
Numerical Solution of Boundary Integral Equations for Molecular

Electrostatics

Jaydeep P. Bardhan1, 2

1Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne IL 60439

2Department of Physiology and Molecular Biophysics,

Rush University, Chicago IL 60612

(Dated: March 31, 2008)

Abstract

In this paper we evaluate two approaches to discretizing integral-equation formulations of linear,

continuum models for estimating intra- and intermolecular electrostatic interactions in solution.

The importance of electrostatic forces in a variety of biological and chemical processes has motivated

extensive research into numerical simulation techniques. Boundary-element methods (BEM) rep-

resent one popular approach to simulating models based on partial-differential equations (PDEs),

and give rise to linear matrix equations. The entries associated with BEM matrices can be calcu-

lated in different ways, and in this paper we show that a straightforward approach to discretizing

the widely used apparent-surface-charge (ASC) formulation is significantly less accurate than an

equivalent but less obvious approach. In contrast, more computationally expensive boundary-

integral formulations based on pairs of coupled integral equations exhibit reduced sensitivity to

the approach to forming the BEM matrix. We also illustrate the equivalence between the ASC

formulation and the double-layer formulation derived by Juffer et al.; when their matrix entries are

evaluated appropriately, the two formulations produce numerically identical solutions. A similar

equivalence exists between the Yoon–Lenhoff and the Bordner–Huber formulations.
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1. INTRODUCTION

Electrostatic interactions within and between molecules in solution have long been recog-

nized as playing a variety of important roles in determining molecular structure and binding

activity [1], and methods for accurately estimating the strength and character of these inter-

actions have been an active research area for almost as long [2–6]. The complex interactions

between solute, solvent molecules, and mobile salt ions pose theoretical and computational

modeling challenges for molecular-mechanics-based studies of biomolecules, as well as for

ab initio quantum-mechanical simulations of small- to medium-sized molecules [5, 7, 8].

Molecular-dynamics (MD) simulations with explicit solvent provide a microscopically de-

tailed picture of solvation, but require computationally expensive sampling of the solvent

phase space [9–13]. In contrast, implicit-solvent models sacrifice microscopic detail for com-

putational efficiency [3, 6, 14], and many treat the electrostatic component of the solute–

solvent interactions using macroscopic, continuum electrostatic theory [2–4, 6, 6–8, 14–20].

Continuum-theory-based models derive from relatively well-understood second-order ellip-

tic partial-differential equations (PDEs), which represents one reason for their popularity.

In addition, there exist well-developed and mature numerical methods for simulating these

PDE models, with finite-volume and finite-difference methods (FDMs) [15, 21–31], finite-

element methods (FEMs) [26, 32, 33], and boundary-element methods (BEMs) [5, 34–55]

among the most common. Generally, models based on continuum theory treat the solvent

as a homogeneous medium of high dielectric and the solute as a homogeneous medium of

low dielectric, which contains an approximation to the solute charge distribution. Dilute

ionic solvents can be modeled using Poisson–Boltzmann theory in either its nonlinear or

linearized form [3].

Implicit-solvent models are not a panacea, however. Many types of chemically and bio-

logically important phenomena are modeled poorly or neglected entirely. Continuum models

can be exact only in the limit as the size of the solvent molecules approaches zero [56], and

their inability to reproduce fine details of the energy surface is well documented (see, for

instance, [57, 58]). Furthermore, the Poisson–Boltzmann equation, even in its nonlinear

form, ignores mobile ions’ finite size and ion–ion correlations [59–61]. Heterogeneity of the

dielectric constant inside the protein may also be important [62]. Despite these limitations,

continuum models will likely remain a valuable theoretical tool until alternative models are
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developed that can treat these effects at comparable computational expense.

The imperfect nature of these models does, however, warrant the use of accurate numerical

methods—computational techniques that generate answers highly faithful to the underlying

mathematical model. High-resolution calculations of problems in small-molecule and protein

design, for instance, can benefit from well-converged simulations. The ability of numerical

methods to obtain converged solutions allows experimental results to be interpreted with

respect to the theoretical model used to estimate binding free energies rather than the

shortcomings of the employed numerical methods. Self-consistent reaction field (SCRF)

treatments of solvent effects in ab initio quantum-mechanical simulations represent another

area in which well-converged electrostatic simulations are of significant importance [8, 52,

63]. The interpretability of an SCRF-based simulation can depend on whether the solvent

treatment may be said to be faithful to the model used.

For implicit-solvent models that treat solute and solvent as regions of homogeneous per-

mittivity, boundary-integral equation formulations offer several attractive theoretical and

numerical properties. One advantage is that the dielectric boundaries, which are of pri-

mary importance in determining a system’s response to a charge distribution, are repre-

sented directly. This focus allows molecular boundaries, which can be highly complex, to

be represented accurately [38, 45, 64]. Boundary-integral-equation methods’ explicit focus

on solute–solvent boundaries is one reason for their frequent employment in self-consistent

reaction field (SCRF) methods that combine ab initio electronic-structure methods with

a continuum representation of solvent (the literature in this area is extensive; see, e.g.,

[5, 7, 8, 46, 51, 52, 65, 66]).

Electrostatic integral equations are commonly written using integral operators that can

be interpreted as calculating the electrostatic potential or its normal derivative at a di-

electric boundary, given a distribution of charge at that boundary. Perhaps the sim-

plest electrostatic-integral equation is the apparent-surface-charge (ASC) formulation pre-

sented by Miertus, Scrocco, Tomasi, and collaborators for SCRF calculations (for example,

[5, 46, 67]) and later by Shaw, Zauhar, and collaborators for modeling electrostatic interac-

tions in proteins [34–37, 68]. Attard has demonstrated that a variational approach may also

be used in its derivation [53]. The ASC formulation is a second-kind Fredholm integral equa-

tion [69] whose unknown is a single-layer charge distribution that generates, in the solute

region, the same potential as would be generated by polarization of the solvent. The ASC
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integral operator maps this distribution of monopole charge on the solute–solvent boundary

to the normal electric field at the boundary.

