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Abstract 

A method is described which improves the efficiency of Ewald simulations of large condensed phase systems. This is 
achieved by partitioning the real space sum into a short and long range component. The long range component is calculated 
every time the pair list is generated and included in subsequent steps using a multiple time step algorithm. The corresponding 
increase in the effective cutoff distance results in an algorithm which is only slightly more expensive than a traditional 
cutoff simulation, but with fewer artifacts than obtained using a cutoff. The method is tested on a 1.0 M solution of sodium 
chloride. 
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1. Introduction 

The Ewald Summation method is a well-established 
technique for the evaluation of electrostatic interac- 
tions required for many computer simulations [1]. 
While the Ewald technique does much to improve the 
reliability of many simulation results [ 2], the method 
is often dismissed as impractical, especially in the 
area of large scale biomolecular simulations. Although 
many studies have shown that the use of a cutoff or 
switching function for the truncation of electrostatic 
interactions produces artifacts in both radial distribu- 
tion functions and dipole-dipole correlations within 
the system [ 2,3 ], the Ewald technique removes or sub- 
stantially decreases such unwantedartifacts [4]. How- 
ever, even though biomolecular systems often contain 
many isolated charged residues/groups, which could 
make the simulation results sensitive to the method of 
truncation, the application of the Ewald technique to 
biomolecules has been limited to fewer studies [5,6]. 

There are at least three basic objections to the Ewald 

technique. The first is complexity. The Coulomb po- 
tential is transformed into a series of terms which are 
not as physically transparent as the classical electro- 
static potential. The choice of  a convergence parame- 
ter and the number of  lattice vectors to be included in 
the sum are system dependent, and therefore have to 
be determined separately for each new system [7]. 

The second objection concerns the lattice nature of 
the Ewald summation. As a consequence of determin- 
ing the electrostatic potential corresponding to a se- 
ries of replicated central cells several problems may 
arise. Large permanent or fixed multipoles present in 
the system will generate large fields within the simu- 
lation cell. Unfortunately, due to the presence of the 
surrounding images, these fields may not be repre- 
sentative of those typical for an infinite medium (the 
usual goal for liquid state simulations) [8]. Hence, 
one can experience artifacts due to the "enhanced" pe- 
riodicity of the system. For simple fluids with no per- 
manent multipole moments this is not a problem, but 
for biomolecular systems where a peptide or protein 
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may possess a significant unscreened charge, dipole 
moment, etc., this may be a cause for concern. Al- 
ternatively, one could argue that the "enhanced" pe- 
riodicity is a direct consequence of invoking periodic 
boundary conditions, and not due to the Ewald tech- 
nique per se, and is therefore simply a finite system 
effect. The determining factor is the effective screen- 
ing length of the medium. If the central cell is large in 
comparison with the screening length of the medium, 
"enhanced" periodicity effects should be small. 

Last, and often most damaging, is the extra compu- 
tational expense involved in using the Ewald summa- 
tion technique. Typically, the Ewald technique scales 
as N 3/2 (N, number of sites) rather than N and is 
roughly twice as expensive as a traditional cutoff sim- 
ulation for a few hundred particles. For small systems, 
e.g. a few hundred atom simple fluid, the additional 
expense is not too severe. However, for biomolecu- 
lar systems, where the number of atoms may be in 
the tens of thousands, the Ewald technique turns an 
already expensive simulation into a nearly infeasible 
one. Hence the reluctance to use Ewald methods. Here 
we describe a simple method which helps to signifi- 
cantly reduce the computational expense involved in 
simulating larger systems. The method has features of 
the twin range technique of van Gunsteren and Berend- 
sen [9], and the multiple time scale method of Tuck- 
erman et al. [ 10]. The method was tested on a 1.0M 
sodium chloride salt solution system. 

2. Theory 

The Ewald electrostatic potential energy of a peri- 
odic system of N charges ({q}) with a total charge 
of Q in a cubic box of length L surrounded by a di- 
electric continuum of relative permittivity ~ is given 
by [ 11,12] 
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where erfc is the complementary error function, 

erfc(x) = 1 - - ~  e-t2dt, (2) 

0 

with rij = rj - ri, and ri is the position of atom i. Here 
we have assumed that the value of the convergence pa- 
rameter o~ has been chosen such that the first term on 
the r.h.s, of Eq. ( 1 ) is negligible beyond a certain cut- 
off radius Rc, which is less than L/2. The summation 
over n = (nx, n s, nz ) represents a sum over images of 
the central cell in three dimensions (n~, a = x, y or z 
are integers with In~l _< nmax). 

