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Abstract

In the quest to achieve scalable quantum information processing technologies, gradient-based

optimal control algorithms (e.g., GRAPE) are broadly used for implementing high-precision

quantum gates, but their performance is often hindered by deterministic or random errors

in the system model and the control electronics. In this paper, we show that GRAPE can be

taught to be more effective by jointly learning from the design model and the experimental data

obtained from process tomography. The resulting data-driven gradient optimization algorithm

(d-GRAPE) can in principle correct all deterministic gate errors, with a mild efficiency loss. The

d-GRAPE algorithm may become more powerful with broadband controls that involve a large

number of control parameters, while other algorithms usually slow down due to the increased

size of the search space. These advantages are demonstrated by simulating the implementation

of a two-qubit CNOT gate.
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I. INTRODUCTION

In practical quantum information processing, high-precision implementation of univer-

sal quantum gates (usually involving 1∼3 qubits) is vital. Although the current control

technology has been able to meet the minimum requirement for quantum error correction

[1] (e.g., the 0.6-1% error threshold for surface codes has been reached in superconduct-

ing circuits [2], ion-traps [3], quantum-dots [4] and nitrogen-vacancy centers in diamond

[5]), the achievable precision still needs to be improved in order to reduce the resource

overhead required for scalable quantum computation [6].

Towards this “last mile” target, an effective method for gate tuneup is to optimize the

control pulses by following the gradient direction of the error function, which popularly

has one form known as the GRAPE (GRadient Ascending Pulse Engineering) algorithm

[7]. When supplied with abundant control resources, the algorithm is highly efficient

in that the optimization almost always quickly converges to a global optimal solution,

owing to the underlying expectation of finding an attractive trap-free optimal control

landscape [8–10]. The GRAPE algorithm is by nature offline (or ex situ [11]) because the

optimization is usually with respect to a design model identified from prior experiments,

and no real online data is used during the optimization process. Thus, the systematic

errors in the design model (e.g., the identified Hamiltonian and the pulse distortion by

a waveform generater), as well as the uncharacterized random noises in the system and

pulses, limit the control precision. Regarding these items, the designed control pulses

should be immune to the systematic errors and be robust to the random noises.

Online (or in situ) learning can in principle correct for the systematic errors by it-

eratively calibrating the control pulses based on measurement outcomes. This learning

control concept can be traced back to the early 1990s in the control of molecules by

training ultrafast laser pulses [12], which has been successful in hundreds of physical and

chemical experiments [13]. In most applications, the control objective is with respect

to a target state or the ensemble average of some quantum observable, where the con-

trol fields are updated by heuristic optimization algorithms such as a genetic algorithm

[12] or evolutionary strategy [14]. Learning control for quantum gate tune-up is much

more difficult than the aforementioned applications, because the full characterization of
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the control outcome requires process tomography that needs many more experiments to

measure additional observables at high precision. In existing protocols, the extra data

acquisition problem is usually bypassed via randomized benchmarking (RB) [15], which

is much easier for gate error verification without having to fully reconstruct the gate ma-

trix. Several RB-based learning algorithms have been proposed, e.g., the Nelder-Mead

algorithm was used in [16] and [17], with applications to superconducting qubits. To ex-

ploit the attractive trap-free control landscape [8], gradient-based (or greedy) algorithms

were also introduced to accelerate the online optimization, where extra measurements

(proportional to the number of control variables) need to be done to estimate the full or

partial gradient from the data [11, 18–21].

The complexity of online learning control algorithms mainly depends on the total

experimental costs, while the numerical calculations on a computer is usually negligible

when only a few qubits are involved. In the existing algorithms, the overall cost can

be very high due to the required many iterations (mainly for RB-based optimization

[11, 16, 17]) or the expensive measurements in each iteration (mainly for gradient-based

optimization [18–20]).

