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ABSTRACT

Motivation: To assess whether two proteins will interact under phy-

siological conditions, information on the interaction free energy is

needed. Statistical learning techniques and docking methods for pre-

dicting protein–protein interactions cannot quantitatively estimate

binding free energies. Full atomistic molecular simulation methods

do have this potential, but are completely unfeasible for large-scale

applications in terms of computational cost required. Here we inves-

tigate whether applying coarse-grained (CG) molecular dynamics

simulations is a viable alternative for complexes of known structure.

Results: We calculate the free energy barrier with respect to the

bound state based on molecular dynamics simulations using both a

full atomistic and a CG force field for the TCR–pMHC complex and the

MP1–p14 scaffolding complex. We find that the free energy barriers

from the CG simulations are of similar accuracy as those from the full

atomistic ones, while achieving a speedup of4500-fold. We also ob-

serve that extensive sampling is extremely important to obtain accur-

ate free energy barriers, which is only within reach for the CG models.

Finally, we show that the CG model preserves biological relevance of

the interactions: (i) we observe a strong correlation between evolution-

ary likelihood of mutations and the impact on the free energy barrier

with respect to the bound state; and (ii) we confirm the dominant role

of the interface core in these interactions. Therefore, our results sug-

gest that CG molecular simulations can realistically be used for the

accurate prediction of protein–protein interaction strength.

Availability and implementation: The python analysis framework

and data files are available for download at http://www.ibi.vu.nl/

downloads/bioinformatics-2013-btt675.tgz.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Protein–protein interactions (PPI) are at the heart of all pro-
cesses in life. To understand living systems beyond the genome,

comprehensive knowledge of PPI is therefore essential.

Experimental techniques (Ezkurdia et al., 2009; Kastritis and

Bonvin, 2010; Sprinzak et al., 2003), prediction from sequence
(Ezkurdia et al., 2009) and protein–protein docking methods

(Kastritis and Bonvin, 2010; Pons et al., 2010) all have their

specific limitations. To assess the likelihood of two proteins inter-
acting under physiological interactions, we need to know both

the concentrations and the dissociation constant (or binding free

energy) of the proteins involved. Although it seems that the iden-

tification of the interface region is rather successful (Lensink and
Wodak, 2010; Ofran and Rost, 2007), major open challenges are

the accurate determination of interaction strength (Kastritis and

Bonvin, 2010; Pons et al., 2010; Schueler-Furman et al., 2005),

the incorporation of protein flexibility (Schueler-Furman et al.,
2005; Tobi, 2010; Wollacott et al., 2007) and accounting for

water and small solute entropic effects (Oshima et al., 2011;

Schueler-Furman et al., 2005). Most importantly, Kastritis and

Bonvin (2010) show that there is a poor correlation between
binding affinity and scores for all nine commonly used docking

algorithms they tested on 81 complexes with known binding

affinity.
Molecular simulations using atomic pairwise interaction po-

tentials are much more accurate for estimating interaction

strength than docking scoring functions, though computationally
much more expensive (Kastritis and Bonvin, 2010; Tuncbag

et al., 2009). Nevertheless, an immediate bonus of molecular

simulation is that it addresses all three challenges mentioned
above: interaction strength, flexibility and entropic effects. For

biomolecular simulation in general, the solvent (water) is the

major obstacle to improve computational efficiency due to the

large number of water molecules needed to solvate the protein.
Many possible approaches to overcome this problem exist (for

recent reviews, see Dror et al., 2012; Fennell and Dill, 2011).

Among the fastest available are the mean-field or ‘implicit solv-

ent’ methods; however, one of the main drawbacks is the lack of
accurate estimation of the solute entropy, especially in combin-

ation with charged solutes (Homeyer and Gohlke, 2012). By

lumping together small molecules (e.g. water molecules) or
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molecular segments into ‘meta particles’, coarse-grained (CG)
force fields retain the explicit description of the system, including

the solvent. Several CG models for water are available, each with

their particular strengths and weaknesses (Hadley and McCabe,
2012). Compared with atomistic force fields, CG models provide

increased computational efficiency at sufficient levels of accuracy

(Tuffery and Derreumaux, 2012). Therefore, for the calculation

of molecular interactions, thermodynamic integration based on
atomistic simulations with explicit water is both theoretically well

founded and the most accurate solution available to date

(Wereszczynski and McCammon, 2012, Zhang et al., 2013).
In this work, we investigate the option of addressing the high

computational cost of atomistic molecular simulations by the use
of a CG force field for such simulations. For this, we will use the

