ewald techniques. First, the FMM is initiated as in the finite case,
calculating the multipole expansion of all cells at all refinement levels. The
level zero expansion then contains the multipole expansion for all particles
in the original simulation cell. All of its periodic images have the same
multipole expansions about their centers. The FMM requires the local
expansion of the potential from periodic images except the 26 nearest
neighbors of the original simulation cell. This local expansion is obtained by
using the Ewald sum formulation for multipole-to-local translation for
image cells. After that, the algorithm continues in its downward pass as for
the finite system.

Pollock and Glosli [123] have performed a timing comparison of Ewald,
P3M, and FMM algorithms by calculating the forces and potential energies
of random periodic configurations of Np¼ 512, 1000, 5000, 10,000, and
20,000 charges (see Fig. 15). They concluded that P3M and FMM are more
efficient than Ewald summation, but P3M is roughly four times faster than
the FMM algorithm for all Np used in this study, despite the superior
asymptotic scaling of the FMM O (Np) vs. the O (Np logNp) for P

3M. (An
extrapolation based on the scaling of both methods suggests that FMM
becomes faster at some unphysically large system size Np>1060.) However,
the speed is not the only disadvantage of the FMM; it is also more diffcult to
code than P3M.

IV. POLYELECTROLYTE SOLUTIONS

A. Polyelectrolytes in Good and h Solvents

In very dilute salt-free solutions the interaction between polyelectrolyte
chains and counterions is weaker than the contribution of the configura-
tional entropy of counterions, and counterions are thus distributed almost
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homogeneously in the solution with only a small fraction being near the
polyelectrolyte chains. The conformation of a chain is then determined by
the chain elasticity and by the electrostatic repulsion between charged
monomers (see Section II). As a result, chains adopt elongated conforma-
tions with size L � bNðuf 2Þ1=3 [see Eq. (10)]. With increasing polymer
concentration c, more and more counterions are drawn toward polyelec-
trolyte chains and, for sufficiently strong electrostatic interactions, can even
be localized on them [3,136]. This phenomenon is called counterion or
Manning condensation [3,136]. Localization of counterions leads to effective
renormalization of the total charge on a chain Qeff¼ feffN<fN. A simple
estimate of the effective charge Qeff can be achieved by equating the
chemical potential of a counterion in a solution far away from a chain
� kBT ln (cb3feff) with that of a counterion localized within the chain
volume LD2

e ,  � kBT lnððf � feff Þðuf
2
eff Þ

1=3
Þ � kBTu

2=3f 1=3eff [3,137–140]. This
leads to the effective fraction of the charged monomers on the chain

feff � f 1�
cb3

uf 2ð Þ
1=3

exp u2=3f 1=3
� �

 !
ð50Þ

being a decreasing function of polymer concentration c. The parameter
u2/3f 1/3 is the Manning parameter which determines the onset of counterion
condensation. Thus, the chains shrink, L � bNðuf 2eff Þ

1=3, as polymer concen-
tration increases. However, for small values of the Manning parameter
ðu2=3f 1=3  1Þ the corrections to the chain size are small and can be
neglected.

FIG. 15 Timing for complete force calculation of various size systems using

standard Ewald, fast multipole method, and P3M. (From Ref. [124].)
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Chains overlap when the distance between them Rcm� (N/c)1/3 becomes
of the order of their size L�N. This happens at polymer concentration
c*�N�2. In semidilute solution, c>c*, polyelectrolytes form a temporary
network with mesh size �. At length scales smaller than �, the intrachain
electrostatic repulsion dominates and sections of the chain with g� monomer
are strongly elongated such that ��g�. Pure geometric arguments can be
used to obtain the concentration dependence of the correlation length �, by
imposing the close packing condition for chain sections of size �,
c� g�/�

3
� ��2. This leads to the correlation length �� c�1/2 [26,27,29].

At length scales larger than � the electrostatic interactions are screened by
the other chains and counterions and the statistics of a chain is Gaussian
with effective bond lengths of the order of the correlation length �. Thus,
the chain size R in the semidilute salt-free polyelectrolyte solution is
R � �

ffiffiffiffiffiffiffiffiffiffiffi
N=g�

p
� N1=2c�1=4 [26,29].

Polyelectrolyte solutions have a number of properties remarkably
different from solutions of uncharged polymers. In particular:

1. There is a well pronounced peak in the scattering function of a
homogeneous polyelectrolyte solution, whose position shifts with

polymer concentration [1,4,6,7,26,27,29,141–145].
2. At low salt concentrations the main contribution to the osmotic

pressure comes from counterions [1,4,6,7,26,27,29].

Extensive molecular dynamics simulations of dilute and semidilute
polyelectrolyte solutions of chains with degree of polymerization N ranging
from 16 up to 300 were recently performed by Stevens and Kremer
[146–148] and by Liao et al. [149]. In these simulations the long-range
electrostatic interactions were taken into account by the Ewald summation
method, including interactions with all periodic images of the system.
Stevens and Kremer [146–148] have used a spherical approximation of
Adams and Dubey [150] for the Ewald sum while Liao et al. [149] have
applied the PME method [110]. In addition to Coulombic interactions, all
particles, including monomers and counterions, interacted via a shifted
Lennard-Jones potential with cutoff rcut¼ 21/6�

ULJ ðrÞ ¼
4"LJ

�

r

� �12
�
�

r

� �6
þ
1

4

	 

, for r � rcut

0, for r > rcut

8
<

: ð51Þ

The polymers were modeled as bead-spring chains. The attractive part of the
bond potential is described by the FENE potential

UFENEðrÞ ¼ �
1

2
kr20 ln 1�

r2

r20

� �
ð52Þ
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with the maximum extent r0¼ 2� and the spring constant k¼ 7"LJ/�
2. The

repulsive part of the bond potential was described by the shifted Lennard-

Jones potential. The strength of the electrostatic interactions in the simula-

tions was controlled by the value of the Bjerrum length. In the simulations

of Stevens and Kremer [146–148] most of the results were obtained for the

Bjerrum length lB equal to 0.833�, which corresponds to the case of weakly

charged polyelectrolytes with the value of the coupling parameter u<1,

while in the Liao et al. [149] simulations the Bjerrum length lB was 3�,
corresponding to strongly charged polyelectrolytes.

Figure 16 shows the dependence of the osmotic pressure of salt-free
polyelectrolyte solutions. Through almost the entire concentration range
considered, the osmotic pressure is proportional to the polymer concentra-
tion, supporting that it is controlled by the osmotic pressure of counterions,
both above and below the overlap concentration. There appears to be a
weak chain length dependence of the osmotic pressure for short chains.
However, this N-dependence is consistent with a 1/N correction to the
osmotic pressure due to chain translational entropy. The deviation from
linear dependence of the osmotic pressure � occurs around polymer
concentration c� 0.07��3, which is above the overlap concentration for all
samples. At very high polymer concentrations, where electrostatic interac-
tions are almost completely screened by counterions and by charges on the

FIG. 16 The osmotic pressure is plotted as a function of the monomer density for

various chain lengths.
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chains, the osmotic pressure � is proportional to c9/4, and the scaling law for
neutral polymers in a good solvent is recovered.

The correlation length � of the solution (see Fig. 17) exhibits two regimes
as observed in experiment [1,6] and predicted by the theory [26,29,143–145].
Above overlap concentrations the correlation length � is chain length
independent and is inversely proportional to the square root of polymer
concentrations (� ’ c�1=2). At low polymer concentrations � scales with
polymer concentration as c�1/3. The crossover between these two regimes
occurs around the overlap concentration c*.

The effect of added salt on the conformation of polyelectrolyte chains in
dilute and semidilute solutions was investigated by Stevens and Plimpton
[151]. At high salt concentrations the electrostatic interactions between
charged monomers are screened and the chain conformations are similar
to those observed for good solvent, R ’ N0:588. As the salt concentration
decreases, chains become more elongated, and finally at very low salt
concentrations the chain size saturates at its salt-free value R ’ N [146,148].

B. Polyelectrolytes in Poor Solvent

Molecular dynamics simulations of partially charged polyelectrolytes in
poor solvent conditions were performed by the Kremer group [153,154] for

FIG. 17 Plot of the correlation length � as a function of density for different chain

lengths. The slopes are �0.5 and �0.33 for the solid and dashed lines, respectively.
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chains with degree of polymerization N¼ 94 and by Liao et al. [155] for
N¼ 94, 187. In these simulations, only every third monomer carried an
electric charge and poor solvent conditions were imposed by setting the
cutoff radius rcut for monomer–monomer interactions to 2.5�. Figure 18
shows the dependence of chain size on polymer concentration [153–155].
At low polymer concentrations the polyelectrolyte chains form necklaces of
beads connected by strings. As the polymer concentration increases, the
fraction of the condensed counterions on the chain increases and chains
shrink by decreasing the length of the strings and the number of beads on
the chain. Eventually, at higher polymer concentrations, polymer chains
interpenetrate, leading to a concentrated polyelectrolyte solution. In this
range of polymer concentrations, the chain size is observed to increase back
towards its Gaussian value. The nonmonotonic dependence of the chain
size on polymer concentration is in qualitative agreement with theoretical
predictions [156].

C. Counterion Distribution and Condensation in
Dilute Polyelectrolyte Solutions

The effect of counterion distributions in the dilute polyelectrolyte solution
was the central subject of the molecular dynamics simulations performed by

FIG. 18 Dependence of the end-to-end distance for polyelectrolyte chains with

number of monomers N¼ 94 (filled circles) and N¼ 187 (filled squares) in poor

solvent. Insets are snapshots of chain conformations.
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Limbach and Holm [157]. They have shown that the counterion distribution
around a quenched strongly charged polyelectrolyte chain shows an ‘‘end
effect.’’ The counterions are accumulated preferentially in the middle part of
the chain. Toward the end of the chain, the effective charge on the chain
increases, which is equivalent to a decrease in counterion concentration. The
reason for this behavior is the difference in the electrostatic potential created
by the charges of the polyelectrolyte chain. The electrostatic potential is
stronger in the middle of the chain than at its ends. Thus, an ion close to the
middle part of the chain is attracted more strongly than an ion sitting at the
chain end [158]. Besides the inhomogeneity of the local effective charge,
there is also inhomogeneity in the local chain conformations. The bonds are
stretched more in the middle of the chain. This nonuniform stretching of the
chain causes the polyelectrolyte to appear in the ‘‘trumpet-like’’ shape [158].
As one would expect, the end effects become less pronounced as salt is
added to the solution, due to the screening of the electrostatic interactions
over the Debye screening length.

For polyelectrolytes in a poor solvent, the situation is more peculiar. In
this case the end effects are smeared out over the end beads. There is a sharp
decrease in the effective charge in the region of the first strings. The
modulation in accumulation of the effective charge in the middle of the
chain repeats the necklace structure.

Condensation of counterions was studied by molecular dynamics
simulations [148,159]. These simulations have shown that in dilute
polyelectrolyte solutions at constant polymer concentrations the chain size
depends nonmonotonically on the Bjerrum length lB. First, the chain size
increases with increasing Bjerrum length lB, which is due to increasing
strength of the intrachain electrostatic repulsion between charged mono-
mers. This will continue until the Bjerrum length lB reaches the crossover
value l
B. Above this value the counterion condensation kicks in, reducing
the effective charge on the chain, weakening intrachain electrostatic
repulsions, and chains begin to shrink [139,140,160].

D. How Good Is the Debye–Hückel Approximation?

Almost all theoretical works considering polyelectrolytes [7,26,27,29,
141–145] have treated counterions and salt ions at the Debye–Hückel
(DH) level by preaveraging the electrostatic interactions between charged
monomers over the small ions’ degrees of freedom. In this approximation
the presence of counterions and salt ions leads to an effective screening
of the electrostatic interaction between charged monomers, which interact
via a screened electrostatic (Yukawa) potential. Of course, such an
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approximation is only correct when the presence of polymer chains will only
slightly perturb the uniform distribution of the small ions in the system. This
approximation should also fail at high polymer and salt concentrations,
when excluded volume effects start to control the ionic atmosphere around
polyelectrolyte chains.

To investigate the effect of the Debye–Hückel approximation on the
solution properties, Stevens and Kremer [152] performed molecular
dynamics simulations of salt-free solutions of bead-spring polyelectrolyte
chains in which the presence of counterions was treated via a screened
Coulomb potential, and compared the results with their simulations with
explicit counterions [146,148]. To elucidate the effect of the Debye–Hückel
approximation, the dependence of the mean square end-to-end distance,
hR2

ei, osmotic pressure, and chain structure factor on polymer concentration
was examined. Stevens and Kremer found that hR2

ei tends to be larger at low
densities for DH simulations and is smaller at higher densities. However, the
difference in hR2

ei between DH simulations and simulations with explicit
counterions is within 10%. This trend seems to be a generic feature for all N
in their simulations. The functional form and density dependence of the
chain structure factor are very close in both simulations. The most severe
Debye–Hückel approximation affects the dependence of the osmotic
pressure on polymer concentration. It appears that in the DH simulations
not only is the magnitude of the osmotic pressure incorrect, but also the
concentration dependence is wrong.

The effect of the Bjerrum length lB (strength of the Coulombic
interactions) on the applicability of the Debye–Hückel approximation was
investigated by Stevens and Plimpton [151]. They found that this
approximation works well for weak Coulomb interactions or for the
Bjerrum lengths lB smaller than � (see Fig. 19). From this figure we see that
the Debye–Hückel approximation breaks down for lB>�. In this range of
parameters the chain size monotonically increases in the DH simulations,
while for simulations with full Coulomb interactions the chain shrinks as the
strength of these interactions increases. This discrepancy should not be too
surprising, because, for lB>�, the Coulomb attraction of counterions to a
polyelectrolyte chain in its vicinity becomes stronger than the thermal
energy kBT, leading to effective localization (condensation) of counterions
near the polymer chain [3,136,139,140,160]. This condensation reduces the
charge on the chain forcing it to contract [139,140,160].

The Debye–Hückel approximation can be improved by considering the
full Poisson–Boltzmann approach to electrostatic interactions, in which
the counterion condensation phenomena are included implicitly. Tests of
the Poisson–Boltzmann approach to a cell model of rigid polyelectrolytes
[161,162] were done in references [163–165] by performing molecular
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simulations of this model. While the agreement between theory and
simulation results was excellent in the case of monovalent counterions
and weakly charged rods, it deteriorated with increase in the strength of the
electrostatic interactions and, in particular, with increase in the counterion
valence. At high concentrations of divalent counterions, computer simula-
tions show charge oscillations which the theoretical model is unable to
reproduce.

E. Bundle Formation in Polyelectrolyte Solutions

Can like-charged polyions ever attract each other? The answer to this
question is counterintuitive and has significant implications. It is a well
established fact that many bacteriophages use multivalent cations to
package their DNA into compact and ordered forms in vivo. This
phenomena is known as DNA condensation [166,167]. Moreover, it turns
out that DNA is not the only polyelectrolyte that is able to do so. Other
stiff polyelectrolytes such as F-actin [168], tobacco mosaic virus, and
the bacteriophage fd [169] are also able to form laterally ordered
aggregates (bundles) in the presence of multivalent counterions. Such a
variety of systems strongly suggests an electrostatic origin for the bundle
formation.

FIG. 19 Plot of the square-root mean square end-to-end distance as a function of

the Bjerrum length lB for DH simulation (open circles) and Coulomb simulation

(open squares). For these simulations N¼ 32 and c¼ 0.001��3. (From Ref. [151].)
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Recent Brownian dynamics simulations of systems of two infinitely long
similarly charged rods in the presence of their counterions [170] have
supported the electrostatic origin of aggregation by showing that the attrac-
tion between similarly charged polyions is indeed mediated by counterions.
As the strength of the electrostatic interaction increases (or temperature of
the system decreases) fluctuations in the densities of condensed counterions
along the axes of the rods become strongly anticorrelated (lock–key
structure) leading to effective attraction between rods at small separations
[171–173] (see [174] for a review).

The bundle formation in systems of stiff polyelectrolytes in the presence
of divalent counterions was simulated by Stevens [175,176]. Figure 20 shows
the ordering of stiff polyelectrolytes into a network of bundles. The number
of divalent counterions condensed on the chain is extremely large and
clearly drives the aggregation. The bundling is due to attraction between two
chains caused by correlated counterion fluctuations [171,172]. The precise

FIG. 20 Bundle configuration of polyelectrolyte chains with N¼ 64 and number of

chains in simulation cell M¼ 16. The figure shows four periodic images in order to

exhibit the connecting chains between bundles; there are only two bundles in the

simulation cell. The counterions are dark spheres and the monomers are light

spheres. (From Ref. [175].)
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morphology of the bundle depends on chain stiffness, length, and
concentration. The bundling occurs for stiff long chains, and when the
chain length decreases, the bundling decreases as well. The same happens
when the chain stiffness decreases. After the bundle is assembled the chains
can only reptate within the bundle, which leads to significant slowing down
of the relaxation of the system. It is therefore possible that within achievable
simulation times, this bundle network is metastable.

V. WHAT IS NEXT?

Our understanding of polyelectrolytes in solutions has significantly
progressed during the last ten years. The properties of polyelectrolyte
chains in dilute solution seem to be understood reasonably well. The only
problem that remains to be resolved here is the electrostatic persistence
length of flexible polyelectrolytes. Computer simulations of semidilute
polyelectrolyte solutions provide reasonable qualitative agreement with
existing experimental and theoretical works. We now better understand
counterion condensation phenomena and their relation to chain attraction
and clustering.

However, a lot of interesting work remains to be done as attention turns
to the dynamics of polyelectrolyte solutions. All current simulations of
polyelectrolytes neglect the hydrodynamic interactions [177]. The inclusion
of these interactions into molecular simulations will allow us to perform
simulations of ‘‘realistic’’ dilute and semidilute polyelectrolyte solutions. It
also will help us to answer the question of how hydrodynamic interactions
are really screened in polyelectrolyte solutions. The answer to this question
is extremely important for checking the assumptions of existing theoretical
models. Hydrodynamic interactions are also long range, thus the use of
Ewald summation [178–180], PME, and P3M methods can significantly
speed up the simulations. Work in this direction has just begun.

Another area which has attracted significant interest over the last few
years is polyelectrolytes at surfaces and interfaces [8,181–184]. The progress
in this area has implications for different areas of science and technology
such as colloids, biophysics, biochemistry, medical science, pharmacy, food
processing, water purification, etc. Some simulation work [185–191] has
already appeared, suggesting a broad spectrum of interesting physical
phenomena.

Our list of future directions cannot be complete without mentioning
polyelectrolyte gels, polyelectrolyte brushes [192–195] (polyelectrolytes
grafted to a surface), and complexation of polyelectrolytes with colloids
[196–200], dendrimers [201], surfactants, and proteins. We anticipate serious
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simulation studies of these systems in the near future that will have
tremendous practical applications.

APPENDIX

To perform direct evaluation of the lattice sum in Eq. (16) we first introduce
the integral representation of

1

rj j
¼

2ffiffiffi
�

p

Z �

0

dt exp � rj j2t2
� �

þ

Z 1

�

dt exp � rj j2t2
� �	 


ð53Þ

With the help of this integral representation we can split the electrostatic

energy of the unit cell U ({rj}) into two parts

U rj
� �� �

¼ Udir rj
� �� �

þU2 rj
� �� �

where we defined the direct sum

Udir rj
� �� �

kBT
¼ lim

M!1

lBffiffiffi
�

p
X

k, j

qkqj
X


n

Z 1

�

exp � rkj þ n
�� ��2t2

� �
dt ð54Þ

¼
lB
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X


n

X

k, j

qkqj
erfc rk � rj þ n

�� ���
� �

rk � rj þ n
�� ��

and a sum

U2 rj
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kBT
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lBffiffiffi
�

p
X

k, j

qkqj
X


n

Z �

0

dt exp � rkj þ n
�� ��2t2

� �
ð55Þ

In Eq. (54) erfc xð Þ ¼ 2=
ffiffiffi
�

p R1
x dt exp �t2

� �
is the complementary error func-

tion. The direct sum Udir({rj}) is a rapidly convergent series and we may take

the limit M ! 1 without further ado. The second lattice sum in (55)

requires more careful attention. This sum is diffcult to evaluate as it is, so

we use the identity

exp � rkj þ n
�� ��2t2

� �
¼

1

�3=2t3

Z
d3u exp �

u2

t2
þ 2irkj � uþ 2in � u

� �
ð56Þ
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to reduce it to three finite geometric series. After substitution of the integral
(56) into Eq. (55), the integration over t may be performed immediately by
using the substitution s¼ t�1. This leads to the following expression for the
lattice sum

U2ðfrjgÞ

kBT
¼ lim

M!1

lB

2�2

X

k, j

qkqj

Z
d3u

u2
exp �u2=�2þ2irkj �u

� �X

n

exp 2in �uð Þ

�
�lBffiffiffi
�

p
X

j

q2j

In the last equation the second term in the r.h.s. is accounting for the self-
energy of the charges with n¼ 0 and k¼ j. The main contribution to the
sum comes from the regions where exp(2in�u)¼ 1 for which u¼G¼

m1b1þm2b2þm3b3 is a vector of the reciprocal lattice, b�, �¼ 1, 2, 3 are
primitive vectors of the reciprocal lattice, and m1, m2, m3 are integer num-
bers. The vectors b� have the property b�a�¼����. [For the cubic lattice
these vectors are b1¼ (�/L, 0, 0), b2¼ (0, �/L, 0), and b3¼ (0, 0, �/L).] This
suggests dividing the integration region over u into a sum of integrals over
the volume of a reciprocal lattice unit cell (the first Brillouin zone)
VG¼ {��/2L< ��<�/2L, for �¼ 1, 2, 3}. To do so we make the substitu-
tion u¼Gþ v where v 2 VG. This leads to

Urec rj
� �� �

kBT
¼ lim

M!1

lB

2

X

k, j

qkqj
X

G6¼0

exp �G2=�2 þ 2irkj �G
� �

IG rkj
� �

þ I0 rkj
� �

 !

ð58Þ

where we have defined

IG rkj
� �

¼
1

�2

Z

VG

d3vgG v, rkj
� �X

n

exp 2in � vð Þ ð59Þ

and

gG v, rij
� �

¼ vþGð Þ
�2exp �v2=�2 � 2v �Gþ 2irij � v

� �

The lattice sum in the integral IG(rkj) may be easily evaluated

X

n

expð2in � vÞ ¼
Y3

�¼1

XM

n�¼�M

exp 2in�L��ð Þ ¼
Y3

�¼1

sin 2M þ 1ð ÞL��ð Þ

sin L��ð Þ
ð60Þ
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For any G 6¼ 0 the integral IG(rij) may be written as follows

IG rkj
� �

¼ gG 0, rkj
� � 1

�2

Z

VG

d3v
Y3

�¼1

sin 2M þ 1ð ÞL��ð Þ

sin L��ð Þ

þ
1

�2

Z
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d3v gG v, rkj
� �

� gG 0, rkj
� �� �Y3

�¼1

sin 2M þ 1ð ÞL��ð Þ

sin L��ð Þ
ð61Þ

The first integral is equal to �3/L3 and the first term is equal to �/L3
G

2. The
second integral may be estimated by integrating by parts with the use of
sin ((2Mþ 1)L��)¼�((2Mþ 1)L)�1 d cos ((2Mþ 1)L��)/d��. The leading
terms are equal to zero because cos ((2Mþ 1)�/2)¼ 0. Integration by parts
again gives terms that are O(((2Mþ 1)L)�2) and can be neglected in the limit
M ! 1. Collecting all terms together we obtain the final expression for the
sum in the reciprocal space with G 6¼ 0
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where we defined the charge structure factor
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� �
ð63Þ

where vector m¼ (m1,m2,m3) with all integers m� 2 �1,1½ 	 for �¼ 1, 2, 3.
Now let us evaluate I0(rkj). After some algebra it can be written as follows
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ð64Þ

The function I0(0) is independent of rkj and its contribution to the lattice
sum cancels for electroneutral systems. The first integral can be estimated by
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expanding exp (2irij � v) in powers of 2irkj . v. All the odd powers in this series
do not contribute to the integral due to symmetry of the VG. Thus the
expansion starts with the term �2(rkj . v)2. This is the only term in which
we are interested, because all other terms in the expansion are
O(((2Mþ 1)L)�2) and can be omitted in the limit M ! 1. The symmetry
of the integral allows us to change (rkj . v)2 v

2 by r2kj=3 and to perform the
integration over v obtaining �3/L3. The second integral is finite and can be
evaluated by integrating by parts leading to an asymptotic expansion in
inverse powers of (2Mþ 1)L. This expansion starts with the term of the
order of O(((2Mþ 1)L)�2) and once again can be neglected in the limit
M ! 1. The final result for this part of the lattice sum is
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Combining all terms together, we can write the final expression for the
electrostatic energy of the cell as a sum of four terms sums in the direct and
reciprocal space, self-energy term, and shape term that depends on the net
dipole moment of the cell
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I. INTRODUCTION

The phase behavior of fluids is of central importance to many technological
and scientific fields, for example in designing separations for the chemical
and pharmaceutical industries or in understanding fundamental processes in
living systems. A large body of experimental information has been gathered
over the years (e.g., see [1]), and significant efforts have been made to
understand the phenomenology of the transitions and to obtain empirical-
and theoretical-based models that can be used to correlate and extend
the range of experimental data. Experimental measurements are time-
consuming and expensive. For multicomponent mixtures, measurements are
available only for a limited number of temperatures, pressures, and
compositions. Empirical models are only valid over the range of conditions
for which experimental data have been used to obtain the model parameters.
Even theoretical-based models have limited predictive abilities for condi-
tions and systems different from the ones for which they have been tested
against using experimental data [2].

Molecular-based simulations are an increasingly important alternative
to experimental measurements and theoretical techniques for obtain-
ing properties of fluids and materials. The focus of the present chapter
is on simulations of phase equilibrium properties of fluids. Classical
force-field-based simulations start by postulating a functional form for the

313



intermolecular forces in a system. Equilibrium properties can generally be
obtained by either Monte Carlo or molecular dynamics methods. Monte
Carlo methods are based on generating configurations from the appropriate
probability distribution for a statistical mechanical ensemble, while
molecular dynamics methods generate configurations by solving Newton’s
equations of motion. Calculations by simulation of simple structural and
energetic properties (such as pair correlation functions, the mean con-
figurational energy, or pressure) are relatively straightforward, but the
prediction of the order and precise location of phase transitions is not a
simple matter. Phase transitions are collective phenomena that occur over
time and length scales that are not directly accessible by molecular dynamics
or simple constant-volume Monte Carlo simulations. Until the mid-1980s,
obtaining the phase behavior of even a simple one-component system
required a major research effort [3]. Methodological developments since
then have rendered the determination of phase equilibria by simulation
much easier than before. Most of these methodological advances have
involved development of novel Monte Carlo algorithms, which are the focus
of the present review. In addition, the sustained increases in computing
hardware capabilities have greatly expanded the range of systems that can
be studied on readily available machines. As a result, the number of
simulation studies of both model potentials and realistic systems has
dramatically increased.

A number of textbooks, research monographs, and review articles have
appeared previously in the area of the present chapter. The book by Allen
and Tildesley [4] on computer simulation methods for liquids provides an
excellent introduction to molecular dynamics and Monte Carlo methods,
but does not cover the major recent methodological advances, since it
was published in 1987. The recent book by Frenkel and Smit [5] has
comprehensive coverage of molecular simulation methods for fluids, with
particular emphasis on algorithms for phase equilibrium calculations. It
describes many of the techniques mentioned in the present chapter in
significantly more detail than is possible here. The Gibbs ensemble method
and its applications have been reviewed in [6–9]. Proceedings of a
workshop on simulations of phase transitions [10] and general review
articles on simulation methods and their applications (e.g., [11–13]) are also
available. The present chapter follows closely an earlier review article by the
author [14].

Knowledge of the chemical potential of all components (or the free
energy) of a system as a function of temperature, density, and composition
is, of course, sufficient to determine the phase behavior. Methods to
obtain the chemical potential include thermodynamic integration, a very
general technique in which the state of interest is linked via a reversible
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path to a state of known free energy [5], and the Widom test particle
insertion method [15]. The present chapter focuses on methods that were
specifically designed for phase equilibrium calculations. The relative
precision and accuracy of methods to obtain the chemical potential have
been examined in [16]. Applications of direct interfacial simulations, which
can be performed by either Monte Carlo or molecular dynamics
algorithms, have been reviewed by Rowlinson and Widom [17] and
Gubbins [18].

The plan of this chapter is as follows. Section II deals with the Gibbs
ensemble Monte Carlo method, which is based on simultaneous
calculations in two regions representing equilibrium phases, coupled
indirectly via particle transfers and volume changes. The method is now
commonly used for obtaining phase equilibria of fluids, because of its
simplicity and speed. A single Gibbs ensemble simulation gives a point on
the phase envelope of a multicomponent system. A number of other
methods designed for direct calculations of phase equilibria are described
in Section III. The NPTþ test particle method (Section III.A) is based
on chemical potential calculations. The method has roughly the same
range of applicability and limitations as the Gibbs ensemble, but requires
multiple simulations per coexistence point. Gibbs–Duhem integration
(Section III.B) does not require particle insertions and removals and is
applicable to transitions involving solids. It needs to start, however,
from a point on the phase envelope determined by one of the other
techniques. Pseudo-ensembles (Section III.C) provide significant flexibility
in determinations of phase equilibria under different external constraints
and can be implemented in combination with the Gibbs ensemble or
Gibbs–Duhem integrations. Histogram reweighting methods (Section IV)
provide the free energy and phase behavior with excellent accuracy and
can be used in the vicinity of critical points. The majority of simulation
methods for calculations of phase transitions rely on particle transfers,
which become impractical for dense systems or multisegment molecules. A
number of methods have been developed for improving the efficiency of
particle transfers and have been instrumental in enabling calculations for
realistic potential models. Configurational-bias sampling techniques that
perform ‘‘smart’’ insertions at favorable locations are described in Section
V.A. Expanded ensembles are based on gradual transfers of parts of
molecules and are described in Section V.B. The last part of this review
(Section VI) describes applications of simulations to calculations of the
phase behavior of polymeric systems. The chapter concludes with a
discussion of the relative strengths and weaknesses of the methods
discussed and provides some suggestions for possible future research
directions in the field.
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II. GIBBS ENSEMBLE MONTE CARLO

The Gibbs Ensemble Monte Carlo simulation methodology [19–21] enables
direct simulations of phase equilibria in fluids. A schematic diagram of the
technique is shown in Fig. 1. Let us consider a macroscopic system with two
phases coexisting at equilibrium. Gibbs ensemble simulations are performed
in two separate microscopic regions, each within periodic boundary
conditions (denoted by the dashed lines in Fig. 1). The thermodynamic
requirements for phase coexistence are that each region should be in internal
equilibrium, and that temperature, pressure, and the chemical potentials of
all components should be the same in the two regions. System temperature
in Monte Carlo simulations is specified in advance. The remaining three
conditions are satisfied by performing three types of Monte Carlo moves—
displacements of particles within each region (to satisfy internal equilib-
rium), fluctuations in the volume of the two regions (to satisfy equality of
pressures), and transfers of particles between regions (to satisfy equality of
chemical potentials of all components).

The acceptance criteria for the Gibbs ensemble were originally derived
from fluctuation theory [19]. An approximation was implicitly made in the
derivation that resulted in a difference in the acceptance criterion for
particle transfers proportional to 1/N relative to the exact expressions given
subsequently [20]. A full development of the statistical mechanics of the

FIG. 1 Schematic diagram of the Gibbs ensemble Monte Carlo simulation

methodology.
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ensemble was given by Smit et al. [21] and Smit and Frenkel [22], which we
follow here. A one-component system at constant temperature T, total
volume V, and total number of particles N is divided into two regions, with
volumes VI and VII¼V�VI, and number of particles NI and NII¼N�NI.
The probability density of states, }(NI,VI; N,V,T ), is proportional to

}ðNI ,VI ;N,V ,TÞ

/
N!

NI !NII !
exp NI lnVI þNII lnVII � �UI ðNI Þ � �UII ðNII Þ½ 	 ð1Þ

Smit et al. [21] used a free energy minimization procedure to show that
for a system with a first-order phase transition, the two regions in a Gibbs
ensemble simulation are expected to reach the correct equilibrium densities.

The acceptance criteria for the three types of moves can be immediately
obtained from Eq. (1). For a displacement step internal to one of the
regions, the probability of acceptance is the same as for conventional
constant-NVT simulations,

}move ¼ min½1, expð���UÞ	 ð2Þ

where �U is the configurational energy change resulting from the displace-

ment. For a volume change step during which the volume of region I is
increased by �V with a corresponding decrease of the volume of region II,

}volume¼min

"
1, exp

�
���UI���UIIþNI ln

VIþ�V

VI
þNII ln

VII��V

VII

�#

ð3Þ

Equation (3) implies that sampling is performed uniformly in the volume

itself. The acceptance criterion for particle transfers, written here for

transfer from region II to region I is

}transfer ¼ min

"
1,

NIIVI

ðNI þ 1ÞVII
expð���UI � ��UII Þ

#
ð4Þ

Equation (4) can be readily generalized to multicomponent systems. The
only difference is that the numbers of particles of species j in each of the

two regions, NI,j and NII,j, replace NI and NII respectively. In simulations of
multicomponent systems dilute in one component, it is possible that the
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number of particles of a species in one of the two regions becomes zero after
a successful transfer out of that region. Equation (4) in this case is taken to
imply that the probability of transfer out of an empty region is zero.

The acceptance rules to this point are for a simulation in which the total
system is at constant number of molecules, temperature, and volume. For
pure component systems, the phase rule requires that only one intensive
variable (in this case system temperature) can be independently specified
when two phases coexist. The vapor pressure is obtained from the simu-
lation. By contrast, for multicomponent systems pressure can be specified
in advance, with the total system being considered at constant NPT. The
probability density for this case, }(NI,VI; N,P,T ) is proportional to

}ðNI ,VI ;N,P,TÞ

/
N!

NI !NII !
exp

h
NI lnVIþNII lnVII��UI ðNI Þ��UII ðNII Þ��PðVIþVII Þ

i

ð5Þ

and the only change necessary in the algorithm is that the volume changes in
the two regions are now made independently. The acceptance criterion
for a volume change step in which the volume of region I is changed by
�V, while the other region remains unchanged is then

}volume ¼ min

"
1, exp

�
� ��UI þNI ln

VI þ�V

VI
� �P�V

�#
ð6Þ

An interesting extension of the original methodology was proposed by
Lopes and Tildesley [23], to allow the study of more than two phases at
equilibrium. The extension is based on setting up a simulation with as many
boxes as the maximum number of phases expected to be present. Kristof and
Liszi [24,25] have proposed an implementation of the Gibbs ensemble in
which the total enthalpy, pressure, and number of particles in the total
system are kept constant. Molecular dynamics versions of the Gibbs
ensemble algorithm are also available [26–28], and also in the following
Chapter 10 by M. Kotelyanskii and R. Hentschke.

The physical reason for the ability of the Gibbs ensemble to converge to a
state that contains phases at their equilibrium density in the corresponding
boxes, rather than a mixture of the two phases in each box, is the free energy
cost for creating and maintaining an interface. Essentially, in the Gibbs
ensemble, one trades off the directness of the interfacial simulation
approach with the (slight) inconvenience of setting up and maintaining
two or more boxes for the equilibrium phases. However, much smaller
system sizes can be used relative to interfacial simulations, and the
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simulations are generally stable, except at the immediate vicinity of critical
points.

Near critical points, Gibbs ensemble simulations become unstable
because the free energy penalty for creating an interface becomes small.
In a detailed study of the behavior of Gibbs ensemble simulations near
critical points, Valleau [29] concluded that ‘‘it is only with extreme care . . .
that reliable information on critical parameters or the shapes of coxistence
curves may be obtained from Gibbs ensemble simulations.’’ The cause of the
problems is that near critical points finite-size effects are present, and there
is no mechanism for controlling system size of each individual region in the
Gibbs ensemble. A better approach for dealing with systems near critical
points is provided by the histogram methods described in Section IV. The
finite-size critical behavior of the Gibbs ensemble has been examined by
Bruce [30], Mon and Binder [31], and Panagiotopoulos [32]. The ‘‘standard’’
procedure for obtaining critical points from Gibbs ensemble simulations is
to fit subcritical coexistence data to universal scaling laws. This approach
has a weak theoretical foundation, since the universal scaling laws are only
guaranteed to be valid in the immediate vicinity of the critical point, where
simulations give the wrong (classical) behavior due to the truncation of the
correlation length at the edge of the simulation box. In many cases,
however, the resulting critical points are in reasonable agreement with more
accurate results obtained from finite-size scaling methods (Section IV.C).

In summary, the Gibbs ensemble Monte Carlo methodology provides a
direct and efficient route to the phase coexistence properties of fluids,
for calculations of moderate accuracy. The method has become a standard
tool for the simulation community, as evidenced by the large number of
applications. Histogram reweighting techniques (Section IV) have the
potential for higher accuracy, especially if equilibria at a large number of
state points are to be determined. Histogram methods are also inherently
better at determining critical points. In its original form, the Gibbs ensemble
method is not practical for multisegment or strongly interacting systems,
but development of configurational-bias sampling methods described in
Section V.A has overcome this limitation.

III. THE NPT1TEST PARTICLE METHOD,
GIBBS–DUHEM INTEGRATION AND
PSEUDO-ENSEMBLES

A. The NPT1Test Particle Method

The NPTþ test particle method [33,34] is based on calculations of the
chemical potentials for a number of state points. A phase coexistence point
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is determined at the intersection of the vapor and liquid branches of the
chemical potential vs. pressure diagram. The Widom test particle method
[15] or any other suitable method [16] can be used to obtain the chemical
potentials. Corrections to the chemical potential of the liquid and vapor
phases can be made, using standard thermodynamic relationships, for
deviations between the pressure at which the calculations were made and the
actual coexistence pressure. Extrapolations with respect to temperature are
also possible [35].

In contrast to the Gibbs ensemble, a number of simulations are required
per coexistence point, but the number can be quite small, especially for
vapor–liquid equilibrium calculations away from the critical point. For
example, for a one-component system near the triple point, the density of
the dense liquid can be obtained from a single NPT simulation at zero
pressure. The chemical potential of the liquid, in turn, determines the
density of the (near-ideal) vapor phase so that only one simulation is
required. The method has been extended to mixtures [36,37]. Significantly
lower statistical uncertainties were obtained in [37] compared to earlier
Gibbs ensemble calculations of the same Lennard-Jones binary mixtures,
but the NPTþ test particle method calculations were based on longer
simulations.

The NPTþ test particle method shares many characteristics with the
histogram reweighting methods discussed in Section IV. In particular,
histogram reweighting methods also obtain the chemical potentials and
pressures of the coexisting phase from a series of simulations. The
corrections to the chemical potentials for changes in pressure [34] and
temperature [35] are similar to the concept of reweighting of combined
histograms from grand canonical simulations to new densities and
temperatures.

Spyriouni et al. [38,39] have presented a powerful method (called
‘‘SPECS’’) for calculations of polymer phase behavior related to the
NPTþ test particle method. The method of Spyriouni et al. targets the
calculation of the phase behavior of long-chain systems for which the test
particle method for calculation of chemical potentials fails. For sufficiently
long chains, even configurational-bias sampling methods discussed in
Section V.A become impractical. For binary mixtures of a low-molecular
weight solvent (species 1) and a polymer (species 2), two parallel simulations
are performed in the (1,N2,P,T ) ensemble at conditions near the expected
coexistence curve. The chemical potential of component 2 is determined
through the ‘‘chain increment’’ technique [40]. Iterative calculations at
corrected values of the chemical potential of the solvent are performed until
the chemical potential of the polymer in the two phases is equal. For the
special case of a dilute solution, estimates of the chemical potentials of the
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solvent and polymer for compositions different from the original simulation
conditions can be made using standard thermodynamic relations and the
number of required iterations is significantly reduced.

B. Gibbs–Duhem Integration

Most methods for determination of phase equilibria by simulation rely on
particle insertions to equilibrate or determine the chemical potentials of the
components. Methods that rely on insertions experience severe difficulties
for dense or highly structured phases. If a point on the coexistence curve is
known (e.g., from Gibbs ensemble simulations), the remarkable method of
Kofke [41,42] enables the calculation of a complete phase diagram from a
series of constant-pressure simulations that do not involve any transfers of
particles. For one-component systems, the method is based on integration
of the Clausius–Clapeyron equation over temperature,

� dP
d�

�

sat
¼ �

�H

��V
ð7Þ

where sat indicates that the equation holds on the saturation line, and �H
is the difference in enthalpy between the two coexisting phases. The right
hand side of Eq. (7) involves only ‘‘mechanical’’ quantities that can be simply
determined in the course of a standard Monte Carlo or molecular dynamics
simulation. From the known point on the coexistence curve, a change in
temperature is chosen, and the saturation pressure at the new temperature
is predicted from Eq. (7). Two independent simulations for the correspond-
ing phases are performed at the new temperature, with gradual changes of the
pressure as the simulations proceed to take into account the enthalpies and
densities at the new temperature as they are being calculated.

Questions related to propagation of errors and numerical stability of the
method have been addressed in [42] and [43]. Errors in initial conditions
resulting from uncertainties in the coexistence densities can propagate and
increase with distance from the starting point when the integration path is
towards the critical point [43]. Near critical points, the method suffers from
instability of a different nature. Because of the small free energy barrier
for conversion of one phase into the other, even if the coexistence pressure is
set properly, the identity of each phase is hard to maintain and large
fluctuations in density are likely. The solution to this last problem is to
borrow an idea from the Gibbs ensemble and couple the volume changes of
the two regions [42]. Extensions of the method to calculations of three-phase
coexistence lines are presented in [44] and to multicomponent systems in [43].
Unfortunately, for multicomponent systems the Gibbs–Duhem integration
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method cannot avoid particle transfers—however, it avoids transfers for one
component, typically the one that is the hardest to transfer. The method and
its applications have been recently reviewed [45].

In some cases, in particular lattice and polymeric systems, volume change
moves may be hard to perform, but particle insertions and deletions may
be relatively easy, especially when using configurational-bias methods.
Escobedo and de Pablo [46,47] proposed a modification of the Gibbs–
Duhem approach that is based on the expression

� dð�Þ
d�

�

sat
¼ �

�ð�uÞ

��
, ð8Þ

where � is the density (¼N/V) and u the energy per particle. This method
was applied to continuous-phase polymeric systems in [46] and to lattice
models in [50].

The Gibbs–Duhem integration method excels in calculations of solid–
fluid coexistence [48,49], for which other methods described in this chapter
are not applicable. An extension of the method that assumes that the initial
free energy difference between the two phases is known in advance, rather
than requiring it to be zero, has been proposed by Meijer and El Azhar [51].
The procedure has been used in [51] to determine the coexistence lines
of a hard-core Yukawa model for charge-stabilized colloids.

C. Pseudo-Ensembles

The Gibbs–Duhem integration method represents a succesful combination
of numerical methods and molecular simulations. Taking this concept
even further, Mehta and Kofke [52] proposed a ‘‘pseudo-grand canonical
ensemble’’ method in which a system maintains a constant number of
particles and temperature, but has a fluctuating volume to ensure that, at
the final density, the imposed value of the chemical potential is matched.
The formalism still requires that estimates of the chemical potential be made
during the simulation. The main advantage of the approach over more
traditional grand canonical ensemble methods is that it provides additional
flexibility with respect to the method to be used for determination of
the chemical potential. For example, the ‘‘chain increment’’ method [40]
for chain molecules, which cannot be combined with grand canonical
simulations, can be used for the chemical potential evaluations in a pseudo-
grand canonical simulation (as in [38]).

The same ‘‘pseudo-ensemble’’ concept has been used by Camp and Allen
[53] to obtain a ‘‘pseudo–Gibbs’’ method in which particle transfers are
substituted by volume fluctuations of the two phases. The volume
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fluctuations are unrelated to the ones required for pressure equality
[Eq. (3)] but are instead designed to correct imbalances in the chemical
potentials of some of the components detected, for example, by test particle
insertions.

While the main driving force in [52] and [53] was to avoid direct particle
transfers, Escobedo and de Pablo [47] designed a ‘‘pseudo-NPT’’ method to
avoid direct volume fluctuations which may be inefficient for polymeric
systems, especially on lattices. Escobedo [54] extended the concept for
bubble-point and dew-point calculations in a ‘‘pseudo-Gibbs’’ method and
proposed extensions of the Gibbs–Duhem integration techniques for tracing
coexistence lines in multicomponent systems [55].

IV. HISTOGRAM REWEIGHTING GRAND
CANONICAL MONTE CARLO

Early in the history of development of simulation methods it was realized
that a single calculation can, in principle, be used to obtain information on
the properties of a system for a range of state conditions [56–58]. However,
the practical application of this concept was severely limited by the
performance of computers available at the time. In more recent years,
several groups have confirmed the usefulness of this concept, first in the
context of simulations of spin systems [59–61] and later for continuous-
space fluids [62,63,65–67]. In the following subsections, we give a
pedagogical review of histogram reweighting methods for grand canonical
Monte Carlo (GCMC) simulations as applied to one- and multicomponent
systems. In addition, the determination of critical parameters from
histogram data is briefly reviewed.

A. One-Component Systems

A GCMC simulation for a one-component system is performed as follows.
The simulation cell has a fixed volume V, and is placed under periodic
boundary conditions. The inverse temperature, �¼ 1/kBT and the chemical
potential, , are specified as input parameters to the simulation. Histogram
reweighting requires collection of data for the probability f(N,E) of
occurrence of N particles in the simulation cell with total configurational
energy in the vicinity of E. This probability distribution function follows the
relationship

f ðN,EÞ ¼
�ðN,V ,EÞexpð��E þ �NÞ

	ð,V ,�Þ
ð9Þ
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where � (N,V,E) is the microcanonical partition function (density of states)
and 	(,V,�) is the grand partition function. Neither � nor 	 are known at
this stage, but 	 is a constant for a run at given conditions. Since the left
hand side of Eq. (9) can be easily measured in a simulation, an estimate for
� and its corresponding thermodynamic function, the entropy S(N,V,E),
can be obtained by a simple transformation of Eq. (9):

SðN,V ,EÞ=kB ¼ ln�ðN,V ,EÞ ¼ ln f ðN,EÞ þ �E � �N þ C ð10Þ

C is a run-specific constant. Equation (10) is meaningful only over the range
of densities and energies covered in a simulation. If two runs at different
chemical potentials and temperatures have a region of overlap in the space
of (N,E) sampled, then the entropy functions can be ‘‘merged’’ by requiring
that the functions are identical in the region of overlap. To illustrate this
concept, we make a one-dimensional projection of Eq. (9) to obtain

f ðNÞ ¼
QðN,V ,�Þexpð�NÞ

	ð,V ,�Þ
ð11Þ

Histograms for two runs at different chemical potentials are presented in
Fig. 2. There is a range of N over which the two runs overlap. Figure 3
shows the function lnf(N)��N for the data of Fig. 2. From elementary
statistical mechanics, this function is related to the Helmholtz energy,

�AðN,V,�Þ ¼ � lnQðN,V ,�Þ ¼ ln f ðNÞ � �N þ C ð12Þ

FIG. 2 Schematic diagram of the probability f(N) of occurrence of N particles for

two GCMC runs of a pure component system at the same volume V and temperature

T, but different chemical potentials, 1 and 2, respectively. (From [14], �2000 IOP

Publishing Ltd.)
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Figure 3 shows the raw curves for 1 and 2 as well as a ‘‘composite’’ curve
formed by shifting data for the two runs by the amount indicated by the
arrows. The combined curve provides information over the combined range
of particle numbers, N, covered by the two runs. Note that by keeping one-
dimensional histograms for N we are restricted to combining runs of the
same temparature, while the more general form [Eq. (10)] allows combina-
tion of runs at different temperatures.

Simulation data are subject to statistical (sampling) uncertainties, which
are particularly pronounced near the extremes of particle numbers and
energies visited during a run. When data from multiple runs are combined as
shown in Fig. 3, the question arises of how to determine the optimal amount
by which to shift the raw data in order to obtain a global free energy
function. Ferrenberg and Swendsen [68] provided a solution to this problem
by minimizing the differences between predicted and observed histograms.
In this approach, it is assumed that multiple overlapping runs, i¼ 1, 2, . . . , R
are available for a given system. The composite probability, }(N,E;,�), of
observing N particles and energy E, if one takes into account all runs and
assumes that they have the same statistical efficiency, is

}ðN,E;,�Þ ¼

XR

i¼1
fiðN,EÞ exp½��E þ �N	

XR

i¼1
Ki exp½��iE þ �iiN � Ci	

ð13Þ

where Ki is the total number of observations [Ki¼
P

N,E fi(N,E )] for run i.
The constants Ci (also known as ‘‘weights’’) are obtained by iteration

FIG. 3 The function ln [f(N)]��N for the data of Fig. 2. The figure shows the raw

curves for 1 and 2 as well as a ‘‘composite’’ curve formed by shifting the data

by the amount indicated by the arrows. (From [14], �2000 IOP Publishing Ltd.)
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from the relationship

expðCiÞ ¼
X

E

X

N

}ðN,E;i,�iÞ ð14Þ

Given an initial guess for the set of weights Ci, Eqs. (13) and (14) can be
iterated until convergence. When many histograms are to be combined this
convergence of the Ferrenberg–Swendsen weights can take a long time.
Once this has been achieved, however, all thermodynamic quantities for the
system over the range of densities and energies covered by the histograms
can be obtained. For example, the mean configurational energy U( ,�) is

hUi, � ¼
X

E

X

N

}ðN,E;,�Þ � E ð15Þ

and the mean density �(,�)

h�i, � ¼
1

V

X

E

X

N

}ðN,E;,�Þ �N ð16Þ

The pressure of a system can be obtained from the following expression.
If the conditions for run 1 are (1,V,�1) and for run 2 (2,V,�2), then

C2 � C1 ¼ ln
	ð2,V ,�2Þ

	ð1,V ,�1Þ
¼ �2P2V � �1P1V ð17Þ

where P is the pressure, since ln	¼ �PV. Equation (17) can be used to
obtain the absolute value of the pressure for one of the two runs, provided
that the absolute pressure can be estimated for the other run. Typically, this
is done by performing simulations for low-density states for which the
system follows the ideal-gas equation of state, PV¼NkBT.

Up to this point, we assumed that a system exists in a one-phase region
over the range of densities and energies sampled. If a phase transition exists,
then the system, in principle, should sample states on either side of the phase
transition, resulting in histograms with multiple peaks. This is illustrated in
Fig. 4, in which actual simulation data (from a single run) are plotted for
a simple cubic lattice homopolymer system [63] at a slightly subcritical
temperature. There are two states sampled by the run, one at low and one
at high particle numbers, corresponding to the gas and liquid states. The
conditions for phase coexistence are equality of temperature, chemical
potential, and pressure—the first two are satisfied by construction. From
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Eq. (17), the integral under the probability distribution function is
proportional to the pressure. In the case of two distinct phases, the integrals
should be calculated separately under the liquid and gas peaks. The
condition of equality of pressures can be satisfied by reweighting the data
until this condition is met. In Section IV.C, we discuss how near-critical
histogram data can be used to obtain precise estimates of the critical
parameters for a transition.

In the absence of phase transitions or at temperatures near a critical
point, the values of all observable quantities (such as the histograms of
energy and density) are independent of initial conditions, since free energy
barriers for transitions between states are small or nonexistent. However,
at lower temperatures, free energy barriers for nucleation of new phases
become increasingly larger. The states sampled at a given temperature and
chemical potential depend on initial conditions, a phenomenon known as
hysteresis. This is illustrated schematically in Fig. 5. For a supercritical
isotherm, T>Tc, the mean value of the density is a continuous function of
the chemical potential, and the same value is obtained for given conditions,
irrespective of the starting configuration. By contrast, for a subcritical
isotherm, when the runs are started from a low-density state, at some value
of the chemical potential, a discontinuous ‘‘jump’’ to a state of higher
density is observed. The exact location of the jump depends on the initial
state and the specific mix of Monte Carlo moves used to change the
configuration of the system. When simulations are started in a high-density

FIG. 4 Frequency of observation of states vs. energy, E, and number of particles,

N, for a homopolymer of chain length r¼ 8 and coordination number z¼ 6 on a

10� 10� 10 simple cubic lattice. Conditions, following the notation of [63] are

T *=11.5, *¼�60.4. In order to reduce clutter, data are plotted only for every

third particle. (From [14], �2000 IOP Publishing Ltd.)
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state, the system remains on the high-density branch of the isotherm until
some value of the chemical potential that is lower than the chemical
potential of the jump from low- to high-density states.

The histogram reweighting method can be applied to systems with large
free energy barriers for transitions between states, provided that care is
taken to link all states of interest via reversible paths. One possibility is to
utilize umbrella or multicanonical sampling techniques [61,69] to artificially
enhance the frequency with which a simulation samples the intermediate
density region [62]. Multicanonical and umbrella sampling require as input
an estimate of the free energy in the intermediate density region, which has
to be obtained by trial and error. In addition, a significant fraction of
simulation time is spent sampling unphysical configurations of intermediate
density. An alternative approach is to link states by providing connections
through a supercritical path, in a process analogous to thermodynamic
integration [5]. This approach is illustrated schematically in Fig. 6. The filled
square represents the critical point for a transition, and open squares linked
by dashed lines represent tie-lines. Ellipses represent the range of particle
numbers and energies sampled by a single simulation. A near-critical
simulation samples states on both sides of the coexistence curve, while
subcritical simulations are likely to be trapped in (possibly metastable) states
on either side. However, as long as there is a continuous path linking all
states of interest, the free energies and pressures can be calculated correctly,
and an accurate phase envelope can be obtained.

An example of the application of histogram reweighting for determining
the phase behavior of a homopolymer model on the simple cubic lattice is

FIG. 5 Schematic diagram of the mean number of particles, hNi, vs. chemical

potential, , for a subcritical and a supercritical isotherm of a one-component fluid.

The curve for the supercritical isotherm has been shifted up for clarity. (From [14],

�2000 IOP Publishing Ltd.)
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illustrated in Fig. 7. The phase behavior and critical properties of the model
for a range of chain lengths have been studied in [63]. The system in this
example is for chain length r¼ 8 and coordination number z¼ 6. In this
example, we first performed a simulation at reduced temperature T *¼ 11.5
and chemical potential *¼�60.4, for which the raw histogram data are
shown in Fig. 4. The resulting average volume fraction for the run is
indicated on Fig. 7 by the filled circle at T *¼ 11.5. The range of volume
fractions sampled during the simulation is indicated on Fig. 7 by the arrows
originating at the run point. Because this run is near the critical point, a very
broad range of particle numbers and thus volume fractions is sampled
during this single run. The histogram from this run was then reweighted to
lower temperatures and a preliminary phase diagram was obtained. The
estimated coexistence chemical potential at T *¼ 9 was used as input to a
new simulation, which sampled states near the saturated liquid line. The
same procedure was repeated, now with combined histograms from the first
two runs, to obtain an estimate of the coexistence chemical potential at
T *¼ 7. A new simulation was performed to sample the properties of the
liquid at that temperature. The total time for the three runs was 10CPU min
on a Pentium III 300MHz processor. The final result of these three
calculations was the phase coexistence lines shown by the thick continuous
lines on Fig. 7.

Two general observations can be made in relation to this example.
First, it should be pointed out that the histogram reweighting method works
much faster on smaller system sizes. As the system size increases, relative

FIG. 6 Schematic diagram of the energy, E, vs. the number of particles, N, for a

one-component fluid with a phase transition. Squares linked by dashed lines are

coexisting phases joined by tie-lines and the filled square indicates the critical point

of the transition. Ellipses represent the range of particle numbers and energies

sampled during different GCMC runs. (From [14], �2000 IOP Publishing Ltd.)
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fluctutations in the number of particles and energy for a single run at
specified conditions decrease as the 1/2 power of the system volume V. This
implies that more simulations are required to obtain overlapping histograms
that cover the range of energies and densities of interest. Moreover, the
number of Monte Carlo moves required to sample properties increases
approximately linearly with system size in order to keep the number of
moves per particle constant. The computational cost of each Monte Carlo
move is proportional to system size for pairwise additive long-range
interactions and independent of system size for short-range interactions.
The net effect is that the total computational effort required to obtain a
phase diagram at a given accuracy scales as the 1.5 to 2.5 power of system
volume, respectively for short- and long-range interactions. Fortunately,
away from critical points, the effect of system size on the location of the
coexistence curves for first-order transitions is typically small. In this
example, calculations on a 153 system result in phase coexistence lines
practically indistinguishable from the ones shown in Fig. 7. The mean
absolute relative differences for the coexistence densities between the small
and large systems are 0.1% for the liquid and 1% for the (much lower
density) gas, well within the width of the coexistence lines on Fig. 7.

A second observation relates to calculations near critical points. The
coexistence lines in Fig. 7 do not extend above a temperature of T *¼ 11.6
because above that temperature significant overlap exists between the liquid

FIG. 7 Phase diagram for a homopolymer of chain length r¼ 8 on a 10� 10� 10

simple cubic lattice of coordination number z¼ 6. Filled circles give the reduced

temperature, T *, and mean volume fraction, h�i, of the three runs performed.

Arrows from the run points indicate the range of densities sampled for each

simulation. The thick continuous line is the estimated phase coexistence curve.

(From [14], �2000 IOP Publishing Ltd.)
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and vapor peaks of the histograms. This overlap renders calculations of the
liquid and gas densities imprecise. Larger system sizes suffer less from this
effect and can be used to obtain coexistence densities near critical points. As
discussed in Section IV.C, a sequence of studies with increasing system size
is also required to obtain accurate estimates of critical points.

B. Multicomponent Systems

The histogram reweighting methodology for multicomponent systems
[65–67] closely follows the one-component version described above. The
probability distribution function for observing N1 particles of component 1
and N2 particles of component 2 with configurational energy in the vicinity
of E for a GCMC simulation at imposed chemical potentials 1 and 2,
respectively, at inverse temperature � in a box of volume V is

f ðN1,N2,EÞ ¼
�ðN1,N2,V ,EÞexpð��E þ �1N1 þ �2N2Þ

	ð1,2,V,�Þ
ð18Þ

Equations (10) to (17) can be similarly extended to multicomponent systems.
The main complication in the case of multicomponent systems relative to

the one-component case is that the dimensionality of the histograms is one
plus the number of components, thus making their machine storage and
manipulation somewhat more challenging. For example, in the case of
one-component systems, it is possible to store the histograms directly as
two-dimensional arrays. The memory requirements for storing three-
dimensional arrays for a two-component system make it impractical to do
so. Instead, lists of observations of particle numbers and energies are
periodically stored on disk. It is important to select the frequency of
sampling of the histogram information so that only essentially independent
configurations are sampled. This implies that sampling is less frequent
at high densities for which the acceptance ratio of the insertion and
removal steps is lower. Sampling essentially independent configurations
also enforces the condition of equal statistical efficiency underlying the
Ferrenberg–Swendsen histogram combination equations [(13), (14)].

C. Critical Point Determination

Recent advances in the determination of critical parameters for fluids
lacking special symmetries have been based on the concept of mixed-field
finite-size scaling and have been reviewed in detail by Wilding [70]. As a
critical point is approached, the correlation length � grows without bound
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and eventually exceeds the linear system size L of the simulation box.
Singularities and discontinuities that characterize critical behavior in the
thermodynamic limit are smeared out and shifted in finite systems. The
infinite-volume critical point of a system can, however, be extracted by
examining the size dependence of thermodynamic observables, through
finite-size scaling theory [71–73]. The finite-size scaling approach proposed
by Bruce and Wilding [74,75] accounts for the lack of symmetry between
coexisting phases in most continuous-space fluids. Even though some recent
work has cast some shadow on its full reliability [76], the approach seems
to be quite robust and is easy to apply. For one-component systems, the
ordering operator,M, is proportional to a linear combination of the number
of particles N and total configurational energy U:

M / N � sU ð19Þ

where s is the field mixing parameter. For multicomponent systems, an extra
field mixing parameter appears for each added component; for example for

binary systems,

M / N1 � sU � qN2 ð20Þ

where q is the field mixing parameter for the number of particles of
component 2.