The process by which an infinite-dimensional boundary-integral equation is converted

into a finite-dimensional matrix equation is termed discretization. In the present paper,

we demonstrate that the precise details of the discretization procedure can have a signif-

icant impact on simulation accuracy. Our analysis builds on the work of Tausch, Wang,

and White, who first noted the inaccurate results obtained from numerical simulations that

discretized this electric-field operator using a common BEM technique known as centroid-

collocation [70]. By analyzing centroid-collocation as a simplified Galerkin method [69],

they were able to identify the source of the inaccuracy and note that the double integrals

associated with Galerkin BEM matrices can require a carefully considered combination of

analytical and numerical integration. They suggested an alternative approach, qualocation,

that offered greatly improved accuracy without any increase in computational cost. Qualo-

cation proved to be more accurate than collocation for molecular electrostatic problems also,

as demonstrated by Altman et al. [71].

In the present work we extend the studies of Tausch et al. and Altman et al. in two ways.

First, the previously employed collocation and qualocation methods represent merely one-

point quadrature approximations to the Galerkin double integrals. We therefore investigate

the improvement in accuracy as higher-order quadrature rules are employed for numerical

integration. Second, previous work has demonstrated only that the ASC formulation is

sensitive to the approach to discretization. We assess the sensitivity of the formulations

of Yoon and Lenhoff [39], Bordner and Huber [50], and Juffer et al. [40] to the different

methods for evaluating the Galerkin double integrals.

The following section introduces the key features of the linear continuum electrostatic

model under consideration and four boundary-integral-equation formulations of the associ-

ated PDE problem. Section 3 describes the boundary-element method for numerically solv-

ing boundary-integral equations, focusing on two complementary techniques for calculating

the entries of the boundary-element matrices. Section 4 presents the symmetry between the

ASC and Juffer double-layer integral equations, as well as one between the Bordner–Huber

and Yoon–Lenhoff equations, and demonstrates that the complementary discretizations can

preserve these symmetries numerically. Section 5 presents numerical results calculated using

the different integral formulations and discretizations. Section 6 concludes the paper.
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2. THEORY

2.1. The continuum electrostatic model

Figure 1 is an illustration of the continuum electrostatic model under consideration in this

paper. The solute region I is the volume interior to the closed surface Ω, which separates

the solvent region II from the solute. Most biomolecule simulations define the solute region

using a set of spheres that correspond to atoms or groups of atoms (using a parameter set

such as PARSE [72] or that defined by Nina, Im, and Roux [73]), with the boundary Ω

defined by rolling a water-molecule-sized probe sphere around the solute spheres [74–76]. In

this work, we take the dielectric boundary to be the Richards solvent-excluded surface [75],

which is defined as the points of closest approach of the probe-sphere surface to the solute

spheres. In ab initio self-consistent reaction field (SCRF) calculations, the solute–solvent

interface is sometimes defined to be the surface at which the solute electron density falls

below a threshold [77, 78].

The electrostatic potential in the solute, ϕI(r) is modeled using a Poisson equation

∇2ϕI(r) = −ρ(r)/ǫI , (1)

in which the solute charge distribution is denoted by ρ(r) and the solute dielectric constant

is represented by ǫI . For most biomolecular simulations, the solute charge distribution ρ(r)

is modeled as a set of discrete point charges located at the sphere centers. The solute

dielectric constant is typically taken to be between 2 and 8, reflecting electronic polarization

and minor structural relaxation [3, 79, 80]. Calculations that treat electronic degrees of

freedom explicitly, such as SCRF methods, use a dielectric constant of one in the solute.

In the solvent region, the potential ϕII(r) is modeled as obeying the linearized Poisson–

Boltzmann equation

∇2ϕII(r) = κ2ϕII(r), (2)

where κ is the inverse Debye screening length. The solvent is treated as a homogeneous

medium with dielectric constant ǫII , often taken to be 80, approximately that of bulk water.

In non-ionic solutions, κ = 0 and the Laplace equation governs the potential in the solvent.
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The electrostatic potential and the normal displacement field are continuous across the

interface [81],

ϕI(rΩ) = ϕII(rΩ); (3)

ǫI
∂ϕI(rΩ)

∂n(rΩ)
= ǫII

∂ϕII(rΩ)

∂n(rΩ)
, (4)

where rΩ is a point on Ω and ~n(rΩ) denotes the outward normal direction at rΩ pointing

from region I into region II. Finally, ϕII(r) is assumed to obey regularity conditions as

r → ∞ [40].

The solute charge distribution ρ(r) generates a Coulombic potential field and polarizes the

solvent, which in turn generates a reaction potential ϕREAC(r) in the solute. The electrostatic

potential in region I can therefore be expressed as the sum of the Coulomb potential and

the reaction potential induced by solvent polarization:

ϕI(r) = ϕCoul(r) + ϕREAC(r). (5)

Calculating ϕREAC(r) requires solving the coupled system of partial differential equations

(PDEs). The difference in electrostatic free energy due to solvent polarization can be written

generally as

EREAC =
1

2

∫

VI

(ρ(r))T ϕREAC(r)d3r. (6)

In the remainder of the paper, it is assumed that the charge distribution ρ(r) is a set of nc

discrete point charges, the ith of which is at ri and has value qi:

ρ(r) =

nc
∑

i=1

qiδ(r − ri), (7)

where δ(r) is the Dirac delta function and the nc-length vector q is the vector of point-charge

values. For such charge distributions, (6) reduces to a finite-dimensional inner product of

the point-charge values with the reaction potentials induced at the charge locations.

