
Appendix A
Functionals and the Functional Derivative

In this Appendix we provide a minimal introduction to the concept of functionals
and the functional derivative. No attempt is made to maintain mathematical rigor. A
more extended and mathematically more precise discussion of the material summa-
rized here can be found in the books of Courant and Hilbert [728] and of Atkinson
and Han [29] (for the special context of DFT see also [28]).

A.1 Definition of the Functional

A functional is defined by a rule, which associates a number (real or complex) with
a function of one or several variables,

f (x) or f (rrr1, . . .) rule−→ F [ f ] , (A.1)

or, more generally, which associates a number with a set of functions,

f1, f2, . . .
rule−→ F [ f1, f2, . . .] . (A.2)

This definition is quite well described by the designation as a function of a function.
Some examples are:

• A definite integral over a continuous function f (x)

F [ f ] =
∫ x2

x1

f (x)dx (A.3)

(similarly one can have integrals with functions of several variables).
• A slightly more general form is

Fw[ f ] =
∫ x2

x1

w(x) f (x)dx , (A.4)
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404 A Functionals and the Functional Derivative

that is an integral over the function f with a fixed weight function w(x).
• A prescription which associates a function with the value of this function at a

particular point in the interior of a given interval [x1,x2]

F [ f ] = f (x0) x0 ∈ (x1, x2) . (A.5)

This functional can be represented in integral form with the aid of the δ -function,

Fδ [ f ] =
∫ x2

x1

δ (x− x0) f (x)dx , (A.6)

that is with a weight function in the form of a generalized function (a distribu-
tion).

The examples (A.3) and (A.5) directly show that a functional can itself be a function
of a variable, i.e. of one of the parameters in its definition, as the boundaries in the
integral (A.3) or the point x0 in the functional (A.5). The dependence on such a
parameter y is denoted as F [ f ](y).

So far, all examples are characterized by the fact that they depend linearly on the
function f (x), so that they satisfy the relation

F [c1 f1 + c2 f2] = c1F [ f1]+ c2F [ f2] , (A.7)

with c1,c2 being complex numbers. Examples of nonlinear functionals are:

• The energy functional of the simplest DFT, the Thomas-Fermi kinetic energy,

FTF[n] ≡ T TF
s [n] = CTF

∫
d3r n5/3(rrr) . (A.8)

• A nonlocal functional of two functions,

Fw[ f1, f2] =
∫

f1(x1)w(x1,x2) f2(x2)dx1dx2 . (A.9)

• The action integral of classical mechanics,

F [qqq] ≡ A[qqq] =
∫ t2

t1
dt L(qqq(t), q̇qq(t), t) . (A.10)

The abbreviation qqq(t) stands for a set of generalized coordinates, which depend
on time.

• Any matrix element of quantum mechanics, e.g. the ground state energy and the
S-matrix element of potential scattering theory,

F [Ψ0,Ψ∗
0] ≡ E[Ψ0,Ψ∗

0] =
∫

d3r Ψ∗
0(rrr)ĤΨ0(rrr)

F [Ψkkk,Ψ∗
qqq] ≡ S[Ψkkk,Ψ∗

qqq] =
∫

d3r Ψ∗
qqq(rrr)ŜΨkkk(rrr) .
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It seems worthwhile to emphasize that the two functions Ψ0 and Ψ∗
0 have to be

considered as being independent, so that one is dealing with a functional of two
functions. Alternatively, a dependence on the real and the imaginary part of the
wavefunctions can be used to characterize the functional.

A.2 Functional Derivative

Usually knowledge of the complete functional F [ f ], as for example the classical ac-
tion A[qqq] for all possible trajectories in phase space or the value of the integral (A.3)
for all continuous functions, is not required. Rather it is the behavior of the func-
tional in the vicinity of the function f0, which makes F [ f ] extremal or stationary,
which is of interest.1 The implementation of the search for f0 involves the explo-
ration of the space of functions in the vicinity of f0 in a suitable fashion.

A variation of any function f by an infinitesimal but arbitrary amount can be
represented in the form

δ f (x) = ε η(x) for one variable

δ f (rrr1,rrr2, . . .) = ε η(rrr1,rrr2, . . .) for several variables .
(A.11)

The quantity ε is an infinitesimal number, η is an arbitrary function. In order to
explore the properties of the functionals a generalization of the (ordinary or partial)
derivative (of first and higher order)—the functional derivative—is required. It can
be defined via the variation δF of the functional F [ f ] which results from variation
of f by δ f ,

δF := F [ f +δ f ]−F[ f ] . (A.12)

The technique used to evaluate δF is a Taylor expansion of the functional
F [ f +δ f ] = F [ f +εη ] in powers of δ f , respectively of ε . The functional F [ f +εη ]
is an ordinary function of ε . This implies that the expansion in terms of powers of ε
is a standard Taylor expansion,

F [ f + ε η ] = F [ f ]+
dF [ f + εη ]

dε

∣∣∣∣
ε=0

ε +
1
2

d2F [ f + εη ]
dε2

∣∣∣∣
ε=0

ε2 + . . . (A.13)

=
N

∑
n=0

1
n!

dnF [ f + εη ]
dεn

∣∣∣∣
ε=0

εn +O
(
εN+1) . (A.14)

As indicated, the sum in (A.14) can be finite or infinite. In the latter case, it has to be
assumed that the function F(ε) can be differentiated with respect to ε any number
of times.

1 Often functionals are introduced to recast some equation(s) in the form of an extremum or sta-
tionarity principle.
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The derivatives with respect to ε now have to be related to the functional deriva-
tives. This is achieved by a suitable definition. The definition of the functional
derivative (also called variational derivative) is

dF [ f + εη ]
dε

∣∣∣∣
ε=0

=:
∫

dx1
δF [ f ]
δ f (x1)

η(x1) . (A.15)

This definition implies that the left-hand side can be brought into the form on the
right-hand side, i.e. the form of a linear functional with kernel δF [ f ]/δ f acting on
the test function η . This is by no means guaranteed for arbitrary functionals and
arbitrary f . It is exactly this point where rigorous mathematics sets in. A functional
for which (A.15) is valid is called differentiable.2 We will, however, not go into any
details concerning the existence of the functional derivative, nor will we make any
attempt to characterize the space of (test) functions which are allowed in (A.15) (as
usual, the existence of all integrals involved is assumed, of course).

The definition (A.15) can be thought of as an extension of the first total differen-
tial of a function of several variables,

f (x1,x2, . . .) −→ d f =
N

∑
n=1

∂ f
∂xn

dxn ,

to the case of an infinite set of variables f (x1). The definition of the second order
functional derivative corresponds to the second order total differential,

2 More precisely, a functional F [ f ] which maps an open subset of some Banach space X (i.e. some
complete normed vector space) of functions f onto another Banach space Y (which could be the
set of real or complex numbers) is called Fréchet differentiable, if there exists a linear continuous
operator δFF

f : X → Y with the property

lim
‖η‖→0

‖F [ f +η ]−F[ f ]−δFF
f [η ]‖Y

‖η‖X = 0 .

Here ‖F‖Y and ‖η‖X denote the norms in the two Banach spaces. The Fréchet derivative has to
be distinguished from the Gâteaux derivative, which exists if there is a linear continuous operator
δFG

f : X → Y such that

δFG
f [η ] = lim

λ→0

‖F [ f +λη ]−F[ f ]‖Y
λ

.

If the right-hand side of this relation exists, but does not yield a linear continuous operator, it is
called the Gâteaux differential,

F ′[ f ,η ] = lim
λ→0

‖F [ f +λη ]−F[ f ]‖Y
λ

.

Thus any Fréchet differentiable functional is also Gâteaux differentiable, but the converse is not
true. The existence of the Fréchet derivative is only ensured, if the Gâteaux derivative is continuous
or if the Gâteaux differential is uniform with respect to η with ‖η‖= 1.
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d2F [ f + εη ]
dε2

∣∣∣∣
ε=0

=:
∫

dx1dx2
δ 2F [ f ]

δ f (x1)δ f (x2)
η(x1)η(x2) . (A.16)

The definition of the general derivative can be guessed at this stage. The functional
derivative of n-th order is given by

dnF [ f + εη ]
dεn

∣∣∣∣
ε=0

=:
∫

dx1 . . .dxn
δ nF [ f ]

δ f (x1) . . .δ f (xn)
η(x1) . . .η(xn) . (A.17)

This derivative constitutes the kernel of the Taylor expansion of a functional F in
terms of the variation δ f (x) = εη(x),

F [ f + εη ] =
N

∑
n=0

1
n!

∫
dx1 . . .dxn

δ nF [ f ]
δ f (x1) . . .δ f (xn)

δ f (x1) . . .δ f (xn)

+O
(
εN+1) , (A.18)

again with N being either finite or infinite.
The actual calculation of the functional derivative relies on the evaluation of the

difference (A.12). This will be illustrated with the aid of a few examples.

• According to Eq. (A.12), the variation of the functional (A.6) is

δFδ =
∫ x2

x1

δ (x− x0)εη(x)dx .

Comparison with the definition (A.15) shows that

δFδ
δ f (x)

= δ (x− x0) , (A.19)

as η(x) can vary freely. A very useful formula is obtained if the definition

Fδ [ f ] = f (x0)

is used explicitly,

δFδ
δ f (x)

=
δ f (x0)
δ f (x)

= δ (x− x0) . (A.20)

All higher order functional derivatives of Fδ vanish.
• This example is readily extended to the functional

f (x0)α =
∫

dxδ (x− x0) f (x)α .

Its variation can be evaluated by straightforward Taylor expansion,

δ f (x0)α =
∫

dxδ (x− x0) [( f (x)+ εη(x))α − f (x)α ]
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=
∫

dxδ (x− x0)
[

α f (x)α−1εη(x)

+
α(α−1)

2
f (x)α−2(εη(x))2 + . . .

]
.

The functional derivative is again identified by comparison with the definition
(A.15),

δ f (x0)α

δ f (x)
= δ (x− x0)α f (x)α−1 . (A.21)

In order to calculate the second functional derivative one can simply reuse
Eq. (A.21),

δ 2 f (x0)α

δ f (x1)δ f (x2)
= δ (x1− x0)δ (x2− x0)α(α−1) f (x)α−2 . (A.22)

• The variation of the Thomas-Fermi functional (A.8) is obtained from

δFTF = CTF

∫
d3r

[
(n(rrr)+ εη(rrr))5/3−n(rrr)5/3

]
in the form of a binomial expansion

δFTF = CTF

∫
d3r n(rrr)5/3

∞

∑
k=1

(
5/3

k

)(
εη(rrr)
n(rrr)

)k

.

The functional derivatives, which can be extracted from this expression, are

δFTF

δn(rrr)
=

5
3

CTF n(rrr)2/3 (A.23)

for the first derivative and, applying (A.21),

δ 2FTF

δn(rrr)δn(rrr′)
=

10
9

CTF n(rrr)−1/3 δ (3)(rrr− rrr′)

for the second derivative.
• The variation of the nonlocal functional

Fw[ f ] =
∫ y2

y1

dx1

∫ y2

y1

dx2 f (x1)w(x1,x2) f (x2) (A.24)

is

δFw =
∫ y2

y1

dx1

∫ y2

y1

dx2 w(x1,x2)[ f (x1)εη(x2)+ f (x2)εη(x1)

+ εη(x1)εη(x2)] . (A.25)
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The variational derivatives are

δFw

δ f (x)
=

∫ y2

y1

dx2 [w(x,x2)+w(x2,x)] f (x2) (A.26)

and

δ 2Fw

δ f (x1) f (x2)
= w(x1,x2)+w(x2,x1) . (A.27)

All derivatives with n > 2 vanish for this example.

A.3 Calculational Rules

The calculation of the functional derivative can be abbreviated using a variation
in terms of the δ -function: for the functionals relevant in physics all local, δ -type
variations of f (x) are equivalent to probing the functional with arbitrary general
variations η(x). The functional derivative can therefore be recast in the form of the
(almost familiar) limiting value

δF
δ f (x1)

= lim
ε→0

F [ f (x)+ εδ (x− x1)]−F[ f (x)]
ε

. (A.28)

The reader may check that this form follows from the definition (A.15) with the
replacement η(x) −→ δ (x− x1) and that it reproduces the results of the examples.
When using the form (A.28), one has to remember that the variation δ f = εδ (x−x1)
should always be understood in the sense of a representation of the δ -function via
some sequence of regular functions, so that powers of the δ -function are uncritical.

As the functional derivatives constitute an extension of the concept of the ordi-
nary derivative, most of the rules for ordinary derivatives can be taken over. For
example, the product rule of functional differentiation can be obtained directly with
the argument[

d(F1[ f + εη ]F2[ f + εη ])
dε

]
ε=0

=
[

dF1[ f + εη ]
dε

F2[ f + εη ]
]

ε=0

+
[

F1[ f + εη ]
dF2[ f + εη ]

dε

]
ε=0

,

which is valid as F1 and F2 are functions of ε . In the actual limit ε → 0 there follows
with (A.15)

δ (F1F2)
δ f (x)

=
δF1

δ f (x)
F2 +F1

δF2

δ f (x)
. (A.29)
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Let us next extend the chain rule for functions to functionals. Consider a func-
tional F which depends on some function G(y), which itself is a functional of f (x),
G[ f ](y). The functional F therefore is also a functional of f (x). Its variation with f
is then given by

δFf = F [G[ f (x)+ εη(x)](y)]−F[G[ f (x)](y)]

=
dF [G[ f (x)+ εη(x)](y)]

dε

∣∣∣∣
ε=0

ε +O(ε2) (A.30)

=
∫ δF [ f ]

δ f (x)
εη(x)dx+O(ε2) , (A.31)

where the last line simply represents the definition of the functional derivative of F
with respect to f , according to Eq. (A.15). Similarly, the variation of G with f is
obtained as

δG(y) = G[ f (x)+ εη(x)](y)−G[ f (x)](y)

=
dG[ f (x)+ εη(x)](y)

dε

∣∣∣∣
ε=0

ε +O(ε2) (A.32)

=
∫ δG[ f ](y)

δ f (x)
εη(x)dx+O(ε2) . (A.33)

Now, to first order in ε one can express G[ f (x)+ εη(x)](y) via Eq. (A.33),

G[ f (x)+ εη(x)](y) = G[ f (x)](y)+
∫ δG[ f ](y)

δ f (x)
εη(x)dx+O(ε2) ,

to obtain

∫ δF [ f ]
δ f (x)

η(x)dx =
dF [G[ f (x)](y)+

∫ δG[ f ](y)
δ f (x) εη(x)dx+O(ε2)]

dε

∣∣∣∣∣
ε=0

+O(ε) . (A.34)

However, the derivative on the right-hand side has exactly the form of the variation
of F with G,

δFG = F [G(y)+ εη̄(y)]−F[G(y)]

=
dF [G(y)+ εη̄(y)]

dε

∣∣∣∣
ε=0

ε +O(ε2) , (A.35)

with η̄ given by

η̄(y) =
∫ δG[ f ](y)

δ f (x)
η(x)dx . (A.36)
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Provided that η̄(y) probes the complete space around G(y), in which F [G] is defined,
when η(x) goes through all legitimate variations of f (x), the expression (A.34)
coincides with the corresponding functional derivative of F with respect to G(y),

dF [G(y)+ εη̄(y)]
dε

∣∣∣∣
ε=0

=
∫ δF [G]

δG(y)
η̄(y)dy+O(ε) . (A.37)

Combination of Eqs. (A.34), (A.36) and (A.37) finally yields

∫ δF [ f ]
δ f (x)

η(x)dx =
∫ δF [G]

δG(y)
δG[ f ](y)

δ f (x)
η(x)dxdy ,

and thus, due to the arbitrary form of η(x),

δF [ f ]
δ f (x)

=
∫ δF [G]

δG(y)
δG[ f ](y)

δ f (x)
dy . (A.38)

Equation (A.38) represents the chain rule of functional differentiation. It is valid,
if the variation η(x) generates all possible variations η̄(y) in the neighborhood of
G[ f ](y). This is guaranteed if there is a one-to-one correspondence between the
admissible functions f (x) and the corresponding functions G(y) (at least locally)
and both spaces of functions are sufficiently dense to define a functional derivative.
The condition of a unique correspondence is satisfied in particular, if the kernel
δG[ f ](y)

δ f (x) is invertible.
It is worthwhile to note a special case of the rule (A.38). If there is a unique

relation between f (x) and G(y), i.e. if the form of the complete function G(y)
is uniquely determined by f (x) and vice versa, one can consider the functional
F [G[ f (x)](y)]≡ f (x0). Application of the chain rule (A.38) then leads to

δ (x− x0) =
δ f (x0)
δ f (x)

=
δF [ f ]
δ f (x)

=
∫ δF [G]

δG(y)
δG[ f ](y)

δ f (x)
dy

=
∫ δ f (x0)

δG(y)
δG(y)
δ f (x)

dy . (A.39)

This relation shows that one can always insert a complete set of variations in a
variational derivative (here δ f (x0)/δ f (x)), as long as there exists a one-to-one cor-
respondence between the functions involved.

