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Summary

The current status of classical force fields for proteins is reviewed. These include additive force 

fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. 

Parametrization strategies developed specifically for the Drude force field are described and 

compared with the additive CHARMM36 force field. Results from molecular simulations of 

proteins and small peptides are summarized to illustrate the performance of the Drude and 

AMOEBA force fields.
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1. Introduction

Classical molecular dynamics (MD) simulations of proteins using empirical force fields 

have reached a mature state after 35 years of development and are now widely used as tools 

to investigate their structure and dynamics under a wide variety of conditions. These include 

studies of ligand binding, enzymatic-reaction mechanisms, protein folding and un-folding 

and protein-protein interactions.

Fundamental to such simulations is determination of the time evolution of the system's 

energy (protein for example) as a function of its atomic coordinates. An accurate description 

of the energy is thus required, since the lower energy states are expected to be populated. 

The gradient of the energy function, which is differentiable, is related to the forces acting on 

individual atoms. In chemistry the set of potential energy functions from which the forces 

are derived is commonly referred to as a force field (FF). As a result of many years of 

careful refinement, current additive protein energy functions are of sufficient quality that 

they may be used predicatively for studying protein dynamics and protein–protein 

interactions and in pharmacological applications (1). It is clear that the next major step in 

advancing protein force field accuracy requires a different representation of the molecular 
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energy surface. Specifically, the effects of charge polarization must be included, as fields 

induced by ions, solvent, other macromolecules, and the protein itself will affect 

electrostatic interactions (2-6).

Our goal here is to provide an update of the newest developments that have occurred in the 

field of FF-based MD simulations of proteins since our last review was published (7). 

Previously, we focused on the functional forms of additive FFs, strategies for parameter 

optimization, methodologies to perform MD simulations such as pressure and temperature 

control, and software packages available for MD simulations. Also briefly mentioned were 

efforts to extend additive FFs to other biomolecules. The FFs detailed were the Amber, 

CHARMM, GROMOS, and OPLS-AA additive protein FFs, with particular emphasis on 

CHARMM because of our continuing role in its development. While the present review 

begins with a brief update on the status of additive protein FFs, here we primarily focus on 

the latest developments in the inclusion of electronic polarizability into protein FFs. 

Emphasis is placed on the CHARMM Drude polarizable FF and the polarizable AMOEBA 

FF, and we direct interested readers to other recent reviews (5, 6, 8, 9). Also of interest may 

be new improvements in the Amber family of FFs (10), and, to our knowledge, no new 

reviews on the OPLS-AA or GROMOS protein FFs have appeared since our previous 

review in this series.

A general familiarity with molecular mechanics and dynamics and their applications to 

proteins is assumed. Simulation methods for proteins are well established, with many good 

textbooks and monographs covering the basics (11-17). The reader is also referred to chapter 

one of this volume.

2. Current Status of Additive Force Fields

Since the last review in this series (7), some notable developments have been made to 

additive FFs for proteins. Below, brief descriptions of the improvements introduced to two 

of the major additive FFs for proteins, CHARMM and Amber, are given.

2.1 CHARMM force field

The CHARMM additive all-atom FF has been in development since the early 80s (18) and 

has achieved a substantial degree of completeness with regard to coverage of chemical 

space. Apart from proteins (19, 20), it supports nucleic acids (21-23), lipids (24-26), and 

carbohydrates (27-30), allowing simulations on all commonly encountered motifs in 

biological systems. It has also been extended to cover the wide range of the chemical space 

required to study compounds common in medicinal chemistry through the CHARMM 

General FF (CGenFF) (31). The CHARMM additive FF for proteins recently underwent a 

significant update that culminated in the C36 version of the FF, as detailed below (20).

Long simulations with the additive C22/CMAP FF (19, 32, 33) had shown that certain fast-

folding proteins would reach the native state, when started from a completely unfolded 

configuration (e.g. Villin headpiece subdomain) (34). However, significant deficiencies 

were also found. Examples of problems included misfolding encountered in long 

simulations of the pin WW domain and differences in the Villin folding mechanism from the 
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experimental results (34, 35). In the case of the WW domain, free energy calculations 

showed that the misfolded states had lower free energies than the folded state, confirming 

that the energy function could be further improved (36). A number of studies had suggested 

that such differences could be the result of small inaccuracies in the energy of the backbone, 

resulting in one structure being favored, and that this behavior could be corrected with minor 

adjustments to the backbone potential (37-40). Best et al. reported a revised set of 

CHARMM all-atom protein FF parameters (C36) that represents a significant improvement 

in the potential energy surface, while keeping the same functional form (20). The 

improvements that were introduced included (1) a new backbone CMAP potential, 

optimized against experimental data on small peptides and larger, folded proteins and (2) 

new side-chain dihedral parameters optimized using QM energies for dipeptides, 

conformational sampling in the model system (Ala)4-X-(Ala)4 (41) and NMR data from 

unfolded proteins. Other improvements relative to the previous C22/CMAP protein FF 

included Lennard-Jones (LJ) parameters for aliphatic hydrogens (42), internal parameters for 

the guanidinium ion (43), and improved parameters for tryptophan (44). Changes of the 

backbone and side-chains were done simultaneously, ensuring that in the new FF their 

contribution to protein structure and dynamics is balanced.

2.2 Amber force field

Amber FFs for proteins have been continually improved in recent years and a detailed 

discussion of the various changes is beyond the scope of this review. Significant revisions 

have been published, with particular emphasis on important dihedral angles. Simmerling and 

co-workers (45) introduced changes to the backbone potential in the original Amber ff99 FF 

by fitting to additional quantum-level data to produce the improved Amber ff99SB FF. Best 

and Hummer continued along the same line, modifying the backbone potential of the ff99SB 

and ff03 FFs to obtain a better balance between sampling of helix and coil conformations. 