2.2. Boundary-integral equation formulations for molecular electrostatics

The coupled system of partial-differential equations (PDEs) can be reformulated in any

of several ways as a system of boundary-integral equations (BIEs). We present the formu-

lations of interest using the notation employed by Chipman [51]. A single-layer (monopole)

distribution of charge on the boundary Ω is denoted by σ(r), and a double-layer (normally
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oriented dipole) distribution by µ(r). The single-layer potential operator Sκ, where again κ

is the inverse Debye screening length, is defined as

Sκσ(r) =

∫

Ω

σ(r′)Gκ(r; r
′)d2r′, (8)

where Gκ(r; r
′) is the free-space Green’s function for the linearized Poisson–Boltzmann equa-

tion:

Gκ(r; r
′) =

e−κ||r−r′||

4π||r − r′||
. (9)

A subscript 0 denotes the non-ionic solvent case in which κ = 0; thus G0(r; r
′) is the free-

space Laplace Green’s function

G0(r; r
′) =

1

4π||r − r′||
. (10)

The single-layer electric-field operator D∗
κ also acts on σ(r) and is defined by

D∗
κσ(r) =

∫

Ω

σ(r′)
∂Gκ(r; r

′)

∂n(r)
d2r′. (11)

The integral in (11) is improper. In the present paper, every improper integral is assumed to

return its principal value; that is, every improper integral is evaluated with an infinitesimally

small circular disc around r removed from the domain of integration. The double-layer

potential and electric-field operators Dκ and Bκ act on the double-layer charge distribution

µ(r) and are defined by

Dκµ(r) =

∫

Ω

µ(r)
∂Gκ(r; r

′)

∂n(r′)
d2r′ (12)

Bκµ(r) =

∫

Ω

µ(r)
∂2Gκ(r; r

′)

∂n(r)∂n(r′)
d2r′. (13)

The integral-equation formulations share a common mathematical structure in which the

reaction potential ϕREAC(r) can be written as the product of three linear operators applied

to the solute charge distribution ρ(r):

ϕREAC(r) = M3M
−1
2 M1ρ(r). (14)

These operators represent the complete formal description of a particular formulation. The

operator M1 maps the solute charge distribution to a field or set of fields on the boundary

Ω; M2 maps the unknown surface distributions to the fields to be satisfied on the boundary,
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and therefore M−1
2 maps from the fields to the unknown surface distributions; and M3 maps

from the surface distributions to the reaction potential in the solute.

Note that the formulations presented below are specialized to the one-boundary problem

in Figure 1. Altman et al. [82] discuss the implementation of integral-equation methods

capable of treating more complex geometries, which may include water-filled cavities in the

solute, multiple solutes, and ion-exclusion layers [83].

2.2.1. The Apparent-Surface-Charge (ASC) formulation

Miertus et al., and later Shaw, presented the apparent-surface-charge (ASC) integral-

equation formulation for biomolecular electrostatics, which is specialized for the case in

which κ = 0:

1

2

(

ǫI + ǫII

ǫI − ǫII

)

σp(r) + −

∫

Ω

(

∂G(r; r′)

∂n(r)
σp(r

′)

)

d2r′ = −
nc
∑

i=1

∂G(r; ri)

∂n(r)
qi, (15)

where n(r), the surface normal at r ∈ Ω, is defined to point outward from solute into solvent,

−
∫

denotes a principal value integral, and the unknown surface distribution is the single-layer

charge density σp(r) [5, 34]. The reaction potential is calculated from σp(r) using the relation

ϕREAC(r) =
1

ǫI

∫

Ω

σp(r
′)G0(r; r

′)d2r′. (16)

Using Chipman’s operator notation, the integral equation (15) can be written as

(

1

2

(

ǫI + ǫII

ǫI − ǫII

)

I + D∗
0

)

σp = −D∗
0,nc→Ωq, (17)

where D∗
0,nc→Ω maps the nc point-charge values to the normal component of the electric field

at the surface Ω. The reaction potential is written in operator notation as

ϕREAC =
1

ǫI
S0,Ω→nc

σp, (18)

and thus the ASC formulation, in the notation of (14), is

MASC
1 = −D∗

0,nc→Ω; (19)

MASC
2 =

(ǫI + ǫII)

2(ǫI − ǫII)
I + D∗

0; (20)

MASC
3 =

1

ǫI
S0,Ω→nc

. (21)
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2.2.2. The Juffer el al. (J) formulation and the simplified Juffer et al. (SJ) formulation

Juffer et al. derived a purely second-kind integral-equation formulation capable of treating

the linearized Poisson–Boltzmann problem in the solvent region [40]. The full Juffer (J)

formulation consists of a pair of coupled integral equations whose unknowns are a single-

layer surface distributions σ(r) and a double-layer distribution µ(r):





(

1
2
(1 + ǫR) I − (ǫRDκ −D0)

)

(Sκ − S0)

− (Bκ − B0)
(

1
2

(

1 + ǫ−1
R

)

I +
(

ǫ−1
R D∗

κ −D∗
0

))









µ

σ



 =





1
ǫI
S0,nc→Ω

1
ǫI
D∗

0,nc→Ω



 q

(22)

where ǫR = ǫII

ǫI
. The Juffer reaction field operator is

ϕREAC(r) =
[

(ǫRDκ,Ω→nc
κ−D0,Ω→nc

) (S0,Ω→nc
− Sκ,Ω→nc

)
]





µ

σ



 . (23)

Juffer et al. note that when κ = 0, the formulation can be simplified to an integral-equation

with only an unknown dipole-layer distribution µ(r):

(

1

2
(1 + ǫR) I + (1 − ǫR)D0

)

µ =
1

ǫI
S0,nc→Ωq. (24)

In the simplified-Juffer (SJ) formulation, the reaction potential is calculated from the dipole

distribution by

ϕREAC = (ǫR − 1)D0,Ω→nc
µ. (25)

2.2.3. The Bordner–Huber (BH) formulation

Bordner and Huber derived a pair of coupled integral equations whose unknowns are

two single-layer distributions, one interior and one exterior to Ω [50]. Denoting the interior

distribution by σi and the exterior by σe, the integral equations are





− ǫI

ǫII

(

1
2
I + D∗

0

)

−1
2
I + D∗

κ

−S0 Sκ









σi

σe



 =





1
ǫII

D∗
0,nc→Ω

1
ǫI
S0,nc→Ω



 q. (26)

The reaction potential can be calculated from σi(r) by the relation

ϕREAC = S0,Ω→nc
σi. (27)
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2.2.4. The Yoon–Lenhoff (YL) formulation