MARTINI CG protein force field for molecular dynamics (MD)

simulations (Marrink et al., 2007; Monticelli et al., 2008). This

force field was developed for CG simulations of biological mem-
brane–protein systems and has recently been used to simulate the

spontaneous association of GPCR proteins in a lipid bilayer

(Periole et al., 2012). The MARTINI force field does not capture
structural rearrangements, such as changes in secondary struc-

ture. We will assess its applicability and accuracy for the calcu-

lation of interaction strengths for a pair of protein structures in a

water environment from constraint-force profiles.
By applying the MARTINI CG force field, we first show that

we are able to estimate the free energy barrier with respect to the
bound state (�Goff) with similar accuracy compared with atom-

istic force field calculations and in good agreement with experi-

mental data, but at4500-fold increased computational speed. For
this we selected two test cases: a TCR–pMHC and an MP1–p14

scaffolding complex, both of which were previously studied with

atomistic models (Cuendet and Michielin, 2008; Cui et al., 2008,

respectively). We then show that calculated contributions of sur-
face residues to the interaction strength are sensitive to changes in

the amino acid residues involved. Randommutations at the inter-

face core yield major changes in calculated interaction strengths,
whereas mutations at the partially solvated interface rim yield

only minor changes. Random mutations at the rest of the surface

on average hardly affect the interaction strength at all. Moreover,

we find that the evolutionarily most likely mutations, as assessed
by standard residue exchange propensities, at the interface core

also have a negligible influence on the interaction strength,

whereas evolutionarily unlikely mutations disrupt favourable
PPI considerably. This behaviour with respect to mutations is

consistent with what we would expect from a biological point of

view. Finally, we discuss future implications of our finding that

the major contributions to the interaction strength within our CG
approach arise from the interface core.

2 METHODS

2.1 Software and force fields

The mutate_model script in Modeller (Sali and Blundell, 1993) was

used to produce mutant structures. DSSP (Kabsch and Sander, 1983) and

JOY (Mizuguchi et al., 1998) were used to calculate the absolute and

relative solvent accessibility of residues, respectively. VMD (Humphrey

et al., 1996) was used to visualize the structures.

We used GROMACS 4.0.5 (Hess et al., 2008) for all MD simulations.

Atomistic simulations were performed using the GROMOS G43a1 force

field using the default time step (�t ¼ 1 fs) (van Gunsteren et al., 1996).

CG simulations were performed using the MARTINI force field with the

default time step (�t ¼ 20 fs) (Marrink et al., 2007). Coarse-graining

(CG-ing) was performed as previously described for the MARTINI

model (Monticelli et al., 2008). All 20 amino acids were mapped into

four different bead types with respect to their physicochemical properties

(Supplementary Fig. S1). The non-bonded interactions between the CG

solvent and solute particles were modelled by truncated and shifted

Lennard–Jones pair-potential with a cut-off radius of 1.2nm (Marrink

et al., 2007; Monticelli et al., 2008).

2.2 The potential of mean force

We use the potential of mean force (PMF) to describe the interaction

strength between two structures (Trzesniak et al., 2007). The centre of

mass (COM) separation r was chosen as the reaction coordinate along

which the mean force is measured. Integration of the mean force along

this pathway results in a free energy profile (strictly, the PMF is not a free

energy profile, as it does not correct for standard conditions; this is

covered in the Supplementary Information) that can be used to derive

the free energy barrier with respect to the bound state �Goff. We first

calculate the force Fmean as a function of the reaction coordinate from

constrained MD simulations,

FmeanðrÞ ¼ � FpullðrÞ
� �

NPT
¼

1

2
~FB � ~FA

� �
� ~ru

D E
NPT

ð1Þ

where FpullðrÞ
� �

denotes the average force required to keep the interaction

members at the constraint distance r, ~FA and ~FB the total forces acting on

the first and the second interaction members, which arise from direct

interactions and interactions with explicitly simulated solvent, ~ru ¼ ~r=r

the unit vector connecting the two centres of mass and angular brackets

� � �h iNPT an average in the isothermal–isobaric ensemble.

