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Abstract

Martini is a coarse-grained (CG) force field suitable for molecular dynamics (MD) simulations of (bio)
molecular systems. It is based on mapping of two to four heavy atoms to one CG particle. The effective
interactions between the CG particles are parametrized to reproduce partitioning free energies of small
chemical compounds between polar and apolar phases. In this chapter, a summary of the key elements of
this CG force field is presented, followed by an example of practical application: a lipoplex-membrane fusion
experiment. Formulated as hands-on practice, this chapter contains guidelines to build CG models of
important biological systems, such as asymmetric bilayers and double-stranded DNA. Finally, a series of
notes containing useful information, limitations, and tips are described in the last section.
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1 Introduction

The initial Martini coarse-grained (CG) force field was developed in
2003 to study lipid membrane properties [1–3]. It allowed to
investigate the behavior of large lipid aggregates at spatial and
timescales unachievable to atomistic MD simulations, while retain-
ing enough resolution and chemical specificity to give a micro-
scopic and dynamic picture still unavailable in experiments. The
Martini force field was shown to be capable to address a wide range
of lipid-based processes such as vesicle self-assembly, vesicle fusion,
lamellar to inverted hexagonal phase transition, and the formation
of the gel- and liquid-order phases [1–6]. Over the years, the
applicability of the force field has expanded to most common
biomolecules such as proteins [7, 8], sugars [9, 10], nucleotides
[11, 12], and some important cofactors [13], as well as many
nonbiological molecules including synthetic polymers [14–20]
and nanoparticles [17–19, 21]. Examples of Martini CG models
are shown in Fig. 1a. A complete list can be found under “down-
loads” at cgmartini.nl. Noteworthy is the high compatibility of the
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individual models with each other. This allows for the modeling of
complex biological environments such as the plasma membrane
[22] (shown in Fig. 1b) and photosystem II in a thylakoid
membrane [23].

This high compatibility is achieved by a clear modular mapping
and parameterization scheme based on building blocks, called
beads. Martini is a CG force field, which, in general, maps four
nonhydrogen atoms to a single CG bead. During the mapping,
chemical groups such as carboxylates or esters are represented by a
single CG bead. This approach makes it easy to build new models
based on the already available ones. The CG beads come in four
chemical classes (or “flavors”): charged (Q), polar (P), nonpolar
(N), and apolar (C). The Q and N classes each have four subtypes
that are linked to their capability of participating in hydrogen

Fig. 1 Martini force field: (a) Some examples of Martini CG models used for lipids (DPPC and cholesterol),
peptide, water, benzene, and some amino acids (adapted from [27]); (b) Example for a complex application:
the idealized asymmetric plasma membrane comprises 63 different lipid types [22]; (c) Workflow for the
parametrization of a new Martini CG model
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bonding: donor and acceptor (da), donor (d), acceptor (a), and
none (0). The main difference between these subtypes is their
interaction strength with each other, allowing for a qualitative
representation of hydrogen bonding. The P and C beads each
have five subtypes, which represent a gradient from weak to strong
polar or apolar properties, respectively. In total, this gives rise to
18 different bead chemical types. For computational efficiency, the
mass of all standard beads is set to 72 amu, which equals the mass of
four water molecules (represented by a P4 bead type in Martini).

Martini employs bonded and nonbonded potential forms com-
monly used in atomistic force fields, which make the model easy
to be implemented in modern molecular dynamic programs as
GROMACS [3, 5], GROMOS [24], and NAMD [25, 26].
Although this choice of potential forms is not the most accurate
one for coarse-grained models (see Notes 1 and 2) [27], it enables
Martini to take benefit of all the advances in high-performance
parallel algorithms and enhanced sampling techniques developed
in the past years. For the nonbonded interactions, 12–6 Lennard-
Jones and Coulomb potentials are used (as shown in Eq. 1). In
practice, these potentials are shifted and truncated for computa-
tional speedup. In the current implementation [5, 28], these
potentials are both shifted such that the potentials reach 0 kJ/
mol for any distance greater than 1.1 nm, the cutoff distance. In
case of the LJ potential, ten levels of interaction are defined, differ-
ing in the LJ well depth (epsilon ranging from 5.6 to 2.0 kJ/mol),
but with the same bead size (a sigma of 0.47 nm is used for the
standard beads, except for interaction level IX, which has an
increased sigma of 0.62 nm). For all possible pairs of CG bead
types, one of those ten interaction levels has been assigned. These
levels have been chosen based on the experimental water-oil parti-
tioning of small molecules that are represented by each of the
beads. Only the Q-beads bear an explicit charge and additionally
interact via the Coulomb potential with a relative dielectric con-
stant εrel¼ 15 for explicit screening. Together with the use of a shift
function, this effectively results in a distance-dependent screening.