General finite-size scaling arguments predict that the normalized
probability distribution for the ordering operator M at criticality, }(M),
has a universal form. The order parameter distribution for the three-
dimensional Ising universality class is shown in Fig. 8 as a continuous line.
Also shown in Fig. 8 are data for a homopolymer of chain length r¼ 200 on
a 50� 50� 50 simple cubic lattice of coordination number z¼ 26 [63]. The
data were obtained by histogram reweighting methods, by adjusting the
chemical potential, temperature, and field mixing parameter s so as to
obtain the best possible fit to the universal distribution. The nonuniversal
constant A and the critical value of the ordering operator Mc were chosen so
that the data have zero mean and unit variance. Due to finite-size correc-
tions to scaling, the apparent critical temperature, Tc(L), and density, �c(L),
deviate from their infinite-system values, Tc(1) and �c(1). They are
expected to follow the scaling relationships with respect to the simulated
system size, L:

TcðLÞ � Tcð1Þ / L�ð�þ1Þ=�ð�cðLÞ � �cð1ÞÞ / L�ð1��Þ=� ð21Þ

where �, �, and � are, respectively, the correction-to-scaling exponent,
the correlation length exponent, and the exponent associated with the
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heat capacity divergence. For the three-dimensional Ising universality

class, the approximate values of these exponents are [77,80] (�, �, �)�
(0.54, 0.629, 0.11). Figure 9 demonstrates these scaling relationships for

the critical temperature and density of the square-well fluid of range


¼ 3 [81].

D. Thermodynamic and Hamiltonian Scaling

Finally in this section, we would like to mention briefly two methods that
are related to histogram reweighting. Thermodynamic scaling techniques
proposed by Valleau [82] are based on calculations in the NPT, rather than
the grand canonical (VT ) ensemble and provide information for the free
energy over a range of volumes, rather than a range of particle numbers.
Thermodynamic scaling techniques can also be designed to cover a range of
Hamiltonians (potential models) in the Gibbs [83] or grand canonical [84]
ensembles. In their Hamiltonian scaling form, the methods are particularly

FIG. 8 Ordering operator distribution for the three-dimensional Ising universality

class (continuous line) (data are courtesy of N. B. Wilding). Points are for a

homopolymer of chain length r¼ 200 on a 50� 50� 50 simple cubic lattice of

coordination number z¼ 26 [63]. The nonuniversal constant A and the critical value

of the ordering operator Mc were chosen so that the data have zero mean and unit

variance. (From [14], �2000 IOP Publishing Ltd.)
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useful for optimizing parameters in intermolecular potential models to
reproduce experimental data such as the coexisting densities and vapor
pressures. Thermodynamic and Hamiltonian scaling methods require
estimates for the free energy of the system as a function of conditions, so
that the system can be forced to sample the range of states of interest with
roughly uniform probability, as for umbrella sampling Monte Carlo [69].

V. SMART SAMPLING FOR DIFFICULT SYSTEMS

A. Configurational-Bias Sampling

The most common bottleneck in achieving convergence in methods that rely
on particle transfers is the prohibitively low acceptance of transfer attempts.

FIG. 9 Critical temperature (a) and density (b) scaling with linear system size for

the square-fluid of range 
¼ 3. Solid lines represent a least-squares fit to the points.

(From [81], �1999 American Institute of Physics.)
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For dense fluid phases, especially for complex, orientation-dependent
intermolecular potentials, configurations with ‘‘holes’’ in which an extra
particle can be accommodated are highly improbable, and the converse step
of removing a particle involves a large cost in energy. Configurational-bias
sampling techniques significantly improve sampling efficiency for Gibbs or
grand canonical Monte Carlo simulations. The methods have been reviewed
in detail in [5,13], the chapter by Frenkel in [10], and in the Chapter 7 by
T.S. Jain and J. de Pablo in this book, and will only be covered briefly in
the present chapter.

Configurational-bias methods trace their ancestry to biased sampling for
lattice polymer configurations proposed by Rosenbluth and Rosenbluth
[85]. Development of configurational-bias methods for canonical and grand
canonical simulations and for continuous-space models took place in the
early 1990s [86–90] and dramatically expanded the range of intermolecular
potential models that can be studied by the methods described in the
previous sections.

Configurational-bias methods are based on segment-by-segment inser-
tions or removals of a multisegment molecule. Several trial directions are
attempted for every segment insertion, and a favorable growth direction
is preferentially selected for the segment addition. In this way, the
acceptance probability of insertions is greatly enhanced. For each segment
growth or removal step, a correction factor (often called the ‘‘Rosenbluth
weight’’) is calculated. The product of the Rosenbluth weights of all steps is
incorporated in the overall acceptance criterion for particle insertions and
removals in order to correct for the bias introduced by the nonrandom
growth along preferential directions.

B. Expanded Ensembles

Another approach for handling multisegment molecules is based on the
concept of expanded ensembles [91–94]. Expanded ensembles for chain
molecules construct a series of intermediate states for the molecule of
interest, from a noninteracting (phantom) chain to the actual chain with all
segments and interactions in place. These intermediate states can be
semipenetrable chains of the full length [91,92] or shortened versions of the
actual chain [93,94]. Estimates of the free energy of the intermediate states
are required to ensure roughly uniform sampling, as for thermodynamic
and Hamiltonian scaling methods mentioned in the previous section. The
advantage of expanded ensembles over configurational-bias methods is that
arbitrarily complex long molecules can be sampled adequately, if sufficient
computational effort is invested in constructing good approximations of the
free energies of intermediate states.
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VI. SOME APPLICATIONS TO POLYMERIC FLUIDS

The methods described in the previous sections enable fast and accurate
calculations of the phase behavior of fluids. Their availability has resulted in
a veritable explosion in the number of studies of the phase behavior of both
simple ‘‘toy model’’ and realistic potentials for fluids in the past decade.
Several reviews [6–9,14] have covered applications of such methods to many
different systems. Here, we focus on recent applications to polymeric fluids.

Phase equilibria in long-chain lattice polymer models were studied by
[63,78,79]. Of particular interest is a recent study by Yan and de Pablo [64]
that goes to chains of length 16,000 on the simple cubic lattice. By going
to such long chains, the authors were able to illustrate the presence of
logarithmic corrections to the exponent characterizing the decrease of
critical density with increase in chain length.

Hydrocarbon molecules are ubiquitous in industrial processes and
form the building blocks of biological systems. They are nonpolar and
consist of a small number of groups, thus making them the logical starting
point for potential model development. Siepmann, Karaborni, and Smit
[95–97] used configurational-bias Gibbs ensemble simulations to obtain
an optimized potential model and the critical properties of the n-alkane
homologous series. At the time, there were conflicting experimental data
on the dependence of the critical density on chain length, which were
resolved with the help of the simulations. Spyriouni et al. [39] have studied
the phase behavior of n-hexadecane for the Dodd–Theodorou potential
[98] and obtained good agreement for the phase envelope but not for
the vapor pressure. Branched alkanes have been studied by [99–102],
perfluorinated alkanes by [103], fluoromethanes by [104,105], and
�-olephins by [106].

Three accurate united-atom potential sets for n-alkanes have appeared
recently. The TRAPPE [107] and NERD models [108] use the Lennard-
Jones (12,6) potential to describe nonbonded interactions among methyl
and methylene groups, while the model of Errington and Panagiotopoulos
[109] uses the exponential-6 functional form. All three reproduce the
experimental phase diagrams and critical points. The exponential-6 model is
slightly better with respect to representation of the vapor pressures. Figures
10 and 11 illustrate the quality of representation of experimental data for
the newer optimized models. Deviations from experimental data for the
exponential-6 united-atom model are comparable to those for a recently
developed explicit hydrogen model [110].

Alkane mixtures have been studied extensively in recent years. For
example, Chen and Siepmann investigated supercritical ethane and n-
heptane mixtures and obtained the free energy of transfer for n-pentane and
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n-heptane between He and n-heptane liquid phases [110]. They have also
obtained partition coefficients of alkanes between water and octanol [111].
Delhommelle et al. [112,113] studied mixtures of n-alkanes using both a
united-atom model [96] and anisotropic united-atom models originated
by Toxvaerd [114,115]. Other recent studies of alkane mixtures include
[109,116,117]. The solubility of small molecules such N2 and methane and
their mixtures in polyethylene, including effects of polymer crystallinity,
was studied in [118]. Mixtures with �-olephins were studied in [38,106]. In
general, excellent agreement between experiment and simulation results is
obtained for these nonpolar mixtures, provided that the pure component
potentials have been optimized to reproduce the phase envelope and vapor

FIG. 10 Phase diagrams of selected n-alkanes. The curves from bottom to top are

for ethane, propane, butane, pentane, hexane, octane, and dodecane. Circles

represent calculations for the model of [109]. Uncertainties are smaller than the size

of the symbols. A solid line is used for experimental data and a star for the

experimental critical point. (From [109], �1999 American Chemical Society.)
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pressures of the pure components. No mixture parameters are necessary for
the calculations.

VII. CONCLUDING REMARKS

A novice researcher interested in obtaining the phase behavior of a fluid
is now faced with a bewildering choice among a number of alternative
methods and their variations. In this section, similarities and differences
among the methods, their relative performance, and their ease of
implementation will be discussed.

Simulations with an explicit interface appear, at first glance, to be
relatively simple to implement and perform. Unlike most other methods
discussed here, interfacial simulations can also be performed using
molecular dynamics codes. However, they provide an inefficient route to
the phase coexistence properties. Unless the properties of the interface itself
(or the surface tension) are of interest, other methods discussed in the
present chapter provide better alternatives.

FIG. 11 Vapor pressures of selected n-alkanes. The curves from right to left are for

ethane, propane, butane, pentane, hexane, octane, and dodecane. Symbols are the

same as for Fig. 10. (From [109], �1999 American Chemical Society.)
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The majority of recent studies discussed in Section VI have been
performed using various implementations of the Gibbs ensemble, often
combined with configurational-bias methods to improve sampling for
multisegment molecules. The Gibbs method is relatively easy to implement
and provides direct information on the properties of coexisting phases from
a single simulation. One major weakness of the methodology is that it is not
applicable to solid or highly structured phases. For such systems, the only
possible choice is the Gibbs–Duhem integration method and its variations.
The Gibbs–Duhem method, however, needs to start from a point on the
coexistence curve.

The accuracy of the Gibbs ensemble method for a given amount of
computer time does not seem to match the accuracy of histogram reweighting
methods [117]. Histogram reweighting methods are also inherently better
at determining critical points via the finite-size scaling formalism. On the
negative side, the effort required to implement histogram combination and
reweighting is more than for the Gibbs ensemble. Histogram reweighting
methods are also indirect, requiring the assembly of the free energy function
of a system from a series of simulations. The efficiency of histogram methods
decreases rapidly with increase in system size. Despite these disadvantages,
they are probably the most promising for future applications.

The NPTþ test particle method shares with histogram reweighting
techniques the feature that it proceeds by computation of the chemical
potential for a number of state points. Histogram reweighting methods,
however, cover a range of densities and temperatures in a single simulation.
In addition, data from separate runs can be combined in a systematic way
only for histogram reweighting methods. A variation of the NPTþ test
particle method is the SPECS method for systems of long-chain molecules
[38,39]. The SPECS method is a good alternative to expanded-ensemble
Gibbs Monte Carlo calculations for cases for which configurational-bias
sampling methods become inefficient.

Interesting connections between many of the methods discussed in the
present chapter have been pointed out by Escobedo [54,55]. In particular,
Escobedo suggests that Gibbs–Duhem integration, pseudo-ensembles, and
the NPTþ test particle method can be considered as low-order approxima-
tions of a histogram reweighting approach.

In the area of applications, an important goal for research in coming
years will be to develop a set of pure component group-based potentials
and combining rules that can be used for general predictions of both pure
component and mixture phase behavior. Early results for realistic mixtures
[117] suggest that relatively simple intermolecular potential models can be
used to predict the phase behavior of broad classes of binary systems. For
mixtures with large differences in polar character of the components,
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however, present models do not always result in quantitative agreement with
experiment. New models that include higher-order interactions such as
polarizability may be suitable for this purpose, a hypothesis that will need to
be tested in the future.
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I. THE METHOD

The Gibbs Ensemble was introduced by A. Panagiotopoulos [1] to
conveniently model the coexistence of two phases in equilibrium—
having the same pressure and chemical potentials. It mimics the coexistence
of two phases, a liquid and its vapor in a closed vessel. In this case the total
volume occupied by the two phases and the total number of particles are
constant, but the particles are allowed to transfer between the phases.

The computer model consists of two boxes, which exchange volume and
particles in such a way that the total volume is constant, i.e., the increment
in volume of one box is accompanied by the same decrement of the other
box’s volume. Particles are transferred between the simulation boxes. It is
shown in [1] that the Monte Carlo algorithm can be constructed with the
proper acceptance criteria for volume and particle exchange moves to
simulate the two coexisting phases in equilibrium with each box containing
one of the phases. The scheme is very convenient for studying phase
diagrams, as chemical potential and pressure do not have to be specified.
The system automatically adjusts them to the coexistence values at a given
temperature by exchanging particles and volumes.

As we mentioned before in the Background chapter, any ensemble can be
implemented with both Monte Carlo and Molecular Dynamics algorithms.
Which of the two should be chosen depends on the problem at hand.
Depending on the particular application, either Molecular Dynamics or
Monte Carlo can be more complex to program, especially when complex
segmental moves are involved in MC, but MD can provide more
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information about system dynamics. Gibbs Ensemble Monte Carlo is
discussed in the previous Chapter 9 by A. Panagiotopoulos.

Here we describe an implementation of the Gibbs Ensemble Molecular
Dynamics (GEMD) technique, that implements the ideas underlying Gibbs
Ensemble Monte Carlo using molecular dynamics.

In molecular dynamics (MD) one numerically solves the equations of
motion for a system of N particles contained in a box of volume V having
the total potential energy U. Here we consider a molecular system consisting
of N atoms in M molecules, and we write the total potential energy U as a
sum over inter- and intramolecular interactions, i.e.,

U ¼ Uinter þUintra ð1Þ

The first term is the sum over atom–atom pair potentials Uinter¼P
�2 i, �2 j,i>j,j¼ 1,M�(r��) depending on the vectors r�� connecting atoms

� and � in the two molecules i and j. Uintra describes the interactions within

the molecule.
In order to simulate a variable number of molecules i in each of the two

boxes we introduce an extra degree of freedom �i for every molecule. �i can
vary between 1 and 0, where �i¼ 1 means that molecule i is in box one,
whereas �i¼ 0 means that it is in box two. For 1>�i>0 it is in a ‘‘transition
state,’’ where it is ‘‘felt’’ in both boxes. Thus, we rewrite the intermolecular
potential energy of the system as a function of the coordinates and the �i as

Uinter ¼
X

�2i, �2j, i>j, j¼1,M

�ðr��,V1Þ 
 �i 
 �j

þ
X

�2i, �2j, i>j, j¼1,M

�ðr��,V2Þ 
 ð1� �iÞ 
 ð1� �jÞ ð2Þ

where V1 and V2 are the volumes of the two boxes. The two terms represent

the intermolecular potential energies of the first and the second box, respec-

tively. Consider, for instance, two particles with �i¼ 1 and �j¼ 1, i.e., both

particles belong to box one. In this case the product (1� �i)(1� �j) vanishes,
and only the first term in Eq. (2) will contribute to the nonbonded potential

energy. Notice also that as soon as we apply periodic boundary conditions,

and interparticle interactions are calculated involving the particles’ closest

images, the distance between them, and therefore the intermolecular

potential energy, is a function of the box dimensions (or of the volume if

the shape of the box is kept fixed).
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The transfer of particles (or molecules) is controlled by the difference
between their potential energies in the two boxes. The number of unphysical
(but necessary) transition state molecules can be made small in comparison
to the total number of molecules by introducing an additional barrier
described by the transfer potential function g(�i).

Utotal ¼ Uintra þUinter þ
X

i

gð�iÞ ð3Þ

A possible choice is g(�i)¼![tanh(u�i)þ tanh(u(1� �i))�1] if 0� �i� 1 and
g(�i)¼1 otherwise, where u is the steepness, and ! is the height of the

barrier.
The rate of particle transfer between the boxes determines the rate with

which the equilibrium between the boxes is reached. The higher the rate the
faster the two phases equilibrate. On the other hand, particles that are in the
‘‘transition’’ state contribute nonphysically to both boxes at the same time,
and one would try to keep their number close to zero during the production
run. This tuning is achieved by properly choosing the barrier function
parameters. The higher the barrier, the harder is it for the particles to cross
from one box to another.

In the case of phase coexistence in a one-component system the
temperature, the pressure, and the chemical potential, even though the
latter two are not explicitly specified, must be equal in the two phases and
thus in the two boxes. This is achieved if every change of the volume of one
of the boxes is accompanied by an opposite but equal change of the volume
of the other box. The total volume of the two boxes is therefore constant,
while the individual volumes are variable. The GEMD equations of motion
can be written as follows:

p� ¼ m�_rr� ð4Þ

_pp� ¼ �
@U

@r�
� �p�

_�� ¼
1

QT

X

�

p2�
m�

� XkBT

" #

p�i ¼ m�i
_��i

_pp� ¼ �
@U

@�i
¼ �

@Uinter

@�i
�
@gð�iÞ

@�i

pV1
¼ QP

_V1V1
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_ppV1
¼ �

@U

@V1

¼ �
@

@V1

"
X

�2i,�2j, i>j, j¼1,M

�ðr��,V1Þ 
 �i 
 �j

þ
X

�2i, �2j, i>j, j¼1,M

�ðr��,V2Þ 
 ð1� �iÞ 
 ð1� �jÞ

#

¼ Pe
1 � Pe

2

Here p� and p�i are the momenta conjugate to the Cartesian coordinates r�
and transfer variable �i of the particle i. The first three equations describe
the evolution of a system coupled to an external heat bath with the tem-
perature T [2,3]. � is an additional degree of freedom, describing the cou-
pling of the system to the external thermostat, which is necessary to simulate
constant temperature. QT describes the strength of the coupling, and X
equals the number of degrees of freedom, coupled to the thermostat.

The next two equations govern the evolution of the �i, and thus the
transfer of the molecules between the boxes. Note that the intramolecular
part of the potential energy Uintra is independent of the �i, and only
intermolecular interactions and the additional potential g(�i) appear on the
right hand side.

The last two equations are the equations of motion of the box volume V1,
where pV1

is a momentum variable conjugate to the volume of the first box
V1, and QP is a parameter governing the volume relaxation. Again only the
intermolecular interactions Uinter depend on the box size, because periodic
boundary conditions are not applied to the intramolecular interactions.
Distances describing the intramolecular interactions Uintra are smaller than
the box sizes. They are of the order of a few chemical bond lengths, while the
box sizes are usually many times larger. As the sum of the volumes of the
two boxes is constant, pV1

¼�pV2
. Note that, similar to any constant-

pressure MD or MC algorithm, volume changes are controlled by the
difference between the instantaneous values of the ‘‘external’’ pressures [4,5].

II. STATISTICAL MECHANICAL FOUNDATION

As we discussed in the Background chapter, to prove that integrating this set
of differential equations does indeed simulate a model system with chemical
potentials and pressures equal in both boxes, we have to show that the
trajectory averages calculated by integrating Eqs. (4) are the corresponding
thermodynamic averages.

We start with writing the Liouville equation [6] for this model, which
describes the evolution of the phase space density distribution �(�) with
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time. In our case the phase space � includes Cartesian coordinates and
momenta, thermostat coupling variable �, volume V1, the transfer variables
�i and their conjugate momenta p�i and pV1

.* The stationary (time-
independent) solution of this equation, describes the distribution function
for the ensemble reproduced.

@�

@t
þ

X

�2i, i¼1,M

_rr�
@�

@r�
þ _pp�

@�

@p�

	 

þ
X

i¼1,M

_��i
@�

@�i
þ _pp�i

@�

@p�i

	 


þ _V1V1
@�

@V1
þ _ppV1

@�

@pV1

þ _��
@�

@�

þ �
X

�2i, i¼1,M

@_rr�
@r�

þ
@_pp�
@p�

� �
þ
X

i¼1,M

@ _��i
@�i

þ
@ _VV1

@V1
þ
@ _ppV1

@pV1

þ
@ _��

@�

" #
¼ 0 ð5Þ

By direct substitution and using Eqs. (4) to evaluate partial derivatives, one

can see that the following density function does indeed satisfy the Liouville

equation with @�/@t¼ 0. The solution is given by the following expression

�GEMD fr�g, fp�g, f�ig, fp�i g,V1, pV1
, �

� �

/ exp

"
�

1

kBT

 
Utotalðfr�g, f�ig,V1Þ

þ
X

�2i, i¼1,M

p2�
2m�

þ
X

i¼1,M

p2�
2m�i

þ
p2V1

2Qp
þ
QT�

2

2

!#
ð6Þ

Here, m�i is a mass assigned to the particle for motion along the virtual

transfer direction �i. Provided the system is ergodic, the averages over tra-

jectories obtained by integrating Eqs. (4) are equivalent to the averages

calculated with the distribution function �GEMD (6). Below we show that,

provided the number of particles in the transition state is small, averages for

particles in each box do in fact correspond to the ensemble with constant

temperature, pressure, and chemical potential, and that in fact the pressures

and chemical potentials are equal in both boxes.
The GEMD trajectory average of a property A, which depends on

the coordinates and momenta of the atoms 1, . . . , n, constituting the

*See corresponding section in Chapter 1.
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molecules 1, . . . ,m residing in the first box, out of the total N, given by

hAiGEMD ¼
1

Q0
GEMD

Z
d�MdrNdpNdV1Aðfr1, . . . , rng, fp1, . . . , pngÞ

� exp �
1

kBT
Utotal fr�g, f�ig,V1ð Þ þ

X

�2i, i¼1,M

p2�
2m�

 !" #
ð7Þ

Q0
GEMD ¼

Z
d�MdrNdpNdV1

� exp �
1

kBT
Utotal fr�g, f�ig,V1ð Þ þ

X

�2i, i¼1,M

p2�
2m�

 !" #

Here we already integrated over �, p�i, pV1
and we have canceled the respec-

tive factors in the average and in the partition function, as indicated by the
primed Q0

GEMD. By choosing a proper g(�i) one can make the number of
particles in the transition state negligibly small. In this case we can assume
that �i takes only two values 0 or 1, and therefore we can replace the
integration over �i by the summation over all possible combinations of
the �i values (0 or 1). The equation for the average becomes:

hAiGEMD¼
1

Q0
GEMD

XM

m¼0

M!

m!ðM�mÞ!

Z
drndpndV1Aðfr1, . . . ,rng,fp1, . . . ,pngÞ

�exp �
1

kBT
Utotal fr�g,V1ð Þþ

Xn

�2i,i¼1

p2�
2m�

 !" #

�

Z
drðN�nÞdpðN�nÞ exp �

1

kBT
Utotal fr�g,V2ð Þþ

XM

�2i,i¼mþ1

p2�
2m�

 !" #

ð8Þ

Q0
GEMD transforms analogously. M!/(m!(M�m)!) accounts for particle dis-

tinguishability. Here we also write the potential energies in the two boxes as
Utotal({r�},V1) and Utotal({r�},V2), independent of the �i, because we neglect
particles in the ‘‘transfer’’ state with 0<�i<1, assuming �i can only be equal
to 0 or 1. In this case the total potential energy is a sum of potential energies
due to the interactions inside each of the boxes, as seen from Eq. (2).

Now we are going to demonstrate, that the chemical potentials and the
pressures are indeed the same in the two simulation boxes. The second
integration over the coordinates and momenta of the N� n atoms in the
second box equals QM�m,V2,Th

3ðM�mÞðM �mÞ!, where QM�m,V2,T is the
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partition function of the isochoric–isothermal (M�m,V2,T) ensemble.
It can be expressed in terms of the partition function for the (M�m,P2,T )
ensemble with constant pressure and temperature for the second box using
the saddle point method (see [5,7] for details)

QM�m,V2,T ¼ QM�m,P2,T exp
P2V2

kBT

� �
C

ðN � nÞ1=2
1þO

1

M �m

� �� �
ð9Þ

Here C is a constant independent of m and M. Now we rewrite QM�m,P2,T

as [6]

exp
2n

kBT

� �
¼

QM�m,P2,T

QM,P2,T
ð10Þ

where 2 is the chemical potential in the second box. Substituting all these in
the average hA i GEMD (8), and canceling terms independent of n between
numerator and denominator, we obtain in the thermodynamic limit:

hAiGEMD ¼
1

Q00
GEMD

XM

m¼0

1

m!h3M
exp

2m

kBT

� �

�

Z
drndpndV1Aðfr1, . . . , rng, fp1, . . . , pngÞ

� exp �
P2V1

kBT

� �
exp �

1

kBT
Utotal frig,V1ð Þ þ

Xm

�2i, i¼1

p2�
2m�

 !" #

ð11Þ

and the corresponding expression for Q00
GEMD, where the double prime is a

reminder that the common factors are canceled and that we keep only the
leading contribution in the limit of a large number of particles. The above
Eq. (11) coincides with the average over the constant- (,P,T) ensemble [8].
Notice that the average for the first box is calculated with the pressure and
chemical potential values of the second box. This proves that these values
are indeed the same in both boxes.

III. IMPLEMENTATION

Two boxes in the GEMD are implemented in the following way: Cartesian
coordinates of the particles do not change when the particle is transferred
from one box to another. Its presence in either box is determined by the
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value of its ‘‘ghost’’ coordinate �i. Thus the transfer occurs as a
particle gradually entering the box from the additional space dimen-
sion, pretty much as teleportation in a science fiction novel. The other
particles in the entrance box ‘‘feel’’ the newcomer as its �i value becomes
close to 0, if it enters box one, or as �i approaches 1 if the ‘‘ghost’’ appears
in box two.

Molecules are transferred as a whole, with all atoms in the molecules
having the same value of �. Only nonbonded interactions depend on the box
sizes, due to the periodic boundary conditions. Thus the nonbonded
interactions depend on the ‘‘fraction’’ of the molecule present in box one
and its fraction in box two, as determined by the �i.

Given a constant temperature and pressure MD code, it is not very
difficult to modify it for GEMD. Experience also shows that the
same results are obtained both with the Nosé–Hoover constant temperature
MD algorithm, which exactly reproduces the (NVT) ensemble [2,3],
and with the approximate but numerically more stable weak coupling
approach [9].

Additional variables to store energies, pressure, and other values for two
different boxes are to be added. Additional arrays storing values of variables
�i, velocities, forces, and ‘‘masses’’ are to be added.

double precision x(N),y(N),z(N),xi(N)
double precision vx(N),vy(N),vz(N),vxi(N)
double precision fx(N),fy(N),fz(N),fxi(N)
double precision mass(N),mass_xi(N)
double precision boxx_1,boxy_1,boxz_1,invbx_1,invby_1,

invbz_1
double precision boxx_2,boxy_2,boxz_2,invbx_2,invby_2,

invbz_2
double precision volume_1, volume_2
double precision virial_1, virial_2
double precision pot_energy_1, pot_energy_2,

kin_energy_1, kin_energy_2
double precision kin_energy_xi

. . . . . . . . . . . . . . . . . . . . .

volume_1¼boxx_1*boxy_1*boxz_1
volume_2¼boxx_2*boxy_2*boxz_2
invbx_1¼1.d0/boxx_1
invby_1¼1.d0/boxy_1
invbz_1¼1.d0/boxz_1
invbx_2¼1.d0/boxx_2
invby_2¼1.d0/boxy_2
invbz_2¼1.d0/boxz_2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The nonbonded potential energy, force, and virial calculations are to be
amended, incorporating Eq. (2). The code example given here is probably
far from being the fastest possible way to calculate nonbonded interactions.
Even though we assume that the potential is pairwise and spherically
symmetric, we use function calls to calculate energy, force, and virial for the
purpose of clarity. The actual implementation should be in-lined and
optimized for the interatomic potential used. See for instance [10] and other
chapters in this book. Calculation of the forces for the �i coordinates should
also be added. Here, again we use a function call to add the contribution due
to the g(�i), which would be more efficient to be implemented in-line.

do i¼1,N�1
do j¼iþ1,N

c for box 1
xi_ij ¼ xi(i)* xi(j)
dx ¼ x(i)�x(j)
dxx ¼ dx � boxx_1*anint(dx*invbx_1)
dy ¼ y(i)�y(j)
dyy ¼ dy � boxy_1*anint(dy*invby_1)
dz ¼ z(i)�z(j)
dzz ¼ dz � boxz_1*anint(dz*invbz_1)
r ¼ dxx*dxx þ dyy*dyy þ dzz*dzz
pot_ij_1 ¼ potential(r)* xi_ij
pot_energy_1 ¼ pot_energy_1 þ pot_ij_1
force_abs ¼ potential_deriv(r)*xi_ij
fx ¼ force_abs*dxx/r
fy ¼ force_abs*dyy/r
fz ¼ force_abs*dzz/r

fx(i) ¼ fx(i) þ fx
fy(i) ¼ fy(i) þ fy
fz(i) ¼ fz(i) þ fz

fx(j) ¼ fx(i) � fx
fy(j) ¼ fy(i) � fy
fz(j) ¼ fz(i) � fz

virial_1 ¼ virial_1 þ fx*dxxþfy*dyyþfz*dzz

c again for box 2
xi_ij ¼ (1.d0�xi(i)) * (1.d0�xi(j))
dxx ¼ dx � boxx_2*anint(dx*invbx_2)
dyy ¼ dy � boxy_2*anint(dy*invby_2)
dzz ¼ dz � boxz_2*anint(dz*invbz_2)
r ¼ dxx*dxx þ dyy*dyy þ dzz*dzz
pot_ij_2 ¼ potential(r)*xi_ij
pot_energy_2 ¼ pot_energy_2 þ pot_ij_2
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force_abs ¼ potential_deriv(r)*xi_ij
fx ¼ force_abs*dxx/r
fy ¼ force_abs*dyy/r
fz ¼ force_abs*dzz/r

fx(i) ¼ fx(i) þ fx
fy(i) ¼ fy(i) þ fy
fz(i) ¼ fz(i) þ fz

fx(j) ¼ fx(i) � fx
fy(j) ¼ fy(i) � fy
fz(j) ¼ fz(i) � fz

virial_2 ¼ virial_2 þ fx*dxxþfy*dyyþfz*dzz

c forces along the “ghost” direction xi

fxi(i) ¼ fxi(i) � ( pot_energy_1 * xi(i) � pot_energy_2 *

(1.d0�xi(j)) )
fxi(j) ¼ fxi(j) � ( pot_energy_1 * xi(j) � pot_energy_2 *

(1.d0�xi(i)) )
enddo
enddo

c additional transfer potential for fxi
do i¼1,N
fxi(i) ¼ fxi(i) þ deriv_g(xi(i))

enddo
virial_1 ¼ virial_1/3.
virial_2 ¼ virial_2/3.

. . . . . . . . . . . . . . . . . . . . .

The equations describing the evolution of �i are to be added to the
routine, calculating next time step coordinates and velocities. The same
numerical integration algorithms used to integrate Cartesian coordinates in
principle can be used for �i. However, some care is required at the interval
boundaries, where the transfer potential g(�i) is discontinuous [5]. Also M
additional degrees of freedom are to be accounted for, and the correspond-
ing kinetic energy is to be included, when the temperature is calculated.

The above example of the GEMD code is suitable for a system of atoms,
not molecules. In the molecular system, all atoms of the same molecule have
the same � value. Thus even though the forces driving molecule transfer are
calculated for each individual atom, one has to make sure that the molecules
are transferred as whole objects. This can be achieved as follows, given a
working NPT-ensemble code for the molecular system:

1. The same changes as described above for the atomic system are to

be made.
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2. All atoms in the same molecule are assigned the same ‘‘transfer

mass’’ m�i.
3. After the forces fxi along the �i direction are calculated for all

atoms, they are redistributed evenly between the atoms of the same

molecule, so that the total force along the �i direction acting on the

molecule remains the same. Here is how it looks in a pseudo-code:

for all molecules
ftotal¼0
for all atoms in the molecule
ftotal ¼ ftotalþfxi(atom)

end
ftotal ¼ ftotal/num_of_atoms
for all atoms in the molecule
fxi(atom)¼ftotal

end
end

4. � coordinate updates for the next time step, similar to those for

Cartesian coordinates are to be added.

And of course statistic accumulation parts of the code have to be changed
accordingly. Energy, pair radial distribution function (PRDF), or diffusion
coefficient should be calculated separately for molecules in each of the
boxes.

When the phase diagrams are calculated, it is important to correctly
account for the long-range nature of the interaction potential. Even the
nonelectrostatic interactions, usually believed to be relatively short-ranged,
have to be corrected. The corrections should be applied to the pressure and
to the energy. They take into account the interactions of the atoms that are
farther apart than the cutoff distance. Usually at these distances the center
of mass pair correlation function equals one, and the corrections are easily
calculated using equations for the energy and the pressure in terms of the
interaction potential alone (see equations in Section I.C.4 in Chapter 1).
For the spherically symmetric pairwise interaction described by �(r) the
long-range corrections can be calculated as:

E ¼ Utotal þ
1

2
N�

Z 1

rcut

�ðrÞ4�r2dr ð12Þ

PV ¼ PcutV �
1

6
N�

Z 1

rcut

r
d�ðrÞ

dr
4�r2dr

Both corrections depend on the density, and they may be quite different for
the gas and liquid phases. Therefore, they strongly affect the position of the
critical point. This is illustrated in Figs. 1 and 2.
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FIG. 1 Liquid–gas coexistence densities for the Lennard-Jones (LJ) fluid.

Temperature and density are in reduced LJ units. Filled symbols: GEMD, open

symbols: GEMC [11]. Reproduced from [5]. Note that the LJ potential in this case

was cut at 2.5 � and shifted to zero. Crosses represent points obtained with longer LJ

potential cutoff and applying the long-range correction. The critical point of the

normal LJ system is close to T

C ¼ 1:35 and �
C ¼ 0:307.

FIG. 2 Liquid–gas coexistence curve for hexane. Open circles: experimental data of

reference [12]; open triangles: Gibbs Ensemble Monte Carlo result with 13.8 Å cutoff

with the long-range corrections from [13]. The large solid circle corresponds to the

experimental critical point. Open squares: GEMD using a cut and shifted LJ

potential, where the cutoff is at 10 Å; solid squares: using a 15 Å cutoff instead; small

solid circles at T¼ 440K: liquid densities for a 12 Å and 14 Å cutoff, respectively;

pluses: result obtained for a 10 Å cutoff including long-range corrections. As in

Fig. 1, the error bars indicate standard deviations. This is figure 3 taken from

reference [5].
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IV. EXAMPLES

GEMD has been used to calculate phase diagrams for atomic as well as
molecular systems, such as Lennard-Jones spheres or n-hexane, as shown
in Figs. 1 and 2.

Being a molecular dynamics technique, GEMD provides dynamical
information such as diffusion coefficients in the coexisting phases [5]. Shown
in Fig. 3 are the mean squared displacements of the carbon atoms in
n-hexane, calculated in coexisting phases with GEMD, compared to the
results of the constant temperature molecular dynamics at the same
conditions. This shows that diffusion coefficients and other dynamical
information can be extracted from GEMD simulations, together with the
thermodynamic properties.

The Gibbs Ensemble Monte Carlo technique transfers particles between
the boxes in one step—as a whole. To be accepted, this insertion requires
a reasonable probability to find an empty space. In the dense phases this
is a problem. GEMD transfers particles continuously. Transferred atoms
gradually ‘‘appear’’ and ‘‘disappear’’ from the simulation box. This may be
a great advantage when modeling liquid–liquid or liquid–solid phase
equilibria. More examples of GEMD applications and technical details can
be found in the original papers describing applications of GEMD to the
study of n-alkanes [5] and sorption in zeolites [14].
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Modeling Polymer Crystals

GREGORY C. RUTLEDGE Massachusetts Institute of Technology,
Cambridge, Massachusetts, U.S.A.

I. INTRODUCTION

Crystallizable polymers constitute the majority of plastics in current use.
Nevertheless, the study of polymer crystals by molecular simulations

requires concepts and techniques somewhat different from those invoked
by conventional views of polymer melts and glasses. Amorphous polymers
are liquid-like in their structure; they exhibit only short range order.

Amorphous melts are liquid-like in their dynamics as well. The methods
employed to study amorphous polymers thus rely heavily on the Monte
Carlo and molecular dynamics methods developed in the 1950s and 1960s

to study simple liquids, and on refinements which permit efficient sampling
of the vast conformation space available to a polymer ‘‘coil’’ in the amor-
phous state. Polymer crystals, on the other hand, exhibit long range order

similar to that found in small molecule solids; they are characterized by high
density, limited conformation space, and pronounced anisotropy. The study
of crystalline polymers benefits considerably from the solid-state physics

developed in the first half of the twentieth century. However, polymer crys-
tals differ in several important respects from simple atomic crystals, and
the modern simulation of polymer crystals draws upon ideas from both

solid-state and fluid-state physics.

II. STRUCTURE OF POLYMER CRYSTALS

As with any material, the molecular simulation of a crystalline solid requires
the specification of the nuclear coordinates of all the atoms in the solid, or a

reasonable approximation thereof, and a force field to quantify the inter-
action between all the atoms in the solid. The simplification of defining a
material structure in terms of the coordinates of the nuclei of the constituent
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atoms follows from the Born–Oppenheimer approximation, which separates
the full quantum mechanical problem, based on relative mass and velocity
of the subatomic particles, into an electronic part and a nuclear part. The

electronic problem consists of describing the electronic state of the solid in
the field of stationary nuclei. The nuclear problem consists of describing the
state of the nuclei in the potential field created by the rapidly equilibrated
electrons. In atomistic simulation, attention is usually on the nuclear prob-

lem, which is used to specify the structure of the material, while the elec-
tronic energy is represented approximately by an analytical force field. In
amorphous materials, it often suffices to specify structure in terms of pair

correlations over short distances. Crystalline solids, on the other hand,
possess both short range and long range order; in the ideal crystal, the
long range order is limited only by the extent of the crystal itself. Long

range order may persist in a material in one or two dimensions, as in
liquid crystals and some rotator phases, or in three dimensions (‘‘true’’
crystals). Just as in atomic crystals, polymer crystals exhibit a periodic

structure, the ‘‘lattice,’’ which describes how unit cells repeat in space.
The literature on point and space group symmetries in crystals and the
role of the unit cell is extensive and dates back to the early development
of X-ray diffraction methods for solids. A complete review is beyond the

scope of this chapter, but the interested reader is referred to several excellent
introductory texts [1–3].

The atomic structure of the crystalline solid may be described completely
by the extent or size of the crystal, the geometry of the unit cell, and the

coordinates of the atoms in one unit cell (see Fig. 1). The unit cell may be of
arbitrary shape and size; the periodicity of the lattice is defined by the 3� 3
matrix h whose columns are the three vectors a, b, and c defining the edges

of the unit cell. The entire solid is composed of such unit cells, and the extent
of the crystal along the directions specified by a, b, and c is given by the
indices h, k, and l, which take integer values between �1 and þ1. Within
each unit cell, the coordinates of atom j are often expressed as fractions of a,

b, and c, respectively, which are collected into the vector sj, the fractional
coordinate of atom j. The coordinate of any atom i in the crystal, which we
designate generally as qi, may be expressed as the image coordinate of the jth

atom in the Lth unit cell:

qi ¼ qj,L ¼ hðsj þ LÞ ð1Þ

where

h ¼ ½a, b, c	 and Lt ¼ ½h, k, l	
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The superscript t designates the vector transpose. The perfect periodicity of

the crystal lattice exists only in an average sense. Dynamically, each atom

oscillates about its position in the lattice so that at any instant the period-

icity of the crystal may be broken. However, the persistence of long range

order implies that the forces on the atoms tend to restore each atom to its

lattice site. The relevant phase space (i.e., the set of positions and momenta

accessed by the atoms) of crystals, therefore, is considerably smaller in

comparison to fluid phases. In the crystal, most or all of the atoms are

localized about well-defined points in configuration space. Long range

motion of atoms in crystals may be quite significant, but usually consists

of discrete, activated jumps between what are essentially equivalent states of

the crystal. In some cases, atomic motion is more continuous, and descrip-

tion of the solid as a disordered crystal may be more appropriate (see

below).
Polymer crystals exhibit several characteristics not typically encountered

elsewhere in simulations. First, the unit cells of polymers tend to consist of

tens of atoms, while the molecules themselves comprise 104 to 106 atoms.

FIG. 1 Definition of crystallographic parameters. The points designate equivalent

locations in successive helical repeat units. a, b, and c are the unit cell vectors; qj,0 is

the coordinate of the jth atom in the L¼ 0 unit cell; � and d are the helix parameters.
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Rather than having a situation where a unit cell consists of one or more
molecules, as in small molecule crystals, the situation is reversed: a single
molecule participates in many unit cells. This has significant ramifications
for the correlations, both structural and dynamical, between unit cells.
Second, the periodicity of the crystal lattice usually implies a periodicity
for the conformation of the polymer chain itself. This condition places
a severe restriction on the conformation space available to the chain in
a crystalline solid. Polymer chains in crystals are more appropriately
described as ‘‘helices’’ rather than ‘‘coils.’’ A helix conformation consists
of a regular repetition of the torsion angles characteristic of a small subsec-
tion of the chain, the helix repeat unit [4,5]. Each helix has an axis and a
handedness of rotation (the direction in which the chain backbone winds
around the helix axis). The helix itself is characterized by the translational
displacement parallel to the helix axis, d, and the angle of rotation about the
helix axis, �, executed by a single helix repeat unit. The coordinates of Eq. (1)
may be expressed in terms of these helical parameters as follows:

qh,Lh, n
¼ Rh, nhsh þ hLh þ Tn ð2Þ

where

Rh, n ¼

cosðn� þ !hÞ � sinðn� þ !hÞ 0

sinðn� þ !hÞ cosðn� þ !hÞ 0

0 0 1

2

64

3

75

Lh ¼ h0, k0, 0½ 	
t

and Tn ¼ 0, 0, nd½ 	
t

Here, the subscript h indexes different helices in the unit cell. In this con-
vention, the fractional coordinates for each unique helix in the unit cell are
specified with the helix axis directed along the z-coordinate and passing
through the origin. Each helix may have a distinct setting angle, !h, and
h0 and k0 may take fractional values to indicate helices at nonprimitive lattice
positions. The lattice index l is replaced by the helix repeat index, n.

Third, nearly all known polymer crystal polymorphs exhibit chain helices
packed into the solid with axes parallel.* As a result, there exists a unique
chain continuation direction, which gives rise to a highly anisotropic

*The � phase of isotactic polypropylene presents a notable exception. In this crystal form, the

polymer chains all have the same conformation, but are arranged in layers with an angle of

about 80� between the axes of chains in successive layers [6].
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material on the molecular scale. In the chain direction the crystal is held
together by chemical bonds, while in the other two directions it is held
together by weaker, chain-packing forces, such as van der Waals forces or
hydrogen bonds. This combination of conformational periodicity, through-
crystal chemical bonding and directionality of strong and weak interactions
makes polymer crystals unique.

To specify a starting configuration for any polymer simulation, a reason-
ably good estimate of the unit cell geometry, and in many cases restrictions
on the atomic coordinates s, may be obtained by wide angle X-ray diffrac-
tion. Estimates of the crystal size can be obtained by wide or small angle
X-ray scattering, electron or optical microscopy. One of the unique features
of crystalline polymers is the chain folded lamellar morphology, common
among flexible polymers. These plate-like crystallites are the result of kinetic
factors that dominate during crystallization itself. The thicknesses of such
lamellae are also considerably less than the contour length of the chain
molecules. The ramification of this length mismatch is that the surfaces of
such lamellae involve reentry of the same molecule into the crystal, in the
form of loops or folds. The thinness of the lamellae and the molecular
connectivity of the loop or fold surfaces may have a significant effect on
the dynamical behavior of real polymer crystals. Detailed atomistic studies
of entire fold surfaces in polymer crystals are relatively few [7,8].
More recently, atomistic simulations of the crystal/amorphous interface of
a semicrystalline polymer matrix have been presented that provide insight
into the preferred topology for chain reentry along several relevant crystal-
lographic facets [9–11]. The presence of disordered surfaces or interfaces
may affect the relative stability of finite-sized crystallites. Nevertheless, the
lowest energy forms of large polymer crystals are expected to be those with
fully extended chains (i.e., no fold or loop surfaces), and it is these that have
generally been the object of simulation.

Finally, a few comments about the uniqueness of polymer crystal struc-
tures and phase space localization are warranted. Almost all crystallizable
polymers exhibit polymorphism, the ability to form different crystal struc-
tures as a result of changes in thermodynamic conditions (e.g., tempera-
ture or pressure) or process history (e.g., crystallization conditions) [12].
Two or more polymorphs of a given polymer result when their crystal
structures are nearly iso-energetic, such that small changes in thermo-
dynamic conditions or kinetic factors cause one or another, or both, to
form. Polymorphism may arise as a result of competitive conformations of
the chain, as in the case of syndiotactic polystyrene, or as a result of com-
petitive packing modes of molecules with similar conformations, as in the
case of isotactic polypropylene. In some instances, the conformational
change may be quite subtle; isotactic polybutene, for example, exhibits
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three crystal polymorphs in which the number of constitutional repeat

units per turn of the helix varies only from 3 to 4. Typically, the thermo-

dynamic transition between polymorphs is discontinuous; each polymorph

represents a distinctly different local region in the total phase space of the

polymer. However, polymer crystals may also exhibit internal forms of

disorder within a particular unit cell geometry. Common types of disorder

include (i) the statistical, iso-energetic packing of helices of opposite hand-

edness or axis direction within the unit cell, (ii) conformationally dis-

ordered chains which are not true helices, but nevertheless satisfy

approximately the lattice periodicity along the chain direction, (iii) consti-

tutional disordered chains composed of copolymers with irregular mono-

mer sequences, and (iv) thermal disorder due to rapid interconversion

between iso-energetic conformational or packing states. Examples of the

last include free rotation of the pendant methyl group in isotactic poly-

propylene or the rotation of entire chains in polyethylene (i.e., rotator

phases) at elevated temperatures. Algorithms must be evaluated carefully

when dealing with different types of disorder.

III. COMPUTATIONAL METHODS

We distinguish between two classes of calculation or simulation appropriate

for the study of polymer crystals: optimization methods and sampling

methods. Optimization methods take explicit advantage of the localization

of crystals in phase space; numerical optimization techniques are used to

identify and characterize a specific region of phase space. Molecular

mechanics and lattice dynamics fall in this group. Sampling methods gen-

erally do not take advantage of, and thus are not restricted by, assumptions

of localization. Monte Carlo and molecular dynamics fall in this group.

Each of these computational approaches is considered below. Since optimi-

zation methods, particularly lattice dynamics, are used almost exclusively

for crystalline solids, these will be presented in some detail. Sampling meth-

ods are discussed to the extent that their use for simulation of polymer

crystals requires some special considerations.

A. Optimization Methods

Consider an ideal case where the crystal exhibits none of the forms of dis-

order mentioned in the previous section. A given polymorph is then char-

acterized by localization about an equilibrium point in phase space where

the potential energy surface is concave. The relevant part of the energy
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surface can be approximated to arbitrary accuracy using a Taylor series
expansion in small displacements about the local minimum energy
structure, q0:

U qi
� �� �

¼U qi0
� �� �

þ
X3N

i¼1

@U

@qi

����
0

qi � qi0ð Þþ
1

2

X3N

i¼1

X3N

j¼1

@2U

@qi@qj

����
0

qi � qi0ð Þ qj � qj0
� �

þ
1

6

X3N

i¼1

X3N

j¼1

X3N

k¼1

@3U

@qi@qj@qk

����
0

qi � qi0ð Þ qj � qj0
� �

qk� qk0ð Þþ � � �

ð3aÞ

or in tensor notation:

U qð Þ ¼ U q0
� �

þ�qt � rU0 þ
1

2
�qt � r2U0 ��qþ � � �

¼
X1

i¼0

�qt � rð Þ
i

i!
U0 ð3bÞ

Here, q represents the 3N vector of coordinates for a crystal composed of N
atoms and �q¼ q� q0 is the displacement from the local minimum. There
are 3N�6 molecular degrees of freedom in s and 6 lattice degrees of freedom
in h. In classical mechanics, in the limit that temperature T approaches 0,
�q also approaches 0. In this limit of small displacements, the energy and
geometry of the crystal may be approximated well by U(q0) and q0, respec-
tively. The problem of computing the properties of a crystal phase simplifies
in this case to identification of a single point in configuration space where
the structure is in mechanical equilibrium, characterized by all the forces on
the atoms, rU0, equal to zero and all the second derivatives rrU0 positive,
indicative of a stable point on the potential energy surface. This kind of
numerical optimization problem goes by the name of molecular mechanics.
Standard techniques [13] such as steepest descent, conjugate gradient, or
modified Newton methods may be used to find the minimum in U(q) as a
function of the degrees of freedom q¼ {h,L, s}. For large crystals, since
every unit cell in the crystal is identical, it suffices to minimize U(q) with
respect to q¼ {h, s} with L¼ 0 (i.e., the degrees of freedom of a single unit
cell), provided that care is taken to evaluate U(q) over a sufficiently large
number of unit cells, using techniques such as Ewald summation [14]. It is
important that the conditions of both zero gradient and positive second
derivatives be met, in order to ensure that the structure is indeed a stable
one, and not a saddle point (cf. Section IV). Taking the limit of zero
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displacement rules out any explicit thermal (e.g., entropy) or kinetic con-
tributions to the structure and properties of the crystal. However, this does
not imply that the calculation is necessarily representative of a crystal at 0K.
Thermal contributions may creep into the calculation implicitly, through the
parameterization of the force field or the choice of lattice parameters h.

The relatively simple molecular mechanics calculation has proven very
useful in the study of polymer crystals. It is generally the method of first
resort for any new crystal study. The primary result of such a calculation
is structural information on a very detailed level, for purposes of gaining
insight into the balance of forces or obtaining structure factors to compare
with experiments. For very large problems, the calculations may be speeded
up through the use of one or more common simplifications invoked to
reduce the length of the vector q. First, the problem of determining the
helical conformation of the chain may be decoupled from that of the inter-
molecular packing structure. The chain conformation having the lowest
intramolecular energy is determined first using isolated chain calculations,
appropriately constrained to ensure helicity. (This calculation can usually be
accomplished simply by setting the lattice vectors a and b to be very large.)
Subsequently, the energy of the crystal is minimized with respect to the
intermolecular degrees of freedom and with the chains themselves treated
as rigid molecules having only three translational and one rotational degree
of freedom per chain [15–17]. However, such rigid chain calculations do not
reflect the effects of strong intermolecular packing interactions on confor-
mation. Packing interactions have been shown in some cases to distort
the conformation of the chain [18,19] or even to stabilize a crystal struc-
ture containing a completely different and less stable conformation [20].
Second, the simultaneous optimization of intramolecular and intermolecular
degrees of freedom may be retained at minimal cost by taking advantage of
known symmetries within the unit cell, usually deduced from X-ray results
[21,22]. In crystallography, the smallest group of atoms that contains no
internal symmetry is called the asymmetric unit and, in many instances,
comprises a fraction of the total number of atoms in the unit cell. In this
way, the number of degrees of freedom is reduced to the coordinates of the
asymmetric unit, the lattice vectors of the unit cell, and the symmetry opera-
tions defining the coordinates of the remaining atoms within the same
unit cell.

Thermal contributions to the properties of the crystal are introduced
by taking higher order terms in the Taylor series expansion [Eq. (3)] for
the energy surface in the vicinity of the equilibrium structure. The classical
theory of lattice dynamics was originally formulated for crystals by Born
and von Kármán [23,24] and later presented in the comprehensive text of
Born and Huang [25]. There are several excellent texts that discuss lattice
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dynamics in great detail [25–28]; here, we will only summarize the main

points.
In the harmonic approximation, all contributions to the energy beyond

second order in atomic displacements are neglected. Since the gradient rU0

evaluated at equilibrium is zero, this yields:

�UðqÞ ¼ UðqÞ �Uðq0Þ ffi
1

2
�qt � rrU0 ��q

¼
1

2

X3N

i¼1

X3N

j¼1

@2U

@q@q

����
0

�qi�qj ð4Þ

Differentiating both sides of Eq. (4) with respect to �qi, one obtains an

equation for the force @�U/@�qi acting on coordinate qi, and hence the

equations of motion describing oscillatory displacement of the atoms

about their equilibrium positions:

mi
d2 �qiðtÞð Þ

dt2
¼ �

X3N

j¼1

@2U

@qi@qj

����
0

�qjðtÞ ð5Þ

The periodicity of the crystal permits description of the displacement of

atoms in the form of traveling waves with wavevector k. Solution for the

oscillatory displacement of coordinate i takes the form:

�qiðtÞ ¼ ui exp iðk � qj � !ðkÞtÞ
� �

ð6Þ

where ui is the amplitude of displacement of coordinate i and !(k) is the

frequency of oscillation. There are 3N such solutions. The harmonic motion

of each atom is, in general, coupled with the motions of the other atoms in

the crystal. However, there exists a particular set of linear combinations of

these solutions, called normal modes, which are independent of each other.

Substitution of Eq. (6) into Eq. (5) yields:

miui!
2 ¼

X3N

j¼1

@2U

@qi@qj

����
0

exp �ik � ðqj � qiÞ
� �

uj ð7Þ

This equation can now be expressed in terms of the displacements of the Nu

atoms of the unit cell, rather than the total number of atoms of the
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entire crystal. In matrix form, this becomes:

ðD� !2IÞu0 ¼ 0 ð8Þ

where the vector u0 consists of the 3Nu mass-weighted elements of one unit
cell, u0i ¼ ui

ffiffiffiffiffi
mi

p
, and D(k) is the 3Nu� 3Nu mass-weighted dynamical

matrix, whose elements are defined as:

DijðkÞ ¼

P
L

@2U

@qi@qj

����
0

exp ik � h sj � si þ L
� �� �

ffiffiffiffiffiffiffiffiffiffi
mimj

p ð9Þ

The sum over L corresponds to a triple summation over all values of h, k,
and l in the crystal. The second derivatives of potential energy with respect
to the components of q are obtained from the converged Hessian matrix
at the potential energy minimum. The roots of Eq. (8) yield the frequencies
!i(k) for the 3Nu independent 1-dimensional oscillators, or normal modes
of vibration. Associated with each frequency is a polarization vector mi(k)
which is a linear combination of the original mass-weighted atomic dis-
placements u0. The polarization vectors are orthonormal, such that
mtim



j ¼ �ij (here, the superscript * denotes the complex conjugate). These

are found by diagonalizing the matrix D(k):

m�1Dm ¼ , ð10Þ

,(k) is the diagonal matrix whose elements are the 3Nu values !i
2(k). D(k) is

Hermitian, i.e., D¼ (D*)t, so values of !i
2 are always real and positive for

solution about a minimum in energy. It is apparent that the set of frequen-
cies !i(k) is a function of the wavevector, k. However, the periodicity of the
lattice reduces the set of unique wavevectors to those located in the first
Brillouin Zone (BZ), the region of reciprocal space whose boundaries lie
halfway between reciprocal lattice points, eg., ��/a<k��/a along the a*
dimension, and similarly for b* and c*; a*¼ (b� c)/V, b*¼ (c� a)/V and
c*¼ (a� b)/V are the reciprocal lattice vectors, while V¼ (a.

b� c) is the
unit cell volume. The k-dependence of the 3Nu values !i(k) is called a dis-
persion curve, of which there are 3Nu ‘‘branches’’ in the BZ. Of these 3Nu

branches, three are ‘‘acoustic’’ modes, which have the property that !i

approaches zero as the magnitude of k approaches zero; the other 3Nu� 3
branches are called ‘‘optic’’ modes. Furthermore, most polymer crystal
structures have more than one chain participating in the unit cell. Each
chain has four molecular degrees of freedom (three translational, and one
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rotational about the chain axis), giving rise to 4Nchain� 3 ‘‘molecular’’ optic
modes, which tend to be lower in frequency than the remaining

3Nu� 4Nchain ‘‘atomic’’ optic modes. For the ‘‘finite but unbounded’’ crystal
having hmax unit cells along a, kmax unit cells along b, and lmax unit cells along

c, and periodic boundary conditions, the wavevectors along each branch are
restricted to discrete values: k ¼ 2�ððha
=hmaxÞ þ ðkb
=kmaxÞ þ ðlc
=lmaxÞÞ,

where h takes integer values running from �hmax/2 to þhmax/2, and similarly
for k and l, for a total of 3N vibration frequencies in the finite crystal. In the

limit that the crystal becomes infinitely large, the interval between allowed

wavevectors goes to zero, and both !i(k) and �i(k) become continuous func-
tions of k.

Each of the normal modes in the harmonic approximation is a traveling

wave in the crystal and represents a packet of energy; by analogy with the
wave/photon duality of electromagnetic radiation, the wave packets in crys-

tals are called phonons. The energy of each phonon can be quantified either
classically or quantum mechanically. Since the normal modes are indepen-

dent, the vibrational partition function for the crystal is simply the product
of the individual partition functions for each phonon. These are known

analytically for harmonic oscillators. The corresponding classical and
quantum mechanical partition functions for the crystal are:

classical : lnQvib
cm ¼ �

Z

BZ

dk
X3Nu

i¼1

ln
�h!i kð Þ

kBT

� �
ð11aÞ

quantum : lnQvib
qm ¼ �

Z

BZ

dk
X3Nu

i¼1

�h!i kð Þ

2kBT
þ ln 1� exp

��h!i kð Þ

kBT

� �� �" #

ð11bÞ

The free energy is thus computed explicitly (Nk is the normalization factorR
BZ dk):

Aðh,TÞ ¼ U q0
� �

þ Avib q0,T
� �

¼ U q0
� �

�
kBT

Nk
lnQvib ð12Þ

The size of crystal simulated in this fashion is determined by both the
range of interactions included in the computation of the potential U(q), and

the resolution of wavevectors in the BZ. As mentioned earlier, for periodic
systems like crystals, Ewald summation permits the efficient evaluation of

interactions for a material of infinite extent. Evaluation of thermodynamic
properties for an infinite crystal requires accurate evaluation of integrals
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involving the dispersion relations, !i(k). Standard quadrature methods such
as Gauss–Legendre are used to get the highest accuracy with the fewest
number of integration points. Generally, different densities of integration
(mesh) points should be tried, to ensure convergence. Some quantities, such
as the atomic displacement tensor discussed below, may be dominated by
particular subregions of the BZ, and require special attention to precise
evaluation in these regions.

In the study of polymer crystals, lattice dynamical calculations have been
implemented in different ways. Straightforward minimization of the poten-
tial energy with respect to both fractional coordinates s and lattice param-
eters h simultaneously yields a single, temperature-independent structure.
The resulting normal modes are thus also temperature-independent, giving
rise to a strictly harmonic crystal [29–31]. In the quasiharmonic approxima-
tion (QHA), vibrational frequencies for any lattice h are equated with those
of the harmonic crystal at the state of strain defined by h. QHA thus allows
for anharmonicities that arise due to changes in size or shape of the unit cell.
Early implementations of lattice dynamics with QHA relied on experimental
X-ray diffraction measurements for appropriate values of h at finite tem-
peratures; the potential energy was then minimized with respect to internal
degrees of freedom s at fixed external strain, e(h, h0), referred to as the zero
static internal stress approximation (ZSISA) [32]. Reviews of these types of
calculations for numerous polymers are available [21,22]. A more predictive
and self-consistent implementation of QHA lattice dynamics, within the
ZSISA, is possible at little additional effort by minimizing the potential
energy with respect to s at fixed h; the vibrational contribution to free
energy is then computed and the total free energy A(h,T ) is minimized
with respect to the external variables in h, under the condition that potential
energy is minimal with respect to s for each choice of h. The relative con-
tribution of Avib to A varies with temperature, resulting in a shift towards
lower frequencies, and hence larger h in most cases, at higher temperature;
the contraction observed along the chain axis in polymer crystals which
possess fully extended chains is an interesting exception. The shift in lattice
frequencies for polyethylene between 0K and 300K is shown in Fig. 2. This
shift gives rise to thermal expansion behavior. This self-consistent approach
permits estimation of material properties based on the force field alone,
without additional input from experimental data. It thus provides a power-
ful means for checking the validity of a force field. This self-consistent
version of lattice dynamics has also been applied to numerous polymers
[19,33–36]. Finally, it is possible within the QHA to circumvent the
ZSISA, by formulating analytical derivatives of the normal mode frequen-
cies with respect to both s and h, and then minimizing the total free
energy with respect to all degrees of freedom, both internal and external,
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simultaneously [37]. This can be important for quantities that depend sensi-

tively on internal strains. To date, only properties for polyethylene-

like crystals described by relatively simple potentials have been obtained

by this method and evaluating the analytical derivatives at the static

geometry [38].
Although we have not discussed the specific form of the potential energy

function used to describe U(q), other than to suggest that it is an effective

potential described parametrically by the positions of atomic nuclei, it is

common to treat electrostatic forces in atomistic calculations using partial

atomic charges assigned to the various nuclei. However, this description for

electrostatics does not account for distortion of the electron distribution (the

electronic part of the Born–Oppenheimer separation) in the environment

of the crystal. The presence of dipoles in the anisotropic crystal can lead

to significant mutual induction, or polarization, effects. The lattice dynami-

cal description presented up to this point can be easily extended to

include mutual induction through use of the shell model for atomic

polarizability [39]. This model introduces an additional 3N coordinates to

q, corresponding to the center of action of the electron distribution about

each atom, which may polarize the atom by situating off-center from the

nucleus itself. This results in an additional 3N normal modes, called plas-

mon modes, which are considerably higher in frequency than phonon

modes. The shell model has been used to study poly(vinylidene fluoride)

FIG. 2 4Nchain lattice (acoustic and external optic) normal mode branches for

polyethylene along the [100] lattice direction. Each branch is symmetric about the

� (k¼ 0) point. 0K (dashed lines) and 300K (solid lines).
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using the harmonic [40] and self-consistent quasiharmonic approximations

[35,41].
The free energy of the crystal corresponding to other ensembles may be

computed through inclusion of additional work terms in the equation for

free energy, for example:

Gðr,TÞ ¼ UðhÞ þ Avibðh,TÞ � V0r
t � e ð13Þ

For mechanical work, p is the applied stress and e is the deformation strain,

defined with respect to a reference cell h0. For a cell deformed from h0 to h,

the (external) strain may be computed as:

e ¼
1

2
h
t,�1
0 Gh�1

0 � I
� �

ð14Þ

G is the metric tensor hth and V0 is the cell volume. A wide range of thermal

and mechanical properties may be estimated through optimization of

A(h,T ) or G(p,T ) at different temperatures and states of deformation.

