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SUMMARY

Discrete molecular dynamics (DMD) is a rapid sam-
pling method used in protein folding and aggregation
studies. Until now, DMD was used to perform simula-
tions of simplified protein models in conjunction with
structure-based force fields. Here, we develop an
all-atom protein model and a transferable force field
featuring packing, solvation, and environment-
dependent hydrogen bond interactions. We performed
folding simulations of six small proteins (20-60 resi-
dues) with distinct native structures by the replica
exchange method. In all cases, native or near-native
states were reached in simulations. For three small
proteins, multiple folding transitions are observed,
and the computationally characterized thermody-
namics are in qualitative agreement with experi-
ments. The predictive power of all-atom DMD high-
lights the importance of environment-dependent
hydrogen bond interactions in modeling protein fold-
ing. The developed approach can be used for accu-
rate and rapid sampling of conformational spaces
of proteins and protein-protein complexes and
applied to protein engineering and design of pro-
tein-protein interactions.

INTRODUCTION

Computer simulations, from simple lattice Monte Carlo to all-

atom molecular dynamics methods, have proven to be essential

in our understanding of proteins (Chen et al., 2008). Among these

simulation techniques is discrete molecular dynamics (DMD; see

the Experimental Procedures), in which the interaction potentials

are approximated by discontinuous step functions, and the sim-

ulations are driven by collisions (Rapaport, 1997). The discrete

nature of the collision-driven DMD simulations is akin the distinct

move set in Monte Carlo simulations; thus, the DMD algorithm

features the fast sampling efficiency (Ding and Dokholyan,

2005) characteristic of Monte Carlo algorithms. DMD has been

used in studies of protein folding thermodynamics and kinetics,

protein evolution, protein domain swapping, and amyloid fibril

formation (Hall and Wagoner, 2006; Urbanc et al., 2006;

Dokholyan et al., 2000).
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DMD simulations of simplified protein models with structure-

based force fields have been used in previous studies of protein

folding and aggregation (Dokholyan et al., 2000). Despite the

simplicity of the protein models used, the DMD simulations

show strikingly predictive power in uncovering the underlying

molecular mechanisms of various biological processes (Ding

and Dokholyan, 2005; Dokholyan, 2006). With continued

advances in our understanding of proteins, there is an ever grow-

ing interest in the application of our knowledge toward medically

relevant studies (Chen et al., 2008), such as designing novel pro-

tein-protein interactions and drug discovery. Such a shift of re-

search focus requires higher resolution protein models and

transferable force fields (Shimada et al., 2001). Borreguero

et al. (2005) devised an all-atom DMD model to study the thermo-

dynamic structure of a short 10 residue peptide from an amyloid

b polypeptide. The interactions were assigned according to the

experimentally determined hydrophobicity. Additional examina-

tion of the hydrophobicity-based force field with additional sys-

tems is necessary to assess the transferability. Zhou et al.

(2003) and Luo et al. (2007) have developed an all-atom DMD

model to study the folding dynamics of proteins by using a struc-

ture-based interaction function. The built-in structural informa-

tion hinders broader applications due to the lack of transferabil-

ity. Here, we develop an all-atom DMD model with a transferable

interaction function.

In the all-atom DMD force field, we use the van der Waals

(VDW) potential to model packing, and Lazaridis-Karplus effec-

tive energy EEF1 (Lazaridis and Karplus, 1999) to model solva-

tion. We also explicitly model hydrogen bond interactions (Ding

et al., 2003). Hydrogen bonds play a pivotal role in protein folding

(Baldwin, 2007; Rose et al., 2006). It has been experimentally

shown that hydrogen bonds stabilize globular proteins (Myers

and Pace, 1996). Recent experimental evidence (Deechongkit

et al., 2004) suggests that stability contribution of a backbone

hydrogen bond depends on its solvent exposure in the native

structure. Mutating backbone amides with esters in the WW do-

main, Deechongkit et al. (2004) illustrated that a solvent-exposed

hydrogen bond has a stability contribution of 1.0–2.0 kcal/mol,

while a buried hydrogen bond contributes as much as 3.1 ±

1.0 kcal/mol to the stability. To model the environment-depen-

dent hydrogen bond interaction, we assume that a hydrogen-

bonded backbone peptide has a weaker desolvation energy

(�2 kcal/mol) than that of the non-hydrogen bonded one. As a re-

sult, the buried hydrogen bond will be effectively stronger than

the solvent-exposed one, therefore mimicking the environ-

ment-dependent effect.
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Given the vast conformational space available to proteins, the

ability to capture protein native states (Dinner et al., 2000) pro-

vides an important benchmark test for a computational sampling

method. We perform ab initio folding simulations (Yang et al.,

2007) of six structurally diverse proteins with the all-atom DMD

method: Trp-cage (20 residues; a mini a/b protein; PDB code:

1L2Y); WW domain (26 residues; the central three strand b sheet

[GLY5-GLU30] of the all-b protein; PDB code: 1I6C), villin head-

piece (35 residues; an all-a protein; PDB code: 1WY3); GB1 do-

main (56 residues; an a/b protein; PDB code: 1GB1); bacterial

ribosomal protein L20 (60 residues; an all-a protein; PDB code:

1GYZ); and the engrailed homeodomain (54 residues; an all-

a protein; PDB code: 1ENH). We demonstrate that, with our

method, proteins can reach the native or near-native states in

all cases. For three small proteins—Trp-cage, WW domain,

and villin headpiece—multiple folding transitions are observed,

and the computationally characterized thermodynamics are in

qualitative agreement with experiments. Due to the complex na-

ture of protein folding and the fact that tested proteins are all

small in size with relatively simple topology, we do not expect

our method to fully resolve the protein folding problem. We do

posit that our all-atom DMD method can be used for the accurate

sampling of conformational spaces of proteins and protein-pro-

tein complexes, which is crucial for protein engineering and

design of protein-protein and protein-ligand interactions.

RESULTS

The all-atom DMD method employs a united atom protein model,

in which heavy atoms and polar hydrogen atoms are explicitly

modeled (Experimental Procedures). We include VDW, solva-

tion, and environment-dependent hydrogen bond interactions.

We adopt the Lazaridis-Karplus solvation model and use the fully

solvated conformation as the reference state. The desolvation

energy of each atom is decomposed into pair-wise interactions

with its surrounding atoms. For example, unfavorable to be bur-

ied, a hydrophilic atom has repulsive Lazaridis-Karplus interac-

tions with other atoms. For simplicity, we do not include the

long-range charge-charge interactions in the current model.

Due to the strong screening effect of solvent, far away charges

have weak polar interactions. For salt bridges, we expect the hy-

drogen bonds to partially account for their polar interactions.

Similar neutralization of charged residues was also employed

in the implicit solvent model of the effective energy function of

CHARMM19 (Lazaridis and Karplus, 1999). In DMD, the interac-

tion potential between two atoms is a step function of their dis-

tance. We adapt the continuous energy functions of Medusa

into step functions by mimicking the attractions and repulsions

(Experimental Procedures). The Medusa force field has been

used to recapitulate the sequence diversity of protein folding

families (Ding and Dokholyan, 2006), and to predict protein sta-

bility changes upon mutation (Yin et al., 2007).

In modern molecular dynamics force fields, the hydrogen

bond interaction is often modeled implicitly by the electrostatic

interaction between dipoles. In contrast, our method explicitly

models hydrogen bond formation (Ding et al., 2003) by effec-

tively considering the distance and angular dependence of a

hydrogen bond (Experimental Procedures). To account for the

environment-dependent effect of hydrogen bonds, we assign
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weaker solvation energy to a hydrogen-bonded backbone car-

bonyl oxygen atom compared with that of a non-hydrogen-

bonded atom (Experimental Procedures).

To efficiently explore the conformational space, we utilize

replica exchange DMD (REXDMD) simulations (Experimental

Procedures). In REXDMD simulations, replicas perform DMD

simulations at a given set of temperatures in parallel; the temper-

atures range from low to high. Periodically, replicas with neigh-

boring temperature values exchange their temperatures in a

Metropolis-based stochastic manner. Thus, each replica effec-

tively follows a random walk in temperature space (see Figure S2

available online). A temporarily trapped state in a replica can be

rescued by simulating at a higher temperature, thereby enhanc-

ing the sampling efficiency of DMD simulations.

For each of the six proteins, we start from fully extended con-

formations and perform REXDMD simulations (Experimental

Procedures). Native or near-native conformations are observed

for all six proteins in at least one replica of REXDMD simulations.

In Figure 1, the computational structures with the lowest root-

mean-square deviation (rmsd) for the native states are aligned

with corresponding experimentally determined structures. For

three small proteins (Trp-cage, WW domain, and villin head-

piece), we observe multiple folding transitions in different rep-

licas (e.g., the trajectories of Trp-cage folding in Figure S2A), sug-

gesting an equilibrium sampling of conformational space during

DMD simulations. The remaining three larger proteins (GB1 do-

main, bacterial ribosomal protein L20, and engrailed homeodo-

main) take a long simulation time to reach the native or near-

native states (Figure S1), and lack multiple folding/unfolding

transitions. The folding transition into lowest-rmsd structures

only occurs in one or two replicas, where temperatures remain

low for the rest of the simulations. However, the ability of the

all-atom DMD model to capture the native or near-native states

in simulations for all six proteins highlights its predictive power.