A.4 Variational Principle

An apt example for the discussion of variational principles on the basis of functional
calculus is the derivation of the Euler-Lagrange equations for the action functional
(A.10). For the case of one degree of freedom,
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A[q] =
∫ t2

t1
dt L(q, q̇, t) , (A.40)

which suffices to point out the main features, extrema are characterized by setting
the first variation equal to zero. This implies

δA =
∫ t2

t1
dt [L(q+δq, q̇+δ q̇, t)−L(q, q̇, t)] = 0 (A.41)

to first order in the variation of the variable and its derivative. Taylor expansion of
the first term to first order gives

δA =
∫ t2

t1
dt

[
∂L
∂q

δq+
∂L
∂ q̇

δ q̇

]
= 0 . (A.42)

This is followed by partial integration of the second term with the result

δA =
∫ t2

t1
dt

[
∂L
∂q
− d

dt
∂L
∂ q̇

]
δq+

[
∂L
∂ q̇

δq

]t2

t1

= 0 . (A.43)

For arbitrary variations δq the Euler-Lagrange equations have to be satisfied,

∂L
∂q
− d

dt
∂L
∂ q̇

= 0 . (A.44)

No further conditions apply, if the variation at the end points is restricted by bound-
ary conditions,

δq(t1) = δq(t2) = 0 . (A.45)

This restriction does not apply to the case of a free boundary, for which arbitrary
variations at the points t1 and t2 are permitted. Therefore it is necessary to demand
in addition the “natural boundary conditions” (see [728])[

∂L
∂ q̇

]
t1

=
[

∂L
∂ q̇

]
t2

= 0 (A.46)

in this case.



Appendix B
Second Quantization in Many-Body Theory

The language of second quantization allows a compact formulation of quantum
many-particle problems. The name “second quantization” arose actually in the con-
text of quantum field theory, where the need to accommodate particle creation or
annihilation processes demanded the replacement of wavefunctions by operators.
This Appendix provides an introduction to this tool tailored to the requirements of
many-body theory.

B.1 N-Particle Hilbert Space

B.1.1 Realization in First Quantized Form

The basic elements of the discussion are square-integrable single-particle wave-
functions in configuration or configuration-spin space. These functions span the
1-particle Hilbert space H1. They will be denoted by

φα(x) . (B.1)

The index α represents a set of quantum numbers, which characterize the state of
the particle completely, as e.g. the quantum numbers of the nonrelativistic hydrogen
problem,

α −→ n, l, m, ms . (B.2)

For the present purpose it is most convenient to characterize the states by a single
discrete label which orders all states in a well-defined sequence.

The variable x in Eq. (B.1) stands for the spatial coordinates rrr and, if applicable,
additional internal degrees of freedom. A relevant example are the components of
the bispinor wavefunction of a spin-1/2 fermion,
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φα(x) = φα(rrrσ) =

{
φα(rrr,+ 1

2 ) if σ = + 1
2 ≡↑

φα(rrr,− 1
2 ) if σ =− 1

2 ≡↓
. (B.3)

For brevity the complex functions (B.1) are supposed to be orthonormal∫
dxφ ∗α(x)φβ (x) = δαβ . (B.4)

The integral
∫

dx abbreviates integration over space and summation over all internal
degrees of freedom, as e.g. in the case of spin-1/2 fermions∫

dx≡ ∑
σ=↑,↓

∫
d3r .

In addition, the functions φα(x) are assumed to form a complete set,

∑
α

φα(x)φ ∗α(x′) = δ (3)(rrr− rrr′)δσ ,σ ′ ≡ δ (x,x′) . (B.5)

The Hilbert space HN of N identical particles is the tensor product of N single-
particle Hilbert spaces,

HN = H1⊗H1⊗·· ·⊗H1 . (B.6)

This space is spanned by the product wavefunctions

Φc
α1···αN

(x1x2 · · ·xN) = φα1(x1)φα2(x2) · · ·φαN (xN) . (B.7)

In these canonical N-particle states particle number 1 with coordinates rrr1 and spin-
projection σ1 is in the single-particle state α1, particle number 2 at x2 in state α2,
and so on. Orthonormality and completeness of this basis of HN follow from the
corresponding properties of the 1-particle functions,∫

dx1 · · ·dxN Φc ∗
α1···αN

(x1 · · ·xN)Φc
β1···βN

(x1 · · ·xN)

=
∫

dx1 φ ∗α1
(x1)φβ1

(x1) · · ·
∫

dxN φ ∗αN
(xN)φβN

(xN)

= δα1β1
· · ·δαN βN

(B.8)

∑
α1···αN

Φc
α1···αN

(x1 · · ·xN)Φc ∗
α1···αN

(y1 · · ·yN)

= ∑
α1

φα1(x1)φ ∗α1
(y1) · · ·∑

αN

φαN (xN)φ ∗αN
(yN)

= δ (x1,y1) · · ·δ (xN ,yN) . (B.9)

The states Φc
α1···αN

are ordered with respect to the particles and their labels, which
is only possible if the individual particles can be distinguished. However, in the
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case of N identical quantum particles, their fermionic or bosonic nature has to be
taken into account, so that only the corresponding subspaces FN and BN of HN

are of interest. The wavefunctions of the fermion sector, to which we restrict the
discussion, are antisymmetric: any wavefunction Ψ describing N identical fermions
satisfies the relation

Ψ(xp1 · · ·xpN ) = (−1)PΨ(x1 · · ·xN) , (B.10)

where p1, . . . pN denotes an arbitrary permutation of the numbers 1, . . .N. The sign
of the permutations (−1)P corresponds to the property even (+) or odd (−), ac-
cording to the number P of pairwise transpositions necessary to restore the natural
order.1

A basis in FN can be constructed from the canonical basis by explicit antisym-
metrization,

Φα1···αN (x1x2 · · ·xN) =
1√
N!

∑
P∈SN

(−1)PΦc
αp1 ···αpN

(x1x2 · · ·xN)

=
1√
N!

∑
P∈SN

(−1)Pφαp1
(x1)φαp2

(x2) · · ·φαpN
(xN)

=
1√
N!

∑
P∈SN

(−1)Pφα1(xp1)φα2(xp2) · · ·φαN (xpN ) . (B.11)

The sum runs over all permutations of N ordered objects. This set of permutations
constitutes the symmetric group SN . The last lines indicate that the basis functions
of FN take the form of a determinant—a Slater determinant.

The antisymmetrized states Φα1···αN do no longer associate a particular single-
particle quantum number with a given particle. Their determinantal structure is a
direct manifestation of the Pauli principle which is expressed by Eq. (B.10). The
function Φα1···αN vanishes if two of the labels α1 · · ·αN are identical. This allows
a definite (although arbitrary) ordering of the quantum numbers in Φα1···αN in the
form α1 < α2 · · ·< αN .

The basis functions (B.11) are orthonormal and complete in FN , provided the
1-particle basis is orthonormal and complete in H1. For the illustration of orthonor-
mality one simply uses the definition (B.11),∫

dx1 · · · dxN Φ∗α1···αN
(x1 · · ·xN)Φβ1···βN

(x1 · · ·xN)

=
1

N! ∑
P,P′∈SN

(−1)P+P′
∫

dx1 φ ∗αp1
(x1)φβp′1

(x1) · · ·
∫

dxN φ ∗αpN
(xN)φβp′N

(xN)

=
1

N! ∑
P,P′∈SN

(−1)P+P′δαp1 βp′1
· · ·δαpN βp′N

.

1 A given permutation can be generated by different sequences of pairwise transpositions. However,
the number of pairwise transpositions required is uniquely either even or odd.
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The sum over the permutations P′ in the last line yields, for a given permutation
P, exactly the same terms that are obtained with the regular ordering 1,2, . . .N.
The sign that is required to bring a given permutation p′1, . . . p′N into the natural
order is just (−1)P′ . One can therefore eliminate the multiplicity by arranging the
first indices of the Kronecker symbols in regular order and sum only over all the
permutations of the second,∫

dx1 · · · dxN Φ∗α1···αN
(x1 · · ·xN)Φβ1···βN

(x1 · · ·xN)

= ∑
P∈SN

(−1)Pδα1βp1
· · ·δαN βpN

= det

⎛
⎜⎜⎜⎝
〈α1|β1〉 · · · 〈α1|βN〉

...
...

...

〈αN |β1〉 · · · 〈αN |βN〉

⎞
⎟⎟⎟⎠ . (B.12)

The final result takes the form of a determinant. It becomes simpler, if the state
labels are arranged in a given order. For

α1 < α2 < · · ·< αN and β1 < β2 < · · ·< βN (B.13)

one obtains∫
dx1 · · · dxN Φ∗α1···αN

(x1 · · ·xN)Φβ1···βN
(x1 · · ·xN) = δα1β1

· · ·δαN βN
. (B.14)

The completeness relation follows in a similar fashion

∑
α1···αN

Φα1···αN (x1 · · ·xN)Φ∗α1···αN
(y1 · · ·yN)

=
1

N! ∑
P,P′∈SN

(−1)P+P′
{

∑
α1

φα1(xp1)φ
∗
α1

(yp′1)

}
· · ·

{
∑
αN

φαN (xN)φ ∗αN
(yp′N )

}

=
1

N! ∑
P,P′∈SN

(−1)P(−1)P′δ (xp1 ,yp′1) · · ·δ (xpN ,yp′N )

= ∑
P∈SN

(−1)Pδ (x1,yp1) · · ·δ (xN ,ypN ) . (B.15)

The transition from the second to last to the last line involves the same argument
concerning the multiplicity of terms as in the case of the orthogonality relation.

The derivation of the completeness relation has to be augmented by one addi-
tional point: one has to take into account the fact that the operator

∑
α1···αN

Φα1···αN (x1 · · ·)Φ∗α1···αN
(y1 · · ·)
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acts only on the antisymmetric states in FN . If a product of Kronecker symbols, as
in (B.15), is contracted with an arbitrary antisymmetric wavefunction Ψ, the permu-
tation of the coordinates y1, . . .yN leads to∫

dy1 · · ·dyN δ (x1,yp1) · · ·δ (xN ,ypN )Ψ(y1 · · ·yN) = (−1)PΨ(x1 · · ·xN) . (B.16)

Within the space FN one thus obtains

∑
α1···αN

Φα1···αN (x1 · · ·xN)Φ∗α1···αN
(y1 · · ·yN) = N! δ (x1,y1) · · ·δ (xN ,yN) . (B.17)

The factor N! results from the overcompleteness of the basis set formed by the
Φα1···αN in the space FN : since all states Φα1···αN which differ only by a permutation
of the set α1, . . .αN coincide (up to an irrelevant sign), any basis state shows up N!
times in the sum on the left-hand side of Eq. (B.17). The factor is easily eliminated
by use of an ordered sum,

∑
α1<α2···<αN

Φα1···αN (x1 · · ·xN)Φ∗α1···αN
(y1 · · ·yN) = δ (x1,y1) · · ·δ (xN ,yN) . (B.18)

B.1.2 Formal Representation

The same statements can be made on a more formal level, if one adopts the Dirac
notation.

The discussion of the formal representation also begins with a look at the Hilbert
space of one particle, H1. The 1-particle wavefunctions are interpreted as a scalar
product of two state vectors |x〉 and |α〉 ≡ |φα〉 which is written as

φα(x)≡ 〈x|α〉 . (B.19)

A state vector of the form 〈x| is called a bra-vector, of the form |α〉 a ket-vector.
The scalar product itself is therefore often referred to as a bra-ket. Since Eq. (B.19)
relates the wavefunction to a scalar product, one finds for the complex conjugate
wavefunction,

φ ∗α(x) = 〈α|x〉 . (B.20)

The state 〈α| is the adjoint of the state |α〉.
The set of vectors |α〉 and the set |x〉 are elements of different vector spaces. The

notation implies that “factors” with the label α carry the information concerning
the quantum labels, “factors” with x define the representation space of the particle
as position and spin space. The separation of the wavefunction in terms of two ab-
stract ingredients allows, for example, an easy transition to alternative representation
spaces as the momentum-spin space.
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The states |α〉 span the familiar Hilbert space H1. They form a complete and
orthonormal set. This is expressed by the relations2

∑
α
|α〉〈α|= 1̂H1 ; 〈α|β 〉= δαβ . (B.21)

The consistency of these relations can be checked by considering

〈x|α〉= ∑
β
〈x|β 〉〈β |α〉= ∑

β
〈x|β 〉δαβ = 〈x|α〉 .

The vector |x〉 ≡ |rrrσ〉 is an eigenstate of the position operator r̂rr and the spin-
projection operator ŝz. It is characterized by the corresponding eigenvalues rrr and
σ =±1,

r̂rr|x〉 = rrr |x〉 (B.22)

ŝz|x〉 = σ
h̄
2
|x〉 . (B.23)

The notation indicates that operators ô are, as the state vectors, abstracted elements.
The states |x〉 satisfy the improper orthogonality relation

〈x|x′〉= δσσ ′ δ (rrr− rrr′)≡ δ (x,x′) . (B.24)

Alternatively one may interpret 〈x|x′〉 as a wavefunction, the representation of an
eigenstate of the position/spin operator in position/spin space. Equation (B.24) then
states that the probability to find a particle at any other point in space than its eigen-
value vanishes for eigenstates of r̂rr. Two different wavefunctions 〈x|x′〉 and 〈x|x′′〉
are orthogonal, as required by their definition as eigenstates of r̂rr and ŝz,∫

dx〈x′|x〉〈x|x′′〉= δ (x′,x′′) = 〈x′|x′′〉 . (B.25)

Equation (B.25) also demonstrates that the state vectors |x〉 are not properly normal-
izable, so that they are not elements of the Hilbert space H1. They can nevertheless
be used to represent the elements of H1 in the sense of a basis set expansion, as they
form a complete basis in a vector space which contains H1. An example for such
a representation is the Fourier representation of normalizable functions in terms of

2 These relations are replaced by

〈α|β 〉= Sαβ ∑
αβ
|α〉S−1

αβ 〈β |= 1̂H1 ,

in the case of a non-orthogonal basis. The matrix elements S−1
αβ are elements of the inverse overlap

matrix, which is defined by

SS−1 = 1 → ∑
β

Sαβ S−1
βγ = δαγ .
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non-normalizable plane waves. The completeness relation for the states |x〉 can be
extracted from Eq. (B.25), which is valid for arbitrary |x′〉, |x′′〉,∫

dx |x〉〈x| ≡ ∑
σ

∫
d3r |rrrσ〉〈rrrσ | = 1̂ . (B.26)

The quantity 1̂ stands for the unit operator in the space which contains H1.
With these basic elements of the Dirac notation the orthogonality and complete-

ness relations of the one particle wavefunctions, (B.4) and (B.5) respectively, can
be reproduced in a consistent fashion. The notation also opens access to all formal
aspects of quantum mechanics.

In the next step the Dirac notation can be extended to deal with N-particle sys-
tems. The N-particle Hilbert space HN is spanned by the product states

|α1 · · · αN) = |α1〉⊗ · · · ⊗ |αN〉 . (B.27)

In these N-particle states the particle k is in the quantum state αk, i.e. the position
of a single-particle state in the tensor product on the right-hand side characterizes a
particular particle of the system. It is usual to omit the product sign⊗, when working
with the states |α1 · · · αN). Nevertheless, the convention associating particle k with
position k still applies.

The bra-ket combination of (B.27) with

|x1 · · · xN) = |x1〉⊗ · · · ⊗ |xN〉 (B.28)

yields the product wavefunction (B.7),

Φc
α1···αN

(x1 · · ·xN) = (x1 · · · xN |α1 · · · αN) = 〈x1|α1〉 · · · 〈xN |αN〉 . (B.29)

The N-particle states (B.27) constitute a basis of HN . They form a complete set
provided the 1-particle basis is complete,

∑
α1···αN

|α1 · · · αN)(α1 · · · αN |= ∑
α1

|α1〉〈α1| · · ·∑
αN

|αN〉〈αN |= 1̂HN , (B.30)

where 1̂HN represents the unit operator in HN . Similarly, one has in the x-represen-
tation, ∫

dx1 · · ·dxN |x1 · · · xN)(x1 · · · xN | = 1̂N , (B.31)

where 1̂N is the unit operator of the (N-particle) space which contains HN .
The fermion and boson sectors of HN are defined in the same fashion as before.

The fermion sector is spanned by the antisymmetrized states3

3 Many-body states in the form of products will be denoted by | · · ·), antisymmetrized states by
| · · · 〉.
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|α1 · · · αN〉 =
1√
N!

∑
P∈SN

(−1)P|αp1 · · ·αpN )

=
1√
N!

∑
P∈SN

(−1)P|αp1〉 · · · |αpN 〉 . (B.32)

In the states |α1 · · · αN〉 the position of the quantum number is no longer related to
a particular particle. A given particle is not in a particular single-particle state. The
individual terms on the right-hand side of (B.32) are, however, product states of the
form (B.27), so that the position k in the product characterizes a particular particle.

The N-fermion wavefunction (B.11) is given by the bra-ket combination

(x1 · · · xN |α1 · · · αN〉 =
1√
N!

∑
P∈SN

(−1)P(x1 · · · xN |αp1 · · ·αpN )

=
1√
N!

∑
P∈SN

(−1)P〈x1|αp1〉 · · · 〈xN |αpN 〉

=
1√
N!

