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PROGRAM SUMMARY

Title of program: FRICTION
Catalogue number: ACWT

Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this
issue)

Computers and installations: I1BM 360/91-370/145 at IPP
Garching, IBM 370/165 at GSI Darmstadt

Operating system: HASP

Program language used: FORTRAN

High speed storage required: 140 K bytes

No. of bits in a byte: 8

Overlay structure: none

No. of magnetic tapes: none

Other peripherals used: card reader, line printer

No. of cards in combined program and test deck: 546
Card punching code: EBCDIC

Keywords: Quantum mechanics, Schridinger equation, fric-
tion, optical potential, atomic, nuclear physics, scattering

Nature of physical problem

Quantum mechanical treatment of classical equation of mo-
tion m¥ + ymx' + dV(x)/dx = 0 (incl. y = 0), by time dependent
nonlinear Schrddinger equations or solution of arbitrary (in-
cluding optical) hamiltonians.

Method of solution
Finite difference method

Restrictions on the complexity of the program
One-dimensional motion.

Typical running time
Depending on problem 0.5...5 min,

Unusual features of the program

Double precision complex arithmetic (IBM type COMPLEX*16)
is used. It should be replaced by single precision complex
arithmetic if run on a computer with more than approximate-

ly ten digits of accuracy.
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LONG WRITE-UP
1. Introduction

Frictional problems occur frequently in various
fields of physics, not only in classical mechanics but
also in atomic and nuclear physics. A specific example
is the so-called deep inelastic reaction, i.e. the scatter-
ing of heavy ions with energies well above the Coulomb
barrier. At the instant of contact the ions lose their
entire kinetic energy and are then repelled by their
mutual Coulomb energy. These reactions are well de-
scribed [1] by classical mechanics with conservative
forces and linear frictional forces. The typical equa-
tion of motion in one dimension reads

P+yP+dV(X)/dX =0, 1

where X and P are the coordinates of position and
momentum, respectively, v is the frictional constant
and ¥ (X) is the conservative potential. If the energy
is defined as £ = P2/2m + V, the energy dissipation is
given by

E=—(y/m)PL. 2

A classical treatment may not be adequate if the
angular momenta, energies, and masses involved are
small. However, a full quantum mechanical treatment,
for instance by time dependent Hartree—Fock, is im-
mensely complex. Hence, a compromise is to quantize
the equation of motion (1). This meets with the prob-
lem that frictional forces cannot be derived from a
classical hamiltonian which is the connection between
classical and quantum mechanics.

The opposite course is to seek quantum frictional
potentials W(x, 3/0x, ¢) in the time dependent
Schrodinger equation

Ly =(Hy+ W)Y, ©
_ n? 92
0=~ 2z * V) @)

which reproduce the classical equations of motion (1)
in the Ehrenfest limit (x) = X, {p} = P with p = —i%d/ox,
where the brackets denote expectation values. Three
different hermitian, not explicitly time-dependent non-
linear frictional potentials are known which fulfil these
requirements,

Wi = h(s—(s), Kostin [2], (5a)

Wy =4 [x—00,p +®),,  Hasse [3], (50)

Wa = (PXx—(x)), Albrecht [4], (5¢)
where s = — 1 i In(y/y*) is the phase of the wave
function and [,], denotes the anticommutator.

Analytical wave packet solutions of the Schrodinger
equation with the frictional potentials (5) and the
trivial conservative potentials (force free motion, free
fall, and harmonic oscillator) are given in refs. [2—6].
The present program is primarily intended to provide
numerical solutions for nontrivial conservative poten-
tials as they occur for instance in barrier penetration
[7]. However, the program is not restricted to solving
frictional hamiltonians. It is also capable of computing
wave packet solutions of arbitrary nonhermitian opti-
cal potentials of the type V—iW where the real and
imaginary parts may depend upon x, 3/dx, 92/ox2, ¥,
etc. In this case, the norm of the wave function may
not be conserved.

2. Method of solution

The numerical method for the solution of the par-
tial differential equation (3) follows closely Goldberg
et al. [8] but is here generalized for arbitrary, not
necessarily hermitian, potentials.