The new FFs were named ff99SB* and ff03*, respectively (38). Modifications of the side-

chain torsion potential for four amino acid types in ff99SB was introduced by Lindorff-

Larsen et al. originating the ff99SB-ILDN FF (46). Further enhancements were produced by 

Li and Bruschweiler based on experimental NMR data, originating the ff99SB-ILDN-NMR 

FF (47). To our knowledge, the latest update in the Amber FFs was introduced recently by 

Neremberg and Head-Gordon, who included a perturbation to the ϕ backbone dihedral 

potential to shift the beta–PPII equilibrium. This resulted in improved sampling in water 

(TIP3P and TIP4P-Ew). Their updates were designated ff99SB-ILDN-Phi (48). In addition 

to proteins, the Amber FFs support most common biomolecules. The ff10 FF collection 

includes the most commonly used variants: the ff99SB protein parameters (45), the BSC0 

DNA parameters (49), the Cheatham et al. ion parameters (50, 51), and updated RNA 

parameters (52, 53). Carbohydrates are supported through the Glycam FFs (54-56), and 

phospholipids are supported through the CHARMM FF and the recent Lipid11 FF (57).

3. Polarizable force fields for biomolecules. Current status

3.1 Drude Polarizable Force Field

Development of the Drude polarizable FF in CHARMM (58) started in 2001 and the 

capability to simulate the Drude model is now included in NAMD (59), ChemShell 
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QM/MM (60) and the OpenMM suite of utilities for GPUs (61). Development of the force 

field first involved implementation of the appropriate integrators to allow computationally 

efficient extended Langrangian MD simulations (62). This was followed by optimization of 

the first water model, in which a positive charge was assigned to the Drude particle (SWM4-

DP) (63). The SWM4-DP model was re-optimized with a negative charged assigned to the 

Drude particles, consistent with their representation of the electronic degrees of freedom. 

The new model, called SWM4-NDP, is the standard polarizable water model of the Drude 

polarizable FF (64). It was calibrated to reproduce important properties of the neat liquid at 

room temperature and pressure such as enthalpy of vaporization, density, static dielectric 

constant and self-diffusion constant, free energy of hydration and shear viscosity. 

Concurrently with development of the water model, methodologies to determine 

electrostatic parameters for the Drude FF were advanced (65).

An early test of the feasibility of molecular dynamics simulations with the Drude polarizable 

FF was a successful simulation of a DNA octamer in a box of water with sodium 

counterions (66). Development of the Drude polarizable FF continued with parametrization 

of small molecules covering the functional groups commonly found in biomolecules. In 

2005, the alkane FF was developed, followed by parametrization of alcohols and aromatic 

compounds in 2007 (67, 68). Harder et al. published the first generation of N-methyl 

acetamide (NMA) parameters in 2008 (69). Noteworthy is the proper treatment of the 

dielectric constant by the polarizable FF in all systems, a property considered essential for 

the accurate treatment of, for example, hydrophobic solvation in biomolecules. The Drude 

polarizable FF was extended to the nitrogen-containing heteroaromatic compounds in 2009 

(5). FF parameters were refitted for ethers by Baker and MacKerell (70), with significant 

improvements in the reproduction of liquid phase dielectric constants, while maintaining the 

good agreement of the previous model with all other experimental and quantum mechanical 

target data (71). Sulfur containing model compounds were parametrized in 2010 (72). Other 

classes of molecules for which Drude empirical FF parameters had been developed are 

nucleic acid bases (73) and acyclic polyalcohols (74). Early simulations of 

dipalmitoylphosphatidylcholine (DPPC) bilayers and monolayers were reported (75), 

followed by completion of a refined model for DPPC (76).

Significant progress has been made in extending the Drude polarizable FF from small 

compounds representative of the building blocks encountered in biological polymers to the 

polymers themselves. The Drude empirical FF applicable to MD simulation studies of 

peptides and proteins, termed Drude-2013, is covered in Section 5, which includes a full 

account of the results. The optimization of the polypeptide backbone parameters is discussed 

in detail in Section 4.2 and the optimization of side-chain torsions is discussed in Section 

4.3.

3.2 Amoeba force field

AMOEBA is another classical polarizable FF that has achieved the goal of producing a fully 

functional FF model for proteins (77). Development of the AMOEBA polarizable FF has 

been ongoing since 1995 (78) and is based on modeling the electrostatic energy using 

permanent and induced contributions. Permanent electrostatics originate in atomic 
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multipole-multipole interactions with moments up to the quadrupole located on each atom. 

The induced contribution is modeled iteratively by generating an induced dipole originated 

by permanent multipoles and other induced dipoles. Self-consistency is obtained using an 

iterative scheme, and the Thole model (79) is used to dampen electrostatic interactions at 

short range.

The AMOEBA FF was initially developed for water (80, 81). Testing included reproduction 

of a variety of experimental data and quantum calculations for small clusters, liquid water, 

and ice. Several liquid phase properties including bulk thermodynamic, transport, and 

structural measures were tested. These included density, heat of vaporization, self-diffusion 

coefficient, heat capacity, dielectric constant, and radial distribution functions. Overall, 

excellent agreement with reference values was obtained, and the model was demonstrated to 

be applicable to structural properties of two ice forms (81).

Treatment of ions in AMOEBA is described in reference (82). Absolute solvation free 

energies for potassium, sodium, and chloride ions in liquid water and formamide have been 

computed. Simulation results accurately reproduced vacuum QM results, experimental ion-

cluster solvation enthalpies, and experimental solvation free energies for whole salts.