From experience we have found that the optimal 
value of a is one which ensures that the cost of per- 
forming the real space (first term of Eq. (1) )  and 
reciprocal space (second term of Eq. (1) )  sums are 
equally balanced. This is feasible for relatively small 
systems (L < 2.5 nm). For larger systems, e.g. a fully 
solvated protein, the equal balance condition can only 
be maintained by increasing Rc. In order to do this 
one requires the use of very large pair lists which re- 
sult in heavy memory demands. Hence, the value of 
Rc is limited to values of 1.0-1.2 nm or so, depend- 
ing on the density of the system. As the system size 
is increased, aL  also increases, and more images are 
required for the reciprocal space sum to converge. Un- 
fortunately, the number of reciprocal lattice vectors to 
be included increases rapidly (cx In]3), and the sum 
quickly becomes too expensive. 

To solve this problem we introduce a second "effec- 
tive" cutoff, Re, which is always larger than Rc and 
typically equal to L/2. The forces arising from atoms 
situated between Rc and RE are calculated every time 
the pair list is updated. This is the twin range method 
of van Gunsteren and Berendsen [9], and assumes that 
the long range contribution from these distant atoms 
varies slowly with time and therefore does not need 
to be evaluated at every time step. To include the long 
range contribution during the simulation we have used 
the multiple time step algorithm of Tuckerman et al. 
[ 10]. Hence, the real space sum can be effectively ex- 
tended to L/2, requiring a smaller a,  which in turn 
requires the inclusion of fewer lattice vectors in the 
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reciprocal space sum. The only problem with this ap- 
proach is that the system has somewhat worse energy 
conservation properties and coupling to a temperature 
bath may be desirable for long runs. 

3. Method 

Simulations of an aqueous sodium chloride solu- 
tion were performed using the CHARMM force field 
for sodium and chloride ions and the TIP3P water 
model [ 13 ]. The system was prepared as follows. Us- 
ing a pre-equilibrated box of length 2.477 nm contain- 
ing 512 TIP3P waters, 18 water molecules were re- 
placed at random with 9 sodium and 9 chloride ions. 
The system was then relaxed with 50 steps of steepest 
descent minimization. This system was then equili- 
brated at 300K for lOOps in the NVE ensemble using 
values of ot = 2.5nm -1, Rc = 1.2nm, Re = 1.2nm 
and nmax = 6. During this time velocities were reas- 
signed to 300K every 0.1 ps. The final configuration 
was then replicated once in each direction. The re- 
suiting system contained a total of 12000 atoms from 
3952 waters, 72 sodiums and 72 chlorides in a cubic 
box of length L = 4.9554nm. This system was then 
equilibrated for 10ps using values of a = 3.0nm -1, 
Rc = 1.0nm, Re = 1.0nm and nmax = 17. 

Six different simulations were then performed. The 
six simulations differed only in the manner in which 
the electrostatic interactions were evaluated. The ex- 
act parameters used are given in Table 1. Simulations 
with ce = 0.0 correspond to the traditional Coulomb 
potential. For the twin range simulations the distinc- 
tion between short and long range interactions was de- 
termined on a group basis [ 14], i.e. if a water oxygen 
atom was found within Rc the corresponding water 
hydrogens were also included in the short range in- 
teraction, irrespective of whether they lay beyond Rc 
or not. Each simulation consisted of a further 10ps of 
equilibration, using the respective parameters, during 
which velocities were reassigned at 300 K every 0.1ps. 
Production runs of 10 ps were then performed in the 
NVT ensemble with temperature regulation achieved 
using the extended system method of Nos6 [ 15] and 
a "mass" of 100kJ/mol ps 2 for the temperature vari- 
able. All simulations used a time step of 2 fs and the 
SHAKE algorithm [ 16] to constrain all bonds and an- 
gles. The nonbond update frequency was 20 fs. Con- 

figurations were saved every 20fs for analysis. All 
averages, radial distribution functions, diffusion con- 
stants and dipole correlations were calculated from the 
last 10ps of simulation. 