∑
P∈SN

(−1)P〈xp1 |α1〉 · · · 〈xpN |αN〉 . (B.33)

Note, that only one of the state vectors in the bra-ket scalar product is an antisym-
metrized state, either the bra or the ket vector,

Φα1 ···αN (x1 · · · xN) = 〈x1 · · · xN |α1 · · · αN) = (x1 · · · xN |α1 · · · αN〉 . (B.34)

The other is a simple product state.
The antisymmetric N-fermion state vectors satisfy the orthonormality relation

(B.12),

〈α1 · · · αN |β1 · · · βN〉 = ∑
P∈SN

(−1)Pδα1βp1
· · ·δαN βpN

, (B.35)

which may be verified by insertion of (B.32) and subsequent use of (B.21) for the in-
dividual particles. As a single-particle state can at most be occupied by one fermion,
at most one of the possible permutations of the single-particle overlap matrices can
be non-zero. If the state labels are arranged in a strict order, α1 < · · ·< αN , the result
can be written as

〈α1 · · · αN |β1 · · · βN〉= δα1β1
· · ·δαN βN

. (B.36)

Similarly, the completeness relations (B.17) and (B.18) have the form

1
N! ∑

α1···αN

|α1 · · · αN〉〈α1 · · · αN | = 1̂FN (B.37)

∑
α1<α2···<αN

|α1 · · · αN〉〈α1 · · · αN | = 1̂FN . (B.38)



B.2 Fock Space 421

B.2 Fock Space

There are several reasons to combine the Hilbert spaces for all possible particle
numbers into a more general space, the Fock space. Particle numbers of a particular
species are not necessarily conserved in quantum processes or there might be the
need to describe a thermodynamical equilibrium without a fixed number of particles.
The Fock space of fermions F is defined as the direct sum of the N-fermions spaces
FN for all particle numbers,

F = F0⊕F1⊕·· ·⊕FN⊕·· · . (B.39)

In addition to the well-defined spaces FN , it includes a sector F0 containing no
particle at all. The only state in F0 is the so-called vacuum state

|0〉 with 〈0|0〉= 1 . (B.40)

The actual specification of this state requires the application of the creation and
annihilation operators, which will be detailed in the next section. A complete and
orthonormal basis of F is obtained by combining all N-fermion basis sets with
|0〉〈0|, so that the completeness relation in F reads

|0〉〈0|+
∞

∑
N=1

1
N! ∑

α1···αN

|α1 · · · αN〉〈α1 · · · αN | = 1̂F . (B.41)

B.2.1 Creation and Annihilation Operators

The action of a fermion creation operator â†
α on a N-fermion basis state generates

an (N +1)-fermion basis state

â†
α |α1 · · · αN〉 := |α α1 · · · αN〉 . (B.42)

The (N + 1)-fermion state is properly normalized and antisymmetrized. The defi-
nition (B.42) of the operators â†

α is unambiguous, as all states involved are well-
defined. Extension of Eq. (B.42) to N = 0 defines the vacuum state as the state from
which â†

α generates the single-particle state |α〉,

â†
α |0〉 = |α〉 . (B.43)

Combination of the definitions (B.42) and (B.43) allows a representation of any
N-fermion basis state in terms of creation operators and the vacuum,

|α1 · · · αN〉= â†
α1
· · · â†

αN
|0〉 . (B.44)
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The entire basis of Fock space can be generated by the repeated action of creation
operators on the vacuum state.

The associated annihilation operator âα is defined by hermitian conjugation of
â†

α

âα :=
(
â†

α
)†

. (B.45)

Consequently one has

〈α1| = 〈0| âα1

〈α1 α2 · · · αN | = 〈α2 · · · αN | âα1 = 〈0| âαN · · · âα1 .

The antisymmetry of fermion states of the form (B.44) is incorporated by demand-
ing specific commutation relations for the creation operators. With the interchange
of two quantum numbers in (B.44) one arrives at

|α1 α2 α3 · · · αN〉 = â†
α1

â†
α2

â†
α3
· · · â†

αN
|0〉

= −|α2 α1 α3 · · · αN〉
= −â†

α2
â†

α1
â†

α3
· · · â†

αN
|0〉 . (B.46)

This relation requires that the creation operators (and hence the annihilation opera-
tors) satisfy anticommutation relations,{

â†
α , â†

β

}
=

{
âα , âβ

}
= 0 with

{
Â, B̂

}
= ÂB̂+ B̂Â , (B.47)

as (B.46) must hold for arbitrary states |α3, . . .αN〉.
The commutation relation between creation and annihilation operators can be

derived in the following fashion: as first step consider the expectation value of an
annihilation operator for arbitrary basis set states,

〈α1 · · · αM|âμ |β1 · · · βN〉= 〈μ α1 · · · αM|β1 · · · βN〉 . (B.48)

The right-hand side of (B.48) necessarily vanishes if M +1 
= N, irrespective of the
values of the quantum numbers involved. This shows that the state âμ |β1 · · · βN〉 is
a (N− 1)-particle state—the operator âμ annihilates one particle. In particular, the
expression 〈0|âμ |0〉= 0 requires

âμ |0〉= 0
(

similarly, 〈0|â†
μ = 0

)
. (B.49)

Particles can not be destroyed, if there are no particles.
The next step is an investigation of the action of the annihilation operator on an

arbitrary basis state. With the completeness relation (B.41) one obtains
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âμ |β1 · · · βN〉 =
∞

∑
M=1

1
M! ∑

α1···αM

|α1 · · · αM〉〈α1 · · · αM|âμ |β1 · · · βN〉

=
∞

∑
M=1

1
M! ∑

α1···αM

〈μ α1 · · · αM|β1 · · · βN〉 |α1 · · · αM〉

=
1

(N−1)! ∑
α1···αN−1

〈μ α1 · · · αN−1|β1 · · · βN〉 |α1 · · · αN−1〉 .

The last line can be processed further with the orthonormality relation (B.35),

âμ |β1 · · · βN〉
=

1
(N−1)! ∑

α1···αN−1

∑
P∈SN

(−1)Pδμβp1
δα1βp2

· · ·δαN−1βpN
|α1 · · · αN−1〉

=
1

(N−1)! ∑
P∈SN

(−1)Pδμβp1
|βp2 · · · βpN 〉 .

The sum over the N! permutations P can be written more explicitly in terms of an
expansion with respect to the entry with the index i as

âμ |β1 · · · βN〉 =
1

(N−1)!

N

∑
i=1

(−1)i−1δμβi ∑
P′∈SN−1

(−1)P′ |βp′1 · · · βi

/
· · · βp′N 〉 .

The sum over the permutations P′ of the numbers 1, . . . , i−1, i+1, . . .N (the omis-

sion of i is indicated by βi

/
) represents (N − 1)! times the same (N − 1)-particle

state

|β1 · · · βi−1 βi+1 · · · βN〉 =
1

(N−1)! ∑
P′∈SN−1

(−1)P′ |βp′1 · · · βi

/
· · · βp′N 〉 .

The final result

âμ |β1 · · · βN〉 =
N

∑
i=1

(−1)i−1δμβi
|β1 · · · βi−1 βi+1 · · · βN〉 (B.50)

shows: the right-hand is only non-zero, if the quantum number μ is identical with
one of the βi,

âμ |β1 · · · βN〉 =
{

(−1)i−1 |β1 · · · βi−1 βi+1 · · · βN〉 if μ = βi

0 otherwise
. (B.51)

Combination of (B.50) with (B.42) then yields

âμ â†
ν |α1 · · · αN〉 = δμν |α1 · · · αN〉

+
N

∑
i=1

(−1)iδμαi |να1 · · · αi−1 αi+1 · · · αN〉 , (B.52)
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as well as

â†
ν âμ |α1 · · · αN〉 =

N

∑
i=1

(−1)i−1δμαi |να1 · · · αi−1 αi+1 · · · αN〉 . (B.53)

Both relations are valid for arbitrary |α1 · · · αN〉, so that one can extract the anti-
commutation relation {

âμ , â†
ν
}

= δμν . (B.54)

With Eqs. (B.42)–(B.50) and (B.54) the set of basic relations for creation and anni-
hilation operators is complete. All operations and manipulations in Fock space can
be handled with these tools.

The creation or destruction of a particle has so far been associated with a basis
labelled by an index α . A transition to an alternative basis can be achieved with the
aid of completeness relations. For example, the relations (B.21) and (B.26) can be
used to write down the identities (valid for any kind of particle)

|α〉 =
∫

dx |x〉〈x|α〉 =
∫

dxφα(x)|x〉 (B.55)

|x〉 = ∑
α
|α〉〈α |x〉 = ∑

α
φ ∗α(x) |α〉 , (B.56)

which can be interpreted as a unitary basis transformation in H1. The second of
these relations suggests the introduction of the operators ψ̂(x) and ψ̂†(x) with

|x〉= ψ̂†(x)|0〉 and 〈x|= 〈0| ψ̂(x) . (B.57)

These operators describe the creation and the destruction of a particle at the “posi-
tion x”. For this reason they are usually referred to as field operators. In other words:
the basis transformations (B.55) and (B.56) induce a corresponding transformation
between the associated creation and annihilation operators,

ψ̂†(x) = ∑
α

φ ∗α(x) â†
α = ∑

α
〈α|x〉 â†

α (B.58)

ψ̂(x) = ∑
α

φα(x)âα = ∑
α
〈x|α〉âα , (B.59)

with the inverse transformation

âα =
∫

dxφ ∗α(x) ψ̂(x) (B.60)

â†
α =

∫
dx φα(x) ψ̂†(x) . (B.61)

The relations (B.58), (B.59) indicate directly that the field operators are objects with
two components in the case of spin 1/2 fermions,
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ψ̂(x) = ψ̂(rrrσ) =

{
ψ̂(rrr,+ 1

2 ) if σ = + 1
2

ψ̂(rrr,− 1
2 ) if σ =− 1

2

. (B.62)

The anticommutation relations (B.54) and (B.47) and the transformations (B.58)–
(B.61) can only be consistent, if the field operators satisfy{

ψ̂(x), ψ̂†(x′)
}

= δ (x,x′) (B.63){
ψ̂(x), ψ̂(x′)

}
=

{
ψ̂†(x), ψ̂†(x′)

}
= 0 . (B.64)

The structure of the commutation relations is conserved under basis transforma-
tions. A transformation between the basis |α〉 and any other (single-particle) basis
proceeds in the same fashion.

B.2.2 1-Particle Operators

The Pauli principle requires that quantum particles are indistinguishable. Observ-
ables of many particle systems can, as a consequence, only be represented by oper-
ators which are symmetric under exchange of particles.

An important class of operators in N-particle space are those constructed by sum-
mation over terms acting on a single particle,

F̂ =
N

∑
i=1

f̂i . (B.65)

They are referred to as 1-particle (or single-particle) operators. More correctly they
might be called 1-particle operators in an N-particle system. A second important
type of operators is constructed by summation of terms linking two particles,

Ŵ =
N

∑
i, j=1; i< j

ŵi j . (B.66)

These operators are therefore called 2-particle operators.
A 1-particle operator f̂ can be specified in the x -, the α - or any other represen-

tation. In the Dirac notation one obtains for instance for the operator of the kinetic
energy of a single particle in the x -representation

〈x|t̂|x′〉= δ (x,x′)
(−ih̄∇∇∇′)2

2m
. (B.67)

The α - and the x -representation of an operator f̂ can be related with the aid of the
completeness relation

〈α| f̂ |β 〉=
∫

dxdx′ 〈α|x′〉〈x′| f̂ |x〉〈x|β 〉 . (B.68)
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The action of f̂ on a 1-particle state |γ〉 can also be rewritten with the completeness
relation as

f̂ |γ〉= ∑
α
|α〉〈α| f̂ |γ〉 . (B.69)

This implies that the representation of a 1-particle operator in terms of creation and
annihilation operators must have the form

f̂ = ∑
αβ
〈α| f̂ |β 〉 â†

α âβ . (B.70)

The operators â†
α and âβ are specified in terms of the single-particle basis to which

|γ〉 belongs. Equation (B.70) can be verified by insertion,

f̂ |γ〉= ∑
αβ
〈α| f̂ |β 〉 â†

α âβ â†
γ |0〉= ∑

α
〈α| f̂ |γ〉 â†

α |0〉 , (B.71)

and comparison with Eq. (B.69).
The 1-particle operator F̂ = ∑i f̂i in Fock space is completely characterized by the

action of f̂ within the 1-particle segment of this space. It follows that the operator
(B.70) can also serve as a representation of the operator F̂ ,

F̂ = ∑
αβ
〈α| f̂ |β 〉 â†

α âβ . (B.72)

Due to the combination â†
α âβ the operator only connects states of the same segment

of Fock space. In order to evaluate the action of this operator on a N-particle state
one may use the commutation relation

[
F̂ , â†

α
]
= ∑

βγ
〈β | f̂ |γ〉

[
â†

β âγ , â
†
α

]
= ∑

β
〈β | f̂ |α〉â†

β . (B.73)

Use of (B.73) allows a direct evaluation of F̂ |α1 · · ·αN〉 as soon as [F̂ , â†
α ] is intro-

duced by suitable addition and subtraction of terms,

F̂ â†
α1
· · · â†

αN
|0〉 = [F̂ , â†

α1
] â†

α2
· · · â†

αN
|0〉+ â†

α1
[F̂ , â†

α2
] â†

α3
· · · â†

αN
|0〉

+ · · ·+ â†
α1
· · · â†

α(N−1)
[F̂ , â†

αN
] |0〉 . (B.74)

After replacement of the commutator one obtains

= ∑
β1

〈β1| f̂ |α1〉 â†
β1

â†
α2
· · · â†

αN
|0〉+∑

β2

〈β2| f̂ |α2〉 â†
α1

â†
β2

â†
α3
· · · â†

αN
|0〉

+ · · ·+∑
βN

〈βN | f̂ |αN〉 â†
α1
· · · â†

αN−1
â†

βN
|0〉 . (B.75)

This explicit result can be written in the compact form
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F̂ |α1 · · ·αN〉 =
N

∑
i=1

∑
βi

〈βi| f̂ |αi〉 â†
α1
· · · â†

βi
· · · â†

αN
|0〉 . (B.76)

The notation indicates that â†
βi

stands at position i in the sequence of creation oper-
ators. Each of the particles is transferred with a certain probability, determined by
the matrix element 〈βi| f̂ |αi〉, into a single-particle state which is not already present
in |α1 · · ·αN〉. The result (B.75) can also be used to evaluate the only non-vanishing
matrix elements of F̂ ,

〈α1 · · ·αN |F̂ |α1 · · ·αN〉 = ∑
i=1
〈αi| f̂ |αi〉 (B.77)

〈α1 · · ·βk · · ·αN |F̂ |α1 · · ·αN〉 = 〈βk| f̂ |αk〉 . (B.78)

The label βk 
= αi, i = 1, . . .N replaces αk in the bra-state of Eq. (B.78). 1-particle
operators can only connect states of Fock space with the same number of particles,
which differ at most in one occupation.

The operator (B.72) in the second quantized representation can alternatively be
written in terms of the field operators

F̂ = ∑
αβ
〈α| f̂ |β 〉â†

α âβ =
∫

dxdx′ ∑
αβ
〈α|x′〉〈x′| f̂ |x〉〈x|β 〉â†

α âβ

=
∫

dxdx′ ψ̂†(x′)〈x′| f̂ |x〉ψ̂(x) , (B.79)

or, for that matter, in terms of any other basis, which is related by a unitary transfor-
mation, as e.g.

b̂†
k = ∑

α
Ck,α â†

α b̂k = ∑
α

C∗k,α âα (B.80)

with the inverse

â†
α = ∑

k

C∗k,α b†
k âα = ∑

k

Ck,α b̂k . (B.81)

In the basis with the creation and annihilation operators b̂k, b̂
†
k one obtains

F̂ = ∑
k1,k2

〈k1| f̂ |k2〉 b̂†
k1

b̂k2 . (B.82)

The form of the representation is independent of the basis chosen.
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B.2.3 2-Particle Operators

Similar statements can be made for 2-particle operators, though detailed calculations
and proofs are more involved. These operators are characterized by matrix elements
in the 2-particle sector of the Fock space, e.g. in the x -representation by

(x′1x′2|ŵ|x1x2) .

The notation indicates that the matrix element under consideration is the canonical
matrix element, obtained with the product states of the 2-particle Hilbert space. One
example is the interaction between two particles, which is usually local with respect
to the coordinates of the two particles involved,

(x′1x′2|ŵ|x1x2) = δ (x1,x
′
1)δ (x2,x

′
2)w(x1,x2) . (B.83)

The function w(x1,x2) has to be symmetric and real, as

• the corresponding force has to satisfy Newton’s third axiom, and
• the operator ŵ has to be hermitian.