To allow for the mapping of aliphatic and aromatic ring struc-
tures (such as cyclohexane or benzene), a smaller bead (denoted
with prefix “S”) was introduced, mapping two or three nonhydro-
gen atoms to a single CG bead. The S beads have a reduced sigma of

Equation 1 The treatment of nonbonded interactions in the Martini force field is based in shifted and truncated
12–6 Lennard-Jones (VLJ) and Coulomb potentials (VCoul)
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0.43 nm and a scaled interaction strength corresponding to 75% of
their standard bead counterpart. In the current model only S-S
interactions make use of the reduced interaction scheme, that is,
interaction with normal (N) particles are treated as N-N interac-
tions. For the full parametrization scheme and interaction table, we
would like to refer to the original paper of Marrink et al. [5] After
the release of Martini 2.0 in 2007, an extra bead size has been
added to the collection. The tiny (T) bead was introduced for the
mapping of nucleotides and follows three/two-to-one mapping.
Such a tiny bead is needed for correct stacking distance of the
nucleobases in the double-stranded helix. The interaction strength
of the T beads is not reduced, but their sigma is 0.32 nm. T beads
interact with S and N beads as S-S and N-N, respectively (see Note
3) [11]. Besides the extra bead size, many new beads were intro-
duced to satisfy the needs of specific models, as nucleic acids
[11, 12], polymers [14–16, 20], nanoparticles [21], and some
sugars [10, 29]. Polarizable water models [30, 31] have been
designed for modeling of systems where implicit screening of elec-
trostatic interactions caused by reorienting water dipoles is neces-
sary (as discussed in Note 4).

Where the nonbonded interactions follow a “top-down” mod-
eling approach (making use of experimental partitioning data), the
bonded interactions are usually extracted via a “bottom-up”
approach, based on reference atomistic data. This is achieved by
mapping the heavy atoms of an atomistic simulation to a pseudo
CG trajectory. The CG beads are usually placed at the centers of
mass of the atoms they represent. From these pseudo CG trajec-
tories, the bonded parameters can be extracted and compared to
the CG model under development. By changing the bonded para-
meters, one should try to maximize the overlap of the conforma-
tional distributions of the pseudo CG and real CG models. This is
an iterative process that should be repeated for achieving the best
results. However, the philosophy of the Martini force field is to use
(mainly) simple bonded potentials (as shown in Eq. 2); therefore,
perfect overlap is not always achieved. Also, be aware that the
bonded parameters might influence the partitioning of your mole-
cule or even other macroscopic properties (e.g., area per lipid—
APL—for bilayers and radius of gyration for polymers). Therefore,
validation of your CG model against experimental data, after satis-
factory bonded parameters have been achieved, is considered good
practice. An in-depth tutorial of parametrizing a new molecule can

Equation 2 Examples of simple bonded potentials used in Martini: two-body harmonic potential (Vbond), three-
body angular potential (Vangle), and four-body dihedral angle potential (Vdihedral)
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be found under “Tutorials” at the Martini web page (cgmartini.nl),
which is summarized in Fig. 1c. Automatic parametrization
approaches could be an easier but probably a less accurate option
to generate Martini models [32]. However, they could provide
prospects for high-throughput simulation methodologies [33].
Note that, to keep the secondary structure of proteins and nucleo-
tides close to the target state (e.g., crystal structure), Martini makes
uses of additional harmonic bonds that define an elastic network
(see Note 5).

In the next subsection of this chapter, we will describe a hands-
on tutorial, which uses one of our current projects (lipoplex-
membrane fusion) as a guide. This practice addresses useful exam-
ples of how to build Martini CG models of macromolecules
(double-stranded DNA), (solvated) liquid crystals, and complex
asymmetric membranes. At the final part, all these CG models are
put together for particle-membrane fusion simulations.

2 Hands-On: Cationic Lipid-DNA Lipoplexes for Gene Transfer

This section will be a guide for setting up a CG simulation of a
lipoplex-membrane fusion experiment making use of the Martini
2.0 force field with the DNA extension [11]. We will start with a
small introduction regarding lipoplexes and their biological rele-
vance. However, the main objective of this section is to show the
construction of such a complex system using the Martini approach,
from A to Z.

Lipoplexes are complexes of genetic material and lipids used for
transfection in gene therapy. Due to the high negative charge of
nucleotide polymers (DNA, RNA), they do not readily cross the
hydrophobic core of biological membranes via a passive mecha-
nism. Another downside of using naked DNA for therapeutic
purposes is its low half-life time in the bloodstream [34]. In lipo-
plexes, the packing architecture is such that, upon fusion with a
membrane or vesicle, its content is mainly released on the side of
the membrane opposing the leaflet of initial fusion [35]. This
allows the escape of the genetic material from the endosome in
which the lipoplex is trapped after being taken up by the cell via
endocytosis. Transfection of cells utilizing depathogenized viral
vectors currently has a much higher transfection efficacy than the
lipid-based vectors or any other non-viral-based method [36].
However, depathogenized viral vectors still trigger the immune
system in humans, causing their application in medical gene therapy
to be limited [37]. Another drawback of viral vectors compared to
their nonviral counterparts is their high preparation cost [37].
Therefore, increasing the efficacy of nonviral vectors for transfec-
tion is required for the development of gene therapy as a safe and
affordable medical treatment.

A Practical View of the Martini Force Field 109

http://www.cgmartin.nl/


In this hands-on section, we will build a lipoplex using one of
the earlier lipoplex compositions used [38], in which the DNA is
entrapped in an inverted hexagonal (HII) lipid phase. First, the
lipoplex itself will be built using 1,2-dioleoyl-sn-glycerol-phos-
phoethanolamine (DOPE) as the helper lipid and 1,2-dioleoyl-3-
trimethylammoniopropane (DOTAP) as the cationic lipid in a 4:1
ratio. In this example, we will use double-stranded (ds) DNA oli-
gomers, with a length of 24 base pairs (bp), as the gene carrier.
Replacing the DNA with RNA should not change the general
procedure described in this section, though this was not specifically
tested. Lastly, the constructed lipolex will be solvated and fused
with an asymmetric bilayer mimicking the endosomal membrane.