If H does not depend explicitly on time, eq. (3)
has the formal solution (with 2 =m = 1)

Y, t+8)=eBH y(x, 1), (6)

which is approximated by the Cayley expression
1

l[/(x,l‘+5)= "‘l—."l[/(x, t). (7)
1+§ i6H

This is unitary if H is hermitian and the error involved
is O(83). If we consider a one-dimensional box of
length L with infinitely high walls which is divided in-
to J equal parts of length €, then the mesh points are
denoted by x]-,j =0,1, ...,J. The initial time is = 0,
the final time is # = T and constant time increments are
denoted by § so that the running time is ¢, = n6, and
a wave function ¥ (x, #) is characterized by ¢} . The
box boundary condition demands Y = ¥ 7= 0. Hence
the finite difference approximation of eq. (7) is
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(4 ibH) Y = (1~} iBED ¢ . ®

In addition, one has to specify the finite difference
approximation of Hy. If H contains at most second
derivatives but is otherwise arbitrary in the sense that
it may depend upon x and ¥ (and funttions of x and
) then the most general form is

1
HYy; = 5—62 (_a]n \11;'_1 + b,""l’;l—c/"l ‘l’;’+1) . )]
If H is hermitian, the coefficients are restricted to

bi =(b/')* and ¢}’ = (af4;)*. The finite difference ap-
proximation for the second derivative is

" 1
Y ="'2‘ Wj_1—29; + ¥ju1)s (10)
and hence the coefficients a;, b], ¢; of Hy read
4=¢;=1, b;=2(1 +€2V), (11)
where V; = Vix)).
Eq. (8) is an 1mphclt equation for Y71 because it

contains also the quantities l]J]"+11 and 5’/,"++11 Its solu-

tion proceeds according to ref. [8] as follows. Under
the assumption

ntl n+l __ n
a]- al , b] ~ b] , (12)
ct_z+1 ~ch
J j>
and with the definitions
n n
A j n+l
] ]
= @ + N/ (13)

where A = 4€2/8, eq. (8) becomes

n+l n+l npntl _ n nan_ 4n 0
‘1']+1 an tAGYTT =V Y G A,

=qr. (14)

The right-hand side of eq. (14) is known at ¢ = ¢,, and
is therefore abbreviated by Q]" On the other hand, if
one defines

‘l/] n+l _ e wn‘*‘l +fn (15)

one obtains three relations by a comparison of eq. (14)
with eq. (15),

N (A 1 T (16)

=B} -Alle]_y (17)
= v ANl (18

Egs. (16—18) provide a numerically stable scheme for
the computation of the wave function at time tn+1 if
In is given. Initially, the coefficients a] b” c] and
A7, B}, C[' are computed from eq. (13) for
ji= 1 J—l then the coefficients ! and f* are com-
puted upwards from the recursion relations (17,18).
The starting values are obtained from the box bound-
ary condition, €] = B} and f' = Q] = -y + CT¥1.
Once these quantities are calculated the wave function
at time ¢,,_; is iterated downwards w1th the recursion
relation (16) Its startmg value is y’+* J_ = —f} 1/€f_1
by virtue of xl/ = (. By this procedure the accumula-
tion of rounding errors is avoided.

A simplification arises which leads to a saving in
computation time if the coefficients aj, bj, ¢ do not
depend on time. Then also 4, B;, C] do not depend
on time and the coefficients e; are only calculated
once. The f,-", however, do depend on time via the SZ]"

3. The coefficients a], b7, ¢}

The different frictional potentials (5) contain the
first derivative and the phase of the wave function and
the expectation values of position {(x) = X, momentum
{p)= P and phase (s} = S. The corresponding finite dif-
ference approximation for ay/dx is

r 1
‘1’j=£(\l’j+1"\l/j_1)- (19)

To avoid the multivalued behavior of the complex
logarithm, the phase is computed by a recursion rela-
tion similar to ref. [6],

_ . ‘1"-1 1 'I/'+1_‘p'_ 2
si‘sf~1‘lm[72]7" —g(lT]l) ] ) (20)

with the starting value s; = Im(In y) and the final
value

S—1 =Sy tIm Yy Wy o~y ¥y 3)/8¥2 5] .