The AMOEBA FF has been extended to organic molecules, including alkanes, alcohols, 

amines, sulfides, aldehydes, carboxylic acids, amides, aromatics, and other small organic 

molecules (83). As a validation, the hydrogen bonding energies and structures of gas phase 

heterodimers with water were evaluated. Liquid self diffusion and static dielectric constants 

computed from MD simulations with AMOEBA are consistent with experimental values. 

The FF was further tested by computing the solvation free energy of 27 compounds not 

included in the parametrization process. It performed well across different environments and 

phases, yielding an RMS error of 0.69 kcal/mol. Analysis of the dependence of computed 

hydration free energies for seven small organic molecules with the QM level of theory used 

to derive atomic multipoles was presented recently (84). It was concluded that inclusion of 

diffuse functions in the QM calculation of the atomic multipoles is important. More 

comprehensive descriptions of the AMOEBA FF have been presented previously and the 

reader is referred to those publications for additional details (85-87).

4. Parametrization of polarizable force fields

4.1 Generic parametrization strategies for the Drude polarizable force field

The quality of FFs is heavily dependent on the quality of the underlying parameters. To 

obtain parameters of sufficient quality that are capable of producing accurate simulation 

results, procedures have been developed to target properties such as molecular geometries 

and vibrations, pure solvent properties, and free energies of solvation, among others during 

the parametrization. In this section we will describe parametrization of the polarizable Drude 

FF implemented in CHARMM. Reference to the well-establish protocol used to derive 

CHARMM additive FF parameters will be done whenever a parallel is useful. The general 

outline of the parametrization process has been described for the CHARMM additive FF in 

several publications (see references (1) and (19) for more details). Note that parameter 

optimization remains an iterative process in the polarizable FF and several rounds of 
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parametrization are typically performed until a satisfactory level of agreement with target 

data is obtained.

A common strategy in parameter optimization of biological macromolecules is that 

parameters are developed for small, representative model compounds and then transferred to 

the larger macromolecules. The advantages of this approach are: (1) smaller models are 

easier to treat using both MM and QM methods and (2) more experimental data are available 

for the smaller systems, including thermodynamic properties of condensed phases, such as 

heats of vaporization or sublimation and free energies of aqueous solvation. It is crucial to 

include such data in the parameter optimization process to get an accurate description of the 

non-bond portion of the FF. This strategy was also attempted in the development of Drude 

FF parameters for the protein backbone, but ultimately a more involved procedure was 

required as detailed in Section 4.2.

Parametrization of CHARMM FFs relies on obtaining appropriate intramolecular (bond, 

angle, dihedral, Urey-Bradley, and improper terms), van der Waals (vdW), and electrostatic 

parameters that adequately reproduce selected target data. Determination of the electrostatic 

parameters differs between the additive and the Drude polarizable FFs. In the Drude FFs, in 

addition to optimization of point charges, which is also required in the additive FF, 

polarizabilities and Thole factors must also be determined. In the additive CHARMM FF, 

optimization of point charges is based on a supramolecular approach where the charges are 

adjusted to reproduce QM HF/6-31G* interaction energies and geometries of the model 

compound with, typically, individual water molecules. Placement of water molecules at 

different orientations around the molecule enforces that local electronic polarization is 

accounted for implicitly, an important feature for accurate reproduction of condensed-phase 

properties. Additional data, often includes QM results on dimers and dipole moments of the 

models. It is well-known that in additive force fields, dipole moments must be overestimated 

to reproduce condensed phase properties (19, 88).

Other additive biomolecular FFs, most notably Amber, determine atomic partial charges 

based on reproduction of the QM Electrostatic Potential (ESP), evaluated on grids 

surrounding model compounds (89-91). These methods are convenient because charges can 

be developed quickly for any compound for which the QM ESP can be determined. An 

extension of ESP methods is inclusion of restraints during fitting, referred to as the 

restrained ESP (RESP) approach (92). This overcomes limitations on the determination of 

charges on buried atoms (93). It is important to note that partial charges from both 

supramolecular and ESP approaches are conformation-dependent, requiring care in the 

selection of appropriate conformations when performing the charge optimization.

Electrostatic parameters of model compounds in the Drude polarizable FF are obtained from 

restrained fitting to perturbed QM ESP maps on grid points located on concentric Connolly 

surfaces surrounding the molecule. Often fitting is supplemented with reproduction of the 

molecular dipole moment and diagonal elements of the polarization tensor (65, 94). The 

determination of the atomic polarizabilities and Thole factors (79) requires multiple 

perturbed ESPs typically calculated at the B3LYP/aug-cc-pVDZ level, with each giving the 

electronic response of the molecule to a point charge. Perturbing ions are placed mainly 
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along chemical bonds and lone pairs (LPs). This protocol was later extended to incorporate 

additional lone pair parameters and polarizability anisotropy, and has become the standard in 

developing electrostatic parameters for small molecules (95). LPs typically carry the charge 

of the atom (e.g., N, O, S in proteins) to which they are attached. The associated 

polarizability and Thole factor are both assigned to the parent atom. Anisotropic 

polarizability of hydrogen bond acceptors was found to be required to reproduce interactions 

with ions as a function of orientation. Initial values for the partial atomic charges are taken 

from the C22 additive all-atom FF, and those for the polarizabilities are based on adjusted 

Miller's atomic hybrid polarizability (ahp) values (96).