During this section, lines preceded with a “$” are to be exe-
cuted in the terminal. This hands-on was designed to be used in
combination with GROMACS 2016.3 [39]. Visual Molecular
Dynamics (VMD) version 1.9.3 [40] was used for visual inspection,
and Python 2.7 was the default python compiler used for all python
scripts, unless stated otherwise.

2.1 Building a Liquid
Lipoplex Crystal

For building the inverted hexagonal phase (HII), we will make use
of the procedures described in refs. [41, 42]. We start with prepar-
ing a Martini CG model for DNA, which is to be rested on top of a
bilayer. Then, we duplicate this DNA-membrane stack and perform
energy minimization, equilibration, and finally a production run to
form the crystal lattice.

2.1.1 Preparing the DNA First, download the .pdb file from the martini website. This struc-
ture corresponds to a sequence of DNA with 24 bases in each
strand ([CGCGAATTCGCG]2).

$ wget http://cgmartini.nl/images/parameters/dna/24bp_AA2CG_

stiff.tar.gz

$ tar -xvf 24bp_AA2CG_stiff.tar.gz

To transform an atomistic DNA structure into a CG structure,
we will use martinize-dna (cgmartini.nl, under Downloads, Force
field parameters, DNA) [11, 12]. Before running martinize-dna,
we should remove the ion and water molecules from the .pdb. Be
aware that if you have used a DNA structure builder, to obtain a
different length or sequence of DNA (e.g., using scfbio-iitd.res.in),
the final atom and residue names have to follow the default pdb
nomenclature.

The 24bp_cleaned.gro file is already made compatible with the
martinize-dna script and we can perform the all-atom (AA) to CG
transformation (Fig. 2a). The output includes a CG.pdb and the
CG.itp files. We will use a stiff elastic network to imply a strict
helical structure to our DNA (see Note 5). Later on, this could be
replaced by a softer elastic network if desired.
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Fig. 2 Building a lipoplex with Martini: (a) The CG mapping of a 24 bp dsDNA; (b1, b2) shows two views of the
initial bilayer with a double-stranded DNA; (c) This system is replicated to form a lamellar configuration; (d)
After running 45 ns of MD simulations, the lamellar phase is converted to an inverted HII phase (liquid lipoplex
crystal); (e) The liquid lipoplex crystal is solvated and coated with lipids; (f) An example of a lipoplex-
membrane fusion experiment
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$ python martinize-dna.py -dnatype ds-stiff -f 24bp_cleaned.

gro -x 24bp_CG.pdb

Always read the output and check, for example, if the number
of chains or base pairs specified matches that what you expect. In
our case, this should be two chains (A and B), each containing
24 nucleotides. We need to rotate the DNA such that it will lie
parallel to the membrane. We will use GROMACS to do so.

$ gmx editconf -f 24bp_CG.pdb -rotate 0 90 0 -o 24bp_CG_ro

tated.gro

2.1.2 Creating the DNA

Bilayer Stack

Now, we need to generate a simulation box containing our DNA
CG model and a symmetric bilayer with the desired lipid composi-
tion. We will aim at a 4:1 ratio of DOPE and DOTAP, respectively.
To do so, we will use insane [43]. Insane is a python program,
developed in-house, which generates an initial CG configuration
using a grid-based approach. This procedure makes insane one of
the fastest initial state builders for membranes with or without
incorporated protein(s). The latest stable version of insane can be
downloaded from our web page (cgmartini.nl, under downloads/
tools). We will generate a small piece of membrane with DNA,
which will be used later on to generate the HII phase with
dsDNA inside its channels.

$ python insane.py -l DOPE:4 -l DOTAP:1 -alname DOTAP -alhead

’C’ -allink ’G G’ -altail "CDCC CDCC" -x 11 -y 6.5 -z 7 -f

24bp_CG_rotated.gro -dm 3.5 -o bilayer_1DNA.gro -sol W -salt

0.150 -sold 0.87

As DOTAP is not a default lipid, its topology needs to be
completely described in insane using the flags “-alname” (name of
the new lipid), “-alhead” (groups in the lipid head, where “C”
defines the head as choline), “-allink” (groups in the lipid linkers,
with “G G” defining two ester groups), and “-altail” (define the
lipid tails, where each “C” indicates four carbon atoms in a linear
saturated chain, while “D” indicates four linear carbon atoms con-
taining a single unsaturation). This should generate a box contain-
ing roughly 187 DOPE, 44DOTAP, plus the DNA at physiological
salt concentration (as shown in Fig. 2b1, b2). The target ratio of
atomistic water with respect to the amount of lipids is around 8:1
[41, 42]. For Martini water, with one bead representing four water
molecules, the target ratio is thus 2:1. Do remember that the
charge of the DNA is not yet neutralized and this will be "46.
Therefore, overshooting your target amount of water by 46 is
recommended, for we will transform those waters into sodium
beads. To generate a bigger complex, we will copy the
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DNA-membrane configuration along its axis perpendicular to the
channel normal (as shown in Fig. 2c).