Expectation values are computed using the trapezoidal
rule
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J-1

xn=e§ X W72, (1)
]=
J=2

Pn=1mj§ WM Vi (22)

and S™ similar to eq. (21). In evaluating eq. (5b) no
use should be made of the commutator relation:

px = xp—i because this gives rise to an imaginary con-
tribution to the coefficient b]'-' which makes the finite
difference approximation nonhermitian. With eqs.
(19-22) the coefficients become

WK:
g=c=1,
(23a)
b]n = 2[1 + 621/] + 627(s]—sn)] s
Wy:
§'=1- e Xn-to),
b]n = 2[] + GZI/] + % 627Pn(x]—‘Xn)] >
c”.’ =1+3 iey(xj—-X" +1e), (23b)
Wy
a]- = cl‘ =1 s
b} =2[1 +€2V; + e2yP" (x,—X")] . (23¢)

4. Error analysis

The error associated with eq. (14) is threefold: (i)
from the approximation (8); (ii) from the finite differ-
ence approximation of the hamiltonian, i.e. the error
in the coefficients a;', b]’~‘, c]'-'; and (iii) from the approx-
imation (12). By multiplication with X the error (i) in
eq. (14) is O(252). Taking into account that the
first, eq. (19), and second derivatives, eq. (10), have
errors O(e#) and the expectation values errors of
0O(e?) using the trapezoidal rule (Simpson’s rule gives
no improvement) the coefficients b}’ have errors O(e4).
Similarly, the a]'-' and c]'~' have errors O(e4) if no poten-
tial or Wy or W, is employed but 0(e3) if Wy is used.
With respect to contribution (jii) the differences
b;'“ -} = 857 are of the order O(e28) whereas the
coefficients a]' and ¢ contribute nothing except in Wy
where the error is O(eé).

Maximum performance is achieved if all terms in
eq. (14) have the same order of magnitude. Eq. (13)
therefore demands A = 2, or, § ~ 2¢2. Consequently,
the maximum error in H, Wk and W, is
0(e28) = O(e*) and in Wy is O(e8) = O(e3). With
€=10"3 and 8 = 5 X 10~% and 1000 time steps the
accuracy is still about 10~3 which, however, in actual
computations depends very much on how sharply
peaked the wave packet is. Double precision complex
arithmetic should not give rise to serious rounding
errors.

5. Physical units

The basic unit is L, the length of the box, chosen
as L = 1 in the program. From this the following
physical units are derived:

{x1, position=L,

{r}, momentum =#/L,

(¢}, time =mL2/h, (24)
{4}, frictional constant = {t~1} =a/mL? ,

{E}, energy =h2/mL?.

6. Program options

To make the program as versatile as possible, sev-
eral options have been built in. The integer IFRI =
1,2, 3,4, 5 determines whether no friction, Hasse,
Kostin, or Albrecht friction, or a user-supplied optical
potential is used. In the latter case the appropriate co-
efficients a}', by and c have to be computed and in-
serted into the subprogram OPT. The integer IPAC
determines the initial wave packet ¥ (x, £ = 0).

IPAC = 1 uses one initial gaussian wave packet
2
p=e (S i) (25)
203
with initial position x, momentum p, and width o,
IPAC = 2 gives two countermoving initial gaussian
wave packets

- — 2 H
V=exp|— 2 +ippx
200
(x + xo)2
+exp (—- 5 - ipox) R (26)
200
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and TIPAC = 3 selects a user-supplied, not necessarily
normalized, initial wave packet to be inserted into the
function PSI.

IPOT = 1, 2, 3 chooses the conservative potential,
ie. no potential, a square well potential of height
VBAR (or depth — VBAR) positioned between
—0.05 <x < 0.05 and a user-supplied conservative
potential to be inserted into the function POT. Final-
ly, the integer IPRI = 1, 2 selects between the options
of print and plot on the printer of the wave function
or suppression of the plot, respectively.

7. Input

There is only one input card in the FORMAT
(9D7.1,3X, 411) for each run. The number of runs,
however, is unlimited and termination of the compu-
tation is achieved by adding a blank card.