We define the constraint distance r as

r ¼ rCOM,A � rCOM,B

�� �� and r 2 r1, r2, :::, rNf g ð2Þ

where rCOM, i is the COM position of interaction member i and N is the

number of separation distances at which the Fmean values are calculated.

Three arbitrary separations are illustrated in Figure 1C for MP1–p14.

We calculated the Fmean at 50 distances for the TCR–pMHC (where

5 nm � r � 7:45 nm) and at 54 distances for MP1–p14 (2:16nm �

r � 4:44nm). In cases where we simulated nearly identical starting con-

formations of a particular structure for better sampling at distance r, we

included these Fmean values into the average of FmeanðrÞ. After generating

the force profile FmeanðrÞ for the range of separations, we calculated the

PMF by numerically integrating the interpolated FmeanðrÞ as

PMFðrÞ ¼ �

Z r

0

dr0Fmeanðr
0Þ ð3Þ

From this profile, the free energy barrier �Goff is obtained from the

difference between the minimum of PMFðrÞ at rmin and the maximum

PMF value at larger distances r4rmin:

��Goff ¼ min PMFðrÞ½ � �max PMFðr4rminÞ½ � ð4Þ

Errors in the forces are estimated from the standard deviations of the

forces �Fmean
ðrÞ across the set of replicate simulations at each distance r,

and errors in the PMF �PMFðrÞ are subsequently derived as follows:

�PMFðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 0

r

dr0�2Fmean
ðr0Þ

s
ð5Þ

2.3 Simulation setup

The wild-type (WT) X-ray structures of the TCR–pMHC (Garboczi

et al., 1996) and MP1–p14 (Kurzbauer et al., 2004) complexes, resolved

at 2.6 and 1.9 Å, were taken from the Protein Data Bank entries 1ao7

and 1vet, respectively. The TCR–pMHC structure contains 707
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residues, of the human A6 TCR in complex with the MHC-bound Tax

nanopeptide. The MP1–p14 complex contains 240 residues, of two struc-

turally very similar chains of low sequence similarity, with a large and

shallow interface.

2.3.1 Equilibration procedure
For the atomistic and CG simulations, a general equilibration scheme

was performed, which was identical for atomistic and CG except where

noted below. First, the structure was energy-minimized in vacuum, fol-

lowed by the separation of the interacting proteins to the constraint dis-

tance r along the reaction coordinate. These structures, for each r, were

solvated in a periodic cubic box with a size ensuring a minimum distance

between the proteins and the box edges to avoid self-interactions with

periodic images. For the atomistic simulations, the SPC water model and

a minimum distance of 1.2 nm were used. For the CG simulations,

MARTINI water was used with a 1.0 nm minimum distance. Energy

minimization on the solvated system was performed first with, and

then without, position restraints. In the atomistic energy minimization,

position restraints were first put on non-H atoms, followed by restraining

only C� atoms. The system was neutralized by adding as many Naþ or

Cl� counter ions as needed for a total charge of 0. Then, another unre-

strained energy minimization was performed. The neutralized and sol-

vated structure was simulated for 20 ps (atomistic) or 30 ps (CG) with

position restraints on the C� atoms (atomistic) or whole structure (CG),

to allow the solvent to equilibrate around the solute. The temperature

was set to T ¼ 303 K using a Berendsen (Berendsen et al., 1984) (CG)

or a Nosé–Hoover (Cheng and Merz, 1996) (atomistic) thermostat with

�T ¼ 0:1 ps. The pressure in atomistic simulations was set to P ¼ 1 bar

using a Parrinello–Rahman barostat (1981) with �P ¼ 0:5 ps. In CG

simulations, pressure was set to P ¼ 300 bar, using a Berendsen barostat

(Berendsen et al., 1984) with �P ¼ 0:5 ps. The high pressure in the CG

simulations was applied to ensure the bulk MARTINI CG water is in the

fluid region of the phase diagram. We determined the MARTINI CG

water phase diagram from separate Gibbs ensemble simulations (Frenkel

and Smit, 2002). Temperature and pressure were equilibrated for 0.1 ns

(atomistic) or 0.2 ns (CG). The resulting conformations were used in the

production simulations without position restraints.