Yoon and Lenhoff derived a formulation whose unknowns are the electrostatic potential

ϕ(r) and its normal derivative just inside the boundary, ∂ϕ(r)
∂n(r)

. These quantities satisfy the

coupled equations




1
2
I + D0 −S0

1
2
I −Dκ

ǫI

ǫII
Sκ









ϕ

∂ϕ

∂n



 =





1
ǫI
S0,nc→Ω

0



 q, (28)

and the reaction potential at the charge locations is

ϕREAC =
[

−D0,Ω→nc
+S0,Ω→nc

]





ϕ

∂ϕ

∂n



 . (29)

3. NUMERICAL DISCRETIZATION OF BOUNDARY INTEGRAL EQUATIONS

USING BOUNDARY-ELEMENT METHODS

An electrostatic capacitance calculation provides a simple example for presenting the

boundary-element method. Consider a perfectly conducting sphere of 1-meter radius sus-

pended in free space. Its capacitance is equal to the ratio of the total charge induced on its

surface when the sphere is raised to a 1 Volt potential relative to ground. The capacitance

of the sphere can be calculated by solving the integral equation

ψ(r) =

∫

Ω

K(r; r′)σ(r′)d2r′, (30)

where the surface potential ψ(r) = 1 Volt, Ω is the sphere boundary, σ(r) is the un-

known charge distribution, and the kernel K(r; r′) is the free-space Laplace Green’s function

G0(r; r
′). Boundary-integral equations such as (30) can be solved numerically using the

boundary-element method (BEM) [69]. In BEM, one first introduces a set of ne linearly

independent basis functions χ1(r), χ2(r), . . . , χne
(r) defined on the boundary of interest, or

on an approximation to it. The extension to formulations with multiple unknown surface

distributions is straightforward. The space of approximate solutions is the set of weighted

combinations of these basis functions, so that any member of this set can be written as

σ̂(r) =

ne
∑

i=1

xi χi(r), (31)

where xi represents the weight for the ith basis function. In general, the finite-dimensional

basis does not allow the integral equation (30) to be satisfied at all points on the boundary
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or boundary approximation. It is therefore of interest to find an approximate solution that

matches the true solution as closely as possible, and the usual approach is to force the

residual

R(r) = f(r) −

∫

Ω

(

K(r; r′)

ne
∑

i=1

xi χi(r)

)

d2r′ (32)

to be orthogonal to a set of test functions defined on Ω. Denoting the jth of N test functions

by γj(r), the corresponding constraint on the residual is

∫

Ω

γj(r)

[

f(r) −

∫

Ω

(

K(r; r′)
N
∑

i=1

xi χi(r)

)

d2r′

]

d2r = 0. (33)

Using N basis functions to represent the unknown distribution and forcing the residual to

be orthogonal to each of N test functions produces a square matrix equation

Ax = b, (34)

where each matrix entry is defined according to

Aij =

∫

Ω

[

γi(r)

∫

Ω

(K(r; r′)χj(r
′)) d2r′

]

d2r (35)

and bi, the ith entry of the right hand side, is

bi =

∫

Ω

γi(r)f(r)d2r. (36)

3.1. Basis Functions and Boundary Discretization

For many problems with complex geometries, it is impractical or impossible to determine,

a priori, a basis set that is sufficiently complete to ensure accurate solution of the integral

equation, and yet as small as possible to minimize simulation time. The boundaries of in-

terest are therefore commonly discretized into subdomains, or boundary elements, for which

basis functions can be defined more easily. Many BEM simulations are performed with

boundary elements that approximate the original boundaries using planar triangles, planar

quadrilaterals, or quadratic boundary elements [37, 41, 84–87]. In some special cases, bound-

ary elements can be used that can exactly describe the boundaries under consideration (see,

for example, [38, 45, 64]). In this paper, we approximate the solute–solvent interfaces using

planar triangles and introduce piecewise-constant basis functions defined by

χi(r) =







1 if r is on boundary element i

0 otherwise.
(37)

11



These boundary-element representations are termed boundary discretizations.

3.2. Test Functions

Boundary-element simulations frequently employ one of two types of test functions. The

first consist of delta functions and therefore force the integral equation to be satisfied ex-

actly at specified locations. These approaches are commonly described as point-collocation

boundary-element methods. Centroid-collocation methods, for instance, force the integral

equation to be exactly satisfied at the centroid of each boundary element. Defining rci
to

be the centroid of the ith boundary element, the matrix entries of (34) are

Aij =

∫

Ωj

χj(r
′)K(rci

; r′)d2r′, (38)

where Ωj represents the support of the jth basis function; for piecewise-constant basis func-

tions defined by (37), Ωj is the jth boundary element. The right-hand side is defined by

bi = f(rci
). (39)

When the set of test functions is the same as the set of basis functions, one obtains what

are known as Galerkin BEM techniques. The matrix entries in such methods are

Aij =

∫

Ωi

χi(r)

∫

Ωj

χj(r
′)K(r; r′)d2r′d2r. (40)

3.3. Evaluating Galerkin Double Integrals

For the piecewise-constant basis functions used in this work, the Galerkin double inte-

grals Aij in (40) are readily interpreted as the integral, over element i, of the potential (or

normal electric field) induced by the uniform charge distribution χj(r). Analytical methods

for computing Galerkin double integrals of the form (40) exist only for specialized geome-

tries.and kernels [88]. Numerical quadrature [89] must therefore be used to evaluate at least

one of the integrals in (40). Numerical quadrature methods usually approximate the integral

of a function f(x) over a domain D as

∫

D

f(x)dx ≈

np
∑

i=1

wif(xi), (41)
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where np represents the number of points used in approximating the integral, xi is the ith

quadrature point, and wi is the corresponding weight. Integrals of smoothly varying func-

tions such as polynomials can often be approximated to very high accuracy using relatively

few quadrature points. For example, in one dimension a np-point Gauss quadrature rule

exactly integrates polynomials up to degree 2np − 1. In contrast, discontinuous or sharply

peaked functions can require many quadrature points to achieve a desired accuracy.