We use the weighted histogram analysis method (WHAM; see

Experimental Procedures) to compute the folding thermodynam-

ics from REXDMD simulation trajectories. The WHAM method

computes the density of states in a self-consistent manner (Ku-

mar et al., 1992). An accurate estimation of the density of states

requires sufficient data points along the reaction coordinates.

Therefore, we do not attempt to determine the folding thermody-

namics of GB1 domain, bacterial ribosomal protein L20, or en-

grailed homeodomain, due to insufficient sampling in simula-

tions. However, the achievement of equilibrium sampling of the

three small proteins in REXDMD simulations enables us to study

the folding thermodynamics of these three proteins and to com-

pare the results with experimental studies.

Trp-Cage
Trp-cage is a thermodynamically stable 20 residue miniprotein

(Neidigh et al., 2001). Due to its simple topology and fast folding

nature, Trp-cage has been successfully folded in computer sim-

ulations by different computational methods (Ding et al., 2005;

Pitera and Swope, 2003; Schug et al., 2005; Snow et al., 2002;

Zhou, 2004), including DMD simulations of a simplified protein

model (Ding et al., 2005).

Starting from the fully extended conformation, the miniprotein

is able to reach its native state (Figure 1A). In the lowest-rmsd

structure of the folded state in simulations (Figure 1A), we find
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that the protein core is well packed and the side chain rotamers

of core residues are also consistent with the NMR structure.

The protein folds consistently in all replicas (Figure S2A). For

each replica, we observe multiple folding events during the sim-

ulations, and the protein is able to fold early in the simulation

(within 20,000 time units; Figure S2A), indicating that the Trp-

cage is a fast-folding protein (Neidigh et al., 2001).

We use WHAM to analyze the folding thermodynamics (Fig-

ure 2) from all the replica exchange simulation trajectories. We

find that the specific heat of the protein features a broad peak

at the temperature Tpeak of �320K (Figure 2A). To closely exam-

ine the folding thermodynamics, we compute the two-dimen-

sional potential mean force (2D-PMF) with respect to the fraction

of native contacts (Q) and radius of gyration (Rg) at T = 320K

(Figure 2B). Here, the contacts are defined by positions of Cb

atoms, and a cutoff distance of 7.5 Å is used. We find that the

PMF features a broad peak with a wide range of Q values, but

compact dimensions. We also compute the PMF as a function

Figure 1. Ab Initio Folding of Six Small

Proteins in All-Atom DMD Simulations

(A) In the lowest-rmsd Trp-cage structure from

simulations, the protein core is well packed and

the side chain rotamers of core residues (in stick

representation) are also consistent with the NMR

structure. The structure from simulations is in

dark gray, and the one determined by experiments

is colored white. The same color code is used in

the following panels.

(B) In simulations of villin headpiece, we find that

the protein consistently folds to its native state

with an average rmsd of 2–3Å. The core residues

Phe6, Phe17, Leu20, Gln25, and Leu28 are as closely

packed against each other as they are observed in

the crystal structure. For the WW domain (C) and en-

grailed homeodomain (D), the secondary structures

from simulations align well with respect to the exper-

imentally determined structures, except that loops

have larger deviations. In the simulations of GB1

(E) and bacterial ribosomal protein L20 (F), the

near-native states are observed inDMDsimulations.

of the rmsd of the N-terminal a helix (1–10)

and the whole structure at T = 320K (Fig-

ure 2C). Here, we choose the rmsd of the

N-terminal a helix as one of the reaction

coordinates, since we observe indepen-

dent folding of the a helix at high temper-

atures. At temperature Tpeak (Figure 2C),

we find that the 2D-PMF has two basins

that correspond to the folding/unfolding

of the N-terminal a helix. Interestingly,

these two basins are almost intercon-

nected. The 1D-PMF, with respect to the

N-terminal rmsd at Tpeak, shows that

there is a small barrier (<1 kBT) for the

N-terminal a helix formation (Figure 2D).

At a lower temperature T = 300K (Fig-

ure S2B), the 2D-PMF has only one basin,

which features a wide spread of the rmsd

(1.5–6.0 Å), corresponding to the nonco-

operative docking of the C-terminal coil to the N-terminal a helix.

Therefore, our simulations of Trp-cage suggest that the protein

features a small folding barrier, and thus, fast folding rate.