2.3.2 Atomistic production simulations Atomistic production MD

simulations were performed for the WT TCR–pMHC (3 replicates) and

MP1–p14 (10 replicates). Equilibration procedure and production runs

were repeated for each distance, cf. Equation (2). Each production simu-

lation was run for 2 ns.

2.3.3 CG production simulations CG production MD simulations

were performed for the WTs and in-silico mutants (20 replicates). Before

starting the CG equilibration procedure, the atomistic structure was first

energy minimized and then coarse-grained using atom2cg (http://md.

chem.rug.nl/cgmartini). The tertiary structure of the CG complex was

stabilized by generating distance restraints on the backbone atoms

(Marrink et al., 2007). This equilibration procedure and the production

runs were repeated for each distance in Equation (2). Production simu-

lations were run for 2 ns or 2�s as indicated.

2.4 Definition of different residue classes

The relative and absolute solvent accessible surface areas (SASAs) of

the residues were calculated in the monomer (e.g. TCR) and dimer

A B

C D

Fig. 1. The mean force profile and the PMF from atomistic and CG calculations. (Top) Identical symbols at a given distance are calculations of the mean

force from simulations that differ slightly in their starting conformations. Blue and green lines describe the means of these values at each distance,

respectively for atomistic and CG simulations. (Bottom) PMF describing the free energy of dissociation. Distances41 Å below the PMF minimum are

not shown. Blue and green lines describe the PMF obtained by atomistic and CG simulations, respectively. The corresponding free energy profiles

are shown in Supplementary Figure S3. Stars show experimentally determined �Goff and equilibrium distances in the native crystal structures. Error

bars are based on standard deviations in the mean force, cf. Equation (5). (A and C) MP1–p14 and (B and D) TCR–pMHC complex
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forms (e.g. TCR–pMHC). Subsequently, residues that have57% of their

side chain accessible to the solvent in both forms were defined as protein

core. Residues that have47% of their side chain exposed to the solvent in

the monomer and 57% in the dimer were defined as interface core.

Residues that have47% of their side chain accessible to the solvent in

both forms were defined as interface rim if there was a difference of at

least 1 Å2 in their absolute SASA between two forms. Residues that do

not fall into one of the above groups were called surface residues. The

outer interface rim class is composed of the closest surface residue neigh-

bours of interface rim residues located on the same monomer. The

number of outer rim residues identified in a complex is the same as the

number of rim residues.

2.5 In silico mutations and statistical analysis

To probe the biological relevance of the CG calculations, we introduce

mutations guided by the BLOSUM62 substitution matrix (Henikoff and

Henikoff, 1992) in the MP1–p14 complex. We mutated all 23 interface

core residues to the amino acid with the highest substitution score (other

than itself) to obtain the evolutionarily most likely mutant (see

Supplementary Table S6). In a separate set of mutations, we mutated

the interface core to the lowest-scoring substitutions to obtain the least

likely mutant (see Supplementary Table S6). We performed 20 replicate

simulations for both mutants, each starting from slightly different starting

conformations. Next, we also made all 23� 19 possible interface core

mutants and simulated each 10 times.

To further probe biological relevance, we compare the effects of

random mutations at different locations at and around the interface for

both the MP1–p14 and the TCR–pMHC complexes. We created 20 com-

positionally different interface core mutants where all n interface core

residues (see Supplementary Table S2) were substituted with randomly

chosen amino acids. Then, we created 20 different interface rim mutants

by randomly substituting n interface rim residues with random amino

acids. Next, we obtain 20 outer interface rim mutants by randomly sub-

stituting the n non-interface neighbours of the interface rim. We calcu-

lated the PPI for each of these mutants only once rather than multiple

replicates. Differences in the free energy barrier ��G were statistically

tested with a two-sided Mann–Whitney test separately for every mutant

and for the WT.

Finally, we made specific interface mutations in a homologue of the

TCR–pMHC complex described by Wu et al. (2002). We chose the seven

mutants with the largest measured ��Gs: in the beta chain Q64A, E69A

and A73G, and in the peptide K99R, T102N, T102S and the double

mutant Y97F/T102S.

3 RESULTS

3.1 Calculation of free energy barrier with respect to

the bound state

To obtain the free energy barriers to compare atomistic and CG

results, we calculate the PMF (Fig. 1C and D). This can be

derived from the mean force Fmean cf. Equation (1) required to

constrain interaction members (e.g. TCR and pMHC) at a

number of COM separation distances (Fig. 1A and B).