Analytical techniques do exist for computing the Coulomb potential and its gradient at

any single point in space, given a polynomially-varying distribution of single- or double-

layer charge on a planar, polygonal boundary element [88, 90, 91]. It is therefore natural to

evaluate the integrals in the order in which they appear in (40). The outer integral over Ωi

is approximated using numerical quadrature, and the inner integral is evaluated repeatedly.

The matrix entries then take the form

Aij =

np
∑

k=1

w
(i)
k γi(r

(i)
k )

∫

Ωj

χj(r
′)K(r

(i)
k ; r′)d2r′, (42)

where np is the order of the quadrature rule and w
(i)
k and r

(i)
k represent the weight and

location of the kth quadrature point on element i. In this paper, this approach to evaluating

the matrix entries is termed a np-point basis-inner discretization. In the special case np = 1,

the point r
(i)
k is necessarily the panel centroid, and the weight w

(i)
k is the panel area. Thus,

the BEM matrix generated by a centroid-collocation method is the same as that produced

by a one-point basis-inner Galerkin method, subject to a row scaling [70].

For the electrostatic kernels described in this paper, the order of integration in (40) can be

reversed [69, 70]. In this paper, such an approach is called a test-inner discretization because

the integral over the test function’s support that is evaluated first and the integration over

the basis-function support is evaluated numerically. This technique generates matrix entries

of the form:

Aij =

np
∑

k=1

w
(j)
k χj(r

(j)
k )

∫

Ωi

γi(r)K(r; r
(j)
k )d2r. (43)

Using a one-point quadrature rule to evaluate (43), one obtains what Tausch, Wang, and

White termed a qualocation method [70]:

Aij = αjχj(rcj
)

∫

Ωi

γi(r)K(r; rcj
)d2r, (44)

where αj is the area of panel j. For a fixed quadrature order np, the cost to evaluate a

particular matrix entry is essentially independent of whether (42) or (43) is used.
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Galerkin boundary-element integrals associated with the LPBE Green’s function can be

evaluated by using the techniques described above to calculate the Poisson Galerkin double

integrals and then adding the correction term described by Boschitsch et al [49].

4. DUALITY RELATIONSHIPS BETWEEN INTEGRAL-EQUATION FORMU-

LATIONS

Section 2 presented several integral-equation formulations for molecular electrostatics,

including the Bordner–Huber (BH) formulation, the Yoon–Lenhoff (YL) formulation, the

apparent-surface-charge (ASC) formulation, and the simplified-Juffer (SJ) formulation. In

this section, we derive one symmetry relation between the ASC and SJ formulations and

another between the BH and YL formulations. In addition, we demonstrate that the comple-

mentary test-inner and basis-inner discretizations described in the previous section preserve

these symmetries during numerical simulation. The existence of these symmetries indicates

that differences in accuracy between the equivalent formulations reflects the discretizations

employed rather than inherent advantages of one formulation relative to the other.

4.1. Duality of the Apparent-Surface-Charge and Simplified-Juffer Formulations

Clearly, multiplying MASC
1 and MASC

2 by the quantity (1 − ǫR) preserves the original

solution σp, and we can therefore use the modified operators

M̂ASC
1 = (ǫR − 1)D∗

0,nc→Ω; (45)

M̂ASC
2 =

(

1

2
(1 + ǫR) I + (1 − ǫR)D∗

0

)

, (46)

to write the ASC reaction potential as

ϕREAC = MASC
3 M̂ASC,−1

2 M̂ASC
1 q. (47)

Comparing the re-scaled ASC operators to those of the simplified-Juffer formulation in (24),

it is clear that M̂ASC
1 is the transpose of the SJ operator MSJ

3 ; similarly, M̂ASC
2 = MSJ,T

2

and MASC
3 = MSJ,T

1 .

This symmetry can be preserved numerically using the complementary test-inner and

basis-inner approaches presented in Section 3.3. If analytical integration techniques [90, 91]

14



are used to evaluate the inner integrals, the matrix entries for the corresponding operators

are exactly equal. A test-inner method with a quadrature rule of order np for the ASC

formulation generates matrix entries of the form

M̂ASC
1,ij = (ǫR − 1)

∫

Ωi

∂G0(r; rj)

∂n(r)
d2r; (48)

M̂ASC
2,ij =

np
∑

k=1

w
(j)
k χj(r

(j)
k )

∫

Ωi

χi(r)
∂G0(r; r

(j)
k )

∂n(r)
d2r; (49)

MASC
3,ij =

1

ǫI

∫

Ωj

G0(ri; r)d
2r. (50)

A basis-inner discretization of equal order for the SJ formulation generates matrices with

entries

MSJ
1,ij =

1

ǫI

∫

Ωi

G0(r; rj)d
2r; (51)

MSJ
2,ij =

np
∑

k=1

w
(i)
k χi(r

(i)
k )

∫

Ωj

χj(r)
∂G0(r

(i)
k ; r)

∂n(r)
d2r; (52)

MSJ
3,ij = (ǫR − 1)

∫

Ωj

∂G0(ri; r)

∂n(r)
d2r. (53)

The analogous result holds when the basis-inner discretization is used for the ASC formula-

tion and the test-inner method is used for the SJ formulation.

4.2. Duality of the Bordner–Huber and Yoon–Lenhoff Formulations

The Bordner–Huber (BH) and Yoon–Lenhoff (YL) formulations also share a symmetry

relationship under simple scaling transformations. Multiplying both MBH
1 and MBH

2 on the

left by




−ǫIII

ǫII



 (54)

and right-multiplying both MBH
2 and MBH

3 by





1
ǫI
I

1
ǫII
I



 (55)
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produces the modified matrices

M̂BH
1 =





−D∗
0

S0



 ; (56)

M̂BH
2 =





(

1
2
I + D∗

0

) (

1
2
I −D∗

κ

)

−S0
ǫI

ǫII
Sκ



 ; (57)

M̂BH
3 =

[

1
ǫI
S0 0

]

, (58)

and then clearly MBH,T
3 = MY L

1 , MBH,T
2 = MY L

2 , and MBH,T
1 = MY L

3 . An analysis similar

to that of Section 4.1 shows that discretizing the BH formulation with either the test- or

basis-inner method, and discretizing the YL formulation with the other method, generates

numerically identical matrices.