Among these, the constant volume heat capacity may be computed using:

CV ¼
kB

Nk

Z

BZ

dk
X3Na

i¼1

x2ex ex � 1½ 	
�2 where x ¼

�h!iðkÞ

kBT
ð15Þ

Thermal expansion coefficients may be computed as thermally induced

strains:

a ¼
1

2
ht�1
0

dG

dT
h�1
0

	 

ð16Þ

Similarly, elastic stiffness and compliance constants can be computed using

the relations

C ¼
@r

@e
i:e:, Cij ¼

@�i
@"j

ð17aÞ

and

S ¼ C�1
¼
@e

@r
ð17bÞ

372 Rutledge



or

C ¼
1

V0

@2Aðh,TÞ

@e@e
and Cij ¼

1

V0

@2Aðh,TÞ

@"i@"j
ð17cÞ

Here, p and e are the 6� 1 vectors for stress and strain, respectively,
in Voigt notation (i.e., "i¼ "ii for i¼ 1,2,3; "4¼ 2"23, "5¼ 2"13, "6¼ 2"12).
Lattice Grüneisen coefficients offer a measure of the thermal stress on a
crystal:

c ¼
V

CV
Ca ð18Þ

The anisotropy typical of the polymer crystal is exemplified by the material
properties of several polymer crystals studied to date. These are shown

in Table 1.
The elastic modulus of the crystal in the chain direction is one of the most

important properties of a semicrystalline polymer and has received consid-
erable theoretical attention. It also serves to illustrate some of the differ-

ences between various methods of calculation. Figure 3 illustrates the results
for C33 for polyethylene from several different calculations: potential energy

minimization, quasiharmonic lattice dynamics, Monte Carlo and molecular
dynamics. The open symbols in Fig. 3 are all indicative of optimization-

based calculations, while the filled symbols are derived from sampling-based
methods (cf. Section III.B). For clarity, only the results from lattice

dynamics using classical vibrations are shown; calculations on polyethylene
using quantum mechanical vibrations typically yield lower values of C33 at

low temperatures, but both classical and quantum mechanical estimates of
elastic constants converge around 300K [33,45,46]. However, other proper-

ties, notably thermal expansion coefficients and heat capacity, have been
shown to exhibit quantum mechanical effects well past 300K [33]; vibration

modes with frequencies greater than 200 cm�1, predominantly intramolecu-
lar vibrations, are highly nonclassical at room temperature. The anisotropic

nature of the crystal precludes the kind of orientational averaging, present
in amorphous simulations, which helps to mitigate the error associated with

treating these high frequency vibrations classically. Thermal vibration
accounts for about 12%, a 40GPa drop, in the estimates of modulus at

300K. Above 300K, the lattice dynamics estimates fall off more rapidly.
Inspection of Eq. (17c) reveals that the drop in modulus may be traced to

three interrelated factors: (i) an increase in reference cell volume with tem-
perature; (ii) a change in the potential energy surface with increasing volume
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to a surface of lower curvature; (iii) the reduction in vibrational frequencies
and their contribution to elastic stiffness. Comparison between lattice
dynamics and Monte Carlo results for a comparable force field (open and
filled circles, triangles in Fig. 3) indicates reasonable agreement at low tem-
perature, followed by a breakdown of the quasiharmonic approximation at
high temperatures. Results for different force fields, on the other hand, may
differ by as much as 50–100GPa (e.g., diamonds vs. circles or triangles in
Fig. 3).

Thermoelectrical and electromechanical properties may be computed
in similar fashion by including an electrical work term, �V0E�d, in Eq.
(13). E is the applied electric field and d is the resultant electric displacement,

TABLE 1 Properties of Several Polymer Crystals Computed at 300K Using a

Self-Consistent QHA Lattice Dynamics Calculation, with Quantum Mechanical

Treatment of Vibrational Free Energy

PEa iPPb PVDFc PPTAd PETe

CV (kcalmol�1K�1)f 0.0196 0.00703 0.0306 0.1145 0.0470

�1(�10�5K�1) 28.3 8.2 6.56 7.9 11.4

�2(�10�5K�1) 10.7 8.7 5.13 2.9 4.12

�3(�10�5K�1) �2.4 �0.84 �0.38 �0.57 �1.07

�1 1.2 0.68 0.79 0.76 1.13

�2 0.97 0.79 0.66 1.07 1.02

�3 �2.3 0.39 �0.040 �0.24 �0.69

C11 (GPa) 6.0 9.9 24.5 11.9 14.4

C22 (GPa) 7.3 10.8 26.1 32.2 17.3

C33 (GPa) 280 55.1 276 284 178

C44 (GPa) 2.7 4.0 na 14.3 6.6

C55 (GPa) 1.7 4.9 na 0.5 1.4

C66 (GPa) 2.9 1.7 na 6.1 1.2

C12 (GPa) 3.4 3.4 1.2 11.1 6.4

C13 (GPa) 8.7 7.1 7.6 10.5 3.4

C23 (GPa) 9.5 4.4 9.1 14.2 9.5

aPE (polyethylene), orthorhombic. Source: Ref. 33.
biPP (isotactic polypropylene), �-phase, monoclinic (not all properties shown).

Source: Ref. 34.
cPVDF [poly(vinylidene fluoride)], �-phase, orthorhombic. Source: Ref. 41.
dPPTA [poly( p-phenylene terephthalamide)], orthorhombic. Source: Ref. 19.
ePET [poly(ethylene terephthalate)], triclinic (not all properties shown). Source:

Ref. 36.
fPer mole of unit cells.

na: not available.
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related to the polarization of the crystal. For poly(vinylidene fluoride),

piezoelectric and pyroelectric properties were computed without resort to

an electric field term by computing the change in polarization with tempera-

ture and strain [40,41,47].
Wide angle X-ray diffraction provides an experimental probe of atomic

scale structure through the structure factor F(S), which is defined as:

FðSÞ ¼
X

i

fiðSÞTiðSÞ exp �2�iStqi
� �

ð19Þ

Here, S¼ (S0 –S0
0)/l and |S|¼ 2sin�/ ~

 S refers to the scattering vector of

X-ray analysis, with S0
0, and S0 being the direction of incident and scattered

radiation, respectively. Here, l is the radiation wavelength and � is the

scattering angle. fi(S), Ti(S), and qi are the atomic structure factor, the

Debye–Waller temperature factor, and the position, respectively, of atom

i. The intensity observed in an X-ray experiment is related to the power

FIG. 3 C33 axial modulus of polyethylene obtained using different force fields and

computational methods. All calculations are classical. Open symbols are from

optimizations (circles, triangles, and diamond are self-consistent QHA lattice

dynamics, all others are plotted at temperature of experimental lattice parameters;

potential energy minimizations are plotted at 0K). Filled symbols are Monte Carlo

(circles) or molecular dynamics (diamond, triangles). Force field of Ref. 55: open and

filled circles (from Ref. 46); force field of Ref. 30: open (from Ref. 33) and filled

(from Ref. 68) triangles; pcff force field of Biosym/MSI: open and filled diamonds

(from Ref. 66); � (from Ref. 42); þ (from Ref. 43); open inverted triangle (from Ref.

44); open square (from Ref. 29). Curves are drawn as guides to the eye.
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spectrum of F(S) by the relation: I(S)¼ I0F(S)F*(S). I0 is a prefactor that
accounts for such effects as absoprtion, polarization, and Lorentz scattering
[1–3]. Taking advantage of the separation of coordinate qi into a unit cell
translation and placement of the atom within its unit cell, as suggested by
Eq. (1), one obtains:

FðSÞ ¼
X

L

exp �2�iSthL
� �X

j

fjðSÞTjðSÞ exp �2�iSthsj
� �

ð20Þ

For large, perfect crystals, the first summation contributes a constant pre-
factor Fc¼ (hmaxkmaxlmax)

2 and the scattering vector interferes constructively
(i.e., is nonzero) only for values corresponding to vertices of the reciprocal
lattice: S¼ ha*þ kb*þ lc*¼ h*L. The static structure factor then becomes
simply:

FðSÞ ¼ Fc

X

j

fjðSÞTjðSÞ exp �2�iLtsj
� �

ð21Þ

The signature of thermal motion is observed experimentally in X-ray
diffraction as a change (usually a reduction) in F(S), and hence in the
observed intensity. The structure factor for each atom is modified by the
factor Ti(S)¼ exp(�2�2St

BiS), which depends on both the magnitude and
orientation of S. The crystal dynamics are embodied in the direction and
amplitude of normal mode vibrations. The amplitude of vibration depends
on the energy content of that phonon, Evib,j¼ kBT

2(@lnQj/@T). The orienta-
tion of displacement is described by the polarization vector xj for that mode.
From this, one can compute the probability density function for an atom
vibrating under the influence of a single normal mode. Since the phases of
the modes are independent, the average displacement for atom i due to the
action of all normal modes can be written as:

Bi ¼ uiu
t
i

 �
¼

1

NkNumi

Z

BZ

dk
X3Nu

j¼1

Evib, jðkÞ

!2
j ðkÞ

�i, jðkÞ �


i, jðkÞ

� �t
ð22Þ

A plot of the orthorhombic unit cell for polyethylene is illustrated in Fig. 4,
with the 50% probability density surfaces shown for each atom of the
unit cell. The anisotropic dynamics of the polyethylene crystal are
immediately apparent. Significantly, the largest contributions to Bi come
from the long wavelength acoustic modes, due to the inverse dependence
on !2. In experimental studies on polymers, the temperature factor is often
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treated as isotropic and equivalent for all atoms; in this case the correspond-
ing B-factor is simply 8�2(tr(Bi)), averaged over all the atoms of the
unit cell.

The principal limitations of lattice dynamics, of course, are the shape of
the potential energy surface implied by the harmonic approximation and
the restriction to localized phase spaces. When polymorphism is an issue,
each polymorph may be examined independently using lattice dynamics.
However, crystals with internal disorder at elevated temperatures include
significant contributions from configurations that are not accurately repre-
sented by the quadratic form of the Taylor series expansion for potential
energy. Studies of atomic crystals, as well as a recent study of polyethylene
[34,49], suggest that QHA is reasonably accurate up to about 2/3 of the
melting temperature, barring the presence of solid–solid transformations at
lower temperatures. Higher order anharmonic contributions may be treated
methodically through the use of perturbation theory [50–53]. However, the

FIG. 4 Orthorhombic unit cell of polyethylene, with 50% probability thermal

vibration ellipsoids for each atom, computed using the force field of Ref. 55 with

8000 normal mode vibrations sampled in the Brillouin Zone. Thermal vibration

ellipsoids were plotted using Ortep-III [48].
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improvement usually comes at considerable computational expense. For
these situations, sampling methods such as Monte Carlo or molecular
dynamics are usually preferred.

B. Sampling Methods

Both Monte Carlo and molecular dynamics methods sample directly the
phase space of a small but representative component of the crystal, the
former by performing stochastic moves through configuration space,
the latter by following a specified trajectory according to an equation of
motion and chosen initial condition. A typical Hamiltonian for molecular
dynamics simulation is [14]:

Hðp, qÞ ¼
X3N

i¼1

p2i
2mi

þUðqÞ ð23Þ

The Hamiltonian is a constant of the phase space sampled by the simulation.
A ‘‘mechanical’’ property is one that is defined at each point in phase space,
i.e., it can be computed for each configuration of the system. The macro-
scopic observable Fobs is then computed as the ensemble average (Monte
Carlo) or time average (molecular dynamics) of the mechanical property Fi;
according to the ergodic hypothesis, these should be equivalent.

Fobs � hFi ¼ lim
N!1

XN

i¼1
Fie

��Ei

XN

i¼1
e��Ei

¼ lim
t!1

1

t

Z t

0

dt0Fðt0Þ ð24Þ

Combinatorial quantities such as entropy and free energy, which depend on
the entire distribution of states sampled, require further effort to extract.
Methods based on thermodynamic relations which express these quantities
as integrals over ensemble averages of mechanical quantities, e.g., @H(l)/@l,
where l defines the state at which the Hamiltonian is evaluated, are most
often used to extract thermal properties [14]. l may be temperature, volume,
or even a change in the force field itself.

A l2ð Þ � A l1ð Þ ¼

Z 2

1

dl0
@H l0
� �

@l0

� �
ð25Þ

Since much of this book is dedicated to the description of powerful Monte
Carlo and molecular dynamics algorithms for the study of chain molecules,
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we will not go into these methods in as much detail as with lattice dynamics.
Nevertheless, a few comments are in order.

By sampling phase space directly, the methods of Monte Carlo and
molecular dynamics can avoid the restrictive approximations of lattice
dynamics. In principle, at least, polymorphism, anharmonicity, static and
dynamic disorder may all be rigorously captured by direct simulation.
However, other limitations arise which differ from those encountered in a
lattice dynamical approach. Comparison of both approaches can provide
insight into the significance of these limitations [46].

First, both Monte Carlo and molecular dynamics simulations must
approximate the macroscopic crystal using a very small number of atoms,
typically on the order of 103–104 with current computers. With periodic
boundary conditions, atoms outside of the simulation box are restricted
to remain dynamically in phase with those inside the simulation box. For
a simulation cell consisting of hmax� kmax� lmax unit cells, only those wave-
vectors whose magnitudes are integer multiples of 2�a*/hmax, 2�b*/kmax,
and 2�c*/lmax are sampled in the simulation. Thus, unless hmax, kmax, and
lmax are chosen suitably large, the dynamical resolution is rather poor. This
finite size effect may affect both lattice properties, such as thermal expan-
sion, and atomic displacements, which as noted previously are most affected
by long wavelength acoustic modes. For polyethylene, finite size effects are
noticeable in small simulations containing 2� 3� 6 unit cells (432 atoms) at
temperatures around 100K, but become progressively worse at higher tem-
peratures [54,55]. Furthermore, finite size effects in polyethylene were found
to be quite anisotropic, being largest along the b direction of the lattice, but
also strongly coupled to the lattice size in the chain direction. Free or rigid
boundary conditions [56] may be used instead of periodic boundaries, but
these incur surface as well as finite size effects, the implications of which are
less thoroughly quantified.

The anisotropy of polymer crystals has other implications for simulation,
as well. Along the chain direction, intramolecular degrees of freedom may
dominate the dynamical behavior, while dynamics lateral to the chain are
predominantly intermolecular in nature. As evidenced by the large separa-
tion between internal and external mode frequencies in lattice dynamics,
these two groups are largely decoupled. In molecular dynamics, this separa-
tion of dynamical time scales manifests itself as an inefficient transport of
energy between high frequency and low frequency motions. This may be
observed as poor equilibration of kinetic energy between intramolecular and
intermolecular degrees of freedom. To overcome this problem, Ryckaert
and Klein used massive stochastic collisions [57] in their molecular dynamics
simulation [58]. The collisions serve to redistribute the kinetic energy among
all the modes of motion. In Monte Carlo simulations, this effect is observed
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as inefficient sampling of local coordinate s and cell h degrees of freedom

simultaneously. Since the problem is one of sampling internal and external

degrees of freedom, most polymer algorithms geared towards efficient simu-

lation of conformation space are of little use in this respect. Instead, one

introduces a combination of atomic and molecular moves. Atomic moves

consist of small displacements of individual atoms, as was done in early

simulations of atomic liquids and solids, or of small groups of bonded

atoms. This permits rapid sampling of high frequency, intramolecular

degrees of freedom. Molecular moves consist of translational displacements

of the entire chain as a rigid body, as well as rotations of chains about their

axes during a simulation. This permits rapid sampling of lower frequency

lattice degrees of freedom [54,59–62]. Displacements on the order of 0.05 Å

and 0.2 Å are typical for atomic and molecular moves, respectively, and

5–10 degrees for chain rotation. For sampling over large energy barriers

in crystals with some disorder, molecular moves which are some fraction

of the lattice spacing, or which involve a symmetry operation in the crystal

have been used [61,62].
A third, less obvious limitation of sampling methods is that, due to the

heavy computational burden involved, simpler interatomic potential models

are more prevalent in Monte Carlo and molecular dynamics simulations.

For example, polarizability may be an important factor in some polymer

crystals. Nevertheless, a model such as the shell model is difficult and time-

consuming to implement in Monte Carlo or molecular dynamics simulations

and is rarely used. United atom models are quite popular in simulations of

amorphous phases due to the reduction in computational requirements for a

simulation of a given size. However, united atom models must be used with

caution in crystal phase simulations, as the neglect of structural detail in the

model may be sufficient to alter completely the symmetry of the crystal

phase itself. United atom polyethylene, for example, exhibits a hexagonal

unit cell over all temperatures, rather than the experimentally observed

orthorhombic unit cell [58,63]; such a change of structure could be reflected

in the dynamical properties as well.
The properties of polymer crystals may be computed using the same

relations as presented earlier for lattice dynamics. However, it is generally

more expedient to take advantage of the fluctuation-dissipation theorem

[64] to relate response functions to the magnitude of fluctuations at equi-

librium. For example, the fluctuation formula for the constant volume

heat capacity computed in the canonical (NVT) ensemble is

CV ¼
E2
 �

� Eh i2

kBT
ð26Þ
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where it is understood that the energy E includes both kinetic and potential
contributions. A similar useful relation exists for the elastic stiffness moduli
(in the N�T ensemble) [65]:

C ¼
kBT

hVi
""t
 ��1

or Cij ¼
kBT

hVi
"i"j
 ��1

ð27Þ

As indicated earlier, accurate calculation of the elastic moduli by this for-
mula requires a simulation cell large enough to sample adequately the lattice
modes of vibration. For polyethylene and polypropylene, simulations con-
sisting of 4� 6� 12 unit cells and 3� 1� 3 unit cells, respectively (corre-
sponding to simulation cells approximately 20 Å on a side in each case) have
been used with reasonable success [66]. Whereas simulations on the order of
104 to 105 Monte Carlo or molecular dynamics steps are typically required
to obtain good averages for energy, density, and many other properties,
fluctuation averages such as those used in Eqs. (27) typically require simula-
tions one to two orders of magnitude longer in order to achieve accuracies
around 5% [67,68]. This has been attributed to slow convergence of high
frequency motions [68], as well as the difficulty in sampling external vari-
ables mentioned above. A formula that takes advantage of the correlated
fluctuations of stress and strain has been proposed to improve the conver-
gence characteristics [67].

IV. CRYSTAL IMPERFECTIONS AND
RELATED PROCESSES

Up to this point, we have focused on the restrictive nature of the phase space
of polymer crystals. The harmonic approximation of lattice dynamics
assumes that atoms execute only small displacements from their equilibrium
positions, such that the effects of anharmonicity are low. Monte Carlo and
molecular dynamics, of course, make no such approximations. Many pro-
cesses in polymer crystals involve significant rearrangements of atoms and
passage through a (series of) metastable configuration(s). These processes
include relaxations, mass transport, and plasticity, as well as lamellar thick-
ening in flexible chain polymer crystallites. Molecular simulations can be
used to study the mechanisms by which these processes occur. The mecha-
nism may be characterized by the (one or more) trajectories through phase
space which carry the crystal structure from a ‘‘reactant’’ state, belonging to
the region of space occupied before the process, to a ‘‘product’’ state,
belonging to the region of space occupied after the process. Short of com-
plete melting and recrystallization of the polymer, the process must occur
through the action of a more or less localized region of disorder in the
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crystal, which constitutes a crystallographic defect. The type of simulation
used to analyze the process depends significantly on the nature of the
trajectory.

For trajectories involving configurations with energies on the order of
the thermal energy, kBT, a molecular dynamics simulation can efficiently
sample configuration space both close to an equilibrium point as well as
along the (classical) trajectories between equilibrium points. The great
power of this approach is that little or no prior knowledge of the trajectory
is required, so long as the energy requirements are low and passage along
the trajectory is sufficiently frequent to ensure observation of one or more
passages during the typical 1 ns simulation. A rule of thumb based on tran-
sition state theory (see below) is that the potential energy along the trajec-
tory does not exceed about 10 kBT at any point.

Wunderlich and co-workers have reported extensively on the dynamics of
a united atom model of polyethylene using molecular dynamics [63]. In this
model, the crystal structure resembles the high temperature hexagonal phase
observed in polyethylene. Simply by analyzing the structure and energy of
configurations sampled in a conventional molecular dynamics simulation,
one can identify crystallographic defects, conformational relaxations, and
diffusion processes. With the united atom model, these authors observed
that gauche conformational defects formed in the otherwise all-trans chain
with a frequency on the order of 10GHz per bond at 350K. The estimated
activation energy is on the order of 5–8 kBT. These gauche states were
observed to be short-lived and uncorrelated. Kink defects (i.e., having con-
formation g�tg�) were observed to diffuse rapidly and annihilate at the free
surface of the simulation. Sequential deviation in the same direction by
a string of bonds along the chain gives rise to a ‘‘twist,’’ by which the
chain may execute a 180 degree flip about its axis, with a passage time on
the order of 2 ps at 300K. Longitudinal diffusion of the chain was observed
to couple to a lattice acoustic mode. All-atom simulations revealed the onset
of translational diffusion in polyethylene above 250K, and evolution to four-
fold rotational disorder above 375K, on the time scale of picoseconds [58].

For processes whose frequency of occurrence is less than 1GHz (i.e., once
per nanosecond), the events are sufficiently rare to render molecular
dynamics of little use as a means for direct simulation, given current com-
puter limitations. Rare events are more often modeled using some form of
transition state theory (TST) [69]. The basic assumptions of TST are that
there exists a dividing surface which separates phase space into a reactant
region and a product region, that the region of space comprising the reac-
tant state and the dividing surface are in equilibrium, and that trajectories
passing through the dividing surface are captured in the product state. In its
conventional form, TST places this dividing surface at a first order saddle
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point in the potential energy surface, defined as a stationary point with one
and only one negative eigenvalue of the dynamical matrix. The problem
then centers on the characterization of the reactant and saddle point
(i.e., transition state) configurations. For simplicity, the present discussion
adheres to this conventional interpretation.

In conventional TST, the one-way flux, or reaction rate, from reactant to
product may be written as:

kTST ¼
kBT�

h

Q
z

vib

Qvib, 0
exp �

�E

kBT

� �
ð28Þ

where h is Planck’s constant and � is the transmission coefficient, usually
taken to be on the order of unity. Characterizing the kinetic rates of pro-
cesses dominated by rare events reduces to estimating the activation energy
�E¼ (Uz

�U0) and the ratio, Q
z

vib/Qvib,0, of the vibrational partition func-
tions for reactant (0) and transition (z) states. If the reactant and transition
states are reasonably well known, the methods of lattice dynamics may be
used to compute the four quantities required, Uz, Q

z

vib, U0, and Qvib,0. It is
worth noting that the specification of the trajectory and the associated one-
way flux in TST constitutes a classical treatment of the one degree of free-
dom associated with motion along the trajectory; Q

z

vib may be evaluated
either classically or quantum mechanically using Eqs. (11), but possesses
one fewer degree of freedom than Qvib,0 due to the restriction of motion
to a specifed trajectory. At a saddle point, one imaginary frequency is
obtained in the dynamical matrix and is discarded.

The identification of the transition state configuration(s) for rare events
in polymer crystals can be a complicated task. Conformational defects of the
types discussed above in relation to molecular dynamics simulations have
received the most attention in polymer crystals, due to their association with
experimentally observed mechanical and dielectric relaxations, crystal thick-
ening, etc. These are also illustrative of the application of TST to polymer
crystal studies.

It is generally believed that relaxations in the crystal phase occur through
the formation and propagation of local regions of disorder, called defects.
The gauche bonds, kinks, and twists observed in the molecular dynamics
simulations cited earlier are all examples of conformational defects.
Conformational defects in polymer chains are classified by the net transla-
tional and rotational lattice mismatch incurred by a defect involving a par-
ticular length of the chain (the ‘‘extent’’ of the defect). Such translational
mismatches have been called ‘‘dislocations,’’ by analogy to dislocations in
the solid-state physics literature. However, studies of relaxations in polymer
crystals have typically focused on point defects, and should not be confused
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with the line defects of the latter; similarly, rotational mismatches are
termed ‘‘disclinations.’’ In polymers, the helical symmetry of the chain per-
mits a combined translational/rotational mismatch that has been termed a
‘‘dispiration’’ [70]. The identification of the structure of defects which satisfy
the constraints of a dislocation, disclination, or dispiration typically requires
considerable insight, inspiration, or brute force searching of conformation
space [71–73]. For highly localized conformational defects, the process of
defect identification can be simplified by solving the conformational prob-
lem in torsion space alone, for defects up to six bonds long [74,75]. The
method involves solving a set of nonlinear equations, and also serves as
the basis of the Concerted Rotation Monte Carlo algorithm [76]. Once
the conformational problem is solved, one can construct a cell containing
a single reference chain containing the conformational defect, and thereby
compute the energy and distortion of the defect due to packing in the lattice.
Unlike perfect crystal simulations, simulations to date involving defects
have been performed almost exclusively using finite cells with rigid or free
boundary conditions so as to avoid defect–defect interactions.

Having once identified a stable defect in the crystal lattice and computed
its energy of formation, determining the kinetics of a process based on this
defect in TST requires the further identification of a saddle point along a
trajectory which displaces the defect by one lattice period; the periodicity of
the lattice permits a scenario where subsequent propagation of the defect
occurs through a sequence of similar ‘‘hops’’ in the lattice. Identification of
a suitable trajectory for defect propagation in polyethylene was performed
by introducing the defect into the lattice, as described above, and then
driving one or more coordinates (e.g., a torsion angle in the chain or setting
angle in the crystal) so that the defect is forced to move to the next unit cell
in the lattice. This type of calculation is essentially quasi-static; a constraint
on one or more rotation angles in the chain is incremented, and the potential
energy of the defect reminimized [73,77]. The process is repeated stepwise
until a potential energy barrier is crossed (i.e., the defect ‘‘falls’’ into the
product state upon minimization). However, this approach does not gener-
ally locate a first order saddle point on the potential energy surface, but
rather a maximum along the trajectory chosen by the coordinate-increment-
ing protocol employed. The resulting trajectories are thus sensitive to how
the defect is driven along the chain and provide upper bounds on the true
saddle point energy [77]. Alternative numerical approaches can be used to
refine the estimate of a true first order saddle point based on an adiabatic
reaction path connecting reactant to product. One particularly useful algo-
rithm for this purpose is the conjugate peak refinement algorithm of Fischer
and Karplus [78], which requires knowledge only of the equilibrium con-
formation of the defect in order to identify a lowest energy path from
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reactant to product. This saddle point search algorithm was used in a study

of poly(vinylidene fluoride) [79] and, more recently, polyethylene [80]. For

cases where a good initial guess of the saddle point configuration is avail-

able, more efficient gradient algorithms can be used to refine the estimate of

the saddle point configuration and energy [81]. Once the saddle point con-

figuration is identified, Uz and Qz are readily computed using the methods

of lattice dynamics, and TST applied. Figure 5 illustrates two trajectories

computed for propagation of defects in poly(vinylidene fluoride) to account

for the �-relaxation in the �-crystalline form of that polymer. It is interesting

to note that, whereas heats of formation for defects may be fairly large, the

methods described above can be used to characterize the trajectory of the

defect through the lattice, regardless of whether it involves a hopping

mechanism between adjacent lattice sites, separated by large energy barriers,

or a relatively facile free-streaming motion involving only low energy bar-

riers to propagation. Both hopping [70] and free-streaming [73] mechanisms

have also been proposed for motion of defects in polyethylene.

V. SUMMARY

There is currently a variety of methods for studying polymer crystals by

molecular simulation. As with other materials, the usual caveats regard-

ing force field accuracy and proper execution of the simulation apply.

FIG. 5 Free energy of formation and transition state barriers (�A¼

(Q
z

vib/Qvib,0)exp(��E/kBT )) to transport for two types of defects capable of pro-

ducing the �-relaxation in poly(vinylidene fluoride) (from Ref. 79). tgtg*! g*tgt

(circles); g*tgt! tgtg* (squares). Dashed curves are drawn as guides to the eye.
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The anisotropy of polymer crystals is characteristic of the orientation of

intra- and intermolecular interactions, which is also reflected in a broad

separation on the dynamical time scale. It is especially important in polymer

crystals to be cognizant of the limitations imposed by either the assumptions

on which a method is based (e.g., the quasiharmonic approximation for

lattice dynamics) or the robustness of the simulation method (e.g., ergodicity

of the simulation in Monte Carlo or molecular dynamics). In some

instances, valuable checks on these assumptions and limitations (e.g., quan-

tum mechanical vs. classical dynamics, finite size effects and anharmonicity)

can and should be made by repeating the study using more than one

method.
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I. INTRODUCTION

Atomistic modeling techniques have been employed for the investigation
of mechanical properties of amorphous polymeric solids for years [1–5].
Theodorou and Suter [1] successfully calculated the elastic constants of
glassy atactic polypropylene (aPP) by molecular mechanics techniques,
surmising that the entropic contributions to the elastic response are negligible
for such glasses. Mott et al. [2] strained polypropylene glasses beyond the
macroscopic elastic range and found evidence for the occurrence of diffuse
plastic unit events and estimated, by comparison with experimental results,
that the size of the plastically transforming domains in elementary shear-
transformation events extends over roughly 100 Å (well beyond the system
size that can conveniently be simulated). Plastic relaxation occurs through
cooperative rearrangements with rather small local transformation strains
[O(2%)]. These findings were assumed to be true for all polymeric glasses,
in contrast to the long-held belief that the elementary process of plastic
transformation is a well-localized conformational transition. Hutnik et al. [3]
used the same technique on glassy bisphenol-A-polycarbonate (BPA-PC)
and confirmed the results on aPP. All these calculations suffered from small
system size and the fact that the atomistic box shape was used as a simulation
variable, prescribed and controlled during the athermal simulations. While
this is perfectly appropriate for the elucidation of elastic properties, it is
not optimal when the ‘‘natural’’ system path is unknown, as in plastic
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deformation. It would be preferable to be able to simulate the behavior of
atomistic subsystems embedded in amedium (of identical properties) and free
to follow the driving forces that the gradient of (free) energy suggests. The
overall system would have to be considerably larger, however, than the ones
employed for these atomistic simulations.

The demand for larger systems in the modeling of mechanical properties
of polymeric materials requires the consideration of multiple length scales.
For very large length scales it suffices to think of the material as an elas-
tic medium and an atomistic description is unnecessary. However, for
the plasticity to be captured at the molecular level, atomistically detailed
modeling is required and several efforts to combine the atomistic and
continuum levels for the modeling of viscoelastic properties of materials
have been published [6–10]. The fundamental difficulty in this endeavor lies
in the way in which the length scales are coupled. We have presented [11] an
approach at atomistic-continuum modeling, where the system consists of a
continuum matrix and an atomistic inclusion, and the inclusion-boundary
behavior and the atomistic cell behavior are connected via the common
strain transformation. This new model has proven to be consistent for
modeling the elastic deformation of a nearest-neighbor fcc crystal of argon
and glassy BPA-PC. It has the advantage of being free of artificial
constraints and assumptions beyond those intrinsic to the descriptions on
the two levels being connected.

Here, the atomistic-continuum model is applied to the study of plastic
deformation of BPA-PC. First, the elastic constants of BPA-PC are
calculated by atomistic simulation. These values are used as the elastic
constants for the matrix throughout the simulated deformation. Then, the
system, i.e., the continuum matrix with its atomistic inclusion, is deformed
stepwise up to a strain of about 0.2. The overall system is constrained
to exactly follow a predescribed deformation sequence, but the atomistic
inclusion is free to follow any strain path consistent with the misfit stresses
acting between it and the matrix. The result is a new look at the behavior of a
glassy polymeric inclusion deformed plastically in a surrounding elastic
medium.

II. MODEL

We briefly recapitulate the model, detailed previously [11], which is based on
the variable-metric total-energy approach by Gusev [12] and consists of a
system comprising an inclusion embedded in a continuous medium. The
inclusion behavior is described in atomistic detail whereas the continuum is
modeled by a displacement-based finite-element method. Since the atomistic
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model provides configuration-dependent material properties inaccessible to
continuum models, the inclusion in the atomistic-continuum model acts as a
magnifying glass, which allows observation of the molecular properties of
the material.

A. Continuum Model

The variable-metric total-energy approach [12] is adopted here for the
matrix. As illustrated in Fig. 1, the periodic system is described by the
scaling matrix [13,14] H¼ [ABC], where A, B, and C are the overall system’s
continuation vectors. Two kinds of nodal points are specified in the matrix:
One (xb) on the inclusion boundary and the other (xc) in the continuum
(throughout this text, vectors are written as column matrices). For con-
venience, the scaled coordinates [13,14] (sb and s

c) are chosen as degrees of
freedom via x

b
¼Hs

b and x
c
¼Hs

c. These nodal points are used as vertices
of a periodic network of Delaunay tetrahedra. The Delaunay network
uniquely tessellates space without overlaps or fissures; the circumsphere of
the four nodal points of any tetrahedron does not contain another nodal
point of the system [15,16]. For each tetrahedron �, the local scaling matrix
h
�
¼ [a�b�c�] is defined in the same manner as H for the overall system. The

local (Lagrange) strain e� is assumed to be constant inside each tetrahedron
and defined as [13,14]

e� ¼
1

2
G�
� �T

G�
� I

h i
, G�

¼ h� h
�
0

� ��1

ð1Þ

FIG. 1 Sketch of atomistic-continuum model, for illustrative purposes drawn for a

two-dimensional version only. All degrees of freedom in the system are of one of four

types: H, DH, s
c, and sa.
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where the subscript 0 represents the reference state before deformation and I

is the unit matrix of order 3. The system strain esys is calculated from Eq. (1)

by substitutingH andH0 for h
� and h�0 , respectively. The strain energy in the

continuum Econt can be evaluated from the sum over all tetrahedra:

Econt H,
�
sb
�
,
�
sc
�� �

¼
1

2

X

�

V� e�
� �T

C�e� ð2Þ

where V� is the volume of the reference state and C
� the matrix of elastic

constants of tetrahedron �.

B. Atomistic Model

A spatially periodic simulation box represents the contents of the atomistic
inclusion. Again, the shape of this box is expressed by a scaling matrix
h¼ [abc] (cf. Fig. 1). The scaled coordinates of atom s

a are used as degrees of
freedom via x

a
¼ hs

a. The Lagrange strain tensor of the atomistic box, eatom,
can be calculated from Eq. (1) by replacing h

� and h
�
0 with h and h0,

respectively. The energy in the atomistic box can be expressed as Eatom

(h,{sa}) and can be obtained via any energy model for atomistic simulation,
e.g., a force-field approach.

C. Atomistic-Continuum Model

To connect the two models with different length scales, the displacement
of the nodal points on the inclusion boundary is associated with the
deformation of the atomistic box by xb ¼ hh�1

0 xb0. This means that the
inclusion boundary is constrained to follow the homogeneous deformation
of the atomistic cell vectors. The degree of freedom DH is introduced to
relate h with H through

h ¼ HðIþDHÞH
�1
0 h0 ð3Þ

Thus, sb can be expressed by

sb ¼ H�1xb ¼ H�1hh�1
0 H0s

b
0 ¼ IþDHð Þsb0 ð4Þ

There are four types of degrees of freedom in the system: H and s
c for the

continuum model; h and s
a for the atomistic model.
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The total potential energy in the system Esys is consequently expressed as

Esys H,DH, s
cf g, saf gð Þ ¼ Econt H,DH, s

cf gð Þ þ �VE
atom H,DH, s

af gð Þ,

�V ¼
Vinc

Vatom
ð5Þ

where Vinc and Vatom are the volumes of the inclusion and atomistic box,
respectively (evidently, the inclusion must have the same energy density as
the atomistic box). Note that �V is kept constant during deformation
because x

b deforms according to h.
The length scales in the model are given by the inclusion volume fraction

fI and �V, e.g., in a cubic system box of edge length L with a spherical
inclusion of diameter d, defined by an atomistic box of edge length a,
d¼ (6�V/�)

1/3a and L¼ (�V/fI)
1/3a.

While this two-scale model allows for a ‘‘natural’’ connection between
the two scales (i.e., the inclusion-boundary behavior and the atomistic cell
behavior are connected via the common strain transformation), it also is
limited by the required uniformity of strain in the atomistic inclusion
(through the periodic continuation conditions on the atomistic cell) and in
each of the tetrahedra of the Delaunay tessellation.

III. SIMULATION METHOD

A. Model System

The system was a cube with an edge length L¼ 100 Å and one spherical
inclusion (volume fraction fI¼ 0.18). We specified 1000 nodal points on the
inclusion boundary (xb) and 6259 in the continuum (xc). The atomistic
box consists of one BPA-PC chain with degree of polymerization X¼ 74,
resulting in 2454 atoms. The molecular structure of BPA-PC is sketched in
Fig. 2; the dihedral angles are numbered as in previous publications [3], even
though a flexible-chain, Cartesian-coordinate approach is used here. Three
independent atomistic structures were generated and equilibrated at the
experimental density of 1.20 g cm�3 (300K) [3], following the procedure of
[11], whereupon the energies of the atomistic structures were minimized with
respect to all degrees of freedom, including h

atom, to remove ‘‘residual
stress’’ inside the atomistic boxes [17] through the Polak-Ribiere conjugate
gradient minimization method [18]. The pcff force field [19–21] was used to
calculate the atomistic energy, which is composed of 14 components:

Eatom ¼ Eb þ E� þ E� þ E� þ Eelec þ EvdW

þ Ebb0 þ Ebb00 þ Eb� þ E��0 þ Eb� þ Eb0� þ E�� þ E���0
ð6Þ
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where the first four terms are ‘‘valence’’ terms (bond length, bond angle,
dihedral angle, and out-of-plane angle), the next two terms nonbonded
interaction terms (electrostatic and van der Waals), and the last eight
terms ‘‘coupling valence’’ terms. For efficiency, an in-house code was con-
structed that yields the same energy and partial derivatives with respect to
coordinates and components of the scaling matrix as the commercial pro-
gram Discover [19]. The nonbonded energy cutoff and the spline width were
8 Å and 2 Å, respectively. The charged-group based method [19] was
adopted for the calculation of nonbonded energies to keep the total
charge inside the cutoff to zero.

B. Elastic Deformation of the Atomistic Model

The constant strain method was used to determine the elastic constants
C
atom of three independent atomistic boxes. The average values of these

elastic constants were assigned to the matrix [i.e., to all C� in Eq. (2)]. A set
of small strains ("� 10�4) were applied to the atomistic box in its minimum-
energy configuration and the energy of the atomistic box was minimized
with respect to all degrees of freedom, except h. The elastic constants of the
atomistic box C

atom were evaluated by parabolic fits to

Eatom � Eatom
0 ¼

1

2
Vatom eatom

� �T
Catomeatom ð7Þ

In the Voigt notation, elastic constants can be expressed as 6� 6 matrices
[22]. For an isotropic material, C takes the form

C ¼

2þ 
 
 
 0 0 0

 2þ 
 
 0 0 0

 
 2þ 
 0 0 0
0 0 0  0 0
0 0 0 0  0
0 0 0 0 0 

0

BBBBBB@

1

CCCCCCA
ð8Þ

FIG. 2 The constitutional repeat unit of BPA-PC.
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where 
 and  are the so-called Lamé constants. The Young’s modulus E,
the shear modulus G, the bulk modulus B, and the Poisson’s ratio � are
obtained by

E ¼ 
3
þ 2


þ 
, G ¼ 

B ¼ 
þ
2

3
, � ¼




2ð
þ Þ

ð9Þ

C. Plastic Deformation of the Atomistic-Continuum
Model

The deformation method developed by Mott et al. [2] was used here. The
system was subjected to deformation in small steps up to a system strain
of 0.2, the overall energy being minimized with respect to all degrees of
freedom (except H) after each step. The strain increment of the system,
iesys, was

�esys ¼

2 0 0

0 �1þ q 0

0 0 �1þ q

0

BB@

1

CCA� 10�3 ðfor uniaxial extensionÞ ð10Þ

�esys ¼

2 0 0

0 �2þ r 0

0 0 0

0

BB@

1

CCA� 10�3 ðfor pure shearÞ ð11Þ

where q and r are small values adjusted to keep the system volume constant.

Thus, for both, uniaxial extension and pure shear, the system volume Vsys

was held constant while the atomistic box was free to change its volume
Vatom [through the coupling degree of freedom DH, Eq. (3)].

The work-equivalent tensile strains in the system esyseq and in the atomistic
box eatomeq are given by [2]

esyseq ¼
2

3
Tr êesys
� �2

	 
1=2
where êesys ¼ esys �

1

3
Tr esysð ÞI ð12Þ

eatomeq ¼
2

3
Tr êeatom
� �2

	 
1=2
where êeatom ¼ eatom �

1

3
Tr eatom
� �

I ð13Þ
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The internal stress tensors in the system psys and in the atomistic box patom

are calculated by [13,14]

psys ¼ �
1

Vsys
H

@Esys

@H

� �T

, patom ¼ �
1

Vatom
h
@Eatom

@h

� �T

ð14Þ

The von Mises-equivalent tensile stresses of the system �syseq and of the ato-
mistic box �atomeq are given by [2]

�syseq ¼
3

2
Tr r̂rsysð Þ

2

	 
1=2
where r̂rsys ¼ rsys �

1

3
Tr rsysð ÞI ð15Þ

�atomeq ¼
3

2
Tr r̂ratom
� �2

	 
1=2
where r̂ratom ¼ ratom �

1

3
Tr ratom
� �

I ð16Þ

IV. RESULTS AND DISCUSSION

A. Elastic Deformation

In the Voigt notation, the average elastic constants for three atomistic boxes
are (accurate to approximately� 0.1GPa)

Catom
¼

7:46 4:63 4:52 0:00 0:11 �0:16
4:63 7:08 4:38 �0:02 0:15 0:01
4:52 4:38 7:03 �0:06 0:10 �0:03
0:00 �0:02 �0:06 1:47 �0:01 0:03
0:11 0:15 0:10 �0:01 1:51 �0:06
�0:16 0:01 �0:03 0:03 �0:06 1:55

0

BBBBBB@

1

CCCCCCA
ðGPaÞ ð17Þ

Comparing Eq. (17) with Eq. (8) leads us to accept the BPA-PC models as
isotropic glasses with Lamé constants and moduli as listed in Table 1.
Comparison with experimental values [23] indicates that the agreement is
satisfactory.

B. Plastic Deformation

Figure 3 shows stress–strain curves from the simulation runs. Because more
than 80% of the system volume is assumed to behave perfectly elastically, the
system stress increases almost linearly with the system strain [cf. Eq. (5)].
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However, the lines are not smooth but contain numerous small disconti-
nuities where the system stress decreases precipitously after a small strain
increment owing to a plastic response of the inclusion; arrows mark the
particularly conspicuous ‘‘drops.’’ The two curves for uniaxial and pure-
shear deformations would superpose perfectly if the system behaved totally
elastically; deviations are evident after a sufficient number of plastic unit
events, which are irreversible and dissipative and probably different for

TABLE 1 Comparison of Calculated Elastic Constants with Experimental Values

Property Calculated Experimental [23]

Lamé constant 
 (GPa) 4.35� 0.10 4.27–5.55

Lamé constant  (GPa) 1.43� 0.06 0.8–1.1

Young’s modulus E (GPa) 3.93� 0.14 2.3–2.5

Shear modulus G (GPa) 1.43� 0.06 0.8–1.1

Bulk modulus B (GPa) 5.30� 0.10 5.0–6.1

Poisson’s ratio � 0.38� 0.01 0.42–0.43

FIG. 3 Stress–strain curves of the system under uniaxial extension (filled squares)

and pure shear (open circles).
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different deformation modes. Figure 4, which gives the stress–strain curves
for the atomistic inclusion only, clearly shows the microstructural plastic
behavior, particularly pronounced at the loci of the arrows in Fig. 3. As has
been observed before in the simpler simulations of aPP and BPA-PC [2,3],
the atomistic stress–strain curves do not emulate the macroscopic elastic-to-
plastic transition, but consist of several straight lines with sudden drops in the
stress at some points. Note that the slopes of those lines between plastic
events remain nearly constant during deformation; the glassy phases
elastically strained between plastic transformations all have the same moduli.

In Fig. 5, the stress of the system is compared with that in the atomistic
box. It is apparent that this ratio assumes almost constant values between
plastic events with sudden increases at these events. Because the elastic
constants of the matrix are those calculated from the atomistic box at the
outset of the simulations, the system is homogeneous at small strains. As
the system strain increases further, the atomistic box becomes softer than the
perfectly elastic matrix (‘‘strain softening’’).

Interestingly (cf. Fig. 6), the work-equivalent tensile strain of the
atomistic box, "atomeq , is equal to that of the system, "syseq , until far beyond
the first plastic unit events (at about 8% strain) and only starts to deviate at

FIG. 4 Stress–strain curves of the atomistic box under uniaxial extension (filled

squares) and pure shear (open circles).
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FIG. 5 The ratio of the von Mises-equivalent tensile stress of the system, �syseq , to

that in the atomistic box, �atomeq , against the system strain under uniaxial extension

(filled squares) and pure shear (open circles).

FIG. 6 The work-equivalent tensile strain of the atomistic inclusion, "atomeq , as a

function of the system strain, "syseq , under uniaxial extension (filled squares) and pure

shear (open circles).
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about 15% strain (and thereafter becomes greater than the latter). The cause
of this is evident when the atomistic box volume is plotted against "atomeq (cf.
Fig. 7, note that the system volume Vsys is kept constant during deformation
under both uniaxial extension and pure shear). The volume of the atomistic
box Vatom remains at its initial value Vatom

0 until "atomeq ’ 0:07 and then
gradually increases with strain while there are sharp increases at the points
where the sudden drops in the stress are observed. Hence, our simulations
indicate that the plastic unit event is a dilatational process, in which the
transforming domain assumes a reduced density while the surrounding
‘‘matrix’’ takes up the concomitant elastic deformation. This is in apparent
contrast with the deductions by Hutnik et al. [3] who found densification
during plastic deformation for BPA-PC (experimental results show that the
plastic deformation of polymer glasses at constant pressure is a nearly
constant-volume process, with a small dilatation for vinyl polymers and a
small volume contraction for BPA-PC) [24–28]. Further studies are needed
to gain a satisfactory understanding of these observations.

Because the matrix is modeled as a perfectly elastic medium, the matrix
energy is quadratic with respect to the system strain and, consequently, the
energy of the continuum portion of the model against strain must exhibit a

FIG. 7 The volume of the atomistic box, Vatom/Vatom
0 , as a function of the atomistic

strain, "atomeq , under uniaxial extension (filled squares) and pure shear (open circles).
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slope of 2, plotted doubly logarithmically (cf. Fig. 8). The inclusion energy
(�VE

atom) shows the same tendency at low strain, but deviates as plastic
events begin to soften the material.

The backbone dihedral angles in the constitutional repeat unit can be
categorized into three groups [29]: (i) �1 and �2, which determine the
conformation of the phenylene rings with respect to the isopropylidene
group; (ii) �3 and �6, which specify the conformation of the phenylene rings
with respect to the carbonate group; (iii) �4 and �5, which give the
conformation of the carbonate group. We now analyze the distribution of
the angles in these groups and their changes during deformation.
�1 and �2 are strongly interdependent and prefer ‘‘propeller-like’’

conformations. Figure 9 contains a plot of all pairs of values of �1 and �2
angles concurrently occurring at one isopropylidene moiety. The intramo-
lecular ground states are located at (45�, 45�) and (135�, �45�) [29]. Upon
deformation to "atomeq ¼ 0:256, these distributions do not change perceptibly

FIG. 8 Energy change in the continuum matrix, iEcont, and in the atomistic

inclusion, �ViEatom, as a function of the corresponding work-equivalent tensile

strains, under uniaxial extension (filled squares) and pure shear (open circles).
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FIG. 9 Distribution of the dihedral angles �1 and �2. The large plot contains the

values for the pairs (�1, �2) before deformation ("atomeq ¼ 0:0, open circles) and after

deformation under pure shear ("atomeq ¼ 0:256, filled circles). The polar plot indicates

the changes in �1 and �2, where the angle on the perimeter denotes the direction of

the change and the distance from the center denotes the magnitude of the change.
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(the pairs of angles are marked with open circles for the unstrained and with
filled circles for the deformed state). An analysis of the changes in �1 and �2
during this massive deformation experiment reveals that the conformations
change mostly from one propeller-like state to a symmetry-related one and
that the magnitude of this change often exceeds 180�; the polar plot included
in Fig. 9 indicates the direction of the change in the (�1, �2) plane on
the circumference and its magnitude as the distance from the center. The
orientation of this plot is such that the direction of change conforms to
the large plot in Fig. 9.

Angles �3 and �6 assume values of �45� at conformations of minimal
energy, while �4 and �5 are preferably at 0� (trans) and 180� (cis). Figure 10

FIG. 10 Distribution of the dihedral angles �3 (or �6) and �4 (or �5). The large plot
contains the values for the pairs [�3 (or �6), �4 (or �5)] before deformation

("atomeq ¼ 0:0, open circles) and after deformation under pure shear ("atomeq ¼ 0:256,
filled circles). The polar plot indicates the changes in �3 (or �6) and �4 (or �5), where
the angle on the perimeter denotes the direction of the change and the distance from

the center denotes the magnitude of the change.
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is constructed similarly to Fig. 9: The large plot exhibits pairs of dihedral
angles joined at the same oxygen atom (i.e., �3 and �4 or �6 and �5), again
with open circles for the undeformed state and with filled circles for
"atomeq ¼ 0:256. The polar plot shows the changes in these angle pairs upon
strong deformation, again in an orientation that conforms directly to the
large plot. It is obvious that a large number of significant conformational
transitions occur during the deformation runs, but most involve state
changes of the angles adjoining the phenylene units only; changes of the
carbonate torsion angle from trans to cis (or vice versa) are rare. And again,
the torsion angle distributions do not change perceptibly upon deformation
to "atomeq ¼ 0:256.

The absence of significant change in the distribution of the backbone
dihedral angles upon plastic deformation of glassy BPA-PC has been
experimentally observed. Utz [30] and Utz et al. [31] compressed specifically
13C labeled samples uniaxially and in plane strain to strains of �0.68 and
found, by solid-state NMR, that the distributions of the torsion angle pairs
�3 and �4 (or �6 and �5) do not change perceptibly.

V. CONCLUSIONS

The elastic constants of BPA-PC, calculated by atomistic modeling, show
relatively good agreement with experimental values. The atomistic-
continuum model is successfully applied to the large deformation behavior
of a BPA-PC system where an inclusion described in an atomistically
detailed manner deforms plastically in an elastic medium. In the atomistic
box, the stress–strain curves show typical microstructural plastic behavior
with sharp drops in the stress. Because the matrix is characterized by elastic
constants of BPA-PC calculated by atomistic modeling, the strain of the
atomistic box is equal to the system strain until a certain point. At large
deformations, the strain in the atomistic box becomes higher than the
system strain.

The volume of the atomistic box initially remains constant because the
volume of the system is kept constant during deformation under both
uniaxial extension and pure shear. At strains greater than "atomeq � 0:07, the
volume of the atomistic box grows gradually with the strain and there are
sharp increases at several points where sudden drops in the stress in the
atomistic box are observed. No considerable change in the distribution of
the backbone dihedral angles is observed during deformation up to the
system strain 0.2.

The emerging picture of plastic unit events in the polymeric glass is that
of a sudden dilatation followed by melt-like flow.
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I. INTRODUCTION

Polymer melts and glassy amorphous polymers constitute many of the
‘‘plastic’’ materials we are used to in everyday life. Besides this technologi-
cal importance, there is also fundamental interest in the structural
and dynamical properties of complex molecules with their connectivity
constraints. We will focus in this chapter on the use of chemically realistic
polymer models for the study of the static and dynamic behavior of polymer
melts with an excursion into the glass transition dynamics of polymer melts
as revealed by simulations of a coarse-grained bead-spring model. The basic
concepts and algorithms we will present are valid for both types of models.
With the chemically realistic models we can aim for a quantitative
comparison with experiment and a detailed mechanistic understanding of
segmental motions in real polymers. The bead-spring type models allow
for studies of universal polymer properties and in general for simulations
in a broader parameter range (lower temperatures, larger chains, longer
simulation times).

II. MODELS AND DATA STRUCTURES

The types of models we will be using have already been described in
Chapter 1. The potential energy can be written as

V ¼ VB þ VNB ð1Þ
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with the bonded energy terms

VB ¼
X

b

Vb þ
X

�

V� þ
X

�

V�

given as

Vb ¼ constraint or Vb ¼
1

2
kbðb� b0Þ

2
ð2Þ

V� ¼
1

2
k�ð� � �0Þ

2 or V� ¼
1

2
k0�ðcosð�Þ � cosð�0ÞÞ

2
ð3Þ

V� ¼
X6

n¼0

An cosðn�Þ ð4Þ

The force constants in the bond length potential of chemically realistic

models generally are the largest of all the energy parameters and therefore

lead to high frequency oscillations. These very fast motions are often con-
strained in the simulation for performance purposes. For small oscillations

around the equilibrium angle the two forms for the bond angle potential V�
can be transformed into each other. Typically one considers at most six

terms in the expansion of the dihedral angle potential V� (see Fig. 1) and
some of the coefficients may be zero. The parameters in the bonded inter-

action potentials can be mostly obtained from spectroscopic information,

with the exception of the height of the barriers in the dihedral potential. A
quantitatively accurate determination of these is only possible from quan-

tum chemical ab initio calculations [1,2]. Structural relaxation of the chain

conformation as well as of the configuration of the melt requires transitions

between the isomeric states of the dihedral potential. The crossing of the
barriers is a thermally activated process and therefore exponentially sensi-

tive to the height of these barriers.
For the nonbonded interactions in Eq. (1) we will consider the following

contributions. A repulsion/dispersive interaction either of the Lennard-
Jones form

VLJ ðrijÞ ¼ 4�
�

rij

� �12

�
�

rij

� �6
 !

ð5Þ

or of the exponential-6 form

VE6ðrijÞ ¼ � expf�rij=�g �
r0

rij

� �6
" #

ð6Þ
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where � and r0 are the length scales of the repulsive and dispersive parts,

respectively, and a Coulomb term

VqðrijÞ ¼ �
1

4��0

qiqj

rij
ð7Þ

The partial charges qi as well as repulsive interactions can be parameterized

from quantum chemical calculations. The parameters of the dispersion

forces are not true two-body interaction terms but rather are parameters

for an effective two-body potential appropriate for a condensed phase envir-

onment: they are parameterized by comparison with thermodynamic prop-

erties such as pVT data, heats of vaporization, or phase behavior. In general

one would also need to consider the polarizability of the atoms to account

for time dependent partial charges, but we can neglect these effects for the

systems we will discuss in the following.
We will consider three different classes of models: all or explicit atom

models, united atom models, and bead-spring models. All fit into the above
description and can be simulated using the same MD code such as described
for instance in [3]. The nonbonded interactions are calculated from the atom
positions and atom types of the interacting pairs. The long-range Coulombic
forces need a special treatment for an efficient simulation, and this prob-
lem is discussed in Chapter 8 by Andrey V. Dobrynin. The standard way to

FIG. 1 Dihedral potential for polyethylene (PE). Eg is the trans–gauche energy

difference and �Etg and �Ecis are the barriers for torsional transitions.
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treat the bonded interactions is to use topology files for the 2-body
(bond lengths), 3-body (bond angles), and 4-body (dihedral angles)
interactions. These files describe the chain structure in specifying which
atom is bonded to which others, which three atoms participate in a given
bond angle degree of freedom, and which four atoms participate in a given
dihedral angle degree of freedom. The bonded interactions can then be
calculated by working through these lists. In this way a bead-spring model
and an explicit atom model just differ in the topology files specifying the
dynamic degrees of freedom, and the potential form and parameter set to
use with one specific degree of freedom.

III. STARTING STRUCTURES AND EQUILIBRATION

When the model is specified, we have to generate an equilibrated starting
configuration, from which a time series of configurations will be calculated
for later measurement of static and dynamic properties. The thermodynamic
state point for the simulation can be specified by fixing the number of
particles in the simulation box, N, and any of the pairs energy/volume
(NVE), temperature/volume (NVT), or temperature/pressure (NpT) and, of
course, the chain length, K. Experiments are done at constant pressure and
temperature. For the simulations one usually fixes the temperature by using
a thermostat like the Nosé–Hoover [4] one and proceeds in the following
way. The simulation is performed at a preselected pressure until the time
averaged density reaches a stationary value and then one switches to a
constant density simulation at the thus determined density. For this
simulation the pressure will fluctuate around the selected equilibrium
pressure, for instance ambient pressure, and the static and dynamic
properties in the simulation will be representative of that pressure. This
argument assumes that the system size is reasonably large, so that the
fluctuations are small compared to the average value. When one uses a
chemically realistic model with a carefully validated force field, one will find
that the equilibrium density obtained in that way will only differ by about
1% from the experimental density of that polymer at the selected
temperature and pressure [2]. If the force field is not quantitatively correct,
comparison with experiment will turn out better when performed at the
same pressure and not at the same density.

To perform the equilibration discussed above, we first have to generate
a dense configuration of nonoverlapping polymers. There are two stan-
dard ways to do this. The first is to start with a big simulation volume in a
dilute situation and to stepwise decrease the volume in a first part of the
simulation until the desired pressure is approximately reached. The second
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way is to estimate the target density and grow the chains into a box of the
corresponding volume without considering the nonbonded interactions.
In the first part of the simulation the repulsive part of the nonbonded
interaction is then regularized to a finite value at distance zero,
which is in turn increased in a stepwise fashion until all overlaps have
disappeared [5].

When we have generated the system at the desired temperature and
pressure/density we still have to ensure that it is equilibrated with respect
to the other observables of the system. In general, equilibration of a
system can be judged by looking at the quantity with the longest
relaxation time, which in an amorphous polymer melt is the end-to-end
distance of the chains. When we are looking at chains which are long
enough to obey random walk statistics for the end-to-end distance, this
equilibration can be quantified by looking at the Gaussianity of the end-
to-end vector distribution P(R) [6] or at the decay of the end-to-end vector
autocorrelation function hRðtÞ � Rð0Þi. Typically, properties which are
sensitive to shorter distance behavior equilibrate faster than those living
on larger scales. When there is no coupling between the length scales, it
may be sufficient to equilibrate the scale one wants to study. For instance,
when looking at the structural relaxation in a polymer melt as a function
of temperature, it may be sufficient to ensure equilibration on the scale of
one (or a few) statistical segments of the chain, but this can only be
decided a posteriori, if one has independent measurements to compare
with. If there is a coupling to larger scale behavior one has a quenched
structure and static as well as dynamic quantities will depend on the
quenching rate.