To further reduce the total experimental cost, we find that the design model, which is

often used for obtaining a good initial guess for the control pulse, can play a new role in

accelerating the succeeding online learning calibration process. This opportunity arises

because the design model contains valuable a priori knowledge about the experimental

system, which is obtained from elaborately designed offline measurements. This motiva-

tion leads to the algorithm proposed in this paper, in which the design model is embedded

into the data-driven learning procedure to synthesize the gradient vector also utilizing

data from process tomography. The algorithm can effectively reduce the number of iter-

ations by predicting the gradient descent or ascent direction for quantum gate tuneup,

which compensates for the increased cost of tomography. Besides, under circumstances

where broad-bandwidth controls are required for noise suppression or high-speed gate

operations, the total experimental cost of our algorithm may be further reduced, while

the corresponding cost usually increases with other algorithms. We refer to the method

presented here as a data-driven type of GRAPE algorithm, or d-GRAPE for short. The

remainder of the paper is organized as follows. The d-GRAPE algorithm is described
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in Section II, whose effectiveness in correcting model error and control pulse distortion

is demonstrated through simulations in Section III. Finally, conclusions are presented in

Section IV.

II. THE DATA-DRIVEN GRADIENT ALGORITHM

In this section, we will present the basic procedure of the data-driven gradient algo-

rithm.

A. The quantum control model

We assume that the quantum control system is closed and governed by the following

Schrödinger equation:

U̇(t) = −i

[
H0 +

m∑
k=1

uk(t)Hk

]
U(t), (1)

where U(t) ∈ CN×N represents the quantum gate operation on the states, with U(0) = IN ,

the identity matrix; and uk(t) ∈ R, k = 1. · · · ,m, are the control fields imposed on the

control system. The free Hamiltonian H0 and the control Hamiltonians Hk’s are N ×N
Hermitian matrices that steer the unitary U(t).

In practice, the above Hamiltonians are never precisely known. Thus, any numerical

calculation has to be based on a design model:

U̇D(t) = −i

[
HD,0 +

m∑
k=1

vk(t)HD,k

]
UD(t), (2)

that can be accessed by a computer. The free and control Hamiltonians in the design

model (2) can be very close to those in the actual system (1), but they are always

imprecise to some degree. The control pulses vk(t) in the design model are often chosen

as piecewise-constant pulses to facilitate numerical simulation on a digital computer and

in some experimental situations. Note that the (designed) control pulses vk(t) are usually

not identical with the actual pulses uk(t) applied to the system, because the control signal

produced by an arbitrary waveform generator (AWG) is often distorted due to various
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factors including electronic limitations and transmission through the control line to the

qubit. Such distorted signals have rising and falling edges or other unanticipated features,

which are sometimes called quantum gate bleedthrough [17]. For example, the distortion

can be modeled by a linear filter described as follows

uk(t) = D[vk(t)] =

∫ ∞
0

h(t− τ)vk(τ)dτ, (3)

where h(t) is the impulse response of the linear filter. The control pulse is distortion free

only when h(t) = δ(t) is the Dirac function. In the following, we will show how to correct

these errors by learning from online data.

B. From GRAPE to d-GRAPE

The goal of quantum gate tune-up is to find proper design control pulse sequences

{vk(t)} such that the generated control {uk(t)} can lead the system propagator U(T ) as

close as possible to a desired unitary matrix Uf . This can be achieved by minimizing the

infidelity function [22]

J =
1

2N
‖U(T )− Uf‖2, (4)

where the norm is defined as ‖X‖ =
√

Tr(X†X).

There are different ways of utilizing the gradient to optimize the control pulse. We il-

lustrate the concept in the paper with the typical steepest descent algorithm that updates

the control pulses in the following fashion:

vk(t, `+ 1) = vk(t, `)− α(`) · gk(t, `), (5)

where gk(t, `) = δJ
δvk(t,`)

is the gradient in the `-th iteration and α(`) is the learning rate

that is chosen as a sufficiently small positive real number. Taking U(T ) as an implicit

function of {vk(t)} through (1) and (3), we have

gk(t, `) =

∫ ∞
0

δJ
δuk(t′, `)

δuk(t
′, `)

δvk(t, `)
dt′

=

∫ ∞
0

〈∆(T, `), Hk(t
′, `)〉δuk(t

′, `)

δvk(t, `)
dt′
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where Hk(t, `) = U †(t, `)HkU(t, `) and the inner product is defined as 〈X, Y 〉 = Tr(X†Y ).