It may either be spin-dependent, or not,

w(x1,x2) = w(rrr1,rrr2) . (B.84)

Equation (B.84) applies in particular to the Coulomb interaction, which is of primary
interest in the present context. In fact, the Coulomb force is a good example for an
interaction which is, in addition, Galilei invariant. The function w(rrr1,rrr2) depends
only on the difference of the position vectors in this case

w(rrr1,rrr2) = w(rrr1− rrr2) . (B.85)

The α -representation of the two-body interaction is again obtained with the aid of
the completeness relation,

(β1β2|ŵ|α1α2) =
∫

dx′1dx′2dx1dx2 (β1β2|x′1x′2)(x
′
1x′2|ŵ|x1x2)(x1x2|α1α2) , (B.86)

in detail for the case (B.83),

(β1β2|ŵ|α1α2) =
∫

dx1dx2 φ ∗β1
(x1)φ ∗β2

(x2)w(x1,x2)φα1(x1)φα2(x2) . (B.87)

The order of the quantum labels in the 2-particle bra- and ket-states is, as indicated
explicitly in (B.87), of relevance. The first label in the bra- and in the ket-state is
associated with the coordinate x1, the second with x2. The matrix element satisfies
the symmetry relations

(β1β2|ŵ|α1α2) = (β2β1|ŵ|α2α1) = (α1α2|ŵ|β1β2)∗ . (B.88)
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The action of a 2-particle operator on antisymmetric 2-particle states can be re-
formulated with the aid of the completeness relation (B.37),

ŵ|α1α2〉=
1
2! ∑

β1β2

〈β1β2|ŵ|α1α2〉|β1β2〉 . (B.89)

The matrix element in (B.89) is the antisymmetric matrix element, which can be
expressed in terms of canonical matrix elements by use of Eq. (B.32),

〈β1β2|ŵ|α1α2〉 =
1
2

{
(β1β2|− (β2β1|

}
ŵ
{|α1α2)−|α2α1)

}
= (β1β2|ŵ|α1α2)− (β1β2|ŵ|α2α1) . (B.90)

The second line in Eq. (B.90) follows from the symmetry of the interaction against
the interchange of the two particles. The properties of this matrix element,

〈β1β2|ŵ|α1α2〉 = −〈β2β1|ŵ|α1α2〉 = −〈β1β2|ŵ|α2α1〉 (B.91)

= 〈β2β1|ŵ|α2α1〉 = 〈α1α2|ŵ|β1β2〉∗ ,

follow directly from the definition and the properties (B.88) of the direct matrix
elements involved. Combination of Eqs. (B.88)–(B.91) yields the alternative form

ŵ|α1α2〉= ∑
β1β2

(β1β2|ŵ|α1α2) |β1β2〉 . (B.92)

The second quantized form of a 2-particle operator in Fock space that reproduces
(B.92) is

Ŵ =
1
2 ∑

αβγδ
(αβ |ŵ|γδ ) â†

α a†
β âδ âγ . (B.93)

One should take note of the sequence of the labels of the operators with respect to
the sequence of the labels of the states. The calculation of the action of this operator
on a 2-particle state of fermion Fock space involves the evaluation of

Ŵ |α1α2〉=
1
2 ∑

β1β2γ1γ2

(β1β2|ŵ|γ1γ2) â†
β1

â†
β2

âγ2 âγ1 â†
α1

â†
α2
|0〉 . (B.94)

Rearrangement of the creation and annihilation operators,

â†
β1

â†
β2

âγ2 âγ1 â†
α1

â†
α2
|0〉= (δα1γ1 δα2γ2 −δα1γ2 δα2γ1) â†

β1
â†

β2
|0〉 (B.95)

leads, with (B.91), to the same result as (B.92), namely

Ŵ |α1α2〉= ∑
β1β2

(β1β2|ŵ|α1α2) |β1β2〉 . (B.96)
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The evaluation of the action of the operator Ŵ on a N-particle state also relies on
the use of a suitable commutator,[

Ŵ , â†
α
]
= ∑

β1β2α2

(β1β2|ŵ|αα2) â†
β1

â†
β2

âα2 . (B.97)

Consequent permutation of the commutator through the string of creation operators
of the N-particle state yields

Ŵ |α1 · · ·αN〉

=
N

∑
i=1

â†
α1
· · ·[Ŵ , â†

αi

] · · · â†
αN
|0〉

=
N−1

∑
i=1

∑
β1β2γ2

(β1β2|ŵ|αiγ2) â†
α1
· · · â†

αi−1
â†

β1
â†

β2
âγ2 â†

αi+1
· · · â†

αN
|0〉 . (B.98)

The expression â†
β1

â†
β2

âγ2 stands exactly at the position of â†
αi (the contribution with

i = N has been omitted, as it vanishes). The pair â†
β2

âγ2 now has to be commuted
through the chain of operators to its right,

Ŵ |α1 · · ·αN〉 =
N−1

∑
i=1

N

∑
j=i+1

∑
β1β2

(β1β2|ŵ|αiα j)

×â†
α1
· · · â†

αi−1
â†

β1
â†

αi+1
· · · â†

α j−1
â†

β2
â†

α j+1
· · · â†

αN
|0〉 . (B.99)

This expression can be symmetrized with respect to i and j by use of

N−1

∑
i=1

N

∑
j=i+1

Ai j =
N

∑
j=2

j−1

∑
i=1

Ai j

and subsequent simultaneous relabelling i ↔ j, β1 ↔ β2 in half of the right-hand
side,

Ŵ |α1 · · ·αN〉 =
1
2

N

∑
i, j=1;i
= j

∑
β1β2

(β1β2|ŵ|αiα j)

×â†
α1
· · · â†

αi−1
â†

β1
â†

αi+1
· · · â†

α j−1
â†

β2
â†

α j+1
· · · â†

αN
|0〉 .

The canonical matrix element can be replaced by its antisymmetric counterpart by
using the commutation relations to interchange the positions of â†

β1
and â†

β2
in the

sequence of creation operators,

Ŵ |α1 · · ·αN〉 =
1
4

N

∑
i, j=1;i
= j

∑
β1β2

〈β1β2|ŵ|αiα j〉

×â†
α1
· · · â†

αi−1
â†

β1
â†

αi+1
· · · â†

α j−1
â†

β2
â†

α j+1
· · · â†

αN
|0〉 . (B.100)
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This result shows that at most two of the particles in |α1 · · ·αN〉 are promoted to
different single-particle states by application of Ŵ . The matrix elements, which are
non-zero, are

• the expectation value,

〈α1 · · ·αN |Ŵ |α1 · · ·αN〉 =
1
2

N

∑
i, j=1

〈αiα j|ŵ|αiα j〉 , (B.101)

• matrix elements with N-particle states, which differ in one quantum number
(βk 
= αi, i = 1 . . .N),

〈α1 · · ·αk−1βkαk+1 · · ·αN |Ŵ |α1 · · ·αk · · ·αN〉=
N

∑
i=1
〈βkαi|ŵ|αkαi〉 , (B.102)

• matrix elements with N-particle states, which differ in two quantum numbers
(βk,βl 
= αi, i = 1 . . .N),

〈α1 · · ·αk−1βkαk+1 · · ·αl−1βlαl+1 · · ·αN |Ŵ |α1 · · ·αk · · ·αl · · ·αN〉
= 〈βkβl |ŵ|αkαl〉 (B.103)

(with the understanding that βk stands on position k etc.).
The second quantized form of a 2-particle operator in the x -representation can

be obtained from the α -representation with the aid of completeness relation (B.31).
Insertion of (B.31) into (B.93) and subsequent use of (B.29) leads to

Ŵ =
1
2 ∑

β1β2α1α2

∫
dx1dx2 (β1β2|x1x2)w(x1,x2)(x1x2|α1α2) â†

β1
â†

β2
âα2 âα1

=
1
2

∫
dx1dx2 ∑

β1β2α1α2

φ ∗β1
(x1)φ ∗β2

(x2)w(x1,x2)φα1(x1)φα2(x2)

× â†
β1

â†
β2

âα2 âα1 .

With Eqs. (B.58), (B.59) one finally obtains

Ŵ =
1
2

∫
dx1dx2 ψ̂†(x1)ψ̂†(x2)w(x1,x2)ψ̂(x2)ψ̂(x1) . (B.104)

Once again, specific attention should be given to the order of the arguments of the
annihilation operators.



Appendix C
Scaling Behavior of Many-Body Methods

In order to provide some background for the discussion of the scaling behavior
of many-body methods with the basis set size M indicated in the Introduction, we
explicitly consider the most relevant expressions which one has to deal with in this
Appendix. The analysis is still quite simple for the class of matrix elements, which
have to be evaluated in any of the ab-initio methods, i.e. the matrix elements of a
single-particle operator. Let us thus first consider a multiplicative potential v as the
prototype of such an operator.

In an algebraic eigenvalue problem of the type (1.24) usually two steps are in-
volved. In order to determine the eigenvectors bi,lσ the Hamilton matrix has to be
evaluated first. Once the bi,lσ are known, other quantities, like the energy of the sys-
tem can be calculated in a second step.1 In the case of a multiplicative potential v
M2 integrals

〈ηk|v̂|ηl〉 =
∫

d3r η∗k (rrr)v(rrr)ηl(rrr) k, l = 1, . . .M , (C.1)

have to be evaluated in the first step.2 Three aspects are relevant in this context:

• If v is a given potential the M2 integrals have to be evaluated only once. However,
the single-particle potential is often determined during the calculation, rather than
given a priori. This is the case, in particular, for the HF scheme, which represents
the starting point for many of the more advanced approaches. In a selfconsis-
tent scheme the evaluation of the matrix elements 〈ηk|v̂|ηl〉 has to be repeated
a number of times. This repetition introduces an additional factor into the total
computational cost, which, however, is independent of M and will be ignored in
the following.

• On the other hand, the construction of v itself usually depends on M. The asso-
ciated scaling cannot be determined without specification of a particular method
and will therefore be examined later.

1 In practice, these two steps often go hand in hand, of course.
2 For Hermitian operators the actual number is M(M + 1)/2, which for large M corresponds to
O(M2).
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• It remains to address the cost of handling the spatial integral in (C.1). If the
integral is known analytically, one can simply store the M2 coefficients 〈ηk|v̂|ηl〉
for repeated use. However, this is rarely the case, so that a numerical evaluation
of (C.1) is usually unavoidable.3 The summation over a spatial grid introduces an
additional scaling factor of M, as the number of grid points required to represent
M linearly independent basis functions is proportional to M. In the following the
number of grid points will therefore simply be identified with M. As a result M3

operations are needed in order to set up the table of all 〈ηk|v̂|ηl〉, if numerical
integration is used in Eq. (C.1).

Once the matrix elements〈ηk|v̂|ηl〉 are available and the eigenvalue problem (1.24)
is solved, the evaluation of the associated energy,

N

∑
i=1
〈φi|v̂|φi〉 =

N

∑
i=1

M

∑
k,l

∑
σ

b∗i,kσ bi,lσ 〈ηk|v̂|ηl〉 , (C.2)

involves a summation over N terms for each of the M2 matrix elements kl (the
multiplicities associated with spin are irrelevant at this point). The scaling of N and
M is, however, intrinsically related, i.e. M increases linearly with N. For the present
discussion N can therefore simply be replaced by M, so that one ends up with a total
scaling of M3.

It is instructive to compare this procedure with an alternative possibility for the
calculation of (C.2). The first step of this second path is the evaluation of all orbitals
(1.23), for which a summation over M terms is required for all N = M orbitals on
all M grid points. Once all φi(rrr) are stored, it takes M2 operations to calculate the
density

n(rrr) = ∑
σ

N

∑
i=1

|φi(rrrσ)|2 . (C.3)

The energy (C.2) can finally be evaluated by numerical integration over n(rrr)v(rrr),
which is linear in M. Again one ends up with an M3 scaling. In the alternative
approach the storage of the M ×M array φi(rrr) replaces the storage of the M ×
M array 〈ηk|v̂|ηl〉 necessary in the first approach, so that no additional memory is
needed.

The second approach can easily be extended to nonlocal single-particle poten-
tials. In this case one would pre-evaluate the 1-particle density matrix

γ(rrrσ ,rrr′σ ′) =
N

∑
i=1

φi(rrrσ)φ ∗i (rrr′σ ′) , (C.4)

rather than the density. This step scales as M3. The integration

3 The numerical integration can be avoided if v is expanded in terms of a separate basis set which
allows an analytical treatment of 〈ηk|v̂|ηl〉. This point will, however, not be expanded here.
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∑
σ ,σ ′

∫
d3r

∫
d3r′ γ(rrrσ ,rrr′σ ′)v(rrrσ ,rrr′σ ′)

then requires M2 operations.
The same arguments can be applied to the kinetic energy. This is immediately

clear if the gradients of ηk can be evaluated analytically. However, even if the partial
derivatives of ηk (or φi) have to be calculated numerically, the total scaling is not
affected, as differentiation is linear in M.

In summary: the numerical calculation of the Hamilton matrix scales like M3

with the basis set size, as long as the Hamiltonian consists only of single-particle
operators, whose evaluation does not introduce an additional M-dependence. The
same scaling behavior is found for the actual diagonalization of the Hamilton ma-
trix by standard techniques.4 In practice, however, the diagonalization is less time
consuming than the evaluation of the matrix elements.

The situation becomes more complicated as soon as the Coulomb interaction, a
2-particle operator, is taken into account, i.e. as soon as the determination of v̂eff,σσ ′
is addressed. Let us explicitly consider the HF approximation in which only very
specific Coulomb matrix elements are required. In order to extract the scaling be-
havior it is sufficient to analyze the exchange contribution

Ex = −e2

2

N

∑
i, j=1

∑
σ ,σ ′

∫
d3r

∫
d3r′

φ ∗i (rrrσ)φ ∗j (rrr′σ ′)φ j(rrrσ)φi(rrr′σ ′)
|rrr− rrr′| , (C.5)

which is the most demanding term in the HF approach. One possible method for the
evaluation of (C.5) consists of the following sequence of operations:

1. evaluate and store φi(rrrσ) (scales as M3)
2. evaluate and store γ(rrrσ ,rrr′σ ′) (scales as M3)

3. evaluate Ex =−e2

2 ∑
σ ,σ ′

∫
d3r

∫
d3r′

|γ(rrrσ ,rrr′σ ′)|2
|rrr− rrr′| (scales as M2)

A net scaling of M3 is found. The same is true for the exchange contribution to the
effective single-particle Hamiltonian

N

∑
j=1

(ηkφ j| 1
|rrr− rrr′| |φ jηn) =

N

∑
j=1

∫
d3r

∫
d3r′

η∗k (rrr)φ ∗j (rrr′σ ′)φ j(rrrσ)ηn(rrr′)
|rrr− rrr′| (C.6)

=
∫

d3rη∗k (rrr)
[∫

d3r′
γ(rrrσ ,rrr′σ ′)
|rrr− rrr′| ηn(rrr′)

]
.

The calculation of the quantity in brackets scales as M3. Once it is stored for all rrr
and n, one can perform the rrr-integration for all k, l, which again scales as M3.

However, the numerical evaluation of matrix elements of the Coulomb interac-
tion is complicated by the singularity at rrr = rrr′ and by the long range of the inter-

4 Here we ignore advanced techniques as iterative diagonalization [729], the Car-Parrinello method
[730] and conjugate gradient methods [731, 732, 669] for brevity.
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action. In addition, the procedure described, requires substantial memory as both
the M×M arrays γ(rrrσ ,rrr′σ ′) and

∫
d3r′γ(rrrσ ,rrr′σ ′)ηn(rrr′)/|rrr− rrr′| have to be stored

simultaneously. It is therefore preferable to use basis functions for which the matrix
elements

(ηkηl ||ηmηn) =
∫

d3r
∫

d3r′
η∗k (rrr)η∗l (rrr′)ηm(rrr)ηn(rrr′)

|rrr− rrr′| (C.7)

can be calculated analytically (like Gaussian or plane-wave basis functions). If the
quantities (ηkηl ||ηmηn) are easily recalculated, it is not even necessary to store
the matrix elements. Alternatively, one can store all (ηkηl ||ηmηn) before any other
operation is performed. In this case the exchange term in the Hamilton matrix has
the form

N

∑
j=1

(ηkφ j| 1
|rrr− rrr′| |φ jηn) =

M

∑
l,m=1

N

∑
j=1

b∗j,lσ ′b j,mσ (ηkηl ||ηmηn) , (C.8)

which suggests an effort proportional to NM4. However, the evaluation of the ex-
pression (C.8) and that of the exchange energy can again be split into several in-
dependent steps, which improves the scaling behavior. One first sums up the M2

coefficients ∑N
j=1 b∗j,lσ ′b j,mσ and stores them. This step requires M3 operations. In

the second step the resulting matrix in l,m is folded with the known matrix elements
(ηkηl ||ηmηn) for each pair k,n, which requires M4 operations. If one again stores
the resulting M2 matrix elements, the summations over i,k,n required for the cal-
culation of the complete exchange energy are independent of the previous steps, so
that the third set of summations scales as M2 (as ∑N

i=1 b∗i,kσ bi,nσ ′ is already available).
Taking all steps together, one ends up with a scaling of the HF scheme proportional
to M4 in this standard implementation.

As soon as arbitrary 2-particle matrix elements

(φiφ j| 1
|rrr− rrr′| |φkφl)

have to be calculated, as is the case for all correlated ab-initio methods, the M4-
scaling can no longer be preserved by some clever sequence of operations. In addi-
tion, the scaling behavior again depends sensitively on the technical implementation.
It is beyond the scope of this text to provide any details.



Appendix D
Explicit Density Functionals for the Kinetic
Energy: Thomas-Fermi Models and Beyond

The theorem of Hohenberg and Kohn provides a justification of early density func-
tional models which relied on a representation of the complete ground state energy
E0 in terms of the density,

E0 = E[n0] . (D.1)

The first density functional of this type was the model of Thomas and Fermi (TF),
which was established in the years 1927/28 [13, 14]. These authors considered a
uniform gas of noninteracting electrons, the homogeneous electron gas (HEG) of
Sect. 4.3, in order to derive a representation of the kinetic energy in terms of the
density.