Although gas-phase properties (eg. dipole moments) are easily reproduced with full atomic 

polarizabilities, scaling of the polarizabilities has been shown to be necessary to reproduce 

condensed-phase properties (64). A scaling factor of approximately 0.7 was found 

appropriate for the SWM4-DP and SWM4-NDP water models while for other classes of 

molecules scaling factors range from 0.6 to 1.0, with 1.0 being full polarizability. For 

instance, scaling factors are 0.7 for primary and secondary alcohols (67), 0.85 for aromatics 

(68), N-containing heterocycles (94), nucleic acid bases (73) and ethers (97), and 1.0 for 

alkanes (42). Other scaling factors are 0.7 for thiols, 0.85 for dimethyl disulfide and 0.6 for 

ethylmethyl sulfide (72). A value of 0.724 was recently used in ion parameters (98). Final 

optimization of the electrostatic parameters consists of testing the model for reproduction of 

the pure solvent dielectric constants and adjusting the polarizability scaling if necessary.

Development of parameters to model vdW forces in the Drude FF, which are treated using 

the Lennard-Jones (LJ) 6-12 term, follows closely the protocol established for the additive 

FF and will only be briefly outlined here. Jorgensen and co-workers (99, 100) pioneered the 

use of condensed-phase simulations, usually pure liquids, as the basis for optimization of 

Lennard-Jones (LJ) parameters that account for both vdW attraction and inter-atomic 

repulsion. Typically, once electrostatic parameters are determined, the LJ parameters for a 

model compound can be adjusted to reproduce experimental pure solvent properties such as 

heat of vaporization, density, isothermal compressibility, heat capacity, heat of sublimation, 

lattice geometry, and free energy of aqueous solvation, as available. Although this is an 

effective method for the fine-tuning of the parameters, there are important issues. One is 

parameter correlation, such that LJ parameters for different atoms in a molecule and/or the 

magnitudes of εij and Rmin on the same atom, can compensate for individual unbalanced 

values, making it difficult to gauge whether they are balanced relative to one another (101). 

To overcome this problem, a method has been developed to determine the relative value of 

the LJ parameters based on high level QM data (102) with the absolute values being based 

on scans of εij and Rmin that reproduce experimental data (103, 104). This approach requires 

supramolecular interactions between rare gases and the model compound. Importantly, once 

satisfactory LJ parameters are obtained for atoms in a class of functional groups, they can 

often be directly transferred to other molecules carrying those functional groups without 

additional optimization.

Reproduction of experimental hydration free energies reflects how well the electrostatic and 

vdW parameters model interactions with bulk water. Recently, in the context of the 

polarizable Drude FF, it was shown that atom-pair-specific LJ parameters (termed “NBFix” 
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in the context of CHARMM) needed to be used in order to minimize discrepancies between 

calculated and experimental hydration free energies while simultaneously reproducing pure 

solvent heats of vaporization and molecular volumes (105).

Optimization of internal parameters is usually done relative to target data that include 

geometries, vibrational spectra and conformational energies. Geometries are typically 

optimized at the MP2/6-31G* level (or MP2/6-31+G* in the case of anions), and vibrational 

spectra are obtained at the MP2/6-31G* level. Frequencies are scaled using correction 

factors prescribed by Radom and co-workers (106), and a symbolic potential energy 

distribution (PED) analysis is performed as proposed by Pulay et al. (107) using the 

MOLVIB module in CHARMM. This approach has been shown to yield good agreement 

with experimental geometries for model compounds of complex systems such as proteins, 

nucleic acid bases, and sugars (22, 108, 109), while being computationally feasible.

4.2 Parametrization of the polypeptide backbone in the Drude force field

Parameterization of polypeptide backbone was initially assumed to follow the general rules 

in use for CHARMM FFs, namely that parameters would be transferable from smaller 

model compounds. The prototype of the protein backbone, for all residues except glycine 

and proline, was based on alanine polypeptides. The initial electrostatic model, identified as 

Drude-NMA, was derived from a combination of electrostatic parameters that included N-

methyl acetamide (NMA) and ethane, and LJ parameters were also transferred from NMA 

and ethane. Several rounds of optimization were previously done on NMA: initial 

parameters were published by Harder et al. (69) and a final set by Lin et al. (110) In the 

latest model LJ parameters were selected to give acceptable intramolecular hydrogen bond 

distances in α-helix conformations of alanine polypeptides in addition to allowing 

reproduction of NMA experimental condensed phase properties (110). CMAP corrections 

for alanine dipeptide were also used to allow the (ϕ, ψ) Ramachandran map to reproduce a 

high-level QM (RIMP2/CBS//RIMP2/cc-pVDZ) surface, where the CBS (complete basis 

set) extrapolation was obtained from RIMP2/cc-pVTZ and RIMP2/cc-pVQZ single point 

energies following the prescription of Halkier et al. (111). The Drude-NMA model was 

tested by calculating gas phase molecular properties of alanine dipeptide and (Ala)5 in 

different conformations, such as dipole moments, relative energies, and molecular 

polarizabilities, and through MD simulations of (Ala)5 in solution (112). Testing the 

behavior of (Ala)5 in solution has become common practice in the validation of protein force 

fields, being used in the development of the C36 additive FF (20) and the AMOEBA 

polarizable FF (77) (see Section 5.1) for details.

As alluded to above, direct transfer of Drude-NMA parameters to polypeptides did not yield 

acceptably accurate results (Table 1). Using transferred parameters, the agreement of the 

computed dipole moments, polarizabilities, and relative energies with target values was 

poor, in particular for the extended conformations. Tests of NMR J-coupling also indicated 

poor agreement with experiment due to a (ϕ, ψ) distribution that predominantly populates 

extended C5 conformations.