IV. STATIC PROPERTIES

The first static property characterizing the system is the pVT behavior,
which was already discussed in the last section. Besides this thermodynamic
information, an amorphous polymer melt is mainly characterized through
two types of structural information: the single chain structure factor and the
overall structure factor of the melt.

The single chain structure factor in Fig. 2 [7] is calculated using the united
atom positions with an unspecified value for the coherent neutron scattering
length and therefore normalized such that the q¼ 0 value is unity. This is
valid if we are only interested in the low q behavior of the scattering of a
homopolymer (one type of scatterer), i.e., the first curved part, and the
straight line in the double logarithmic plot indicating a self-similar structure
on these length scales. This part of the structure factor can be fitted with the
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Debye function, which is the analytical expression for the structure factor of
a random walk,

SDebðqRgÞ ¼
2

q4R4
g

expf�q2R2
gg � 1þ q2R2

g

� �
ð8Þ

which is the best experimental way to determine the radius of gyration of the
chains. In the simulation it can be obtained in the same way and also by
direct calculation

R2
g ¼

1

K

XK

i¼1

ri � Rcmð Þ
2

ð9Þ

where K is the number of atoms per chain and Rcm is the center of mass of
the chain. For larger q the structure factor will be sensitive to the actual
positions of the true scattering centers in the melt, i.e., in this case the
positions of the carbons and deuteriums and their respective coherent scat-
tering lengths. This is also true for the global structure factor of the melt,
which therefore has to be calculated as a superposition of the partial struc-
ture factors of all the atom types

ScohðqÞ ¼ 1þ
�

�coh

XM

�¼1

XM

¼1

x�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�coh� �coh

q
ĥh�ðqÞ ð10Þ

FIG. 2 Single chain structure factor for a united atom model of polyethylene

calculated for neutron scattering [7].
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Here � and  label the M different atom types, the x� are their number
fractions, the �coh� are their coherent scattering cross sections, � is the density
of scattering centers, and the average coherent scattering cross section is

defined as

�coh ¼
XM

�¼1

x��
coh
� ð11Þ

The functions ĥh�ðqÞ ¼ F½g�ðrÞ � 1	 are the Fourier transforms of the pair

correlation functions

g�ðrÞ ¼
1

N�x�x

XN�

i¼1

XN

j¼1

� jri � rjj � r
� �

* +
ð12Þ

For the calculation of the melt structure factor the indices i and j in the
above equation run over all atoms in the simulation volume, whereas for the

calculation of the single chain structure factor they only run over the atoms
of that chain. Equation (10) is written in a notation suggestive of neutron

scattering, when we only have nuclear scattering of the neutrons and the
scattering amplitude can be expressed as a scattering length. When we want

to compare a simulated structure with X-ray scattering experiments on that
structure, we have to take into account the wavelength dependence of the

atomic form factor and replace
ffiffiffiffiffiffiffiffi
�coh�

p
by f�ðqÞ.

The above discussed information is, of course, contained in an explicit
atom simulation, and to a certain degree also contained quantitatively in a
united atom simulation. This information is only qualitatively contained in
a bead-spring type simulation. For the united atom model we can go beyond
calculating the scattering of the united atom centers—which would be
similar to the bead-spring system—and reinsert the hydrogen atoms into
the simulated configurations [8]. For this, the hydrogen atoms are placed
into their T¼ 0 mechanical equilibrium positions (C-H bond length,
C-C-H bond angle, and H-C-H bond angle are fixed to their mechanical
equilibrium values) so that all thermal fluctuations of these degrees of
freedom are neglected. Nevertheless, the distribution of scattering lengths in
the simulated volume resembles closely that of an explicit atom simulation.
Figure 3 shows the X-ray structure factor of the alkane C44H90 from a
united atom [8] and an explicit atom simulation [9]. The intensities are not
normalized as in Eq. (10). For both simulations the position and width of
the amorphous halo (first peak) correspond well with experimental results.
The amorphous halo is the most prominent feature of the structure factor
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and representative of the amorphous state (melt as well as glass). Its
properties qualitatively agree between chemically realistic and coarse-
grained models. Upon constant pressure cooling of a polymer melt,
the position of the amorphous halo moves to larger q and its width
decreases, but there is no additional structure appearing upon glassy
solidification.

V. DYNAMIC PROPERTIES

In the discussion of the dynamic behavior of polymer melts we will start
with the local reorientational motion of chain segments. Experimentally this
motion can for example be observed in Nuclear Magnetic Resonance
(NMR) experiments measuring the 13C spin lattice relaxation time. Owing
to the different chemical shift for different environments of these nuclei, this
measurement can be very specific for selected positions in the polymer chain
[8–10]. It turns out that this reorientation dynamics is mainly determined
by torsional transitions of dihedral angles adjacent to the relaxing CH
vector. We discussed above that these transitions are exponentially sensitive
to the barrier heights in the torsion potentials. These in turn can only be
determined with an uncertainty of about 100K even through high-level
quantum chemical calculations. Furthermore, we introduce some error in
the torsional dynamics when we use a united atom representation of the
chain. Although both errors may be small, they get exponentially ampli-
fied in the torsional transition rate and therefore a comparison with

FIG. 3 X-ray structure factor of C44H90 compared between a united atom and an

explicit atom simulation [8].
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experimental spin lattice relaxation time measurements (or their equivalent)
is a crucial test to validate the torsional force fields and to perform some
final small adjustments of barrier heights, when necessary.

For the dipolar relaxation mechanism, the spin lattice relaxation time
is sensitive to the reorientation dynamics of the CH bond vectors. Dif-
ferent orientations of the CH bond result in slightly different magnetic
fields at the carbon nucleus and the modulation of this field allows the
spin flips to occur. When we define êeCH as the unit vector along a CH
bond, the second Legendre polynomial of its autocorrelation function is
given by

P2ðtÞ ¼
1

2
3hðêeCHðtÞ � êeCHð0ÞÞ

2
i � 1

� �
ð13Þ

For an isotropic system the spin lattice relaxation time T1 and a related

quantity, the Nuclear Overhauser Enhancement (NOE), can be determined

from the power spectrum of this relaxation function.

Jð!Þ ¼
1

2

Z 1

�1

P2ðtÞe
i!tdt ð14Þ

1

nT1
¼ K Jð!H � !CÞ þ 3Jð!CÞ þ 6Jð!H þ !CÞ½ 	 ð15Þ

NOE ¼ 1þ
�H
�C

6J !H þ !Cð Þ � J !H � !Cð Þ

J !H � !Cð Þ þ 3J !Cð Þ þ 6J !H þ !Cð Þ
ð16Þ

Here !C and !H are the Larmor frequencies of carbon and hydrogen
atoms respectively, n is the number of bound hydrogens per carbon,
K¼ 2.29� 109 s�2 for sp3 hybridization, K¼ 2.42� 109 s�2 for sp2 hybridi-
zation, and �H and �C are the gyromagnetic ratios of hydrogen and carbon
(�H/�C¼ 3.98).

The CH vector autocorrelation function can be readily measured in a
simulation and resolved for specific positions on the chain. The angle
brackets in Eq. (13) indicate an averaging procedure over chemically
identical carbons in the system and over multiple time origins along the
generated trajectory of the model system. To calculate its Fourier transform,
this relaxation function is then best fit either with some model predictions,
for instance based on local conformational dynamics plus Rouse mode
contributions [11], or with some phenomenological fit function. In our
experience, P2(t) is generally very well reproduced by a superposition of an
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exponential part and a stretched exponential Kohlrausch–Williams–Watts
(KWW) part.

P2ðtÞ ¼ A exp �
t

	KWW

� ��( )
þ ð1� AÞ exp �

t

	exp

� �
ð17Þ

For short PE chains the relaxation behavior of the four terminal carbons at
the chain end can be resolved in the NMR experiment and the inner part of

the chain gives rise to a collective resonance. In Fig. 4 we show the behavior
of the spin lattice relaxation time for these inner carbons as a function of
temperature for two alkanes of different chain length, n-C44H90 and

n-C100H202. This seemingly local quantity depends strongly on the chain
length even for these center carbons [11]. Inspecting directly the P2 function
obtained in the simulation we can see that this is due to the fact that a few

percent of the correlations measured by this function decay not through
local motion but through a coupling to the much slower overall conforma-
tional relaxation of the chains. This effect is also nicely captured in the

simulations. For the united atom simulations of C44 we can furthermore
see two sets of data points. The one agreeing perfectly with the experimental
results stems from an improved force field, where the torsional barriers in

FIG. 4 Temperature dependence of the spin lattice relaxation time for two different

alkanes as seen in experiment (performed at 75MHz carbon resonance frequency)

and MD simulation [11].

416 Paul et al.



Fig. 1 were slightly raised to improve the agreement with the experimental

data. Other experimental observables such as dielectric relaxation [12] and

the coherent dynamic structure factor for neutron spin echo [13] have also

been calculated from simulations and used to judge the realism of the local

relaxation processes in the simulations.
Simulations of local relaxation in polymers have provided several

important qualitative insights about the mechanisms of molecular motion.
When a conformational transition occurs, nearby atoms along the chain
backbone must adjust their positions to accommodate the transition. This
cooperativity length scale is not accessible experimentally and identifies the
fundamental kinetic unit (which may be the relevant motion for dynamics
near the glass transition temperature). Simulations on polyisoprene [14],
polyethylene [8,15], and other flexible polymers indicate that 4–6 carbon
atoms along the chain backbone are involved in localizing a conformational
transition. Simulations have also shown significant spatial heterogeneity in
conformational transition rates [15] and the importance of motions other
than conformational transitions in local relaxation processes [16,17].

For an analysis of the overall conformational relaxation of a polymer
chain we focus here on the chain dynamics on length scales which show the
self-similar random walk behavior statically. Imagine looking at a given
polymer chain in a stroboscopic fashion and from a certain distance. The
center of mass of the chain will move (at long times it has to diffuse) and the
conformation of the chain will change from one random walk realization to
a different one. The simplest model for polymer melt dynamics which
captures these effects is the Rouse model [18], in which the polymers are
modeled by a chain of phantom particles connected by entropic springs (this
generates the Gaussian random walk conformations) moving under the
impact of stochastic forces in an unstructured background characterized by
a friction coefficient.

�driðtÞ ¼ �
3kBT

b2K
riþ1ðtÞ � 2riðtÞ þ ri�1ðtÞð Þdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�kBT

p
dWiðtÞ ð18Þ

The statistical segment length or Kuhn length bK is the step length of the

random walk with the same large scale structure as the chain under study

and the segmental friction � and the strength of the stochastic force are

connected through the fluctuation-dissipation theorem

hdWi�ðtÞdWj�ðt
0Þi ¼ 2�kBTdt�ij����ðt� t0Þ ð19Þ

Equation (18) can be solved analytically through a transformation to the

normal modes of a harmonic chain and many exact predictions can be
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derived. Since there is only a random force acting on the center of mass of a
chain moving according to the Rouse model, the center of mass motion is
purely diffusive with a diffusion coefficient D¼ kBT/�K. Of interest to us is
an analytical prediction for the single chain coherent intermediate dynamic
structure factor. This is the dynamic counterpart to the static single chain
structure factor we discussed earlier on and this quantity is measured in
Neutron Spin Echo (NSE) experiments. The Rouse model yields [18]

Sðq; tÞ ¼
1

K
exp �q2Dt

� �

�
XK

n;m¼1

exp �
q2b2K
6

jn�mj �
2Kq2b2K
3�2

�

�
XK

p¼1

cos
p�n

K

� �
cos

p�m

K

� �
1� e�p2t=	R
� �)

ð20Þ

where 	R ¼ �K2b2K=3�
2kBT is the so-called Rouse time. For small momen-

tum transfers q, one is only sensitive to the motion of the polymer chain as a
whole and the above equation simplifies to the scattering law for diffusive
motion S(q, t)¼S(q, 0) exp(�Dq2t). In this way one can determine the center
of mass self-diffusion coefficient from the NSE data and of course also from
the computer simulation. The computer simulation furthermore also has
access to this property by measuring directly the average mean square dis-
placement of the center of mass of a chain and using Einstein’s relation

D ¼ lim
t!1

h�R2
cmðtÞi

6t
ð21Þ

Through the diffusion coefficient the segmental friction � is determined and
from the single chain static structure factor Eq. (10) one can obtain the
radius of gyration and from that the statistical segment length bK entering
the Rouse model. Again, in the simulation this quantity can be indepen-
dently determined by direct calculation of the mean squared end-to-end
distance of the chains. In this way both parameters (bK, �) entering the
analytical predictions of the Rouse model can be determined and the
model critically tested. This can be done on the coarse-grained bead-
spring model level as well as with a fully atomistic model and it has been
found that the Rouse model gives a good quantitative description only on its
largest intrinsic length and time scales. On small length scales (large q) the
local structure and stiffness of the chains cannot be captured by entropic
springs and on small time scales it turns out that the interactions between
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the chains in the melt cannot be captured by a homogeneous background
friction � but lead to a subdiffusive motion of the centers of mass of the
chains [19–22]. It also leads to a non-Gaussian distribution for the mutual
displacement |ri(t)�rj(0)| of two atoms on the same chain [22].

This, in principle, invalidates all theoretical predictions like the Rouse
result for the intermediate dynamic structure factor, because they all rely on
the dynamic Gaussian assumption

hexp iq � riðtÞ � rjð0Þ
� �� �

i ¼ exp �
q2

6
h riðtÞ � rjð0Þ
� �2

i

	 

ð22Þ

In the simulation one can prove that the above assumption is not fulfilled by
calculating the scattering function correctly averaging over the phase factors
[left hand side of Eq. (22)] or by employing the dynamic Gaussian assump-
tion [right hand side of Eq. (22)]. Figure 5 shows this comparison for C100 at
509K. One can clearly see, that the dynamic Gaussian assumption leads to
an overestimation of the decay of correlations and to a wrong prediction of
the scattering.

A quantitative comparison with experiments, however, can only be per-
formed for a chemically realistic simulation. For this the positions of the
scatterers in the time dependent generalization of Eqs. (10) and (12) run over

FIG. 5 Comparison of single chain intermediate dynamic structure factor of

polyethylene at T¼ 509K for the correct calculation and one assuming Gaussian

distributed relative atom displacements.
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the carbon and deuterium atoms of a single chain and are evaluated with a
time displacement t. Figure 6 shows a comparison of the experimental result
for the single chain intermediate dynamic structure factor of polyethylene at
T¼ 509K with simulations of a united atom as well as an explicit atom
model. For this comparison actually only the deuterium scattering has been
evaluated. When plotting this quantity against scaled time to account for a
20% difference in the observed center of mass self-diffusion coefficients,
the relaxation behavior of the chains on all length scales agrees perfectly
between simulation and experiment [10,21].

VI. GLASS TRANSITION

So far we have discussed static and dynamic behavior of high temperature
polymer melts of unentangled chains. Upon lowering the temperature many
polymeric systems do not form ordered structures but remain in an
amorphous state, structurally identical to the melt state but with typical
relaxation times increased by up to 14 orders of magnitude [23]. This so-called
glass transition is a gradual phenomenon with an onset that is observable
in the slightly undercooled melt around a temperature where the typical
time scales have increased by about 3 orders of magnitude from their high
temperature values. This is a range of time scales that at the moment is

FIG. 6 Comparison of single chain intermediate dynamic structure factor of

polyethylene at T¼ 509K between NSE experiments and chemically realistic MD

simulations [21].
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accessible only for simulations of coarse-grained models when one wants
to perform equilibrium cooling. If one performs simulations at lower
temperatures, one typically is in a quench situation where the results in
general depend on the quenching rate one uses. For MD simulations this
quench rate is at least 9 orders of magnitude larger than experimental rates.
There may be properties of the supercooled melts which decouple from the
slowest degrees of freedom in the melt but it is a priori unclear which these
are and the assignment may even differ from one polymer to another. We
have already seen that even a seemingly local quantity like the CH vector
reorientation as measured by spin lattice relaxation time experiments couples
to the overall conformational relaxation of the polymer chain, which defines
the slowest mode in the system. It has been found phenomenologically in
some polymers [24], that MD simulations employing high quench rates were
actually able to identify the glass transition temperature of these polymers
through the jump in the thermal expansion coefficient rather accurately, but
this is not a general finding.

We will focus now on the temperature region where the onset of the
glassy freezing first starts to be felt. This temperature region is the regime of
applicability of mode coupling theory (MCT) [25], which predicts a slowing
down of the relaxation processes in the system because particles get trap-
ped in cages formed by their neighbors. This caging process leads to the
development of a two-stage relaxation behavior, which is, for instance,
observable in intermediate scattering functions (experiment and simulation)
or directly in the mean square displacement of the atoms (simulation). The
theory is formulated for simple liquids like hard-sphere or soft-sphere
systems and we will therefore ask ourselves in the following why and to
what degree it can describe polymer behavior.

For this we will use a type of scattering function we have not discussed
so far, which is the incoherent intermediate scattering function. Due to its
large incoherent scattering amplitude it is mainly the self-correlation of the
hydrogen motion that is seen in incoherent neutron scattering experiments.

Sincðq; tÞ ¼
1

M

XM

j¼1

expfiq � ðrjðtÞ � rjð0ÞÞg ð23Þ

whereM is the number of hydrogens in the system and where we dropped the

scattering amplitude which only adjusts the absolute scale. For an isotropic

amorphous melt one can perform a spherical average of this equation to get

Sincðq; tÞ ¼
1

M

XM

j¼1

sinðqjrjðtÞ � rjð0ÞjÞ

qjrjðtÞ � rjð0Þj
ð24Þ
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We will use this equation to look at the incoherent intermediate structure
factor of a bead-spring model without any bond angle or dihedral potential
as we approach this MCT temperature region [26,27]. Here the index j runs
over all beads in the system. We will do this for the q-value of the position of
the amorphous halo in the liquid structure factor of the model. As we can
see in Fig. 7 a two-step relaxation process develops upon cooling which can
also—for this simplified polymer model—be reasonably well analyzed in
terms of the predictions of MCT [26]. The long time behavior of these
curves can be fitted by a KWW form and the time scale entering this func-
tion is the so-called structural or �-relaxation time scale that shows the
dramatic increase by more than 14 orders of magnitude between the melt
and the glass. This time can also be defined by looking at the decay to the
30% level indicated by the horizontal line.

When we look directly at the mean square displacements of the beads in
the simulation which is shown in Fig. 8, we can see the caging by the
neighbors resulting in a plateau regime. The height of the plateau is only a
fraction of the bond length in the model (l¼ 1), so that effectively the beads
have actually ‘‘not yet noticed’’ that they are bound to a chain and are not
free particles, which is why the theory which was developed for simple
liquids could be reasonably applied in this case [26,27]. The same behavior
can be observed in the center of mass motion of the chains. The long time

FIG. 7 Intermediate incoherent scattering function of a bead-spring polymer of

length 10 beads, approaching the mode coupling temperature which is T¼ 0.45 in

Lennard-Jones units [26].
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behavior of the mean square displacements is still the same as would be
predicted by the Rouse model we discussed above. The monomer friction
coefficient, however, that sets the typical time scales for the Rouse modes,
has been strongly increased due to this caging effect that is responsible for
the glass transition.

VII. OUTLOOK

In this section we have discussed simulations of polymer melt dynamics
using chemically realistic as well as coarse-grained polymer models. We
have seen that both have their complementary uses and that these studies
can help to test theories as well as help in the interpretation of experimental
data. With the development of ever faster computers and the invention of
highly sophisticated equilibration techniques it will become possible to
extend the range of temperatures and chain lengths that can be studied
in simulations significantly and this will further enhance the contribution
that computer simulations of polymer melts and glasses can make to
our understanding especially of the relaxation processes occurring in these
systems.

FIG. 8 Master curve for the mean square displacements of the beads and of the

centers of mass of the chains obtained by plotting the common part of the mean

square displacement curves for all temperatures as a function of time scaled by the

respective diffusion coefficient of that temperature [27].
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14
Sorption and Diffusion of
Small Molecules Using
Transition-State Theory

MICHAEL L. GREENFIELD University of Rhode Island, Kingston,
Rhode Island, U.S.A.

I. INTRODUCTION

In numerous applications, it would be useful if molecular simulation could
be used to predict how the solubility or diffusivity of a small molecule in a
polymer film varied with respect to changes in the molecular architecture
of the film, or with different film processing. For example, this ability
would enable prescreening among the many possible chain structures that
could be devised, so chemical synthesis efforts could be targeted towards
the most promising candidates. Polymer materials for sorption–diffusion
membranes are one of many fields in which such large synthetic efforts
have been conducted [1–4]. However, two primary barriers prevent accu-
rate predictions from becoming routine: (1) the absence of reliable poten-
tial energy functions for penetrant–polymer systems of interest, and (2) the
need for methods that access the long time scales inherent in small-
molecule diffusion. The development of potential energy functions is the
subject of ongoing research. Efforts focus on general force fields applicable
to wide classes of molecules [5–14] or to particular types of polymer chains
[15–21]. (These are only some of many possible examples.) This chapter
discusses small-molecule sorption and diffusion, with a focus on simulating
penetrant diffusion through polymers over long time scales.

Different simulation methods are appropriate for different penetrant–
polymer systems, depending on the dynamical state of the polymer chains.
Within a rubbery polymer or an amorphous polymer above its glass
temperature, penetrants diffuse quickly enough (D� 10�6 cm2 s�1) to use
molecular dynamics simulations [22] (see also Chapter 6 of this book).
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The diffusive regime is reached after tens to hundreds of picoseconds
[23–25], with longer simulation times required in order to accumulate
good statistics. Molecular dynamics has been applied to small-molecule
penetrants in numerous polymers. Early work focused on polyolefins (PE,
PP, PBD, PIB) [17,23–37], and work on those systems has continued
[38–45]. Other systems studied include polydimethylsiloxane [36,46–48],
polystyrene [49,50], polyesters [51–53], polyimides and polyamide-
imides [54–58], polysulfones [59], poly(aromatics) [60], polybenzoxazine
[61], polyphosphazenes [62], poly(ether-ether-ketone) [63], poly(trimethyl-
silylpropyne) [64], and more generic representations [65,66]. Recently,
molecular dynamics simulations of charged species in polymers (for fuel
cell applications) have been conducted, [17,67–76]. Molecular dynamics is
also appropriate for moderate to high penetrant concentrations in glassy
polymers, at which point the polymer chains become plasticized and the
penetrant diffusion rate increases to a liquid-like value. Equivalently,
the penetrant concentration suppresses the glass temperature to below the
temperature simulated. Nonequilibrium molecular dynamics simulations
[77,78] have been generally unsuccessful: forces beyond the linear response
regime were required to impact the diffusion rate, relatively simple
polymer models have been required, and computational times have not
provided speedups over equilibrium MD.

In a glassy polymer (amorphous and below its concentration-dependent
glass temperature), diffusion is much slower—10�9 cm2s�1 is typical—and
molecular dynamics is incapable of displacing penetrant molecules
sufficiently over accessible simulation times. As an order-of-magnitude
estimate, after 10 ns an average penetrant would be displaced by

r �
ffiffiffiffiffiffiffiffi
6Dt

p
� 6� 10�9cm2s�1 � 10�8s
� �1=2

� 0:75 Å

This distance is 30–100 times smaller than the typical simulation cell sizes
used. Furthermore, since diffusion through a glassy polymer is thought to
occur by a hopping mechanism [79], such an average displacement more

likely would result only from statistics: one molecule with a 7.5 Å jump
and nine molecules with net displacements of zero, for example. Direct
molecular dynamics simulations are thus prone to large errors in predicted
diffusivity in a glassy polymer, due to (1) mismatches between the simula-
tion time and the expected waiting time for a jump to occur and (2) poor

sampling of the many jump rates that would be found in a macroscopic
sample.

One method for predicting diffusion rates in glassy polymers has been
proposed by Boyd and coworkers [49,52]. As in glassy polymers, a hopping
mechanism has been found in melt polymers not far above their glass
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temperatures [23,33,80,81].* Molecular dynamics simulations can be
conducted at several temperatures above Tg, and an Arrhenius dependence
can be used to extrapolate (by �50–100K [49,52]) into the glassy region.
However, this method requires the diffusion mechanism to remain
unchanged throughout this large extrapolation.

As an alternative, this chapter describes methods for predicting small-
molecule diffusivity that are based on transition-state theory (TST) [82–84]
and kinetic Monte Carlo (KMC) [85,86]. These methods capitalize on the
proposed penetrant jump mechanism. TST was described in Chapter 1 and
is typically used to estimate the rates of chemical reactions from first
principles; here we use TST to calculate the rate of characteristic jumps for
each penetrant in a host polymer matrix. The collection of jump rates can
be combined with the penetrant jump topology and KMC to obtain the
penetrant diffusion coefficient. Other results obtainable from these
simulations are physical aspects related to the jump mechanism: the sizes
and shapes of voids accessible to penetrant molecules [87], enthalpic and
entropic contributions to the penetrant jump rate [88,89], the extent and
characteristics of chain motions that accompany each jump [90], and the
shape and structure of the jump network itself [91].

Three approaches have been applied for describing the coupling between
the jumping of a penetrant and the motions of nearby polymer chains. Each
approach leads to a different approximation for the TST rate constant. The
frozen polymer method [92–94] is analogous to methods used successfully to
simulate penetrant diffusion through porous crystalline materials, such as
zeolites (see [95,96] for reviews). All polymer chains are considered fixed in
place, and transition-state theory-based rate constants are calculated from
the energy barriers found for a penetrant to pass from one local potential
energy minimum to another. The jump path is intrinsically three-
dimensional: (x, y, z) position of the penetrant. This method is the most
straightforward; however, in polymers it yields rate constants that lead to
diffusion coefficients much lower (by factors of 103–106) than experimental
values, because neglecting chain fluctuation contributions is physically
unrealistic in a polymeric material. However, we discuss it here in order to
introduce several concepts and techniques used in other TST methods. Next,
a modification that we refer to here as the average fluctuating polymer
method was proposed [93,97]. Harmonic fluctuations of the polymer matrix
about its zero-force position were allowed, with the magnitude of the
fluctuations controlled by a parameter similar to the Debye–Waller factor

*Explicit descriptions of the hopping mechanism can also be found in most of the recent MD

papers. References [80,81] focus specifically on the jump mechanism.
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in X-ray scattering. The jump path was again confined to the three degrees
of freedom of the penetrant, but now within the free energy field
characteristic of the vibrating polymer. This method has led to reasonable
agreement with experiment in particular cases [24,63,97–100] and has been
implemented in a popular molecular simulation software package [101].*
However, the predictions are sensitive to the value of the Debye–Waller
parameter, and hence some judgment is required when using this technique.
In the most recent method [88,91,102], which we refer to as the explicit
polymer method, the dimensionality of the jump path was increased to
include explicitly both penetrant displacements and polymer chain motions.
Each resulting rate constant then captures the details of the particular chain
motions that accompany the jump, rather than mean-field average motions,
but at the expense of a much higher computational cost. This method has
been applied to a few penetrants in polypropylene [88,89,91], with reason-
able agreement compared to experiment and correlation.

In this chapter we will begin by formulating the transition-state theory
method within the context of small-molecule diffusion in a polymer matrix,
and then show how the transition-state theory equations are applied to a
single jump in each of these three approaches. We then compare different
methods for establishing the network of possible penetrant jumps and
explain how diffusion can be simulated on that network. We close with
a summary and a discussion of the outlook for other systems. Several
appendices describe aspects of particular approaches in more detail.

II. FORMULATION OF TST METHOD

Transition-state theory is a classical methodology for treating infrequent
event processes that involve crossing a barrier significantly higher than the
thermal energy kBT [82]. The complicated dynamical paths followed by an
N-body system are reduced to a statistical description in which sampling
over local fluctuations is performed in order to answer the question, ‘‘How
much time goes by (on average) before the system resides in a definably
different portion of configuration space?’’ Such a question may be answered
phenomenologically with a set of first-order rate constants, each describing
the rate of evolution along a different available pathway [103]. Transition-
state theory provides a means to calculate such rate constants by comparing
the probability of the system lying on a dividing surface, which separates
two states, to the probability of occupying an initial state. This makes TST

*The average fluctuating polymer method has been incorporated into several products of

Accelrys, Inc., such as Cerius2.
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a bridge between kinetics and thermodynamics, since the qualities of a rate
process are determined from equilibrium information.*

A general formulation of transition-state theory was derived in Chapter 1
and will not be repeated here. We focus instead on applying a TST approach
to diffusion in polymers. Several steps are required: stable regions in
configuration space must be located (sorption states for a penetrant
molecule), transition states and dividing surfaces between stable regions
must be identified, pathways along which the system passes between
sorption states must be followed, and the rate of each process must be
calculated. Calculating the small-molecule diffusion rate through a polymer
then requires an appropriate averaging technique for converting the jump
rate constants kTST[¼ ]s�1 and jump lengths ‘[¼] Å to a diffusion coefficient
D[¼ ]cm2 s�1.

A. Transition State

For transition-state theory to be applicable, the physical system must
include some high-energy region through which the system must pass in
order to convert from ‘‘reactant’’ to ‘‘product.’’ Numerous such regions
exist for a small molecule diffusing through a glassy polymer, and the so-
called transition states lie within them. Mathematically, a transition state is
usually taken as a first-order saddle point on the 3N-dimensional potential
energy hypersurface, meaning that all elements of the potential energy
gradient equal zero and all eigenvalues of the Hessian matrix of second
derivatives but one are positive. In Cartesian coordinates,

@V

@Xi
¼ 0 for all positions Xi ð1Þ

The notation X i indicates the ith of the 3N Cartesian coordinates. Writing
the index as a superscript follows the conventions of Riemannian geometry
[104]. Each Eq. (1) can be written in mass-weighted Cartesian coordinates,
xi � m1=2

i Xi; these are useful in regard to following the diffusion path.
An equivalent expression can then be formulated in generalized coordinates
(bond angles, torsion angles, etc.) by writing [88]

@V

@xi
¼
X3N

j¼1

@q j

@xi
@V

@q j
ð2Þ

*While the dividing surface technically describes a hypothetical equilibrium, it can be sampled

using equilibrium statistical mechanics.
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for each mass-weighted Cartesian coordinate. In matrix notation,

J TrqV ¼ 0 ð3Þ

where J equals the Jacobian matrix of partial derivatives for transforming
from mass-weighted Cartesian coordinates to generalized coordinates,

J ¼

@q1

@x1
� � �

@q1

@x3N

..

. ..
.

@q3N

@x1
� � �

@q3N

@x3N

0

BBBBB@

1

CCCCCA
ð4Þ

The scalar ‘‘Jacobian’’ factor that more typically arises in a coordinate
transformation equals det J . For a nondegenerate coordinate system,
det J 6¼ 0; thus the potential energy gradient with respect to the generalized
coordinates equals the zero vector at the transition state.

Generalized coordinates are useful when simulating penetrant–polymer
systems because many points in configuration space are not physically
realistic: they correspond to undesired values for the bond lengths, for
example. Such generalized coordinates may be kept at constant values using
the concept of infinitely stiff degrees of freedom [105]. These degrees of
freedom are considered flexible (i.e., assuming any value according to the
Boltzmann-weighted probability density) during the formulation of the
methodology. However, they are effectively constrained to the desired
positions using springs with force constants that approach infinity.
Compared to an approach using rigid constraints throughout, this
‘‘infinitely stiff’’ model has been shown to lead to classical statistical
mechanics results that more closely resemble the true underlying quantum-
mechanical statistical mechanics [105]. In practice, these generalized
coordinates are kept constant throughout the penetrant jump process;
their flexibility only arises in formulating the method.

Finding a saddle point is similar to finding a local minimum or maximum:
an initial guess is refined using steps based on local function information.
However, standard methods for finding stationary points (where the
gradient equals zero) typically are designed for finding maxima or
minima, so special saddle-point-focused algorithms are required. Most
common in a chemical context are those based on work by Cerjan andMiller
[106–108]. Rather than taking the step defined by a quasi-Newton approach,
these methods use a shift in eigenvalues to take a step such as [108]

�h ¼
X

i

�ð�qi � rqVÞ
�qi

ð
i � 
sÞ
ð5Þ
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that maximizes in the direction of one approximate eigenvector �q1 and
minimizes along all other eigenvectors. The shift factor 
s for the first

eigenvector (with a negative eigenvalue) differs from that for all other eigen-

vectors [107,108]. An initial estimate of the Hessian matrix (and its eigen-

values and eigenvectors) is required. ‘‘Updated’’ Hessian estimates [109] can

be used in later steps, but an exact Hessian (calculated analytically or esti-
mated numerically) leads to the best results, especially near the transition

state. Baker’s description [108] of this procedure is particularly targeted

towards implementation issues. Quick convergence to a saddle point is

aided by a good initial guess; several techniques for doing so are discussed

in Section IV. Methods for obtaining the transition state in conjunction
with the entire path [110,111] are discussed below as well.

B. Jump Pathway—the Intrinsic Reaction
Coordinate (IRC)

The transition state defines an unstable position in configuration space. A
system displaced slightly from the transition state will generally experience a
force that directs it even further away, and the net displacement will increase
until the system thermalizes in the region surrounding a local minimum.*
Depending on the direction of the initial displacement, the system will find
itself near one of two local minima (assuming the transition state was a first-
order saddle point). These two minima are associated with this transition
state in that they share the common dividing surface that passes through it.

In applying transition-state theory, it is traditional to calculate the
Intrinsic Reaction Coordinate (IRC) [112], which is the lowest-energy path
that connects the transition state to its adjacent local minima. The term
‘‘reaction’’ refers to the common application of TST to chemical reaction
dynamics. Here, the IRC refers to the changes in penetrant and polymer
degrees of freedom that describe the mechanism of a particular penetrant
jumping motion. This exact pathway would be followed in the limit of
infinitely small displacements with continuous application of a frictional
force equal and opposite to the forces arising from the potential energy
gradient. A true system undergoing molecular dynamics would not follow
this path exactly; rather, it would fluctuate about it, much like a single melt
polymer chain fluctuates about the chain contour in the reptation theory
of long chain diffusion [113,114].

*It is theoretically possible to displace the system such that forces redirect it to the transition

state. In practice, however, numerical imprecision in following such paths will likely lead to

forces directing the system away from the transition state.
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It is convenient to begin calculating the IRC at the transition state. Near
the transition state, fluctuations in the mass-weighted atomic positions can
be combined (by a linear transformation with a Jacobian of unity) into
fluctuations along the set of 3N eigenvectors (or normal modes) �x of the
Hessian matrix evaluated at the transition state, which are found by solving

H�x ¼ 
�x ð6Þ

From the transition state, the IRC is directed along the eigenvector corre-

sponding to the negative eigenvalue [115,116]. Motions along all other

eigenvectors locally define a multidimensional dividing surface that delin-

eates the reactant and product regions. The IRC is orthogonal to this divid-

ing surface. In other words, the IRC step through the transition state

(‘‘over’’ the pass in a mountain crossing analogy) is directed along the

single direction of decreasing local curvature and orthogonal to all directions

of increasing local curvature.
Away from the transition state, the IRC is formally defined by a steepest

descent trajectory* in mass-weighted Cartesian coordinates [112],

�x ¼ rxV �	 ð7Þ

and corresponds physically to a sequence of infinitesimal displacements

along the local force vector. (Higher-order terms that require the Hessian

matrix are discussed below.) The factor �	 (of units time squared) scales the

size of each step taken [112]. Since the velocity is set to zero in each step,

the IRC equation has also been called a path with continuous dissipation

of kinetic energy [117,118].
Extensions of the IRC to generalized coordinates have been discussed in

the literature [88,102,117]. Physically, the IRC pathway and the vibrational
frequencies and normal modes at the transition state should be independent
of the coordinate system chosen, so Eqs. (6) and (7) must be reformulated
in terms of generalized coordinates. Detailed steps are shown in Appendix A.
The resulting expression at the transition state is

Hqq �q ¼ 
 a �q ð8Þ

*This usage of ‘‘steepest descent’’ refers to a path constructed by taking a sequence of small

steps, each directed opposite to the local gradient. This usage differs from that in the optimiza-

tion literature; there [109], the magnitude of each step is chosen such that the objective function

is minimized with respect to motion along the step vector.
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in which Hqq ¼ @2V=@qi@q j. The covariant metric tensor a [119] is calculated
most easily from the Jacobian matrix for transforming from generalized
to mass-weighted Cartesian coordinates,

J 0 ¼

@x1

@q1
� � �

@x1

@q3N

..

. ..
.

@x3N

@q1
� � �

@x3N

@q3N

0

BBBBBB@

1

CCCCCCA
ð9Þ

J 0 is the matrix inverse of J , introduced in Eq. (4),

JJ 0 ¼ J 0J ¼ I ð10Þ

Starting from Eq. (9), a is calculated by

a ¼ J 0TJ 0

or

aij ¼
X

k

@xk

@qi
@xk

@q j
ð11Þ

Equation (8) is an example of a generalized eigenvalue problem, whose
numerical solution provides the eigenvectors �q and eigenvalues 
 of the
Hessian in the space of all generalized coordinates. The units on each side
match exactly,

Hqq�q
� �

i
½¼	

X

j

energy

qi qj
qj ¼

kg m2

s2 qi

a �qð Þi ½¼	
X

j

ðkg1=2 mÞ
2

qi qj
qj ¼

kg m2

qi

and 
 has units of s�2, or frequency squared, as expected.
‘‘Canned routines’’ that solve the generalized eigenvalue problem are

available in standard numerical libraries.* Because a¼J 0TJ 0, the covariant
metric tensor a must be symmetric and positive definite, which facilitates
finding the eigenvalues and eigenvectors, compared to a more general case
in which the matrix characteristics of a are unknown.

*The routines REDUC, TRED2, and TQL2 of EISPACK, available at [120], are examples of

canned routines. Matrix routines from the LAPACK [121] and LINPACK [122] packages are

also available.
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Away from the transition state, the IRC equation is written as [88,102]

a �q ¼ rqV �	 ð12Þ

Taking a step thus requires calculating the gradient and covariant metric
tensor, and then solving a set of linear equations.

C. Narrowing the Diffusion Path to a
Localized Region

Since a penetrant jump occurs over a relatively small region within a
simulation cell, it is useful to restrict the atoms involved in the TST
approach, leaving only the penetrant and some of the polymer chain
segments. This can significantly reduce the number of variables and thus the
size of the matrix calculations (which scale as N3). Constraining the system
requires a careful manipulation of the mass-weighted Cartesian coordinates
and the generalized coordinates. The origins of the nontrivial nature lie in
the covariant metric tensor a. Since this matrix is not diagonal in general,
it couples the step along one coordinate dqi to the gradient with respect
to many q j( j 6¼ i). The coordinates qi and q j must correspond to part of the
same chain for aij to be nonzero.

Choosing which generalized coordinates to include is facilitated by
dividing them into three sets. One set, the bond lengths, are considered
infinitely stiff and should remain unchanged between the transition state
and the local minima. In a sufficiently large penetrant–polymer system,
another set is comprised of the many generalized coordinates defined by
atoms far from the penetrant. If a local fluctuation among polymer chains
allows a penetrant to jump, the values of far-off coordinates should not be
appreciably different at the origin state, transition state, or destination state.
A third set, those nonconstrained generalized coordinates defined by atoms
near a jumping penetrant, are ‘‘flexible’’ when describing a transition state
and IRC. Both other sets of degrees of freedom are held constrained to their
initial values (in the energy-minimized neat polymer structure) by springs
with force constants whose strengths approach infinity.

The details of narrowing the diffusion path are explained in Appendix B.
Here we quote the resulting TST equations and algorithms.

At the transition state, Eq. (3) is replaced by the similar expression

rqf
V ¼ 0 ð13Þ

meaning that the potential energy gradient with respect to each flexible
coordinate equals zero.
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The eigenvalues and eigenvectors at the transition state, with respect to
the flexible coordinates, are calculated from

H0
qq �qf ¼ 
 a0 �qf ð14Þ

The step to take away from the transition state is the eigenvector �qf corre-
sponding to the negative eigenvalue of the generalized eigenvalue problem
Eq. (14). The first step along the IRC (from the transition state) is found
by the following steps:

1. calculate the Hessian matrix of second derivatives with respect to the

flexible generalized coordinates, H0
qq,

2. calculate the covariant metric tensor in the flexible generalized

coordinates, a0,
3. solve for the eigenvector that corresponds to the one negative

eigenvalue.

A small step along this eigenvector �qf defines the first step along the IRC.
Along the step, changes occur in only the flexible coordinates; infinitely stiff
coordinates remain unchanged.

Away from the transition state, the remaining steps along the diffusion
path are calculated from

a0 �qf ¼ rqf
V �	 ð15Þ

Tracking all but the first step along the IRC thus requires these steps:

1. calculate the potential energy gradient in the flexible subset of

generalized coordinates,rq f
V,

2. calculate the covariant metric tensor a
0 in the subset of flexible

coordinates,
3. solve a series of f linear equations for the step vector �qf,
4. scale each term by the same small constant �	.

The elements of the Jacobian matrices (and thus the elements of a0) vary
with chain conformation and must be recalculated after each step. The
IRC ends when it reaches a local minimum (the gradient rqf

V approaches
zero).

D. Final State(s)

The two IRCs that begin at a transition state each terminate at a local
potential energy minimum, where the gradient equals zero. Near the
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minimum, the gradient becomes sufficiently small (a step size of order 10�10,
for example [88]) that each IRC step [Eq. (15)] is excessively short. It would
then take a large number of steps to travel the small remaining distance to
the local minimum configuration. Instead, a quasi-Newton scheme [109]
can be used at this point to reach the local minimum. Relatively few steps
should be required, and the resulting potential energy decreases should be
negligible. If large decreases in energy do occur, that indicates larger-scale
structural relaxation of the polymer matrix, and the system configuration
prior to quasi-Newton steps should be restored [i.e., the last configuration
found via Eq. (15)]. In such a case, additional regular IRC steps should be
taken despite the low gradient, and the step size should soon increase again.
This approach maintains the validity of the calculated IRC. Such behavior
could occur along a near-flat plateau on the potential energy landscape that
is surrounded by more steep regions of similar orientation. After continued
energy decreases, a small gradient should recur, and quasi-Newton steps can
be attempted again.

E. Rate Constant

The pair of rate constants for each jump path (IRC) can be calculated in
one of several ways. A formal, microscopic formulation [83] was discussed
in Chapter 1 for the rate constant,

kA!BðtÞ ¼
_qqð0Þ� qz � qð0Þ

� �
�ðqðtÞ � qzÞ

 �

�ðqz � qÞ
 � ð1:101Þ

The denominator equals the contribution QA of the origin sorption state A

to the entire canonical partition function Q. Evaluating QA requires some

definition of the bounds on the state volume in configuration space. The

numerator equals the average velocity along the reaction coordinate for

state points within the dividing surface region at t¼ 0 that terminate in

the product state. Transition-state theory assumes that all state points in

this region with _qq > 0 terminate in the product state, i.e., (q(t)� qz)>0

for all t [83]. If this velocity along the IRC (in some combination of

mass-weighted Cartesian coordinates) is position-independent and separable

from all other velocities, it may be integrated over 0 � _qq <1, leading to a

prefactor kBT/h, where h is Planck’s constant. The remaining numerator

terms, in combination with a definition of the dividing surface, equal the

dividing surface region contribution Qz to the canonical partition function.
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Equation (1.101) can thus be rewritten as

kTST ¼
kBT

h

Qz

Q
exp �

Vz � V0

kBT

� �
ð16Þ

or as the canonical ensemble equivalent of Eq. (1.117),

kTST ¼
kBT

h
exp �

Az � A0

kBT

� �

(from Chapter 1). The exponential in Eq. (16) arises from a difference in the
zero of energy between Qz and Q.

Several approximations to Eq. (16) can then be made. The simplest
approximation is to assume a constant prefactor and to use the potential
energy difference between the transition state and the reactant sorption
state,

kTST ¼ k0 exp �
Vz � V0

kBT

� �
ð17Þ

This approach can be interpreted via Eq. (1.117) as assuming that the free

energy difference equals the potential energy difference (entropy change

equals zero) and that the temperature dependence in the exponential

dominates that in the prefactor.
A less drastic approximation is to assume that (1) potential energy

increases relative to the origin or transition state energies are adequately
described locally by a harmonic approximation, and (2) potential energies
outside these harmonic regions are sufficiently large such that the
Boltzmann factor approaches zero. With this combination of assumptions,
the origin state and dividing surface boundaries can be extended to �1, and
the partition functions can be calculated from the vibrational frequencies at
the transition state and the reactant state, with respect to the flexible degrees
of freedom. The frequencies are obtained from the eigenvalues of Eq. (14) by

�i ¼

ffiffiffiffi

i

p

2�
i ¼ 2, . . . , f ðtransition stateÞ

i ¼ 1, . . . , f ðreactant stateÞ ð18Þ

Note that no frequency calculation is required for the negative eigenvalue at
the transition state. Two alternate forms of the rate constant can then be
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obtained. Within a classical statistical-mechanics model, infinitely stiff

coordinates [105] contribute a factor related to the product of their

normal mode frequencies, each of which approaches infinity [88]. The

resulting rate constant is

kTST ¼

Yf

�¼1
��

Yf

�¼2
�z�

0

@

1

A det a�100

det a�100
� �z exp �

Vz � V0

kBT

� �
ð19Þ

The matrix a
�10 0, defined in Appendix B, is a contravariant metric tensor

in the infinitely stiff coordinates. Each det (a�10 0) term can be evaluated

directly using a recursion relation [102,123] or via the Fixman relation,

Eq. (82). In a quantum mechanics-based statistical mechanics model, the

effect of infinite stiffness on each partition function is not*

lim
�!1

kBT

h�i
¼ 0

but instead

lim
�!1

1� exp �
h�i
kBT

� �	 

¼ 1

Consequently the contributions from infinitely stiff modes become unity and

the rate constant can be written as

kTST ¼
kBT

h

Yf

�¼1
1� exp �

h��
kBT

� �	 


Yf

�¼2
1� exp �

h�z�
kBT

� �	 
 exp �
Vz � V0

kBT

� �
ð20Þ

The jump rate constants reported in our previous work [88] were calculated

using Eq. (20). Within the harmonic approximation, the difference in

*Despite this zero limit, the ratio of the products of these frequencies, calculated via

(det a�1 00z= det a�1 00
0), is well-defined with a value near unity. See [88,123] for details.
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entropy between the reactant and transition states can be approximated

by [88,124]

�S

kB
¼ ln

h

kBT

Yf

�¼1
��

� �

Yf

�¼2
�z�

� � det a�100
� �z

det a�100
� �min

0

B@

1

CA� 1 ð21Þ

(classical mechanics-based) or

�S

kB
¼ ln

Yf

�¼2
1� exp �

h�z�
kBT

� �	 


Yf

�¼1
1� exp �

h��
kBT

� �	 


0

BB@

1

CCA� 1 ð22Þ

(quantum mechanics-based). The physical interpretation is that a

higher frequency corresponds to a more narrow potential well, which

allows fewer conformations. An advantage of the harmonic approxima-

tion is its speed: only frequencies are required after the transition state

and IRC are found. One disadvantage is the harmonic approximation for

the energy, which breaks down within the origin state or dividing surface.

A second disadvantage is that it neglects any contributions along the IRC

itself.
A more exact approach is to use sampling techniques to calculate

the free energy difference between reactant and transition states, with
the rate constant calculated by Eq. (1.117). One possibility is to calculate
free energy differences between hyperplanes orthogonal to the IRC [125,126]
(see also Chapters 9 and 10 in this book). Another is to use ‘‘chain-of-states’’
methods to sample fluctuations among different states along the IRC
simultaneously [111,118,127,128]. A difficulty with the latter for explicit
inclusion of polymer chain fluctuations is the high dimensionality of each
state point.

Finally, an improvement to the transition-state theory-based rate
constant is to use the formalism in Chapter 1 [Eqs. (1.103) and (1.104)]
to calculate the dynamical correction factor � [83,84]. Several simulations
beginning from the dividing surface and directed towards the final state are
conducted, and � equals the fraction of jumps that thermalize in the final
state. Each such simulation is short (10–20 ps) because it follows the system
to a point of lower energy and higher entropy. A separation of time scales
is required so subsequent jumps out of the product state are unlikely at
short times.

Sorption and Diffusion by TST 439



III. STARTING POINT: POLYMER MOLECULAR
STRUCTURES

For using any of the diffusion simulation methods described in this chapter,
it is necessary to begin with a set of chain configurations that represent the
polymer of interest on the molecular level. For a bulk polymer these are
likely to be at the bulk density, within a simulation box of edge length
20–50 Å and with periodic boundary conditions in two or three dimensions.
Larger edge lengths are more desirable in that they allow larger natural
length scales to be probed within the simulation. They are less desirable in
that they require larger simulation times, since calculation times scale with
Nm

�L3m and m is typically between 1 and 2.
Constructing and equilibrating molecular-level polymer configurations

are described in detail in the literature [129–135]. Such techniques are
important because much longer times than can be achieved in practice are
required in order to equilibrate the entire chain, starting from a random
configuration in a room-temperature simulation. The objective of those
methods is to ensure that representative polymer chain configurations are
used for the sorption and diffusion calculations.

For the purpose of studying diffusion, it is necessary to have a penetrant
molecule amidst the polymer chains in the molecular simulation cell. It is
possible to add the penetrant during the diffusion calculations. However, it
is also advantageous to equilibrate the polymer sample to some extent in the
presence of the penetrant molecule. This will ensure that fast (	<0.1 ns),
penetrant-induced polymer relaxations occur before beginning the diffusion
calculations. Sometimes, and especially in molecular dynamics simulations,
several penetrant molecules are added in order to improve sampling.
(Of order 10 sets of penetrant mean-squared displacements are sometimes
obtained from one simulation.) One risk of this approach is that the locally
high penetrant concentration could plasticize the polymer, artificially
increasing the penetrant diffusivity. Plasticization is desirable if this is the
concentration range of interest, but it should be avoided if the objective
is calculating diffusivity in the infinite dilution limit.

For accumulating good statistics, several different sets of polymer chain
configurations should be used. Each resulting simulation cell will likely have
a different resistance to diffusion. This is physically reasonable, because
molecular-level imaging (AFM, STM, etc.) reveals heterogeneity over nm to
m length scales [136]. The question then arises of how the results from
different calculations can be averaged. For polymer samples at overall
thermal equilibrium, the Boltzmann factor for the total energy is
an appropriate weighting factor, and lower energy structures will occur a
higher proportion of the time. For glasses, physics-based studies have shown
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that an arithmetic average over different structures is most appropriate
[137]. We have applied the latter when calculating the distribution of jump
rate constants for methane in glassy atactic polypropylene [88]. In a real
glassy polymer, the overall density (and thus the volume available to a
penetrant) depends on the sample preparation, such as the quench rate
from above Tg, the strain history, and the amount of physical aging [1].
Consequently the real distribution of jump rate constants could be expected
to depend on all of these variables. Detailed accounting for these effects is
beyond the current scope of molecular simulation.

IV. FROZEN POLYMER METHOD

The most straightforward approach for simulating diffusion through a
glassy polymer is the frozen polymer method. The essential idea of the
frozen polymer method is that polymer chains remain fixed in place and
provide a static external field, through which a small-molecule penetrant
can diffuse.

This method is the least accurate for simulating small-molecule diffusion
in a polymer, because neglecting contributions from polymer chain
fluctuations is unrealistic. These limitations were learned from its initial
applications: argon in polyethylene [92]; helium, oxygen, and nitrogen
in polypropylene [93]; helium, oxygen, nitrogen, hydrogen, and argon in
polycarbonate [93,94]; helium, oxygen, nitrogen, hydrogen, and argon
in polyisobutylene [94]. Materials such as zeolites are more rigid than
polymers, making neglecting fluctuations in the surrounding material more
physically realistic. Consequently an analogous approach has been used
successfully for alkanes [85] or aromatics [138] in zeolites; see [95,96] for
reviews. Despite these limitations, the frozen polymer method provides a
useful framework for introducing steps used in more sophisticated TST
approaches. A frozen polymer has also aided with interpreting different
contributors to the diffusion mechanism, within recent molecular dynamics
simulations of helium in polypropylene [44].

Removing the polymer chains from explicit consideration directly affects
the list of flexible coordinates in the TST formulation. For a monatomic
penetrant atom or a pseudo-monatomic united atom, such as methane, the
only flexible coordinates are the mass-weighted position (x, y, z) of the
penetrant. The fixed polymer coordinates can be considered part of the force
field defining the penetrant potential energy. The covariant metric tensor a0

equals a three-by-three identity matrix.
For a linear penetrant molecule such as oxygen or nitrogen, its

position can be represented using the mass-weighted position of the first
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atom (x1, y1, z1) and the orientation of the bond vector in spherical
coordinates,

x2 ¼ x1 þ ‘ cos� sin � ð23Þ

y2 ¼ y1 þ ‘ sin� sin � ð24Þ

z2 ¼ z1 þ ‘ cos � ð25Þ

� and � are the projection of the bond on the x-y plane (0� �<2�) and its

azimuthal angle relative to the z-axis (0� ���). The mass-weighted bond

length is

‘ ¼ m1=2½ðX2 � X1Þ
2
þ ðY2 � Y1Þ

2
þ ðZ2 � Z1Þ

2
	
1=2

ð26Þ

The Jacobian J 0 is found [using Eq. (9)] by partial differentiation of the

mass-weighted Cartesian coordinates (x1, y1, z1, x2, y2, z2) (one per row) with

respect to the generalized coordinates (x1, y1, z1,�, �, ‘) (one per column),

leading to

J 0 ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 �‘ sin� sin � ‘ cos � cos � cos� sin �
0 1 0 ‘ cos� sin � ‘ sin� cos � sin� sin �
0 0 1 0 �‘ sin � cos �

0

BBBBBB@

1

CCCCCCA
ð27Þ

The covariant metric tensor is found by matrix multiplication [Eq. (11)],

a¼

2 0 0 �‘sin�sin� ‘cos�cos� cos�sin�
0 2 0 ‘cos�sin� ‘sin�cos� sin�sin�
0 0 2 0 �‘sin� cos�

�‘sin� sin� ‘cos�sin� 0 ‘2 sin2� 0 0
‘cos�cos� ‘sin� cos� �‘sin� 0 ‘2 0
cos�sin� sin� sin� cos� 0 0 1

0

BBBBBB@

1

CCCCCCA

ð28Þ

The bond length could also be considered infinitely stiff, in which case J 0
f

would lack the last column of J 0, and a
0 (a 5� 5 matrix) would lack the

last row and column of a.
For a nonlinear rigid molecule such as aromatic compounds (benzene,

toluene, xylenes), coordinates corresponding to the center of mass and the
molecular orientation can be used [138]. The required Eulerian angles �,  , �
denote rotations about the z axis, the x axis in this first intermediate
coordinate system, and the z axis in this second intermediate coordinate
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system [139]. The resulting covariant metric tensor is*

a¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0

I1 sin
2 � sin2 

þI2 sin
2 � cos2 

þI3 cos
2 �

2

64

3

75 I3 cos� ðI1 � I2Þ sin� sin cos 

0 0 0 I3 cos � I3 0

0 0 0 ðI1 � I2Þ sin� sin cos 0 I1 cos
2 þ I2 sin

2 

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

ð29Þ

This metric tensor can then be used in Eqs. (14) and (15). Its block-diagonal

character separates translation and rotation steps, an advantage for deci-

phering diffusion mechanisms. One complication, however, is that the

Eulerian angles must be carefully monitored and redefined in case any

pass through zero [138].
In principle, the transition-state theory equations developed above [Eqs.

(13), (14), (15), (16), (1.117), (20)] can be used for each jump in the frozen
polymer method. While the individual components of the saddle-point search
have a reputation of being slow (calculating theHessianmatrix, evaluating all
eigenvalues and eigenvectors), in practice these steps are fast because the
dimensionality is small. Standard matrix routines [120–122,140] are recom-
mended for the matrix calculations. Typically following the IRC will require
significantly more computational effort than finding the transition state.

A good estimate for the transition state location will speed up the search
process and help to ensure a successful search. Geometric interpretations
of the simulation cell are often useful for this purpose. The voxel method
(useful throughout the frozen polymer method) is discussed below. Another
approach is to subdivide (or tessellate) the periodic simulation cell into
tetrahedra [87,93,141–145] or cubes [146,147], with a hard-sphere repre-
sentation of the atoms replacing an energy calculation. Sorption states can
be assigned to the center of tetrahedra or cubes not fully occupied by atoms
of the polymer chain, with transition states assigned to the center of surface
triangles [93]. Alternatively, tetrahedra or cubes can be lumped into sorption
states, and initial guesses for transition state locations can be taken at the
center of tetrahedra/cubes that form the intersection of sorption states

*Equation 12 in [138] [the equivalent of Eq. (29) substituted into Eq. (15)] contains a typog-

raphical error. This form of a0 is correct.
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[88,102]. The important point is using such criteria to recognize the three-
dimensional regions in a polymer structure that most closely resemble the
necks between (presumably) larger sorption state regions.

An alternative approach typically used within the frozen polymer method
and the average fluctuating polymer method is the so-called ‘‘voxel’’
approach [85,94]. A finely spaced cubic grid (lattice spacing of 0.1 Å, for
example) is overlaid onto the simulation cell, and the energy required to insert
a penetrant at the center of each cube is calculated. For each voxel (i.e., cube)
i, the lowest-energy neighboring cube j is identified, and the connectivity i! j
is stored. Alternatively [85], a steepest descent calculation can be conducted
from each voxel. After looping over all voxels, the net result is a connectivity
map for the particular polymer structure chosen. Voxels with no neighbors of
lower energy correspond to local minima. Each voxel can then be labeled as
leading (or ‘‘belonging’’) to the state defined by the local minimum in which
a connectivity path terminates. (If i! j! k! ‘, then voxels i, j, k, and ‘
belong to state ‘.) The dividing surface between states is defined by the
common faces of voxels in different states, and the center of the face between
the lowest-energy voxels on the dividing surface approximates the position of
the transition state. This position is not an exact solution to Eq. (13), but it is
close to one. Similarly, the connectivity path defined by adjoining, lowest-in-
energy voxels approximates the IRC defined by Eqs. (14) and (15).

For a spherical penetrant, the energy at each voxel can be used to
calculate each rate constant through numerical integration of Eq. (16).
The kinetic energy contributions to each partition function are integrated
analytically in mass-weighted Cartesian coordinates,

Qz ¼
2�kBT

h2

� �
Z

z

A!B ð30Þ

Q ¼
2�kBT

h2

� �3=2

ZA ð31Þ

The remaining configurational integral ZA for each initial state is a sum of

the contributions from each voxel, multiplied by the mass-weighted voxel

volume

ZA ¼
X

voxel j in
state A

ZjðrÞVjm
3=2 ð32Þ

¼
X

voxel j in
state A

exp �
V j

kBT

� �
Vjm

3=2 ð33Þ
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The energy V j corresponds to a ghost penetrant molecule placed at the

center of voxel j, i.e., the voxel energy calculated previously. The configura-

tional integral for each dividing surface is similarly evaluated, using con-

tributions from the voxels that define the interstate boundary,

Z
z

A!B ¼
X

voxel j on
A!B

boundary

Z
z

j Ajm ¼
X

voxel j on
A!B

boundary

exp �
V j

kBT

� �
Ajm ð34Þ

The voxel energy V j is assumed constant within the volume Vj and across

the surface area Aj.
The dividing surface is a curved region, which voxels approximate as a

‘‘zig-zag’’ of cubic surfaces. To calculate each Aj (the area of the dividing
plane that cuts through voxel j ), Gusev and Suter [97] proposed

Aj ¼ KL2
v ð35Þ

where Lv is the voxel edge length and K (see Table 1) depends on the number

of neighboring voxels assigned to state B (the destination state). The fewer

neighboring voxels in the destination state, the better this approximation.