Their result can be derived by the Green’s function techniques utilized in Sect. 4.3
for the discussion of the xc-energy of the HEG. In order to provide some alterna-
tive to this approach, however, a more elementary route for the derivation of the
TF functional is taken in this Appendix. The Schrödinger equation for the single-
particle states of the noninteracting electron gas reads

− h̄2∇∇∇2

2m
φi(rrrσ) = εiφi(rrrσ) . (D.2)

The solutions of (D.2) are given by

φkkks(rrrσ) = C eikkk·rrr χs(σ) (quantum number i≡ kkks) , (D.3)

with the Pauli spinors χs(σ) and the eigenvalues

εkkk =
h̄2kkk2

2m
. (D.4)

Normalizable solutions can only be obtained if kkk is real. However, even in the case
of real kkk the norm of φkkks is infinite, as soon as the complete space is considered.
Moreover, the differential equation (D.2) allows arbitrary real values of kkk, so that
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one finds more than countably many states. It is thus necessary to regularize the
problem by an additional boundary condition which ensures the normalizability of
the φkkks and at the same time discretizes the spectrum. For this regularization one
chooses a cubic box with sides of length L. Requiring periodic boundary conditions
for all three Cartesian directions,

φkkks(x+L,y,z,σ) = φkkks(x,y+L,z,σ) = φkkks(x,y,z+L,σ) = φkkks(x,y,z,σ) , (D.5)

leads to a quantization (i.e. discretization) of all components of kkk,

ki =
2π
L

αi with αi = 0,±1,±2, . . . (i = 1,2,3) . (D.6)

Normalization to 1 inside the box is obtained for C = 1/
√

L3,

∫ L

0
dx

∫ L

0
dy

∫ L

0
dxe

2πi
L (ααα ′−ααα)·rrr ∑

σ=↑,↓
χs(σ)χs′(σ) = L3 δαααααα ′ δss′ . (D.7)

The single-particle states which are properly normalized within a cubic box are thus
given by

φkkks(rrrσ) =
eikkk·rrr

L3/2
χs(σ) kkk =

2π
L

ααα with αi = 0,±1,±2, . . . . (D.8)

In the ground state of the noninteracting homogeneous electron gas each level
is filled with one spin-up and one spin-down electron. The number of levels which
are occupied is determined by the number of particles in the box. The eigenvalue
of the energetically highest occupied state is identified with the Fermi energy εF.
Consequently, the density of the system is

n0 =
∞

∑
i=1

Θ(εF− εi) ∑
σ=↑,↓

φ ∗i (rrrσ)φi(rrrσ)

=
∞

∑
α1,α2,α3=0

Θ(εF− εkkk) ∑
σ=↑,↓

φ ∗kkks(rrrσ)φkkks(rrrσ)

=
∞

∑
α1,α2,α3=0

Θ

(
εF− h̄2kkk2

2m

)
2
L3 . (D.9)

Similarly one obtains for the kinetic energy per volume element

Ts(V )
V

=
1
V

∞

∑
i=1

Θ(εF− εi) ∑
σ=↑,↓

∫
V

d3r φ ∗i (rrrσ)
−h̄2∇∇∇2

2m
φi(rrrσ)

=
1
L3

∞

∑
α1,α2,α3=0

Θ(εF− εkkk) ∑
σ=↑,↓

∫ L

0
dx

∫ L

0
dy

∫ L

0
dzφ ∗kkks(rrrσ)

h̄2kkk2

2m
φkkks(rrrσ)
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=
∞

∑
α1,α2,α3=0

Θ

(
εF− h̄2kkk2

2m

)
2
L3

h̄2kkk2

2m
. (D.10)

At this point all expressions have been evaluated to a point at which the limit L→∞
can be taken, which leads back to the electron gas of infinite extension. In this limit
the spacing between adjacent momenta kkk becomes infinitesimally small, so that the
summation over all discrete values of kkk goes over into an integration over kkk. The
volume element of this kkk-integration is obtained from the volume in kkk-space which
is associated with each of the discrete kkk-values. For each of the Cartesian directions
two neighboring ki-values differ by 2π/L, so that the kkk-space volume per discrete
kkk-value is (2π/L)3,

Δki =
2π
L

Δαi =⇒ Δα1 Δα2 Δα3 =
(

L
2π

)3

Δ 3k

∞

∑
α1,α2,α3=0

L→∞−→
(

L
2π

)3 ∫
d3k . (D.11)

Introducing the Fermi momentum

kF :=
√

2mεF

h̄
, (D.12)

the density and kinetic energy density are now easily evaluated using spherical co-
ordinates,

n0 =
(

L
2π

)3 ∫
d3kΘ (kF−|kkk|) 2

L3

=
k3

F

3π2 (D.13)

Ts(V )
V

=
(

L
2π

)3 ∫
d3kΘ (kF−|kkk|) 2

L3

h̄2kkk2

2m

=
h̄2k5

F

10π2m
. (D.14)

Finally, one can invert the relation between n0 and kF,

kF =
(
3π2n0

)1/3
, (D.15)

to end up with the desired relation between the kinetic energy density ts and the
density n0,

ts ≡ Ts(V )
V

=
h̄2(3π2n0)5/3

10π2m
. (D.16)
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In order to apply this result to atoms, Thomas and Fermi (TF) relied on the lo-
cal density approximation discussed in Sect. 4.3. In this approximation the energy
density ts(rrr) of the actual inhomogeneous system is replaced by the energy density
of the electron gas, Eq. (D.16), evaluated with the local density n(rrr). The complete
kinetic energy is then given by

T TF
s =

3(3π2)2/3h̄2

10m

∫
d3r n(rrr)5/3 . (D.17)

This expression is manifestly a density functional. As it is derived from the non-
interacting gas it represents an approximation for the Kohn-Sham kinetic energy
functional Ts[n], introduced in Sect. 3.1.

The total energy functional of Thomas and Fermi neglected all exchange and
correlation effects, so that only the direct Coulomb repulsion (Hartree energy) and
the coupling to the external potential remain,

ETF[n] = T TF
s [n]+

e2

2

∫
d3r

∫
d3r′

n(rrr)n(rrr′)
|rrr− rrr′| +

∫
d3r vext(rrr)n(rrr) . (D.18)

Applications can be based directly on the variational equation (2.38), reflecting the
minimum principle (2.28). The welcome feature is the fact that the variational ap-
proach reduces the many-particle problem to a form which is independent of the
particle number.

Considerable effort was expended in order to improve this model. The first and
most important step was the inclusion of exchange by Dirac in 1930 [131]. Dirac
followed the path of Thomas and Fermi and considered the exchange energy of the
uniform electron gas. The exact exchange energy of the gas in the cubic box of
volume V = L3 has the form

Ex(V ) = −e2

2

∞

∑
i, j=1

Θ(εF− εi)Θ(εF− ε j)

× ∑
σ ,σ ′=↑,↓

∫
V

d3r
∫

d3r′
φ ∗i (rrrσ)φ j(rrrσ)φ ∗j (rrr′σ ′)φi(rrr′σ ′)

|rrr− rrr′| . (D.19)

Insertion of the states (D.8) of the uniform gas yields for the exchange energy per
volume element (after an appropriate shift of rrr′ by rrr)

ex ≡ Ex(V )
V

=−e2 ∑
αααβββ

Θ (kF−|kkkααα |)Θ
(
kF−|kkkβββ |

)∫
d3r′

ei(kkkααα−kkkβββ )·rrr′

L6|rrr′| . (D.20)

One can now use the fact that for L→ ∞ the summation over all integers ααα can be
replaced by an integration over kkk, Eq. (D.11), to obtain

ex = −e2
∫

d3k
(2π)3

∫
d3q

(2π)3 Θ(kF−|kkk|)Θ(kF−|qqq|)
∫

d3r′
ei(kkk−qqq)·rrr′

|rrr′| . (D.21)
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Next, the rrr′-integration can be carried out by introducing a suitable intermediate reg-
ularization factor e−μ|rrr′| in the integral and taking the limit μ → 0 after integration
(compare Eq. (4.144) and the subsequent discussion in Sect. 4.4.1),

ex =−e2
∫

d3k
(2π)3

∫
d3q

(2π)3 Θ(kF−|kkk|)Θ(kF−|qqq|) 4π
(kkk−qqq)2 . (D.22)

One now first performs the qqq-integration. Choosing the z-axis of the coordinate sys-
tem for qqq so that it is parallel to kkk, the qqq-integration can be done in spherical coor-
dinates,

ex = −e2

π

∫
d3k

(2π)3 Θ(kF− k)
∫ kF

0
q2dq

∫ +1

−1
d cos(θ)

1
k2 +q2−2kqcos(θ)

=
e2

2π3

∫ kF

0
kdk

∫ kF

0
qdq [ln |k−q|− ln(k +q)] .

The remaining integrations are straightforward, after splitting the range of the inner
integration over q into the subregimes [0,k] and [k,kF],

ex = − e2

4π3 k4
F . (D.23)

Insertion of the Fermi momentum (D.15) then leads to

ex = − e2

4π3

(
3π2n0

)4/3
. (D.24)

Using the local density approximation, one finally arrives at the density functional

ED
x [n] = − 3(3π2)1/3e2

4π

∫
d3r n(rrr)4/3 . (D.25)

ED
x [n] is an approximation for the exact exchange energy functional Ex[n] of DFT.

As is clear from its construction, ED
x [n] is nothing but the LDA for exchange,

Eqs. (4.99), (4.109), in modern terminology. Adding this term to the energy (D.18)
constitutes the Thomas-Fermi-Dirac model.

The next step towards extending the TF model was taken by von Weizsäcker in
1935 [174]. Von Weizsäcker observed that one can express the kinetic energy of a
single particle in terms of the density. In fact, if there is only one particle bound by
some potential, the corresponding ground state orbital

φi(rrrσ) = ϕ0(rrr)χs(σ)

may be chosen real, so that its kinetic energy may be written as1

1 The surface term does not contribute in the partial integration since a normalizable orbital decays
sufficiently rapidly for |rrr| → ∞.
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Ts = ∑
σ=↑,↓

∫
d3r φ ∗i (rrrσ)

−h̄2∇∇∇2

2m
φi(rrrσ) =

∫
d3r

[h̄∇∇∇ϕ0(rrr)]2

2m
. (D.26)

The corresponding density is given by

n(rrr) = ∑
σ=↑,↓

|φi(rrrσ)|2 = ϕ0(rrr)2 .

Insertion into (D.26) leads to the von Weizsäcker functional

T vW
s [n] =

h̄2

m

∫
d3r

[∇∇∇n(rrr)]2

8n(rrr)
. (D.27)

This density functional also represents the exact kinetic energy in the case of a
noninteracting 2-particle system in which both particles occupy the same orbital
ϕ0, but have opposite spins. T vW

s [n] thus agrees with the exact Ts[n] of Kohn-Sham
theory for a single particle and a spin-saturated pair of two particles.

The expression for T vW
s [n] also indicates how the TF kinetic energy can be ex-

tended in order to better account for the inhomogeneity of real systems: obviously,
the gradient of the density is the simplest purely density-dependent measure of the
inhomogeneity in a many-particle system. The only parameter-free expression for ts
which (i) depends only locally on ∇∇∇n and (ii) does not depend on the characteristics
of the external potential (as for instance on some preferred axis) is the functional
(D.27). It is thus no surprise that a systematic derivation of gradient corrections for
the kinetic energy, either using some form of the so-called commutator expansion
[173] or following the lines of Sect. 4.4, leads to an expression which differs from
T vW

s [n] only by an overall prefactor λ = 1/9 (for all details, including higher order
gradient corrections [175, 733, 194, 195, 734], see Chap. 5 of [7]). Adding λT vW

s [n]
to ETF[n]+ED

x [n] constitutes the Thomas-Fermi-Dirac-Weizsäcker model.
Without going into detail, we list some further extensions of the TF-model:

• First correlation contributions were introduced by Wigner as early as 1934 [138]
(see Sect. 4.3.4).

• Gradient corrections to the Dirac exchange energy were calculated subsequently,
but were found to lead to a divergent behavior for small and large separations
from the nucleus in atoms—compare Sect. 4.4.3.

Nonetheless, the endeavors to improve TF-type density functionals were essentially
abandoned until recently, since the explicitly density-dependent representation of Ts

used in these models does not allow to reproduce shell structure.
Renewed interest in functionals of the type (D.1) has been stimulated by the N3-

scaling of the Kohn-Sham approach with system size: if one wants to perform calcu-
lations for truly large quantum systems without any periodicity or other symmetry
(e.g. disordered solids or huge (bio)molecules), an N3-scaling is still prohibitive. In
this case use of a kinetic energy density functional (KEDF) is highly attractive. In
view of the limitations of the TF-type semi-local functionals a fully nonlocal ansatz
is chosen for modern KEDFs [735–749]. The general form of these approximations
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is2

T nl
s [n] = T TF

s [n]+T vW
s [n]

+
h̄23(3π2)2/3

10m

∫
d3r d3r′ n(rrr)α wαβ

(
ξγ(rrr,rrr′),rrr− rrr′

)
n(rrr′)β , (D.28)

with the 2-body Fermi wavevector

ξγ(rrr,rrr′) =

[
(3π2n(rrr))γ/3 +(3π2n(rrr′))γ/3

2

]1/γ

(D.29)

(the structure of (D.28) can be motivated by scaling arguments [750]). By construc-
tion the functional T nl

s [n] can be exact for the electron gas with ∇∇∇n = 000 and for
a 2-particle system, if the density-dependent kernel w is chosen appropriately. So,
obviously one has the requirement

wαβ
(
ξγ ,rrr− rrr′

)
= 0

in the electron gas limit. Moreover, in order to recover the exact linear response re-
sult for the weakly inhomogeneous electron gas, Eq. (4.156), the kernel has to satisfy
a differential equation, which allows to determine its shape. In fact, this differential
equation can even be solved analytically [749], which, in spite of the nonlocality
of ξγ(rrr,rrr′), leads to an N ln(N) scaling of the computational effort with the system
size. KEDFs can therefore provide the basis for multiscale modelling.

Selfconsistent calculations with KEDFs are usually based on pseudopotentials.
The pseudopotentials have to be local, as projecting out part of the all-electron
Hilbert space is not possible, if no states are involved. However, an accurate de-
scription by local pseudopotentials can only be expected for simple metals. Ap-
plications of KEDFs to bulk aluminum, aluminum surfaces and aluminum clusters
[742, 743, 746, 749] demonstrated that the functional (D.28) accurately reproduces
the geometry, energetics (including vacancy formation) and density profiles of the
full Kohn-Sham solutions. In particular, one finds very accurate results for the rel-
ative energies of different crystal structures [746]. KEDFs perform even better for
sodium [742, 743].

2 Sometimes, even several nonlocal kernels of the form (D.28) are superposed [745],

∑
αβ

λαβ 〈n(rrr)α wαβ n(rrr′)β 〉 ,

in order to allow for more flexibility. In this case ∑αβ λαβ = 1 is required.



Appendix E
Asymptotic Behavior of Quasi-Particle
Amplitudes

In this Appendix the asymptotic behavior of the quasi-particle amplitudes fk,
Eq. (3.104), for the case of finite systems is extracted from the differential equation
(3.112). One starts by noting that a multipole expansion of the interaction w(rrr,rrr′) is
legitimate for large |rrr|, as 〈ΨN−1

k |n̂(rrr′)|ΨN−1
l 〉 decays exponentially for large |rrr′|—

only bound states k are of interest, so that |ΨN−1
k 〉 represents a localized wavefunc-

tion which vanishes exponentially for large |rrr|. Restricting the discussion to the
Coulomb interaction, one has

w(rrr,rrr′) =
e2

|rrr− rrr′| =
e2

|rrr|
{

1+
rrr · rrr′
|rrr|2 + . . .

}
. (E.1)

Insertion into the nonlocal term in Eq. (3.112) leads to

∑
l

∫
d3r′w(rrr,rrr′)〈ΨN−1

k |n̂(rrr′)|ΨN−1
l 〉 fl(rrrσ)

=
e2

|rrr|∑l

{
(N−1)δkl +

rrr
|rrr|2 · 〈Ψ

N−1
k |

∫
d3r′ rrr′n̂(rrr′)|ΨN−1

l 〉
}

fl(rrrσ)

+O(|rrr|−3) . (E.2)

The kernel of the first order term is exactly the operator of the dipole moment,

D̂DD = e2
∫

d3r rrr n̂(rrr) . (E.3)

A multipole expansion is also possible for the external potential. Using again the
Coulomb form, one obtains

vext(rrr) =−∑
α

Zα e2

|rrr−RRRα | =−Ze2

|rrr| −
rrr
|rrr|3 ·∑α

Zα e2RRRα + . . . ; Z = ∑
α

Zα , (E.4)

where Zα and RRRα denote the charge and position of nucleus α . Insertion of (E.2)–
(E.4) into (3.112) yields the asymptotic differential equation for the fk,
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− h̄2∇∇∇2

2m
− (Z−N +1)e2

|rrr| − h̄ωk

}
fk(rrrσ)+

rrr
|rrr|3 ·∑l

DDDkl fl(rrrσ) = 0 . (E.5)

All electronic and nuclear dipole contributions have been absorbed into DDDkl . The
asymptotically leading term of the potential in (E.5) is the spherically symmetric
monopole term. The general solution of (E.5) thus has the form

fk(rrrσ) −→|rrr|→∞

[
∑
lm

clm
kσ Ylm(Ω)

]
rβkσ−1 e−αkσ r , (E.6)

with coefficients clm
kσ , βkσ and αkσ which remain to be determined. Insertion into

(E.5) gives

0 = ∑
lm

Ylm(Ω)

{[
∂ 2

∂ r2 −
l(l +1)

r2 +2
m

h̄2

(
h̄ωk +

(Z−N +1)e2

r

)]
clm

kσ rβkσ

−2
m

h̄2

rrr
r3 ·∑

n
DDDkn clm

nσ rβnσ e(αkσ−αnσ )r

}
e−αkσ r . (E.7)

As all fk are coupled by the dipole moment matrix elements DDDkn and these matrix
elements do not vanish for k 
= n, all fk must have the same exponential decay.
This statement can be verified by reductio ad absurdum. Assume that there is one
amplitude fq which shows the weakest decay, i.e. αqσ < αkσ for all k 
= q. Now
consider the asymptotic equation for k 
= q. The dipole contribution of fq dominates
this asymptotic equation, i.e. the sum over n breaks down to the single term with n =
q. Due to αkσ −αqσ > 0, however, this term diverges exponentially, thus requiring
clm

qσ = 0. One ends up with a contradiction, so that all αkσ must be identical. The
same result is found for Hartree-Fock orbitals [751], which also satisfy coupled
equations of the type (E.5).