5. COMPUTATIONAL RESULTS

The integral formulations discussed in Section 2 have been used to solve several test cases

numerically. For all simulations, planar-triangle boundary elements were used to approx-

imate the solute–solvent interfaces, which were taken to be the Richards solvent-excluded

surface [75, 76]. Piecewise-constant basis functions were used to approximate the surface

distributions. The solute dielectric constant was taken to be ǫI = 4, and the solvent di-

electric constant ǫII = 80. For simulations in which the LPBE was assumed to hold in

the solvent region, the inverse Debye screening length κ was taken to be 0.125 Å−1. The

program MSMS [92] was used to generate discretizations of the solute–solvent interfaces us-

ing PARSE radii [72] and a probe radius of 1.4 Å. The boundary-element simulations were

conducted using software derived from the FFTSVD fast-solver library [71, 82, 93]. The sim-

ulations reported in this work did not utilize the FFTSVD matrix sparsification algorithm or

others such as fast multipole [94, 95] or precorrected-FFT [96, 97]. The linear systems were

formed explicitly and solved using either the SVD or GMRES [98]. Evaluation of the elec-

trostatic potential due to constant-density single-layer and double-layer charge distributions

over planar triangles was accomplished using analytic integration methods [90, 91]. The

LPBE integrals were calculated using the desingularization method described by Boschitsch

et al. [49]. For systems solved using GMRES, no restarts were allowed and iteration was

terminated at a tolerance of 10−10 relative to the intial preconditioned residual. For the
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ASC and SJ formulations, diagonal preconditioners were employed, with Pii = (M ii
2 )−1.

For the BH, YL, and J formulations, block preconditioners were used [82, 99]. Quadrature

rules presented by Stroud [89] were used to evaluate the outer integrals associated with the

Galerkin basis-inner and test-inner discretizations.

5.1. Sphere with Central Charge in Non-Ionic Solution

The implementations of the integral-equation formulations were verified by calculating

the electrostatic solvation free energy of a 1 Å-radius sphere with a centrally located unit

+1 e charge; the surface was triangulated using vertex densities varying from 1 Å−2 to

28 Å−2. This simple geometry has an analytical solution in the case when κ = 0 and a

closed-form solution in the case when κ = 0.125 Å−1 [39]. Figure 2 is a plot of the

absolute errors when κ = 0 for the apparent-surface-charge and the simplified Juffer et al.

formulations, discretized using basis-inner and test-inner Galerkin methods. As expected

from the analysis in Section 4.1, the basis-inner ASC results are identical to those of the

test-inner simplified Juffer method, and similarly the test-inner ASC results are equal to

those of the basis-inner simplified-Juffer method. Having demonstrated the equivalence

between these two formulations, in the remainder of the paper we denote these formulations

collectively as the ASC/SJ formulation. Comparisons between discretizations are drawn

only between the test-inner ASC and basis-inner ASC method.

The discrepancy in solution accuracy between the test-inner and basis-inner methods re-

sults directly from the smoothness of the functions that are integrated numerically in (42)

and (43) [70]. Tausch et al. originally explained the inadequacy of numerical quadrature

for evaluating the outer integrals associated with centroid-collocation-like basis-inner dis-

cretizations like (42) when K(r; r′) = ∂G(r;r′)
∂n(r)

and boundary elements i and j are adjacent

planar boundary elements that share a common edge but have different surface normals.

The normal electric field on element i due to a uniform distribution of single-layer charge on

element j is sharply peaked close to the edge. Consequently, one-point quadrature methods,

like centroid-collocation, poorly approximate the needed integral. The SJ-test-inner and

ASC-basis-inner answers therefore change significantly and exhibit improved accuracy with

increasing quadrature order.

In contrast, the test-inner approach to evaluating the Galerkin double integrals can be
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interpreted as using numerical quadrature to integrate, over element j, the potential in-

duced by a normally oriented dipole distribution on element i. This potential is smooth

everywhere over element j and therefore low-order quadrature suffices (see Figure 1 in [70]);

the SJ-basis-inner and ASC-test-inner results are essentially the same for all quadrature

rules (Figure 2). This supports the use by Tausch et al. of only a one-point quadrature

rule. The one-point test-inner discretization of the ASC formulation actually offers better

accuracy than basis-inner discretizations with higher-order quadrature, and conversely the

basis-inner discretization offers superior accuracy for the SJ formulation.

The absolute errors from simulations based on the Yoon and Lenhoff formulation and the

Bordner and Huber formulation are plotted in Figure 3(a). The test-inner and the basis-

inner results confirm the analysis of Section 4.2; accordingly, in the remainder of the paper

these formulations are referred to as the BH/YL formulation generally, and as one or the

other when specifying a particular discretization. The coupled formulations exhibit reduced

sensitivity compared to the ASC and SJ formulations, because the electric-field operator

D∗
κ of the BH formulation (equivalently, the dipole-layer potential operator Dκ of the YL

formulation) is not the only operator in the integral formulation, and furthermore decays

more quickly than the single-layer potential kernel Sκ.

The results in Figure 3(a) seem contrary to the results of Figure 2, suggesting that bet-

ter accuracy is obtained when the electric-field operator is discretized using a basis-inner

approach. The comparison to the analytical solution is misleading; which discretization

provides better accuracy, relative to the analytical result, depends on whether the interior

or exterior dielectric constant is larger (data not shown). Because the computed matrix

entries are numerical approximations to the the Galerkin double integrals (40), the appro-

priate baseline for comparison is a Galerkin method in which numerical quadrature has

been performed with high precision. In such a comparison only one detail, the manner of

imposing the Galerkin orthogonality constraints, is varied between the calculated reference

energy and the calculations of interest. Plotted in Figure 3(b) are the deviations of electro-

static free energies calculated using different quadrature rules compared to those calculated

using the same discretization method and 18-point quadrature. For each boundary-element

representation of the sphere surface, test-inner discretizations of the electric-field operator

(and therefore basis-inner discretizations of the double-layer potential operator) generate

answers that agree closely regardless of the number of quadrature points used. The alter-
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native methods deviate substantially if low-order quadrature is used and converge as the

number of quadrature points is increased.