Villin Headpiece
The villin headpiece is a 35 residue a-helical protein. It has been

heavily studied experimentally (Buscaglia et al., 2005; Kubelka

et al., 2003; Wang et al., 2003) and through computational sim-

ulations (Pitera and Swope, 2003; Schug et al., 2005; Snow

et al., 2002; Steinbach, 2004; Zhou, 2004; Duan et al., 1998),

since it is perhaps one of the smallest, fastest folding, and nat-

urally occurring proteins. Folding kinetics studies of villin head-

piece in experiments indicated the existence of biphasic folding

kinetics (Kubelka et al., 2003). Further solid-state NMR studies

suggest a two-step folding mechanism (Havlin and Tycko,

2005). Several computational groups have been investigating

the folding of villin headpiece with all-atom molecular dynamics

simulations. Many of these computational studies were able to
1012 Structure 16, 1010–1018, July 2008 ª2008 Elsevier Ltd All rights reserved
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fold the protein with an rmsd from the native state of 3–4 Å. No-

tably, a recent molecular dynamics simulation of villin headpiece

(Lei et al., 2007) by a replica exchange sampling technique was

able to reach the native state with subangstrom accuracy.

Hence, this small protein serves as an excellent benchmark

for the test of all-atom DMD methods.

In the simulations, we find that the protein consistently folds to

its native state with an average rmsd of 2–3 Å (Figure 1B). The

core residues Phe6, Phe17, Leu20, Gln25, and Leu28 are as closely

packed against each other as they are when observed in the

crystal structure. We perform WHAM calculations to analyze

folding thermodynamics with the replica exchange simulation

data. We calculate the specific heat as a function of temperature

(Figure 3A). Interestingly, we find that there is a shoulder near

T = 358K beside the major peak at T = 323K, suggesting non-

two-state folding dynamics of the villin headpiece. We calculate

the PMF as a function of rmsd at T = 300K, T = 323K, and T =

340K (Figure 3D). We find that, at T = 300K, the folded state is

the dominant specie with the lowest free energy. At higher tem-

peratures (T = 323K, T = 340K), the protein is mainly present in

the denatured state (rmsd �5–6 Å), and there is a weak popula-

tion of an intermediate state (rmsd �4–5 Å). To better visualize

the folding free energy landscape, we compute the 2D-PMF at

T = 323K as a function of Q and Rg (Figure 3B). We find that there

are three basins with high, medium, and low Q values corre-

sponding to folded, intermediate, and unfolded states, respec-

tively. These states all feature a compact dimension with similar

Rg values. Similarly, a 2D-PMF as a function of potential energy

and rmsd at T = 300K (Figure 3C) also features the folding inter-

mediate state. The typical conformations for the folded (F), dena-

tured (D), and intermediate (I) states from the replica exchange

trajectories are illustrated as inserts in Figure 3C. The intermedi-

ate state features a compact conformation with partially folded

Figure 2. All-Atom DMD Simulation of the

Trp-Cage

(A) The specific heat computed from simulations is

shown as the function of temperatures.

(B) The contour plot of the 2D-PMF at T = 320K is

plotted as the function of Q and Rg. The free

energy difference between two consecutive con-

tours is 0.6 kcal/mol in all contour plots.

(C) The 2D-PMF at T = 320K as a function of rmsd

of the N-terminal a helix (rmsd1–10) and the whole

structure (rmsd1–20).

(D) The 1D-PMF as a function of the rmsd1–10 at

T = 320K.

helices. Therefore, the all-atom DMD

simulations are able to recapitulate the

folding dynamics of villin headpiece.

WW Domain
The full-length WW domain is a three

stranded, all-b protein with 39 residues.

The termini of WW domains feature un-

structured and flexible loops. In this study,

we use the central three stranded b sheet

with only 26 amino acids (GLY5-GLU30)

as the reference structure. Starting from the extended conforma-

tion, we perform REXDMD simulations. We find that the specific

heat of the WW domain (Figure 4A) features a single sharp peak

at Tf�350K, suggesting a two-state folding behavior. The folded

state from the simulations is in agreement with the NMR structure

(PDB code: 1I6C; Figure 1C). We also compute the 2D-PMF at T =

350K with respect to Q and Rg (Figure 4B), and with respect to the

potential energy and backbone rmsd (Figure 4C). The 2D-PMF

features two basins: a folded state with low energies, low rmsd,

low Rg, and high Q, along with an unfolded state with high ener-

gies, high rmsd, high Rg, and low Q. The interconversion between

these two states results in a high specific heat. The 1D-PMF as

a function of rmsd at temperatures near Tf also confirms two-state

folding thermodynamics (Figure 4D). Therefore, our simulations

suggest that the WW domain folds in a highly cooperative two-

state manner, as observed in previous experiments (Ferguson

et al., 2001;Ferguson et al., 2003).

We provide the movies of a folding event of WW domain, as

well as movies of villin headpiece and GB1 domain (http://

dokhlab.unc.edu/research/Abinitio/). It is interesting that, al-

though the folding thermodynamics of WW domain is two state,

a particular folding event features the initial formation of the first

two b strands. This is consistent with the experimentally ob-

served kinetics where the first two strands are more ordered in

the folding transition state than the rest (Deechongkit et al.,

2004). However, detailed comparison of folding kinetics be-

tween simulations and experiments requires systematic kinetic

studies in the future.