Included in Figure 1 are representative orientations and magnitudes of the induced dipoles 

and separations (pm) of the Drude particle and main atom in a dipeptide section of the 
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alanine dipeptide (values in parenthesis) and (Ala)5. All calculations were done enforcing 

the C5 conformation for both systems. The separation between the Drude particle and the 

main atom is a direct measurement of the magnitude of the induced dipole. Using Drude-

NMA electrostatic parameters (Figure 1A), displacement of the Drude particles in (Ala)5 

relative to the parent atom are similar on all carbonyl C (labeled Ci-1) atoms (~14 pm), and 

are substantially larger than the displacement for Ci-1 in alanine dipeptide. Ci-1 in alanine 

dipeptide is bound to a methyl group and the polarizing field is much weaker than in the 

longer polypeptide where Ci-1 feels the electric field originating from the same amino acid's 

NH group. The case is similar for the N atoms, with Ni+1 showing a much stronger induced 

local dipole in (Ala)5 as compared to the alanine dipeptide. The induced dipole on Cα is 

smaller on (Ala)5, enhancing the dipole interaction between Ni and Ci. This results in two 

effects. First, local dipoles associated with the peptide bonds interact with each other 

enhancing the local dipole moments associated with each peptide bond and, second, the 

larger dipole strengthens electrostatic interactions with water leading to overstabilization of 

the C5 conformation. Indeed, a comparison of the dipole moments of acetyl-(Ala)5-N-

methylamide for the NMA based model with QM data indicated the overall dipole moment 

of the C5 conformation to be significantly overestimated (Table 1). It was, therefore, 

hypothesized that the overestimation, which would lead to even more favorable interactions 

with aqueous solvent, was due to the electrostatic parameter optimization procedure based 

on NMA alone not defining balanced electrostatic interactions between the individual 

peptide bonds. Based on this analysis it was concluded that use of larger model compounds 

allowing communication between adjacent peptide bonds was required in the determination 

of electrostatic parameters, with the initial candidate being the alanine dipeptide.

Electrostatic parameters based on the alanine dipeptide were determined by averaging the 

components over five independent sets of parameters obtained from electrostatic potential 

(ESP) fitting corresponding to the αR, αL, C5, PPII and C7eq conformations. This model is 

referred to as Drude-ALA in the text below. For each conformation the electrostatic 

parameter optimization, which included the partial atomic charges, atomic polarizabilities, 

and atom-based Thole factors, was performed using the FITCHARGE module of 

CHARMM by fitting to the QM ESP maps as described above. The outcome is electrostatic 

parameters that better reproduce the change in the ESP associated with electrostatic 

interactions between the peptides bonds in the different relative orientations. The resulting 

Drude-ALA model yielded a smaller dipole moment for the C5 conformation for acetyl-

(Ala)5-N-methylamide (Table 1). Simulations of (Ala)5 in aqueous solution were also 

performed and compared to Drude-NMA, and while the Drude-ALA model showed 

improved agreement with experiment, the agreement was still poor as compared to the 

additive C36 FF. It was found that the PPII region started to be populated, though the C5 

conformation still dominated, indicating that the inclusion of electrostatic interactions 

between the peptide bonds during parameter optimization did improve the quality of the FF. 

However, those improvements were clearly insufficient, indicating that different target data 

were needed to obtain a more accurate electrostatic model for the polypeptide backbone.

The inability of Drude-ALA electrostatics to provide a reasonable description of properties 

of alanine polypeptides in gas-phase and solution prompted development of a third 

parametrization strategy. The rationale of the new methodology has its roots in the 
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fundamental physics of the Drude model. In the presence of an electric field the position of 

the Drude particles are optimized while the main atom remains fixed following the Born-

Oppenheimer principle. This creates on each atom a local dipole that, although small, is able 

to interact with neighboring dipoles. The magnitude of each dipole can be controlled by two 

factors: (1) the atomic polarizability, and (2) the damping of 1-2 and 1-3 interactions 

through the individual Thole factors. Thus, for polymeric structures, control of the behavior 

of each dipole is extremely complex. Boundaries cannot be explicitly imposed locally for 

each atom or groups of atoms as in other polarizable methods since the overall properties are 

the result of many cross interactions spanning wide regions of the system. As a 

consequence, an effective methodology of parametrization needed to include enough 

information on the whole molecule, thus allowing for a balanced set of electrostatic 

parameters. Furthermore, it was necessary to include information not only in gas phase but 

also from interactions with water molecules, since water is the preferred medium where 

most of the MD simulations with Drude oscillators are anticipated to take place. The third 

optimization method of backbone electrostatic parameters used a Simulated Annealing (SA) 

protocol (113), yielding the final model, Drude-2013. The target data consisted of an array 

of QM observables determined for the alanine dipeptide and larger alanine polypeptides. 

Target data included the polarizability of the alanine dipeptide, relative energies of (Ala)5, 

dipole moments of alanine dipeptide and (Ala)5, and energetic and structural data for the 

interaction of the alanine dipeptide with individual water molecules along specific 

directions. Several conformations of the alanine models were used: αR, C5, and PPII for the 

relative energies of (Ala)5; C5 and PPII for the interactions of the alanine dipeptide with 

water; and αR, C5, PPII, and C7eq conformations of the alanine dipeptide for molecular 

polarizabilities and dipole moments. In addition to the electrostatic parameters, during the 

SA internal parameters were allowed to vary within a limited range to keep the alanine 

dipeptide optimized geometries close to the targeted values. SA started with a temperature 

of 150 K with individual parameters randomly adjusted followed by accepting or rejecting 

the new parameter set based on the Metropolis criterion, resulting in Monte Carlo Simulated 

Annealing (MCSA) (114). The temperature was gradually reduced to near 0 K yielding a 

selected parameter set for testing in (Ala)5 solution simulations. The error function was the 

weighted sum of all differences between MM and QM data for all properties mentioned 

above with various weighting factors. During MCSA fitting, a new CMAP that reproduces 

the QM alanine dipeptide (ϕ, ψ) RIMP2/CBS//MP2/6-311G(d,p) surface was generated at 

each iteration. In addition, empirical adjustments of the CMAP were added to the QM-based 

surface to improve agreement with conformational sampling of the peptide backbone in 

peptides and proteins, resulting in the final Drude-2013 model.