Gusev et al. [94] estimated area errors �A of under 7% based on a voxel edge

of Lv¼ 0.2 Å. From Eqs. (16), (30), and (34), these errors propagate directly

into the rate constant. Smaller voxels would lead to smaller area errors,

according to

j�Aj � L2
v j�K j ð36Þ

where �K is the difference between the value listed in Table 1 and the true

ratio of dividing surface size to voxel face area. Consequently decreasing

TABLE 1 Coefficients Used when Estimating the

Contribution of Each Voxel to the Dividing Surface

Area (Equation 35 from [97]). A Voxel can Have a

Maximum of 6 Nearest Neighbors

Number of neighboring

voxels in state B K

1 1

2
ffiffiffi
2

p

3 1.41

4 2.0

5 0

6 0
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voxel size can significantly reduce dividing surface area errors. The final

voxel-based expression for the rate constant is thus

kTST ¼
kBT

2�m

� �1=2

X

voxel j on
boundary

exp �
V j

kBT

� �
KjL

2
v

X

voxel j
in state

exp �
V j

kBT

� �
L3
v

ð37Þ

for all voxels having the same edge length Lv.
The relationship between individual sorption states and a fully connected

jump network will be discussed in Section IX. Methods for calculating
a diffusion coefficient from the structure and rate constants are discussed
in Section X.

V. AVERAGE FLUCTUATING POLYMER METHOD

Compared to the rigid polymer method, the average fluctuating polymer
method improves the treatment of how polymer chains move during the
penetrant diffusion process. Rather than remaining fixed in place, polymer
chains execute harmonic vibrations about their equilibrium positions.
Penetrant jumps are then coupled to elastic fluctuations of the polymer
matrix and are independent of structural relaxation of the polymer chains
[24,97]. After a penetrant jump completes, chains near the final sorption
state will likely show slight elastic deviations as they swell to accommodate
the penetrant molecule. Since no chain conformation relaxations are
allowed, other polymer chains will essentially retain their initial conforma-
tion. The penetrant jump rate then depends only on the local, quasiharmo-
nic fluctuations in the sorption state and the transition state [24,97].

The magnitude of elastic vibrations is controlled by a parameter h�2i
1=2

,
of units Å. While the original formulation of this method allowed for
different parameter values for each atom type (or even every atom), tradi-
tionally a single size is used for all atoms in the polymer matrix. The fluc-
tuations impose an additional equilibrium probability density distribution

Pðx�hxiÞdðx�hxiÞ

¼
Y

i

2�h�2i
� ��3=2

exp �
ðxi�hxiiÞ

2
þðyi�hyiiÞ

2
þðzi�hziiÞ

2

2h�2i

� �
dðxi�hxiiÞ

ð38Þ
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where hxi is the vector of all polymer atom positions in the penetrant-free

equilibrated (i.e., preaveraged) polymer sample. The three-dimensional posi-

tion of a single atom is written xi. The mean-squared fluctuation along each

average position (x, y, or z) equals h�2i; hence the parameter notation as

an RMS value. The unnormalized probability density for all penetrant

positions rp and polymer atom positions x is then written as

Pðrp, xÞdðx� hxiÞ

¼
Y

i

2�h�2i
� ��3=2

exp �
V ipðrp, xiÞ

kBT

� �
exp �

jxi � hxiij
2

2h�2i

� �
dðxi � hxiiÞ

ð39Þ

The parameter h�2i
1=2

can be interpreted [24] as being proportional to T1/2,

its overall effect being an additive elastic contribution to the total energy.
The modified position distribution function is incorporated directly into

the rate constant calculation based on the voxel method, with the penetrant
positioned at the voxel center. Each single-voxel configuration integral
[Zj in Eq. (32)], referenced to the energy of the local minimum origin state,
contains an integral over polymer conformation fluctuations sampled via
the h�2i

1=2
parameter,

ZjðrpÞ ¼

Z
exp

�Vðrp, xÞ

kBT

� �
Pðx� hxiÞdðx� hxiÞ ð40Þ

The Boltzmann factor depends on the positions of all atoms that interact

with the penetrant. For a pairwise additive penetrant–polymer force field,

such as the Lennard-Jones expression

VðrpÞ ¼
X

i

4�ip
�ip

jrp � xij

� �12

�
�ip

jrp � xij

� �6
" #

ð41Þ

the configurational integral can be written as a product of separable terms,

ZjðrpÞ ¼
Y

i

ZjiðrpÞ ¼
Y

i

2�h�2i
� ��3=2

Z
exp �

V ipðrp, xiÞ

kBT

� �

� exp �
xi � hxiij j2

2h�2i

� �
dðxi � hxiiÞ ð42Þ
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While Eq. (42) cannot be solved analytically, it is amenable to an accurate

numerical solution, discussed in Appendix D. Applying the average fluctu-

ating polymer method thus involves

1. evaluating the single voxel contributions for each voxel in each

sorption state A [see Eq. (105)],
2. multiplying all contributions to evaluate Zj for each state and Z

z

A!B

for each dividing surface [Eq. (42)],
3. calculating the partition functions for the state and dividing surface

[Eqs. (32) and (34)],
4. calculating the rate constant for each A!B transition by Eq. (16),
5. using the resulting jump network to calculate the diffusivity.

The last point is discussed below in Section X.
The effect of different h�2i values on the normalized probability density

of different separations between a fixed penetrant atom and a single
fluctuating atom of the polymer is shown in Fig. 1. Only one dimension
is shown to simplify the plot, and parameters are chosen such that

FIG. 1 Probability density of different interatomic separations occurring for a

combination of the Lennard-Jones potential and the pseudo-elastic energy provided

by the Debye–Waller factor. Normalization is such that the integral over a spherical

region from 0 to 10 Å equals unity. Different lines indicate different h�2i
1=2

values (in Ångstroms).
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�/kBT¼ 0.437, �¼ 3.69 Å (methane–methyl interaction in atactic polypro-
pylene at 233K [88]). The larger the value of h�2i

1=2
, the ‘‘softer’’ the

effective potential, since smaller separations can be achieved with nonzero
probability. In other words, larger polymer chain fluctuations facilitate a
penetrant squeezing through a tight channel.

The choice of h�2i
1=2

is the most difficult part of applying the fluctuating
polymer method. As seen in Fig. 1, changes in h�2i

1=2
of order 0.2 Å cause

qualitative differences in the distribution of atom positions. Too small a
value of h�2i

1=2
leads to energy barriers that are too high and diffusion

coefficients that are too low; the limit h�2i
1=2

! 0 corresponds to the frozen
polymer method. Too high a value of h�2i

1=2
corresponds to channel

openings being too facile, with diffusion coefficients that are artificially
large. h�2i

1=2
values are also penetrant-dependent [97].

One approach that would come to mind for choosing h�2i
1=2

would be to
run a molecular dynamics simulation on the pure polymer, setting h�2i

1=2

equal to an asymptotic value. However, this approach fails in an amorphous
polymer. Over long times, mean-square atom displacements increase
linearly with time due to diffusive chain motions, leading to

h�2i
1=2

¼
ffiffiffiffiffiffiffiffi
6Dt

p
ð43Þ

The value of h�2i
1=2

at 1ns will be of order 10 times larger than the value at
10 ps. Even in the reptation regime [113,114], in which hr2i � t1/2, h�2i

1=2

would appear to increase by about 3� over this time scale, which based on
Fig. 1 would have a big effect on diffusion. Clearly the value of h�2i

1=2

depends on the time scale of interest.
Several methods have been proposed for choosing the parameter h�2i

1=2
.

Its value is crucial, because the magnitude and characteristics of mean-
squared displacement (normal vs. anomalous diffusion) are sensitive
functions of h�2i

1=2
. Regrettably, several practitioners of this method

omit h�2i
1=2

values from their publications. Arizzi [93] noted that an
analytic form is available from the X-ray scattering literature [148],

h�2i ¼
3h2T

4�2mkB�D
2

T

�D

Z �D=T

0

�d�

e� � 1
þ
�D
4T

	 

ð44Þ

where �D equals the Debye temperature. This approach yields a different
value for each atom (due to their differing masses) and h�2i

1=2
values

slightly larger than used in later simulation work. Gusev and Suter [97]
initially proposed that h�2i

1=2
should be chosen to correspond to the

elapsed time at which a penetrant is most likely to jump into another state.
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They reasoned that since the jump significantly changes the list of neighbor-
ing polymer chain atoms (and especially the distances from the atoms that

remain neighbors), it is appropriate for the elastic effects to be considered

afresh. This process [97] then entails self-consistency:

1. guess h�2i
1=2

,
2. calculate the escape time distribution,
3. rechoose h�2i

1=2
based on the most likely escape time,

4. recalculate the escape time distribution,
5. iterate to convergence.

This method implicitly requires the peak and breadth of the escape time

distribution to be equally sensitive to h�2i
1=2

, since the average and breadth
of a waiting time distribution are governed by only one parameter [103].

However, the sensitivities are not necessarily the same, and Gusev et al. [24]

noted that the h�2i
1=2

value so-calculated is only approximate. They next

suggested [24] conducting both MD and TST simulations, using the mod-
erate time behavior (t<10ns) to provide a target for choosing h�2i

1=2
:

1. obtain hr2(t)i from MD,

2. guess h�2i
1=2

,
3. calculate hr2(t)i from TST and kinetic Monte Carlo (a technique

described below),
4. modify h�2i

1=2
, recalculate, and iterate to obtain better agreement.

Such a combination of MD and TST has promise for systems in which the

assumption of uncoupled elastic fluctuations is valid.

VI. EXPLICIT POLYMER METHOD

The explicit polymer method provides more molecular-level detail about
each penetrant jump, at the expense of a higher computational cost
compared to the frozen polymer and average fluctuating polymer methods.
The polymer chains participate explicitly in defining the path of a penetrant
jump. In contrast to the average fluctuating polymer method, however, the
particular conformation fluctuations that open the interstate channel are
tabulated as part of the jump path. In other words, the steps �qf along the
IRC include penetrant degrees of freedom and some of the many polymer
degrees of freedom. The IRC thus traces out a multidimensional pathway
that starts in a local potential energy minimum (described as a penetrant
residing in a sorption state), passes through a multidimensional transition
state as polymer chain fluctuations open a channel and the penetrant moves
through it, and terminates in another local potential energy minimum.
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The general approach for applying the explicit polymer method involves

1. identifying multidimensional transition states,
2. following the IRC from each transition state to its affiliated local

minima,
3. calculating the rate constant for each jump,
4. using a kinetic Monte Carlo approach to calculate the diffusion

coefficient.

A molecular scale network spanning the original simulation cell, with its
jump paths and rate constants, can then be used when calculating the dif-
fusivity. Alternatively, a larger network can be constructed [91] (see Section
IX) that incorporates molecular-level correlations.

The task of searching for a penetrant jump transition state was
discussed in Section II. Each multidimensional transition state is a solution
to Eq. (13), which is solved most efficiently in stages [88]. First a low-
dimensional transition state is found for the penetrant by keeping the
polymer frozen (as above). Next, polymer degrees of freedom can be
introduced into the transition state search, using the transition state found
in the lower dimensionality as an initial guess. The appropriate degrees of
freedom to include are those defined by chain segments near the penetrant.
All of the selected degrees of freedom (including the penetrant) are allowed
to evolve during the transition state search in the higher dimension. The
resulting transition state has two elements of unstable equilibrium. Forces
on the penetrant are balanced such that it senses neither a force towards
the origin state nor one towards the destination state. Simultaneously,
neighboring polymer chains have withdrawn in response to penetrant–
polymer forces until they are balanced by the force required to compress
the polymer matrix locally. The result is a more open channel for
penetrant diffusion.

To some extent, as the number of coordinates involved in calculating
the transition state increases, the transition state energy decreases. As an
example, Fig. 2 shows the decrease in transition state energy for a methane
penetrant in atactic polypropylene at three different transition states, as a
function of transition state dimensionality. The greater the number of
degrees of freedom, the larger the chain region able to take up this
compressive force and the smaller the transition state energy. However,
the decrease in energy differs from transition state to transition state; no
simple, quantitative correlation for the magnitude of the energy decrease
exists. The overall energy decrease relative to that in the initial state
(about an order of magnitude smaller than for the frozen polymer case)
corresponds to a rate increase by a factor of about 106. A penetrant
jump assisted by polymer motions is thus much more likely than an
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unassisted jump, as found for the fluctuating vs. frozen polymer methods.
As seen in the figure, the transition state energy ultimately reaches a
plateau value, after which it is unaffected by including additional degrees
of freedom.

In order to reach such a plateau, the initial polymer structure (no
penetrant present) must be in a local potential energy minimum. Otherwise,
each additional polymer coordinate included will contribute a new
opportunity for chain relaxation, leading to a transition state lower in
energy than the original structure but higher than a local potential energy
minimum.

For conducting numerous penetrant diffusion simulations, it isn’t
reasonable to inspect Fig. 2 by eye to choose when to stop adding
degrees of freedom; an automated procedure is required instead. One
approach [88] is to continue until all degrees of freedom defined by atoms
within the penetrant neighbor list have been added. The remaining atoms
are affected only indirectly: the penetrant interacts with atom i, which then

FIG. 2 Penetrant diffusion transition state energy relative to the local minimum

energy of pure polymer, as a function of the number of coordinates considered

flexible during the transition state search. Different symbols correspond to different

transition states. The transition state energy at three flexible coordinates would be

used in the frozen polymer method.

452 Greenfield



interacts with atom j. This approach led to about 350 degrees of freedom
(penetrant position, bond angles, torsion angles, sometimes chain start
positions and orientations) for methane in glassy atactic polypropylene.
A second approach is to identify all atoms that the penetrant is likely to
encounter during its jump between two sorption states, and then to include
all of them in the transition state search. Such a list could be created by
following the IRC in only the penetrant dimensionality, in the spirit of the
frozen polymer method. An advantage of this approach would be that all
degrees of freedom that would participate in the IRC would be identified
in advance and would move towards a zero-force conformation at the
transition state. A disadvantage is the large number of degrees of freedom
involved (of order 500 for methane in atactic polypropylene). In either case,
we found [88] it was worthwhile to increase the included number of degrees
of freedom slowly (5, 15, . . . , etc.), creating a sequence of higher dimensional
initial guesses, rather than to attempt the complete search initially. While
this would seem to require more calculation, in practice the sequential initial
guesses were good enough such that in most cases no single search required
a long time.

Next, the multidimensional IRC must be determined for this jump.
The Jacobian and the covariant metric tensor include contributions from
all f flexible coordinates, and the IRC is found by following a single step
away from the transition state [Eq. (14)] and then multiple steps along the
IRC [Eq. (15)]. Qualitative descriptions of polymer contributions to the
diffusion mechanism can be taken directly from how each flexible
coordinate changes along the IRC. For example, Fig. 3 shows different
chain conformations along one diffusion jump. Dashed and solid triangles
indicate original and instantaneous conformations for selected chain
segments. Due to coupled changes in polymer bond and torsion angles,
chains move back from the penetrant path as the jump occurs, creating a
wider channel.

Next the rate constant is calculated for each jump. In prior work [88] we
used a harmonic approximation in the flexible degrees of freedom, with the
quantum mechanics-based partition function [Eq. (20)]. Such a rate constant
calculation is fast in comparison to tracking the IRC. Using a free energy
method (Eq. (1.117) or sampling as in Ref. [111]) would yield more accurate
rate constants at a cost of a larger, more time consuming calculation.
Dynamical corrections [Eqs. (1.103) and (1.104)] would increase accuracy
but add additional computational requirements. If the software and run
time are available, these more advanced methods are recommended.

Finally, the rate constants can be used to calculate the diffusivity.
Methods based on jump network structure and kinetic Monte Carlo
simulation are discussed below.
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FIG. 3 Different chain conformations of atactic polypropylene as a methane

penetrant (sphere labeled p) jumps between two sorption states. Text labels indicate

the extent along the reaction coordinate. Differences between the positions of dashed

and solid triangles indicate the motion of chain segments to create a more open

channel for diffusion. Conformations are adapted from Movie 1 in [90].
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VII. OTHER IRC METHODS

Numerical artifacts can result from curvature along the IRC. For example,
too large a step along the gradient can lead to a departure from the true
diffusion path. The gradient at the end of the step will direct the system back
towards the IRC, but due to components orthogonal to the IRC it is likely
that so-called ‘‘overshoot’’ will occur again. The net result is a sequence of
steps that repeatedly cross the IRC [126]. This leads to two disadvantages:

1. No individual calculated point is actually on the IRC itself.
2. Several more steps are required, leading to additional calculations.

A cartoon of this effect is shown in Fig. 4.
One proposed solution to this problem is methods that incorporate both

the local gradient and the Hessian into steps along the IRC [116,149,150].
These allow for direct incorporation of curvature within each step. Each
step requires significantly more calculation, since the Hessian is required.
However, IRC curvature is likely, and since repeated crossings can be
avoided, fewer larger steps may be necessary. Which approach is more
efficient (based on both the gradient and Hessian or on only the gradient)
depends on whether an analytic Hessian calculation is available and if so
then how long it takes.

FIG. 4 Cartoon of a ‘‘zig-zag’’ approximation of the IRC (bold dot–dash line). The

thin solid path that repeatedly crosses the IRC (dot–dash path) is likely to result

when no Hessian information is used, such as with Eqs. (14) and (15). Dashed and

dotted lines indicate contours of constant potential energy.
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Path-based methods [110,111,118,127,128,151–153] differ from the appro-
aches discussed above in that they attempt to find an entire reaction/
diffusion path (the IRC) between local minima, without first performing a
transition state search. Instead, the IRC is represented by a sequence of
order Nst

¼ 10–50 state points in configuration space. Each state point
includes all f flexible mass-weighted Cartesian or generalized coordinates.
The different methods correspond to different algorithms, typically
[110,118,152] some sort of minimization, for solving for the resulting Nstf
coordinates. On a multidimensional potential energy surface, the solution
corresponds to a discretized approximation to a low-energy pathway
traversing as directly as possible between local minima. The f¼ 2 analog
inspires descriptive names for these approaches: ‘‘chain of states’’ [118],
‘‘nudged elastic band’’ [110,152], ‘‘throwing ropes over mountain passes in
the dark’’ [111]. In model problems, the local minima have not even had to
neighbor one another; the path obtained could pass through multiple
transition states and intermediate local minima. However, the high
dimensionality has prevented path-based methods from being applied to
diffusion in polymers with a flexible matrix. For example, 20 state points
along an IRC in [88] (about 350 flexible coordinates) would require a
minimization with respect to 7000 variables. Evaluating the Hessian matrix
is required in some methods.

It is also possible that via thermal motions a penetrant–polymer system
would sample different sets of pathways, each with its own transition state
structure, for a penetrant jump between two associated local minima.
The methods in [111] are particularly suited to calculating the rate in
that case.

VIII. SORPTION

Penetrant sorption has three impacts on small-molecule permeability.
A direct impact is the proportionality between permeability P and solubility
in solution-diffusion transport [1,154]

P ¼ DS ð45Þ

The sorption coefficient S equals the ratio between penetrant concentration
in the polymer phase and imposed penetrant fugacity (or pressure) [154]

S � C=f ð46Þ

The higher the sorption coefficient, the larger the number of penetrant
molecules dissolved in the polymer sample and able to diffuse across it.

456 Greenfield



Another direct effect is that high penetrant concentrations can increase
polymer chain mobility (plasticization), thereby increasing the diffusion

coefficient [1]. An indirect effect concerns relative sorption among different
sorption states. From microscopic reversibility [22], the ratio of equilibrium

solubilities within different sorption states equals the ratio of jump rate

constants between them,

SA

SB
¼

kB!A

kA!B
ð47Þ

Consequently a jump network with a distribution of rate constants must

also have a distribution of solubility coefficients. The more broad the sorp-

tion coefficient distribution, the wider the imbalance in the forward and
reverse jump rates along a single path. Conversely, assigning the same sorp-

tion coefficient to each sorption state would require all jumps to have the
same rate constant. In addition, most sorption states will have more than

one neighboring sorption state (if each state had only one neighbor in a

random orientation, it would be geometrically unlikely to form a percolat-
ing network), and thus most solubility coefficients are governed by multiple

equivalents of Eq. (47): one per neighboring state. These latter effects of the

sorption coefficients are indirect because they are independent of the total
amount of sorption; the rate constants are unaffected if all sorption coeffi-

cients are scaled by the same value [see Eq. (47)].
Sorption predictions rely on calculating the chemical potential of the

penetrant molecule in each sorption state. Details are described in Chapters
9 and 10 of this book. In the low-concentration limit, the required solubility
coefficients for use in Eq. (47) and in diffusion calculations can be calculated
by [154,155]

SA ¼ lim
p!0

Npen

 �
A

hVpolymi

 !
=P ¼

1

kBT
exp �

Vpen

kBT

� �� �
¼

1

kBT
exp �

A
ex

kBT

� �

ð48Þ

The ratio hNpeniA/hVpolymi equals the number of penetrant molecules dis-

solved in a particular sorption state A per total volume of polymer, and P

equals the total pressure. The ensemble average brackets h� � �i imply aver-
aging over all penetrant positions within a sorption state A while the poly-

mer conformation fluctuates within the canonical ensemble according to
V
polym, the total potential energy in the absence of a penetrant molecule.
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A
ex equals the excess chemical potential for a penetrant in sorption state A.

While each sorption coefficient SA depends inversely on the system volume,

the total sorption coefficient S¼
P

ASA is an intensive quantity, since the

number of sorption states varies linearly with the total polymer volume.
Equation (48) applies to the low-concentration limit because it neglects

penetrant–penetrant interactions.
Several methods are available for calculating the excess chemical

potential of a penetrant molecule using molecular simulation. Widom
particle insertion [156,157] is the most straightforward. The potential energy
change that would occur if a penetrant were inserted at a randomly chosen
position is calculated, and the excess chemical potential is proportional to
the average of the resulting Boltzmann factor,

ex ¼ �kBT ln exp �
Vpen

kBT

� �� �
ð49Þ

This approach has been applied several times to small-molecule sorption in
polymers [46,77,158,159]. However, a difficulty arises for moderate-sized or

large penetrants: there would be insufficient space for a penetrant to be

inserted; hence the increase in potential energy is large and the predicted
sorption is low. Several alternative approaches exist, and here we list just a

few that have been applied to penetrant sorption. In mixed canonical/grand

canonical simulations, the penetrant chemical potential is specified and its
concentration fluctuates, but the amount of polymer remains constant

[155,160–162]. In Gibbs ensemble Monte Carlo [163,164], molecule

exchanges between two simulation cells are used to achieve phase equilib-
rium. Thermodynamic integration [22,165] is based on using a coupling

parameter to relate a more easily simulated system to the system of interest,

and several recent penetrant–polymer implementations show promise
[166–168]. Extended ensembles treat these coupling parameters as variables

in the simulation [168–171]. For chemically similar small and large mole-

cules, chain scission/regrowth or connectivity reassignment can be used to

estimate the chemical potential [172,173]. Combinations, such as using
an extended ensemble within a Gibbs ensemble framework [45,174], are

also useful. Other approaches [161,171,175] lead to segment-level incremen-

tal chemical potentials, which are useful for calculating relative solubility.
Finally, it was recently proposed that a polymer membrane in contact with a

penetrant phase can be simulated directly [176].
Techniques that can improve statistical sampling are often crucial in

these approaches. An excluded-volume map can improve efficiency by
focusing particle insertions into free volume voids [159,177–179]. Specially
designed Monte Carlo moves allow polymer chain fluctuations within
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a densely packed system [180–182] (see also Chapter 7). Recent reviews
[183,184] and Chapters 9 and 10 provide in-depth descriptions of meth-
ods for calculating chemical potentials in polymer systems, and their
applications.

Another approach to calculating penetrant sorption [185] is to calculate
the penetrant energy as in the Widom insertion method, but at points along
a regularly spaced lattice, using the results to calculate the Henry’s Law
constant. A related, popular technique is Gusev and Suter’s theory [186],
which couples particle insertion concepts and the voxel method described
above for finding transition states in three dimensions. Their approach is
particularly convenient when applying the frozen polymer method or the
fluctuating polymer method, in part because the voxel calculations are
performed anyway and in part because it has been implemented in a popular
software package [101]. It differs from the prior approach by applying a
local partition function to each sorption state. The resulting functional form
is similar to the popular dual-mode sorption model [1], with a different
Langmuir parameter bi for each state.

One aspect of a typical sorption calculation may require some
modification in order to use the results in a diffusion simulation. As
suggested by Eq. (47) and illustrated below, the sorption coefficient
distribution is required for formulating the jump network and thereby
obtaining the penetrant diffusion coefficient. Thus the sorption calculation
must be formulated such that individual results are obtained for each
sorption state, rather than a single sorption result for an entire simulation
cell. If the network generation method described below will be used (rather
than the molecular-scale jump network that emerges directly from simulated
molecular structures), it is convenient to accumulate sorption correlations
during molecular-level simulations. For example, mutual distributions of
sorption magnitude and sorption state connectivity (number of neighbors
accessible via low-energy paths from each sorption state) can be later
incorporated into a large-scale network.

IX. NETWORK STRUCTURE

For conducting a kinetic Monte Carlo simulation, the most straightforward
choice for a network of sorption states and rate constants is that of the
original molecular structure. Its key advantage is its one-to-one correspon-
dence with the detailed polymer configuration. However, the small size of a
typical simulation box is a disadvantage. For example, in [97] it was
observed that anomalous diffusion continued until the root-mean-squared
displacement equaled the box size. From this match in length scales, it is not
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clear if the anomalous region truly ends or is artificially terminated by
periodic boundary conditions.

The effect of periodic boundary conditions on the network structure of
an amorphous polymer is shown in Fig. 5. The nine images depict a three-
dimensional, 23 Å edge-length simulation cell of atactic polypropylene,
with period replication shown explicitly in two dimensions. Different colors
indicate different sorption states of accessible volume [87]. Within a single
cell, no positional order is apparent. Within the set of periodically replicated
cells, however, an imposed crystallinity is apparent: there is one disordered
box per unit cell, and one’s eye quickly recognizes the periodic array of

FIG. 5 Nine periodic replications of geometric sorption states in a particular

configuration of atactic polypropylene. Penetrant diffusion occurs via jumps among

these states. The states within an individual simulation cell appear disordered, but

the crystalline nature of a periodically replicated set is more visually noticeable.
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sorption states. A dynamical realization of this effect is shown in Figure 2 of
[99]: a hydrogen penetrant sequentially visits periodic images of the same
sorption state in a polyimide matrix.

In [91] we proposed an alternative approach for creating a penetrant jump
network. The original, detailed molecular simulation provides averages and
distributions for the number of sorption states per unit volume, the number
of connections (via low-energy diffusion paths) to neighboring sorption
states, the center-to-center distances along each connection, and the angles
between connections that share a common sorption state endpoint. These
molecular-level correlations can then be used to build up a larger network
using reverse Monte Carlo [91,187]. Sorption state positions and connectiv-
ities are first chosen at random, and Monte Carlo-type moves are used to
improve agreement between the instantaneous characteristics of the jump
network and the overall distributions obtained from detailed molecular
simulations. Such moves entail translating a sorption state position by
�0.5 Å, adding a connection between two previously unconnected sorption
states, or removing an existing connection. The objective function
(analogous to the potential energy) quantifies the similarity between the
instantaneous and target distributions in a least-squares sense. A schedule of
decreasing pseudo-temperatures can then be used to ease the network into
the desired configuration. In previous work [91] we generated networks with
edge lengths of 141 Å, with each network connection corresponding to a
methane pathway within glassy atactic polypropylene. Larger networks are
possible as well; the limiting requirement is sufficient memory to store the
array of angles between jump paths. The computer time required to construct
a network is much smaller than that required for the molecular simulations;
typically an overnight run is sufficient.

Next it is necessary to assign relative sorption probabilities and jump rate
constants to the jump network. The distributions of solubility coefficients
[calculated by Eq. (48)] and rate constants are required. First, a cumulative
solubility coefficient distribution is calculated: PS,tot(S) equals the prob-
ability that a sorption state has a solubility coefficient of S or smaller. Next,
a uniformly distributed random number 0� �<1 is selected in turn for each
sorption state. That sorption state is assigned the value SA for which

PS, totðSAÞ ¼ � ð50Þ

If enough simulation data are available, separate distributions PS,tot(S)

could be tabulated for each amount of connectivity. For example, high

interstate connectivity can be correlated with higher relative sorption

capacity [91]. By design, the resulting network will have a distribution of

sorption coefficients that matches the desired target values.
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Rate constants must then be found that simultaneously satisfy their
desired distribution and Eq. (47). All rate constants in one direction (from
lower to higher sorption state number, for example) can start at a fixed
value, say 1s�1, and reverse rate constants can then be calculated from
Eq. (47). Another reverse Monte Carlo simulation may then be conducted,
with the attempted move being a simultaneous increase or decrease in
the magnitude of a randomly selected pair of forward and reverse rate
constants. Again, repeating many times and using a schedule of decreasing
pseudo-temperatures can lead to reasonable agreement with the desired rate
constant distribution.

The resulting jump networks are then ready for use in a diffusion
calculation. Using different molecular-level polymer configurations to
obtain the target structure, sorption, and rate distributions increases the
likelihood that the resulting large jump network will properly reflect the
characteristics of a polymer sample.

X. KINETIC MC TO DIFFUSION COEFFICIENT

The final step in obtaining a diffusion coefficient is to simulate the dynamics
of a penetrant molecule on the network of sorption states and rate
constants. Analogous to the ‘‘frozen’’ positions of voids and channels in a
glassy polymer, the relative sorption probabilities and jump rate constants
typically remain constant throughout the diffusion simulation. For uniform
rate constants on an ordered lattice, it is possible to solve the dynamics
analytically. For the disordered network found for voids through a polymer
matrix, a numerical solution is required.

Because a penetrant is likely to explore a sorption state for a long time
before jumping, it is reasonable at low concentrations to assume that
individual penetrant jumps are uncoupled from one another and that the
sequential visiting of states is a Markov process [103]. Since each jump
occurs independently, the probability density pW(t) that a time t elapses
before the next jump occurs (the waiting time) is distributed according to a
continuous-time Poisson process [103],

pW ðtÞ dt ¼ R expð�RtÞ dt ð51Þ

R[¼]s�1 equals the overall jumping rate out of all states,

R ¼
X

i

X

j

Ri!jðtÞ ð52Þ
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and

Ri!j ¼ NiðtÞki!j ð53Þ

equals the flux from state i to state j. The average waiting time until the next
jump will occur anywhere on the network equals

Z 1

0

tpW ðtÞ dt ¼

Z 1

0

Rt expð�RtÞ dt

¼ �te�Rt �
e�Rt

R

� �����
1

0

¼ ð�0� 0Þ � 0�
1

R

� �
¼

1

R
ð54Þ

The amount of time that elapses between penetrant jumps thus depends
explicitly on the instantaneous sorption state population and on the distri-
bution of jump rate constants out of occupied states.

The sorption state populations evolve according to a master equation.
For a system in which each sorption state can be represented by a single
local minimum,

dpi

dt
¼ �

X

j

ki!jpi þ
X

j

kj!ipj ð55Þ

Networks generated using methods of Section IX fall in this category.
For some systems, there is a separation of time scales and jumps can be
separated into two categories: fast jumps among different local minima
in the same sorption state and slow jumps between connected sorption
states. For this case, the master equation can be written

dpA

dt
¼ �

X

B

XNB

j¼1

XNA

i¼1

ki!j
pi

pA

 !
pA þ

X

B

XNB

j¼1

XNA

i¼1

kj!i
pj

pB

 !
pB ð56Þ

A and B represent different overall sorption states and i and j are individual
regions of states A and B, respectively. The ratio pi/pA equals the fraction of
sorption in state A that occurs within region i. After some time, the sorption
state probabilities stabilize at their equilibrium values p

eq
i or p

eq
A that satisfy

microscopic reversibility.
The master equations can be solved numerically using kinetic Monte

Carlo simulation [85,86,155]. To begin, a number of independent,
noninteracting ‘‘ghost’’ penetrants are placed in the sorption states of
each network, according to the equilibrium distribution peqA ¼ SA=

P
SA.
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These initial positions are stored in a vector r0. The distribution can be
sampled using the same method as described above when assigning the
sorption coefficients to each sorption state:

. Create a cumulative distribution,

Pn ¼
Xn

i¼1

Si=
XNs

i¼1

Si ð57Þ

. Choose a uniform random number 0� �<1 for each ghost particle

and assign it to the state n for which Pn� 1� �<Pn.

The number of penetrants Np should be much larger than the number of

sorption states Ns in order to sample the probabilities peqA correctly.

The number of penetrants in a state i at a time t is denoted below by Ni(t).
To begin a kinetic Monte Carlo simulation step, the flux along each jump

and their ratio, the probabilities

qi!jðtÞ ¼
Ri!jðtÞ

RðtÞ
ð58Þ

are calculated. Next, the expected waiting time until the next event, 	, is
found as follows. The instantaneous waiting time distribution [Eq. (51)]

leads to a cumulative waiting time distribution by

PW ðtÞ ¼

Z t

0

pW ðtÞ dt ¼ 1� expð�RtÞ ð59Þ

Choosing a probability 0� �<1 then implies a particular time 	 at which

this cumulative probability �¼PW(	) is reached, and solving using Eq. (59)

leads to

	 ¼ �
1

R
lnð1� �Þ ð60Þ

The jump that occurred in this event is chosen from the probabilities qi!jðtÞ

[from Eqs. (53) and (58) a larger rate constant implies a larger probability],

and the particular ghost penetrant leaving state i (if more than one was

present) is chosen uniformly. Selecting from the qi!jðtÞ distribution is per-

formed in the same manner as above, using the cumulative probability

density distribution. The state label for the jumping penetrant is updated,

the occupancies Ni(t) and Nj(t) are reset to account for the jump, and the

process is then repeated many times. Each jump changes the average mean-

squared displacement (it can increase or decrease) and increases the elapsed

time by 	. In practice, only fluxes out of the sorption states i and j that
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involve the most recent jump have to be recalculated according to Eq. (53);
this decreases the number of computations significantly for a large system.

The kinetic Monte Carlo simulation should begin by conducting many
steps in order to equilibrate the penetrant sorption state positions, after which
r0 is reset to zero. A production run can then begin. In the production run, the
net result of many steps (103–104 per particle) is a list of penetrant sorption
state occupancies as a function of time. The mean-squared displacement can
be calculated (during or after the simulation) at each time as

rðtÞ � r0
�� ��2
D E

¼
1

N

XN

i¼1

ðxðtÞi � x0Þ
2
þ ðyðtÞi � y0Þ

2
þ ðzðtÞi � z0Þ

2
� �

ð61Þ

The time-dependent mean-squared displacement will fluctuate from step to
step and will increase over the long term.

Two characteristics of the relationship between the mean-squared
displacement and time are usually of interest. Over long times, mean-
squared displacement will increase linearly with time, and the diffusion
coefficient D can be extracted from the results as

D ¼
1

2d
lim
t!1

@hr2i

@t
¼

1

2d
m ð62Þ

where m is the long-time slope on a linear plot of hr2i vs. t, and d is the
dimensionality.* Over shorter times, diffusion may be anomalous, meaning

hr2i / t n ð63Þ

with n<1. (Note that this is opposite to so-called case II diffusion [188],
in which penetrant mean-squared displacement increases with time squared.
Here diffusion is slower than in the Fickian case.) Features of interest are
the value of the exponent n and the times and distances over which diffusion
is anomalous. Anomalous diffusion can occur due to a distribution of rate
constants [189–191] or network connectivity [24,91,192]; it can also depend
on the penetrant size [42]. The essential feature is a limitation of the diffu-
sion paths such that they cannot span the full dimensionality over the simu-
lation time scales available.

An example of the change in mean-squared displacement with time is
shown in Fig. 6 for methane in atactic polypropylene [91]. These
calculations were performed using a network generated via the methods
described in Section IX. At times of less than 1 ns, little information is

*Even for a network whose connectivity can be described using a fractal dimension, d is the

dimensionality of the space in which the network is represented; i.e., d¼ 2 for surface diffusion

and d¼ 3 for bulk diffusion.
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available. These time scales accessible to MD have been ‘‘coarse grained’’
away in calculating the rate constants. For nanosecond-scale dynamics, MD
is preferable to TST. For times up to 1s or so, an anomalous regime is
predicted in which mean-square displacement increases with time to the 1/2
power (n� 1/2). This value is consistent with Monte Carlo simulations of
anomalous diffusion [193]. After about 5s, Fickian diffusion is predicted,
with D� 10�8 cm2 s�1 at T¼233K. The mean-squared displacement reaches
the box size squared (shown by the dot–dash line) after about 30s, well
after the anomalous regime has ended. While data for this particular system
are not available, the prediction is consistent with extrapolated data for
an ethylene/propylene copolymer [91,194].

XI. SUMMARY AND OUTLOOK FOR OTHER SYSTEMS

Several different methods for simulating small-molecule diffusion in a glassy
polymer have been discussed. The first involved MD simulations at and
above Tg, using an Arrhenius relationship to extrapolate to temperatures

FIG. 6 Mean-squared displacement for methane in glassy atactic polypropylene,

from calculations in [91]. The dot–dash line indicates the box size squared. Dotted

lines indicate diffusion exponents of n¼ 1/2 and n¼ 1. A turnover from anomalous

to Fickian diffusion is predicted over times of 1–5s.
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well below the glass temperature. This approach is straightforward with
typical simulation tools, but it involves a large extrapolation.

Four methods based on transition-state theory were then discussed. The
frozen polymer method is inappropriate for penetrant diffusion in glassy
polymers, because chain fluctuations are intricately coupled to the diffusion
mechanism. Path-based methods are very sound, but the resulting high
dimensionality could pose computational problems.

The average fluctuating polymer method and the explicit polymer method
both account to some degree for polymer chain contributions to each rate
constant. However, there are several differences between the two approaches.
In the average fluctuating polymer method, chains experience harmonic
position fluctuations, with nonlinear resulting energy changes used in the rate
constant calculation. In the explicit polymer method, anharmonic position
fluctuations occur, with harmonic energy fluctuations about the transition
state and local minimum configurations (as the method has been applied
previously). In the average fluctuating polymer method, all elastic position
fluctuations contribute to the rate constant. However, which fluctuation is
coupled to diffusion is not clear. In the explicit polymer method, a complete
set of orthogonal fluctuations (normal modes) about one particular con-
figuration is included, but no other configurations are sampled (in the
harmonic approximation). However, this one configuration sampled
corresponds to the lowest-energy mechanism for the jump itself. In this
sense, the choice of configuration is analogous to the maximum term
approximation in statistical mechanics: while only one set is included, that
set is (at least one of ) the most important. The average fluctuating polymer
method depends on a time scale over which the magnitude of fluctuations
is appropriate, and results vary strongly with a single, hard-to-predict
parameter. The only time scale in applying the explicit polymer method to a
jump is the inverse of the jump rate constant itself, and it is not sensitive to
such a parameter.

The proper choice among these methods depends on the problem of
interest and the software available. While the average fluctuating polymer
method has been applied to single united-atom penetrants, how well it would
work for larger, flexible penetrants is not clear. To date, the explicit polymer
method has been applied to united atom and dimer penetrants. Since the
method already handles hundreds of polymer chain degrees of freedom,
it provides a framework for treating larger penetrants. Indeed, there are no
intrinsic scientific barriers to introducing additional penetrant coordinates,
such as bond or torsion angles. The effects of local, anharmonic changes
in polymer chain configuration should be even more important in those
cases than they are for monatomic and diatomic penetrant molecules,
which will require transition-state theory treatments beyond the harmonic
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approximation. Instead, the barriers are methodological: energy and
coordinate derivatives must be calculated for complicated force fields and
polymer structures, and software that facilitates incorporating such
modifications needs to be developed. Reformulating in other coordinate
systems could also simplify some stages while complicating others. Working
in mass-weighted Cartesian coordinates would simplify the derivations but
increase the matrix computation requirements by about 3.5 times (3 instead
of 2 degrees of freedom per flexible atom, in computations that scale as N3).

Regardless of the method, applications of transition-state theory for
simulating penetrant diffusion are ultimately limited by the physical
diffusion mechanism. For sufficiently large penetrant molecules, the
separation of time scales that accompanies the jump mechanism could
diminish, making it more difficult to distinguish between events that do or
don’t contribute to diffusive motion. How large a penetrant corresponds to
this limit is still a research question.

APPENDIX A: IRC DERIVATION IN GENERALIZED
COORDINATES

To utilize generalized coordinates, it is necessary to reformulate Eqs. (6) and
(7). First, the Hessian with respect to the generalized coordinates must be
related to the Hessian with respect to mass-weighted Cartesian coordinates.
Expanding @=@xi as

P
kð@q

k=@xiÞð@=@qkÞ (as done for the gradient at the
transition state) leads to

Hij ¼
X3N

k¼1

X3N

l¼1

@qk

@xi
@ql

@xj
@2V

@qk@ql
þ
X3N

l¼1

@2ql
@xi@xj

@V

@ql

or

Hij ¼
@q1

@xi
,
@q2

@xi
, . . . ,

@q3N

@xi

� �

@2V

@q1@q1
. . .

@2V

@q1@q3N

..

. ..
.

@2V

@q3N@q1
. . .

@2V

@q3N@q3N

0

BBBBBB@

1

CCCCCCA

@q1

@xj

..

.

@q3N

@xj

0

BBBBBB@

1

CCCCCCA

þ
@2q1

@xi@xj
,
@2q2

@xi@xj
, . . . ,

@2q3N

@xi@xj

� �

@V

@q1

..

.

@V

@q3N

0

BBBBBB@

1

CCCCCCA
ð64Þ
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for each term Hij of the Hessian. Different rows and columns of H result
from taking all i¼ 1, . . . , 3N and j¼ 1, . . . ,3N components, respectively.
The resulting matrix equation is

H ¼ J THqqJ þ

�
@2qT

@xi@xj

�
rqV ð65Þ

Hqq is the Hessian of second derivatives with respect to generalized coordi-
nates and @2qT=@xi@xj, a third-rank tensor, may be thought of as a 3N� 3N
matrix, in which each component is itself a vector; the ijth vector contains
the coordinate transformation second derivatives of q with respect to xi and
x j. The resulting rightmost term is a matrix for which the ijth element is the
dot product of the ijth vector with rqV. This tensor complicates the use
of an analytic Hessian matrix in generalized coordinates, since additional
derivatives are required compared to typical simulation needs.

Next, the proper equation for determining eigenvalues and eigenvectors
must be reformulated. The Hessian H can be replaced using Eq. (65), and
x (renormalized to a small size �x rather than unity) is replaced using

�xi ¼
X3N

j¼1

@xi

@q j
�q j

or

�x ¼ J 0�q ð66Þ

J 0 (introduced in the main text) is the Jacobian matrix of partial derivatives
for transforming from generalized coordinates to mass-weighted coordi-
nates. These substitutions result in

J THqqJ J 0�qþ

�
@2qT

@xi@xj

�
rqV J 0�q ¼ 
 J 0�q ð67Þ

This expression can be simplified after premultiplying by J 0T and using the
identity JJ 0 ¼I , leading to

Hqq�qþJ 0T

�
@2qT

@xi@xj

�
rqV J 0�q ¼ 
J 0TJ 0 �q ð68Þ

The product of Jacobian matrices can then be replaced with the covariant
metric tensor a [Eq. (11)]. If we restrict attention to the transition state,
where rqV ¼ 0, we obtain Eq. (8).

Reformulating the IRC step away from the transition state [Eq. (7)] is
similar. The step �x is replaced using Eq. (66) and the gradient is replaced
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using Eq. (2), leading to

J 0�q ¼ J TrqV �	 ð69Þ

Premultiplying by J 0T, replacing the J 0TJ T product with the identity

matrix, and substituting for the covariant metric tensor using Eq. (11)

leads to Eq. (12).

APPENDIX B: IRC IN A SUBSET OF COORDINATES

The key to reducing the dimensionality of a TST problem is to reformulate
the transition state criterion and the IRC equation such that flexible
coordinates evolve as necessary, while stiff coordinates remain implicitly at
their original values. This suggests formulating incremental position changes
in terms of generalized coordinate changes �q and derivatives in terms of
@=@q. The latter is particularly convenient, since a partial derivative @=@qi is
taken with all other q j(j 6¼ i), both flexible and stiff, held constant.

Narrowing the total step involves dividing it into flexible (�qf) and stiff
(�qs) components,

�q ¼
�qf
�qs

� �

Changes can be made along the flexible coordinates without affecting the

stiff coordinates. The gradient vector is divided as

rqV ¼
rqf

V

rqs
V

� �

Following Weiner [119, x 6.31], we use Greek indices to denote flexible

coordinates, uppercase indices to denote stiff coordinates, and lowercase

indices to denote the entire set.
The Jacobian matrix for transforming from mass-weighted Cartesian to

generalized coordinates can be narrowed in a similar manner. A derivative
@xk=@q� is taken with respect to flexible generalized coordinate q� with all
other generalized coordinates held constant, so no stiff coordinates change
along the direction @x=@q�. Thus the Jacobian matrix J 0 may be divided as

J 0 ¼

@x1

@q1
� � �

@x1

@qf

@x1

@qfþ1
� � �

@x1

@q3N

..

. ..
. ..

. ..
. ..

. ..
.

@x3N

@q1
� � �

@x3N

@qf

@x3N

@qfþ1
� � �

@x3N

@q3N

0

BBBBB@

1

CCCCCA
¼ J 0

f J 0
s

� �
ð70Þ
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where J 0
f and J 0

s are rectangular 3N� f and 3N� (3N� f ) matrices,
respectively.

The covariant metric tensor, a, can be narrowed by subdividing it based
on the flexible and stiff coordinates [119, p. 217]

a ¼

a0 -- a0

-- -- --
a0T -- a00

0

@

1

A ð71Þ

The f� f submatrix a
0 in the upper left is the covariant metric tensor in only

the flexible coordinates. Each element

a�� ¼
X

k

@xk

@q�
@xk

@q�

is unaffected when q� and q� remain flexible, since constrained generalized
coordinates (such as qA) were already held constant implicitly when taking

the partial derivatives. The elements of a
0 may also be found from the

Jacobian matrix in the reduced dimensionality as

a0 ¼ J 0
f
TJ 0

f ð72Þ

using the Jacobian subsets introduced above. Each element of the submatrix

a0 and its transpose a0T involve one flexible coordinate and one stiff coordi-
nate. All derivatives in a00 are with respect to stiff coordinates.

The contravariant metric tensor a�1 in the full space can be subdivided
in a similar manner. However, a subset of a�1 in the reduced space is not
simply a single submatrix, since the partial derivatives that define each term

a�1
�� ¼

X

k

@q�

@xk
@q�

@xk

are taken with all other mass-weighted positions held constant, not all other

generalized coordinates. Instead, the reduced-space contravariant metric
tensor equals the matrix inverse in the reduced dimensionality,

a�10 ¼ ða0Þ�1
ð73Þ

The matrix a�10 is sometimes denoted G [105].
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Several relationships among the submatrices of the covariant and
contravariant metric tensors can also be determined [105]. Since the
matrix product of the covariant and contravariant metric tensors is the
identity matrix [using Eq. (10), aa

�1
¼J 0TJ 0 JJ T

¼J 0T (I ) J T
¼I ),

direct matrix multiplication

a a�1 ¼
a0 a0

a0T a00

� �
a�10 a�10

a�10T a�100

� �
¼ I ¼

I f 0

0 I 3N�f

� �
ð74Þ

(I f is an f� f identity matrix) leads to the simultaneous equations

a0a�10 þ a0a�10T ¼ I f ð75Þ

a0a�10 þ a0a�100 ¼ 0 ð76Þ

Rearranging Eq. (76) and postmultiplying by ða�100Þ
�1 yields

a0 ¼ �a0a�10ða�100Þ
�1

and substituting this into Eq. (75) leads to

a0
�
a�10 � a�10ða�100Þ

�1

a�10T
�
¼ I f

and thus

a�10 ¼ a�10 � a�10ða�100Þ
�1

a�10T
� �

ð77Þ

which, after converting the nomenclature, is equation 10 in [105]. Thus the
contravariant metric tensor in the flexible degrees of freedom may be
calculated directly from the contravariant metric tensor in the full dimen-
sionality. From the similar expression

a�10 a�10

a�10T a�100

� �
a0 a0

a0T a00

� �
¼ I ¼

I f 0

0 I 3N�f

� �
ð78Þ

multiplying the second row of a�1 and the first column of a leads to

a�10Ta0 þ a�100a0T ¼ 0 ð79Þ
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Rearranging and premultiplying yields

a0T ¼ �ða�100Þ
�1

a�10Ta0 ð80Þ

which is used below. Finally, each side of Eq. (74) can be postmultiplied by

a0 0
a0T I

� �

Expanding the matrix products on the left hand side leads to

a
a�10a0 þ a�10a0T a�10

a�10Ta0 þ a�100a0T a�100

 !
¼

a0 0
a0T I

� �
ð81Þ

Substituting using the transpose of Eq. (75) and Eq. (79) leads to

a
I f a�10

0 a�100

� �
¼

a0 0
a0T I

� �
ð82Þ

and taking the determinant of each side yields

det a det a�100 ¼ det a0 ð83Þ

This interrelationship among the magnitude of different metric tensor deter-
minants was first derived by Fixman [195] and is useful in discussions of the
rigid and flexible models of polymer conformation (see Appendix C).

Next, the saddle point and Hessian calculations can be narrowed to a
subset of all coordinates. At a saddle point in the full dimensionality, the
potential energy gradient equals zero with respect to all generalized
coordinates. The same criterion holds for the flexible coordinates in a
subset of the full dimensionality. For constrained degrees of freedom
A¼ fþ 1, . . . ,3N, the stiff potential maintaining the constraints is of the
form

V ¼
X

A

1

2
kstiff Aðq

A � qA0 Þ
2

with each kstiffA conceptually taking on values that approach infinity
[105]. Even for a differential displacement �qA, this energy contribution
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1
2 kstiff Að�q

AÞ
2 would still approach infinity, as would the force kstiff A�q

A.

Hence the only states of finite probability with finite forces correspond to

�qA¼ 0: stiff coordinates retain their original values at saddle points in the

reduced dimensionality. The Hessian submatrix associated with the con-

strained degrees of freedom also takes on a diagonal form, with eigenvalues

given by the stiff spring constants. All these eigenvalues are positive; thus it

is meaningful mathematically to discuss the transition state with respect to

a flexible subset of generalized coordinates. To summarize, a saddle point in

this system of reduced dimensionality is a point at which each element of the

potential energy gradient @V=@q� equals zero for all flexible generalized

coordinates q�, and each eigenvalue of the Hessian in q-space

H�� �
@2V

@q�@q�

is positive except for the lowest, which must be negative. The form of the

eigenvalue equation to solve will be discussed next.
As in the full dimensionality, the first step of the IRC is directed along

the eigenvector corresponding to the negative eigenvalue. The eigenvalue
equation to solve in the subset of flexible coordinates may be found from the
submatrix partitions of a, H, and �q. In order to distinguish between the
flexible and stiff coordinates, it is convenient to premultiply Eq. (8) by a

�1,
leading to

a�10 a�10

a�10T a�100

0

@

1

A
H0

qq H0
qq

H0T
qq H00

qq

0

@

1

A
�qf

�qs

 !
¼ 


�qf

�qs

 !
ð84Þ

Expanding the left hand side leads to separate equations for the flexible and

stiff coordinates,

a�10H0
qq þ a�10H0T

qq

� �
�qf þ a�10H0

qq þ a�10H00
qq

� �
�qs ¼ 
 �qf ð85Þ

a�10TH0
qq þ a�100H0T

qq

� �
�qf þ a�10TH0

qq þ a�100H00
qq

� �
�qs ¼ 
 �qs ð86Þ

As described above, �qAs ! 0 for each stiff coordinate A in the infinite

stiffness limit. Even with the force constants approaching infinity, the

right hand side of Eq. (86) approaches zero, as does the second term on

the left hand side of the same equation. Since the step �qf in the flexible
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coordinates is nonzero, for Eq. (86) to be satisfied the metric tensor
submatrices and the Hessian submatrices must be related such that

a�100H0T
qq ¼ �a�10TH0

qq ð87Þ

After solving for H0T
qq in this limit and substituting the result into Eq. (85),

rearrangement leads to

a�10H0
qq � a�10a�100�1

a�10TH0
qq	 �qf ¼ a�10 H0

qq df ¼ 
 �qf

h
ð88Þ

Premultiplying by a
0 leads to Eq. (14).

Another alternative is to derive Eq. (14) from Eq. (8) by expanding
directly in terms of submatrices of a. Matrix multiplication leads to two sets
of equations, each of which contains �qf and �qs,

H0
qq�qf þH0

qq�qs ¼ 
a0�qf þ 
a
0�qs ð89Þ

H0T
qq�qf þH00

qq�qs ¼ 
a0T�qf þ 
a
00�qs ð90Þ

Setting �qs! 0 in the first leads directly to Eq. (14) . However, the same
limit for the second leads to the seemingly contradictory

H0T
qq�qf ¼ 
a0T�qf ð91Þ

an overspecified system of equations for a typical case in which there are
more stiff coordinates than flexible coordinates. However, this equation is
equivalent to Eq. (14) . The proof first requires substituting Eq. (80) into
Eq. (91) and premultiplying by a�100, which leads to

a�100H0T
qq�qf ¼ �
a�10Ta0�qf ð92Þ

The left hand side can then be replaced using Eq. (87), leading to

�a�10TH0
qq�qf ¼ �
a�10Ta0�qf ð93Þ

Removing the common matrix a�10T from the leftmost side of each side of
this equation yields Eq. (14).

Theodorou (D. N. Theodorou, personal communication, 1993) has
obtained the same results with a derivation that remains in the Cartesian
coordinate system. First, he partitioned the eigenvectors into flexible and

Sorption and Diffusion by TST 475



stiff components, finding that deviations along the stiff eigenvectors must
equal zero. Next, he invoked a harmonic approximation with respect to the
full set of mass-weighted Cartesian coordinates, ultimately obtaining the
same equations as those presented here, within a change of coordinate
system.

The IRC step in a flexible subset of coordinates away from the transition
state also follows from subdividing the step vector and the Jacobian matrix.
Begin with the IRC equation in mass-weighted Cartesian coordinates,
Eq. (7). Substitute for �x using Eq. (66), but note that only a subset of J 0 is
required, since �qA ¼ 0 for each stiff coordinate A. The elements of J 0 that
multiply a nonzero value of �qi correspond exactly to the elements of J 0

f

defined in Eq. (70). Similarly, only the gradients with respect to flexible
generalized coordinates are nonzero

rqf
V ¼ J 0

f
T
rxV ð94Þ

since the gradient with respect to stiff degrees of freedom equals zero in

either the rigid or the infinitely stiff model. Premultiplying Eq. (7) by J 0
f
T
,

substituting with the flexible equivalent of Eq. (66), and using Eq. (94)

results in

J 0
f
T J 0

f �qf ¼ rqf
V �	 ð95Þ

From Eq. (72) above, the product J 0
f
TJ 0

f equals the covariant metric tensor
in the reduced coordinate system, yielding Eq. (15).

To evaluate the rate, it is necessary to combine expressions for the
partition functions at the local minima and at the transition state. The latter
partition function is one dimension smaller than that of the former, since
integration is limited to the (3N� 1)-dimensional dividing surface that
passes through the transition state. An exact differential equation for this
surface exists [112], but its evaluation is difficult; it amounts to following the
3N� 1 intrinsic reaction coordinates defined by taking the first step along
an eigenvector associated with a positive eigenvalue. A common assumption
is to approximate the dividing surface near the transition state with a
hyperplane orthogonal to the eigenvector corresponding to the negative
eigenvalue; the dividing plane is orthogonal to the step taken away from the
transition state. The resulting equation can be written in a flexible subset of
generalized coordinates as

ðx� xzÞ � �x�
 ¼ ðqf � q
z

f Þ
T a0 �qf �
 ¼ 0 ð96Þ
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where �x�
 and �qf�
 are the eigenvectors that correspond to the negative

eigenvalue in mass-weighted Cartesian coordinates and in the flexible subset

of generalized coordinates. In terms of the normal modes that correspond

to the flexible generalized coordinates, this surface restricts integration to

modes with real frequencies. From the orthogonality of eigenvectors, all

these modes are normal to the first step along the reaction coordinate.

APPENDIX C: CHOICE OF POLYMER MODEL—
FLEXIBLE, RIGID, OR INFINITELY STIFF

An important question first recognized in the 1960s and 1970s [105,195,196]
concerns whether statistical mechanical models of polymers consider certain
degrees of freedom (traditionally bond lengths and sometimes bond angles)
to be either (1) rigidly constrained to their initial values or (2) theoretically
allowed to fluctuate, but under a harmonic potential with force constants
that approach infinity. The two approaches lead to different relative
probabilities for each polymer chain conformation and hence to different
partition functions, and G �oo and Scheraga [105] showed that option 2, the
‘‘flexible model in the limit of infinite stiffness,’’ more closely resembles the
true quantum-mechanical partition function.

In Monte Carlo simulation, the choice of polymer model is governed
by the choice of attempted moves. Typically kinetic energy is integrated
analytically over all modes, and the partition function for the flexible model
in the limit of infinite stiffness results [105]. In molecular dynamics,
constraints (SHAKE, etc.) freeze kinetic energy contributions and the
partition function for the rigid model results [105,197]. To achieve sampling
from the desired partition function, it is necessary to add a pseudopotential
based on the covariant metric tensor a0 [198].

For modeling penetrant diffusion in polymers using transition-state
theory, it is important to show that the approaches for following the IRC
correspond to the flexible model in the limit of infinite stiffness, rather than
to the rigid model. At first, it would seem that reducing the dimensionality
by constraining particular generalized coordinates must correspond to the
rigid model. In the development above, the constraints on the reaction path
were incorporated directly into the basis vectors of configuration space [via
Eqs. (11), (14), (15)] without introducing a form of the potential. What
would happen if the full dimensionality were retained while force constants
for stiff degrees of freedom increased in magnitude? For an infinitely stiff
chain, any slight perturbations of the bond length would increase the
potential energy towards infinity and the probability of observing such a
state would drop exponentially to zero. However, if the basis vectors in the
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full dimensionality are followed (i.e., use of a�1 or a rather than a�10 or a0 in
the IRC equations), even infinitesimal steps would induce changes in the
stiff degrees of freedom, since each change depends on all elements of the
gradient,

dqA ¼
X

j

�X

k

@qA

@xk
@q j

@xk

�
@V

@q j
ð97Þ

and the coordinate transformation derivatives @qA=@xk are independent of
the potential energy and are conformation-dependent. The only way to
maintain a reasonable energy after a step is to ensure that the stiff degrees
of freedom do not change, and hence to step along the basis vectors found

using only the flexible generalized coordinates. These basis vectors are set by

the matrix a
0 and its contravariant inverse, a�10, as suggested by Fixman

[195]. Thus, both a ‘‘rigid’’ polymer and an ‘‘infinitely stiff’’ polymer step
along the same basis vectors, and the above development of the IRC
equation does not select one model over the other.

Why is this IRC formulation insensitive to the choice of polymer model?
In G �oo and Scheraga’s treatment [105], differences between the two models
originated when integrating the kinetic energy [197]. In the flexible model,
the independent variables were the Cartesian coordinates X and their
conjugate momenta p. The kinetic energy terms are uncoupled (a and a

�1

are diagonal) in these coordinates (equation 4 in [105]), and integration is
analytic. The Jacobian determinant det J 0 that appears when converting
from the mass-weighted Cartesian representation x to the generalized
coordinates q is only a function of the bond lengths and bond angles, and
the partition function may be written as [105]

Q ¼
2�kBT

h2

� �3N=2Z
d qf detJ 0 exp �

Vðqf Þ

kBT

� �
ð98Þ

where the Jacobian determinant is intentionally kept inside the integral.
(Only parts of it may be removed if some bond angle force constants do
not approach infinity.) The masses have been absorbed into the generalized
coordinates q.

In the rigid model, the independent variables are the generalized
coordinates q and their conjugate momenta Pr (equation 12 in [105]). The
kinetic energy

T ¼
1

2
_qqT a0 _qq ¼

1

2
Pr

T a�10 Pr ð99Þ
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couples all generalized momenta on a given chain, since the contravariant
metric tensor is nondiagonal, and integration of the kinetic energy requires
yet another change of coordinates, now from the conjugate momenta Pr to

the normal modes � of the kinetic energy. The Jacobian determinant of this

transformation is ½det a�10	
�1=2, resulting in the partition function for the

rigid model,

Q ¼
2�kBT

h2

� �3N=2Z
d qf

1

det a�10

" #1=2

exp �
Vðqf Þ

kBT

� �
ð100Þ

or

Q ¼
2�kBT

h2

� �3N=2Z
d qf det a0

� �1=2
exp �

Vðqf Þ

kBT

� �
ð101Þ

Hence the appearance of the metric tensor inside the integral is due to the
nondiagonal nature of the kinetic energy in the constrained space.