The nine data fields correspond to the following
nine quantities:

(i) TIME: T, total running time of the wave packet
as defined below eq. (7);

(ii) DTIME: printing time interval; if for instance
20 printouts are requested during TIME, then
DTIME=TIME;/20;

(iii) PIN: py, initial momentum;

(iv) SIN: o, initial width, and

(v) AIN: x,, initial position of the wave packet, as
defined in egs. (25, 26).

They should be chosen in such a way that the initial
wave packet is essentially zero at x = + 0.5. For instance
if AIN = —0.25 and PIN = 150, the centre of the wave
packet travels from x = —0.25 to larger x-values, i.e.
from left to right in the plot.

(vi) GAM: v, frictional constant from eq. (7). If the
optical potential option (IFRI = 5) is used GAM may
be employed in OPT for other purposes.

(vii) VBAR: height (if positive) or depth (if nega-
tive) of the square well potential. If the user-supplied
conservative potential option (IPOT = 3) is used it
may be employed in POT for other purposes or in the
optical potential version in OPT.

(viii) EPS: €, the mesh size, and

(ix) DEL: §, the time increment. The four integers
IFRI, IPAC, IPOT, IPRI complete the data card.

There are several restrictions on the magnitude of
the input quantities [8]. As already mentioned § ~ 2¢2

is optimal. To keep the wave function away from the
wall, byl $0.25 and o) S 0.05 are necessary. Since
J = 1/e and the dimensions are limited to 1000 (may
be easily removed), we have € > 10~3, but 1/e must
be a multiple of 100. The finite resolution of energy
requires |pgle < 0.15 and V| e2 < 0.02. Finally, the
wave packet should not travel too close to the wall
and frictional effects should come out clearly. Since
friction damps momenta by e~ and the motion by
1—e~", optimum results are obtained if y7 ~ 1 and
|pol T ~ 0.7. The latter two conditions are only valid
for free running wave packets, in other cases y and T
should be estimated by similar arguments.

8. Output

The output consists of as many double (IPRI = 1)
or single (IPRI = 2) pages as specified by TIME and
DTIME. The first page contains in the heading what
kind of friction, initial wave packet and conservative
potential is chosen and the input parameters. The
next block on the first page lists the running time, the
reflection and transmission coefficients, i.e. the frac-
tion of the norm of the wave packet located at
—0.5 <x <0and 0 <x <0.5, respectively and the
norm. The latter should be equal to one if H is her-
mitian. Then the expectation values of position, mo-
mentum, kinetic, potential, and total energy are
printed. In the last block the absolute value of the
wave function is printed at the 99 mesh points x; =
——0.49, X9 = —0.48, s Xq9 T -0.01 »X50 = 0, X517 =
001, ey Xgg = 048, X99 =0.49.

The second page, if requested, gives a plot of the
absolute value of the wave function at these 99 mesh
points. The abscissa is fixed but the ordinate is com-
piled automatically in such a way that twice the initial
height can be accomodated in the plot. This scale is
also printed out.

4. Comments on the program

(i) Due to the fact that a second order partial differ-
ential equation is solved and that IBM computers have
a single precision accuracy of less than seven digits, the
program employs double precision complex arithmetic
(IBM type COMPLEX#16). If run on a computer with
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more than approximately ten digits of accuracy in a
real word, it should be replaced by the usual single
precision complex arithmetic.

(ii) The plots on the printer have a resolution of
Ax = 0.01. Therefore interference of two counter-
moving wave packets with an approximate wavelength
of Ax = n/p (p is the momentum of each wave) can-
not be resolved in this plot if p = 2. If high resolution
is required a plotter or movie camera should be used.

10. Test run output

A data card is supplied with the program which
treats the problem of barrier penetration of a wave
packet with Albrecht-friction. With TIME = 3.7 X 10~3,
DTIME = 1.2 X 10~3, PIN = 150, SIN = 0.05, AIN =
—0.25, GAM = 150, VBAR = 104, EPS = 103,

DEL =5 X 10-6, IFRI = 4, IPAC = 1, IPOT =2,
IPRI = 1, the following four double pages of output
are printed at the wave packets running times of 0,
0.0012, 0.0024 and 0.0036, respectively.
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TEST RUN OUTPUT