While both C36 and Drude-2013 (ϕ, ψ) surfaces have undergone some empirical 

adjustments, the underlying energy surfaces was based on quantum mechanics, and therefore 

the overall landscape of the surfaces is similar. Adjustments in the C36 CMAP, which was 

obtained at the LMP2/cc-pVQZ level, included local optimization of the helical and sheet 

regions to reproduce subtle features observed in crystallographic survey data (32) followed 

by subsequent shifting of the helical region to decrease the tendency for the C22/CMAP 

model to over-populate that conformation (20). For the Drude-2013 model, the overall sheet 
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region was lowered and the areas between the sheet and helical regions and from ϕ = −90 to 

−180 and ψ = −60 to 105° were raised.

4.3 Side chain χ1, χ2 dihedral parameter optimization in the Drude force field

Different side chains impact the conformational distribution of the polypeptide backbone, as 

observed in experimental studies (115-117). The peptide (Ala)4-X- (Ala)4 has been used 

before as a model system for χ1, χ2 parameter optimization (46), where X is the amino acid 

of interest and the backbone conformation is constrained to fully extended, C7eq, PPII, or 

αR conformations (41). Those studies indicated that (Ala)4-X- (Ala)4 with either the C7eq 

or PPII backbone conformation yields aqueous phase conformational properties that mimic 

those occurring in full proteins. Based on this analysis, χ1, χ2 parameter optimization was 

performed by initially targeting QM data for the respective side chain dipeptides, with the 

backbone in the β, αR, and αL conformations. These parameters were then used in 

Hamiltonian Replica Exchange MD (H-REMD) simulations (118) of (Ala)4-X- (Ala)4 in 

solution, with χ1, χ2 sampling compared with PDB survey data. Overlap coefficients (OC) 

(41) for χ1 and χ2 distributions from (Ala)4-X- (Ala)4 in the C7eq conformation and those 

from a survey of the PDB (119) were computed, with an OC of 1 indicating exact agreement 

and an OC of 0 indicating no agreement. The extent of overlap for some of the amino acids 

based on optimization only targeting the QM data was found to be quite good. For example, 

values of 0.87, 0.88 and 0.87 were obtained for χ1 for Cys, Leu, and Val, respectively, while 

the OC was 0.92 for χ2 with Leu. Based on the quality of the fit for these residues, 

additional optimization was not performed. Additional optimization for the remaining 

residues involved comparison of the computed and target χ1 and χ2 populations of the 

gauche+, gauche−, and trans rotamers and manually adjusting the corresponding dihedral 

parameters to improve the level of agreement. After the optimization, significant agreement 

with the PDB target data was obtained for a number of amino acids, notable examples being 

Ile, Lys, and Thr. Overall, the final OC values are typically 0.7 or higher, though lower 

values were also found including Asn χ2, Asp χ1, Gln χ2, and Glu χ1. The final parameters 

were used for the reported polypeptide and protein simulations. In reference (120) we 

present detailed descriptions of the optimization protocol and final results.

4.4 The AMOEBA force field and parametrization of proteins

Detailed methodology for deriving electrostatic parameters for AMOEBA to allow 

incorporation of novel molecules has been published (83), and therefore what follows is a 

brief overview. Determination of permanent atomic multipoles for glycine, alanine, and 

proline residues was done based on capped acetyl-X-N-methylamide dipeptides with X = 

Gly, Ala, and Pro. The first step is definition of intramolecular direct polarization groups, 

which is important because atoms belonging to one group can only polarize atoms outside 

that group. The group definitions for alanine dipeptide are show in Figure 2 of reference 

(77). For side chains, groups are also selected. The optimization proceeds with assignment 

of the initial multipole parameters from Distributed Multipole Analysis (DMA) at the 

MP2/6-311G** level. Initial parameters are then iteratively optimized against the MP2/aug-

cc-pVTZ electrostatic potential computed on a set of grid points around the dipeptide 

compounds. Converged Permanent Atomic Multipoles (PAMs) were determined 

simultaneously for five local minima: αL, α', C5, C7a, and C7e conformers
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5. Application of polarizable force fields to protein simulations

The year 2013 marked important milestones in the development of polarizable FFs. After 

years of development, polarizable FFs for peptides and proteins suitable for MD simulations 

based on classical Drude oscillators (Drude-2013) and the AMOEBA model 

(AMOEBA-2013) were published. Here, we summarize results of MD simulations with the 

two FFs.

5.1 Peptide simulations with C36 additive, AMOEBA-2013, and Drude-2013 force fields

With advances in computing capacity, it has become common to use simulations of 

oligopeptides in solution to calibrate FF torsional parameters (20, 45, 112, 121-124), since 

results can be directly compared to experimental nuclear magnetic resonance (NMR) data 

for corresponding peptides. Conformational distributions in an NMR experiment are 

reflected in NMR-derived spin–spin coupling (J-coupling) constants. Using Karplus 

relations, J-coupling values can be computed from peptide conformations from MD 

simulations, and the ability to achieve ever-increasing timescales via MD allows for the 

computational generation of conformational ensembles of a size that can be meaningfully 

compared with experiment (121, 125).

As an example, simulations of small polypeptides of (Ala)3, (Ala)5, (Ala)7, (Val)3 and 

(Gly)3 were used by Best et al to validate the improved CHARMM36 additive FF (C36) 

(20). Using this approach, C36 introduced small but significant changes relative to its 

predecessor, C22/CMAP. In alanine- and valine-based peptides, minima occur at PPII, with 

C5 and αR being only slightly higher in energy. The additional minima at αL and C7ax are 

approximately 2–3 kcal/mol higher than the PPII conformation. And while there is only a 

small difference between (Ala)3, (Ala)5, and (Ala)7, sampling for (Val)3 was significantly 

different because of the presence of the bulky hydrophobic side chain. Compared with other 

FFs, AMBER ff99SB9 and ff99SB* are closest to C36, while OPLS/AA (126) is 

qualitatively different with a minimum at C7eq and Gromos 53a6 FF (127) has two minima 

near αR and a low-energy transition region between αR and C7ax.