G �oo and Scheraga also showed that the Jacobian determinant in the
flexible model could be expressed as the Jacobian determinant used in the
rigid model multiplied by a number of classical harmonic oscillators, each
contributing kinetic and potential energy to the Hamiltonian. This
relationship is summarized by Eq. (83). Integration over the kinetic
energy part led to cancellation of (det a0)1/2 in the configurational integral,
while integration over the potential energy led to an arbitrary constant
multiplying Q. The treatments of the two polymer models are identical in
terms of only the potential energy. Within the IRC formalism, dissipation of
kinetic energy is instantaneous, and the kinetic energy need not be treated
until rate constants (and partition functions) are evaluated. In summary, the
method of following the IRC described above only specifies the Riemannian
geometry of the reaction path; it does not choose a physical model of the
classical statistical mechanics. Such a choice is made only when calculating
the rate constants.

APPENDIX D: EVALUATING THE SINGLE VOXEL
PARTITION FUNCTION

To apply the average fluctuating polymer method, it is necessary to integrate
the Boltzmann factor over fluctuations in each polymer atom position
[Eq. (42)]. Each single voxel partition function appears to depend on the
penetrant position (i.e., the voxel location) and the locations of all
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neighboring atoms. Fortunately, Eq. (42) can be reformulated into two
different, simpler forms, each amenable to numerical solution. Below we
detail how to calculate each individual integral in Eq. (42).

The first approach is to replace each polymer atom coordinate xi by the
sum of its original position hxii and a deviation vector,

xi ¼ hxii þ 2h�2i
� �1=2 t0i

u0i
v0i

0

@

1

A ð102Þ

Below we leave off each atom subscript i from the deviation vector in order
to simplify the notation. Differential changes in (xi�hxii) and (t0, u0, v0)T are
related by a Jacobian

dðxi � hxiiÞdðyi � hyiiÞdðzi � hziiÞ ¼ 2h�2i
� �3=2

dt0du0dv0

The square of each penetrant–polymer atom separation can then be
written as

D2
i ¼ rpx � hxii �

ffiffiffiffiffiffiffiffiffiffiffiffi
2h�2i

p
t0

� �2
þ rpy � hyii �

ffiffiffiffiffiffiffiffiffiffiffiffi
2h�2i

p
u0

� �2

þ rpz � hzii �
ffiffiffiffiffiffiffiffiffiffiffiffi
2h�2i

p
v0

� �2

The contribution to the configurational integral can then be written as
(using a Lennard-Jones potential as an example)

ZjiðrpÞ¼�
�3=2

Z 1

�1

Z 1

�1

Z 1

�1

exp �
4�ip
kBT

�12ip

D2½ 	
6
�
�6ip

D2½ 	
3

 !" #
e�t02e�u02e�v02dt0du0dv0

ð103Þ

and its value depends on the orientation vector rp � hxii: Three-dimensional
numerical integration could then yield the value of the integral.

Fortunately a simpler integration scheme is possible. Prior to substituting
as in Eq. (102), the coordinate system can be rotated, without any loss in
generality, such that the vector rp � hxii lies along the z axis in the rotated
coordinate system. The penetrant–polymer atom distance simplifies to

D2
i ¼ 2h�2it02 þ 2h�2iu02 þ rpz � hzii �

ffiffiffiffiffiffiffiffiffiffiffiffi
2h�2i

p
v0

� �2
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and the contribution to the configurational integral depends only on the

original distance between the penetrant and polymer atom, jrp � hxiij. Zji

can then be evaluated using Gauss–Hermite integration [199], in which an

integrand containing e�x2 is approximated by

Z 1

�1

f ðxÞ expð�x2Þ dx �
Xn

k¼1

wk f ðxkÞ ð104Þ

i.e., the function f evaluated at the roots xk of a Gauss–Hermite polynomial

and scaled by weighting factors wk. For the contribution of one penetrant–

polymer atom separation to the overall configurational integral,

Zji jrp�hxiij
� �

¼ ��3=2

Z 1

�1

Z 1

�1

Z 1

�1

exp �
V ip

kBT

� �
expð�t02Þexpð�u02Þexpð�v02Þdt0du0dv0

¼ ��3=2
X

kz

wkz

X

ky

wky

X

kx

wkx exp �
4�ip
kBT

2

6664

0

BBB@

2

6664

�
�12ip

2h�2it0k
2
þ2h�2iu0k

2
þ rpz�hzii�

ffiffiffiffiffiffiffiffiffiffiffiffi
2h�2i

p
v0k

� �2	 
6

0

BBB@

�
�6ip

2h�2it0k
2
þ2h�2iu0k

2
þ rpz�hzii�

ffiffiffiffiffiffiffiffiffiffiffiffi
2h�2i

p
v0k

� �2	 
3

1

CCCA

3

7775

1

CCCA

3

7775

ð105Þ

For an odd order n, one Gauss–Hermite root equals zero, meaning the

energy is evaluated at the voxel center (t0, u0, v0)¼ (0, 0, 0). Each individual

configurational integral is thus determined by the summation in Eq. (105).

The rotation of the interatomic vector to along the z axis is useful because

it allows the function Zji jrp � hxij
� �

in Eq. (105) to be pretabulated in one

dimension (the separation), rather than evaluated from scratch for each

penetrant–polymer atom separation in each voxel. The pretabulated func-

tion thus depends on jrp � hxij=�, h�2i1=2=�, and �/kBT. The same procedure
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can be applied for other two-body potentials by making appropriate

substitutions for V ip in Eq. (105).
The second approach is to express the deviation vector between xi and

hxii in spherical coordinates,

x� hxii ¼ 2h�2i
� �1=2

r sin � cos�

y� hyii ¼ 2h�2i
� �1=2

r sin � sin�

z� hzii ¼ 2h�2i
� �1=2

r cos �

with Jacobian

dðxi � hxiiÞdðyi � hyiiÞdðzi � hziiÞ ¼ 2h�2i
� �3=2

r2 sin � drd�d�

The coordinate r is allowed to vary over �1� r�1, restricting the �
coordinate to 0� ���. The penetrant–polymer atom separation can then

be written

D2
i ¼ ðrpx � hxiiÞ

2
þ ðrpy � hyiiÞ

2
þ ðrpz � hziiÞ

2
þ 2h�2ir2 � 2

ffiffiffi
2

p
h�2i

1=2
r

� ððrpx � hxiiÞ sin � cos�þ ðrpy � hyiiÞ sin � sin�þ ðrpz � hziiÞ cos �Þ

As above, the penetrant–polymer separation vector can be rotated, without

loss in generality, to lie on the z axis of the rotated coordinate system.

The components ðrpx � hxiiÞ and ðrpy � hyiiÞ then both equal zero, and the

separation distance is

D2
i ¼ rpz � hzii

� �2
þ2h�2ir2 � 2

ffiffiffi
2

p
h�2i

1=2
rðrpz � hziiÞ cos � ð106Þ

The � coordinate has no impact on the distance in this rotated frame,

so integration is analytic. The remaining integral for each polymer atom

contribution to the single voxel partition function is

Zji jrp�hxiij
� �

¼
2ffiffiffi
�

p

Z 1

�1

drr2expð�r2Þ

Z 1

0

dðcos�Þexp �
4�ip
kBT

�12ip

ðD2
i Þ

6
�
�6ip

ðD2
i Þ

3

 !" #

ð107Þ
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A numerical scheme such as the trapezoidal rule or Simpson’s rule [109] can

be used for the integral over cos �, with Gauss–Hermite integration used

to integrate over r.
In comparing the two methods at a fixed separation of 5 Å, we found

essentially identical results so long as enough terms were used. For the first
approach, 7–9 terms within each sum were sufficient (73¼ 343 terms in all).
For the second approach, 7–9 Gauss–Hermite terms were sufficient as well,
but in combination with of order 104 trapezoidal terms. The first method
(wholly in Cartesian coordinates) is thus recommended for pretabulating
the function Zji(Di).

Even within the approach based on Cartesian coordinates, more
Gauss–Hermite terms are required for each coordinate at shorter separa-
tions. Figure 7 compares the modified potential energy �kBT lnZji(r) as
calculated using 3–16 terms. Within the repulsive regime, using too few
terms leads to oscillations about the potential of mean force calculated with
more terms. The smaller the separation included, the more terms required.

FIG. 7 Modified potential energy between a penetrant and a single polymer atom,

within the average fluctuating polymer method. Different lines correspond to the

numerical results based on different numbers of Gauss–Hermite terms. The same

number of terms was used for each of the x, y, and z coordinates. Increasing the

number of terms decreases oscillations at small separations.
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In practice, this additional requirement is not a large burden if a
pretabulated integral Zji is constructed.
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Theory Simul. 2000, 9, 293–327.
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15
Coarse-Graining Techniques

K. BINDER and WOLFGANG PAUL Johannes-Gutenberg-Universität
Mainz, Mainz, Germany

SERGE SANTOS and ULRICH W. SUTER Eidgenössische Technische
Hochschule (ETH), Zurich, Switzerland

I. INTRODUCTION AND OVERVIEW

For many materials, it is difficult to span the wide range of scales of length
and time from the atomistic description to that of macroscopic phenomena.
For polymers, this ‘‘multiscale problem’’ is particularly severe, since a single
flexible macromolecule already exhibits structure on many length scales
(Fig. 1), and is a slowly relaxing object [1,2]. In addition, one often wishes to
consider systems with multiple constituents (concentrated polymer solutions
or blends, mixtures of homopolymers and block copolymers or polymers of
different architecture) which exist in several phases, and then the scales of
length and time that are of physical interest truly extend from the subatomic
scale (relevant for the electronic structure of polymers, their chemical
reactions, excited states, etc.) to the macroscopic scale (e.g., phase separated
domains of the scale of micrometers or larger, glassy relaxation on the scale
of seconds or hours, etc.) [3].

Since there is no hope of treating all these scales equally well in a single
type of computer simulation, the idea of ‘‘coarse-graining’’ has emerged
[4,5], where a mapping was attempted from an atomistically realistic
description of polymers such as polyethylene (PE) or bisphenol-A-
polycarbonate (BPA-PC) towards the bond fluctuation model [6,7]; see
Fig. 2. Now coarse-grained lattice models such as the self-avoiding walk
model or the bond fluctuation model in its standard form have been used for
a long time to model polymers qualitatively, but this has the obvious
drawback that the information on the chemical structure of the considered
polymer is lost completely, and thus nothing can be said on structure–
property relationships. Though these standard coarse-grained models are
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FIG. 2 A chemically realistic description of a polymer chain (bisphenol-A-

polycarbonate [BPA-PC] in the present example) is mapped approximately onto

the bond fluctuation model by using suitable potentials for the length ‘ of the

effective bonds and the angles between them. In this example (3:1 mapping) one

chemical repeat unit of BPA-PC containing n¼ 12 covalent bonds along the

backbone of the chain is translated into three effective bonds. From Paul et al. [5].

FIG. 1 Schematic illustration of the various length scales of a macromolecule.

Polyethylene is used as an example. From Binder [1].
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nevertheless useful for some purposes (see Chapter 4), the idea to be
described here is the attempt to keep some information about the chemical
structure indirectly also on the coarse-grained level. Thus, although the
lattice spacing of the model in Fig. 2 corresponds to about 2 Å, and hence
clearly the detailed packing of the various atoms or atomic groups in the
polymer melt or glassy state cannot be directly represented, some
information on such properties is kept indirectly, via the potentials U(‘),
V(#) for the lengths, ‘, of the effective bonds and the angles, #, between
them. Chemically different polymers are then described by different
potentials.

Obviously, constructing the effective potentials explicitly will not be very
straightforward [8,9], and also the description of physical properties by
means of such a coarse-grained lattice model cannot be expected to be
perfect. Thus, the idea has arisen to use the coarse-grained model only as an
intermediate step for a simulation that equilibrates the long wavelength
degrees of freedom of the polymer and then to carry out an ‘‘inverse
mapping’’ where in Fig. 2 the arrow is simply read backwards! However, this
step is technically very difficult, and although it has been under discussion for
the bond fluctuation model for more than a decade now, it has not yet
actually been performed successfully (only for another type of lattice model
on the face-centered cubic lattice, obtained from chains on the diamond
lattice where every second monomer is eliminated, see [10,11], has a reverse
mapping been possible). The explicit construction of potentials for coarse-
grained degrees of freedom [such as U(‘),V(#)] and the inverse mapping has
successfully been carried out for a coarse-grained continuum model rather
than a lattice model, e.g., a bead-spring model [12,13]. The basic idea is the
same in all these methods (Fig. 3), but there is considerable freedom in
defining the details of this procedure. For example, in the case of bisphenol-
A-polycarbonate a 2:1 mapping to a bead-spring chain was performed
[12,13], i.e., one chemical monomer (representing 12 consecutive covalent
bonds along the chain backbone, see Fig. 2) is mapped onto two effective
monomers. Taking the geometrical centers of the carbonate group and of the
isopropylidene group as the sites of the effective monomers, it is actually
advantageous to allow for a difference between these effective monomers:
thus, the coarse-grained chain representing BPA-PC is not a bead-spring
model of a homopolymer A,A,A,A . . . , but rather a bead-spring model of
an alternating copolymer ABAB. . . . The crucial point of all these models,
however, is such that on the coarse-grained length scale the effective poten-
tials U(‘), V(#) are much smaller than the atomistic potentials for the lengths
of covalent bonds or the angles between them, and torsional potentials on the
coarse-grained level can be neglected completely. As a result, on the coarse-
grained level all potentials are on the same scale of energy, unlike the
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atomistic level where the scales for the potentials of covalent bond lengths
and angles are much higher than the weak Lennard-Jones type nonbonded
forces. Hence, while on the atomistic scale a Molecular Dynamics time step
on the femtosecond scale is needed, the molecular dynamics time step for a
coarse-grained bead-spring model can be several orders of magnitude larger.
As a result, one can reach equilibrium for distinctly lower temperatures using
the coarse-grained model than with the atomistic simulation, and somewhat
larger length scales are accessible, too.

Nevertheless, one must admit that this step emphasized in Figs. 2 and 3
is only a modest first step towards the goal of bridging the gap between
the length and time scales of atomistic simulations and the scales of
macroscopic phenomena in materials science. The same caveat applies to
other interesting alternatives to this mapping procedure, which we shall not
describe in detail here, such as mapping to ellipsoidal rather than spherical
effective monomers [14,15], or generating configurations of dense polymer
melts by constructing an ensemble of curves of constant curvature, using
stream lines of a vector field that never intersect [16,2]. But how can one get
from the scales of, say, 10 nm and 100sec, that are only accessible to the
coarse-grained models, to still much larger scales?

One line of attack to this problem is to try to use a next mapping
step from a bead-spring chain to a still much cruder model. For instance,

FIG. 3 Illustration of the coarse-graining procedure, starting out from a united-

atom model for polyethylene as an atomistic description (the larger spheres show a

segment of polyethylene at a temperature T¼ 509K taken out of a molecular

dynamics melt). One coarse-grained bond (straight line) represents the end-to-end

distance of n¼ 5 consecutive united-atom bonds. The effective monomers (black

dots) actually are represented by the eight sites of an elementary cube of the simple

cubic lattice, if a mapping on the bond fluctuation model is used; if a mapping on a

bead-spring chain is used, the effective monomers (black dots) are represented by the

repulsive part of a suitable Lennard-Jones potential, and the effective bonds are

‘‘anharmonic springs’’ described by the FENE potential. From Tries et al. [9].
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Murat and Kremer [17] try to map whole chains of soft ellipsoidal particles,
which then must be allowed to overlap strongly in the melt. This approach
seems particularly useful for a description of heterophase structures in
polymeric materials, such as polymer blends that are unmixed on
nanoscopic scales. It seems promising to combine this model or related
approaches [18] with efficient techniques for describing the time evolution,
making use of the fact that very soft potentials between the effective
particles allow rather large time steps, such as dissipative particle dynamics
[19]. While these approaches clearly are very promising avenues for further
research, we feel it is premature to review them here simply because this field
is at its beginning and at the same time rapidly developing.

Another line of attack is the idea of bypassing this step-to-step mapping
from one scale to the next by directly making connections between the
atomistic scale and the macroscopic continuum scale by performing
calculations on both scales simultaneously and appropriately connecting
them [20,21]. We shall briefly describe the essential ideas of this approach,
emphasizing mechanical properties, in Section III of this chapter (a first
application to plastic deformation of bisphenol-A-polycarbonate can be
found in Chapter 12 of this book). In the following section, we shall explain
the mapping alluded to in Figs. 2 and 3 in some more detail, while Section
IV summarizes a few conclusions.

II. MAPPING OF ATOMISTIC MODELS TO THE BOND
FLUCTUATION MODEL

In this section, we shall focus on polyethylene exclusively because this is a
chemically simple polymer and for this case the mapping procedure has been
investigated in greater detail than for any other polymer [9]. Using a united-
atom description for the CH2 groups, a potential of the following type
results [22,23]

H ¼
XNp�1

j¼1

H‘ðljÞ þ
XNp�2

j¼1

H�ð�jÞ þ
XNp�2

j¼2

H�ð�jÞ þ
X

j 6¼i

HLJ ð~rrijÞ ð1Þ

where H‘(‘j)/ �(‘j� ‘cc) with a fixed bond length ‘j¼ ‘cc¼ 1.53 Å, while the

potential for the cosine of the bond angles �j was assumed harmonic,

H�ð�jÞ ¼
f�

2
ðcos �j � cos �0Þ

2, �0 ¼ 1108, f� ¼ 120 kcal=mol ð2Þ
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The torsional potential was parameterized as follows,

H�ð�jÞ ¼
X3

k¼0

ak cos
k �j ð3Þ

with constants a0¼ 1.736, a1¼ 4.5, a2¼ 0.764, and a3¼�7 (in units
kcal/mol).

Finally, the nonbonded interaction is expressed in terms of the well-
known Lennard-Jones potential with parameters �¼ 4.5 Å (position of the
minimum), "(CH2–CH2)¼ 0.09344kcal/mol, "(CH3–CH3)¼ 0.22644kcal/mol,
and "(CH2–CH3)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðCH2�CH2Þ"ðCH3�CH3Þ

p
. This model is a very

good representation of reality, as the direct comparison of molecular
dynamics simulations for C100H202 at T¼ 509K with neutron spin echo data
shows [24].

The statistical mechanical concept underlying the coarse-graining
approach is the same as for the renormalization group treatment of critical
phenomena. Suppose we have a microscopic model with degrees of freedom
~xx (e.g., the bond lengths, bond angles, etc. of a chemically realistic polymer
model). The canonical partition function of this model is given as

Z ¼
X

~xxf g

exp ��H ~xx
� �� �

ð4Þ

where �¼ 1=kBT and the sum is to be interpreted as an integral for contin-
uous degrees of freedom. Let us further assume that we have chosen a set of
mesoscopic degrees of freedom (e.g., the lengths and angles of the coarse-
grained bonds in Fig. 3), denoted by ~mm. Then we can write

Z ¼
X

~mmf g

X

~xxf g ~mm

exp ��H ~xx
� �� �

ð5Þ

where the sum over f~xxg is restricted to a fixed set of mesoscopic variables ~mm.
Introducing a generalized free energy F ~mm,T

� �
by writing

Z ¼
X

~mmf g

exp ��F ~mm;T
� �� �

ð6Þ

we see that this defines a mapping from the probabilities for the microscopic
configurations pð~xxÞ ¼ ð1=ZÞ expf��Hð~xxÞg to those for the degrees of free-
dom pð ~mmÞ ¼ ð1=ZÞ expf��Fð ~mm,TÞg.

On the mesoscopic scale we are dealing with a free energy and not with a
Hamiltonian, so that such a mapping has to be done for each temperature
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separately. The generalized free energy on the mesoscopic scale in general
has to be determined numerically from the partial trace expf��Fð ~mm,TÞg ¼P

f~xxg ~mm
expf��Hð~xxÞg.

In the case of melt polymers we are in the fortunate situation, that the
large scale statistical properties of such chains are the same as for isolated
chains under Theta conditions, i.e., those of a random walk. We can there-
fore generate Theta chains for the atomistic model and evaluate the
probability distribution p(L, �) for adjacent coarse-grained bond lengths and
bond angles (see Fig. 4).

Using Eqs. (1)–(3), short single chains are simulated by simple sampling
type Monte Carlo methods, as described by Baschnagel et al. [4,25]; see
also Chapter 4 by K. Binder et al., ‘‘Polymer Models on the Lattice,’’
and Chapter 3 by R. Hentschke, ‘‘Single Chain in Solution,’’ for a general
explanation of the simple sampling method for polymers. However, a
problem is that a cutoff in the Lennard-Jones interaction along the chain
must be introduced in order for an isolated chain to show asymptotic
Gaussian Theta behavior. One must include the interaction of each unit with
its fourth-nearest neighbor along the chain to account for the pentane effect,
while further distant neighbor interactions are eliminated. Now n0 successive
CH2 groups are mapped onto m effective bonds. To some extent, the choice
of the pair of integers (n0,m) is arbitrary, but it is clear that neither one of
the integers n0/m and m should be too large, in order that the method is
practically feasible. The optimal choice of n0 and m so that the crude coarse-
grained model can represent the atomistic details indirectly as faithfully as
possible, is a subtle problem, and clearly will depend on the chemical
structure of the polymer that is studied. For polyethylene, the choice m¼ 2,
n0 ¼ 10 (i.e., five CH2 groups map onto an effective bond, anticipated in
Fig. 3) was found to be the best choice, by trial and error [9]. One should
note that the freedom in this choice is constrained by the fact that a
reasonable volume fraction of occupied sites (such as �¼ 0.5) must
correspond to melt densities, and the m effective bonds with the bond
angle #¼ 0 must reproduce the length of a piece of n0 units of an all-trans
chain, for geometric consistency.

With these conditions, the experimental density of amorphous poly-
ethylene at room temperature leads to a correspondence between one lattice
spacing and a physical length of a¼ 2.03 Å. Figure 4 shows the probability
distributions of the coarse-grained bond length L and the bond angle #
between two such bonds, choosing n0 ¼ 10 C–C bonds [9]. Instead of using
these probability distributions directly (as was done in [12,13]) we choose to
characterize them by their first two moments, taking into account cross-
correlations, and record the moments hLi, hL2

i, h#i, h#2i, hL#i over a wide
range of temperatures from T¼ 250K to T¼ 800K. These moments are used
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FIG. 4 Probability distribution of (a) the coarse-grained bond length L and (b) the

bond angle � between two such coarse-grained bonds, choosing n0 ¼ 10, m¼ 2. From

Tries et al. [9].
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as an input in a nonlinear fitting procedure, by which the parameters of the
effective potentials Uð‘Þ, Vð#Þ for the length ‘ of the effective bonds and the
angles # between them are determined. We parameterize these potentials as
follows

U ‘ð Þ ¼ u0 ‘� ‘0ð Þ
2
þ ð1=T � h1=TiÞu1 ‘� ‘1ð Þ

2
ð7Þ

V #ð Þ ¼ v0 cos#� c0ð Þ
2
þ ð1=T � h1=TiÞv1 cos#� c1ð Þ

2
ð8Þ

where h1=Ti denotes an average over the temperatures where input informa-

tion from the atomistic calculation (such as shown in Fig. 4) is used [8].
From this fit the eight parameters u0, u1, ‘0, ‘1, v0, v1, c0, c1 are obtained,

as well as the time constant 	0 that is necessary to translate the Monte Carlo
time units [¼ one attempted Monte Carlo step (MCS) per effective
monomer] into a physical time. As is well known, the ‘‘random hopping’’
algorithm for the bond fluctuation model, where one selects an effective
monomer randomly and tries to displace it in a randomly chosen lattice
direction, can represent the Rouse-like or reptation-like dynamics of dense
polymer melts in a rough way [2,26]; see also Chapter 4. But the Monte
Carlo method never has an intrinsic physical time scale of its own, and just
as the density of polyethylene needs to be used to give the length unit of the
lattice model a physical meaning, one also needs physical input for the time
unit. It is desirable to map the mobility of the lattice model onto the average
jump rate of the torsional degrees of freedom of the chain, since these
motions dominate the relaxation of its overall configuration. Thus a
temperature-dependent time unit 	MC(T ), which one attempted MCS per
monomer corresponds to, is introduced via

1

	MC Tð Þ
min 1; exp �

4H

kBT

� �	 
� �
¼

1

	0

1

Ntor

X

tor

Ator Tð Þ ð9Þ

Here �H is the energy change in the Monte Carlo move, to be calculated
from Eqs. (7) and (8), so h. . .i is just the average acceptance factor, using the
Metropolis transition probability for Monte Carlo moves as usual [26]. The
attempt frequency of torsional jumps in the atomistic models is denoted as
1/	0,Ntor being the number of torsional degrees of freedom in the coarse-
grained unit and Ator their average activated jump probability. We define an
average energy barrier h�Ei from

P
tor AtorðTÞ=Ntor � expð�h�EikBTÞ, and

write

	MC Tð Þ ¼ ABFL 1ð Þ	0 exp �Emin=kBTð Þ ð10Þ
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where ABFLð1Þ is the acceptance probability of the Monte Carlo moves in
the athermal (T¼1) bond fluctuation model, and �Emin the smallest
energy barrier in the torsional potential. Equations (9) and (10) yield a
further mapping condition that the potentials U(‘), V(#) must fulfill, namely

min½1; exp ��H=kBTð Þ	
 �

¼ ABFL 1ð Þ exp � �Eh i ��Eminð Þ=kBT 	½ ð11Þ

Including this information on the energy barriers of the torsional potential
into the mapping that fixes the parameters of the potential U(‘), V(#)
implies that not all the many choices of bond lengths and bond angles
occurring in the bond fluctuation model can correspond to minima of the
torsional potential. On the other hand, for temperatures in the range from
T¼ 250K to T¼ 800K geometrical properties such as P(L) and P(�), cf.
Fig. 4, would be dominated by the minima of the torsional potential
only. Figure 5 shows the time rescaling factor as obtained from Eq. (10),
determining the absolute scale by equating the chain self-diffusion coef-
ficient measured in the simulation at 450K to the experimentally known
value [27]. While at T¼ 509K 	MC� 10�11 sec, one sees that at T¼ 200K

FIG. 5 Time rescaling factor 	MC(T ) for the coarse-grained Monte Carlo model for

polyethylene plotted vs. temperature. The constant 	0 in Eq. (10) was fixed by fitting

the self-diffusion constant DN for C100H202 to experiment at T¼ 450K. From Tries

et al. [9].
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	MC(T ) has increased to about a nanosecond. Since Monte Carlo runs of the

order of 107 MCS are easily feasible, this means that relaxation processes on

the millisecond time range can be explored. Figure 6 shows that in this way a

reasonable prediction for the temperature dependence of both static and

dynamic properties of polyethylene melts over a wide temperature range

is obtained, including the melt viscosity [27], with no further adjusted para-

meters. Of course, this modeling accounts neither for the ‘‘breaking’’ of

covalent bonds at high temperatures, nor for crystallization of polyethylene

(that occurs for T<Tm¼ 414K), and a further weak point at the present

stage is that attractive intermolecular interactions have been omitted as well.

The off-lattice coarse-grained models [12,13] have not included attractive

intermolecular forces either, and thus none of these approaches yields a

FIG. 6 (a) Characteristic ratio of polyethylene plotted vs. temperature, for N¼ 20

effective monomers (representing C100H202). Symbols denote two versions of the map-

ping (an exact one, needing four subsequent bonds, and an approximate two-bond

procedure). (b) Logarithm of the viscosity of C100H202 plotted vs. inverse temper-

ature, where full dots are from a constant density simulation of the bond fluctuation

model with the potentials of Eqs. (7) and (8), using simulated self-diffusion constants

DN in the Rouse model formula � ¼ ð�=8a3ÞðhRg2i=6ÞkBT=NDN . Open triangles are

experimental data obtained by Pearson et al. [27] for C100H202 at constant (ambient)

pressure. From Tries et al. [9].
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reasonable equation of state. It appears that using the pressure of the system

as an additional input variable into the mapping of bead-spring type off-

lattice models to fix the strength of the attractive part of the Lennard-Jones

interaction between nonbonded effective monomers is a promising recipe to

eliminate this weakness of current coarse-graining procedures [28].

III. ATOMISTIC-CONTINUUM MODELS: A NEW
CONCEPT FOR THE SIMULATION OF
DEFORMATION OF SOLIDS

While an explicit treatment of the microscopic, atomistic degrees of freedom
is necessary when a locally realistic approach is required, on a macroscopic
level the continuum framework is perfectly adequate when the relevant
characteristics are scalar, vector, or tensor fields (e.g., displacement fields
for mechanical properties). A combination of the two levels of description
would be useful [29,30]. Here we focus on the deformation of solids: The
elastic mechanics of homogeneous materials is well understood on the
atomistic scale and the continuum theory correctly describes it. Inelastic
deformation and inhomogeneous materials, however, require techniques
that bridge length and time scales.

FIG. 6 Continued.
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A number of approaches to connect multiple-scale simulation in finite-
element techniques have been published [31–34]. They are able to des-
cribe macroscopically inhomogeneous strain (e.g., cracks)—even dynamic
simulations have been performed [35]—but invariably require artificial
constraints on the atomistic scale [36]. Recently, an approach has been
introduced that considers a system comprising an inclusion of arbitrary
shape embedded in a continuous medium [20]. The inclusion behavior
is described in an atomistically detailed manner [37], whereas the continuum
is modeled by a displacement-based Finite-Element method [38,39]. The
atomistic model provides state- and configuration-dependent material
properties, inaccessible to continuum models, and the inclusion in the
atomistic-continuum model acts as a magnifying glass into the molecular
level of the material.

The basic concept to connect both scales of simulation is illustrated in
Fig. 7. The model system is a periodic box described by a continuum,
tessellated to obtain ‘‘finite elements,’’ and containing an atomistic inclu-
sion. Any overall strain of the atomistic box is accompanied by an identical
strain at the boundary of the inclusion. In this way, the atomistic box does
not need to be inserted in the continuum, or in any way connected (e.g., with
the nodal points describing the mesh at the boundary of the inclusion). This
coupling via the strain is the sole mechanism to transmit tension between the
continuum and the atomistic system. The shape of the periodic cells is
described by a triplet of continuation (column) vectors for each phase (see
also [21]), A, B, and C for the continuous body, with associated scaling
matrix H¼ [ABC], and analogously a, b, and c for the atomistic inclusion,
with the scaling matrix h¼ [abc] (see Fig. 8).

The material morphology is specified by a set of nodal points in the
continuum description. The inclusion boundary is defined by a mesh of
vertices xbi (b for boundary). The exterior of the inclusion contains the
vertices xci (c for continuum). Inside the atomistic system, the (affine)
transformations obtained by altering the scaling matrix from h0 to h can be
expressed by the overall displacement gradient tensor matrix MðhÞ ¼ hh�1

0 .
The Lagrange strain tensor [40] of the atomistic system is then

" ¼
1

2
ðMTM� 1Þ ð12Þ

As is convenient and customary in infinite periodic systems, scaled coordi-
nates are employed for the continuum part as well as for the atomistic part
(see Fig. 8). In the continuum part, sbi ¼ H�1xbi and sci ¼ H�1xci of the nodal
points are used as degrees of freedom (the natural state variables of the
continuum are, thus, sbi , s

c
i , and H). Similarly, the scaled coordinates sai of
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atom i are related to the Cartesian coordinates through the scaling matrix,
sai ¼ h�1xai .

Since, as stated above, our model [20] requires that an overall strain of
the atomistic box is accompanied by an identical strain at the boundary of
the inclusion, we constrain the vertices xbi of the inclusion boundary and the
atomistic scaling matrix h to behave in concert (the vertices xci in the matrix
are not affected) according to xbi ðhÞ ¼ MðhÞxb0i, where xb0i are the original
coordinates of the boundary vertices i. Note that the coordinates xbi ðhÞ are
no longer degrees of freedom, because they depend on the scaling matrix h.
Changes in the system cell matrix H act as homogeneous deformations of
the entire continuous system [20] and the nodal points of the continuum and
the atomic positions in the inclusion should be displaced accordingly. This

FIG. 7 The key idea of the atomistic-continuum model is to connect the inclusion

boundary behavior and the atomistic cell behavior via the strain transformation they

undergo. The strain behavior of the atomistic box is identical to the strain behavior

of the inclusion boundary.
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can be achieved by introducing a new set of degrees of freedom DH (nine
scalars), through [20]

h ¼ Hð1þDHÞH
�1
0 h0 ð13Þ

Both H and h undergo concerted changes (a change in H from the
reference state H0 directly affects the atomistic cell h and affinely displaces
the inclusion boundary vertices according to xbi ¼ HH�1

0 xb0i). The reference
state, where H¼H0 and h¼ h0, corresponds to DH¼ 0.

The energy of the overall system is the sum of contributions from the
atomistic part and the continuum part. The atomistic part contributes a
potential energy determined by the interatomic potentials (the ‘‘force field’’)
and a kinetic energy from the momenta of the atoms. The continuum system
contributes an elastic energy as the sum of the elastic deformations of all
finite elements:

EcontðH, sbi , s
c
i Þ ¼

1

2

X

�

V�ð"
�Þ

TC�"� ð14Þ

where � denotes a finite element and V� is the volume of the undeformed
tetrahedron � [41]. The overall system can be described by the multiscale

FIG. 8 Sketch of the four types of degrees of freedom used in the atomistic-

continuum model: H, DH, and the scaled coordinates sc and s
a of the nodes in the

continuum and the atoms in the atomistic phase. The system unit cell matrix H and

the scaled coordinates sc and sb entirely determine the finite-element configuration of

the continuum. h and s
a are necessary to determine the atomistic configuration. The

nodal points on the inclusion boundary sb and the atomistic scaling matrix h are

calculated from the variables H and DH.
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NtT ensemble distribution function [42].

PNtT ,multi / exp �
�V ðE

atom � hEatomi0 þ KatomÞ þ Econt þ Kcont þWext

kT

� �

ð15Þ

where E atom is the potential defined by the atomistic description of the
system, hE atomi0 its value at the undeformed (reference) state, Katom the
atomistic kinetic energy, Econt the continuum elastic strain energy of

Eq. (14), Kcont the associated kinetic energy (with contributions from each
finite element—here the mass of the continuum is distributed onto the nodes
of all finite elements and the kinetic energy is estimated as if it were ato-

mistic), Wext the external work done on the system, and the parameter
�V¼V inclusion/Vatom, the ratio of the inclusion and the atomistic cell
volume, accounts for the difference between the inclusion volume and the

atomistic system periodic cell contained therein.
The elements of the coupling matrix DH between the periodic boxes of

overall continuum system, H, and atomistic system, h [see Eq. (13)] are
simply minimization variables for the total energy when minimum-energy
simulations are carried out, i.e., calculations at T¼ 0 [where the two kinetic-
energy terms in Eq. (15) are zero]. At nonzero temperature, when the
kinetic-energy terms in Eq. (15) must be taken into account, the coupling is
driven by the balance between the internal stress of the atomistic cell and the
external stress acting on the inclusion from the resistance of deformation of
the surrounding medium [42].

To date, results have been obtained for minimum-energy type simulations
of elastic deformations of a nearest-neighbor face-centered cubic (fcc)
crystal of argon [20] with different inclusion shapes (cubic, orthorhombic,
spherical, and biaxially ellipsoidal). On bisphenol-A-polycarbonate, elas-
tic constant calculations were also performed [20] as finite deformation
simulations to plastic unit events (see [21]). The first molecular dynamics
results on a nearest-neighbor fcc crystal of argon have also become available
[42]. The consistency of the method with thermodynamics and statistical
mechanics has been tested to a satisfactory extent [20]; e.g., the calcula-
tions with different inclusion shapes all yield identical results; the results
are independent of the method employed to calculate the elastic properties
of the system and its constituents (constant-strain and constant-stress
simulations give practically identical values).

A test-case application to the elastic constants of bisphenol-A-poly-
carbonate shall give an idea of the manageable complexity of this multiscale
approach. Here, a single polymer was simulated as both the atomistic and the
continuum material in order to check for possible inconsistencies. The
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polycarbonatewas taken tobe at the experimental density of 1.2 g/cm3 (300K).
The atomistic system considered was composed of three polycarbonate
chains of twenty-five repeat units each, i.e., of 2481 atoms in an atomistic cell
of edge length 300 Å, and was constructed to conform to the overall torsion-
angle statistics of the rotational-isomeric state model of the polymer [43] with
the PolyPack algorithm [44]. The overall atomistic-continuum model was
chosen to have an atomistic inclusion shape and the inclusion volume
fraction was taken to be 18 percent (the atomistic box accounts for about one
fifth of the system energy, since the energy is distributed approximately
uniformly). The edge length of the overall system cell was taken to be 50 Å so
that �V¼ 0.83 in Eq. (15). The atomistic-continuum system comprised a total
of 26,235 scalar degrees of freedom (3� 827 atoms and 6259 independent
nodal points in the continuum, which give 26,220 coordinates, and the two
scaling matrices, H with 6 and DH with 9 degrees of freedom). This is easily
within the range of modern molecular simulations.

IV. CONCLUSIONS

The recently proposed atomistic-continuum model is useful for modeling the
deformation of three-dimensional solids. In this approach, an inclusion of
arbitrary shape is surrounded by a continuum, which is modeled by a
variable-metric ‘‘finite-element’’ method. The inclusion behavior is directly
driven by that of an atomistic system modeled in detail by molecular-
modeling techniques. In this manner, a solution is given to the problem of
finding a constitutive description for a material. The atomistic-continuum
model comprises four types of degrees of freedom, the appropriate com-
bination of which permits calculation of the configuration of both the
atomistic system and the mesh elements of the continuum. The behavior of
both levels of modeling is described by their corresponding potential C- and
kinetic-energy functions which are added to give the total energy of the
system.

The major drawback of the atomistic-continuum approach lies in the
limitation to uniform strain on the level of the atomistic periodic box and,
hence, the inclusion perimeter. Crack propagation, for instance, cannot be
treated with this method.

A partial compensation for this weakness might lie in the flexibility of
the atomistic-continuum concept. The approach can be extended, in
principle, to

. any number of atomistic inclusions in a continuum phase; also,

one can imagine continuous atomistic phases cohabiting with the

continuum;
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. other overall properties than stress and strain; among the proper-
ties that can be simulated are those describable by scalar fields in a

continuum [39], such as dielectric constants, thermal conductivity,
electrical conductivity, solute permeability, etc.

Also, the approach provides the potential for constant-stress molecular
dynamics [40,45] with realistic retracting forces acting on the atomistic
periodic box. This would provide an advantage over the current situation,
where constant-stress molecular dynamics is weakened by the fact that the
device, which maintains constant stress, (a) acts directly and without time
delay on each atom, and (b) requires an arbitrary ‘‘wall mass.’’ The question
of efficiency for atomistic-continuum constant-stress molecular dynamics
must be answered first, of course.
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12. Tschöp, W.; Kremer, K.; Batoulis, J.; Bürger, T.; Hahn, O. Acta Polymerica

1998, 49, 61.
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CONNFFESSIT: Simulating
Polymer Flow
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HANS CHRISTIAN ÖTTINGER Eidgenössische Technische
Hochschule (ETH), Zurich, Switzerland

I. INTRODUCTION

The present chapter introduces a nontraditional approach to the numerical
calculation of complex flows of complex fluids, with especial application to
polymeric systems such as melts and solutions.

The applicability of the CONNFFESSIT (Calculation Of Non-
Newtonian Flows: Finite Elements and Stochastic Simulation Technique)
in its present form is limited to the solution of fluid mechanical problems of
incompressible fluids under isothermal conditions. The method is based on a
combination of traditional continuum-mechanical schemes for the integra-
tion of the mass- and momentum-conservation equations and a simulational
approach to the constitutive equation.

The macroscopic equations are solved by a time-marching scheme in
which the stress tensor is obtained from a micro simulation and treated as a
constant body force. The microscopic simulations reflect the dynamics of
the specific fluid at hand and yield the stress tensor for a given velocity field.

The required integration over deformation histories is accomplished by
integrating numerically microscopic particle trajectories for large global
ensembles simultaneously with the macroscopic equations of mass and
momentum conservation. The term ‘‘trajectories’’ in the previous sentence
refers to both real space trajectories, i.e., positions ri(t) and to configu-
rational phase space trajectories, i.e., in the case of a dumbbell model,
connector vector Q.

Given the very large ensemble sizes required, the feasibility of such
calculations depends crucially on algorithmically optimal data structures
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and computational schemes. In the present chapter a major effort has
been devoted to the detailed description of such techniques and of their
implementation on advanced computer architectures. Nontrivial two-
dimensional calculations for a simple noninteracting polymer dumb-
bell model are presented in order to demonstrate the practical use of the
method.

Although CONNFFESSIT opened up the door to so-called micro–macro
rheological calculations some ten years ago (Öttinger and Laso 1992),
it is but the first member of a group of methods that have appeared along
the same line since 1992 in the context of computational non-Newtonian
fluid mechanics. Most of the newer methods rely on the concept of variance
reduction (Kloeden and Platen 1992, Öttinger 1995, Melchior and Öttinger
1995, 1996) in order to achieve a great improvement on the noise level of
micro–macro calculations. Although the field of micro–macro methods
(Laso 1995) is still very much in flux, some of the newer and highly original
methods (see Hulsen et al. 1997, Halin et al. 1998, Bonvin and Picasso 1998,
Bell et al. 1998) can be up to two or three orders of magnitude more efficient
for a given level of precision. And improvements are appearing all the
time. Nowadays the main applicability of CONNFFESSIT as formula-
ted originally is in situations where fluctuations do play an important
role. For typical macroscopic problems, the newer techniques are far more
efficient and thus the methods of choice.

A. Some Definitions

Throughout the succeeding sections some terms are used frequently,
sometimes in a nonstandard way. The following definitions are included
in order to avoid confusion:

. Domain: a region of d-dimensional space in which we seek the solu-

tion to the equations of conservation of mass and momentum coupled

to a description of the fluid (constitutive equation).
. Cell: in d dimensions, the simplest d-dimensional geometric object in

which the domain is subdivided.
. Element: synonymous with cell.
. Finite element: a cell or element augmented with nodal points and

shape functions.
. Particle: the smallest entity of the micro calculation that does not

directly interact with other similar entities and which contributes to

the stress; it can be as simple as a Hookean dumbbell, or as complex

as a whole Brownian Dynamics simulation of a colloidal dispersion

under periodic continuation or boundary conditions.
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. Global ensemble: the set of all particles in the domain.

. Local ensemble: the set of all particles in a cell.

. Complex fluid: a (possibly non-Newtonian) fluid in which microscopic

particles are explicitly resolved.

Finally, throughout this work, and unless stated otherwise, the term
‘‘microscopic’’ refers either i) to simplified mechanical models for polymer
molecules in which no chemical detail is explicitly present or ii) to models for
particulate fluids in which the individual particles are explicitly treated and
in which the solvent is treated stochastically in an average sense and not
resolved in individual molecules. This usage of the term microscopic is
adopted here in order to be consistent with the meaning of the term ‘‘micro’’
as used in the literature on methods that combine continuum mechanics
with a more detailed description of the flowing material. Strictly speaking,
models falling into category i) are more ‘‘microscopic’’ than those under ii).
Atomistic and ab initio (density functional) polymer modeling reside at
increasingly more fundamental levels.

II. OVERVIEW OF RELATED FIELDS

CONNFFESSIT cuts across two different and, up to recently, largely
unrelated fields: traditional continuum-mechanical computational rheology
and stochastic dynamic methods for polymers. Brief reviews are presented
separately. A third subsection is devoted to alternative methods in
Newtonian and non-Newtonian CFD which have a direct bearing on the
subject of this work.

A. Computational Rheology

Although it is young, the field of continuum-mechanical computational
rheology has a lively and eventful history. What was initially expected to be
little more than an extension of Newtonian CFD methods to fluids with
more complex but in principle harmless constitutive equations turned out to
be a source of frustration and of unexpectedly challenging mathematical
problems in spite of the vast store of knowledge on numerical techniques
for Newtonian fluids that had been accumulating during the past
half century. The analysis and solution of what has come to be known
as the high Weissenberg-number* problem have engaged the attention of

*Rheologists resort to dimensionless groups such as the Weissenburg and Deborah numbers

and the stress ratio SR to characterize the elasticity of the flow. High WS corresponds to high

fluid elasticity.
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a large number of both applied mathematicians and engineers and spur-
red a great amount of analytical and numerical diagnostic work. The
book by Crochet et al. (1984) and the review articles by Crochet (1989)
and Keunings (1989) give comprehensive if slightly dated overviews of
the field; current research in computational rheology is reported in
Moldenaers and Keunings (1992), Gallegos et al. (1994), and Ait-Kadi et
al. (1996).

For the purposes of the present work the current situation in non-
Newtonian CFD can be summarized as follows:

. Converged solutions for non-Newtonian CFD problems can be

obtained nowadays for a large variety of geometries and constitutive

equations (Debbaut and Crochet 1986, Keunings 1986a, 1986b, Van

Schaftingen and Crochet 1984, Mendelson et al. 1982, Brown et al.

1986, Marchal and Crochet 1987, Papanastasiou et al. 1987, Bush

et al. 1984, Malkus and Webster 1987), including free-surface flows

(Nickell et al. 1974, Keunings and Bousfield 1987).
. Most calculations are performed in two dimensions, under isothermal

conditions and at steady state, although transient (Josse and

Finlayson 1984, Lee et al. 1984, Van Schaftingen 1986, Phan-Thien

et al. 1987, Bousfield et al. 1988) and nonisothermal (Keunings 1986a,

1986b, Sugeng et al. 1987, McClelland and Finlayson 1988,

Srinivasan and Finlayson 1988) flow calculations have been reported.
. The high Weissenberg problem has been recognized to actually have

several independent causes such as irregular points in the solution

family, boundary layers and singularities, loss of evolution, and

change of type of the PDEs. Although some of the problems origin-

ally encountered still remain, a good deal of these initial difficulties

have been overcome by sophisticated numerical schemes (Keunings

1989 and references therein, Franca and Hughes 1993, Baaijens 1998).

Finally, there exists a trend away from physically simple but
numerically problematic constitutive relations towards more realistic and
algorithmically more demanding ones with better numerical behavior.
Some CEs, prominently those most appropriate for melts (Doi–Edwards,
Curtiss–Bird, reptating rope, modified reptation models) are and will
remain for a long time to come well beyond the capabilities of current
continuum-mechanical methods. Further improvements in the polymer
dynamics at the microscopic level leads to models intractable via the
standard CE approach.

The systematic use of increasingly more complex CEs calls for
an alternative way of handling this increased complexity while at the
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same time allowing the equations of change to be solved in complex
geometries.

B. Stochastic Dynamic Methods for Polymers

Stochastic dynamics or stochastic differential equations arise naturally in
polymer physics as a consequence of the coarse-graining required when
dealing with the many degrees of freedom and the wide spectrum of time
scales characteristic of polymers. Brownian Dynamics was first applied in
the late 1970s (Fixman 1978, McCammon 1978) and has experienced a
colossal growth since then. Although there is abundant literature on
stochastic and kinetic-theoretical topics (Van Kampen 1981, Gardiner 1983,
Gard 1988, Risken 1989, Honerkamp 1990, Kloeden and Platten 1992, Doi
and Edwards 1986, Bird et al. 1987b), a unified approach to the use of
stochastic methods in polymer dynamics has been missing until recently.
Besides filling this gap, the book by Öttinger (1995) offers a comprehensive
overview of the state of current research.

As far as the present work is concerned, the relevance of numerical
stochastic methods for polymer dynamics in micro/macro calculations
resides in their ability to yield (within error bars) exact numerical solutions
to dynamic models which are insoluble in the framework of polymer kinetic
theory. In addition, and mainly as a consequence of the correspondence
between Fokker–Planck and stochastic differential equations, complex
polymer dynamics can be mapped onto extremely efficient computational
schemes. Another reason for the efficiency of stochastic dynamic models for
polymer melts stems from the reduction of a many-chain problem to
a single-chain or two-chain representation, i.e., to linear computational
complexity in the number of particles. This circumstance permits the
treatment of global ensembles consisting of several tens of millions of
particles on current hardware, corresponding to local ensemble sizes of
O(103) particles per element.

C. Particle Methods

Besides the Finite-Difference and Finite-Element mainstream, there has
appeared a handful of alternative computational methods in Newtonian and
non-Newtonian CFD that can be collectively characterized as ‘‘particulate,’’
in the sense that they involve discrete computational entities in addition
to or in lieu of the standard continuum-mechanical discretization devices.
In some of these methods (the first four and the last one in the following
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list), the computational particles have an almost exclusively mathematical
character, whereas in the other two it is possible to attach a well-defined
physical meaning to the particles.

. As early as 1973 Chorin (1973, 1989, 1994) introduced the two-

dimensional random vortex method, a particle method for the solu-

tion of the Navier–Stokes equations. These particles can be thought

of as carriers of vorticity. Weak solutions to the conservation equa-

tions are obtained as superpositions of point vertices, the evolution of

which is described by deterministic ODEs. A random walk technique

is used to approximate diffusion, and vorticity creation at boundaries

to represent the no-slip boundary condition. The extension to three

dimensions followed in 1982 (Beale and Majda 1982). An important

improvement in stability and smoothness was achieved by Anderson

and Greengard (1985) by removing the singularities associated with

point vertices. Anderson and Greengard (1988) and Marchioro and

Pulvirenti (1984) have written comprehensive reviews of the method.
. Smoothed-Particle Hydrodynamics (SPH) was introduced by Gingold

and Monaghan (1977) and Lucy (1977). SPH is a three-dimensional

free-Lagrange algorithm that in its most basic form is truly grid-free.

SPH treats fluid elements as extended clouds of material; their centers

of mass move according to the conservation laws of fluid mechanics.

It was first applied to the solution of complex astrophysical problems,

such as colliding planets and stars. In its most widely used version,

SPH is based on integral interpolants for information at nonordered

points. The fluid is represented by spherically symmetric particles,

each having a mass that has been smoothed out in space with a

density distribution given by a suitable interpolating kernel or distri-

bution. Ordinary differential equations for the smoothed quantities at

the location of the particles are obtained by multiplying the original

governing equations by the kernel and integrating over the domain. A

critical evaluation of the quantitative performance of SPH has been

presented in Cloutman (1991). The method seems to be most useful

for exploratory studies where modest accuracy is acceptable.
. Another technique, widely used in a different context (kinetic theory,

plasma simulation) is the so-called Vortex-in-Cell Method (Hockney

and Eastwood 1981, Birdsall and Langdon 1985). In the Vortex-in-

Cell Method a two-dimensional computational domain is divided into

cells and the vorticity is ‘‘counted’’ in each cell. The Poisson equation

relating the vorticity and the Laplacian of the stream function is

subsequently solved on the grid by an FTT algorithm, the velocity
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is computed on the grid and finally interpolated at the vortex

locations. This approach bears some resemblance to SPH.
. Cellular-automata and lattice-gas models are in a sense a diametrically

opposed alternative to the pure grid-free NEMDmethod. They rely on

the existence of a regular lattice, each site of which can have a finite

number of states usually represented by Boolean variables. Each cel-

lular automaton evolves in time in discrete steps according to deter-

ministic or nondeterministic rules for updating based on the states of

the neighboring automata. The average behavior of a collection of

cellular automata is found to describe the behavior of physical systems

obtained by using models with smooth continuous variables. Lattice-

gas models with fluid dynamical features were first introduced by

Kadanoff and Swift (1968) and the first fully deterministic lattice-gas

model was introduced by Hardy et al. (1976). The main value of cel-

lular-automata methods seems to be in the qualitative study of turbu-

lence (Frisch et al. 1986), although they have been used to investigate

other fluid-flow phenomena with varying degrees of success (Rothman

and Keller 1988, Balasubramanian et al. 1987, Baudet et al. 1989).
. A grid-free alternative to discretization methods is offered by Non-

Equilibrium Molecular Dynamics. The NEMD approach to fluid

dynamics was pioneered by Ashurst and Hoover in 1975 for the

investigation of momentum transport in homogeneous flows. Some

of the first calculations for nonhomogeneous flows in complex geo-

metries were performed by Hannon, Lie, and Clementi (1986). A large

number of MD simulations has been performed since then. Most of

the very satisfactory features of such calculations arise from the fun-

damental description of the interactions between fluid particles, which

in this case are the atoms or molecules, and the absence of a grid. The

drawback of this approach is that it is limited to extremely small

length- and time-scales, or conversely, to extremely high rates of

deformation, O(1013) s�1 typically. The same approach has been

applied by Hoover et al. (1992) to plastic flow in nonlinear solid

mechanics.

III. TWO- AND THREE-DIMENSIONAL TECHNIQUES

A. One-Dimensional vs. Multidimensional Problems

The first application of CONNFFESSIT was in the context of computa-
tional non-Newtonian fluid mechanics in 1þ 1 dimensions (one spatial þ
one temporal) (Laso and Öttinger 1993). The practical applicability of the
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method relies on its success in more dimensions (2þ 1, 3þ 1). The
introduction of one additional spatial dimension entails both a quantitative
and a qualitative increase in the complexity of the problem.

The obvious quantitative increase is due to the higher number of particles
and of spatial cells or elements required to describe the integration domain,
typically between one and two orders of magnitude more per additional
spatial dimension.

The qualitative increase stems from the need to perform particle tracking,
a task which has no equivalent in one dimension,* since particles never leave
the element in which they are initially located as they are carried by the
velocity field. The generic term particle tracking actually involves a number
of nontrivial individual subtasks, which must be tackled efficiently if
CONNFFESSIT is to be viable. The key to practicable micro/macro
computations is the invention of efficient schemes of reduced algorithmic
complexity.

A further increase to three spatial dimensions brings about another
increase in the size of the problem. The tracking techniques are, however,
not more complex than in the two-dimensional case. Furthermore, some of
the algorithms to be presented perform proportionally better than classical
continuum-mechanical tools the larger a problem is. For this reason, the
two-dimensional case is especially critical: it involves particle tracking in its
full complexity, yet typical 2D problem sizes are not yet in the range where
the CONNFFESSIT approach can even remotely compete with traditional
methods.

Before presenting procedural details, an overview of the general scheme
for the micro/macro approach in more than one dimension is in order.
Although it is possible to devise micro/macro methods to obtain steady-
state solutions by a procedure that draws heavily from traditional tracking
schemes for integral constitutive equations (Feigl et al. 1995), the natural
implementation of the micro/macro strategy calls for a time-marching
integration of the unsteady problem. This approach allows us to obtain, in
addition to the full dynamic behavior of the system, the steady-state solution
(when one exists) by continuing integration for a sufficiently long time.

The usage of the term micro/macro is justified by the two-level
description of the fluid that lies at its core: a microscopic approach permits
evaluation of the stress tensor to be used in closing the macroscopic
conservation equations. The macro part can be thought of as corresponding
to the Eulerian description of the fluid, while the micro part has Lagrangian
character.

*Except for some multiparticle dynamic models in which particle diffusion across streamlines

must be considered (Öttinger 1992).
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The overall CONNFFESSIT procedure for the isothermal problem is
eminently simple and is illustrated in Figs. 1 and 2 as a block diagram. This
approach allows the use of standard continuum-mechanical codes to solve
the macroscopic equations of conservation (mass and momentum).
Micro/macro interfacing takes place at the points marked A and B in Fig. 1.

FIG. 1 Basic CONNFFESSIT time-marching scheme.
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At a given step in the time-marching scheme, the currently available velocity
field is passed to the microscopic part at A where it is used to advance both
the internal configurations of the particles and their trajectories. In B, the
stress tensor obtained by a suitable ensemble-averaging (e.g., over individual
cells) is used as a right hand side (body force) in the equation of conser-
vation of momentum, which is solved together with the mass-conservation
equation using standard techniques (Keunings 1989, Crochet et al. 1984).

B. The Basic Data Structure

Independently of the details of the micro simulations, the information
pertaining to individual particles of the global ensemble (or at least pointers
to that information) must be kept in a suitable kind of linear array. As we will
see in Sections IV.A and IV.B.1 the organization of this indexing array into
an element-wise sorted array has far-reaching consequences on computa-
tional efficiency and, above all, on vectorization and parallelization.

FIG. 2 Basic CONNFFESSIT time-marching scheme (continued).

520 Laso and Öttinger



Several micro/macro models, CONNFFESSIT among them, share the
common feature that the particles appearing in the micro simulation are
entrained by the macroscopic flow and therefore move through a succes-
sion of elements. As a consequence, the indices of the particles residing in a
given element (the local ensemble) change with time. This circumstance
makes physically contiguous particles be noncontiguous in the linear array
containing them.

The objective of constructing an element-wise sorted array is to provide
indirect indexing capability, which can be used to bypass the noncontiguity
problem. Let the array WHERE initially contain the number of the element
in which a given particle is located. A small-scale typical arrangement
(12 particles in 3 elements) is given in the schematic below where particles
are noncontiguous:
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For several reasons to be seen later, it is more convenient to have
physically neighboring particles (i.e., particles in the same cell or element)
placed in neighboring positions in memory, i.e., particles 1, 3, 7, 10, and 12,
etc. While it would be possible to initialize the positions of particles so as
to ensure contiguity at the start of a calculation, the macroscopic flow
would render this initial order useless at every time step. It is however
possible to create an element-wise sorted array ORDWHERE that holds
the indices of the particles contained in each element (of which there
are NUMEL), plus two pointer arrays FIRST and LAST that mark the
start and the end of the sequence of particle indices for each element within
the sorted array. Sorting can be accomplished by any efficient algorithm,
like heapsort (Knuth 1968) or, having vectorizability in mind, by the
algorithm presented in Section IV.B.1. The following pseudo-code excerpt
shows how this can be accomplished (sort array WHERE and copy onto
ORDWHERE):

J ¼ 0
DO I ¼ 1 , NUMPR - 1
IF (ORDWHERE(I) .NE. ORDWHERE(Iþ1)) THEN
J ¼ J þ 1
COUNT(J) ¼ I

ENDIF
ENDDO
J ¼ J þ 1
COUNT(J) ¼ NUMPR
DO I ¼ 1 , NUMEL þ 1
LAST(I) ¼ 0

ENDDO
DO I ¼ 1, J
LAST(ORDWHERE(COUNT(I))) ¼ COUNT(I)

ENDDO

Special care of empty elements (if any) must be taken and the array

FIRST created:

DO I ¼ 2, NUMEL þ 1
IF (LAST(I) .EQ. 0) LAST(I) ¼ LAST(I-1)

ENDDO
COUNT(1) ¼ LAST(1)
DO I ¼ 2, NUMEL þ 1
COUNT(I) ¼ LAST(I) - LAST(I-1)

ENDDO
DO I ¼ 1, NUMEL þ 1
FIRST(I) ¼ LAST(I) þ 1 - COUNT(I)

ENDDO
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This compact algorithm performs the required task and is fully vec-
torizable. The indexing array and the indirect addressing capability offered
by the information contained in the FIRST and LAST pointer arrays (above)
act de facto as an interface that makes the particles appear as if they actually
were contiguous:

The crucial point of this procedure is that it relies on efficient sorting for
restoring contiguity. As we will see in Section IV.B.1, particle index sorting
using the binary radix sort has optimal O(Npr logNpr) complexity. Besides,
indirect addressing is fully supported (and in many cases hardware-
executed) by all vector computers. Thus, the computational overhead
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associated with reordering the particles at each time step is perfectly
acceptable.

C. Point-Inclusion Algorithm

The second key operation lying at the heart of a CONNFFESSIT cal-
culation consists in determining if a particle, the spatial coordinates of
which are known, is located within or outside an element. This seemingly
minor task acquires immense importance in more than one dimension,
since it has to be executed an inordinate number of times: it is almost
always the single most-frequently performed basic operation invoked
in CONNFFESSIT.

Generalized point-inclusion algorithms are the object of much research
in computational geometry (Mulmuley 1994, Preparata and Shamos
1990); the goal of research in this field is the creation of optimal
algorithms with respect to the number of sides of the polygon, i.e., how to
optimally determine whether or not a point is included in a polygon of a
very large number of sides. An extensive search of available literature
showed that, somewhat surprisingly, the question of how to determine
whether a point is included in a triangle or quadrilateral in the fastest
possible way is amply ignored. The only algorithm found in the literature
turned out to be a geometrically elegant one frequently used in computer
graphics and based on the evaluation of a vector product for each of
the sides but which can certainly not compete in speed with the following
procedure (Fig. 3).