$ gmx genconf -f bilayer_1DNA.gro -o 2bilayer_4DNA.gro -nbox

1 2 2

2.1.3 Preparing

the Topology Files

Next, we need to generate a top file which matches the
“2bilayer_4DNA.gro” composition and order and makes use of
the correct topology files. To achieve a charge neutral system, we
will reduce the number of waters in the topology by 46 and add
46 sodium ions right underneath (this will transform 46 water
molecules into sodium ions). The final topology should resemble
the example topology below.

#include "martini-dna-150909/martini_v2.1-dna.itp"

#include "martini-dna-150909/martini_v2.0_ions.itp"

#include "martini_v2.0_DOTAP.itp"

#include "martini_v2.0_DOPE_02.itp"

#define RUBBER_BANDS

#include "Nucleic_A+Nucleic_B.itp"

[ system ]

; name

Martini system containing 4 dsDNA and 2 bilayers

[ molecules ]

; name number

Nucleic_A+Nucleic_B 1

DOPE 89

DOTAP 22

DOPE 89

DOTAP 22

W 106

NA 49

CL 47

. . . another 3 times for the 2bilayer4_DNA.gro

2.1.4 Running EM/EQ

and Production

Now, we have all the components together, and we can start
running an energy minimization, equilibration, and production
run. We will not go into much details, but the default settings can
be found at cgmartini.nl (under Downloads, Force field para-
meters, Input parameters). To perform energy minimization, we
need to set the integrator to “steep” and 1000 steps should suffice.

$ gmx grompp -f em.mdp -c 2bilayer_4DNA.gro -p topol.top -o em.

tpr -maxwarn 1

$ gmx mdrun -deffnm em -v
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The “-maxwarn” flag is to allow overwriting name mismatches
between the .gro and .top file, caused by the DOTAP and added
sodium ions. After running the minimization, we need to create an
index file (index.ndx) to use for our temperature coupling scheme.
We will create a group for all lipids, the DNA, and the water plus
ions. For the sake of this tutorial, those groups are called “Lipids,”
“DNA” and “W_IONS” respectively. The index groups can be
easily generated from the em.gro, using “gmx make_ndx.”

$ gmx make_ndx -f em.gro -o index.ndx

Before we run the equilibration, we need to fix the DNA in the
x dimension. This will help with a smooth conversion from the
periodic crystal to the solvated naked lipoplex. To do so, we need to
add a few lines of code to the bottom of our “Nucleic_A
+Nucleic_B.itp.”

#ifdef CONSTRAINED_X

[ position_restraints ]

; ai funct fcx fcy fcz

1 1 500 0 0 ; restrains to a plane (y-z-plane)

305 1 500 0 0 ; restrains to a plane (y-z-plane)

#endif

For equilibration, 250,000 steps at a 2 fs time step should
suffice. We will use anisotropic pressure coupling, and the berend-
sen barostat for improved stability. Do not forget to set the inte-
grator back to “md” and add “define ¼ -DCONSTRAINED_X”.
In the “mdrun” command we add an “rdd” of 2 to prevent
instabilities due to our long elastic bonds in the DNA.

$ gmx grompp -f eq.mdp -c em.gro -p topol.top -n index.ndx -o

eq.tpr

$ gmx mdrun -deffnm eq -v -rdd 2.0

For the production run, we will use roughly the same settings
as those for equilibration. Important is that the pressure coupling
will be changed from “berendsen” to “parrinello-rahman,” and the
time step for the integrator should be larger. For systems contain-
ing DNA, a time step of 10 fs is the maximum (see Note 6).

$ gmx grompp -f md.mdp -c eq.gro -p topol.top -n index.ndx -o

md.tpr

$ gmx mdrun -deffnm md -v -rdd 2.0 -nsteps -1

Keep running the simulation until inspection with VMD shows
full formation of the HII phase.
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While writing this hands-on section, it took roughly 2,268,000
steps (~45 ns CG time, which should correspond to ~200 ns real
time, as explained in Note 7) to complete the formation of the
inverted HII phase (as shown in Fig. 2d). The final frame can be
extracted using VMD, and for the sake of this tutorial, we assume it
was named md.gro. We are now finished with the construction of
the liquid lipoplex crystal. Do keep in mind that this crystal was
made to be solvated, and therefore, its PBC conditions were not
optimized for a perfect hexagonal unit cell.

2.2 Solvating
a Liquid Lipoplex
Crystal

For the second part of this tutorial, we will use the liquid lipoplex
crystal we generated in part 2.1. The goal is to extract the crystal in
such a manner that the channel geometry is not disturbed (naked
lipoplex). We will also have to add an extra layer of lipids around our
extracted lipoplex to act as a coat (coated lipoplex, as shown in
Fig. 2e). Once we have added the coating lipids, we can solvate the
whole system. From there on, we energy minimize, equilibrate,
and run a production run in a similar manner as that described in
part 2.1.

2.2.1 Extracting

the Periodic Crystal

The liquid lipoplex crystal generated before contains four channels
with four strands of dsDNA in total. This could be considered the
smallest possible crystal under cubic periodic boundary conditions.
To generate a larger crystal, we use “gmx genconf,” to copy this
box in the desired dimensions. Even though we will stick to the
2 # 2 geometry for the solvated lipoplex, we will duplicate the box
in its “y” and “z” dimensions. By doing so, we can make extraction
of a 2 # 2 lipoplex much easier. This might not seem logical as of
yet, but bear with us, and you will see that this is indeed the case. To
prevent weird indexes after copying the box, we will first make the .
gro file “whole.”