5.2. Formamide

The small molecule formamide was also simulated. Because no analytically determined

molecular electrostatic free energy is available, a much more computationally demanding

and accurate boundary-integral method, based on curved boundary elements, was used as

a reference calculation [64, 82]. Figure 4(a) and (b) are plots illustrating the accuracy

associated with different discretization methods when simulating the non-ionic ASC/SJ for-

mulation as well as the BH/YL and J formulations with κ = 0.0. In Figure 5(a), (b),

and (c) are plots of the preconditioned and unpreconditioned GMRES residuals at each

iteration using the different formulations and approaches to evaluating the Galerkin double

integrals. These convergence plots were obtained using a 1600-element discretization of the

formamide molecular surface. The similar GMRES convergence behavior for the basis-inner

and test-inner methods indicates that the methods generate matrices of similar conditioning;

the singular value decomposition was then used to confirm that the approach to calculating

the Galerkin double integrals does not appreciably impact the condition number associated

with the BEM matrix (data not shown).

The impact of the electric-field operator discretization approach was assessed for the

multi-operator BH/YL, and J formulations by using basis-inner discretization for the single-

layer operator S0 and varying the discretization employed for the double-layer potential

operator D0 and the electric-field operator D∗
0. Figure 6(a) and (b) contains four conver-

gence plots for the J formulation: basis-inner-only, basis-inner with test-inner for D0 only,

basis-inner with test-inner for D∗
0 only, and basis-inner with test-inner for both D0 and D∗

0.

Figure 6(c) illustrates deviations from the curved-element reference calculation for the BH

formulation using basis-inner-only and a mixed basis-inner/test-inner method. It is clear

that accuracy depends on using an appropriate method to approximate the double integrals

corresponding to the normal electric field kernel and dipole-potential kernel. In Figure 6(a)

the accuracy does not seem to depend strongly on the method used to discretize the electric-

field operator D∗
0. This phenomenon results from the relative scaling of the diagonal blocks

of the formulation (22).
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5.3. Peptide

To assess the impact of discretization on simulations of larger biomolecules, a 32-residue

α-helix from Lavigne et al. [100] was simulated, using atomic coordinates provided by Feig et

al. [101]. Reference calculations were again performed using high-accuracy, curved-element

methods [82]. The deviations from these calculations are shown in Figure 7. The 1-point

test-inner and basis-inner discretizations of the ASC formulation again produce answers

that differ significantly. Higher-order quadrature does not appreciably improve the accuracy

of the ASC/test-inner method but it does improve the accuracy of the ASC/basis-inner

method. Relatively small differences are observed between the basis-inner and test-inner

discretizations of the BH/YL formulation, and the deviations relative to the reference cal-

culation change appreciably as the number of quadrature points is increased.

6. SUMMARY

The present paper has presented two approaches to discretizing boundary-integral equa-

tion formulations of linear, continuum models of solute–solvent electrostatic interactions. It

has been seen that the electric-field operator and the double-layer potential operator require

appropriate discretization to preserve solution accuracy. By using higher-order numeri-

cal quadrature and by implementing the basis-inner and test-inner approaches for several

integral-equation formulations, we have extended the analyses of Tausch et al. [70] and Alt-

man et al. [71]. The Galerkin-method analysis presented by Tausch et al. should hold for

curved-element methods and higher-order basis functions so long as the boundary-element

normals are discontinuous across element boundaries [70]. An investigation of discretization

methods for higher-order boundary elements [45] and basis functions [39] is warranted, and

represents one area of current research. Further discretization studies also may help to ex-

plain why the accuracy of the BH/YL formulation can degrade as the number of quadrature

points is increased (Figure 7(b)). One possible explanation is that higher-order quadrature

rules magnify the effect of the boundary-discretization error introduced by approximating

the molecular surface using planar triangles. A related topic for future work would be to

compare the accuracy of simulations that model the apparent-surface-charge layer using

discrete point charges to the accuracy of those employ charge-density basis functions.
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The numerical results in Section 5 indicate that when the appropriate discretization

method is employed, quadrature rules using more than one point offer surprisingly little

improvement in accuracy relative to the increase in computational effort. For boundary-

element problems solved using dense-matrix GMRES, as well as for sufficiently small prob-

lems solved using matrix factorization, the explicit calculation of the boundary-element

matrix can represent a substantial fraction of the total computational cost. Because the

cost to form the BEM matrix scales linearly in the number of quadrature points, low-order

quadrature in conjunction with the appropriate discretization technique can offer both ac-

curacy and performance advantages relative to higher-order quadrature schemes, depending

on the discretization. The techniques discussed in this paper may be particularly relevant

for boundary-element-based self-consistent reaction-field calculations in which accuracy is

often of primary importance.

We have also described the symmetry relationships between two pairs of integral formu-

lations. The apparent-surface-charge formulation is equivalent, in a Galerkin sense, to the

simplified Juffer et al. formulation. Discretizing one formulation using a test-inner method

and the other with an equal-order basis-inner method can produce numerically identical ma-

trices and therefore equal electrostatic free energies. The Yoon–Lenhoff and Bordner–Huber

formulations share a similarly symmetric relationship. Because all of these approaches ul-

timately yield the same reaction potential, it seems manifest that the formulations should

be intimately connected. However, the explicit symmetries discussed in Section 4 do not

appear to have been noted previously.

Juffer et al. observed the difference in accuracy between their double-layer charge formu-

lation (here termed the SJ formulation) and the ASC formulation [40]. In that work, the

discrepancy was attributed to the need for the ASC method to match the sharply peaked

normal electric field at the boundary, compared to the smoother potential condition matched

in the SJ method [40]. Although it is true that the normal electric field is more sharply

peaked, the analysis in Section 4 indicates that the discrepancy should be attributed to the

Galerkin-approximation characteristics of the collocation method employed there, rather

than to the representation of the surface-charge density in the discretized ASC formulation.