DISCUSSION

The contribution of backbone hydrogen bonds to protein stability

has been controversial. Some believe that the peptide hydrogen
Structure 16, 1010–1018, July 2008 ª2008 Elsevier Ltd All rights reserved 1013
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bond is destabilizing, since formation of intrapeptide hydrogen

bonds break peptide-water hydrogen bonds despite desolvation

of the backbone peptide (Honig and Yang, 1995; Yang and

Honig, 1995). Others propose that backbone hydrogen bonds

stabilize proteins, given the experimentally observed a-helix pro-

pensity of short poly-alanine peptides at low temperatures (Bald-

win, 2007; Rose et al., 2006). Kelly and coworkers (Deechongkit

et al., 2004) designed elegant experiments to target specific

backbone-hydrogen bond donors or acceptors by mutating

the backbone amides to esters. They found that, indeed, the dis-

ruption of a buried hydrogen bond destabilizes the proteins more

than a solvent-exposed hydrogen bond does, and the difference

of DDG can be as large as 2–3 kcal/mol. Such a difference can be

explained by the redistribution of partial charges in the hydro-

gen-bonded peptides, which, in turn, affects their solvation ener-

gies. Such an environment-dependence effect of the hydrogen

bond interaction can be readily modeled with the ‘‘reaction’’ al-

gorithm for hydrogen bonds in DMD (Ding et al., 2003), where

donors and acceptors change their types upon hydrogen bond

formation (see Experimental Procedures). With the environ-

ment-dependent hydrogen bond model, we are able to reach

native or near-native conformations in DMD simulations of six

proteins. As a control, we also performed DMD simulations with-

out the solvent-dependent effect: with weak hydrogen bond

strength (1–2 kcal/mol), proteins neither fold into specific struc-

tures nor form regular secondary structures. In contrast, a strong

hydrogen bond strength (>3 kcal/mol) tends to fold proteins into

all-a helices, including the natively all-b proteins (data not

shown). Therefore, our study suggests that the environment-

dependent hydrogen bond is important for protein folding.

Since multiple folding/unfolding transitions are observed for

three small proteins, we are able to analyze the folding thermo-

dynamics from simulations. We found qualitative agreement be-

tween the simulation-derived thermodynamics and experimental

Figure 3. The All-Atom DMD Simulation of

Villin Headpiece

(A) The specific heat computed from simulations is

shown as a function of temperature. The contour

plot of the 2D-PMF at T = 323K is presented as

a function of (B) Q and Rg, and (C) potential energy

and rmsd. The typical structures corresponding to

the three basins are shown in cartoon representa-

tion. (D) The 1D-PMF at different temperatures

(300K, 323K, and 340K) are shown as a function

of rmsd.

observations. In our simulations, we dis-

covered that native states always corre-

spond to the lowest free energy state at

room temperature (300K; Figures 2–4).

Although these native states often have

low potential energies, there are still indi-

vidual conformations with low potential

energies but high rmsd values. This ob-

servation suggests that potential energy

alone is not an appropriate reaction coor-

dinate for protein folding. Hence, ensem-

ble analysis of the protein conformations,

such as clustering, is necessary for structure determination

applications (Bradley et al., 2005).

We attribute the success of the all-atom DMD method to its

ability to rapidly sample protein conformational space. Proteins

usually fold in the milliseconds to seconds range: the fast-folding

Trp-cage protein was experimentally shown to fold within micro-

seconds (�ms). During our simulations, we found that this mini-

protein folds very rapidly, where the folding time is on the order

of 104 time units (104 3 50 fs = 0.5 ns; see Experimental Proce-

dures), and multiple folding events are observed in all replicas

(Figure 2A). The observation of multiple folding events during

Trp-cage DMD simulations is mainly due to faster protein dy-

namics in the absence of explicit solvent. The speed-up in this

case is over 1,000-fold. Additionally, the application of replica

exchange increases the conformational sampling efficiency

(Okamoto, 2004). As a result, we are able to observe the folding

of all six proteins to their native or near-native states within a

cumulative 1.6 3 107 time units in REXDMD simulations.