The reciprocal space sum evaluated during the 
Ewald calculations requires many sine and cosine 
function calls. These are traditionally expensive func- 
tion calls. Hence, we have replaced these calls with 
sine and cosine tables which result in a significant 
computational advantage. By Taylor expansion one 
obtains the following interpolation formulas: 

cos(x + dx) = (1 - 1/2dx 2) cosx - dxs inx  

+O( dx 3) , 

sin(x + dx) = ( 1 - 1/2dx 2) sinx + dxcosx  

+O(dx 3) , (3) 

which, for a grid spacing of 5 × 10 -4 radians, gives 
an accuracy of greater than 10 -l°.  

4. Results 

In order to determine the accuracy of the new 
method we have compared results obtained for both 
the twin range Ewald and twin range Coulomb 
simulations with those obtained from a full Ewald 
simulation. This, of course, assumes that the Ewald 
simulation gives the "correct" picture of the structure 
and dynamics for the system of interest. As there 
is evidence which suggests that simulations using a 
Coulomb potential truncated at Rc tend, for most 
properties of interest here, to converge to the corre- 
sponding Ewald results as Rc increases, we believe 
this is the most objective comparison. Hence, all 
results are compared with simulation 1 (see Table 1 ). 

Table 1 contains the simulation results obtained 
for the sodium chloride solution. Unfortunately, di- 
rect comparison of the interaction energies is com- 
plicated by the reciprocal space energy which does 
not distinguish between interaction pairs (in the form 
given in Eq. (1) ) .  One can see that the introduction 
of a sine/cosine table lookup procedure (simulation 
2) gave identical results compared with a simulation 
using the respective intrinsic functions as expected, 
but with a significant decrease in execution time. The 
large diffusion constant observed for water is also ob- 
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Table 1 
Molecular dynamics results a 
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1 2 3 4 5 6 

Electrostatics Ewald Ewald Ewald Coulomb Ewald Coulomb 
a (nm - l )  3.0 3.0 1.2 0.0 1.2 0.0 
Rc (nm) 1.0 1.0 1.0 1.0 1.2 1.2 
RE (nm) 1.0 1.0 L/2 L/2 L/2 L/2 
nmax 17 17 6 0 6 0 
lookup tables b N Y Y N Y N 

H - 194879 - 194805 - 195162 - 190290 - 195464 - 187943 
Vvv -139562 -139704 -128232 -120915 -128178 -122616 
Vvi -49324 -48980 -72072 -75433 -73539 -74719 
V/i -37186 -38317 -25014 -24049 -23896 -20711 
V~ 1092 1095 54 0 51 0 
P (atm) -681 -639 -893 -861 -931 -596 

DH20 x 10 - 9  m 2 s -  1 5.0 4.9 4.0 2.9 5.0 3.4 
DNa X lO-9m 2 s -1 2.2 2.3 1.6 1.1 2.1 1.3 
Dct x 10-9m 2 s - I  2.0 2.3 1.6 1.3 2.3 1.7 

relative speed c 1.64 1.00 0.40 0.33 0.45 0.36 

a Energies in kJ/mol. H = total energy, Vvv = solvent potential energy, Vvl = solvent-ion potential energy, V/i = ion-ion potential energy 
and V~ = reciprocal space potential energy. D is the diffusion constant. 
b Sine/cosine functions evaluated using lookup tables. 
c Determined for a Cray C90. Execution time for simulation 2 is 13.3s per step. 

served for pure water simulations using Ewald elec- 
trostatics (data not shown) and is probably a feature 
of the truncation method. The low pressures observed 
for this system are a reflection of the electrostriction 
effects of the ions. 

The short cutoff twin range methods using Rc = 
1.0 nm and RE = L/2 result in substantial computa- 
tional savings (simulations 3, Ewald, and 4, Coulomb, 
in Table 1 ). However, the results are not satisfactory. 
In particular, the diffusion constants were reduced, es- 
pecially for the Coulomb potential (simulation 4). On 
increasing Rc to 1.2 nm, the twin range Ewald tech- 
nique (simulation 5) was in excellent agreement with 
the target simulation, however, the Coulomb technique 
(simulation 6) still displayed significantly reduced 
diffusion rates. It is unlikely that the diffusion rates for 
the Coulomb technique would converge with increas- 
ing Rc before memory demand became excessive. 