Several immediate observations can be drawn from Figure 1.

First, force profiles obtained by the atomistic and the CG model

are in reasonable agreement for both complexes (Fig. 1A and B).

Second, at a given separation distance r, simulations of nearly

identical starting conformations (identical symbols in Fig. 1A

and B on the distance r) yield a distribution of force values in

both atomistic and CG simulations rather than converging to

some value. Finally, these distributions overlap closely for

distances larger than �2.75nm (Fig. 1A) and �5.5nm (Fig.

1B), but diverge at shorter distances.
Next we calculated the average mean force at each distance to

obtain the force profiles Fatom
meanðrÞ, in blue, and FCG

meanðrÞ, in green

in Figure 1A and B. We calculated the PMF by numerically

integrating the interpolated FmeanðrÞ cf. Equation 3 (Fig. 1C

and D). The free energy barrier can now simply be obtained

from the well-depth of the PMF, cf. Equation (4). The resulting

PMFs shown in Figure 1C and D for both complexes provide a

comparison between the free energy minima calculated from the

atomistic and the CG simulations, as well as with the experimen-

tally determined interaction strengths.
For the MP1–p14 complex, atomistic and CG simulations

yielded free energy barriers �Goff ¼ 132 and 104 kJmol�1, re-

spectively, both overestimating the reported experimental

�Goff ¼ 91kJmol�1 (Kurzbauer et al., 2004). For the TCR–

pMHC complex, atomistic and CG simulations yielded free

energy barriers �Goff ¼ 101 and 80 kJmol�1, respectively, close

to the experimental values �Goff ¼ 79:5 kJmol�1 (Ding et al.,

1999) and �Goff ¼ 78:6 kJmol�1 (Davis-Harrison et al., 2007

and see Supplementary Table S1 for further details). As noted

above, a very small correction must be made to the free energy

barrier (Gilson et al.,1997), which amounts to �4 kJmol�1 (see

Supplementary Data for a detailed calculation). To probe the

effect of sampling of the rotational degrees of freedom, for the

MP1–p14 complex, we also calculated the PMF based on a trip-

licate set of long 2�s CG simulations. Supplementary Figure S4

shows ordering is present in the short (2ns) simulations, as well

as at close distances in the long (2�s) simulations; however, this

ordering disappears at farther distances (44nm) in the long

simulations, indicating a strongly improved rotational sampling.

We found a negligible change in the �Goff as a result of this

improved sampling.
Besides interaction strength, Figure 1C and D presents a

comparison between the experimentally reported PPI equilib-

rium distance (the separation distance in X-ray structure) and

the corresponding value from simulations (the distance at the

PMF minimum). We see that the experimental distances were

slightly underestimated by the atomistic PMF in both cases,

whereas the CG PMF appears to yield distances closer to the

crystal structure, especially in the case of TCR–pMHC

interaction.

3.2 Computational speed-up

The running time of atomistic MD simulations for MP1–p14 at

the longest COM separation distance r ¼ 4:44 nm was 284 CPU-

hours (CPUh). CG-ing reduced the running time at this distance

to 0.5 CPUh, yielding a 568-fold speed-up. Shorter separations

are progressively faster, but show similar speed-ups. In the case

of the TCR–pMHC, this was 1333 and 2.5 CPUh, respectively,

for a speed-up of 533-fold. In total, we invested well over 300 000

CPUh in the atomistic simulations, over the 3 and 10 replicate

calculations for the TCR–pMHC and MP1–p14 complexes, re-

spectively. In contrast, the CG simulations for the 456 different

mutants (10 or 20 replicates each) only required �100000 CPUh.