We believe that the success of the current model is also due to

the fact that these six proteins are fast folders, and their topolo-

gies are relatively simple. As the protein size increases and the

topology becomes more sophisticated, longer simulations will

be required, and the folding of these proteins may become prac-

tically intractable, even in all-atom DMD simulations. For exam-

ple, we do not observe multiple folding events of the relatively

larger proteins (GB1 domain, bacterial ribosomal protein L20,

and the engrailed homeodomain) in the DMD simulations due

to insufficient sampling. Therefore, a multiscale folding method

may be required, where simplified protein models are used to

sample the large-scale conformational changes and the all-

atom protein model is used to sample the conformational spaces

at smaller time scales (Bradley et al., 2005). The applicability of

the current approach to folding of larger proteins requires further

investigation.
1014 Structure 16, 1010–1018, July 2008 ª2008 Elsevier Ltd All rights reserved
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Protein flexibility modeling with accurate sampling of the pro-

tein conformations near its native states is essential in protein

design (Kuhlman et al., 2003), protein stability estimation (Yin

et al., 2007), and protein-protein, protein-ligand designs (Kor-

temme et al., 2004). Due to the fast conformational sampling ef-

ficiency of DMD and the ability to capture the folding free-energy

landscape of proteins under study, we believe that the current

all-atom model is able to rapidly and accurately sample the avail-

able conformations near the target states of proteins. We expect

applications of the all-atom DMD method in protein engineering,

protein-protein interface design, and protein-ligand design by

combining the dynamics sampling method with protein design

methods.

EXPERIMENTAL PROCEDURES

DMD

A detailed description of the DMD algorithm can be found elsewhere (Do-

kholyan et al., 1998; Rapaport, 1997; Zhou and Karplus, 1997). Briefly, inter-

atomic interactions in DMD are governed by square well potential functions.

Neighboring interactions (such as bonds, bond angles, and dihedrals) are

modeled by infinitely high square well potentials. During a simulation, an

atom’s velocity remains constant until a potential step is encountered, where

it changes instantaneously according to the conservations of energy, momen-

tum, and angular momentum. Simulations proceed as a series of such colli-

sions, with a rapid sorting algorithm employed at each step to determine the

following collision.

The difference between DMD and traditional molecular dynamics is in the in-

teraction potential functions. Approximating the continuous potential func-

tions with step functions of pair-wise distances, DMD simulations are reduced

to event-driven (collision) molecular dynamics simulation. The sampling effi-

ciency of DMD over traditional molecular dynamics is mainly due to rapid pro-

cessing of collision events and localized updates of collisions (only collided

atoms are required to update at each collision). At an adequately small step

size, the discrete step function approaches the continuous potential function,

and DMD simulations become equivalent to traditional molecular dynamics.

Figure 4. The All-Atom DMD Simulation of

the WW Domain

(A) The specific heat computed from simulations

exhibits a sharp peak at a temperature of

�350K. The contour plot of the 2D-PMF at T =

348K is plotted as a function of (B) Q and Rg,

and of (C) potential energy and rmsd. (D) The 1D-

PMF at different temperatures (325K, 350K, and

360K) is shown as a function of rmsd.

All-Atom Protein Model

We use a united-atom representation to model

proteins, in which all heavy atoms and polar hy-

drogen atoms of each amino acid are included

(Figure 5A). In order to maintain the protein back-

bone and side chain geometries, we introduce

three types of bonded constraints between neigh-

boring atoms: (1) consecutive atoms (i, i + 1) cova-

lently bonded; (2) next-nearest neighbors (i, i + 2)

under angular constraints; and (3) atom pairs (i, i

+ 3) linked by dihedral interactions. For covalent

bonds and bond angles, we use a single-well po-

tential (Figure 5B) with two parameters: effective

bond length dAB, and its variance, sAB. The dihe-

dral interactions are modeled by multistep poten-

tial functions of pair-wise distance as introduced

by Ding et al. (2005), which is characterized by

a set of distance parameters, {dmin, d0, d1, d2, dmax} (Figure 5B). We obtain

these parameters by sampling the corresponding distance distribution in

a nonredundant database of high-resolution protein structures. These bonded

interaction parameters are listed in Table S1. For the nonbonded interactions,

we include the VDW, solvation, and hydrogen bond interactions (Ding et al.,

2003):

VDW and Solvation Interactions

The VDW and solvation interactions are pair-wise functions of distances, while

the hydrogen bond interactions are angular and distance dependent, making

them multibody interactions. Therefore, we combine the VDW and solvation

together as the pair-wise interactions. We use a standard 12-6 Lennard-Jones

potential to model the VDW interactions: EVDW =
P
i; j>i

43ij ½ðsij=rijÞ12 � ðsij=rijÞ6�.
Here, the VDW radii sij and interaction strengths 3ij betweem atoms i and j

are taken from CHARMM19 force field: 3ij =
ffiffiffiffiffiffiffi
3i3j
p

; sij = si + sj. We use the

Lazaridis-Karplus (Lazaridis and Karplus, 1999) solvation model:

ELK =
P
i; j>i

"
� 2DGfree

i

4p
ffiffiffi
p
p

li r2
ij

exp
�
� x2

ij

�
Vi �

2DGfree
j

4p
ffiffiffi
p
p

lj r2
ij

exp
�
� x2

ji

�
Vj

#

xij = ðrij � 1:12siÞ
�

li ; xji = ðrij � 1:12sjÞ
�

lj

:

Here, parameters of reference solvation energy (DGfree), volume of atoms

(V), correlation length (l), and atomic radius (s) are taken from EEF1 (Lazaridis

and Karplus, 1999). The discrete potential functions mimic the continuous po-

tential, EijðdijÞ= EVDW
ij ðdijÞ+ ELK

ij ðdijÞ, by capturing the attractions and repul-

sions (Figure 5C). We keep the number of steps minimal, since increasing

the number of steps reduces the computational efficiency of DMD. The dis-

crete potential function is characterized by the hardcore distance, dhc, and

a series of potential steps {di, ei}. Here, di is the distance where potential en-

ergy E has a step E(di � 1, di) � E(di, di + 1) = ei (dhc < d1 < d2 < ��� < dn). We

use a cutoff of 6.5 Å as the interaction range between all atom pairs. Details

of the discrete potential function are provided in Table S2.

Hydrogen Bonds

We use the reaction algorithm to model the hydrogen bond interaction as de-

scribed by Ding et al. (2003). Briefly, after the formation of a hydrogen bond,

the acceptor (A) and hydrogen (H) change their types to A0 and H0, respectively.

The interaction potential between an atom and A(H) can be different from its

interaction potential with respect to A0 (H0). Thus, the formation of a hydrogen
Structure 16, 1010–1018, July 2008 ª2008 Elsevier Ltd All rights reserved 1015
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Figure 5. The All-Atom Protein Model

(A) Schematic diagram for the all-atom protein model. Only two consecutive residues are shown. The solid thick lines represent the covalent and the peptide

bonds. The thin dashed lines denote the effective bonds, which are needed either to fix the bond angles, model the side chain dihedral angles, or maintain

the planarity of the peptide bonds.

(B) Parameterization of the bonded interactions for representative atom pairs. The first column shows the distribution of the distances in serine, between N-Ca,

N-Cb, and N-Og, respectively. The second column shows the corresponding histogram for the distribution of each atom pair. The third column shows the resulting

constraint potentials schematically. For bonds (e.g., N-Ca) and bond angles (e.g., N-Cb), the left and right boundaries of the constraint potential correspond to

d � s and d + s, respectively. Here, d is the average length and s is the standard deviation of the distance distribution.

(C) Parameterization of nonbonded interactions in all-atom DMD. The continuous red line corresponds to the VDW and solvation interaction between two carbon

atoms. The black step function is the discretized potential for DMD.

(D) A schematic for the hydrogen bonding interaction between hydrogen Hi and acceptor Aj. Atom Di is the donor and Xj is the heavy atoms directly bonded to Aj.

Aside from the distance between hydrogen and acceptor dHA, we also assessed the auxiliary distances of dDA (distance between atoms Di and Aj) and dHX

(distance between atoms Hi and Xj).
bond depends on its neighbors. To mimic the orientation-dependent hydrogen

bond interaction, we introduce auxiliary interactions in addition to the dis-

tance-dependent interaction between the hydrogen and the acceptor

(Figure 5D). The auxiliary interactions are between the acceptor (A0) and the

donor (D), and between the hydrogen (H0) and the nearest heavy atoms bonded

to the acceptor (X). For example, once the hydrogen, Hi, and the acceptor, Aj

(Figure 5D), reach the interaction range, we evaluate the distances between

HiXj and DiAj, which define the orientations of the hydrogen bond. The total po-

tential energy change, DE, between Hi/Aj and other surrounding atoms are also

evaluated before and after the putative hydrogen bond formation:

DE =
P

ksi; j

½EðA0i ; skÞ � EðAi ;skÞ+ EðH0j ; skÞ � EðHj ; skÞ + EHB� . Here, sk is the

other atoms. If these distances satisfy the predetermined range, and the total

kinetic energy is enough to overcome the potential energy change, DE, we al-

low the hydrogen bond to be formed, and forbid its formation otherwise. We

include all possible interactions between backbone-backbone, backbone-

side chain, and side chain-side chain. The donors include backbone amide
1016 Structure 16, 1010–1018, July 2008 ª2008 Elsevier Ltd All right
hydrogen atoms and side chain polar hydrogen atoms of His, Trp, Tyr, Asn,

Gln, Arg, and Lys. The acceptors include backbone carbonyl oxygens, side

chain oxygens of Asp, Glu, Ser, Thr, and Tyr, and the side chain nitrogen of

His. The interaction parameters of both donor-acceptor and auxiliary interac-

tions are described in Table S3A.