$ gmx trjconv -f 2bilayer_4DNA.gro -pbc whole -o 2bilayer_4D

NA_whole.gro

$ gmx genconf -f 2bilayer_4DNA_whole.gro -o 4bilayer_16DNA.gro

-nbox 1 2 2

We will use VMD to select the inner four strands of DNA.
Then, we will make an area selection around these strands of DNA
to include all their lipids, water, and ions.

$ vmd 4bilayer_16DNA.gro

“same resid as within 20 of index

your_central_4_DNA_strands”

Export the selected structure and name it “naked_lipoplex.
gro.”
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2.2.2 Coating the Naked

Lipoplex

After extracting the naked lipoplex, we will have to add coating
lipids. This can be achieved in many ways. One of the options is to
increase the selection range in the VMD command used above in
combination with excluding any DNA beads. However, the lipids
you will have selected in doing so are in a structure that is rather
stable. This would make equilibration of the coat of the lipoplex,
potentially, a long and expensive process. Therefore, we will make
use of PACKMOL, another tool for initial state building
[44]. PACKMOL differs from insane, for it uses a packing optimi-
zation in defined regions of space. This makes PACKMOL much
slower than insane for building simple membranes, but it allows
for the addition of molecules to an already complex geometry.
PACKMOL can be downloaded free of charge at the web page of
the University of Campinas (www.ime.unicamp.br/~martinez/
packmol/).

We need to coat the lipoplex with a nice monolayer, and we will
make a rough initial approximation by regarding each face of the
naked lipoplex as an independent plane. Then we will use the
average area per lipid (APL) to calculate the amount of lipids we
would need to cover the total area of our lipoplex. To calculate the
APL of our mixture, we have to set up a symmetrical bilayer con-
taining our lipid concentrations. A bilayer of 10 # 10 nm2 will be
large enough to get an accurate APL for the lipids used in this
tutorial. This bilayer can be constructed following the same proto-
col as that described in part 2.1. To calculate the APL, we need to
simulate the solvated bilayer (under semi-isotropic pressure cou-
pling) up to the point that the box dimensions are stable for a while.
Then we can extract the box dimensions over time using “gmx
energy”.

$ gmx energy -f md.edr

Select either the x or y dimension as the preferred output
and calculate the average value over the period where it is stable
(e.g., the last 10%).

APLdope,dotap ¼
2x2

Number of lipids
$ 0:65 nm2

To roughly calculate the area the outer monolayer (the coat)
has to cover, you can use VMD. Pressing “2” in the visualization
screen will allow you to select two particles and measure the dis-
tance between them. We will add 2 nm to each side to accommo-
date for the fact that the outer leaflet has an increased distance to
span with respect to the inner leaflet (which we are measuring).

Lipidsadded ¼
2 xþ2ð Þ yþ2ð Þ½ )þ xþ2ð Þ zþ2ð Þ½ )þ yþ2ð Þ zþ2ð Þ½ )ð Þ

APLdope,dotap

$ 1800) 1440DOPE,360DOTAP
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After estimating the amount of lipids we need, we will use
PACKMOL to configure them around our lipoplex. Extensive
tutorials for using PACKMOL can be found at their web page
(m3g.iqm.unicamp.br/packmol/). As PACKMOL makes use of .
pdb files, we will have to convert our individual files to .pdb.

$ gmx editconf -f your_file.gro -o your_file.pdb

Use VMD to obtain a .pdb file for each of the lipids using the
export coordinates function, with a single lipid selected. After gen-
erating the correct PACKMOL input file we can run it.

$ packmol < coating_lipoplex.inp

Running PACKMOL can take up quite some time and some-
times no correct packing can be found, even upon running for
multiple hours. Try playing around with the excluded and included
volume which are defined in the input file (outside and inside box),
until a satisfactory packing has been achieved. The output structure
is presumed to be named “coated_lipoplex.pdb.” Convert the .pdb
to a .gro in the same manner as was demonstrated in part 1.

2.2.3 Tidying Up the GRO

and Topology Files

To tidy things up, you need to sort the “coated_lipoplex.gro” and
make sure that the topology has the same order and number of
molecules as your sorted .gro. After sorting and updating our
topology, we will solvate the lipoplex using insane.

$ python insane.py -f coated_lipoplex.pdb -o

solvated_lipoplex.gro -sol W -salt 0.15 -pbc cubic

Add the amount of waters and ions insane added to your sorted
topology. During the PACKMOL step, we also added more
DOTAP, which causes our system to have a nonzero net charge.
Therefore, we will replace some of the added water in the insane
step with CL to obtain a net charge of zero. To prevent freezing of
water (seeNote 1), we will also replace 10% of the waters in our last
entry with antifreeze water (WF).