With αkσ ≡ ασ Eq. (E.7) reduces to

0 = ∑
lm

Ylm(Ω)
{[

βkσ (βkσ −1)
r2 −2

ασ βkσ
r

+α2
σ −

l(l +1)
r2

+2
m

h̄2

(
h̄ωk +

(Z−N +1)e2

r

)]
clm

kσ rβkσ

−2
m

h̄2

rrr
r3 ·∑

n
DDDkn clm

nσ rβnσ

}
. (E.8)

Consider now the amplitude q with the largest exponent βkσ ,

βqσ > βkσ ∀ k 
= q . (E.9)

In the asymptotic equation for fq the dipole term is suppressed by 1/r with respect
to the two leading orders. Consequently one obtains
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α2
σ =−2

m
h̄

ωq ; βqσ =
√

m

h̄2

(Z−N +1)e2√−2h̄ωq
. (E.10)

The largest exponent is therefore found for the smallest |ωq|, i.e. for q = 0,

ασ =

√
−2mω0

h̄
=
√

2m IP
h̄

; β0σ =
√

m

h̄2

(Z−N +1)e2
√−2h̄ω0

. (E.11)

All other k must be suppressed relative to this leading amplitude by a factor of
1/r2, in order to satisfy the asymptotic equation. Only in this case can the leading
contribution of the dipole term be compensated by the leading contribution of the
remaining terms in the asymptotic equation (E.8) for all states k 
= 0,

0 = ∑
lm

Ylm(Ω)
{

2h̄(ωk−ω0)clm
kσ rβkσ −2

rrr
r3 ·DDDk0 clm

0σ rβ0σ
}

(E.12)

(as β0σ > βnσ for n > 0, the sum over n breaks down to a single term). One ends up
with

βkσ = β0σ +2 ∀ k > 0 (E.13)

and the coefficients clm
kσ have to satisfy

0 = ∑
lm

Ylm(Ω)
{

h̄(ωk−ω0)clm
kσ −

rrr
r
·DDDk0 clm

0σ

}
. (E.14)

Equations (E.6), (E.11), (E.13), (E.14) determine the asymptotic behavior of all fk.



Appendix F
Quantization of Noninteracting Fermions in
Relativistic Quantum Field Theory

This Appendix summarizes the quantum field theoretical description of noninteract-
ing spin-1/2 particles. In particular, the quantization procedure is reviewed, empha-
sizing the close relation between the minimum principle for the ground state energy
and the renormalization scheme. At the same time this Appendix provides the back-
ground for the field theoretical treatment of the KS system, i.e. Eqs. (8.76)–(8.89).
For brevity, we use h̄ = c = 1 in this Appendix.

The starting point is the classical field theory characterized by the Lagrangian

Ls(x) = Le(x)+Lext(x) = ψs(x)
[
iγμ ∂μ −m+ eγμVμ(xxx)

]
ψs(x) , (F.1)

where V μ(xxx) is a given, stationary external potential. V μ may either represent some
nuclear potential or a composite object as the total KS potential vμ

s . The orthonormal
eigenfunctions of the corresponding classical field equations will be denoted by φk,
the associated single-particle energies by εk,[−iααα ·∇∇∇+βm− eαμV μ(xxx)

]
φk(xxx) = εkφk(xxx) . (F.2)

A sketch of the eigenvalue spectrum resulting in the case of an attractive V μ is
shown in Fig. F.1. It consists of a continuum of negative energy states with energies
below −m (i.e. −mc2), a continuum of positive energy states with energies above
+m and a countable number of discrete levels in between (which are at least twofold
degenerate in the case of time-reversal invariant systems).

In the first step one has to quantize the classical field theory. The standard canoni-
cal quantization via equal-time commutation relations for the fermion field operator
ψ̂s yields

ψ̂s(x) = ∑
k

b̂kφk(xxx)e−iεkt , ψ̂†
s (x) = ∑

k

b̂†
kφ †

k (xxx)eiεkt , (F.3)

where the sums run over all negative and positive energy solutions of (F.2) and the
operator-valued expansion coefficients b̂k satisfy the commutation relations
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–mc2

0

ε
+mc2

εk

negative continuum

discrete levels

positive continuum

F

Fig. F.1 Eigenvalue spectrum of noninteracting fermions in attractive potential.

{
b̂k, b̂l

}
=

{
b̂†

k , b̂
†
l

}
= 0 ,

{
b̂k, b̂

†
l

}
= δkl . (F.4)

b̂k destroys a particle in state k, so that ψ̂s(x) destroys a particle at point xxx and time
t. The canonical Hamiltonian obtained from (F.1) by insertion of (F.3) is given by

Ĥs =
∫

d3x ψ̂†
s (x)

[
− iααα ·∇∇∇+βm− eαμV μ(xxx)

]
ψ̂s(x)

= ∑
k

εkb̂†
k b̂k = ∑

εk≤−m
εkb̂†

k b̂k + ∑
−m<εk

εkb̂†
k b̂k , (F.5)

while the canonical charge operator reads

Q̂s =
∫

d3x ψ̂†
s (x)ψ̂s(x) = ∑

k

b̂†
k b̂k = ∑

εk≤−m
b̂†

k b̂k + ∑
−m<εk

b̂†
k b̂k . (F.6)

A naive application of Fermi statistics would require that all levels below the Fermi
energy εF are occupied for the ground state |Φs〉 of this system. This would imply
that, in addition to a finite number of discrete levels between−m and εF, all negative
energy states are filled,

|Φs〉= ∏
εk≤εF

b̂†
k |0′s〉 , (F.7)
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where |0′s〉 denotes the vacuum with the property that b̂k|0′s〉= 0 for all k. Obviously,
Ĥs is not bounded from below for this kind of state and the charge 〈Φs|Q̂s|Φs〉
diverges.

The well-established solution to this problem is the reinterpretation of the neg-
ative energy states as unoccupied antiparticle states with positive energy −εk. The
annihilation of a particle with εk ≤−m via b̂k then has to be understood as the cre-
ation of an antiparticle and vice versa, which is reflected by a redefinition of the
negative energy annihilation and creation operators,

d̂k := b̂†
k , d̂†

k := b̂k ∀k with εk ≤−m . (F.8)

Equations (F.3), (F.4) then take on the forms{
b̂k, b̂l

}
=

{
b̂†

k , b̂
†
l

}
=

{
d̂k, d̂l

}
=

{
d̂†

k , d̂†
l

}
=

{
d̂(†)

k , b̂(†)
l

}
= 0 (F.9){

b̂k, b̂
†
l

}
=

{
d̂k, d̂

†
l

}
= δkl (F.10)

ψ̂s(x) = ∑
εk≤−m

d̂†
k φk(xxx)e−iεkt + ∑

−m<εk

b̂kφk(xxx)e−iεkt , (F.11)

so that ψ̂s(x) now annihilates a unit of charge at point xxx and time t, rather than a
particle. The vacuum must be redefined accordingly,

b̂k|0s〉= 0 ∀ εk >−m , d̂k|0s〉= 0 ∀ εk ≤−m , (F.12)

in order to ensure that neither a particle nor an antiparticle is present in the state
|0s〉. The ground state of the N-particle system is then simply given by N particles
added to this vacuum,

|Φs〉= ∏
−m<εk≤εF

b̂†
k |0s〉 . (F.13)

Insertion of (F.8) into the Hamiltonian yields

Ĥs = ∑
εk≤−m

εkd̂kd̂†
k + ∑

−m<εk

εkb̂†
k b̂k

= ∑
εk≤−m

(−εk)d̂
†
k d̂k + ∑

−m<εk

εkb̂†
k b̂k + ∑

εk≤−m
εk , (F.14)

so that one finds as ground state and vacuum energies,

〈Φs|Ĥs|Φs〉= ∑
εk≤εF

εk , 〈0s|Ĥs|0s〉= ∑
εk≤−m

εk . (F.15)

Due to the simultaneous redefinition of the negative energy states and the vacuum,
Eq. (F.12), the Hamiltonian is still not bounded from below. Its boundedness must
be implemented by a renormalization of the energy scale, i.e. by explicit subtraction
of the vacuum expectation value of Ĥs,
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Ĥ ′
s,R := Ĥs−〈0s|Ĥs|0s〉 =⇒ 〈Φs|Ĥ ′

s,R|Φs〉= ∑
−m<εk≤εF

εk . (F.16)

For this renormalized Hamiltonian one can then immediately establish a minimum
principle, since any admixture of a single-particle state above εF to the N-particle
state leads to a well-defined energy which is higher than 〈Φs|Ĥ ′

s,R|Φs〉. Moreover, if
one adds an antiparticle to |Φs〉, the resulting energy is at least m (i.e. mc2) above the
ground state energy (in the noninteracting theory a particle-antiparticle pair cannot
annihilate). The same procedure is applied to Q̂s,

Q̂′s,R := Q̂s−〈0s|Q̂s|0s〉=− ∑
εk≤−m

d̂†
k d̂k + ∑

−m<εk

b̂†
k b̂k (F.17)

=⇒ 〈Φs|Q̂′s,R|Φs〉= ∑
−m<εk≤εF

1 , (F.18)

which directly illustrates the opposite charges of particles and antiparticles. The
subtraction of the vacuum expectation values in (F.16) and (F.17) is equivalent to a
normal-ordering of the creation/annihilation operators in Ĥs and Q̂s.

The operators (F.16) and (F.17) are finite at this point, but they do not yet show
the correct behavior under charge conjugation. Each individual field operator (F.11)
transforms as [530, 531]

ψ̂c
s (x) := Ĉ ψ̂s(x)Ĉ † = ηcCψ̂T

s (x) , C = iγ2γ0 (F.19)

(T =transposition) with an unobservable phase ηc, so that charge conjugation re-
orders the field operators in the current density,

Ĉ ψ̂s(x)γ
μ ψ̂s(x)Ĉ † =

4

∑
a,b,c=1

ψ̂s,a(x)γ
μ
baγ0

cbψ̂†
s,c(x)

=
[
γ0γμ ψ̂s(x)

]T [
ψ̂†

s (x)
]T

. (F.20)

The proper transformation behavior of the current density operator, Eq. (8.23), thus
requires the presence of both possible operator orderings, which leads to the anti-
commutator form (8.22). For the charge operator one then obtains

Q̂s =
1
2

∫
d3x [ψ̂†

s (x), ψ̂s(x)] =
1
2

{
∑

εk≤−m

[
d̂k, d̂

†
k

]
+ ∑
−m<εk

[
b̂†

k , b̂k

]}
. (F.21)

This more appropriate form of Q̂s also leads to a more symmetric form of the coun-
terterm 〈0s|Q̂s|0s〉 in the renormalized charge operator Q̂′′s,R,

Q̂′′s,R = Q̂s−〈0s|Q̂s|0s〉 〈0s|Q̂s|0s〉=
1
2

{
∑

εk≤−m
1− ∑

−m<εk

1

}
. (F.22)
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In the case of the homogeneous vacuum with V μ = 0 each state with energy εk≥+m
has a unique counterpart with energy εk ≤ −m, so that the sums on the right hand
side of (F.22) cancel each other and 〈0s|Q̂s|0s〉 vanishes.

One can proceed in a similar way for the Hamiltonian,

Ĥs =
1
2

∫
d3x

[
ψ̂†

s (x),
(− iααα ·∇∇∇+βm− eαμV μ(xxx)

)
ψ̂s(x)

]
=

1
2

{
∑

εk≤−m
εk

[
d̂k, d̂

†
k

]
+ ∑
−m<εk

εk

[
b̂†

k , b̂k

]}
. (F.23)

As the vacuum expectation value does not vanish,

〈0s|Ĥs|0s〉=
1
2

{
∑

εk≤−m
εk− ∑

−m<εk

εk

}
, (F.24)

the renormalized Hamiltonian is not identical with Ĥs,

Ĥ ′′
s,R := Ĥs−〈0s|Ĥs|0s〉=− ∑

εk≤−m
εkd̂†

k d̂k + ∑
−m<εk

εkb̂†
k b̂k . (F.25)

The operator (F.25) measures the energy of a given state |Φ〉 with respect to the
vacuum |0s〉 in the presence of the external potential. In the noninteracting situation
these energy differences correspond directly to the “observable” ionization energies.
However, the operator (F.25) does not yet reflect the fact that the vacuum energies
resulting from different external potentials are not identical (Casimir effect). The
differences between vacua corresponding to different Vμ are most easily seen on
a local scale: the vacuum expectation value of the current density operator (8.22)
reads

〈0s| ĵμ(x)|0s〉=
1
2

{
∑

εk≤−m
φ k(xxx)γ

μ φk(xxx)− ∑
−m<εk

φ k(xxx)γ
μ φk(xxx)

}
. (F.26)

While the net charge of the vacuum is zero, (F.26) shows the local polarization of
the vacuum by the external potential. The corresponding energy difference becomes
relevant as soon as the total energies associated with different external potentials
are to be compared, as in the case of the HK theorem or the KS selfconsistency
procedure. For such comparisons one needs a universal vacuum energy standard for
which one chooses the vacuum |00〉 of the noninteracting system with V μ = 0, i.e.
the homogeneous vacuum with 〈00| ĵμ(x)|00〉= 0,

b̂0,k|00〉= 0 ∀ εk >−m , d̂0,k|00〉= 0 ∀ εk ≤−m . (F.27)

The corresponding field operator will be denoted by ψ̂0,

ψ̂0(x) = ∑
εk≤−m

d̂†
0,kφ0,k(xxx)e−iε0,kt + ∑

−m<εk

b̂0,kφ0,k(xxx)e−iε0,kt , (F.28)
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where the single-particle orbitals φ0,k and eigenvalues ε0,k are the standard free
plane-wave spinors and energies [531]. The final renormalized Hamiltonian is de-
fined as

Ĥs,R := Ĥs−〈00|Ĥ0|00〉= Ĥ ′′
s,R + 〈0s|Ĥs|0s〉−〈00|Ĥ0|00〉 (F.29)

Ĥ0 =
1
2

∫
d3x

[
ψ̂†

0 (x),
(
− iααα ·∇∇∇+βm

)
ψ̂0(x)

]
. (F.30)

Unfortunately, there is a price to be paid for this universal definition of the energy
scale. While the expectation values of (F.25) are automatically finite, the same is not
true for (F.29). In order to understand the mechanism which leads to divergences,
let us consider the energy of the perturbed vacuum with respect to the homoge-
neous vacuum (often called Casimir energy) within perturbation theory. The basic
elements of the perturbation expansion are the Green’s function of the perturbed
vacuum,

iGs
v(x,y) = 〈0s|T ψ̂s(x)ψ̂s(y)|0s〉 (F.31)

= Θ(x0− y0) ∑
−m<εk

φk(xxx)φ k(yyy)e
−iεk(x0−y0)

−Θ(y0− x0) ∑
εk≤−m

φk(xxx)φ k(yyy)e
−iεk(x0−y0) , (F.32)

and its unperturbed counterpart G0
v,

iG0
v(x,y) = 〈00|T ψ̂0(x)ψ̂0(y)|00〉 (F.33)

(the explicit form of G0
v is identical to (F.32) with φk and εk replaced by φ0,k and ε0,k).