Environment Dependence of Hydrogen Bonds

To model the environment-dependent effect, we assume that the hydrogen-

bonded peptide has weaker solvation energy than the non-hydrogen bonded

backbone peptide. For simplicity, we use the carbonyl oxygen as the solva-

tion center of a peptide. We assign a weaker reference solvation energy

DGfree value (3.85 kcal/mol) to a hydrogen-bonded backbone carbonyl oxy-

gen atom than that of a non-hydrogen-bonded atom (5.85 kcal/mol). In the

Lazaridis-Karplus solvation model, it is unfavorable to bury a backbone car-

bonyl oxygen atom. The desolvation energy depends on its environment: the

more it is buried, the higher the total desolvation energy. The formation of
s reserved
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a buried hydrogen bond leads to a less unfavorable desolvation of the car-

bonyl oxygen, and thus, results in a higher potential energy gain, DE, than

a solvent-exposed hydrogen bond. The environment-dependent hydrogen

bond model features the multiple body interaction, which is akin to the polar-

izable force field. Therefore, this approach effectively models the environ-

ment-dependent effect of a hydrogen bond. The discontinuous potentials

between a hydrogen-bonded carbonyl oxygen atom and other atoms are

listed in Table S3B.

Units in All-Atom DMD

In the all-atom DMD simulations, the units of mass, length, and energy are

daltons (1.66 3 10�24 g), angstroms (10�10 m), and kcal/mol (6.9 3 10�22

joule), respectively. Given the units of mass (M), length (L), and energy (E),

the time unit can be obtain as ½L�,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M�=½E�

p
, which is approximately 50 fs.

The temperature unit is kcal/mol $ kB or 5.03 3 102 Kelvin, where kB is the

Boltzmann constant.

REXDMD

Efficient exploration of the potential energy landscape of molecular systems is

the central theme of most molecular modeling applications. The ruggedness

and the slope toward the energy minimum in the landscape govern sampling

efficiency at a given temperature. Although escape out of local minima is ac-

celerated at higher temperatures, the free energy landscape is altered due

to larger entropic contributions. To efficiently overcome energy barriers while

maintaining conformational sampling corresponding to a relevant free energy

surface, we utilize the replica exchange sampling scheme (Okamoto, 2004;

Zhou et al., 2001). In replica exchange computing, multiple simulations or rep-

licas of the same system are performed in parallel at different temperatures.

Individual simulations are coupled through Monte Carlo-based exchanges of

simulation temperatures between replicas at periodic time intervals. Temper-

atures are exchanged between two replicas, i and j, maintained at tem-

peratures Ti and Tj and with energies Ei and Ej, according to the canonical

Metropolis criterion with the exchange probability p, where p = 1 if

D = ð1=kBTi � 1=kBTjÞðEj � EiÞ%0, and p = expð�DÞ, if D > 0. In DMD simula-

tions, we use an Anderson thermostat to maintain constant temperature in

simulations (Andersen, 1980).

For each protein, we start from a fully extended conformation. We perform

eight replicas with temperatures ranging from 0.50 (�250K) to 0.75 (�375K),

with an increment of 0.035 (�17.5K). Here, the temperature unit is kcal/mol $

kB or 5.03 3 102 Kelvin. The exchange takes place every 1 3 103 time units.

The length of each simulation is 2 3 106 time units.

Weighted Histogram Analysis Method

We use the MMTSB tool (Feig et al., 2004) to perform WHAM analysis with rep-

lica-exchange trajectories. In short, the WHAM method utilizes multiple simu-

lation trajectories with overlapping sampling along the reaction coordinates.

The density of states, rðEÞ, is self-consistently computed by combining histo-

grams from different simulation trajectories (Kumar et al., 1992). Given the

density of states, the folding specific heat (Cv) can be computed at different

temperatures according to the partition function, Z =
Ð

rðEÞexpð�E=KBTÞdE.

To compute the PMF as the function of reaction coordinate A, we compute

the conditional probability PðAjEÞ of observing A at given energy E, which is

evaluated from all the simulation trajectories. The PMF is computed as

PMFðAÞ= � lnð
Ð

PðAjEÞrðEÞexpð�E=KBTÞdEÞ+ C. Here, C is the reference

constant, and we set it in such a way that the lowest PMF always corresponds

to zero. Since our simulations start from fully extended conformations, we

exclude the trajectories from the first 5 3 105 time units and use those of the

last 1.5 3 106 time units for WHAM analysis. We use the trajectories from all

replicas to compute the histograms.

SUPPLEMENTAL DATA

Supplemental Data include two figures, three tables, and Supplemental Refer-

ences and are available online at http://www.structure.org/cgi/content/full/16/

7/1010/DC1/.
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