C36 (ϕ, ψ) sampling has also been compared with experimental NMR J-coupling. 

Agreement was very good for the alanine-based peptides and for (Gly)3, and reasonable for 

(Val)3. The new C36 FF significantly improves over the previous C22/CMAP FF, with 

improvement coming from decreased sampling of αR conformations and increased sampling 

of PPII, which is reflected in the J-couplings. In reference (20) C36 was also compared with 

other FFs outside the CHARMM family (AMBER ff99SB (45), OPLS/AA (126), Gromos 

53a6 (127)), showing significantly lower χ2 values. No direct comparison of C36 with the 

latest improved Amber FFs has been published, although it is anticipated that C36 will 

compare very favorably to experimental data based on published results.

Sampling for the unblocked, protonated (Ala)5 peptide has been tested using the 

AMOEBA-2013 FF (77). Sampling is similar to C36, with a distinct global minimum 

located around the PII conformation and two other basins approximately 0.5 kcal/mol higher 

in free energy in the β-sheet and α-helix regions. Barriers separating the global basin from 

the two local minima are 1–2 kcal/mol. (ϕ, ψ) sampling was compared with experimental J-
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coupling constants, and values from MD simulations are in excellent agreement with those 

probed by experiment with a χ2 value of 1.0

Simulations of (Ala)5 polypeptides were not used to validate the newly developed Drude 

polarizable FF in CHARMM but rather were explicitly part of the optimization process, 

particularly for the fine tuning of the CMAP potential so as to yield acceptable sampling 

patterns in the tested protein systems. In addition, the GB1 (41-56) hairpin (128, 129) and a 

dimeric coiled coil (1UOI) (130) were also used as target data for optimization of the 

Drude-2013 model. Due to the use of multiple small peptides, as well as larger proteins, as 

target data, sampling of (Ala)5 had to be slightly compromised, yielding χ2 values larger 

than 1.0.

Explicit solvent simulations of the GB1 hairpin of 100 ns yielded RMS differences with the 

Drude model more similar to the crystal structure of the full GB1 protein as compared to the 

C36 where the RMS difference fluctuated between 2.5 and 3 Å, indicating drift away from 

the crystal structure. With the dimeric coiled coil (1UOI) (130) RMS analysis showed the 

overall structure of the coiled coil to deviate more from the crystal structure with the Drude 

model as compared to C36 (see reference (120) for details). The individual helices in the 

dimer move relative to each other, while the conformations of the individual helices are well 

preserved, suggesting the ability of the Drude-2013 model to properly treat the helical 

secondary structure of the individual monomers. (ϕ, ψ) probability distributions from the 

simulations supported this conclusion. Thus, the Drude model satisfactorily reproduces the 

conformational properties of small peptides on the 100 ns time scale, though longer 

simulations will be required to more rigorously challenge the model.

5.2 Full proteins

Further validation of the Drude-2013 force field involved explicit solvent MD simulations 

on 10 proteins: 1EJG (crambin), 1P7E (protein GB1 domain), 1MJC (cold-shock protein A), 

1UBQ (ubiquitin), 3ZZP (circular permutant of ribosomal protein), 4IEJ (DNA methyl 

transferase associated protein), 135L (lysozyme), 1IFC (fatty acid binding protein), 3VQF 

(PDZ domain from tight junction regulatory protein), and 1BYI (dethiobiotin synthase). The 

proteins are relatively small, typically less than 100 residues, and cover a range of secondary 

structures.

The stability of each protein was characterized by the value of its backbone RMS deviation 

(RMSD) relative to the crystal structure. Results, summarized in Table 7 and Figure S2 of 

the Supplementary Information of reference (120) showed the RMS differences are typically 

larger with the Drude model versus C36 additive force field as are the RMS fluctuations. 

The Drude-2013 model shows additional flexibility compared to the additive model with 

only one exception, namely ubiquitin (1UBQ). While the Drude model generally appears to 

have more flexibility than the additive C36 model, NMR analysis indicated that for selected 

residues with high mobility in C36, the Drude model gave improved agreement with 

experiment, as shown in Figure 7 of Lopes et al. (120).

Results with AMOEBA-2013 protein FF (77) have been reported for three of the proteins 

studied with the Drude-2013 force field. These include crambin (1EJG), ubiquitin (1UBQ) 
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and lysozyme. AMOEBA MD simulations were performed for 30 ns yielding backbone 

RMSDs in the vicinity of 1, 2, and 2 Å for the three proteins, respectively. At 30 ns of the 

Drude simulations the corresponding values were 1.1/1.1, 1.9 and 1.9/2.2 Å, were two 

values are from duplicate simulations.

Although the Drude model showed additional flexibility over the additive C36 model, the 

overall structures of the proteins is well maintained. Snapshots taken at 100 ns for lysozyme 

(135L) and dethiobiotin synthase (1BYI) superimposed on the corresponding crystal 

structures are shown in Figure 2, showing the overall maintenance of the structures. 

Consistent with this was the (ϕ, ψ) sampling with the Drude model over all the simulated 

proteins being similar to a survey of the PDB as well as sampling occurring with C36 

(Figure 6 of Lopes et al). In addition, the N-H...O=C distance distributions in secondary 

structures were reasonably reproduced by the Drude model, though there is a tendency 

towards the distances being slightly longer than distributions from PDB crystal structures 

(Figure 5 of Lopes et al.).