During the initialization phase, before the start of the actual time-
marching computation:

. For each element k, determine the coordinates of some arbitrary

interior point, for example, its centroid (Xk
c ,Y

k
c ).

. For each side of the element, determine and store the coefficients akji of

the equations representing the sides f kj ða
kj
i , x, yÞ, where j ¼ 1, Nsides,

which are in most cases straight lines or polynomials of low degree.
. Evaluate signð f kj ða

kj
i ,Xj

c,X
j
cÞÞ and store it for each of the sides of each

element.

For subsequent use, i.e., in order to determine if the lth particle at (xl, yl)
is located within the kth element:

. Evaluate signð f kj ða
kj
i , xl, ylÞÞ; if and only if signð f kj ða

kj
i , xl, ylÞÞ

and signð f kj ða
kj
i ,X

j
c,X

j
cÞÞ are equal for all j, is the particle within the

element.
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This sequence of steps corresponds to determining whether the particle in
question lies on the same side (left or right) of the sides of the element as a
known interior point (like the centroid).

Once the coefficients of the equations defining the sides are known
(the computation of which amounts to a very minor overhead during
initialization), point-inclusion can be determined with at most Nsides

function evaluations and the same number of logical comparisons. In
particular, an inclusion test for a particle in a triangular element involves at
most* three multiplications, three additions (or arithmetic comparisons),
and three Boolean comparisons.

On some vector computers like the NEC SX-3 and SX-4 that execute
several overlapping vector instructions in parallel, these operations are
performed concurrently by multiple functional arithmetic units within a
vectorized loop over element number. The algorithm just presented achieves
on such hardware for the point-inclusion test on triangular elements the
ideal maximum speed of one point-inclusion test per clock cycle.

While this algorithm can conceivably fail in the case of an isoparametric
element for which one or more of its sides has extreme curvature, in practice,
the probability of such an occurrence is vanishing.

*Since the particle fails the inclusion test as soon as a difference in sign is detected.

FIG. 3 Particle-inclusion algorithm in two dimensions. The same scheme is appli-

cable to cells with higher number of edges or in higher dimensions.
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D. Scalar Velocity-Biased Ordered Neighbor Lists

In the micro/macro method discussed in this work, the macroscopic
conservation equations are solved by discretization (typically weighted
residuals) methods. The first step in such an approach is the generation
of a mesh or grid made up of simple geometric objects like triangles
or quadrilaterals in 2D, tetrahedra or parallelepipeds in 3D. The topic of
mesh generation for FE is itself an area of intensive research (Wheatherill
et al. 1994, Knupp and Steinberg 1993, Castillo 1991). Nowadays there are
many efficient mesh generators which are able to subdivide or ‘‘enmesh’’
the integration domain. This mesh is represented by the set of coordinates
of the nodal points (loosely speaking the vertices, or other important
points of the simple geometrical objects) and information on connec-
tivity and on the occurrence of boundaries. This information is then
employed in the WR solution of the macroscopic equation of motion.
In micro/macro methods the grid must be additionally used as the stage
in which the individual particles evolve and through which they move.
As a consequence, in contrast to continuum-mechanical methods, in a
micro/macro calculation it is necessary to keep track of the position of
each particle, both as coordinates and as the index of the element (or
the indirect addressing pointer to the element) in which it is located
(Section IV).

Particle neighbor lists are a device widely used in MD and MC
simulations of complex fluids to speed up the calculation of interactions
(Allen and Tildesley 1987). They contain, for each particle in a simulation, a
list of those other particles that fall within a cutoff distance from the particle
under consideration (possibly under periodic continuation conditions) and
which have to be taken into account in the computation of interactions.
Since the number of neighbors depends exclusively on the value of the cutoff
and not on the total number of particles, the complexity of the calculation of
pairwise interactions is reduced from OðN2

prÞ to O(Npr).
The meaning of a neighbor list is different in the present context: a cell

neighbor list contains, for each element or cell in the mesh, the indices of the
elements that share at least one vertex (first neighbors) with the cell under
consideration. Second neighbors of a given cell share at least one vertex with
its first neighbors. Since the typical particle displacement during a time step
is much smaller than the size of a cell, particles that have left a cell after a
time step are to be found in most cases in a first neighbor cell or, at most, a
second neighbor. It is not necessary to check all elements in the mesh. Just
as in the case of the neighbor lists used in MD, this data structure allows
a reduction of the complexity of the localization of particles from
O(Npr)O(Nel) to O(Nel).
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In micro/macro methods, the grid generator is more or less a black box;
normally the generator comes from another application and in principle no
information is available about its inner workings, nor is it possible to
control in any way the numbering scheme and the resulting connectivity of
the elements. Any algorithm to be developed for particle tracking must
therefore be valid and efficient for arbitrarily generated and numbered grids.
For the sake of discussion we will assume a structured two-dimensional grid
made up of convex quadrilaterals; none of these assumptions limits the
applicability of the algorithms to be developed in this section and in Section
IV. The quadrilaterals are of different sizes and shapes in order to adapt
to the geometry and resolve the details of the domain and the velocity
and stress fields. The grid is defined as two lists of X and Y coordinates
specifying the positions of the vertex points, and cells or elements in the grid
are specified by an integer array of the form VERTEX(NUMEL,4), giving
the numbers or indices of the four vertices of each cell. Actual cell and vertex
numbers are more or less random, in the sense of being unpredictable. The
numbering is determined by the internal logic of the grid generator, with cell
and vertex numbers assigned as needed, and no guarantee that cell i has cells
i þ 1 and i � 1 as two of its nearest neighbors.

Since the characteristic size (length) of a cell or element is very much
larger than the displacement of a typical particle in a single time step, the
particles that leave an element at a given time step are almost always to be
found either in nearest or at most in second-nearest neighbors. The task of
locating all particles after every time step is thus greatly simplified if
neighbor lists are generated. These lists of first and second neighbors can be
generated in a very compact way using the information stored in the array
VERTEX(NUMEL, 4): two cells are nearest neighbors if and only if they
have one or more vertices in common. The most straightforward algorithm
for a static mesh* compares for each cell, each of the four vertices with each
of the four vertices for all the other cells. The following code implements this
idea in a compact way: it determines the nearest neighbors for all NUMEL
cells, the number of neighbors of each cell NOFNEI1 (which in general will
vary depending on whether the cell is at a boundary or not, or for internal
cells in unstructured meshes), and creates a list of these neighbors NEI1 in a
single pass. The following implementation is such that most vector
compilers, including the finicky f77sx on the NEC-SX series, can handle
the innermost four IF’s and two DO loops efficiently by unrolling, thus
yielding a count for the vectorized DO loop equal to the number of cells in

*A static mesh remains the same throughout the calculation, both the coordinates of the nodal

points and the numbering of the cells.
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the mesh, typically an order of magnitude larger than the hardware vector
length:

DO I ¼ 1, NUMEL
J ¼ 1
DO ICORNER ¼ 1, 4
DO II ¼ 1, NUMEL
IF (II .NE. I) THEN
DO IICORNER ¼ 1, 4

IF (VERTEX(II, IICORNER) .EQ. VERTEX(I, ICORNER)) THEN
REPEAT ¼ .FALSE.
DO ICHECK ¼ 1, J
IF (II .EQ. NEI1(ICHECK, I)) THEN
REPEAT ¼ .TRUE.

ENDIF
ENDDO
IF (.NOT. REPEAT) THEN
NOFNEI1(I) ¼ NOFNEI1(I) þ 1
NEI1(NOFNEI1(I), I) ¼ II

ENDIF
J ¼ MAX(NOFNEI1(I), 1)

ENDIF
ENDDO

ENDIF
ENDDO

ENDDO
ENDDO

Although FORTRAN 77 does not contain recursive constructs, it is
possible to emulate them via a call-stack (Kießling and Lowes 1985).
Recursive application of the above procedure would then allow us to find
second neighbors without additional coding. However, it is worth spending
some additional effort in developing a slightly more complex procedure to
determine second neighbors NEI2 and their number NOFNEI2 in a
nonrecursive way:

DO I ¼ 1, NUMEL
J ¼ 1
DO INEI ¼ 1, NOFNEI1(I)
ITEST ¼ NEI1(INEI, I)
DO ICORNER ¼ 1, 4
DO II ¼ 1, NUMEL
IF ((II .NE. ITEST) .AND. (II .NE. I)) THEN

REPEAT2 ¼ .FALSE.
DO ICHECK2 ¼ 1, NOFNEI1(I)
IF (II .EQ. NEI1(ICHECK2, I)) THEN
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REPEAT2 ¼ .TRUE.
ENDIF

ENDDO
IF (.NOT. REPEAT2) THEN

DO IICORNER ¼ 1, 4
IF (VERTEX(II,IICORNER).EQ.
VERTEX(ITEST,ICORNER)) THEN
REPEAT ¼ .FALSE.
DO ICHECK ¼ 1, J
IF (II .EQ. NEI2(ICHECK, I)) THEN
REPEAT ¼ .TRUE.

ENDIF
ENDDO
IF (.NOT. REPEAT) THEN
NOFNEI2(I) ¼ NOFNEI2(I) þ 1
NEI2(NOFNEI2(I), I) ¼ II

ENDIF
J ¼ MAX(NOFNEI2(I), 1)

ENDIF
ENDDO

ENDIF
ENDIF

ENDDO
ENDDO

ENDDO
ENDDO

The slightly greater complication of this procedure stems from the need
to avoid double counting the neighbors of the first neighbors. The reward
for the more complex code is that again, in spite of the deep nesting, the DO
over the number of cells is well vectorizable and by far outperforms the
recursive construct.

The lists of first neighbors (NEI1) and second neighbors (NEI2)
generated in this way can be used as is for the task of relocating the
particles that have flowed out of a given cell. The search needs only be
performed in the cells contained in the neighbor lists.

However, if the velocity field is known, the search can be further sped
up by ordering the neighbors so that those that are downstream of the given
cell are searched first. This is the idea behind the velocity-biased neighbor
list. The natural way to implement it is to sort the list of neighbors in order
of increasing absolute value of the angle formed between the velocity vector
at some characteristic point of the central cell (e.g., the centroid) and
the vector joining the centroid of the central cell with the centroid of
a neighboring cell (angle � in Fig. 4). Thus, for deterministic particle
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trajectories, all particles that have left a cell will necessarily be located in
downstream cells; during the search only a small fraction of the neighbor list
(seldom more than the first three elements) needs to be scanned. The scheme
just presented is equally valid for stochastic particle trajectories, although
due to their inherent variability it is no longer guaranteed that particles
leaving a cell will be located in cells downstream. However, given the
smallness of the typical displacement per step with respect to the cell size,
the velocity-biased neighbor list should be just as efficient as in the
deterministic case.

As a final remark it should be said that although the procedures for first
and second neighbor lists just presented fully exploit vectorizability, they are
still OðN2

elÞ algorithms. Their use is justified for fixed meshes because they
are straightforward, well vectorizable, and have to be invoked only once.
For moving meshes, however, the neighbor lists may have to be generated at
every integration step. In this case, OðN2

elÞ is unacceptable. As a matter of
fact, the experience gathered so far shows that, unless the neighbor list
problem is dealt with efficiently, neighbor list generation and the subsequent
particle location will become the limiting steps in large-scale calculations
(Section IV.B).

FIG. 4 Velocity-biased neighbor lists. Numbers in circles indicate the searching

order in a velocity-biased neighbor list.
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IV. MOVING PARTICLES AND REMESHING

While in a one-dimensional geometry the limit to the computationally
feasible is set by the number and complexity of the molecular models or
stochastic processes to be simulated, the situation is rather different in two
or three dimensions. In these cases, the particle or computational model, be
it deterministic or stochastic, will move throughout the computational
domain following the macroscopic velocity field. Furthermore, particles
may enter or leave the domain, or both. The immediate consequence of the
macroscopic flow is the need to track the particles’ positions at all times
concurrently with the integration of the equations of change and of the
equations controlling the evolution of the microscopic degrees of freedom.
The need to perform particle tracking entails two attendant computational
tasks, given in Sections IV.A and IV.B.

A. Integration of Particle Trajectories

The first part of particle tracking consists in the integration of the
trajectories particles as they are carried by the macroscopic flow of the fluid.
Since the velocity field is known at all integration times, this is a time-
consuming but in principle straightforward problem. Although particle
trajectories will in most cases be deterministic, for some generalized classes
of constitutive equations (Öttinger 1992) intrinsically stochastic trajectories
need to be considered.

The integration of deterministic particle trajectories is not problematic
since it is possible to draw from the vast body of known algorithms for
ODEs. However, whereas exact deterministic trajectories must always
remain within the integration domain (except at open boundaries), the
discretized versions obtained by any numerical scheme will be subjected to a
finite discretization error. This error has two main consequences with far-
reaching computational effects in micro/macro methods.

The first effect is a long-time, progressive cumulation of discretization
errors (and possibly truncation errors if compressed-variable representation
is used). This cumulative effect is quite harmless for trajectories along which
the residence time tR of particles is low, in the sense of |(tR/�t)�u| |u|.
However, in flow fields where regions of intense recirculation exist, the
number of integration steps along a given trajectory (tR/�t) is large enough
for the condition above not to be fulfilled. This situation is reflected for
example in the failure of what should be closed-loop trajectories (at steady
state) to close exactly, thus leading to inward- or outward-spiraling
trajectories. This failure is not specific to micro/macro methods but is
common to other tracking techniques, such as those used in viscoelastic flow
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calculations for integral constitutive equations. Figure 5 shows the tra-
jectory of a particle within the recirculation region in the 4:1 contraction
geometry obtained by tracking it in a constant steady-state velocity field for
an Oldroyd-B model.

In spite of the use of a special type of macroelement (the MDF Finite
Element of Nagtigall et al. 1979, Mercier 1979, Bernstein et al. 1985) which
allows analytical tracking, the result of the cumulation of round-off errors in
an otherwise exact technique is striking. Given the low velocities and shear
rates in this particular instance, the consequences of tracking errors are very
minor.

However, for flows with strong recirculation, the erratic behavior of the
discretized trajectories leads to a rapid depletion or enrichment of particles
in certain regions. For sufficiently strong recirculation rates and sufficiently
long integration times, the spurious migration of particles with the wrong
flow history into the wrong elements and the spurious depletion/enrichment
effect render calculations meaningless. The only remedy for this ailment is
the use of smaller time steps or higher-order numerical schemes for ODEs,
or both.

The use of higher-order schemes is often the preferred solution, in
spite of requiring several function evaluations per time step for each of

FIG. 5 Cumulation of integration errors during particle tracking resulting in

nonclosing recirculation trajectories.
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the particle trajectories being integrated. This additional effort may pay
back since:

. Trajectory integration does not constitute a large fraction of the over-
all computational load.

. Relatively inexpensive velocity-field updates can be performed inde-
pendently of and between two consecutive particle configuration
updates with higher frequency than the latter if so required.

The optimal order of the tracking algorithm is thus determined by the ratio
of particle tracking to particle simulation.

Figure 6 shows a comparison of a trajectory integration similar to that
depicted in Fig. 5, but using first-order Euler (Fig. 6a), second- order, fixed-
step trapezoidal rule (Fig. 6b), and 12th-order predictor-corrector Adams–
Bashforth with self-adaptive step, (Fig. 6c) schemes for a fixed macroscopic
velocity field. While the increase in order does result in increased stability,
even the phenomenally accurate 12th-order scheme fails to yield closed-loop
trajectories. For simple dynamic models including a few degrees of freedom
(Oldroyd-B, Curtiss–Bird) on average-size meshes (a few thousand cells)
with simple elements (P1-C0) and for the current hardware generation,
the best ratio of tracking accuracy to computational time is obtained
for second-order, fixed-step explicit schemes. Higher-order schemes are
advantageous only for very smooth velocity fields, where a very large
integration step can be employed.

The noisy character of micro/macro methods makes it very unlikely that
higher-order schemes will significantly increase overall performance. The
same applies to richer FEs for which velocity updates are increasingly more
expensive.

The second effect of discretization and truncation is not related to the
long-time cumulation of errors, but makes itself observable at every time
step, as particles close to impenetrable boundaries (which can only be
approached asymptotically by trajectories) actually cross them due to a
finite time integration step. In general, the existence of a nonzero outward-
pointing component of the velocity of a particle leads to its leaving the
integration domain if the particle is sufficiently close to the boundary.
This effect is in general of an order of magnitude commensurate with the
time step: it acts on a fraction of all particles given by the ratio of the
perimeter @ (or bounding surface in 3D) of the domain times the average
outward-pointing velocity component times the integration step to the total
area (or volume in 3D) of the domain �. This is a small ratio for any
nonpathological domain shape. In most cases, the fraction of particles
that leave the integration domain at any given time step due to the
discretization error produced by a first-order explicit Euler scheme with
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FIG. 6 Effect of order of tracking algorithm on closedness of trajectories: (a) first-

order Euler, (b) trapezoidal rule, (c) 12th-order adaptive Adams–Bashforth PC.
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reasonable �t lies between 10�4 and 5� 10�3 and is therefore of no con-

sequence for the numerical accuracy of the solution. Particles that are not in

the region close to the boundary do not exit the domain. Their trajectories

will drift, however, towards or away from the boundary at a rate dictated

both by the local outward- or inward-pointing velocity component and by

the discretization error.
Figure 7 shows this effect for three particles close to the reentrant corner

in the contraction geometry for P1-C0 quadrilaterals. The closer the initial
position of the particle to the separation line, the more difficult it is to turn
around the corner. Low-order algorithms lead to particle trajectories that
intersect impenetrable boundaries.

Unfortunately, even if only a small fraction of all particles leave the
domain at each time step, these events cannot be ignored. Even though they
have a negligible impact on the numerical values of the stresses computed as
element-wise averages, if a fraction of O(10�4–10�3) of the total number of
particles leave the domain at each time step due to discretization and
particles drift toward the boundary at a comparable rate, it does not take
more than a few thousand steps for a large fraction of particles to disappear
from the computational domain.

The most straightforward solution to this question consists in reflecting
back into the domain all lost trajectories, i.e., those that have left it at a
given time step. This reflection is acceptable and does not result in a
reduction of the order of the algorithm. However, the crucial aspect of
the problem is that it utterly destroys the vectorizable character we strive
for, since such particle-exit events occur in a geometrically localized and
structured region (the boundary region), but purely at random when con-
sidered from the viewpoint of the particle numbering scheme. Hence the
need to develop a scheme to recover and replace such lost particles.

An efficient method to handle this difficulty and retain vectorizability
must: i) make use of the numbering schemes, neighbor lists, and point-
inclusion techniques explained in Section III, in order to efficiently
determine which particles have left the domain and where they are located
and ii) obtain this information within and extract it from a loop for
subsequent processing without jeopardizing vectorizability. An optimal two-
step algorithm works in the following way:

. Determine the indices of all particles that have left the element in

which they were located at the previous time step. This is performed

in the double-loop construct already explained in Section III.D using

indirect addressing to point at all particles (inner loop in the following

FORTRAN excerpt) within a given element (outer loop). If a particle

has left the element it was in, add its address to the list of particles
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FIG. 7 Effect of order of tracking algorithm on particle trajectories close to

impenetrable boundaries: (a) first-order Euler, (b) trapezoidal rule, (c) 12th-order

Adams–Bashforth PC.
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that left their elements (LEFT1). A fraction of these will be in first or

second neighbors; the rest will have left the domain altogether.

COUNTLEFT1 ¼ 0
DO I ¼ 1, NUMEL
DO II ¼ FIRST(I), LAST(I)

IHOLD ¼ ORDWHERE(II)
IF (particle IHOLD is in element I) THEN
WHERE(IHOLD) ¼ I

ELSE
COUNTLEFT1 ¼ COUNTLEFT1 þ 1
LEFT1(COUNTLEFT1) ¼ IHOLD

ENDIF
ENDDO

ENDDO

The second double loop finds which particles are in first neighbors

and spots those particles that have left the domain:

LOST ¼ 0
DO I ¼ 1, COUNTLEFT1

IHOLD ¼ LEFT1(I)
DO II ¼ 1, NOFNEI1(WHERE(IHOLD))
III ¼ NEI1(II, WHERE(IHOLD))
IF (particle IHOLD is in first neighbor element III)

THEN
WHERE(IHOLD) ¼ III
GOTO 10

ENDIF
ENDDO
LOST ¼ LOST þ 1
NOTFOUND(LOST) ¼ IHOLD
10 CONTINUE

ENDDO

This code is vectorizable, determines where all particles are located,

and, with a minimum overhead, spots those particles that have left

the domain. The array NOTFOUND contains the list of indices for all

particles that have left the domain.

. In the second step a simple pass is performed over all particles that

have left the domain in order to reflect their positions back into the

domain.

DO I ¼ 1, LOST
IHOLD ¼ NOTFOUND(I)
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ELEMENT ¼ WHERE(IHOLD)
reflect position of particle back into domain

ENDDO

This would seem to complete the procedure, since all particles must

have either been located in nearest neighbors or they must have been

reflected back into the domain. We are, however, not done yet: any

reflection procedure has a loophole which is a consequence of the

finite integration time step: if a particle leaves the domain through

an element boundary that is close to an external nodal point (see Figs.

8 and 9), there will always exist the possibility that the position after

reflection is still outside of the domain or within the domain but not

in the element the particle was originally in.
These two possibilities make it necessary to perform a third and

last pass (not explicitly presented here because of its trivial vector-

izability) in order to check that all reflected particle positions are

indeed within the domain and within the intended element.
The root of both of these failures is that, within the discretization

error, it is not possible to decide whether the particle moved from

ri(tj) to ri(tjþ1) outside the domain directly from element n or through

element nþ 1. The assignment of a new position to the lost particle is

therefore arbitrary, but since the number of such failures has always a

higher error order, it is irrelevant where the position of such par-

ticles should be reinitialized, apart from obviously poor choices like

ri(tj)¼ ri(tjþ 1).

FIG. 8 Failed particle reflection, first case.
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We thus see that solving the simple problem of deterministic trajectory
integration requires some degree of sophistication if an efficient algorithm is
to result. As will often be the case, it is the exceptional (in this instance,
particles exiting a closed domain) with little physical significance that usually
makes it necessary to invest a disproportionate algorithmic effort and to
resort to rather convoluted techniques in order to reach vectorizability. At
any rate, the algorithmic complexity of trajectory integration can be kept as
O(Npr), the size of the mesh being irrelevant for integration of particle
trajectories.

The integration of stochastic particle trajectories can be performed using
the same techniques for SDEs used to advance the internal configurations of
stochastic models (Kloeden and Platten 1992). Given the intrinsic variability
of stochastic particle trajectories, the problems associated with particles
leaving the domain are more acute in this case, although they can be handled
using the same techniques. However, the imposition of reflecting boundary
conditions on stochastic trajectories is in general a nontrivial matter
(Öttinger 1995).

B. Particle Localization in the Mesh

On the one hand, the integration of particle trajectories is in principle, and
with the use of proper algorithms as well in practice, an O(Npr) algorithm,
since the information required to integrate a given trajectory is purely local
and does not depend on the size of the mesh. Even the treatment of the
anomalous cases considered in the last part of the previous section involves

FIG. 9 Failed particle reflection, second case.
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no more than the immediate vicinity of the element in which a particle is
located at a given time.

On the other hand, the second part of particle tracking consists in the
localization of the particle in the FE mesh (i.e., given the coordinates of the
particle and of the vertices defining all cells, find in which cell the particle
is located). After a time step the particle may still be within the same cell
or element where it was at the previous step (which will be the most
frequent case) or it may have moved to another element. In both cases it is
necessary to determine in which element the particle is located. This task
presents no great difficulties for either a fixed or a moving mesh once the
neighbor lists are available, since (Section III.D) the search is reduced to
the immediate environment of the original element. It is again an O(Npr)
procedure.

Particle localization in its simplest form calls for checking whether a
given particle lies within a given element, using some suitable point-location
criterion. This brute-force approach is O(Npr)O(Nel) and therefore unsuit-
able for intensive use in a time-marching scheme. As soon as particles have
been located once (for example when initializing the ensemble), the use of
a neighbor list is vastly more efficient. The use of the brute-force approach is
justified, at most, during the initialization phase. Even then, an element-by-
element fill-up scheme easily bypasses the problem.

Since for fixed meshes, there is no need to update the neighbor list at
every time step, the overall effort of advancing trajectories and relocating
particles remains O(Npr) throughout the time integration. For moving grids,
however, the domain has to be reenmeshed after a certain number of
time steps [typically O(100–102)], or even after each step (Zegeling 1993,
Trease et al. 1991), a task not to be overlooked: gridding a domain is
isomorphic to Voronoi-tesselating it, for which the best algorithms are
OðN5=4

el Þ (Mulmuley 1994).
The reenmeshment makes it necessary to reconstruct the neighbor lists

and to relocate all particles in the new mesh. In this case, unlike during a
time step in a static mesh, a large number of [O(Npr) and possibly all]
particles will be located in a cell with a different index, even though the cell
itself may be geometrically quite similar and close or even identical to the
one before the reenmeshment. Reenmeshment thus has a devastating effect
on the efficiency of a micro/macro method: it requires new neighbor lists
and particle relocation from scratch. Furthermore, a new neighbor list is a
priori not particularly useful.

If the neighbor list is reconstructed using the neighbor list algorithms
presented in Section III.D and brute-force particle location is used, the
combined effort is of order OðN2

elÞ þOðNprÞOðNelÞ (the first term
corresponding to neighbor list generation, the second to particle location,

540 Laso and Öttinger



which cannot be alleviated by an element-by-element fill-up scheme as
during initialization). As a result, the generation of the neighbor lists and
relocation of particles may become the bottleneck of the whole micro/macro
simulation. Both of these obstacles can be overcome.

1. An Optimal Neighbor List Generator

The algorithms presented in Section III.D for neighbor list generation are
OðN2

elÞ. The following scheme reduces the order of complexity to an optimal
O(Nel log Nel). The key to the successful reduction of complexity is the
transformation of the double-loop construct in Section III.D into a series of
sorting operations. As in Section III.D, we assume that cells or elements in
the grid are specified by an integer array of the form VERTEX(NUMEL,4),
giving the numbers or indices of the four vertices of each cell.

First the array VERTEX(NUMEL,4) is inverted in order to obtain an
array CELL(NVERTS,4) giving the cell numbers associated with each
vertex. Further, NBITS is the number of bits needed to hold the maximum
vertex number, which is roughly equal to log2(NVERTS). For any
nonpathological two-dimensional mesh, NVERTS will be only slightly
larger than NUMEL, the difference between both stemming from vertices
belonging to elements at the domain boundary. The array inversion requires
an intermediate storage and sorting array VC(NUMEL*4). We next generate
all vertex-cell pairings. For this task, the FORTRAN 77 intrinsic routines
lshift, ior, ibits come in handy* (they are not essential for the
present algorithm, but make its implementation simpler and usually more
efficient):

INDEX ¼ 0
DO J ¼ 1, 4
DO I ¼ 1, NUMEL
INDEX ¼ INDEX þ 1
VC(INDEX) ¼ IOR(LSHIFT(VERTEX(I,J), NBITS), I)

ENDDO
ENDDO

*Although not ANSI-FORTRAN, the FORTRAN bitwise Boolean functions are intrinsics

from MIL-STD-1753. They are available on most FORTRAN compilers nowadays, including

those by IBM, NEC, Silicon Graphics, and Sun.

lshift(M,K) returns the value of the first argument shifted left or right, respectively, the

number of times specified by the second (integer) argument. lshift is implemented as a logical

shift, i.e., zeros are shifted in.

ior(M,N) performs a bitwise logical OR of M and N.

ibits(M,K, LEN) extracts a subfield of LEN bits from M starting with bit position K and

extending left for LEN bits. The resulting field is right justified and the remainig bits are set to

zero.
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Left shifting the vertex index by NBITS and bitwise ORing it with the cell
number, produces an array VC, the elements of which contain:

Sorting VC on the vertex number automatically sorts the corresponding
cell numbers. The most efficient general sorting algorithms are O(Nel

log Nel). Having vector computers in mind, a good way of sorting the array
VC is to use the following modification of the binary radix sort:

. Starting with the rightmost bit of the word to be sorted, i.e., with each

element of VC, determine whether the corresponding bit position in

each word is a 0 or a 1. Compress all numbers that have 0 as the

rightmost key-bit in a second scratch array of the same length.

Following this, compress out all numbers that have 1 as the rightmost

key-bit into the remainder of the scratch array. Finally, copy the

scratch array back into the original array. Both the scratch array

and the original array now contain all the words or numbers in

the original array, sorted by their least significant bit in ascending

order.
. Proceed in the same fashion with the second least significant bit of

each element in the array: all numbers with 0 as the second-rightmost

key-bit are gathered into the second array. Following this, compress

out all numbers with 1 as the second-rightmost key-bit into the

remainder of the scratch array and subsequently copy the scratch

array back into the original array.
. The original array now contains all the numbers sorted on their

rightmost two key-bits; first will be all numbers with rightmost bits

00, followed by all numbers with rightmost bits 01, followed by all

numbers with rightmost bits 10, followed by all numbers with

rightmost bits 11. This process continues from right to left until the

numbers have been sorted on each of the key-bit positions.

The entire array is now sorted with the keys in ascending order. In the
following tables we see the way the binary radix sort operates on a sequence

<-------------- one word ------------->

0 vertex number cell number

0 vertex number cell number

0 vertex number cell number

. . . . . . . . .

0 vertex number cell number
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of three-bit numbers (which may represent a three-bit sorting key in a longer
word).

Although in this example the binary radix sort operates on all bits of
a word it is, however, perfectly possible to sort words or numbers based
on only a few or just one of its bits by applying the bit sort to these bit
positions only.

The following simple implementation of the binary radix sort vectorizes
well on all vector architectures and extraordinarily well on processors where
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the compress operations are done by hardware vector instructions (such as
the NEC SX-3 and the deceased ETA family). A(N) is the array to be
sorted, B(N) is the scratch array, and RIGHT and LEFT are the positions
of the bit segment (key) on which sorting should take place (for example,
on a 64-bit-word machine, they could take any values that fulfill
1�LEFT�RIGHT� 64). BTEST is a bit field manipulation intrinsic from
MIL-STD-1753* that tests for the state of a given bit.

DO I ¼ RIGHT, LEFT
K ¼ 0
DO J ¼ 1, N
IF (BTEST(A(J), I)) THEN
ELSE
K ¼ K þ 1
B(K) ¼ A(J)
ENDIF

ENDDO
DO J ¼ 1, N
IF (BTEST(A(J), I)) THEN
K ¼ K þ 1
B(K) ¼ A(J)

ENDIF
ENDDO
DO J ¼ 1, N
A(J) ¼ B(J)

ENDDO
ENDDO

A machine-specific version would avoid the copying from the scratch
array to the original array for each bit position and might require only a
single BTEST function for each word at the expense of more complicated
indexing.*,y

The time to sort a list is therefore proportional to the number of entries
(four entries per cell, given the four vertices per cell) and the width of the key
in bits. If the vertices are numbered from 1 to NVERTS, where NVERTS is
not much larger than the number of cells, the number of bits of the key is
proportional to the logarithm of the number of cells. Thus the binary radix
sort operates in this case on a permutation of the integers from 1 to NUMEL

*btest(N,K) tests the Kth bit of argument N. The value of the function is .TRUE. if the bit is

1 and .FALSE. if the bit is 0.
yEven so, while not the most efficient available, this routine runs at a good fraction of the

maximum possible speed for this algorithm on the Cray Y-MP and the NEC SX-3.
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with each of them appearing up to four times (for quadrilateral cells) and
becomes an O(Nel log Nel) process.

Most vertices are connected to four cells and have four entries in the
array. Those on the edges of the mesh, however, will have fewer. Vertices in
the corners of the grid (if any) may have only one. It is now necessary to
determine where in the sorted array VC each vertex begins and ends. The
following code finds each place where the vertex number changes and enters
this information into two index arrays: ILASTI, giving the last index into
the array VC for each vertex, and IGATHR, which initially is set to the first
index minus one for each vertex. IGATHR is used to extract successive cells
connected to each vertex:

ENTRY ¼ 0
DO I ¼ 1, INDEX - 1
IF (IBITS(VC(I),NBITS,NBITS) .NE. IBITS(VC(Iþ1),NBITS,

NBITS)) THEN
ENTRY ¼ ENTRY þ 1
ILASTI(ENTRY) ¼ I

ENDIF
ENDDO
ENTRY ¼ ENTRY þ 1
ILASTI(ENTRY) ¼ INDEX
IGATHR(1) ¼ 0
DO I ¼ 2, ENTRY
IGATHR(I) ¼ ILASTI(ENTRY-1)

ENDDO

The next step consists in building up a four-column table: for each sepa-
rate vertex enter one of the connected cells in a separate column. If a vertex
is shared by fewer than four cells, repeat the last cell number for that vertex
as necessary. In a last pass, any such duplicated cell numbers are set to zero:

DO I ¼ 1, 4
DO J ¼ 1, ENTRY
IF (IGATHR(J) .LT. ILASTI(J)) SIGATHR(J) ¼ IGATHR(J)þ1
CTABLE(J) ¼ IBITS(VC(IGATHR(J), 0, NBITS))

ENDDO
ENDDO
DO I ¼ 4, 2 -1
DO J ¼ 1, ENTRY
IF (CTABLE(J, I) .EQ. CTABLE(J, I-1)) THEN CTABLE(J, I) ¼ 0

ENDDO
ENDDO

For each cell number, the only nearest neighbor cells are those that occur
in one or more rows along with it in the array CTABLE. The following code
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generates a table CELNBR that contains all cell-neighbor pairs and only cell-
neighbor pairs:

PAIRS ¼ 0
DO I ¼ 1, 4
DO J ¼ 1, 4
IF (I .NE. J) THEN
DO K ¼ 1, ENTRY
IF ((CTABLE(K,I) .NE. 0) .AND. (CTABLE(K,J) .NE. 0)) THEN

PAIRS ¼ PAIRS þ 1
CELNBR(PAIRS) ¼

IOR (LSHIFT(CTABLE(K,I),NBITS),CTABLE(K,J))
ENDIF

ENDDO
ENDIF

ENDDO
ENDDO

The resulting array CELNBR contains:

There will now be some duplicates since some cell pairs (those where two
cells share more than one vertex) will appear in CELNBR twice. Additionally,
since the cell numbers will be in no particularly useful order, sort the array
CELNBR using the cell number in each entry as the key (in the middle of the
word).

The sorted CELNBR contains at most twelve neighbor entries for each
cell.* A neighbor that shares only a corner appears once, a neighbor that
shares two corners (an edge) appears twice. Now eliminate the duplicates by
sorting on the entire cell-neighbor pair rather than on the cell number only.
But if we take into account that duplicate entries can be no more than eleven
words apart (in the event they are first and last in the neighbor list), we can

<-------------- one word ------------–->

0 cell number neighbor

0 cell number neighbor

0 cell number neighbor

. . . . . . neighbor

0 cell number neighbor

*In the case of a structured mesh, where the number of neighbors is fixed.
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replace this sorting by the more elegant device of comparing each entry in
the array, as sorted on cell number only, with the previous eleven entries:

DO I ¼ 1, 11
DO J ¼ Iþ1, PAIRS
IF (CELNBR(J) .EQ. CELNBR(J-I)) CELNBR(J) ¼ 0

ENDDO
ENDDO
UNIQUE ¼ 0
DO I ¼ 1, PAIRS

IF (CELNBR(I) .NE. 0) THEN
UNIQUE ¼ UNIQUE þ 1
CELNBR(UNIQUE) ¼ CELNBR(I)

ENDIF
ENDDO

The last step consists in finding the first and last entries for each cell
number, which can be done in exactly the same fashion as for the array VC
sorted on vertex number and will therefore not be repeated here. After that,
reformatting the table of nearest neighbors into whatever format we wish is
a trivial matter.

We thus see that while a frontal attack results in the elegant and
straightforward but OðN2

elÞ algorithm of Section III.D, recasting the
problem as a quite convoluted sequence of sorting and indirect addressing
yields an O(Nel log Nel) process and therefore optimal.* The break-even
point between the two algorithms will obviously depend on the particular
mesh being used, in particular on the ratio of boundary cells to internal cells.
The figures in Table 1 apply to the two-dimensional eccentric cylinder
meshes.

*The algorithm just described is a constructive proof of the equivalence of building a neighbor

list and a search.

TABLE 1 Peformance Comparison for Increasingly Refined Meshes

Mesh

Number

of vertices

Number

of cells

CPU-time ratio

(Cray Y-MP):

algorithm section III.D/

algorithm section IV.B.1

CPU-time ratio

for scalar processor

M0 55 50 0.81 0.75

M1 220 200 2.5 2.2

M3 840 800 8.3 8.0

M4 1680 1600 25 23

M5 16800 16000 130 110
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We thus see that the break-even point lies at about a few tens of cells, i.e.,
except for the coarsest grids, which in practice never occur, the algorithm
just presented is significantly more efficient. For realistic 2D computations
and, above all in three dimensions, where grid sizes of O(104–105) cells are
standard, the algorithm of Section IV.B.1 is at least two orders of magnitude
faster and the only viable alternative. Finally, it is worth mentioning that the
growing CPU-time ratios apply to absolute CPU-times that in turn grow
with problem size.

Interestingly, the effort invested in developing vectorizable algorithms
pays off on scalar architectures as well. The CPU ratio between the nested-
loop algorithm and the algorithm just presented is slightly more favorable
for the latter on vector machines since the nested DO loop constructs of
Section III.D contain comparatively more or deeper IF’s and low-count
DO’s that must be unrolled.

2. Particle Relocation

As we saw in IV.B, the problem of determining in which element a given
particle is located after the mesh has been created, renumbered, or modified
is of O(Npr)O(Nel), i.e., quadratic in problem size, instead of O(Npr) as is the
case when the mesh is static and neighbor lists can be used. The reason is
that knowledge of the neighboring cells is purposeless if the location of the
particle at the previous time step is unknown, as is the case when the domain
is reenmeshed.* A partial remedy for the O(Npr)O(Nel) complexity could
be achieved by reenmeshment procedures that keep renumbering to a
minimum. Although the amount of literature on reenmeshing procedures is
overwhelming, little attention has been given to the question of minimum-
renumbering algorithms.

While the quadratic complexity of particle relocation is unavoidable the
very first time a domain is initialized,y it is possible in practice to bypass this
complexity in subsequent steps. The reconstructed neighbor list can be used
in order to avoid brute-force particle location no matter how extensive the
renumbering is. The two-step idea is straightforward and does not require
pseudo-code to illustrate it:

. Once the updated neighbor list is available, a brute-force search

is started for inclusion in all cells of a small number of particles

(typically 20 to 100) belonging to the original cell. Since the indices

*Even if the reenmeshment would only renumber cells, the new cell number would bear no

relationship whatsoever with the number before the reenmeshment.
yEven in this case, particle relocation can be avoided by systematic cell fill-up, resulting

in O(Npr).
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of these particles are contiguous in the array ORDWHERE ( see Section

III.D) this search is very fast; furthermore, the effort spent in this

tentative search is the same, no matter what the size of the local

ensemble is. Given that most of the particles will not have left

the original cell (now renumbered beyond recognition), as soon

as the particles are tested for inclusion in the original cell (but with

the updated index), a large majority of the particles test positive. This

is all that is required to identify the new index of the original

cell.
. As soon as the new cell index is known, the search is restarted, this

time for all the particles that were in the original cell but using the

reconstructed neighbor cell, thus reducing the problem to the same

one encountered for static meshes (Section III.D), i.e., to O(Npr).

The objective has been accomplished: combined use of the optimal
neighbor list generator and the relocation technique just described reduces
the OðN2

elÞ þOðNprÞOðNelÞ complexity to O(Nel logNel)þ O(Npr).
The core of the computationally crucial part of CONNFFESSIT

calculations has been described in great detail in Sections III and IV.
The remaining elements in a CONNFFESSIT calculation are relatively
straightforward. Two recent references describe in detail specific applica-
tions to the journal bearing problem (Laso et al. 1997) and to the planar
contraction flow (Laso 1998) as well as the implementation on parallel
and vector machines.

V. CONCLUSIONS AND PERSPECTIVES

The CONNFFESSIT approach is a feasible novel method for the
investigation of the fluid mechanics of complex fluids which cannot be
dealt with satisfactorily within the continuum-mechanical framework. In
order to keep the computational effort involved in the calculation of two-
dimensional time-dependent flows in complex geometries under control,
efficient algorithmic tools and data structures are required.

Even so, CONNFFESSIT cannot compete in speed with the most recent
micro–macro methods but it is still the tool of choice when fluctuations are
important, typically in restricted geometries. Its efficient implementation,
while not complex, requires that care be exercised. The techniques presented
here are certainly not the only ones, but they are reasonably close to algo-
rithmic optimality. Further improvements are certainly possible through
the use of increasingly complex shortcuts, although the gain will probably
be only marginal.
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The recent micro–macro methods, CONNFFESSIT among them, can, in
spite of their youth, already be seriously considered a tool complementary to
those of classical computational rheology.

APPENDIX A: SYMBOLS

akji ith coefficient in Cartesian equations for jth side of kth

element
f kj Cartesian equation of the jth side of the kth element
fnl,. . . inflow factors
l length along boundary between two cells (m)
n number density of particles (m�3)
n unitary normal vector
Nel number of mesh cells or elements (NUMEL in FORTRAN

excerpts)
Np number of computational nodes
Npr number of particles in the global ensemble (NUMPR in

FORTRAN excerpts)
Nsim number of particles per cell or element
Nver number of vertices of the mesh (NVERTS in FORTRAN

excerpts)
Nsides number of sides of an element
Q connector vector (m)
ri(t) position vector of particle i (m)
T temperature (K)
t time (s)
�t integration time step, or average time step (s)
u velocity field (m/s)
�u discretization error in macroscopic velocity field per time

step (m/s)
Ws Weissenberg number
Xj

i x-coordinate of ith vertex of jth element (m)
Yj

i y-coordinate of ith vertex of jth element (m)
Xj

c x-coordinate of centroid of jth element (m)
Yj

c y-coordinate of centroid of jth element (m)
xi x-component of position vector of particle i (m)
yi y-component of position vector of particle i (m)
zi z-component of position vector of particle i (m)
d unit tensor
s extra-stress or deviatoric part of the stress tensor (Pa)
� integration domain; its area (2D) (m2) or volume (3D) (m3)
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@ boundary of the integration domain; its perimeter (2D) (m)
or area (3D) (m2)

APPENDIX B: ABBREVIATIONS

CE Constitutive Equation
CFD Computational Fluid Dynamics
FE Finite Elements
MC Monte Carlo
MD Molecular Dynamics
NEMD Non-Equilibrium Molecular Dynamics
ODE Ordinary Differential Equation
PC Predictor-Corrector
PDE Partial Differential Equation
SDE Stochastic Differential Equation
SPH Smoothed-Particle Hydrodynamics
WR Weighted Residuals
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1995.

Laso, M. In Dynamics of Complex Fluids; 72 Adams, M.J., Mashelkar, R.A.,

Pearson, J.R.A., Rennie, A.R., Eds.; Imperial College Press, The Royal

Society: London, 1998.
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Simulation of Polymers by Dissipative
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I. INTRODUCTION

Dissipative particle dynamics (DPD) was introduced a decade ago by
Hoogerbrugge and Koelman [1,2] as a particle-based off-lattice simulation
method for the flow of complex fluids. Developed for mesoscopic length
and time scales, i.e., much larger than atomic but still much smaller than
macroscopic, DPD faithfully reproduces the relevant thermodynamics,
hydrodynamics, and the omnipresent thermal noise. It was quickly
recognized that DPD offered new and exciting opportunities for modeling
polymers, materials that are rich in physical phenomena characterized by
their mesoscopic scale. Already it has made significant impact on our
understanding of microphase separation in block copolymers and phase
behavior of polymer solutions [3].

The DPD particles loosely represent a number of co-moving fluid
molecules, much like the familiar fluid elements of classical hydrodynamics.
Because of this coarse-grained interpretation of the particle, in both the
spatial and the temporal sense, the conservative force acting between any
two neighboring particles represents the time average of the sum of all
atomic interactions between the atoms constituting the two particles,
resulting in a smooth potential. In DPD the conservative force is taken to be
of a purely repulsive nature, causing the particles to spread out evenly over
the periodic simulation box. The effects of fluctuations around the averaged
interaction, due to the subparticle dynamics, are represented by dissipative
and random forces, in analogy with the Langevin model for the Brownian
particle and the more general Mori–Zwanzig formalism for separating slow
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and fast variables [4,5]. The strength of the DPD method lies in the softness
of the forces, and in the specific construction by which all forces act between
particle pairs following Newton’s third law. Because of this latter condition,
momentum is conserved locally. Hydrodynamic interactions, therefore, arise
automatically during the simulation, so the system will—when viewed on a
sufficiently large time and length scale—behave like any regular fluid [4].
As it turns out, surprisingly few particles are needed in practice to recover
hydrodynamic phenomena.

Hoogerbrugge and Koelman tested their method on a quiescent fluid, a
fluid undergoing Couette flow, and a fluid flow around an array of cylinders
[1]. The objects in the latter simulation were made by locally immobilizing
the liquid. But their pièce de résistance was calculating the viscosity of a
colloidal suspension (with rigid groups of particles acting as moving and
rotating colloids) as a function of the colloid volume fraction, in good
agreement with the celebrated Einstein expression at low fractions [2].
Research in this area has since continued in the group of Coveney and
Boek [6]. Using DPD, liquid mixtures have been simulated by the simple
expedient of assigning a ‘‘color’’ to every particle [7–9]. A rapid quench to
temperatures below the spinodal was then mimicked by instantaneously
increasing the repulsion between unlike particles to a value larger than that
between like particles. The scaling law for the growth of phase-separated
domains with time agreed well with the theoretical predictions for systems
with hydrodynamic interactions [7–9].

Polymers, the topic of this book, have been simulated by introducing
springs between the DPD particles, as in a coarse-grained bead-spring model
[10,11]. The results of these simulations are discussed in detail below. In
a related area, the rich phase behavior of aqueous surfactants has been
characterized; these molecules were modeled as a rigid unit of one
hydrophobic and one hydrophilic particle [12]. Even cell membranes [13]
and vesicles [14] have been simulated, using surfactants with flexible tails.
Thermotropic liquid crystalline phases have been characterized for a
system of rigid rods [15]. A list of all articles relating to DPD can be
found in [16].

In Section II we look more closely at the computational aspects of DPD,
before focusing attention on the specific application to polymer systems.
Section III describes the matching of simulation parameters to the
properties of real polymer systems, with an emphasis on the relation
between the conservative force field and the common Flory–Huggins �
parameter for mixtures. The dynamics of individual polymer chains in a
solvent and in a melt are discussed in Section IV, and the ordering dynamics
of quenched block copolymer systems is described in Section V. A summary
and conclusions are given in Section VI.
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II. DISSIPATIVE PARTICLE DYNAMICS

The interactions between DPD particles consist of three parts, each of which
locally conserves momentum by conforming to Newton’s third law. The
conservative force between any pair of neighboring particles reads

fcij ¼ a!cðrijÞr̂rij ð1Þ

where rij¼ |rij| and r̂rij ¼ rij=rij are, respectively, the length and the direction

of the difference vector rij¼ ri� rj. Here !c describes the distance depen-

dence of the force, which is usually taken to be !c(r)¼ (1� rij/rc), with rc the

cutoff distance of the potential. The parameter a controls the magnitude

of the force. In the case of polymers an additional conservative force fsij is

added to model the bond connecting the two particles. The force constant

and the equilibrium length of these harmonic or FENE springs are chosen

such that the average bond length coincides with the first peak in the radial

distribution function.
Between every pair of particles, whether they are bound or not, there also

acts a friction force

fdij ¼ ��!dðrijÞðvij � r̂rijÞr̂rij ð2Þ

with vij ¼ _rrij , and a random force

frij ¼ �!rðrijÞ�ijðtÞr̂rij ð3Þ

The strength and range of these two forces are related by a conventional

fluctuation-dissipation theorem, which in the current context reads as [17]

2�kBT!d ðrijÞ ¼ �2!2
r ðrijÞ ð4Þ

with Boltzmann’s constant kB and temperature T. The common choice for

the distance dependence is !r(r)¼!c(r). In Eq. (3) �ij(t) denotes a random

number of zero mean, unit variance, uncorrelated between particle pairs,

and devoid of memory, i.e., h�ijðtÞi ¼ 0 and

h�ijðtÞ�klðt
0Þi ¼ �ik�jl þ �il�jk

� �
�ðt� t0Þ ð5Þ

DPD codes are usually simple modifications of molecular dynamics (MD)

programs, and since this latter correlation is inconvenient for algorithms

with a finite time step h, the actual random number to be used in the nth step

becomes �ijðnÞ ¼
R nh
ðn�1Þh

�ijðtÞ dt. Clearly, h�ijðnÞi ¼ 0 and h�2ijðnÞi ¼ h, while
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there still are no correlations between particle pairs, nor memory effects
between consecutive steps.

Note how the friction and random forces differ from their counterparts
in Brownian Dynamics (BD), where these forces act relative to a fixed
background. In BD, therefore, a bulk flow is not sustained, and the absence
of momentum conservation leads to a screening of the hydrodynamic
interactions. By making all forces explicitly Galilean invariant, as in Eqs. (1)
through (3), these deficiencies are avoided. The friction and random forces,
in addition to their physical interpretation, also serve as a thermostat to the
simulation; see Eq. (4). More elaborate models in which the particles are
equipped with an internal energy have been proposed [18,19], allowing for
a temperature gradient. This may prove a particularly valuable addition
to DPD, as it augments mass and momentum conservation with energy
conservation to obtain the complete set of five hydrodynamical equations
describing any real liquid [4,20]. Particles with an angular momentum
[21,22] and internal elasticity [23] have also been suggested.

The equations of motion, obtained from the above force expressions in
combination with Newton’s second law,

dxi

dt
¼ vi ð6Þ

m
dvi

dt
¼
X

j

ðfcij þ fdij þ frij þ fsijÞ ð7Þ

are commonly integrated with a Verlet leapfrog algorithm [1,24]. Because of
the softness of the particle potential, the algorithm is stable up to fairly large

time steps. Unfortunately, the assumption that the friction and random
forces can be treated as constants during the time step leads to a thermostat-
induced spurious increase of the temperature [25]. A number of algorithms

have been proposed to counter this effect, with mixed results [24–28]. We
think that an Ermak-type approach, the de facto standard in BD, offers the
best performance [28]. But if one is willing to accept a temperature rise of,

say, two percent, it is perhaps most convenient to stick with an ordinary
leapfrog algorithm: the conversion of an existing MD code into a DPD
code is then straightforward. An interesting alternative with an Andersen

thermostat has been described by Lowe [29].

III. PARAMETERIZATION AND RELATION TO
FLORY–HUGGINS THEORY

The most common system of units in DPD, as introduced by Groot and
Warren [24], is to define the mass of the particle as the unit of mass, the
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cutoff radius of the potential as the unit of length, and the thermal energy
kBT ¼ 1

3
mhv2i i as the unit of energy. The unit of time is then implicitly

defined; a unit of temperature is not needed, since the temperature only
appears as the product kBT. These units, together with a field parameter a
and a friction � of the order ten, suffice for qualitative results, like the role
played by hydrodynamics in the microphase separation of block copoly-
mers. A further tuning is required for more quantitative results. We will
summarize here the method proposed by Groot and Warren [24], including
modifications of recent date [13].

One first chooses nmap, the number of atoms to be represented by a single
DPD particle, thereby fixing the mass of the particle. Next one chooses a
density of � particles per r3c , which combines with the weight density of the
real fluid to give a value for rc. In simulations typical values for � are 3, 4, or
higher, to ensure a sufficiently high number of nearest neighbor interactions
for a fluid-like structure.

The strength of the conservative force field can be obtained from the
requirement that the density fluctuations of the real fluid should be
reproduced. As the static structure factor for a coarse-grained system is
smaller than that of the atomic system by a factor nmap for low wave
numbers, it follows that ð�kBT�T ÞDPD ¼ n�1

mapð�kBT�T Þatom. The isothermal
compressibility coefficient �T of the DPD fluid is readily obtained from its
surprisingly simple equation of state [24], p� �kBTþ 0.1a�2, and this set of
equations is then solved for a.

Finally a friction coefficient is chosen, and the unit of time is set by
comparing the self-diffusion coefficient D of a particle with that of nmap

atoms. Typical values obtained this way for water with nmap¼ 3, �¼ 3[l�3],
and �¼ 3[mlt�3/2] are a¼ 80[ml2t�2] and the units 1[l ]¼ 3 Å, 1[t]¼ 90 ps, and
1[m]¼ 9� 10�26 kg [13]. As the implications of nmap for the conservative
field have been realized only recently, most simulations have actually been
run using softer a values in the range of 10 to 25.

This procedure for choosing the simulation parameters is by no means
unique. One could, for instance, in the above scheme opt to define the unit
of time by matching the thermal velocity of a particle with that of nmap

atoms. The friction coefficient would then have to be tuned by matching the
diffusion coefficient, using the readily understood observation D�1ð�Þ ¼
D�1ð0Þ þ gð6kBT=�Þ

�1, where both D(0) and g are determined by the
conservative field. Note that there will be no physically meaningful solution
if the conservative force field itself already gives rise to a diffusion
coefficient below the experimental value. An altogether different approach,
using theoretical predictions [22,30–32] for the ideal fluid (a¼ 0) to match
dynamical properties such as the viscosity and the sound velocity, has also
been proposed [33].
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Although most simulations to date assume a linear dependence of !c and
!r on r, as introduced in the original DPD for numerical reasons, there is
little evidence to suggest that this is the required form of the potential for a
coarse-grained fluid. Kong et al. [34] tried an alternative simple potential,
but found it to have little effect on the overall results of the simulation.
In this context we mention recent attempts to place DPD on a firmer footing
through a strict definition of a particle as the matter contained in a
smoothed Voronoi cell. Dynamical equations for these cells have been
obtained in ‘‘bottom-up’’ (starting from the atomic motion [35,36]) and
‘‘top-down’’ (starting from hydrodynamics [37]) approaches, in each case
including a fluctuation-dissipation theorem and the aforementioned energy
conservation.

An important parameter in the theory of diluted polymers, polymer
mixtures, and block copolymers is the Flory–Huggins � parameter, as it
determines the propensity of the system to mix or de-mix. In DPD, the �
parameter is taken into account by systematically varying the conservative
interaction parameter between unlike particles, whilst the repulsion between
like particles remains unchanged to maintain a homogeneous compressi-
bility. Hence, for a mixture of A and B particles one has aAA¼ aBB and
aAB¼ aAAþ�a. Groot and Warren [24] argued on the basis of the DPD
equation of state that � / �a. This was also found by simulating phase-
separated monomeric mixtures at various values of �a, using the fraction A
in the B-rich phase and vice versa to calculate the corresponding value of �.
Recent simulations using Gibbs ensemble Monte Carlo, to avoid interfacial
perturbations, have confirmed these findings [38]. For polymer–solvent
mixtures an ‘‘identity change’’ Monte Carlo move was introduced,
exchanging a chain of polymer particles by an equal number of solvent
particles. This time the agreement with Flory–Huggins was less satisfactory,
particularly near the critical point and in the low polymer concentration
phase. These discrepancies were attributed to the deficiencies of the mean
field model, and an eight parameter master equation was proposed to
describe all simulation data, as well as experimental data [38].

In DPD, as in the Flory–Huggins model, the coexistence curve ends at an
upper critical point. Above this critical temperature the system just will not
phase separate. There exist experimental systems, however, that only phase
separate above a critical temperature. In order to simulate a lower critical
point, van Vliet et al. [39] turned the conservative force parameters into
functions of the global temperature and pressure of the system.
Pagonabarraga and Frenkel [40] extended this idea, making the conservative
energy a function of the local density, Ei ¼  ex½

P
j !ðrijÞ	. The weight

function ! represents the spatial spread-out of the atom cloud of particle j
neighboring particle i. Any phase diagram can now be reproduced by dialing
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in its excess free energy  ex as a function of density and temperature. This
also opened up the possibility of studying liquid–vapor interfaces with
DPD [41]. Note the similarities between this potential and the one used in
smoothed particle hydrodynamics (SPH), an alternative off-lattice particle-
based method for simulating fluid flow [21,42].

IV. ROUSE AND ZIMM DYNAMICS

The first application of DPD to polymers was presented by Schlijper,
Hoogerbrugge, and Manke in 1995 [43]. They simulated a single polymer, a
chain of N particles connected by N� 1 harmonic springs, in a solvent of
identical particles. The average bond length was made to coincide with the
location of the first peak in the radial distribution function of the monomer
fluid, rp� 0.85 rc, by tuning the strength k and the equilibrium length leq of
the springs. There was no explicit bending potential, so the beads are best
viewed as representing fragments of a polymer at least as big as a Kuhn
segment. The radius of gyration was found to follow the scaling law
hRgi / ðN � 1Þ� for both bond models considered, with N ranging from 2
to 30. At � � 0:52, the exponent is slightly above the 0.5 characteristic of
a Gaussian chain, but well below the 0.588 of a chain in a good (e.g.,
athermal) solvent [10,11]. Given the repulsive interactions between polymer
beads, the potential energy of two coinciding beads was about five times the
thermal energy in this model, a more pronounced indication of excluded
volume effects was to be expected. The scaling law for the first relaxation
time, 	1/N�, yielded �� 1.95 for the weak bonds (leq¼ 0, small k) and 1.83
for the strong bonds (leq¼ rp, large k). These results lie below the value
of 2 obtained in Rouse theory (in which hydrodynamics is completely
ignored), but above the �¼ 3� predicted by Zimm theory (which includes
hydrodynamics in a preaveraging approximation) [10,11], indicating that
hydrodynamic interactions do play a role in the DPD polymer model. On
the basis of this result, the strong spring model appeared to be better than
the weak spring model, hence it was used in successive simulations by these
authors. Later simulations showed a much better agreement with theory,
even for the weak springs, as discussed below.

The strong spring polymer model was further analyzed by looking at the
dynamic structure factors,

Sðk, tÞ ¼
1

N

XN

j¼1

eik�rjðtÞ

 !
XN

j¼1

eik�rjð0Þ

 !
* +
ð8Þ

For a 20 bead chain, the plot of ln S(k,0) vs. ln k showed a region of linear
decay with a slope corresponding to �� 0.61 [43]. This is a clear indication
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of swelling due to excluded volume interactions; the overshoot of the theo-
retical value is typical for short chains. Scaling theory predicts that for
kRg � 1 the rescaled dynamic structure factors S(k, kxt)/S(k, 0) coalesce
for x¼ 3 (Zimm) or x� 4 (Rouse) [10,11]. Although the numerical value
of x� 2.7 was lower than expected, in the good company of previous poly-
mer simulations, it evidences the impact of hydrodynamic interactions on

the motion of the polymer. A further indication hereof was found in the
distribution of relaxation times in the decay of the conformational time
correlation function,

CðtÞ ¼
1

N

XN

i¼1

riðtÞ � RcomðtÞ½ 	 � rið0Þ � Rcomð0Þ½ 	
 �

ð9Þ

where Rcom denotes the center of mass position. In a nutshell, their approach
was to fit this function with

CðtÞ /
X

i

i�2þh exp �
t

	1i�2þh

� �
ð10Þ

by varying h and 	1. The values h¼ 0 and h¼ 0.5 correspond to the Rouse

and to the Zimm model, respectively. In their appendix, the authors warned
that for short chains, N � 10, a noticeable deviation from the long N
predictions of the Zimm and Rouse models is to be expected.