2.2.4 Running EM/EQ

and Production

To finish, we need to energy minimize and equilibrate our system
before we can start the production run. To do so, we can use the
same procedure as before, but we will now use the
“-DCONSTRAINED_XYZ” flag (constructed in the same manner
as before, but now in XYZ) until large deformations are resolved,
and we will use isotropic pressure coupling. It will take roughly
10 μs for the solvated lipoplex to equilibrate its outer coat. You can
use “gmx gyrate” to inspect if the lipoplex’ shape has stabilized. If
the outer coat is too loose, or tight, try adding more or less coating
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lipids with PACKMOL, or change the included and excluded vol-
ume. We are now done with solvating a liquid lipoplex crystal.

2.3 Lipoplex Fusion
with an Asymmetric
Complex Membrane

For the lipoplex fusion with an asymmetric complex bilayer, we will
use the solvated and equilibrated lipoplex generated in part 2.2 of
this hands-on section, in combination with a generated asymmetric
bilayer.

2.3.1 Creating

an Asymmetric Bilayer

By now, we are able to generate complex bilayers; however, we
never attempted to generate an asymmetric one. Here, we want
to model an endosomal type membrane containing a 1:1 DPPC/
DOPC mixture in the upper leaflet and a 2:2:1 DPPC/DOPC/
DOPS mixture in the bottom one. To do so, we will use insane
again. However, first we generate each leaflet of our asymmetric
bilayer as a symmetrical bilayer. Thus, for each asymmetric bilayer,
you need to run two symmetric simulations. From those simula-
tions, we can obtain the complex APL for each of the leaflets. To do
so, we can use the same protocol as described in part 2.1. After
obtaining the complex APL for each of the leaflets, we will use
insane to generate the complex bilayer using the obtained APL of
each leaflet. This will make sure that the final tension in the two
leaflets is equal. An example is given below:

$ python insane.py -u DPPC:1 -u DOPC:1 -ua APLDPPC-DOPC -l DPPC:2

-l DOPC:2 -l DOPS:1 -a APLDPPC-DOPC-DOPS -x 10 -y 10 -z 10 -sol W

-salt 0.150 -o complex_asymmetrical_bilayer.gro

The topology files for a wide range of lipids can be found at our
web page (cgmartini.nl, under Downloads). Make the
corresponding topology using the output of insane and equilibrate
the membrane. This will take roughly 500 ns, though the amount
of time equilibration will take increases with the complexity of the
membrane. Equilibration of the membrane can be done as before in
parts 2.1 and 2.2; domake sure that you use semi-isotropic pressure
coupling and that your membrane lies in the xy plane.

2.3.2 Combining

the Asymmetric Bilayer

and the Lipoplex

After obtaining an equilibrated membrane, we will remove the
waters and ions. We now have an equilibrated membrane in vacuum
and a solvated lipoplex. To be able to combine the lipoplex and the
membrane, we will also extract the solvated lipoplex from its envi-
ronment. To do so, we will use VMD.

$ vmd solvated_lipoplex_equilibrated.gro

To extract the lipoplex from its environment, we will use the
following selection and export it, as described in part 2.1.
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“pbwithin 15 of (resname DOPE DOTAP or name “SC.∗” “BB.
∗”)” We will save it as “extracted_lipoplex.gro”.

To combine our extracted lipoplex with the equilibrated asym-
metric complex membrane, we create a combined .gro file. To do
so, we copy the content of the membrane into the new .gro file
(“lipoplex-membrane.gro”). Remove the final line (the box
description). Add the content of the “extracted_lipoplex.gro” but
remove the header line, atom count, and box description.

If the lipoplex and membrane overlap, you can use “gmx
editconf -translate x y z” to shift your lipoplex. Solvate the system
as before using insane. Generate a topology file that matches the .
gro one. Energy minimize and equilibrate (as before in part 1)
using semi-isotropic pressure coupling. The equilibrated system
should resemble Fig. 2f. To perform an unbiased fusion experi-
ment, you have to simulate for a long time to observe adhesion,
stalk formation, and transfection. However, such a simulation
would take up a large amount of computational time; therefore,
you could add biasing forces to drive membrane adhesion and
initiate stalk formation. From there on, you could remove all
biasing forces to observe the fusion process after initial stalk
formation [1].

2.3.3 Alternative

Methods and Tools

We suggest to the reader as possible follow-up steps for this hands-
on section, the building of even more complex CG systems. For
example, a lipoplex fusion experiment within a vesicle (a process
that could mimic the DNA transfection event in the early endo-
some). However, the current implementation of insane does not
allow us to build such lipid structures yet. A user-friendly option for
this problem could be the usage of a graphical user interface as
CHARMM-GUI Martini Maker [45, 46]. In the current imple-
mentation, this program can build Martini models of micelles,
nanodiscs, bilayers, and vesicles. We hope that the tools and tips
presented above will help you on your way with your own imple-
mentations of the Martini forcefield. If you would like to learn
more about Martini, you can visit our web page for other tutorials
(cgmartini.nl). For any questions regarding the implementation of
the Martini force field for your project(s), we would like to direct
you to the forum at our web page.