Radial distribution functions are not presented here 
as the ion-ion distributions are not statistically mean- 
ingful, while the ion-solvent and solvent-solvent dis- 
tributions did not display statistically significant dif- 
ferences as expected. However, differences were ob- 

served for the orientation of water dipoles within the 
system. We define two spatial dipole correlation func- 
tions, the first representing the orientation between a 
water dipole and the ion-water intermolecular vector, 

( (rNa -- ro)  " l "t ) 
Cry(r) = ~ - _  ~olllZ-] r'  (4) 

and the second representing the orientation between 
water dipoles as function of their separation, 

C~(r) = (-~--~-).P "p (5) 
r 

Here, p represents the orientation of the water dipole 
and the angular brackets denote an ensemble average 
for a particular value of r. For our purposes it is more 
convenient to monitor differences from simulation 1. 
Hence, we define ACre(r) and AC~,~(r) as the dif- 
ferences between the corresponding function obtained 
for a particular simulation, and that obtained for sim- 
ulation 1. 

Figs. 1-3 shows the sodium-water, chloride-water 
and water-water dipole orientations, respectively. All 
three figures display the same trends between the 
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Fig. 1. (a)  Cry(r) fo r  water dipoles as a function o f  distance 

f rom a Na + ion obtained f rom simulation 1. (b )  ACre(r) fo r  

the modified Ewald procedure (solid line, simulation 3) and the 
Coulomb potential (dashed line, simulation 4) using a value of 
Rc = 1.0rim. (c) ACre(r) for the modified Ewald procedure 
(solid line, simulation 5) and the Coulomb potential (dashed line, 
simulation 6) using a value of Rc = 1.2nm. 

different simulation procedures. The difference plots 
show that for values of Rc = 1.0 nm and RE = L/2, 
both the twin range Ewald and Coulomb techniques 
displayed artifacts associated with the discontinu- 
ity in the force at Rc. Especially apparent are the 
nodes which appear at, or around, Rc [2,17]. The 
Coulomb technique also exhibited more oscillatory 
behaviour which persisted at long distances. This is 
more significant due to the increasing number of wa- 
ters present at larger distances. For the simulations 
with Rc = 1.2nm and RE = L/2, the twin-range 
Ewald technique displayed only small artifacts while 
the Coulomb technique improved only marginally, in 
accordance with the trends observed for the diffusion 
constant results. 
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Fig, 2. (a) Crib(r) for water dipoles as a function of distance 
from a CI- ion obtained from simulation 1. (b) ACr~,(r) for 
the modified Ewald procedure (solid line, simulation 3) and the 
Coulomb potential (dashed line, simulation 4) using a value of 
Rc = 1.0nm. (c) ACrlz(r) for the modified Ewald procedure 
(solid line, simulation 5) and the Coulomb potential (dashed line, 
simulation 6) using a value of Rc = 1.2nm. 

5. C o n d u s i o n s  

The cost of performing traditionally expensive sim- 
ulations of large liquid state systems can be substan- 
tially reduced by separating the real space summation 
into a short range and long range component and us- 
ing a multiple time step algorithm. The increased ef- 
fective cutoff decreases the number of lattice vectors 
which need to be evaluated making the twin range 
Ewald technique only a third more expensive than a 
traditional Coulomb simulation. It appears that for val- 
ues of Rc > 1.2 nm that the artifacts associated with 
the discontinuity at Rc are eliminated, as illustrated 
by the corresponding diffusion rates and dipole-dipole 
correlations. This is not true for Coulomb simulations 
with a value of Rc = 1.2 nm. 
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Fig. 3. (a) C~jz ( r )  for water dipoles as a function of the separation 
of water molecules obtained from simulation 1. (b) A C~,~ ( r ) for 
the modified Ewald procedure (solid line, simulation 3) and the 
Coulomb potential (dashed line, simulation 4) using a value of 
Rc = 1.0nm. (c) A C ~ ( r )  for the modified Ewald procedure 
(solid line, simulation 5) and the Coulomb potential (dashed line, 
simulation 6) using a value of Rc = 1.2nm. 

The ability to simulate large systems with the in- 
creased accuracy that the Ewald technique provides, 
and with a negligible increase in expense compared 
with a traditional simulation, will enhance the useful- 
ness of the technique. Correspondingly, this will en- 
able the study of larger systems which will help to 
eliminate potential "enhanced periodicity" effects. 
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Note added in proof 

While in press the following article appeared which 
has a similar algorithm: T. Forester and W. Smith, Mol. 
Simul. 13 (1994) 195-204. 
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