The effect of solvent quality on the conformational distribution of a
solvated polymer was investigated by Kong, Manke, Madden, and Schlijper
[34]. While all interactions between like particles were kept constant,
ass¼ app, the interaction between polymer and solvent beads was varied,
asp¼ assþ�a. For negative �a the polymer–polymer interaction was more
repulsive than the polymer–solvent interaction, and the polymers were
observed to swell to �� 0.61. The opposite case of positive �a saw the
polymers collapse to �� 0.31 (theory: 1/3). A smooth transition between
the two extremes was observed by varying �a. Defining the expansion
coefficient 
 ¼ Rg=R

�
g, with R�g the radius of gyration in the theta solvent,

a qualitative agreement was found with Flory’s expression,


5 � 
3ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ¼
Að1

2
� �Þ : theory, A � 4=3

3:0ð0:05��a=assÞ : simulations

�
ð11Þ

This suggests a simple linear relationship between � and �a, as was also
observed by Groot and Warren [24].
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The effect of solvent quality on the dynamics of the polymer was studied
by calculating the conformational time correlation function as a function of
N and �a [34]. While the scaling exponent � decreased from nearly 2 in the
good solvent to 0.9 in the bad solvent, the ratio �/� remained relatively
constant between 3 and 3.3 (theory: 3). A sheared simulation box with
Lees–Edwards boundary conditions was used to calculate the impact of a
single dissolved polymer on the viscosity of the box [44–46]. The largest
zero-shear viscosities were observed for the good solvent, the lowest for the
bad solvent. Upon increasing the shear rate _��, the solution was found
to shear-thin in the region surrounding _��	1 � 1, the effect being most
pronounced in the good solvent and nearly absent in the bad solvent. All of
these static and dynamic results, save for the �� 0.61 from the static
structure factor S(k,0), confirmed the rather unsatisfactory result that the
athermal solvent acted as a ‘‘near-theta’’ solvent.

The case of a single polymer in a quiescent athermal solvent was recently
revisited by Spenley [47], using chains of 2 to 100 beads in a weak spring
model. For the end-to-end vector he found the exponents �¼ 0.58� 0.04
and �¼ 1.80� 0.04, both in excellent agreement with the predictions for a
polymer with excluded volume and hydrodynamic interactions. It is not
clear what caused this marked difference with the above discussed results.
The verification of the scaling law for the self-diffusion coefficient, D / N,
was more involved, as D is rather sensitive to the size of the simulation box.
After correcting for this complication, a satisfying agreement with theory
was observed.

In the melt [47] the polymers adopted a Gaussian distribution,
�¼ 0.498� 0.005, as predicted by Flory. The dynamical coefficients,
�¼ 1.98� 0.03 and ¼�1.02� 0.02, and the viscosity �/N, all followed
the Rouse model, showing that the interpolymer interactions were
sufficiently strong to screen the hydrodynamic interactions, despite the
softness of the potential. In fact, the potential was so soft that polymers
were seen to cross one another [47,48]; a transition for large N from Rouse
dynamics to de Gennes reptation is therefore not to be expected. In cases
where the entanglement of polymers is an issue, DPD is readily combined
with recently developed algorithms which explicitly reintroduce the
uncrossability lost in coarse-grained soft potentials [49,50].

We have performed simulations at polymer concentrations ranging from
a dilute system to a melt, for polymers of 20 to 100 beads, to study the
impact of interpolymer interactions on the dynamics [51]. The polymer–
solvent repulsion was tuned to a theta point condition, rendering the
exponent � and the radius of gyration at fixed N virtually independent of
the concentration. For the lowest concentrations we found a reasonable
agreement with the Zimm theory of the theta state. When the polymer bead
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concentration c became of the order of the overlap concentration,
c
 ¼ N= 4

3
�hRgi

3, the interpolymer contacts became numerous enough to
change the scaling laws into 	1 / N�ðc=c
Þl and D / Nðc=c
Þm. This
behavior is reminiscent of semidilute polymer systems, though the chains
are arguably too short to have reached this limit of combining low
concentration with many interpolymer contacts. At �� 1.7, l� 0.2,
��0.65, and m��0.4, the exponents are much closer to the swollen
state (� and  as for the ideal system, l ¼ 1

4
and m ¼ � 1

2
) than the theta state

(l¼ 1¼�m), though there was no other direct indication of swelling. Our
theoretical understanding of these phenomena is still incomplete.

A number of articles have discussed polymers with limited freedom of
motion. For a polymer between two parallel walls, the component of the
radius of gyration perpendicular to the wall started to collapse as the gap is
reduced to about five times the unperturbed radius of gyration, while the
relaxation time of this component simultaneously strongly increased [45,52].
A recent study described the forced flow of solvated polymers through a
square tube of comparable dimensions, showing that the polymers had a
preference for the center of the flow [53]. Polymers in a grafted polymer
brush were found to predominantly orient perpendicular to the substrate;
their ordering increased with chain length and surface coverage [54]. The
effects of (oscillatory) shear on a brush have been studied recently [55,56].
Colloidal particles present in the solvent above the brush were absorbed by
the brush when the colloid–polymer interaction was less repulsive than the
colloid–solvent interaction [48,57]. The absorption was effected by the
polymer density and the quality of the solvent with respect to the polymer.
Attaching short polymers to the surface of spherical particles strongly
increased the viscosity and shear thinning of a solution of these particles,
the more so in a good solvent [46]. In a bad solvent the particles even
aggregated [48].

V. BLOCK COPOLYMERS

In an important series of articles the Unilever group have described the
use of DPD to characterize microphase separation phenomena in linear
diblock copolymers of the general formula AnBm [24,58,59], making detailed
comparisons with both experiments and the predictions of self-consistent
field theory [60]. Block copolymers are both interesting and useful because
of their property of forming complicated aggregated structures, as the
natural tendency for segregation of the blocks composed of A and B
monomers is frustrated by the connectivity of the copolymer. The system
can therefore only reduce its free energy by coalescing the A- and B-rich

568 den Otter and Clarke



domains, forming e.g., sheets, rods, or spheres. The phase diagram is fully
determined by just two parameters, N� and the fraction f of A beads.

The basic parameterization used was as discussed above, with �/�a.
Groot et al. [24,58] showed that in DPD the interfacial tension between
the component homopolymers followed the same scaling law, as a func-
tion of N� and �, as experimental data for PS-PMMA. This is an impor-
tant result, since it is the interfacial tension which drives microphase
separation. It also provides validation for the comparison of experimental
data on long chains with DPD data on short chains (but correspondingly
much larger �).

With N�¼ 41, the simulations were well outside the weak segregation
regime, and when the melts were quenched the expected order of equilib-
rium structures was found as the copolymers become successively more
asymmetric—lamellae ( f� 0.37), perforated lamellae (0.31� f� 0.37), hex-
agonally arranged rods (0.26� f� 0.31), fluid peanut-shaped micelles (at
f=0.2), and a disordered phase (at f¼ 0.1). These stable structures emerged
via nontrivial pathways, forming a series of metastable states before
equilibrium is reached. Discrepancies between the exact positions of phase
transition points and those predicted by theory were explained in terms of
the short length of the DPD copolymer chains, N¼ 10, which effectively
reduced the Flory–Huggins parameter to N�� 20 [58]. The finding of
a hexagonally perforated lamellar phase is interesting since this structure
has been identified in recent experiments, while current mean field theory
predicts a gyroid phase in this region. Finite sample size effects cannot,
however, be discounted as a reason for the nonappearance of the gyroid
phase in the simulations.

In a later article [59] the importance of hydrodynamic interactions in
the formation of certain microphases was demonstrated by close comparison
of simulations using DPD and Brownian dynamics (BD). Whilst both
simulation methods describe the same conservative force field, and hence
should return the same equilibrium structure, they differ in the evolution
algorithms. As mentioned above, DPD correctly models hydrodynamic
interactions, whereas these are effectively screened in BD. Distinctly
different ‘‘equilibrium’’ structures were obtained using the two techniques
in long simulations of a quenched 2400 A3B7 polymer system, as shown in
Fig. 1. Whilst DPD ordered efficiently into the expected state of hexagonal
tubes, BD remained trapped in a structure of interconnected tubes. By
way of contrast, both DPD and BD reproduced the expected lamellar
equilibrium structure of A5B5 on similar time scales, see Fig. 2.

There is experimental evidence [61] that the formation of micro-
phases occurs on at least three different time and length scales. In the first
stage there is phase separation on the level of the interacting beads. This is
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FIG. 1 Comparison of the time evolution of a quenched A3B7 block copolymer as

obtained by DPD (top three snapshots) and BD (bottom). Shown are the surfaces

surrounding areas of more than 50% A, after 1500, 7500, and 15,000 units of time.

(From Ref. [59].)

FIG. 2 The global order parameter
R
SðkÞ lnSðkÞ d3k as a function of time for

quenched block copolymers, as obtained in DPD and BD simulations. For A3B7

(HEX) DPD shows an activated transition from a disordered network of tubes to a

hexagonal phase of rods, whereas BD remains stuck in the former. The A5B5 (LAM)

immediately form a lamellar structure in both DPD and BD. (From Ref. [59].)
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followed rapidly by a second stage in which the initially formed clusters
grow out into micelles or highly connected rod-like or planar networks,
depending on the composition. Finally there is the much slower macro-
scopic ordering of these percolating structures into a symmetric
superstructure, which in the case of A3B7 may occur via a nematic-like
transition.

Groot et al. [59] rationalized the different behavior of the A3B7 and A5B5

copolymer in terms of different evolution mechanisms for the final slow
ordering process. They argued that the formation of hexagonal rods
appeared to proceed by a nucleation-and-growth mechanism, starting from
the gyroid-like and therefore presumably metastable disordered network
of tubes formed in the second stage. The hydrodynamical interactions are
essential in the growth of the hexagonally ordered structure. In BD, by
contrast, hexagonal domains were formed locally, but instead of growing to
encompass the entire simulation box, they disappeared again. The lamellar
phase is formed by spinodal decomposition (i.e., this process does not
involve surmounting a free energy barrier), and thus does not rely as much
on hydrodynamics for its growth. Interestingly, DPD simulations of large
boxes with short chains (A1B3 and A2B2) grew a patchwork of ordered
structures of limited dimensions. This was also observed experimentally;
macroscopic ordering is achieved only in sheared systems.

Recently the ordering effects of steady state shear flow on microphase
separated copolymer melts has been investigated using DPD and the
Lees–Edwards boundary conditions for Couette flow [62]. A 150 A3B17 melt
transformed under high shear, _��	1 ¼ 5:0, from a bcc micellar structure into
cylinders aligned along the flow direction. Cylinders of A6B14 aligned with
the flow at moderate shear, _��	1 ¼ 0:5, and were torn into lamellae at higher
shear rates. These lamellae, as well as those formed by the symmetric
A10B10, were oriented perpendicular to the neutral direction. All these
systems showed shear-thinning of the viscosity.

VI. CONCLUSIONS

Dissipative particle dynamics has proved to be a very versatile simulation
technique for complex flows on the mesoscopic scale, where thermo-
dynamics, hydrodynamics, and thermal noise play important roles. The
polymer simulations reviewed here cover but a part of the phenomena that
have been, and will be, studied using DPD.

The conservative force field in DPD is extremely soft compared to those
used in atomic simulations, yet after parameterization using the compres-
sibility or the Flory–Huggins parameter it is able to capture many of the
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essential properties of polymers at the mesoscopic level. Thermodynamic
phenomena such as the swelling of polymers in a good solvent and the phase
diagram of block copolymers are thus correctly reproduced. But DPD’s
most remarkable feature is that it faithfully combines thermodynamics with
fluctuating hydrodynamics. This is achieved by expressing all forces,
including the Brownian forces that thermostat and randomize the system,
as pair interactions between the particles. Numerous simulations have
confirmed the presence and importance of hydrodynamic interactions.
In the context of polymers, we mention the observed Zimm dynamics of
solvated polymers and the insights DPD has given in regard to the pathways
followed by microphase separating block copolymer systems, including the
role played therein by hydrodynamics.
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18
Dynamic Mean-Field DFT Approach
for Morphology Development

A. V. ZVELINDOVSKY, G. J. A. SEVINK, and
J. G. E. M. FRAAIJE Leiden University, Leiden, The Netherlands

I. INTRODUCTION

For a long time, chemical engineers have analyzed macroscale properties
using a variety of continuum mechanics models. In the last decade
molecular modeling has grown to an essential part of research and
development in the chemical and pharmaceutical industries. Despite the
considerable success of both molecular and macroscale modeling, in the past
few years it has become more and more apparent that in many materials
mesoscale structures determine material properties to a very large extent.
Mesoscale structures are typically of the size of 10 to 1000 nm. The
industrial relevance of mesoscale modeling is obvious, nevertheless the
necessary general purpose computational engineering tools are absent.

We are developing a general purpose method for mesoscale soft-
condensed matter computer simulations, based on a functional Langevin
approach for mesoscopic phase separation dynamics of complex polymer
liquids. This project aims to consider topics of utmost importance in
chemical engineering, such as chemical reactions, convection and flow
effects, surfaces and boundaries, etc.

The morphology formation in complex liquids has been studied by many
authors using time dependent Landau–Ginzburg models [1–5]. These
models are based on traditional free energy expansion methods (Cahn–
Hilliard [6], Oono–Puri [7], Flory–Huggins–de Gennes [8]) which contain
only the basic physics of phase separation [9] and are not well suited for
specific application to the different complex industrial and biological
liquids. In contrast to these phenomenological theories we use dynamic
density functional theory [9–14] where we do not truncate the free energy
at a certain level, but rather retain the full polymer path integral by a
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numerical procedure (see Appendix A). Recently Kawakatsu and Doi
started to use a similar approach [15,16].

Although calculation of polymer path integrals is computationally very
intensive, it allows us to describe mesoscopic dynamics of specific complex
polymer liquids [17].

Our approach uses essentially the same free energy functional as in many
self-consistent field (SCF) calculations [18–21] (see also [22] for an excellent
overview). In the past decade the SCF methods have been widely used
for static calculations in various polymeric systems. The dynamic DFT
approach complements the static SCF calculations by providing a detailed
dynamical picture of system evolution, which is crucial, for example, for the
investigation of metastable intermediate mesophases and for the study of the
influence of shear and other processing conditions.

The prediction of the mesoscale morphology of complex polymer systems
is very important for the final product properties. The application area of
the proposed method includes computer simulation of such processes as
emulsion copolymerization, copolymer melts and softened polymer melts,
polymer blends, polymer surfactant stabilized emulsions, and adsorption
phenomena in aqueous surfactant systems.

In this chapter we demonstrate only several types of modulation of self-
assembly in complex polymer systems. They are: shearing of concentrated
aqueous solution of amphiphilic polymer surfactant, shearing of symmetric
diblock copolymer blend, reactions in polymer mixture, surface directed
phase separation in copolymer melt.

II. DYNAMIC DENSITY FUNCTIONAL THEORY

We give a short outline of the theory of the mesoscopic dynamics
algorithms. For more details see [11]. We consider a system of n Gaussian
chains of N beads of several different species (for example, ANA

BNB
,

N ¼ NA þNB for a diblock copolymer, ENE
PNP

ENE
,N ¼ NP þ 2NE N¼

NPþ 2NE for a symmetric triblock copolymer, etc.). The solvent can easily
be taken into account [17]. The volume of the system is V. There are
concentration fields �I(r), external potentials UI(r), and intrinsic chemical
potentials I(r).

Imagine that, on a course-grained time scale, there is a certain collective
concentration field �I(r) of the beads of type I (say, A or B). Given this
concentration field a free energy functional F [�] can be defined as follows:

�F ½�	 ¼ �n ln�þ ln n!� �
X

I

Z
UI ðrÞ�I ðrÞdrþ �F

nid ½�	 ð1Þ
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Here � is the partition functional for the ideal Gaussian chains in the

external field UI, and F nid[�] is the contribution from the nonideal interac-

tions. The free energy functional (1) is derived from an optimization criter-

ion (see [11]) which introduces the external potential as a Lagrange

multiplier field. The external potentials and the concentration fields are

related via a density functional for ideal Gaussian chains:

�I ½U	ðrÞ ¼ n
XN

s0¼1

�KIs0Trc � r� Rs0ð Þ ð2Þ

Here �KIs0 is a Kronecker delta function with value 1 if bead s0 is of type I and

0 otherwise. The trace Trc is limited to the integration over the coordinates

of one chain

Trc �ð Þ ¼ N

Z

VN

�ð Þ
YN

s¼1

dRs

N is a normalization constant.  is the single chain configuration distribu-

tion function

 ¼
1

�
e�� HGþ

PN

s¼1
Us Rsð Þ

� �
ð3Þ

where HG is the Gaussian chain Hamiltonian

�HG ¼
3

2a2

XN

s¼2

ðRs � Rs�1Þ
2

ð4Þ

with a the Gaussian bond length parameter. The density functional is bijec-

tive; for every set of fields {UI} there is exactly one set of fields {�I}. Thus
there exists a unique inverse density functional UI[�] . There is no known

closed analytical expression for the inverse density functional, but for our

purpose it is sufficient that the inverse functional can be calculated

efficiently by numerical procedures (see Appendices A and B).
We split the nonideal free energy functional formally into two parts

Fnid ½�	 ¼ Fc½�	 þ Fe½�	
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where Fe contains the excluded volume interactions, and F c the cohesive
interactions. The intrinsic chemical potentials I are defined by the

functional derivatives of the free energy:

I ðrÞ �
�F

��I rð Þ
¼ �UI ðrÞ þ

�Fc

��I ðrÞ
þ

�Fe

��I ðrÞ
ð5Þ

¼ �UI ðrÞ þ 
c
I ðrÞ þ 

e
I ðrÞ ð6Þ

Here we have introduced the cohesive potential c
I ðrÞ and the excluded

volume potential e
I ðrÞ. For the cohesive interactions we employ a two-

body mean field potential:

Fc½�	 ¼
1

2

X

IJ

Z Z
�IJ ðjr� r0jÞ�I ðrÞ�Jðr

0Þ dr dr0 ð7Þ

c
I ðrÞ �

�Fc

��I
¼
X

J

Z

V

�IJ ðjr� r0jÞ�Jðr
0Þ dr0 ð8Þ

where �IJ(|r� r0|)¼ �JI(|r� r0|) is a cohesive interaction between beads of

type I at r and J at r0, defined by the Gaussian kernel

�IJ ðjr� r0jÞ � �0IJ
3

2�a2

� �3=2

exp �ð3=2a2Þ r� r0ð Þ
2

h i
ð9Þ

The excluded volume interactions can be included via the correction factor

or insertion probability for each bead, c [12]:

�Fe �½ 	 ¼ �
X

I

Z

V

�I ðrÞlncðrÞ dr ð10Þ

The insertion probability is interpreted as the effective fraction of free space.
The lower the fraction of free space, the lower the insertion probability and

the higher the excess free energy. We have studied several models (van der

Waals, Flory–Orwoll–Vrij, Carnahan–Starling) for the excess free energy
function. We found that the phenomenological Helfand penalty function

[last term in Eq. (13)] provides a numerically and mathematically simple

way to account for compressibility effects in the system [12]. In equilibrium
I(r) is constant; this yields the familiar self-consistent field equations for

Gaussian chains, given a proper choice for F nid. When the system is not in
equilibrium the gradient of the intrinsic chemical potential �rI acts as a
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thermodynamic force which drives collective relaxation processes. When the
Onsager coefficients are constant the stochastic diffusion equations are of

the following form

@�I
@t

¼ �r � JI ð11Þ

JI ¼ �MrI þeJJI ð12Þ

where M is a mobility coefficient andeJJI is a noise field, distributed accord-

ing to the fluctuation-dissipation theorem.
In Appendix B we provide some details of the numerical solution of these

equations.

III. APPLICATION

A. Pluronics in Water Mixtures

The aqueous solution of triblock copolymer Pluronic L64 EO13PO30EO13

[23] is modeled as a compressible system consisting of ideal Gaussian chain
molecules in a mean field environment. The free energy is a functional of a
set of particle concentrations {�} [11,12]:

F ½f�g	 ¼ �kT ln
�

np
p �

ns
s

np!ns!
�
X

I

Z

V

UI ðrÞ�I ðrÞ dr

þ
1

2

X

I , J

Z

V2

�IJ ðr� r0Þ�I ðrÞ�Jðr
0Þ dr dr0

þ
�H
2

Z

V

X

I

�I ð�I ðrÞ � �
0
I Þ

 !2

dr

ð13Þ

where np (ns) is the number of polymer (solvent) molecules, � is the intra-

molecular partition function, I is a component index (EO, PO, or solvent),
and V is the system volume. The external potential UI is conjugate to the

particle concentration �I via the Gaussian chain density functional (2).

The average concentration is �0I and �I is the particle volume. The cohesive
interactions have kernels "IJ (7) [11]. The Helfand compressibility parameter

is �H [12].
The dynamics of the system is governed by the diffusion-convection

equation (11) with the periodic boundary conditions as described in [11,17].
The dynamic equations are closed by the expression for the free energy (13)
and the Gaussian chain density functional (2). Seven dimensionless
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parameters enter the numerics: three exchange parameters �IJ �

ð�=2�Þ½2�0IJ � �
0
JJ � �

0
II 	, the dimensionless time 	� kTMh�2t (h is the mesh

size), a noise scaling parameter � (�¼ 100 in the simulation) [13], the grid
scaling d� ah�1

¼ 1.1543 [a is the Gaussian chain bond length (4)] [14], and
the compressibility parameter �0 � ��H�¼ 10. For simplicity we use identical
mobility coefficients and particle volumes for all components.

From comparison of Random Phase Approximation (RPA) [24] and
molecular force-field single chain structure factors (generated by Monte
Carlo), we found that the structure factor is well represented by an E3P9E3

Gaussian chain [17], which corresponds to 3 to 4 monomers per bead. The
solvent molecule is represented as a single bead.

The solvent–polymer interaction parameters were calculated from vapor
pressure data of aqueous homopolymer solutions [25], using the Flory–
Huggins expression [26] �IJ¼ �

�2{ln p/p0� ln (1� �)� (1� 1/N)�}, where p
is the vapor pressure and � is the polymer volume fraction. The chain length
N was determined using 13=3 (EO) or 30=9 (PO) monomers per bead. This
gives for the interaction parameters �ES¼ 1.4, �PS¼ 1.7 (here S denotes
solvent). For the EO–PO interaction parameter from group contribution
methods [27] we estimated �EP¼ 3.0.

We have simulated the time evolution of the Pluronic–water mixture in a
cubic box 64� 64� 64. The simulation was started from the homogeneous
solution. The resulting morphologies are represented by Figs. 1 and 2.
Four phases are clearly observed in good agreement with the experiments
[23]: lamellae, bicontinuous (gyroid), hexagonal cylindrical, and micellar.
The gyroid phase appeared to be metastable, which will be shown in
Section III.C.

B. Multicolor Block Copolymers

Multicolor block copolymers are a very fascinating example which have
recently become a hot topic in polymer simulation [21]. We demonstrate
just one example obtained by our method. Figure 3 shows mesophases in a
three-color quadrublock copolymer A3B3C3A3. The side chain block A
forms lamellae and middle blocks C and D form two grids of alternating
cylinders. All blocks have equal interaction strength with each other,
�AB¼�AC¼�BC¼ 5.4. Our 3D results correspond well to the 2D simulation
of [21] but give a more realistic picture, being 3D results.

An even more sophisticated case is demonstrated in Fig. 4, a four-color
four arm star block copolymer. Again, all interactions are taken of the same
strength. The system develops into four interpenetrating micellar grids with
a deformed dodecahedral space arrangement.
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C. Modulation by Shear

It is known that flow fields affect mesoscale structures in complex liquids
and polymer systems, giving rise to global orientation [28,29]. Because of its

(b)(a)

(c) (d)

0.10 0.25

FIG. 1 Isosurface representation of PL64 in water mixture for 70% (a), 60% (b),

55% (c), and 50% (d) polymer content. The isolevel is �EO¼ ��EO¼ 0.3.

FIG. 2 Detail of the simulation snapshots from Fig. 1. (a) LAM, (b) GYR, (c)

HEX, and (d) micellar phases are clearly visible.
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FIG. 4 Isosurface representation of the star block copolymer (A)8(B)8(C)8(D)8 melt.

a b

c d

FIG. 3 Isosurface representation of the A3B3C3A3 melt (a). The system develops

into one lamellar (b) and two cylindrical (c,d) mesostructures.
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industrial importance, the behavior of complex polymer liquids under shear
is an intensively studied topic, both experimentally and theoretically [29–32].
Most of the work is dedicated to the stability analysis of patterns and to
phase transitions in complex polymer liquids under shear.

The time evolution of morphologies in complex liquids under shear
was also studied in computer simulations using Landau type free energies in
2D geometries such as a square cell [3–5,28], a rectangle [1,2], and in a
two-dimensional Couette flow [1]. Recently the shear effect in a 2D poly-
mer system was studied using the path integral formalism for the kinetic
coefficient [15]. However, this was carried out for a model with simple
periodic boundary conditions and a conventional phenomenological free
energy.

The time evolution of the density field �I(r) under simple shear
flow, vx ¼ _��y, vy ¼ vz ¼ 0, can be described by dynamic Eq. (11) with a
convective term

_�I�I ¼ MIr � �IrI � _��yrx�I þ �I

where _�� is the shear rate (the time derivative of the strain g). For an

L�L�L cubic grid we use a sheared periodic boundary condition [33,34]:

�ðx, y, z, tÞ ¼ �ðxþ iLþ �jL, yþ jL, zþ kL, tÞ

Figure 5 illustrates the application of our method for a 3D melt of block
copolymers A8B8 under simple steady shear flow. Applying shear speeds up
the lamellar formation in a diblock copolymer melt enormously. The
alignment qualitatively differs from the 2D case—so-called ‘‘perpendicular’’
lamellae are formed in 3D. From experiments and stability analysis this
orientation is well known to be the most stable one (see, e.g., [31]). The
structure remains stable after switching off the shear.

Figure 6 demonstrates the formation of a perfectly aligned hexagonal
cylindrical phase in aqueous solution of 55% triblock copolymer Pluronic
L64 (cf. Figs. 1c and 2c).

An even more spectacular effect of shearing can be seen in Fig. 7. The
gyroid structure of 60% PL64 from Figs. 1b and 2b was taken as a starting
structure before applying shear. Shearing breaks the system into coex-
istence of two phases, lamellae and cylinders, Fig. 7 (top). Cessation of
shear does not bring the system back, but it stays as a coexistence of two
phases. This point of the phase diagram is now in perfect agreement with
the experiment [23]. The gyroid phase for this particular system was a
metastable one [32].
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FIG. 6 Mesophases of 55% Pluronic L64 in water under shear at time 	¼ 12,500,

using the structure at 	¼ 2500 from Figs.1c and 2c as a starting structure before

shearing. The isosurfaces are at �P� �P�P¼ 0.33. The x-axis is the velocity direction,

the y-axis is the velocity gradient direction, and the z-axis is a neutral direction.

FIG. 5 Isosurface representation of the A8B8 melt at 	¼ 75,000 and shear flow

vx ¼ _��y, vy¼ vz¼ 0, using the structure at 	¼ 500 as a starting structure. The isolevel

is �A¼ ��A¼ 0.3. One can clearly observe the global lamellar orientation. The x- and

y-axes are indicated.
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D. Modulation by Reactions

In dynamic mean field density functional theory, the dynamics of the
polymer melt under simple steady shear is described by the time evolution of
density fields �I. The dynamics is governed by a diffusion-convection
equation with sheared periodic boundary conditions and can readily be
extended with (second order) reaction terms in the following manner:

@�I
@t

¼ Mr � �Ir
�F

��I
� _��yrx�I þ

XN

J¼1,K¼1

kJK�J�K þ �I ð14Þ

Here M is a mobility parameter, _�� is the shear rate, which is zero if no shear

is applied, �I is a stochastic term which is distributed according to a fluctua-

tion-dissipation theorem [13], and kJK is the reaction rate, which can be

either negative for reactants or positive for products. Notice that the reac-

tive noise can be neglected here. Different order reactions or multiple reac-

tion terms can be added without any difficulties, but as a proof of principle

we focus here on the above type of reactions. In this subsection we study the

effect of combined microphase separation, shear, and reaction to gain

insight in the mechanisms that are important in pathway-controlled mor-

phology formation and in particular in reactive blending.

FIG. 7 Mesophases of 60% Pluronic L64 in water at the end of shearing (top) and

after a long relaxation after cessation of shear (bottom).
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We therefore study a reaction in which a homopolymer A8 couples to a
homopolymer B8 to form a diblock copolymer A8B8. The reaction is limited
to the end groups and we assume that if two blocks that can couple are close
enough, the reaction takes place. This reaction can be modeled as follows:

@�hA
@t

¼ Mr � �hAr
�F

��hA
� _��yrx�hA � k�hA�hB þ �hA ð15Þ

@�hB
@t

¼ Mr � �hBr
�F

��hB
� _��yrx�hB � k�hA�hB þ �hB

@�dA
@t

¼ Mr � �dAr
�F

��dA
� _��yrx�dA þ k�hA�hB þ �dA

@�dB
@t

¼ Mr � �dBr
�F

��dB
� _��yrx�dB þ k�hA�hB þ �dB

Here, �hA (�hB) is the density of A (B) beads in the homopolymer, �dA (�dB)
is the density of A (B) beads in the diblock copolymer, and k is the reaction
rate of the coupling reaction.

Figure 8 gives an example of formation of double layer droplets in a
sheared reactive polymer system. Initially the A/B blend was subject to shear
which resulted in the formation of elongated droplets. Then reaction on the
surface of the droplets took place after switching off the shear. That leads to
relaxation of the elongated shape of the droplets towards spherical. The
excess of polymer formed at the interface goes inside the droplets which
forms a double layer structure.

E. Modulation by Geometry Constraints

The polymer melt is modeled as a compressible system, consisting of Gaus-
sian chain molecules in a mean field environment. The free energy functional
for copolymer melts has a form that is similar to the free energy that was
used before:

F ½f�g	¼�kT ln
�n

n!
�
X

I

Z

V

UI ðrÞ�I ðrÞdrþ
1

2

X

I ,J

Z

V2

�IJ ðr�r0Þ�I ðrÞ�Jðr
0Þdrdr0

þ
1

2

X

I

Z

V2

�IMðr�r0Þ�I ðrÞ�Mðr0Þdrdr0

þ
�H
2

Z

V

X

I

�I ð�I ðrÞ��
0
I Þ

 !2

dr ð16Þ

except for an extra fourth term that contributes only in the direct vicinity of
the filler particles. This accounts for the interaction of a polymer melt with
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surfaces. In this equation, n is the number of polymer molecules, � is the

intramolecular partition function for ideal Gaussian chains in an external

field U, I is a component index, �I are the density fields of the different bead

types I, and V is the system volume. Inside the filler particles, the densities �I
of the different bead types are equal to zero. Since the density � is present in

all integrals in the definition of the free energy (16), integrals over the entire

volume V are equal to the integrals restricted to V/V0, standing for the total

volume V with exception of the volume taken by the filler particles, denoted

as V0. The filler particles considered here are constrained to the condition of

stationary position in time. The constant density field �M (M represents

beads of the filler particle type) that appears in Eq. (16) is defined as

�M(r)¼ 1 for r2V0 and �M(r)¼ 0 for r2V/V0. The average concentration

is �0I and �I is the particle volume. The surface interactions have kernels �IM.

The Helfand compressibility parameter is �H [12].
The ensemble average particle density �s(r) of a certain bead s at position

r in space is

�s½U	ðrÞ ¼ CMðrÞ

Z

VN

 R1, . . . ,RNð Þ�ðr� RsÞ dR1, . . . , dRN ð17Þ

FIG. 8 Three-dimensional simulation of a homopolymer blend 90%/10% A8/B8.

Before the reactions were switched on, 28,000 steps of shear were performed

(�	 _�� ¼ 0:001) on the blend. The shear was stopped at 	¼ 28,000 and 2500 reaction

steps were performed (�	k¼ 0.1). In the figure the isodensity surfaces at different

levels are depicted at 	¼ 30,500 of �hB, �dA, and �dB. The total volume fractions at

this time level are 80.5% A8, 0.5%B8, and 19%A8B8.
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where C is a normalization constant and a mask field M(r) is used that is
defined as

MðrÞ ¼
0 r 2V0

1 r 2V=V0

�

The time evolution of the density field �I(r) can be described by a time
dependent Landau–Ginzburg type equation (11). The boundary conditions
that are used on the simulation box are periodic boundary conditions. For
the diffusion flux in the vicinity of the filler particles, rigid-wall boundary
conditions are used. A simple way to implement these boundary conditions
in accordance with the conservation law is to allow no flux through the filler
particle surfaces, i.e.,

rI � n ¼ 0 ð18Þ

where n is the normal pointing towards the filler particle. The same bound-

ary conditions apply to the noise �I. Figure 9 demonstrates formation of
lamellar structure in an A8B8 melt in the presence of interacting walls.

In Fig. 10 one can see the same system but confined between neutral
walls. This confinement leads the system to form ‘‘perpendicular’’ to the
walls’ lamellae.

Thickness of the slit/film can have a drastic effect on the polymer
morphology. In Fig. 11 the same 55% PL64 in water system was confined
in between two different slits. The bulk morphology of this system is
cylindrical, Figs. 1c, 2c, and 6. Adopting conformational freedom the system
develops into cylinders, which are either parallel or perpendicular to the
wall, depending on the slit width.

IV. DISCUSSION AND CONCLUSION

In this chapter we described the theoretical basis and some applications
of a new model for computer simulation of time evolution of mesoscale
structures of complex polymer liquids. Here we describe just a few possible
technologically oriented applications of the proposed method.

One of the main questions in industrial emulsion polymerizations is to
produce a latex or polymer with any desired morphology, composition,
sequence distribution, molecular weight distribution, etc. A specific example
is given by the core-shell techniques in which one type of (co)polymer is
grown around a core of another type. In paints the core polymer may
provide gloss and mechanical stability, whereas the shell might contain a
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rubbery polymer to provide a uniform surface coating. The final
morphology that is obtained in the production process determines the
quality of the product to a very large extent and hence prediction of the
morphology based on production process parameters is desirable. The
morphology is controlled by both thermodynamic (the microphase
separation process) and kinetic (the reaction process) principles. Several
practical applications are within direct reach. An example of a one-stage
core-shell technique that has been described in the literature concerns the
mixing of silicone oils (containing Si-H and vinyl groups) and vinyl
monomers emulsified in water. After a (cross-linking) reaction of Si-H and
Si-CH CH2 (kinetics) the hydrophilic monomers are excluded to the
surface layer (thermodynamics) and a core-shell morphology results.

Another potential application is the investigation of the stability of
polymer surfactant protected emulsions. In particular, many industrial

FIG. 9 Lamellar formation of an A8B8 copolymer melt in the presence of square

plates of one grid-cell thickness. The interaction of polymer blocks with the surface is

��AM�
�1
¼�1.0 and ��BM�

�1
¼1.0. (a) View of filler particle in simulation box, (b)

space filled with filler particles (the slots between filler particles are drawn as white

lines), (c) morphology of A beads (isolevel ��A¼ 0.5) in one simulation box at

	¼ 500, (d) the same for 	¼ 2000.
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systems contain a specified mixture of different surfactants, so as to provide
a certain stability of the interphase. Thus the application of the emulsions is
controlled by the nature of the surfactant mixture. Within the described
method it is relatively easy to study the synergetic effects of surfactant

FIG. 10 Lamellar formation of an A8B8 copolymer melt in the presence of the same

filler particle as Fig. 9. Moreover, there is no interaction between the polymer beads

and boundaries of the filler particles. (e) View of filler particle in simulation box, (f)

morphology of A beads (isolevel ��A¼ 0.5) in one simulation box at 	¼ 500, (g) the

same for 	¼ 4000, (h) final morphology at 	¼ 10,000.

FIG. 11 Cylinder formation of 55% PL64 in water mixture in two different slits,

12h (left) and 15h (right), forming parallel (left) or perpendicular (right) cylinders.
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composition and architecture, and the way processing conditions influence
the emulsion stability and morphology.

APPENDIX A: NUMERICAL IMPLEMENTATION OF
THE PATH INTEGRAL

The method presented here is off-lattice in nature. It means that the
calculations are carried out on a (cubic) lattice, but the chain conformations
are not restricted to lattice positions. The Wageningen school [35–38] has
shown that for lattice models, where the chains can only occupy lattice
positions, the number of conformations is finite and summation amounts
to an exact enumeration. In this case numerical integration is rapid and
relatively simple. The off-lattice nature of our method introduces an extra
difficulty in deriving quadrature (or numerical integration) rules. Common
rules, such as used in lattice methods, are found to give problems. First,
the conformation restriction inherent in the lattice models can lead to
unphysical singularities in the inverse structure factor for copolymer melts.
As a consequence, the mapping between particle density field and external
potential may have a null space and is no longer bijective (for more details
see [9]). Second, we found that the cubic lattice chain structure factor for
copolymer melts has strong intrinsic anisotropies, especially on bond length
scales. These anisotropies are an important source for a well known
numerical plague of lattice models, so-called ‘‘lattice-artifacts.’’

In this appendix we describe a stencil algorithm which avoids many of the
drawbacks of quadrature rules used in classical lattice models, while the
extra computational cost is modest. The derivation consists of finding a
unique and optimal set of stencil coefficients for a convolution with a
Gaussian kernel, adapted to the special case of off-lattice density functional
calculations. Stencil coefficients are the multipliers of the function values at
corresponding grid points.

The familiar Feynman decomposition of the path integral (2) results in
the well known ‘‘modified diffusion’’ algorithm [39,40]. In our case, where
sequence space is discrete, the density functional can be expressed in terms
of Green propagators

�sðrÞ / GsðrÞ�½G
inv
sþ1	ðrÞ ð19Þ

The set of once integrated Green’s functions Gs(r) and Ginv
sþ1ðrÞ are related by

the recurrence relations

GsðrÞ ¼ MðrÞe�UsðrÞ�½Gs�1	ðrÞ

Ginv
s ðrÞ ¼ MðrÞe�UsðrÞ�½Ginv

sþ1	ðrÞ ð20Þ
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with G0ðrÞ ¼ Ginv
Nþ1ðrÞ ¼ 1. The linkage operator � ¼ �½f 	ðrÞ is defined as a

convolution with a Gaussian kernel

�½ f 	ðrÞ ¼
3

2�a2

� �2=3Z

V

exp �ð3=2a2Þðr� r0Þ2
� �

f ðr0Þ dr0 ð21Þ

Note that the Green propagator method to calculate the density functional
(2) yields an exact answer.

Now, the crucial point of the algorithm is a numerical representation of
the linkage operator �, given a cubic uniform grid with mesh width h, which
is both efficient and accurate. Since we work on large cubic grids and
use domain decomposition for the parallelization, FFTs and Gaussian
Quadrature rules are not considered. Efficiency is crucial, since the linkage
operation has to be repeated 2(N–1) times for a single density functional
calculation. Furthermore, if the numerical representation of the linkage
operator is not accurate, its repeated application will result in error
accumulation, especially in the small q range, i.e., on chain length scales.
Large errors in the high q range are also undesirable, since they may disturb
the bijectivity of the mapping between density field and external potential.

A 27-point stencil is the most compact stencil that meets all constraints.
We reduce the number of parameters by invoking symmetry rules, similar to
the polyhedra rules used in multidimensional integration of symmetric
kernels [41]. The linkage operator on a uniform grid is expressed as:

�½ f 	ðrÞ ¼ c0 f ðrÞ þ
X

i

ci

2
½ f ðrþ riÞ þ f ðr� riÞ	 ð22Þ

where f is an arbitrary field, ri is a lattice vector, and ci is a stencil coefficient.

It is easy to see that, due to the symmetry of the linkage operator, there is
considerable redundancy in the stencil coefficients. For a 27-point stencil
only four reduced coefficients remain: a central coefficient c0 and three
coefficients for each symmetry-reduced stencil direction; c1 in direction
(1, 0, 0), c2 in direction (1, 1, 0), and c3 in direction (1, 1, 1).

In Fourier space the linkage operator is:

Z

V

�ð f Þe�iq�rdr ¼ �q fq

where the Fourier multipliers �q are given by

�q ¼
e�ða2jqj2Þ=6 continuum
P3

i¼0 ci
Pdi

j¼1 cos½q � rij	 discrete

(
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Here, di is the number of independent lattice vectors in symmetry-reduced

stencil direction i (d0¼ 1,d1¼ 3, d2¼ 6, and d3¼ 4), rij denotes the jth lattice

vector in stencil direction i [e.g., r01¼ 0, r12¼ (0, h, 0), r23¼ (0, h, h), and

r34¼ (h,�h,�h)].
First, we guarantee maximum isotropy on the grid by imposing that the

continuum and discrete (grid-restricted) linkage operators are identical for

q 2 fð0, 0, 0Þ, ð�=h, 0, 0Þ, ð�=h,�=h, 0Þ, ð�=h,�=h,�=hÞg

In this way, we transfer the isotropy that should have resulted from an

isotropically chosen grid (for instance, honeycomb) to the stencil. Second,

we guarantee that the long length scalings of the continuum and discrete

Fourier multipliers are identical by also equating the curvatures in the point

q¼(0, 0, 0). This assures the bijectivity of the density-external potential map-

ping. Because of symmetry, it is sufficient to equate the two curvatures in

direction (1, 0, 0). With the help of these five conditions, we determine the

four stencil coefficients ci and a/h. The unique solution of the nonlinear

system is: c0¼ 0.171752, c1¼ 0.137231, c2¼ 0.0548243, c3¼ 0.0219025, and

a/h¼ 1.15430. As a result, the stencil depends on the ratio a/h. For other

ratio, we consider different stencil coefficients [9].

APPENDIX B: NUMERICAL SCHEME FOR SOLVING
THE DYNAMICAL EQUATIONS

In Appendix A we described the numerical implementation of the Gaussian
chain density functions that retains the bijectivity between the density fields
and the external potential fields. The intrinsic chemical potentials I¼ �F/��
that act as thermodynamic driving forces in the Ginzburg–Landau
equations describing the dynamics, are functionals of the external potentials
and the density fields. Together, the Gaussian chain density functional and
the partial differential equations, describing the dynamics of the system,
form a closed set.

Since the external potentials are highly nonlinear functionals of the
density fields (they cannot even be inverted analytically), the partial
differential equations we have to solve numerically are in themselves highly
nonlinear. We should be very careful in choosing a method, since there are
apparent risks of introducing numerical errors (for instance by taking the
time steps too large). The Crank–Nicolson (CN) method, that aims to solve
differential equations by mixing implicit and explicit parts, is known to be
rather stable for this kind of problem. We use periodic boundary conditions.
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The way the time integration is carried out is as follows: we start with a
homogeneous distribution of Gaussian chains �I ¼ ���I (where ��� is the mean
density of the fields) and UI¼ 0. We solve the CN equations (to be defined
below) by an iterative process in which the external potential fields are
updated according to a steepest descent method. The updated external
potential fields are related, by the chain density functional, to unique density
fields. We calculate the intrinsic chemical potential from the set of external
potential fields and density fields and update the density fields. The density
fields are only accepted as an update for the next time step if the L2 norm of
the residual is below some predefined upper boundary. An overview of this
scheme is shown in Fig. 12.

The general expression of the CN equations for this problem is

�kI � �
k�1
I

�t
¼ !1Mh�2Dð�kIDðk

I ÞÞ þ ð1� !1ÞMh�2Dð�k�1
I Dðk�1

I ÞÞ þ �kI

ð23Þ

where k is the time index, h the mesh size, !i the CN parameters determining

the degree of explicitness versus implicitness of the method, and h�2
D(fDg)

the discrete operation on the grid representing r � frg. The computational

procedure for the div-gradient operation is again important because of the

risk of introducing grid artifacts. We have developed a procedure similar to

the procedure for the numerical integration. As computational cell, again a

FIG. 12 Schematic representation of the iterative scheme. We have two nested

iterative loops: the time loop (1) for updating the density fields �, and within each

time iteration an iterative loop (2) for updating the external potential fields U. We

start with an initial guess for the external potential fields. We use Eq. (17) to generate

a set of unique density fields. The cohesive chemical potential E [relation (3)] can be

calculated from the density fields by Eq. (8). The total chemical potential (4) can
now be found from Eq. 6. We update the density fields (5) [by using the old and

updated fields in Eq. (23)] and accept the density fields if the condition (26) is

satisfied. If this is not the case, the external potential fields are updated by a steepest

descent method.
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27-point stencil is used. Isotropy and scaling behavior should be considered
as conditions for the stencil weights. A more detailed overview of this
scheme can be found in [13].

In dimensionless parameters �I¼ ��I (� is the bead volume), �I¼ �I

(�¼ kT), and 	¼ ��1Mh�2t we can rewrite the CN equations as

reskI ¼ �kI � !1�	Dð�kIDð�kI ÞÞ � �
k�1
I � ð1� !1Þ�	Dð�k�1

I Dð�k�1
I ÞÞ � �kI ¼ 0

ð24Þ

Since we do not have an explicit expression for the external potential fields
in terms of the densities, we solve this equation for the external potential
fields. The external potential fields UI are found by an iterative scheme

Uk
I , 0 ¼ Uk�1

I , final

Uk
I , p ¼ Uk

I , p�1 þ �res
k
I , p�1 p � 1

ð25Þ

where p is the iteration index and � is a parameter in a bisection method that
is employed in order to find update fields Up along the direction of search
with a smaller residuals norm than the residual of the previous fields Up� 1.
The problem is solved for time step k when the norm of the residual satisfies

X

I

reskI

�����

����� < � ð26Þ

In general, the CN parameter is chosen equal to 1/2. In this case the starting
value of the residual norm for every new time iteration is k

P
I �

k
I k, and we

consider as a rule of thumb an � such that � � 0:01k
P

I �
k
I k. When this

condition is satisfied, the updates of the density and external potential
fields are accepted as solutions at time step k and used as starting values
for the new iterative update scheme at time step kþ 1.
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Monte-Carlo method, 51

dynamic, 134, 150

kinetic (KMC), 427

metropolis, 54, 136, 262

Rosenbluth, 130

Nose–Hoover, thermostat, 185

Nuclear Overhauser Enhancement, 415

Oseen tensor, 122

Parameter Flory, 13

Partition function, 34, 114, 125, 219,

235, 250, 350, 369, 444, 478,

496

conformation, 90, 99

Perram, lattice summation algorithm,

280

Persistence length, 120, 268–272

Poisson–Boltzmann, approach, 299

Polyampholite, 274

Polymorphism, 363, 378

Polypropylene, 93

Potential

bond angle, 3, 109, 495

chemical, 38, 43, 314, 350, 458, 578

coulomb, 5, 78, 109, 409

finitely extendable nonlinear elastic

(FENE), 261, 294, 561

Lennard–Jones, 5, 23, 78, 109, 294,

336, 408, 496

torsional, 3, 8, 109, 409, 496

Pressure, 41

osmotic, 295

Radius

gyration, 11, 89, 154, 264

hydrodynamic, 11

Random phase approximation, 580

Random walk

self-avoiding, 10, 125, 134

non-reversal, 125

RATTLE, algorithm, MD, 195

Reaction

coordinate, 67, 431

rate constant, 68, 436

Rotational Isomeric State (RIS) Model,

89

RRESPA algorithm, 190

Scattering

neutron, 117

X-ray, 117, 363

Self-consistent field (SCF), 576

SHAKE

algorithm, MD, 195

Solution

dilute, 12, 89

critical behavior, 237

semidilute, 12

Space configuration, 17

Space

momentum, 17

phase, 17

Spline, 282

State

macroscopic, 32

microscopic, 32, 40

Statistical

description, 18

weight matrix, 90

Strain tensor, 392

Stress tensor, 205, 397, 400

Structure factor, 45, 264, 375, 411,

563, 565

Theorem

equipartition, 37, 109

fluctuation–dissipation, 63, 65, 161

Theory

linear response, 47

mode coupling (MCT), 421

transition state (TST), 67, 382, 427

Index 601



Transition

glass, 15, 128, 420

phase, 326

Test particle method, 315

Uniaxial tension, 187

Verlet method, 121, 182, 184, 196

Virial, 42

Viscoelasticity, 197, 203

Viscosity, 48, 82, 89

Water, model

SPC, 113

MCY, 230

TIP4P, 113, 230

X-Ray diffraction, 375

602 Index

Administrator
Notatka
Unmarked ustawione przez Administrator


	Cover Page
	Title Page
	ISBN: 0824702476
	Preface
	Contents
	I. Calculating Single-Chain Properties
	II. Lattice-Chain Monte Carlo Simulations
	III. Molecular Dynamics
	IV. Off-Lattice Monte Carlo Methods
	V. Charged Polymer Systems
	VI. Calculating Chemical Potential and Free-Energy, Phase Equilibria
	VII. Polymer Crystals
	VIII. Atomistic Simulations of Amorphous Polymers
	IX. Bridging Length- and Time-Scales

	Contributors
	1 Background
	I. BASIC CONCEPTS OF POLYMER PHYSICS
	A. Interactions in Polymer Systems
	B. Simplified Polymer Chain Models
	C. Unperturbed Polymer Chain
	D. Mixing Thermodynamics in Polymer–Solvent and Polymer–Polymer Systems
	E. Polymer Chain Dynamics
	F. Glass Transition Versus Crystallization

	II. STATISTICAL MECHANICS
	A. Trajectories in Phase Space
	B. Classical and Quantum Mechanics
	C. Classical Equations of Motion
	D. Mechanical Equilibrium, Stability
	E. Statistical Description, Ergodicity
	F. Microscopic and Macroscopic States
	G. Probability Distribution of the Microscopic States. Statistical Ensembles
	H. Liouville Equation
	I. Partition Function, Entropy, Temperature

	III. PROPERTIES AS OBTAINED FROM SIMULATIONS. AVERAGES AND FLUCTUATIONS
	A. Pressure
	B. Chemical Potential
	C. Fluctuation Equations
	D. Structural Properties
	E. Time Correlation Functions. Kinetic Properties

	IV. MONTE CARLO SIMULATIONS
	A. Microreversibility

	V. MOLECULAR DYNAMICS (MD)
	VI. BROWNIAN DYNAMICS
	VII. TECHNIQUES FOR THE ANALYSIS AND SIMULATION OF INFREQUENT EVENTS
	VIII. SIMULATING INFINITE SYSTEMS, PERIODIC BOUNDARY CONDITIONS
	A. Calculating Energy and Forces with Periodic Boundary Conditions

	IX. ERRORS IN SIMULATION RESULTS
	X. GENERAL STRUCTURE OF A SIMULATION PROGRAM
	REFERENCES

	2 Rotational Isomeric State (RIS) Calculations, with an Illustrative Application to Head-to-Head, Tail-to-Tail Polypropylene
	I. INTRODUCTION
	II. THREE FUNDAMENTAL EQUATIONS IN THE RIS MODEL
	A. The First Equation: Conformational Energy
	B. The Second Equation: Structure
	C. The Third Equation: Conformational Energy Combined with Structure

	III. CASE STUDY: MEAN SQUARE UNPERTURBED DIMENSIONS OF HEAD-TO-HEAD, TAIL-TO-TAIL POLYPROPYLENE
	A. Construction of the RIS Model
	B. Behavior of the RIS Model
	C. Comparison with Experiment
	D. Conclusion

	ACKNOWLEDGMENT
	REFERENCES

	3 Single Chain in Solution
	I. PHENOMENOLOGICAL FORCE FIELDS AND POLYMER MODELING
	II. SOLVENT SPECIFIC POLYMER CONFORMATIONS IN SOLUTION BASED ON OLIGOMER SIMULATIONS
	III. POLYMER CONFORMATIONS IN SOLUTION VIA DIRECT SIMULATION
	REFERENCES

	4 Polymer Models on the Lattice
	I. INTRODUCTION
	II. STATIC METHODS
	III. DYNAMIC METHODS
	IV. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

	5 Simulations on the Completely Occupied Lattice
	I. INTRODUCTION
	II. THE DYNAMIC LATTICE LIQUID MODEL
	III. THE COOPERATIVE MOTION ALGORITHM
	IV. EXAMPLES OF APPLICATION
	A. Melts of Linear Polymers
	B. Melts of Macromolecules with Complex Topology
	C. Block Copolymers

	V. IMPLEMENTATION DETAILS
	A. Description and Generation of Model Systems
	B. Implementation of the DLL Model
	C. The CMA (Cooperative Motion Algorithm)

	VI. CONCLUDING REMARKS
	REFERENCES

	6 Molecular Dynamics Simulations of Polymers
	I. THE MOLECULAR DYNAMICS TECHNIQUE
	II. CLASSICAL EQUATIONS OF MOTION
	A. Higher-Order (Gear) Methods
	B. Verlet Methods

	III. MD IN OTHER STATISTICAL ENSEMBLES
	A. The Nose´–Hoover Thermostat
	B. The Berendsen Thermostat—Barostat
	C. MD in the NTLxryyrzz Ensemble

	IV. LIOUVILLE FORMULATION OF EQUATIONS OF MOTION—MULTIPLE TIME STEP ALGORITHMS
	A. The rRESPA Algorithm
	B. rRESPA in the NVT Ensemble

	V. CONSTRAINT DYNAMICS IN POLYMERIC SYSTEMS
	A. The Edberg–Evans–Morriss Algorithm
	B. The SHAKE–RATTLE Algorithm

	VI. MD APPLICATIONS TO POLYMER MELT VISCOELASTICITY
	A. Study of Polymer Viscoelasticity Through Equilibrium MD Simulations
	B. Study of Polymer Viscoelasticity Through Nonequilibrium MD Simulations—Simulation of the Stress Relaxation Experiment

	VII. PARALLEL MD SIMULATIONS OF POLYMER SYSTEMS
	A. Parallel MD Algorithms
	B. Efficiency—Examples
	C. Parallel Tempering

	REFERENCES

	7 Configurational Bias Techniques for Simulation of Complex Fluids
	I. INTRODUCTION
	II. SHORTCOMINGS OF METROPOLIS SAMPLING
	III. DETAILED BALANCE AND CONFIGURATIONAL BIAS
	IV. CASE STUDIES
	A. Orientational Configurational Bias
	B. Configurational Bias (CB) for Articulated or Polymeric Molecules
	C. Topological Configurational Bias
	D. Parallel Tempering and Configurational Bias

	V. FUTURE DIRECTIONS
	REFERENCES

	8 Molecular Simulations of Charged Polymers
	I. INTRODUCTION
	II. COMPUTER SIMULATIONS OF SINGLE CHAIN PROPERTIES
	A. Models and Methods
	B. Polyelectrolyte Chain in h and Good Solvents
	C. Polyelectrolyte Chain in a Poor Solvent
	D. Conformational Properties of a Polyampholyte Chain

	III. SIMULATION METHODS FOR SOLUTIONS OF CHARGED POLYMERS
	A. Lattice-Sum Methods for Calculation of Electrostatic Interactions
	B. Fast Multipole Method for Ewald Summation

	IV. POLYELECTROLYTE SOLUTIONS
	A. Polyelectrolytes in Good and h Solvents
	B. Polyelectrolytes in Poor Solvent
	C. Counterion Distribution and Condensation in Dilute Polyelectrolyte Solutions
	D. How Good Is the Debye–Hu¨ckel Approximation?
	E. Bundle Formation in Polyelectrolyte Solutions

	V. WHAT IS NEXT?
	APPENDIX
	REFERENCES

	9 Gibbs Ensemble and Histogram Reweighting Grand Canonical Monte Carlo Methods
	I. INTRODUCTION
	II. GIBBS ENSEMBLE MONTE CARLO
	III. THE NPT1TEST PARTICLE METHOD, GIBBS–DUHEM INTEGRATION AND PSEUDO-ENSEMBLES
	A. The NPT1Test Particle Method
	B. Gibbs–Duhem Integration
	C. Pseudo-Ensembles

	IV. HISTOGRAM REWEIGHTING GRAND CANONICAL MONTE CARLO
	A. One-Component Systems
	B. Multicomponent Systems
	C. Critical Point Determination
	D. Thermodynamic and Hamiltonian Scaling

	V. SMART SAMPLING FOR DIFFICULT SYSTEMS
	A. Configurational-Bias Sampling
	B. Expanded Ensembles

	VI. SOME APPLICATIONS TO POLYMERIC FLUIDS
	VII. CONCLUDING REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES

	10 Gibbs Ensemble Molecular Dynamics
	I. THE METHOD
	II. STATISTICAL MECHANICAL FOUNDATION
	III. IMPLEMENTATION
	IV. EXAMPLES
	REFERENCES

	11 Modeling Polymer Crystals
	I. INTRODUCTION
	II. STRUCTURE OF POLYMER CRYSTALS
	III. COMPUTATIONAL METHODS
	A. Optimization Methods
	B. Sampling Methods

	IV. CRYSTAL IMPERFECTIONS AND RELATED PROCESSES
	V. SUMMARY
	REFERENCES

	12 Plastic Deformation of Bisphenol-A-Polycarbonate: Applying an Atomistic-Continuum Model
	I. INTRODUCTION
	II. MODEL
	A. Continuum Model
	B. Atomistic Model
	C. Atomistic-Continuum Model

	III. SIMULATION METHOD
	A. Model System
	B. Elastic Deformation of the Atomistic Model
	C. Plastic Deformation of the Atomistic-Continuum Model

	IV. RESULTS AND DISCUSSION
	A. Elastic Deformation
	B. Plastic Deformation

	V. CONCLUSIONS
	REFERENCES

	13 Polymer Melt Dynamics
	I. INTRODUCTION
	II. MODELS AND DATA STRUCTURES
	III. STARTING STRUCTURES AND EQUILIBRATION
	IV. STATIC PROPERTIES
	V. DYNAMIC PROPERTIES
	VI. GLASS TRANSITION
	VII. OUTLOOK
	REFERENCES

	14 Sorption and Diffusion of Small Molecules Using Transition-State Theory
	I. INTRODUCTION
	II. FORMULATION OF TST METHOD
	A. Transition State
	B. Jump Pathway—the Intrinsic Reaction Coordinate (IRC)
	C. Narrowing the Diffusion Path to a Localized Region
	D. Final State(s)
	E. Rate Constant

	III. STARTING POINT: POLYMER MOLECULAR STRUCTURES
	IV. FROZEN POLYMER METHOD
	V. AVERAGE FLUCTUATING POLYMER METHOD
	VI. EXPLICIT POLYMER METHOD
	VII. OTHER IRC METHODS
	VIII. SORPTION
	IX. NETWORK STRUCTURE
	X. KINETIC MC TO DIFFUSION COEFFICIENT
	XI. SUMMARY AND OUTLOOK FOR OTHER SYSTEMS
	APPENDIX A: IRC DERIVATION IN GENERALIZED COORDINATES
	APPENDIX B: IRC IN A SUBSET OF COORDINATES
	APPENDIX C: CHOICE OF POLYMER MODEL— FLEXIBLE, RIGID, OR INFINITELY STIFF
	APPENDIX D: EVALUATING THE SINGLE VOXEL PARTITION FUNCTION
	REFERENCES

	15 Coarse-Graining Techniques
	I. INTRODUCTION AND OVERVIEW
	II. MAPPING OF ATOMISTIC MODELS TO THE BOND FLUCTUATION MODEL
	III. ATOMISTIC-CONTINUUM MODELS: A NEW CONCEPT FOR THE SIMULATION OF DEFORMATION OF SOLIDS
	IV. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	16 CONNFFESSIT: Simulating Polymer Flow
	I. INTRODUCTION
	A. Some Definitions

	II. OVERVIEW OF RELATED FIELDS
	A. Computational Rheology
	B. Stochastic Dynamic Methods for Polymers
	C. Particle Methods

	III. TWO- AND THREE-DIMENSIONAL TECHNIQUES
	A. One-Dimensional vs. Multidimensional Problems
	B. The Basic Data Structure
	C. Point-Inclusion Algorithm
	D. Scalar Velocity-Biased Ordered Neighbor Lists

	IV. MOVING PARTICLES AND REMESHING
	A. Integration of Particle Trajectories
	B. Particle Localization in the Mesh

	V. CONCLUSIONS AND PERSPECTIVES
	APPENDIX A: SYMBOLS
	APPENDIX B: ABBREVIATIONS
	REFERENCES
	BIBLIOGRAPHY

	17 Simulation of Polymers by Dissipative Particle Dynamics
	I. INTRODUCTION
	II. DISSIPATIVE PARTICLE DYNAMICS
	III. PARAMETERIZATION AND RELATION TO FLORY–HUGGINS THEORY
	IV. ROUSE AND ZIMM DYNAMICS
	V. BLOCK COPOLYMERS
	VI. CONCLUSIONS
	REFERENCES

	18 Dynamic Mean-Field DFT Approach for Morphology Development
	I. INTRODUCTION
	II. DYNAMIC DENSITY FUNCTIONAL THEORY
	III. APPLICATION
	A. Pluronics in Water Mixtures
	B. Multicolor Block Copolymers
	C. Modulation by Shear
	D. Modulation by Reactions
	E. Modulation by Geometry Constraints

	IV. DISCUSSION AND CONCLUSION
	APPENDIX A: NUMERICAL IMPLEMENTATION OF THE PATH INTEGRAL
	APPENDIX B: NUMERICAL SCHEME FOR SOLVING THE DYNAMICAL EQUATIONS
	REFERENCES

	Index