3 Outlook

Since its initial publications, the Martini force field has been devel-
oped and tested in a broad range of applications, from simple lipid
bilayers to complex fusion processes as detailed here for the lipoplex
hands-on. Despite the huge success of the model, certain problems
have been reported as excessive protein and sugar aggregation (see
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Note 4), and water freezing (also described inNote 1). Along with
the modeling demand of new and challenging systems, these lim-
itations pushed the MD group of Groningen to improve the CG
beads—the fundamental building blocks of Martini—until now
largely untouched since version 2. One of the main features of the
forthcoming version, entitled Martini 3, is the re-parametrization
of small (S) and tiny (T) beads, designed to be fully balanced with
the normal (N) size beads. New chemical-type beads were also
tuned to model systems not included in the current version. For
instance, we will have more beads with hydrogen-bonding capabil-
ities (including all polar and nonpolar beads) and charged beads
dedicated for modeling divalent ions. Water has also its own special
bead, parametrized to improve its miscibility with other beads and
also avoid freezing problems. The interaction matrix was modified,
including more interaction levels and smoother transitions between
the beads. In this aspect, special attention was taken regarding
charged beads, with trends in solvent polarization and ion-pi inter-
actions implicitly included in the Lennard-Jones potential with
neutral beads. Together with other new features of the model,
preliminary tests indicate a significant improvement of proteins,
sugars, and nucleic acids in Martini 3. Besides, exciting new systems
seem to nicely behave, including MD simulations of ionic liquids,
and coacervates, as well as protein-ligand binding. We conclude
that a promising new era of Martini CG simulations is coming.

4 Notes

This last section of the chapter contains a series of notes, which
include useful information, limitations, and tips for problems that
can arise using the Martini force field.

1. Limited stability of fluid phase and water freezing problem: This
is a known consequence of the use of the LJ 12–6 potential for
the nonbonded interactions. The thermodynamic behavior of
solid-fluid and gas-fluid interfaces should therefore be inter-
preted with care, at least at the quantitative level. In applica-
tions where such interfaces are formed (especially water-vapor),
these limitations have to be kept in mind. In biomolecular
simulations, a related problem is the potential freezing of the
Martini water model. The LJ parameters for water (5.0 kJ/mol
and 0.47 nm) put the model into the solid-state region of the
LJ phase diagram. However, the use of a shifted and truncated
potential reduces the long-range attractive part and the CG
water is more fluid compared to the standard LJ particle. While
the freezing temperature is higher than it should be (around
290 K, [3, 5, 47]), in most applications, freezing is not
observed as long as no nucleation site is formed. At lower
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temperatures, rapid freezing is a potential problem in systems
where a nucleation site is already present (such as an ordered
bilayer surface) or when periodicity enhances the long-range
ordering. In these cases, a simple pragmatic solution is the
addition of 10% antifreeze particles into the bulk water [5].

2. Entropy-enthalpy compensation: Martini parameterization is
based on partition free energies. The inherent entropy loss on
coarse graining is necessarily compensated for by a reduced
enthalpy term [24]. The enthalpy/entropy balance of many
processes may therefore be biased when modeled at the CG
level and affect its temperature dependence, although not nec-
essarily weakening it. For instance, the temperature-dependent
hydration free energy for linear alkanes was found to be more
pronounced in the CG representation compared to an AA
representation [24]. As is true for any force field, applications
outside the temperature range used for parameterization
(270–330 K) have to be considered with care. Although abso-
lute entropies are clearly underestimated due to the loss of
atomistic degrees of freedom, entropy differences can still be
accurate [48].

3. “Sticky problem” in sugars and proteins: In the past years, the
Martini force field has showed some specific limitations involv-
ing excessive interactions between certain classes of molecules.
For example, protein-protein interactions in water solution
seem to be overestimated [49]. To a lesser extent, this effect
was also demonstrated for some transmembrane proteins [50].
Recently, mono, oligo- and polysaccharides were found to
aggregate in simulations even at moderate concentrations,
below their solubility limit [51]. These similar problems (called
together here as “sticky problems”) could be attenuate for
pragmatic solutions, as down-scaling of the Lennard-Jones
parameters between the solutes [49–51]. Another option is to
increase the interactions with the solvent, which was success-
fully applied to study protein-crowded environments [52]. The
usage of S-beads for the modeling of carbohydrate rings seems
to reduce their aggregation propensity, as shown in the
re-parametrization of gangliosides [53]. All these possible pro-
cedures are not ideal solutions, as they are applied without a
deeper understanding of the reasons behind the sticky problem.
Besides, scaling factors are specific for classes of molecules and
could potentially change important properties of the systems, as
the correct bindingmode of proteins dimers [50].New rules for
the usage of S- and T-beads together with re-parametrization of
Martini (e.g., including specific cross-interactions between
standard and S/T bead sizes) showed to be crucial to reduce
the excessive interactions (results not published yet). In the near
future, all these features will be released as new version of the
Martini force field (coined as version 3.0).
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4. Electrostatic interactions and implicit screening: Another diffi-
culty encountered in our CG model, and perhaps in most
coarse-graining approaches, is the correct modeling of the
partitioning of polar and charged compounds into a low dielec-
tric medium. Because of the implicit screening, the interaction
strength of polar substances is underestimated in nonpolariz-
able solvents. Applications involving the formation of polar/
charged complexes in a nonpolar environment are especially
prone to be affected. The inability to form a transmembrane
water pore upon dragging a lipid across the membrane is an
example [5, 54]. The development of a Martini water model
that includes orientational polarization by the means of a dipole
represented by two drude charges attached to each water bead
allows to correct for some of these effects [30]. Apart from the
implicit screening in the CG model, the neglect of long-range
electrostatic forces poses a further limitation. Pairwise interac-
tions beyond 1.1 nm (between 2 and 3 CG beads away) are not
taken into account. In principle, long-range electrostatic inter-
actions could be added to the CG model, in ways similar to
those used in atomistic simulations [31]. In particular, PME in
combination with the polarizable Martini water model is
often used.