ALBRECHT FrICTION

EPS=1,000-03

P IN=
GAMMA=

TIME=
LEFT=

150.20
150,00

0.0

0.10000 01

(X)= =0.2500

0.000033
0,066649
2,439233
1.635066
0.020074
0. 000005
0.000000
0.000000
0.000000
0.000000

0.000085
0.114372
2.895785
1.260720
0.010375
0.000002
0. 000000
04000000
0.000000
0.000000

Pi=

JNE WAVE PACKET

DEL=5,.,00C-06
S IN= 0.0500

A IN=-(,2500

RIGHT= 0,7713D-12
(T)= 11261,392%

0.000210
0.188564
3.100873
0.933965
0.005152
0.000001
0.000020
0. 000000
0., 000000
0.0

149,4231

NORM=

SQJUARE POTENTIAL

1.0000D 30
(Vi=

ABSOLLTE VALUE OF WAVE FUNCTIUN

0. 000496
0.298699
3,292620
0.064768
0.0026538
0. 000000
0.000000
0.000000
0. 000000
0.0

9,001127
0. 454609
3.359136
0.454609
9.001127
J. 000000
0. 260000
0.000000
0.000000
0.9
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1
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1}
t
1]
1
1
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]
c
]
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1
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1]
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]
i
1
]
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]
1
]
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]
'
Il
i
]
'
'
'
'
'
]
l
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.
'
+
:
]
]
1
]
]
]
'
]
]

---1

*% A%

J.002%58
D. 064758
3.29252)
J.298700
J3.003496
0, VJ0020
0.323020
0.20)300
0.002000
2.0

12000.00

3.0001 (E)=

0.005152
0.933965
3.100873
0.188564
0.090210
J.000000
3.000000
0.000000
0.000000
0.0

11261.3926

0.010375
1.260720
2.805785
J.114270
0.000Q085
0.000000
0.000200
0.000300
0.000002
0.0

0.020074
1.635066
2.439233
3.066649
0. 000033
0. 000000
0.000000
0.000000
0.000000
0.0

Y-SCALE= 10,000

S GGE LRy EESE PRIt |

To o e e e | e T e b A ms | e et et ot et gt e |t b s o ottt | B b b et e

359

0.037317
2.037418
2.037418
0.037317
U« 000013
J. 000000
J.000009
0,000000
0.000000
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ALBRECHT FRICTION ONE WAVE PACKET SQUAKE POTENTIAL v= 10020.J0
EPS=1,000-03 DEL=5.00D-06

P IN 153.00 S IN= 0.0500 A IN=-0.2500

GAMMA=  150.0)

TIME= 0.00120000
LEFT= 0,99950 00 KIGHT= 0.5135D-C2 NOKM= 1,02030 920
{(X)= =-0.0820 {Pl= 102.5700 (T)= 6349.6190 (V)= 1132.9538 {E}= 8032.57298

ABSOLUTE VALUE OF WAVE FUNCTIUN

0.000007 0.900008 0.000002 9. 000007 0.000009 0.4032025 3.0000Q7 0.000010 0.000008 0.000010

0.000014 0. 000009 0.000020 0.000017 0.000038 0.090093 0.000176 0.000431 0. 000847 0.001807
0.003493 0.006771 0.012504 0.022430 0.039177 J,065320 J.1076%58 0.156937 J.259696 D.374472
0.549337 0.738613 1.016026 1.287190 1.632667 1.993208 2.256723 2.779495 2.665848 3.428967
2. 796444 3.565979 3.062735 2.717134 3.701542 2.129697 1.252750 0.738529 0.4305238 Q.246282
0.137525 0.074636 0.039953 0.020104 0.008670 J.0J5596 0.0034799 0.,002121 0. 001244 3.000709
0.000396 0.000222 0.000132 0. N00093 0.200079 2.030075 3.000074 0.000072 0.000070 0.000067
0.000062 0.000057 0.000052 0. 000046 0.000041 0.0039356 U.000031 0.000027 0.000024 9.000021
0.000019 0.000017 0.000015 J,000013 0.4300012 0.900311 2.000010 0.000009 0. 000008 J. 000007
0.000006 0. 000006 0. 000006 J. 000005 2.700004 0,022205 0.,000005 0.000005 0.000003