Finally, it is worth emphasizing that all of the discretizations generate matrices of similar

condition number. It is well-known that purely second-kind formulations exhibit signifi-

cantly better conditioning relative to other formulations [45, 69]. However, the analysis
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and computational results presented here illustrate that matrix conditioning alone does not

guarantee accuracy with respect to the free energies of interest. Furthermore, it is clear that

demonstrations of a technique’s convergence do not preclude the existence of techniques

with improved accuracy.
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Figures:

1 A continuum-solvent model for molecular electrostatics

2 Absolute error between analytical solution and numerical solutions of the ASC

formulation and the simplified-Juffer formulation, for a 1 Å-radius sphere with

central +1 e charge in non-ionic solution. The notation in the legend is as follows:

ASC, apparent-surface-charge-formulation; SJ, simplified-Juffer formulation; t,

test-inner discretization; b, basis-inner discretization; the final number is the

order of the quadrature rule np used to evaluate the outer integrals.

3 Simulations of the unit sphere with centrally located unit charge performed using

the Bordner–Huber and Yoon–Lenhoff formulations in non-ionic solvent. (a)

and (b) Absolute deviations between the analytical electrostatic free energy and

numerical solutions of the YL and BH formulations, using different discretization

methods and as a function of the number of boundary elements, for a 1 Å-radius

sphere with central +1 e charge in non-ionic solution. Notation in the legend

is as in Figure 2. (c) Absolute deviation of calculated electrostatic free energies

from reference calculations employing 18-point quadrature rules. Basis-inner

discretizations are compared to an 18-point basis-inner method and 18-point

test-inner calculations are used as a reference for the test-inner calculations.

4 Convergence of calculated answers towards a high-resolution reference simulation

of formamide. (a) The ASC formulation. (b) The J formulation. (c) The YL

formulation.

5 Convergence of GMRES [98] when simulating formamide using the ASC/SJ,

BH/YL, and J formulations, with and without preconditioning, and using either

1-point basis-inner or test-inner Galerkin approximations. (a) Convergence of

the SJ formulation. (b) Convergence of the YL formulation. (c) Convergence of

the J formulation.

6 Deviation of electrostatic free energies relative to a reference calculation, dis-

cretizing the Galerkin double integrals in a kernel-dependent manner. Basis-

inner discretizations are used for all entries associated with single-layer and
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dipole-induced electric-field operators. (a) The J formulation discretized using

basis-inner methods only or with the normal-electric-field operator discretized

using test-inner methods. Results are plotted as deviations from a high-accuracy

curved-element simulation. (b) The J formulation with the dipole-layer and the

normal-electric-field operators, or the dipole-layer operator only, discretized us-

ing test-inner methods. Results are plotted as deviations from a high-accuracy

curved-element simulation. (c) The YL formulation discretized using basis-inner

or test-inner methods for the double-layer potential. Results are plotted as de-

viations from a calculation employing 18-point quadrature.

7 Deviations of calculated electrostatic free energies for a 32-residue α-helix [100,

101], relative to a high-resolution reference calculation. (a) The ASC formula-

tion. (b) The YL formulation. (c) The J formulation.
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FIG. 2: Absolute error between analytical solution and numerical solutions of the ASC formulation

and the simplified-Juffer formulation, for a 1 Å-radius sphere with central +1 e charge in non-ionic

solution. The notation in the legend is as follows: ASC, apparent-surface-charge-formulation; SJ,

simplified-Juffer formulation; t, test-inner discretization; b, basis-inner discretization; the final

number is the order of the quadrature rule np used to evaluate the outer integrals.
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FIG. 3: Simulations of the unit sphere with centrally located unit charge performed using the

Bordner–Huber and Yoon–Lenhoff formulations in non-ionic solvent. (a) and (b) Absolute devia-

tions between the analytical electrostatic free energy and numerical solutions of the YL and BH

formulations, using different discretization methods and as a function of the number of boundary

elements, for a 1 Å-radius sphere with central +1 e charge in non-ionic solution. Notation in the

legend is as in Figure 2. (c) Absolute deviation of calculated electrostatic free energies from ref-

erence calculations employing 18-point quadrature rules. Basis-inner discretizations are compared

to an 18-point basis-inner method and 18-point test-inner calculations are used as a reference for

the test-inner calculations.
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FIG. 4: Convergence of calculated answers towards a high-resolution reference simulation of for-

mamide. (a) The ASC formulation. (b) The J formulation. (c) The YL formulation.
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FIG. 5: Convergence of GMRES [98] when simulating formamide using the ASC/SJ, BH/YL, and

J formulations, with and without preconditioning, and using either 1-point basis-inner or test-

inner Galerkin approximations. (a) Convergence of the SJ formulation. (b) Convergence of the YL

formulation. (c) Convergence of the J formulation.
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FIG. 6: Deviation of electrostatic free energies relative to a reference calculation, discretizing

the Galerkin double integrals in a kernel-dependent manner. Basis-inner discretizations are used

for all entries associated with single-layer and dipole-induced electric-field operators. (a) The J

formulation discretized using basis-inner methods only or with the normal-electric-field operator

discretized using test-inner methods. Results are plotted as deviations from a high-accuracy curved-

element simulation. (b) The J formulation with the dipole-layer and the normal-electric-field

operators, or the dipole-layer operator only, discretized using test-inner methods. Results are

plotted as deviations from a high-accuracy curved-element simulation. (c) The YL formulation

discretized using basis-inner or test-inner methods for the double-layer potential. Results are

plotted as deviations from a calculation employing 18-point quadrature.
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FIG. 7: Deviations of calculated electrostatic free energies for a 32-residue α-helix [100, 101], rela-

tive to a high-resolution reference calculation. (a) The ASC formulation. (b) The YL formulation.

(c) The J formulation.
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