5. Fixed structure for proteins and nucleic acids: In applications of
peptides, proteins, and nucleic acids, one has to be aware that
structure transformations are not modeled in the current
parameterization. For proteins, the secondary structure
(SS) is essentially fixed by the use of bond angle and dihedral
angle potential energy functions. The backbone bead type is
also a function of the SS, to take into account the fact that when
involved in interactions stabilizing a given element, the back-
bone is less prompted to engage in other interactions. The
backbone interaction strength is therefore decreased when
involved in a SS element. This approach allows discrimination
between various secondary structure elements but prevents
realistic transitions between them. Processes in which folding
and unfolding are playing a substantial role are therefore not
suitable for modeling with the current Martini force field.
However, movements of SS elements with respect to each
other are possible and were shown to be quite realistic, for
instance, in modeling the gating of a membrane-embedded
mechanosensitive channel [55]. In cases where the specificity
of the local deformations of the protein backbone is important,
the use of other approaches are necessary, as combiningMartini
with an elastic network [56, 57] or with structure-based CG
models [58]. In the case of peripheral membrane proteins,
further corrections in the side-chain dihedral angles could
also be necessary [59]. Martini DNA and RNA can be used
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to model both single and double-stranded structures. For the
single-stranded settings, the structure is considered flexible,
while double-stranded could be modeled with two different
elastic networks: a soft model which has a cutoff of 1.2 nm and
a force constant of 13 kJ/mol/nm2, and the stiff model which
has a cutoff of 1.0 nm and a 500 kJ/mol/nm2 force constant
[11, 12].

6. Time step: Martini has been parameterized using time steps in
the range of 10–40 fs. Whether you can use 40 fs or have to
settle for a somewhat smaller time step depends on your sys-
tem, and on your attitude toward coarse-grained modeling, as
explained below. First, the Martini force field is not an atomis-
tically detailed force field. Many assumptions underlie the
model, the major one being the neglect of some of the atomis-
tic degrees of freedom. As a result, the interactions between
particles are effective ones and the energy landscape is highly
simplified. This simplified energy landscape allows for a greatly
increased sampling speed at the cost of a loss of detail. This
makes CGmodels in general so powerful. The emphasis, there-
fore, should not be to sample the energy landscape as accurately
as possible, but rather, as effectively as possible. This is in
contrast to traditional all-atom models, for which the energy
landscape is more realistic and an accurate integration scheme is
more important. In practice, the inherent “fuzziness” of the
Martini model makes the presence of small energy sinks or
sources a less critical problem than in accurate atomistic simu-
lations. Second and most importantly, structural properties are
rather robust with respect to the time step; for a time step up to
40 fs, there are no noticeable effects on structural properties of
the systems investigated. Moreover, thermodynamic properties
such as the free energy of solvation also appear insensitive to the
size of the time step. Thus, if the goal is to generate represen-
tative ensembles quickly, large time steps seem acceptable.
Whereas one can debate the first argument (i.e., the
“idealist” vs. “pragmatic” view of the power of CG simula-
tions), the second argument (i.e., the insensitivity of both
structural and thermodynamic properties to the magnitude of
the time step) implies that a reduction of the time step to 10 fs
or below, as has been suggested [60], is a waste of computer
time [47]. Nevertheless, time steps of 40 fs and beyond may be
pushing the limits too far for certain systems. For some sys-
tems, as nucleic acids, time steps higher than 10 fs promote
simulation instability [11, 12]. We therefore recommend a time
step of 10–20 fs to be on the safe side. Of course, one should
always check whether or not results are biased by the choices
made. Given that the largest simplifications are made at the
level of the interaction potentials, this can best be done by
comparing to results obtained using more detailed models.

A Practical View of the Martini Force Field 123



7. Effective timescale: The CG dynamics are faster than the AA
dynamics, because the CG interactions are much smoother
compared to atomistic interactions. The effective friction
caused by the fine-grained degrees of freedom is missing.
Based on comparison of diffusion constants for a range of
systems (including simple solvents and lipids) in the CG
model versus experimental data, the effective time sampled
using CG interactions is three- to eightfold larger. When inter-
preting the simulation results with the CG model, a standard
conversion factor of 4 has been used, which is the effective
speed-up factor in the diffusion dynamics of CG water com-
pared to real water. The same order of acceleration of the
overall dynamics is also observed for a number of other pro-
cesses, including the permeation rate of water across a mem-
brane [3], the sampling of the local configurational space of a
lipid [61], the aggregation rate of lipids into bilayers [3], and
the self-diffusion of lipids [3, 5], transmembrane peptides [62],
and proteins [63]. However, the speed-up factor can be quite
different in other systems or for other processes, and in general
no simple conversion of the time axis can be performed. Partic-
ularly for protein and nucleic acid systems, no extensive testing
of the actual speed-up due to the CG dynamics has been
performed, although protein translational and rotational diffu-
sion was found to be in good agreement with experimental data
in simulations of CG rhodopsin [63]. In general, the timescale
of the simulations has to be interpreted with care.
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