The error matrix is

∆(T, `) =
1

2i

[
U †fU(T, `)− U †(T, `)Uf

]
.

The variation term in the integral is induced by the distortion of the control pulses. In

the linear case exemplified in (3), we have

δuk(t
′, `)

δvk(t, `)
= h(t′ − t). (6)

Because the true gradient function (6) can never be precisely evaluated due to the

unavailability of the true model of the system, a practical operation is to ignore the pulse

distortion and calculate the gradient in an offline fashion, as follows

gOL
k (t, `) = 〈∆D(T, `), HD,k(t, `)〉, (7)

where HD,k(t, `) = U †D(t, `)HD,kUD(t, `) and

∆D(T, `) =
1

2i

[
U †fUD(T, `)− U †D(T, `)Uf

]
are both computed from the design model. Since the optimization is completely blind

without checking the control performance with experimental data, the learning process

along this gradient direction will be inevitably guided to a false solution that is optimal

for the design model but not for the actual system.

To find the genuine optimal control pulses, we take advantage of both of the above

two approaches. The key concept is to estimate the gradient as follows:

ĝk(t, `) = 〈∆̂(T, `), HD,k(t, `)〉 (8)

where the error matrix ∆̂(T, `) comes form the estimation of ∆(T, `) through process

tomography of U(T ), and HD,k(t, `) is calculated from the design model as in (7). In this

way, the real data are employed in order to deduce whether the learning algorithm is con-

verging to a correct solution such that ∆(T, `) = 0, and its incorporation with HD,k(t, `)

provides an approximate gradient whose deviation from the real gradient depends on the

accuracy of the design model. The entire learning process is shown in Fig. 1, where the

explicit use of the design model is the major difference with existing model-free learning

control strategies in the literature. Therefore, we refer to the algorithm as d-GRAPE.
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Experimental 
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Fig 1: (color online). Schematic diagram of the data-driven GRAPE (d-GRAPE) optimization

procedure. The gradient is estimated from both the design model and the online data (for

process tomography), which can in principle correct all deterministic errors such as the pulse

distortion and the model uncertainty.

C. Convergence analysis

It is difficult to rigorously prove the convergence of the d-GRAPE to a globally optimal

solution. Heuristically, d-GRAPE should converge to at least a locally optimal solution

because the estimated gradient (8) can still maintain descent, although possibly not the

steepest in presence of various uncertainties, as long as they are not too large. On the

other hand, d-GRAPE can stop at a desired globally optimal control solution correspond-

ing to U(T ) = Uf (assuming that the tomography error is negligible), where the gradient

(8) vanishes. Therefore, when the system is controllable and the control resources are

sufficiently abundant [9], the well-preserved attractive character of the control landscape

should assure that d-GRAPE almost always converges to the desired global optimal solu-

tion, which will be verified in the following simulation examples. In principle, d-GRAPE
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is able to correct for any deterministic errors in the model or in the control pulses. Its

precision is limited by that of the process tomography and other random noise sources in

the system.

Compared with the existing online learning algorithms, d-GRAPE will be more com-

petitive when broadband controls that involve a large number of variables are required

for high precision, speed and robustness [23, 24]. Under such circumstance, the experi-

mental cost of d-GRAPE per iteration will stay invariant, but the convergence may be

faster owing to increased freedom in the control. However, the RB-based algorithms are

expected to be more expensive because many more iterations are needed for search in the

enlarged control space, as well as for the gradient-based algorithms proposed in [18–20],

whose experimental costs per iteration increase with the number of control parameters.

III. SIMULATIONS

In this section, we will show by numerical simulations how the algorithm can correct

deterministic errors in the model and control pulses.

A. Simulation Model

We assume that the actual system is described by the following Hamiltonian:

H(t) = Jσ1
z ⊗ σ2

z +
2∑
i=1

[
uix(t)σ

i
x + uiy(t)σ

i
y

]
,

where J is the coupling strength between the two qubits. The design model is as follows:

HD(t) = (J + δJ)σ1
z ⊗ σ2

z +
2∑
i=1

[
vix(t)σ

i
x + viy(t)σ

i
y

]
,

in which δJ represents the identification error of J in the design model.