The 2�s CG simulations (three replicates) required an additional

64 000 CPUh.
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3.3 Evolutionary likelihood of mutations and the

free energy

To obtain a simple, although biologically relevant test case, we

substituted interface core residues in MP1–p14 according to

BLOSUM62 (Henikoff and Henikoff, 1992). We define two

sets of mutations; one where each residue is mutated into the

evolutionarily most distant residue, and one where it is mutated

into the closest residue type (detailed substitutions in

Supplementary Table S6). One would expect minimal distortion

of the PMF from the closest substitutions, and maximal distor-

tion for the evolutionarily most distant substitutions.
It is clear from the results shown in Figure 2A that when the

interface core composition was altered with the most similar

amino acids, change in the interaction strength remains insignifi-

cant (��Goff ¼ 7 kJmol�1, P50.38; see Supplementary Table

S5 for detailed significance values), whereas substitutions with
the most dissimilar amino acids have a strongly disruptive effect

on the PPI that is highly significant (��Goff ¼ 71:5 kJmol�1,
P510�11; see Supplementary Table S5). However, we still ob-
serve a favourable interaction (�Goff ¼ 32� 13kJmol�1) with

the most dissimilar mutant structure. Note that the force field
alone has no such predictive value (see Supplementary Fig. S7).

We have in addition considered all single mutations for each
of the 23 interface core residues for MP1–p14. Of all ��Goffs

with respect to the WT, 16 are significant (P� 0.05 using
Student’s t-test with Hommel multiple testing correction; 121

at P � 0:05 with just t-test). This corresponds to a detection
limit of about ��Goff 	 8 kJmol�1. Figure 2B compares

��Goff between all mutants (excluding the WT as the rest of
the protein structure is biased towards the WT amino acid)

with the corresponding BLOSUM62 scores, and shows that
there is a strong correlation between them, as expected. In a

homologue of the TCR–pMHC complex, we furthermore
show that we can reproduce experimental �Goffs for interface
mutations to within the accuracy of our calculations (see

Supplementary Fig. S7).

3.4 The interface core dominates the interaction

Our final in silico experiment with the CG model was aimed at
investigating the effective role of interface residues in the inter-

action between two proteins. We first defined classes of residues
based on SASA and distance (Fig. 3, for definitions see Section 2,

a summary is provided in Supplementary Table S2).
We substituted the same number of residues from each class

with randomly chosen amino acids, and calculated the inter-
action strength in the resulting mutant complexes. The resulting

PMFs shown in Figure 4 indicate significant disruptive effects of
mutations at the interface core in both the MP1–p14 (P510�8;

see Supplementary Table S3 for detailed significance values) and
TCR–pMHC (P52 � 10�4; see Supplementary Table S4),

whereas mutations in the interface rim appear to have very little
influence on the PMF compared with the WT. Note that in both
complexes, mutations of outer rim sometimes yielded enhanced

interaction strengths.

4 DISCUSSION AND CONCLUSION

In this article, we have set out to answer the following questions.

First, can we use CG MD simulations to get the free energy
barrier with respect to the bound state for PPI that are of similar

accuracy to those from atomistic MD simulations? Second, what
is the gain in speed and overall sampling for CG versus atomis-

tic? Finally, can we get biologically relevant results from the CG
model, similar to what we expect to get from the atomistic model
(at much higher computational cost)?

4.1 Biological relevance

We have shown that by using the CG MARTINI force field, we

obtain free energy barriers that are at least as close to the experi-
mental values as those obtained using an atomistic force field.

Moreover, evolutionarily least likely mutations, according to
BLOSUM62 substitution propensities, at the interface core dis-

rupt binding, whereas the most likely mutations hardly influence

A

B

Fig. 2. The PPI effects of different mutations at the MP1–p14 interface.

(A) PMF curves of the WT, the most similar and dissimilar mutants in

black, red and blue, respectively. Error bars are based on standard devi-

ations in the mean force, cf. Equation (5). (B) Box-plot of average

��Goff per substitution type, based on pairwise differences between

single mutations at the interface core, versus the corresponding

BLOSUM62 substitution score, with a correlation R ¼ �0:39 and sig-

nificance P � 2:2 � 10�8
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binding. It is important to note here that the residue similarities

from large-scale sequence comparisons, as captured in the

BLOSUM62 matrix, are independent of the MARTINI CG

force field.
Likewise, mutations on the interface core have a much more

disruptive effect on the binding than those at the interface rim.

Mutations farther away from the interface have negligible effects.

This is consistent with the findings that residues at the interface

core in general behave much like protein core, whereas interface

rim residues are more similar to those at the surface (e.g.

Tuncbag et al., 2009).

These results show that the CG MARTINI force field is sen-

sitive to changes in the shape and physicochemical properties of

the interface, and suggest it is suitable for studying the effects of

biologically relevant structural changes in PPIs.