Additional analysis involved dipole moments of selected moieties during the MD 

simulations. These included the peptide bonds in the GB1 hairpin and ubiquitin and 

tryptophan residues in lysozyme (Figure 8 of Lopes et al). In all cases the Drude dipole 

moments are systematically larger than with the additive model. This indicates that, while 

partial atomic charges in the additive model are adjusted to overestimate molecular dipole 

moments, the extent of overestimation is not enough for the protein environment. In 

addition, the dipole moments of the peptide bonds with the Drude model in sheets are 

systematically larger than in helices. Finally, significant variations in the dipole moments 

were observed in the Drude simulations (eg. > 1.5 D for a Trp in lysozyme). Thus, even 

though the additive models were optimized to yield enhanced dipole moments appropriate 

for the condensed phase, it does not appear that the overestimation was sufficient based on 

these initial polarizable calculations. That, as well as the large variation in the dipoles 

occurring in the Drude model, suggest that the underlying physical forces dictating the 

overall properties of the peptides and proteins is significantly different in the Drude versus 

the additive model. Indeed, the additional flexibility in the Drude model may be due to the 

inclusion of electronic polarization in the model allowing for the variability of the local 

molecular dipoles.

6. Summary

The field of empirical FF based simulations of proteins continues to develop. Since the last 

publication of a similar review great progress has been made including the publication of 

two polarizable force fields for proteins as well as improvements in the AMBER and 

CHARMM additive protein force fields. Work on other classes of biopolymers has also 

made significant progress allowing for simulations of heterogeneous systems. As other 

researchers start using the recently published force fields, in particular the polarizable force 

fields, limitations will certainly be found and corrections and improvements are expected.

As was emphasized in this review, development of electrostatic parameters in the Drude 

force field is very complex. It is expected that new optimization algorithms together with 
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more sophisticated target data will lead to significant progress. Polarizable models for other 

classes of biomolecules based on the Drude oscillator will be published soon for DNA and 

carbohydrates as well as a wider range of lipids.

While polarizable MD simulations will make a significant contribution to our understanding 

of protein structure and function it should be emphasized that these models are more 

sensitive to initial conditions than with an additive FF, and can have polarization 

catastrophes that will cause simulations to fail. To overcome this it is suggested that systems 

initially be set up and equilibrated with an additive FF and then converted to the polarizable 

model. To facilitate this procedure the CHARMM-GUI (131) has been extended to include a 

new utility, the “Drude Prepper.” The Drude Prepper reads equilibrated CHARMM PSF and 

coordinate files and converts them to Drude format files. This includes the production of 

inputs for MD simulations using CHARMM or NAMD. This utility will greatly facilitate the 

application of the Drude model to a range of proteins as well as other systems.

Concerning computational efficiency, the Drude model typically requires the use of a 1 fs 

integration time step during MD simulations. In addition, there is an approximately 2-fold 

overhead associated with the calculation of the polarization contribution to the electrostatics. 

Thus, the model is approximately 4-fold slower than corresponding additive simulations 

performed with a 2 fs integration time step. However, the NAMD implementation is highly 

parallelizable (59), which will facilitate simulations of large systems using the Drude model.
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Figure 1. 
Illustration of induced dipoles on dipeptide moieties of alanine dipeptide and (Ala)5. Values 

in parenthesis are for alanine dipeptide.
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Figure 2. 
100-ns snapshots from Drude-2013 simulations (red) of lysozyme (135L) and dethiobiotin 

synthase 1BYI superimposed on the starting crystallographic structures (blue).
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Table 1

Gas phase dipole moments of alanine dipeptide and (Ala)5
a
, molecular polarizability of alanine dipeptide and 

relative energies of (Ala)5.

Molecular dipole moment of alanine dipeptide (Debye)

αR C5

QM
b Drude-NMA Drude-ALA Drude-2013 QM Drude-NMA Drude-ALA Drude-2013

M 6.2 5.0 6.4 6.7 4.7 5.8 2.3 2.6

μ x 1.3 0.1 3.1 3.0 −4.4 −5.6 −1.8 −2.3

μ y −1.6 −0.9 −1.7 −1.5 −1.0 −0.9 −0.6 −0.3

μ z 5.9 4.9 5.4 5.8 1.2 0.9 1.3 1.3

Molecular dipole moment of (Ala)5 (Debye)

αR C5

QM
c Drude-NMA Drude-ALA Drude-2013 QM Drude-NMA Drude-ALA Drude-2013

M 22.0 13.5 22.4 20.8 11.6 24.4 4.5 9.3

Molecular polarizability of alanine dipeptide (Å3)

αR C5

QM
b Drude-NMA Drude-ALA Drude-2013 QM Drude-NMA Drude-ALA Drude-2013

Axx 13.57 13.40 16.18 15.30 15.49 16.02 19.89 16.07

Ayy 12.72 12.60 14.29 14.36 12.06 11.87 13.39 12.78

Azz 11.71 11.03 12.68 9.94 10.35 9.78 11.05 10.39

Relative energies of (Ala)5 (kcal/mol)

QM
d Drude-NMA Drude-ALA Drude-2013

αR-C5 −6.59 6.21 5.31 −3.89

αR-PPII −14.83 −5.77 0.42 −10.17

a
(Ala)5 is acetyl-(Ala)5-N-methylamide

b
QM dipole moments and polarizabilities of alanine dipeptide obtained at the B3LYP/aug-cc-pVDZ level with the polarizabilities scaled by 0.85

c
QM dipole moments for (Ala)5 obtained at the B3LYP/6-31G* level

d
single point energies were calculated at the RIMP2/cc-pVTZ//RIMP2/cc-pVDZ level.
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