Moreover, we assume that the control pulses are distorted by a linear filter

uix,y(t) =

∫ t

0

h(t− τ)vix,y(τ)dτ, i = 1, 2,
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in which the impulse response h(t) is taken as

h(t) =
1

tr
e−t/tr , t ≥ 0. (9)

The the time constant tr characterizes the degree of pulse distortion by the steepness of

the rising edge of distorted pulses. The pulses are heavily distorted when tr is long.

B. Gate tuneup simulation results

To demonstrate the ability of quantum gate tune-up by d-GRAPE, we test the target

of a CNOT gate

Uf =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

 .

In the simulation, we set the coupling constant as J = 1 and the final time as T = 5.

The time interval is evenly divided into M = 20 sub-intervals, and hence the duration of

each sub-interval is ∆t = T/M .

In Fig. 2, we show three cases with parametric error δJ in J and pulse distortion

characterized by str. Each case includes results from 12 different initial random guesses.

We first offline optimize these fields [ i.e., following gOL
k (t) in (7)] to obtain a set of

candidate pulses that are close to the optimal solution. Then, starting from these pulses,

we perform d-GRAPE [ i.e., following ĝk(t) in (8)] based on the BFGS algorithm (a

most popular gradient-based optimization algorithm [25]) that is more efficient than the

steepest descent gradient algorithm. The estimation errors in the process tomography

is simulated by injecting an additive random noise ∆U(`) (whose Frobenius norm is

∼ 2× 10−5) to U(T, `) in each iteration. For comparison, we also run the ideal GRAPE

[ i.e., following gk(t) in (6), assuming that both δJ and tr are precisely known] from the

same set of initial pulses.

The simulation results show that the precision of the candidate pulses obtained from

offline optimization (at the beginning of the optimization process shown in the plots) is

always limited by the accuracy of the design model. When the model error is relatively
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Fig 2: (color online). Two-qubit quantum gate tuneup with the proposed d-GRAPE algorithm

(solid black curves) for different model uncertainties and their comparison with ideal GRAPE

algorithm (blue dashed curves). Each case include 12 runs from different initial guesses. (a)

small pulse distortion tr/∆t = 0.1 and small parametric error δJ/J = 0.05; (b) large pulse

distortion tr/∆t = 0.5 and small parametric error δJ/J = 0.05; (c) small pulse distortion

tr/∆t = 0.1 and large parametric error δJ/J = 0.20. The ultimate control precision ∼ 2× 10−5

is limited by the estimation error of the process tomography (indicated by the horizontal dashed

line).
11



0 5 10 15 20

Time t/ t

-2

-1

0

1

2
v 1x

 / 
u

1x
 (

a.
u.

)

v
1x

 before correction

v
1x

 after correction

u
1x

 (actual signal)

0 5 10 15 20

Time t/ t

-2

-1

0

1

2

v 1x
 / 

u
1x

 (
a.

u.
)

v
1x

 before correction

v
1x

 after correction

u
1x

 (actual signal)

Fig 3: (color online). The examples of optimized control pulses on the first qubit along the

x-axis with δJ/J = 0.1. The pulse distortion parameters are tr/∆t = 0.1 (upper plot) and

tr/∆t = 0.5 (lower plot). The blue dashed curves are the initial AWG reference signal, and the

black solid curves are the corrected AWG signal optimized to the precision ∼ 2 × 10−5 that is

limited by the tomography error. The actual distorted signals with rising and fall edges are

shown by red dash-dotted curves.

12



small [see Fig. 2(a)], the succeeding optimization based on the proposed d-GRAPE algo-

rithm (solid curves) almost always converges to its global optimal solution that is limited

by the tomography error. Compared with the ideal GRAPE optimization (see the blue

dash curves), its convergence speed is only slightly reduced.