Of note, we observe that even the evolutionarily least likely

mutations in the interface core still result in a minimum well in

the PPI PMF, which means that some (weak) affinity is retained.

This may be due to retained shape compatibility of the mutant

interface or due to favourable ‘supporting’ interactions of resi-

dues in the interface rim. This could also explain our finding that

least likely mutations that are performed only on one side of the

interface (see Supplementary Table S5) have much smaller dis-

ruptive effects on the binding.

We also noticed that some outer interface rim mutations

significantly lower the well depth; note that these residues do

Fig. 3. Detailed view of the interface regions of interacting proteins. (A) MP1–p14 and (B) TCR–pMHC showing the interface core residues in blue,

interface rim in red and outer interface rim in green in VDW representation. The remaining proteins are shown as cartoons. (C) and (D) show the

interfaces ‘opened up’ by rotation outward by 90
 around the vertical axes to expose the interacting ‘faces’ using the same colour as in (A) and (B)

A B

Fig. 4. The effect of mutations in different regions of the interacting pairs. The interface core mutants are in blue, interface rim in red, outer interface rim

in green and the WT in black. Pale colours on the background are for each individual mutant and darker colours indicate the mean PMF for each

mutant class. (A) MP1–p14 and (B) TCR–pMHC complex. Supplementary Figure S5 shows corresponding plots with only one of three residues mutated
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not participate in the interaction in the WT complex. This

increased binding strength could be caused by additional

interactions that are introduced by these mutations. We

found that the most significantly increased binding strength

occurred in mutants with a higher net charge. This could

mean that either additional salt-bridges contribute to the bind-

ing, or that possibly (additional) counter-ions interact at the

interface to increase the binding strength. Alternatively, the

interface rim is known to infer specificity through complemen-

tarity of shape and binding properties (Guharoy and

Chakrabarti, 2005), and is therefore not tuned for optimal

binding strength. Likewise, the interface as a whole may not

be evolutionarily optimized for binding affinity, as other func-

tional aspects are also likely to give selective advantages. This

means that there may in fact be ample room for optimization

of the binding affinity in any particular naturally occurring

protein–protein interface.
Finally, we do see qualitative differences between the atomistic

and CG PMFs, although our set of two complexes does not

allow us to decide which one is in better agreement with experi-

mental dissociation constants. Underlying reasons for these dif-

ferences are likely related to the different parameterization of

short-range interactions in these force fields. The difference be-

tween the experimental and computed equilibrium distances can

have a number of explanations. The crystal structures represent

vacuum systems in which the protein structure is very rigid,

whereas we simulated systems of solvated ‘breathing’ proteins.

Furthermore, the MARTINI force field includes restraints on

the tertiary structure of the protein, whereas the unrestrained

atomistic simulations will allow larger deviations in the interface

on binding. This may explain why equilibrium binding distance

in the CG calculations is closer to the crystal structure than the

atomistic simulations. In any case, a comparison of the experi-

mental equilibrium COM distances to the ones we computed is

expected to yield differences.

4.2 Sampling is crucial

Surprisingly, for both complexes, the CG model appears to be at

least as accurate in approximating the experimental value as the

atomistic model. Part of the reason for that could be better

sampling of the mean force for the CG model where the faster

simulations enabled us to perform 20 independent simulations

for each separation distance, whereas only 3 (TCR–pMHC) or

10 (MP1–p14) simulations could realistically be performed for

the atomistic model.

We also find that, for a given separation distance, simulations

from slightly different starting conditions do not converge to the

same value of the constraint force (see Fig. 1A and B, � and 


symbols) for both the CG and the atomistic models, and this

effect is strongest at short separation distances. We attribute

this observation to the complex potential energy surface at

small separation distances. Simulations of biomolecules starting

from nearly identical initial conditions are known to get trapped

in local minima (Luo et al., 2006). In general, this can be over-

come as well with sufficient sampling.
The reason we could perform so many more simulations for

the CG model is of course its increased computational efficiency,

500–600 times faster than the atomistic simulations. The primary

reason for this large computational gain is the reduction in par-

ticle density, and the ensuing quadratic decrease in numbers of

pairwise interactions calculated. Moreover, the larger heavier

particles with softer interaction potentials in the CG force field

allow much longer integration time-steps without loss of accur-

acy than is possible with the atomistic force field. Therefore, we

can conclude that, for all but very small-scale analyses, the

amount of sampling required for accurate determination of the

�Goff barrier can only realistically be achieved using CG models.
Some further efficiency could possibly be gained by optimizing

simulation parameters, particularly the integration time-step.