With these Green’s functions the energy of the perturbed vacuum can be expressed
as [752]

〈0s|Ĥs,R|0s〉 = − i
∫

d3x lim
y→x

s tr
[(
− iγγγ ·∇∇∇+m+ eV/ (xxx)

)
Gs

v(x,y)
]

+ i
∫

d3x lim
y→x

s tr
[(
− iγγγ ·∇∇∇+m

)
G0

v(x,y)
]
, (F.34)

where the symmetric limit,

lim
y→x

s ≡ 1
2

(
lim

y→x,y0>x0
+ lim

y→x,y0<x0

)∣∣∣∣∣
(x−y)2≥0

, (F.35)

is a consequence of the anticommutator form of Ĥs. Similarly, one can write the
current density of the perturbed vacuum as

〈0s| ĵμ(x)|0s〉 = − i lim
y→x

s tr [Gs
v(x,y)γμ ] . (F.36)
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For further analysis one can utilize a perturbation expansion of Gs
v(x,y) in powers of

the external potential, which is easily written down in terms of Feynman diagrams,

.Gs
v (F.37)

Here the solid line represents G0
v, the wavy line the external potential and the dot

denotes the vertex, i.e. in real space one has1 (including labels)

iG0
v,ab(x,y) = y,b x,a (F.38)

V μ(xxx) = xxx,μ (F.39)

i eγμ
ab =

a b

μ
z , (F.40)

where z represents the coordinates of the two Green’s functions and the potential
linked at the vertex (F.40), a,b are the spinor indices of the Green’s functions and μ
is the Minkowski index of the potential. As usual, integration over the coordinates
and summation over the spinor and Minkowski indices attached to all internal ver-
tices is implied in all composite diagrams as those of Eq. (F.37). After insertion of
(F.37) into (F.34) and (F.36), one realizes that the symmetric limit induces so-called
loop diagrams, as e.g.

i e〈0s| ĵμ(x)|0s〉 = + + + . . . . (F.41)

The evaluation of these expressions involves a loop-integration, either in real space
or, after Fourier transformation, in momentum space. While the first and third dia-
gram in (F.41) vanish (Furry’s theorem), one identifies the second loop as the lowest
order contribution to the vacuum polarization function (irreducible 2-point function)
of standard vacuum QED (i.e. interacting fermions without external potential). This
function is ultraviolet (UV) divergent, i.e. the loop integration diverges for large four
momenta, when performed in momentum space. This introduces an UV-divergence
in the current density and energy of the perturbed noninteracting vacuum: within
a perturbative treatment it does not matter whether the external potential or the
quantized photon field creates virtual electron–positron pairs. As a consequence,
a UV renormalization procedure is required to keep 〈0s|Ĥs,R|0s〉 and〈0s| ĵμ(x)|0s〉

1 Note that these Feynman rules follow the relativistic standard [531], rather than the nonrelativistic
standard. The choice (F.38)–(F.40) avoids that additional factors of i have to be assigned to a
diagram by some explicit rule.
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finite. Fortunately, the corresponding counterterms are completely determined by
the renormalization scheme for the Green’s functions of interacting vacuum QED
without external potential. We are thus led to consider standard QED in some detail,
which is the subject of the next Appendix.



Appendix G
Renormalization Scheme of Vacuum QED

In this Appendix we review the renormalization scheme of vacuum QED without
external potential, i.e. of the Lagrangian (8.11) with

V μ(xxx) = 0 (G.1)

and the system being in the state with zero net charge. This summary not only
serves as an introduction of the basic concepts of UV renormalization, as e.g. the
counterterm technique, but also provides a number of explicit results used in the
Appendices H and I. In fact, all counterterms required for inhomogeneous systems
with non-vanishing current density can be extracted from the study of the vacuum
Green’s functions of QED without external potential: neither the presence of a per-
turbing external potential nor that of bound electrons introduces any new feature
or new parameter. An explicit illustration of this statement has already been given
in Eq. (F.41) for the case of a noninteracting inhomogeneous system. Further exam-
ples will turn up in the analysis of the homogeneous and the weakly inhomogeneous
electron gas in the Appendices H and I, which also provide the background for the
discussion of the existence theorem of relativistic DFT in Sect. 8.3. For brevity, we
use h̄ = c = 1 in this and the other Appendices dealing with relativistic many-body
theory.

The basic vacuum Green’s functions to which we restrict the subsequent dis-
cussion are the fermion and photon propagators as well as the (reducible) vertex
function,

Gv(x,y) = −i〈0|T ψ̂(x)ψ̂(y)|0〉 (G.2)

Dμν
v (x,y) = −i〈0|TÂμ(x)Âν(y)|0〉 (G.3)

G(2,1)μ
v (x,y,z) = −〈0|T ψ̂(x)ψ̂(y)Âμ(z)|0〉 , (G.4)

where |0〉 denotes the vacuum of the interacting theory. Note that we have defined
the photon propagator without any prefactor of e2, which is most suitable for the dis-
cussion of renormalization (but differs from the definitions (8.83) and (H.8) which
are more adequate for the discussion of RDFT).



458 G Renormalization Scheme of Vacuum QED

The standard approach to the calculation of such Green’s functions is perturba-
tion theory with respect to the electron–electron coupling constant α = e2/(h̄c).
This procedure results in an expansion of the vacuum Green’s functions of the in-
teracting system in terms of vacuum expectation values of the noninteracting field
operators ψ̂0 and Âμ

0 (see e.g. [531]). For instance, for the electron propagator one
obtains

Gv(x− y) =−i
〈00|T ψ̂0(x)ψ̂0(y)exp[ie

∫
d4z ψ̂0(z)Â/0(z)ψ̂0(z)]|00〉

〈00|T exp[ie
∫

d4z ψ̂0(z)Â/0(z)ψ̂0(z)]|00〉
, (G.5)

where |00〉 is the noninteracting vacuum introduced in Eq. (F.27). In addition, the
Feynman dagger notation,

A/ = Aμ γμ , (G.6)

has been used. Analogous expressions are obtained for Dμν
v and G(2,1)μ

v . The actual
expansion of all vacuum expectation values of the type (G.5) in powers of e2 is con-
trolled by the Feynman rules resulting from the application of Wick’s theorem. The
basic ingredients are the noninteracting fermion propagator G0

v, Eq. (F.33), the non-
interacting photon propagator D0

μν , Eq. (8.83), and the bare fermion-photon vertex
(F.40) (together with the loop integrations and the fermion loop sign rule). It is this
perturbative framework in which the concept of renormalization is usually formu-
lated and we follow this standard.

Due to the translational invariance of QED without external potential, the situ-
ation is most conveniently analyzed in momentum space. The corresponding four-
dimensional Fourier transforms can be written as

Gv(x− y) =
∫

d4 p
(2π)4 e−ip·(x−y) Gv(p) (G.7)

Dμν
v (x− y) =

∫
d4q

(2π)4 e−iq·(x−y) Dμν
v (q) (G.8)

G(2,1)
v,μ (x,y,z) =

∫
d4 p

(2π)4

d4k
(2π)4 e−ip·(x−z)−ik·(z−y) G(2,1)

v,μ (p,k) . (G.9)

This leads to loop integrations over four momenta rather than space-time coordi-
nates (as in (G.5)), with four momentum conservation at the vertices. In momentum
space the noninteracting propagator G0

v, Eq. (F.33), is given by

p
.

p
iG0

v p i
m

p2 m2 iη
(G.10)

As discussed in Sect. 8.2 the form of the free photon propagator D0
μν(q) depends

on the choice of gauge. In Sects. 8.3–8.7 Feynman gauge (λ = 1) is used, for which
D0

μν is explicitly given by
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D0
μν(q) = D0(q2) gμν (G.11)

D0(q2) =
−4π

q2 + iη
. (G.12)

For the present purpose, however, Landau gauge is more adequate, which corre-
sponds to the choice λ = ∞,

iD0
μν(q) = i

(
gμν − qμ qν

q2

)
D0(q2) =

q
μ ν . (G.13)

It seems worthwhile to emphasize that all covariant gauges can be handled by the
same basic renormalization scheme. As 〈00|T ψ̂0(x)ψ̂0(y)Â

μ
0 (z)|00〉 = 0, the first

non-vanishing contribution to G(2,1)μ
v is found in first order of e,

G(2,1)
v,μ (p,k) =−D0

μν(p− k)G0
v(p)eγν G0

v(k) . (G.14)

Its core element is the simple vertex (F.40) in momentum space,

p k

μ q
↑

ieγ μ 2π 4δ 4 p k q (G.15)

(the arrow above q indicates that this four momentum is supposed to be outgoing
from the vertex, so that the argument of the δ -function is the sum over all incoming
four momenta—in momentum space a direction has to be assigned to each interac-
tion line).

In the first step of the analysis the relevant Green’s functions are expressed in
terms of their irreducible kernels [753], the electron self-energy Σv(p), the vacuum
polarization tensor ωv,μν(q) and the irreducible vertex function Γv,μ(p,k). The con-
nection between these quantities is provided by Dyson equations (see e.g. [531]),

Gv(p) = G0
v(p)+G0

v(p)Σv(p)Gv(p) (G.16)

Dv,μν(q) = D0
μν(q)+D0

μρ(q)ωρλ
v (q)Dv,λν(q) (G.17)

G(2,1)
v,μ (p,k) = −eDv,μν(p− k)Gv(p) [γν +Γ ν

v (p,k)] Gv(k) . (G.18)

The relations (G.16)–(G.18) separate the nontrivial higher order contributions in the
perturbation expansions from trivial multiples of lower order terms, thus isolating
the essential information contained in the Green’s functions. These relations become
particularly simple if (G.16) is rewritten in terms of inverse propagators,

Gv(p)−1 = G0
v(p)−1−Σv(p) = p/−m−Σv(p) , (G.19)

and if the tensor structure of ωμν
v (q),
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ωμν
v (q) =

(
q2gμν −qμ qν)ωv(q2) , (G.20)

is used in (G.17),

Dμν
v (q) =

(
gμν − qμ qν

q2

) −4π
q2[1+4πωv(q2)]

. (G.21)

The renormalization program of QED starts with and is most easily illustrated
for the first order. The lowest order contributions to the three relevant irreducible 2-
and 3-point functions read

− Σ ( )( ) = −

=
( π) μν( )γμ ( − )γν (G.22)

− ω( )
,μν( ) = −

μ

ν

= −
( π)

γμ ( )γν ( − ) (G.23)

Γ ( )
, ,μ ( ) = μ

−

−

= −
( π) ρν( )γρ ( − )γμ ( − )γν. (G.24)

Insertion of (G.10), (G.13) shows that these integrals diverge for large loop (four)
momentum. As these divergences result from the high energy regime they are called
UV-divergences—for brevity we ignore all problems related to the infrared (low
energy) regime. In order to establish a well-defined theory one first of all needs a
regularization scheme which suppresses these divergences at all intermediate steps
of the evaluation. Of course, this regularization must preserve the complete structure
of the theory, in particular the Ward-Takahashi identities, which link the irreducible
kernels (see e.g. [531]), as for example

(pμ − p′μ)Γ μ
v (p, p′) = Σv(p′)−Σv(p) (G.25)
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=⇒ Γ μ
v (p, p) = − ∂

∂ pμ
Σv(p) . (G.26)

For the present discussion we use dimensional regularization [754], in which all
integrals of the type (G.22)–(G.24) are evaluated in a reduced number of d dimen-
sions, rather than the 4-dimensional Minkowski space (after Wick rotation in order
to obtain integrals in Euclidean space—the details of this scheme are not relevant
at this point). The results evaluated for integer d are then analytically continued to
non-integer d, which then allows their extension to the physically interesting limit
d → 4. Using the abbreviation Δ = (4− d)/2 one finds for the integrals (G.22)–
(G.24)

Σ (1)
v (p) =

e2

4π
Γ (Δ)(−p/+4m)+Σ (1)

v,finite(p) (G.27)

ω(1)
v,μν(q) = (q2gμν −qμ qν)

(
e2

12π2 Γ (Δ)+ω(1)
v,finite(q

2)
)

(G.28)

Γ (1)
v,μ (p,k) =

e2

4π
Γ (Δ)γμ +Γ (1)

v,finite,μ(p,k) . (G.29)

Here Γ (Δ) denotes Euler’s Γ -function, in which the UV-divergences have been
isolated,

Γ (Δ) Δ→0−→ 1
Δ

+ . . . ,

and Σ (1)
v,finite, ω(1)

v,finite and Γ (1)
v,finite,μ represent the finite parts of the irreducible ker-

nels in which the limit d → 4 can be taken directly (the detailed form of Σ (1)
v,finite,

ω(1)
v,finite and Γ (1)

v,finite,μ is not relevant in this context). The UV-divergences now man-
ifest themselves as simple poles in the deviation of the space-time dimensionality
from d = 4. On the other hand, all other irreducible n-point functions are finite from
the very outset (to first order).

The next step is the actual renormalization procedure. The crucial observation
for both the physical interpretation as well as the technical success of this step is the
fact that the divergent contributions to the three relevant functions have the same
structure as the corresponding free propagators and the free vertex: the divergent

part of Σ (1)
v is just proportional to p/ and m, but not e.g. to p2, the divergent part of

ω(1)
v,μν has the same tensor structure as D0

μν , Eq. (G.13), and the divergent part of Γ (1)
v,μ

is proportional to the free vertex γμ (but does not depend on momentum). For this
reason the divergences can be absorbed into a redefinition of the constants m and e
as well as a modified normalization of the field operators in the original Lagrangian.
Given the form of this original, unrenormalized Lagrangian, Lunren(ψ̂, Âμ ,m,e), the
renormalized Lagrangian is usually written as

LR = Lunren

(√
Z2ψ̂,

√
Z3Âμ ,m−δm,

Z1e

Z2
√

Z3

)
. (G.30)
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The renormalization constants Z1, Z2, Z3 and δm have to be interpreted as functions
of the finite true physical charge e and mass m of the electrons. The relation between
these quantities remains to be determined order by order in the perturbation series.
In other words: the original fields and parameters in Lunren are no longer interpreted
as the correct physical fields and parameters, but rather as bare, unrenormalized
quantities,

ψ̂b(x) =
√

Z2ψ̂(x) (G.31)

Âμ
b (x) =

√
Z3Âμ(x) (G.32)

eb =
Z1

Z2
√

Z3
e (G.33)

mb = m−δm , (G.34)

so that the renormalized Lagrangian can be reformulated in terms of the bare quan-
tities,

LR = Lunren(ψ̂b, Â
μ
b ,mb,eb) . (G.35)

The structure of the theory, which e.g. expresses itself in Dyson equations and Ward-
Takahashi identities, remains completely unchanged, due to the form invariance of
the Lagrangian under the renormalization prescription. The renormalized Green’s
functions, i.e. the vacuum expectation values of ψ̂ and Âμ , are now obtained as

Gv,R(x,y) = −iZ−1
2 〈0|T ψ̂b(x)ψ̂b(y)|0〉

= Z−1
2 Gv(x,y,eb,mb) (G.36)

Dμν
v,R(x,y) = −iZ−1

3 〈0|T Âμ
b (x)Âν

b (y)|0〉
= Z−1

3 Dμν
v (x,y,eb,mb) (G.37)

G(2,1)μ
v,R (x,y,z) = −Z−1

2 Z−1/2
3 〈0|T ψ̂b(x)ψ̂b(y)Â

μ
b (z)|0〉

= Z−1
2 Z−1/2

3 G(2,1)μ
v (x,y,z,eb,mb) . (G.38)

In these relations it has been indicated explicitly that the unrenormalized Green’s
functions resulting from the Lagrangian (G.35) initially depend on the bare param-
eters eb and mb.

In order to determine the unknown renormalization constants one needs some
normalization conditions. These conditions result from the basic physical require-
ments for the Green’s functions: in order to describe real fermions, which satisfy
the dispersion relation p2 = (p0)2− ppp2 = m2 with the finite experimental mass m
in the presence of the virtual photon cloud, Gv,R(p) should reduce to the form of
the free propagator G0

v(p) with physical mass m for on-shell momentum p2 = m2,
i.e. should have a simple pole with residue 1 for p2 = m2. If Σv is expressed as a
function of p/−m (using p/2 = p2) and the physical parameters,
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Σv(p,eb,mb) =
∞

∑
n=0

Σn(e,m)(p/−m)n , (G.39)

the renormalized inverse propagator can be written as

G−1
v,R(p) = Z2

[
δm−Σ0(e,m)+(p/−m)(1−Σ1(e,m))

−
∞

∑
n=2

Σn(e,m)(p/−m)n

]
. (G.40)

For Gv,R(p) to have a simple pole at p2 = m2, however, one must have

δm = Σ0(e,m) = Σv(p,eb,mb)
∣∣∣

p/=m
(G.41)

Z2 = (1−Σ1(e,m))−1 =
(

1− d
d p/

Σv(p,eb,mb)
∣∣∣

p/=m

)−1

. (G.42)

Only this choice guarantees that the higher order terms in the propagator itself are
finite for p2 = m2. In fact, insertion of (G.19), (G.39), (G.41) and (G.42) into (G.36)
yields

Gv,R(p) =
[
Z2

(
G0

v(p,mb)−1−Σv(p,eb,mb)
)]−1

=

[
G0

v(p,m)−1

(
1−G0

v(p,m)Z2

∞

∑
n=2

Σn(e,m)(p/−m)n

)]−1

=
∞

∑
k=0

(
G0

v(p,m)Z2

∞

∑
n=2

Σn(e,m)(p/−m)n

)k

G0
v(p,m)

=
p/+m

p2−m2 +
p/+m

p2−m2

[
Z2

∞

∑
n=2

Σn(e,m)(p/−m)n

]
p/+m

p2−m2 + . . . .

=
p/+m

p2−m2 +

[
Z2

∞

∑
n=2

Σn(e,m)(p/−m)n−2

]
+ . . . .

Given the renormalized Green’s functions, one can also define the corresponding
renormalized irreducible kernels,

G−1
v,R(p) = p/−m−Σv,R(p) . (G.43)

The additional contributions to the renormalized Green’s functions resulting from
renormalization are usually called counterterms. From Eqs. (G.40), (G.43) one ex-
tracts as counterterms to the self-energy,

Σv,R(p) = Σv(p)+ΔΣv(p) , ΔΣv(p) =−Z2δm+(1−Z2)(p/−m) , (G.44)
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so that Σv,R satisfies the normalization conditions

Σv,R(p)
∣∣∣

p/=m
= 0 ,

d
d p/

Σv,R(p)
∣∣∣

p/=m
= 0 , (G.45)

which should be interpreted in the spirit of the expansion (G.39) as

Σ0,R(e,m) = Σ1,R(e,m) = 0 .