When model error is not small enough (e.g., with severe pulse distortion in Fig. 2(b)

or parameter deviation δJ in Fig. 2(c), fewer runs can quickly converge to the global

optimal solution. Some runs still converge, but at the price of an increase in the number of

iterations. We plot in Fig. 3 the shapes of the corrected and actual x-axis control signals

on the first qubit, showing that the d-GRAPE can correct for large pulse-distortion

to achieve high-precision control without having to exactly know how the pulses are

distorted.

The model error we choose in the simulations are relatively large (e.g, 20% error in J

and pulse distortion tr/∆t = 0.5), and even under such a bad situation d-GRAPE can

still tuneup the gate to some extent. When the model error gets larger, more and more

optimizations become slower, and there even exist cases that the d-GRAPE algorithm

gets lost and is trapped at a local false optimum solution. Thus, d-GRAPE should not

be applied with a very coarse model, because of the potential traps and the increase

experimental cost on process tomography. In practice, one should improve the precision

of the design model as much as possible. Based on the high-precision model, the d-

GRAPE algorithm can correct the error caused by the residue model imprecision within

a few iterations.

C. Comparison with RB-based algorithms

We also tested the performance of d-GRAPE using different numbers of control pulses,

and compared its performance with that of the gradient-free Nelder-Mead (NM) algo-

rithm. The latter algorithm can be applied based on randomized benchmarking (RB)

without having to use process tomography. The simulations are all based on a relatively

precise model with δJ/J = 0.02.

As shown in Fig. 4, when there are few pulses to tune (M = 10), d-GRAPE is trapped

over a very rugged control landscape (i.e., resulting from an insufficient number of control
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variables producing false landscape traps), while NM can struggle to achieve a high

precision after about 2000 iterations. Given more control pulses, d-GRAPE can easily find

high-precision control solutions over an almost trap-free control landscape in several tens

of iterations. Correspondingly, the number of NM iterations is hundreds of times (or even

over one thousand times) larger than that of d-GRAPE iterations. More importantly, the

number of iterations increases for NM, but decreases for d-GRAPE, when the number of

control pulses grows. Hence, d-GRAPE is supposed to outperform NM when the number

of control variables is sufficiently large, which is expected to be the case when higher

precision and robustness are demanded.

IV. CONCLUSION AND DISCUSSION

To summarize, we have proposed a data-driven gradient (d-GRAPE) algorithm for

optimizing laboratory control pulses against deterministic errors. The entire optimization

procedure essentially performs both in a reinforcement learning manner from the online

data in addition to supervised learning from the design model (or offline data). Analyses

and simulations exemplify the calibration ability against errors induced by pulse distortion

and model uncertainty, which is in principle extendable to more general non-uniform and

nonlinear errors, as long as the process tomography can be done with sufficient precision

and a reasonably good design model is available.

There is much room for the d-GRAPE algorithm to be improved. Several extensions

of the algorithm are possible. First, extracting more knowledge from the offline model

will improve the online optimization. For example, we can estimate the gradient more

precisely by incorporating the pulse distortion function h(t) that can be offline identified

from the waveform generator; or we can use a more sophisticated learning algorithm

such as a Newton algorithm, because the Hessian matrix can be estimated based on the

same use of process tomography without increasing the number of experiments. Second,

combined with adaptive tomography [26–28], it is possible to simultaneously improve the

precision of the control and the process tomography, which will further accelerate the

learning process.

We also remark that d-GRAPE algorithm can be extended to more general objectives,
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Fig 4: (color online). Performance comparison of the d-GRAPE algorithm and the Nelder-Mead

algorithm. d-GRAPE may fail when there are only a few control parameters (M = 10), and

succeed with more control parameters (M = 20 and M = 50). When M increases from 20 to

50, d-GRAPE becomes more efficient because less number of iterations are required, while the

Nelder-Mead algorithm takes much more iterations to converge.

e.g., quantum state preparation problems, where the cost of state tomography is cheaper

and hence can be more efficient. When the real quantum system undergoes open dy-

namics, we can replace the unitary propagators by open-system process matrices, but the

achievable precision may be limited by the decoherence effects. These potential topics

and developments will be explored in the future.
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