For the atomistic simulations, time-steps of up to �t ¼ 5 or 6

fs may be used with negligible loss of accuracy (Feenstra et al.,

1999). A similar speed-up may likewise be achieved in the CG

simulations.
One final challenge regarding the accurate calculation of the

free energy of binding in particular remains largely open: that of

the accurate estimation of loss of rotational entropy on forma-

tion of a protein complex (Chang et al., 2008; Grunberg et al.,

2006; Tamura and Privalov, 1997; Yu et al., 2001). In the results

presented here, at 2 ns sampling, the rotational entropy is not

fully sampled (see Supplementary Fig. S4). For the free energy

difference between the bound state and the unbound state, this

would result in a discrepancy between the simulation and the

experiment. However, at the top of the barrier, this error is ex-

pected to be much smaller (Cuendet and Michielin, 2008); our

2�s simulations for the MP1–p14 complex confirm that this

effect can be extremely small. Furthermore, the correction is ex-

pected to be independent of the details of the force field used,

and therefore we can directly compare the results between the

atomistic and CG simulations.
It is interesting to note that we could use the increased

efficiency in the CG simulations to directly sample rotational

degrees of freedom, as indicated by the complete loss of orienta-

tional ordering at 2�s and large separation distance (see

Supplementary Fig. S4). It is beyond the scope of this work,

but once sufficient sampling is established, these results can be

used to estimate directly the changes in entropy during the bound

to unbound transition in complexes like this one.

4.3 Limitations of the approach

In this article, we compared two force fields on two complexes of

known structure. We have shown that for these two complexes,

the interaction profiles are highly similar when comparing the

atomistic force field to the CG MARTINI force field. To claim

generality of these findings, a larger test set may be required.

However, the computational requirement for the reference simu-

lations using the atomistic force field is prohibitive. Additionally

none of the current methods in docking or simulation can predict

binding affinities without knowledge of the bound structure

(Kastritis and Bonvin, 2010).
The comparison has been made by assuming that conform-

ations in the free state as well as in the bound state are relatively

stable. For other complexes, this may be different, e.g. when the

PPI involves ‘induced fit’ effects, especially for highly flexible

binding partners. It is unlikely that the methods proposed here

will be directly applicable to such cases. It should be emphasized

that the atomistic approach is equally unfeasible here, but in that
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case due to limits in computational sampling. The in silico mu-
tational study presented here did not account for the possibility
that mutations might disrupt protein secondary structure, as

these kinds of structural rearrangements are not possible in the
MARTINI model.

4.4 Future implications

Our results confirm the dominance of the interface region in
determining the PPI for the two complexes. This opens the pos-

sibility to restrict the simulated system to the interface area and
intervening water only. However, when only a limited volume at
the interface region is simulated, the number of water molecules

in that volume cannot be assumed constant during force calcu-
lation. Rather, this system should be considered at a constant
chemical potential (�) with fluctuating numbers of particles (N),

i.e. the grand-canonical (GC) or �VT ensemble.
Traditionally, MD simulations are performed in the micro-

canonical (NPE), canonical (NVT) or isothermal/isobaric

(NPT) ensemble, as this simplifies calculations and the complex-
ity of the software required (Frenkel and Smit, 2002). We have
recently published a python library interface to the GROMACS

simulation engine (Pool et al., 2012) that enables simulation of a
GC �VT ensemble through a hybrid MD/Monte Carlo integra-

tion scheme.
The combined speed-up achieved by coarse-graining and

volume restriction would be sufficient to incorporate the calcu-

lation of binding free energies into a three-stage approach to PPI
calculation for genomic-scale application. First, non-interacting
protein pairs would be filtered out using cheap sequence-based

methods (e.g. Ezkurdia et al., 2009). Second, docking will be used
to find the most likely binding interfaces (Lensink and Wodak,
2010; Pons et al., 2010). In a final step, binding energy calcula-

tion will then be used to select the stable complexes (Pool and
Bolhuis, 2010). Although this goal, for now, remains in the
future, it does seem only a few small steps away.
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