Y-SCALE= 10.000

it ST 1 I ——l-m- N I -1 -=-1 -1

[ Y ORI [ T Rl [ e R e B L e R e T e ey
(S rm it et it e et | P e v e s ot | et b e e e e | b e e ettt 3 | e ot et g b O
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ALBRECHT FRICTION ONE wAVE PACKET SQJARE PUTENTIAL v= 10000, 00
£PS=1.00D0-93 DEL=5,000-06

P IN= 150.00 S IN= 0.0500 A IN=-0.25G0

GAMMA= 150.00

TIME= (0.00240000

LEFT= 0.9548D0 00 RIGHT= 0,45200~-01 NORM= 1,0000D 20
(X)= -0.1138 (P)= -100.0651 (T)= 631%.0513 V)= 845.9126 {E)= 7159.9639

ABSULUTE VALUE OF WAVE FJUNCTION

0.000249 0.030325 0,000543 0.00C867 0.,001327 0.002065 0.00307s 0.004585 0.006750 0.0097%7
0.013943 0.019708 0.027452 0.037819 3.051504 Ve 0639251 V.392072 0.121024 0.157238 0.202000
0.256678 0.322622 0.401246 J.493753 0.601466 0.725630 0.866200 1.023438 14199634 1.388883
1.589074 1.810192 2.024798 24223289 2.458362 2.630112 2.702168 2.839676 2.915937 2,629265
2.810188 2.598619 1.716585 2.276249 1.834086 J. 830690 J.791384 0.936433 0.994964 04976100

0.968079 0.995783 0.927557 0.656666 0.375726 J.355258 0.332870 0.308964 0.283908 0.258108
0.231987 0.205959 0.180450 0.155853 0.132557 0.113991 0.091172 0.073588 0.058265 0.945223
0.034396 0.025623 0.018686 0.013334 0,009311 2.005358 0.004277 0.002823 J. 001827 0.001154
0.000721 0.000461 0.000300 9.00C1a4 0. 000108 0.000083 3.00C085 0.000057 0.000046 0.000070
0.000071 0.000038 0.000045 2. 000074 0,000063 3.033019 0.300050 N.000074 0.000053
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362 R.W. Hasse/One-dimensional solutions of Schrédinger equations

ALBRECHT FRICTIUN ONE WAVE PACKET SQUARE PUTENTIAL V= 10000.09

EPS=1.000-02  DEL=5.00D-06

P IN= 150.00 S IN= 0.0500 A In==0,2500

GAMMA=  150.2)

TIME= 0.00360000

LEFT= 0.93380 00 RIGHT= 0.65190)-01 AJRM= 1,00000 20

{X)= -0.2270 (P)= =~35.,695% {T)= 52614208892 (v)= 237.3225 {E)= 5553.,910%

ABSULUTE VALUE OF WAVE HUNCTION

0.227380 04133510 0.250810 0.237735 0. 307230 V321757 0.6012J7 DVes54239 0.533200
0.703265  0.804899  0.912110  1.023450  1.160122  1.299964  1.445230  1.630497  1.759251
2.08250R 24237185 2.378641 2.50C299 2,593 31 24650487 24662504 24522222 2.523663
2.141332 1l.863879 1l.544158 1,203254 0.£6992% J. 573020 Je360446 J.238061 0.1934692
0.178626 0.104969 142108 0.121093 Je262042 J. 063736 2.05917% J.063737 04273565
0.790668 0e913421 VeB42249 Js 5R6S93 D4 348812 Ve 358153 Je36T222 0.375945 0.384279
0.398965 0,405127 0.410229 Je4lelT3 Q.416833 Je417385 Va4l7623 Ja4lv569 Us4ll689
0.3398560 0.389172 0.378065 0,365101 7.350544 0e33%473 0.316923 N.298261 GCe278460
0.236724 0.215143 0.193699 0.172466 0.151802 D.1321%9 Ja113530 V096377 0.,080740

0.054387 0.043723 V. 034543 0,026771 0.021050 J. 019554 0.010297 2.099973 0.008¢l9

Y-SCALE= 10.000

P - L L T T
ETT 1Y o ko * EX S TRV

0.613190
1.922074
2.363232
Je 180919
0. 545394
J.391991
D.400086
14257849
Qa066747