One proceeds in the same fashion for the other two divergent functions. In the
case of the massless photons the renormalized propagator must have a simple pole
at q2 = 0, which allows the determination of Z3. Combination of (G.37) with (G.21)
leads to

Dμν
v,R(q) =

(
gμν − qμ qν

q2

) −4π
q2[1+4πωv,R(q2)]

, (G.46)

with ωv,R defined by

1+4πωv,R(q2) = Z3
[
1+4πωv(q2,eb,mb)

]
. (G.47)

The zero mass pole requirement is thus satisfied, if

Z3 =
[
1+4πωv(q2 = 0,eb,mb)

]−1 ⇐⇒ ωv,R(q2 = 0) = 0 . (G.48)

Consistent with Eq. (G.20), one then defines the renormalized irreducible polariza-
tion tensor as

ωμν
v,R(q) =

(
q2gμν −qμ qν)ωv,R(q2) . (G.49)

Finally, the renormalized irreducible vertex function is defined via the Dyson equa-
tion (G.18),

G(2,1)
v,R,μ(p,k) = −eDR,μν(p− k)Gv,R(p)

[
γν +Γ ν

v,R(p,k)
]

Gv,R(k) , (G.50)

using the renormalized propagators (G.36), (G.37). Combination of (G.50) with
(G.38) and (G.33) then leads to

e
[
γμ +Γ μ

v,R(p,k)
]

= Z1e
[
γμ +Γ μ

v (p,k,eb,mb)
]
, (G.51)

which allows the formulation of a normalization condition for Z1. On the mass shell,
p/ = m, the vertex function must reduce to a pure vertex with physical charge e, in
order to reproduce the Coulomb interaction for well separated electrons,

γμ = Z1

(
γμ +Γ μ

v (p, p,eb,mb)
∣∣∣

p/=m

)
⇐⇒ Γ μ

v,R(p, p)
∣∣∣

p/=m
= 0 . (G.52)
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Using the Ward-Takahashi identity (G.26) and the expansion (G.39), one can ex-
plicitly verify that the resulting Z1,

Z1 =
[

1+
1
4

γμΓ μ
v (p, p,eb,mb)

∣∣∣
p/=m

]−1

, (G.53)

is identical with Z2, Eq. (G.42).
As perturbation theory on the basis of (G.35) yields the irreducible functions

in terms of the bare parameters, the expressions on the right-hand sides of (G.41),
(G.42), (G.48) and (G.53) are obtained by use of (G.33) and (G.34), so that they
themselves depend on the renormalization constants. Renormalization thus has to
proceed in a recursive fashion, i.e. order by order in perturbation theory.

Explicit results are easily obtained for the first order. Use of (G.27), (G.40) gives

G(1)
v,R(p)−1 = Z2

[
p/

(
1+

e2
b

4π
Γ (Δ)

)
−mb

(
1+

e2
b

π
Γ (Δ)

)

−Σ (1)
v,finite(p,eb,mb)

]
. (G.54)

One now expands the right-hand side of (G.54) consistently to first order, using

Z2 = 1+Z(1)
2 + . . . and mb = m−δm(1) + . . .,

G(1)
v,R(p)−1 = δm(1)− 3e2

4π
Γ (Δ)m+(p/−m)

(
1+

e2

4π
Γ (Δ)+Z(1)

2

)
−Σ (1)

v,finite(p,e,m) . (G.55)

The conditions (G.41), (G.42) or, alternatively, (G.45), then give

δm(1) =
3e2

4π
Γ (Δ)m+Σ (1)

v,finite(p,e,m)
∣∣∣

p/=m
(G.56)

Z(1)
2 = − e2

4π
Γ (Δ)+

d
d p/

Σ (1)
v,finite(p,e,m)

∣∣∣
p/=m

. (G.57)

From Eqs. (G.44), (G.56), (G.57) one extracts as first order counterterm to the self-
energy,

ΔΣ (1)
v (p) = −3e2

4π
Γ (Δ)m−Σ (1)

v,finite(p,e,m)
∣∣∣

p/=m

+
[

e2

4π
Γ (Δ)− d

d p/
Σ (1)

v,finite(p,e,m)
∣∣∣

p/=m

]
(p/−m) . (G.58)

Similarly, Z3 = 1+Z(1)
3 + . . . is determined by (G.28) and (G.48)

Z(1)
3 =− e2

3π
Γ (Δ)

(
ω(1)

v,finite(q
2 = 0) = 0

)
. (G.59)
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The associated counterterm for ω(1)
v,μν results from (G.47) and (G.49),

Δω(1)
v,μν(q) =−(q2gμν −qμ qν)

e2

12π2 Γ (Δ) . (G.60)

Finally, the vertex correction is renormalized by

ΔΓ (1)
v,μ (p,k) = Z(1)

1 γμ (G.61)

Z(1)
1 = − e2

4π
Γ (Δ)− 1

4
γμΓ (1)

v,finite,μ(p, p,e,m)
∣∣∣

p/=m
. (G.62)

At this point, all Green’s functions are finite to first order. At the same time, all
symmetries of the theory have been preserved, which may be checked by verification
of (G.26) for the renormalized functions.

This procedure can be repeated for all higher orders of perturbation theory [531],
after discussion of overlapping divergences, which occur for instance in the diagram

Note that all artificial divergences resulting from use of eb and mb inside the finite

parts of the Green’s functions or from multiplication of finite terms with Z(1)
1 etc

are eliminated by higher order contributions to the renormalization constants. No
further details are given at this point, as the first order provides all explicit results
required for our discussion of RDFT.

The final form of the renormalized Lagrangian of QED is

LR = Z2ψ̂(x)
(

i∂/−m+δm+ eV/ (xxx)+ eÂ/(x)
)

ψ̂(x)

− Z3

16π
F̂μν(x)F̂μν(x)− Z3λ

8π

(
∂ν Âν(x)

)2
, (G.63)

where we have now reintroduced the external potential V μ in order to indicate that
it has to be renormalized in the same spirit as the quantized photon field: this is
immediately obvious if one analyzes the Lagrangian (G.63) in terms of perturbation
theory with respect to V μ . The renormalization constants are thus uniquely deter-
mined by vacuum QED without any external potential, so that they do not depend on
the specific V μ present. If one bases the perturbation expansion on the Lagrangian
(G.63) all vacuum Green’s and n-point functions of the theory (defined in terms of
the physical fields ψ̂ and Âμ ) are UV finite.



Appendix H
Relativistic Homogeneous Electron Gas

In this Appendix we summarize some properties of the relativistic homogeneous
electron gas (RHEG) in order to illustrate the renormalization of ground state
energies (indicated in Sect. 8.2) and to provide the background for the RLDA
(Sect. 8.8.3) as well as for the relativistic gradient expansion (Appendix J). For
simplicity we restrict the discussion to the unpolarized RHEG (for details of the
polarized RHEG see [546] and references therein).

The basic concept of the RHEG follows that of the HEG, introduced in Sect. 4.3—
the RHEG consists of an infinite electron gas with density n0 plus a neutralizing pos-
itive background charge density n+ = n0, which suppresses long-range Coulomb di-
vergences. Now, however, the electrons and their interaction are treated on the level
of the QED, i.e. the Lagrangian (8.11) with V μ = 0.

As in the preceding Appendix we use h̄ = c = 1.

H.1 Basic Propagators

We start by noting the basic differences between the perturbative treatment of the
RHEG and that of vacuum QED, discussed in Appendix G. While the Hamiltonian
of the RHEG, Ĥhom, is identical to that of vacuum QED, the ground state |Ψ0〉 of the
RHEG represents a gas of electrons with finite density n0, in contrast to the ground
state |0〉 of vacuum QED. As a consequence the fermion propagator,

G(x,y) =−i〈Ψ0|T ψ̂(x)ψ̂(y)|Ψ0〉 , (H.1)

differs from Gv already on the noninteracting level. In momentum space the nonin-
teracting fermion propagator of the RHEG is given by

G0(p) = G0
v(p)+G0

d(p) = G−(p)+G+(p) (H.2)

G0
d(p) = 2πiδ (p0−Ep)

p/+m
2Ep

Θ(kF−|ppp|) (H.3)
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G−(p) =
p/−+m

2Ep

−1
p0 +Ep− iη

(H.4)

G+(p) =
p/+ +m

2Ep

[
Θ(|ppp|− kF)
p0−Ep + iη

+
Θ(kF−|ppp|)
p0−Ep− iη

]
, (H.5)

where Ep =
√

ppp2 +m2, pμ
± = (±Ep, pi) and the Fermi momentum kF is related to

the electron density n0 of the RHEG as in the nonrelativistic case,

n0 =
k3

F

3π2 . (H.6)

Two alternative forms for G0 have been listed, the first one emphasizes its relation
to the vacuum propagator G0

v(p), Eq. (G.10), the second one indicates its decom-
position into positive energy (G+) and negative energy (G−) contributions. In the
nonrelativistic limit the upper left part of the matrix G+(p0 + m, ppp) goes over into
the standard nonrelativistic electron gas propagator. Note that due to charge conser-
vation the density of the RHEG is not changed by switching on the electron–electron
interaction, so that n0 also represents the density of the interacting RHEG. Equation
(H.6) thus also relates the interacting density to the noninteracting kF. Diagrammat-
ically the full G0(p), Eq. (H.2), will be represented by

iG0 p (H.7)

in the following. The other two basic elements of perturbation theory, the nonin-
teracting photon propagator and the simple vertex, remain unchanged. However, it
seems worth pointing out that the full photon propagator

Dμν(x,y) =−ie2〈Ψ0|T Âμ(x)Âν(y)|Ψ0〉 , (H.8)

and the full vertex function do not: in the case of the RHEG not only virtual electron-
positron pairs screen the bare interaction but also virtual electron-hole pairs. Note
that we have introduced an additional factor of e2 in the definition (H.8), as com-
pared with the definition (G.3). This reflects the fact that it is more convenient for
the subsequent discussion that the corresponding free propagator D0

μν approaches
the Coulomb interaction in the limit c→ ∞.

H.2 Response Functions

Most information on the RHEG which is required in the present context is contained
in the response functions of the RHEG. In our notation the time-ordered current
response functions (n-point functions) are defined as

χ(n)
μ1...μn(x1, . . .xn) := (−i)n−1〈Ψ0|T δ ĵμ1(x1) . . .δ ĵμn(xn)|Ψ0〉 , (H.9)
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with the operator δ ĵμ for the induced current given by

δ ĵμ(t,rrr) = ĵμ(t,rrr)−〈Ψ0| ĵμ(t,rrr)|Ψ0〉= ĵμ(t,rrr)− jμ(rrr) . (H.10)

For the time-independent systems of interest here a partial Fourier transformation

of χ(n)
μ1...μn is advantageous,

χ(n)
μ1...μn(t1,rrr1; . . .tn,rrrn) =

∫
dω1

2π
. . .

∫
dωn

2π
e−iω1t1...−iωntn

×2πδ (ω1 + . . .+ωn)

×χ(n)
μ1...μn(ω1,rrr1; . . .ωn,rrrn) . (H.11)

The static response functions utilized in Appendix I are then obtained by taking the
zero-frequency limit,

χ(n)
μ1...μn(rrr1, . . .rrrn)≡ χ(n)

μ1...μn(ω1 = 0,rrr1; . . .ωn = 0,rrrn) . (H.12)

For the case of the RHEG further Fourier transformation is useful,

χ(n)
μ1...μn(q

0
1,rrr1; . . .q0

n,rrrn) =
∫

d3q1

(2π)3 . . .
∫

d3qn

(2π)3 eirrr1·qqq1+...+irrrn·qqqn

× (2π)3δ (3)(qqq1 + . . .+qqqn)

× χ(n)
μ1...μn(q1, . . .qn) . (H.13)

Current conservation then implies the transversality of χ(n)
μ1...μn with respect to all

arguments [755],

qμi
i χ(n)

μ1...μn(q1, . . .qn) = 0 ∀ i = 1, . . .n . (H.14)

This relation is easily established in real space. For brevity, we only consider the
linear response function explicitly,

∂ μ
x χ(2)

μν (x,y) = −i〈Ψ0|T
[
∂ μ δ ĵμ(x)

]
δ ĵν(y)|Ψ0〉

−iδ (x0− y0)〈Ψ0|δ ĵ0(x)δ ĵν(y)−δ ĵν(y)δ ĵ0(x)|Ψ0〉 .

Now the first term on the right-hand side vanishes due to current conservation
(which is also valid on the level of the operator), the second term vanishes due
to the vanishing equal-time commutator,[

ψ̂†(t,xxx)ψ̂(t,xxx), ψ̂†(t,yyy)ψ̂(t,yyy)
]

=
[
ψ̂†(t,xxx)ψ̂(t,xxx), ψ̂†(t,yyy)αkψ̂(t,yyy)

]
= 0 .

The proof of (H.14) for higher order χ(n) proceeds analogously, with the difference
that all possible time orderings have to be taken into account in the second term. In
the following the connected contributions of the χ(n), for which all external vertices
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are linked to each other in some way, will be denoted by χ(n)
c , while the linear

response function of the RHEG will be abbreviated by χμν .
The latter function has a simple relation to the Fourier transform of the full pho-

ton propagator (H.8),

Dμν(q) = D0
μν(q)+D0

μρ(q)χρλ (q)D0
λν(q) . (H.15)

This relation can easily be established on the basis of the equivalent of (G.5) for the
photon propagator. In analogy to Eq. (G.17), one also finds a Dyson equation for the
response function χμν ,

χμν(q) = Π μν(q)+Π μρ(q) D0
ρλ (q) χλν(q) . (H.16)

Note that the present definition of the irreducible 2-point function Π μν differs from
that used in Appendix G (ωμν ) by a factor of e2. As already indicated in the discus-
sion of (H.8) it is more convenient for the present purpose to associate the factor of
e2 emerging from each pair of vertices in the perturbation expansion with the photon
propagator than with the polarization insertion.

As a consequence of (H.14), (H.16) Π μν also satisfies the transversality relation

qμ Π μν(q) = 0 , (H.17)

which determines the tensor structure of Π μν . In fact, there are only two indepen-
dent (4×4) polarization tensors which comply with Eq. (H.17),

Pμν
L (q) =

−1
qqq2q2

(
(qqq2)2 qqq2q0q j

qqq2q0qi (q0)2qiq j

)
(H.18)

Pμν
T (q) =

1
qqq2

(
0 0
0 qqq2gi j +qiq j

)
(gi j =−δi j) (H.19)

qμ Pμν
L/T(q) = qν Pμν

L/T(q) = 0 . (H.20)

Π μν can therefore be written as

Π μν(q) = Pμν
L (q)ΠL(q)−Pμν

T (q)ΠT(q) . (H.21)

For convenience, we note some useful properties of Pμν
L/T,

P ν
L,μ (q)P λ

L,ν (q) = P λ
L,μ (q) (H.22)

P ν
T,μ (q)P λ

T,ν (q) = P λ
T,μ (q) (H.23)

P ν
L,μ (q)P λ

T,ν (q) = 0 (H.24)

P 0
L,μ (q)P λ

L,0 (q) = −qqq2

q2 P λ
L,μ (q) (H.25)

Pμν
L (q)+Pμν

T (q) = gμν − qμ qν

q2 (H.26)
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P μ
L,μ (q) = 1 (H.27)

P μ
T,μ (q) = 2 . (H.28)

If one decomposes Π μν into its vacuum (v) limit (obtained for |Ψ0〉 → |0〉) and a
remainder (the electron gas component—d),

Π μν(q) = Π μν
d (q)+Π μν

v (q) (H.29)

ΠL(q) = ΠL,d(q)+Πv(q) (H.30)

ΠT(q) = ΠT,d(q)−Πv(q) , (H.31)

the vacuum contribution can be recast in the tensor form (G.20), with the polariza-
tion function Πv given by

Πv(q) =
q2

e2 ωv(q) . (H.32)

If one uses the polarization tensors (H.18), (H.19), the free photon propagator (G.13)
and the longitudinal and transverse polarization functions ΠL/T, the Dyson equation
for χμν can be resolved as

χμν(q) =
ΠL(q)

1−D0(q)ΠL(q)
Pμν

L (q)− ΠT(q)
1+D0(q)ΠT(q)

Pμν
T (q) , (H.33)

where, according to the modified definition (H.8), D0 is given by (G.12) times an
additional factor of e2.

The full photon propagator Dμν can now be obtained from Eq. (H.15) by inser-
tion of (H.33). For a discussion of the renormalization of Dμν it is instructive to
rewrite the resulting expression in terms of the full vacuum photon propagator,

Dv(q) =
D0(q)

1−D0(q)Πv(q)
. (H.34)

Insertion of (H.30) and (H.31) into (H.33) plus subsequent use of (H.34) allows a
decoupling of the screening effects due to vacuum polarization from those originat-
ing from the actual electron gas,

Dμν(q) =
Dv(q)

1−Dv(q)ΠL,d(q)
Pμν

L (q)+
Dv(q)

1+Dv(q)ΠT,d(q)
Pμν

T (q) . (H.35)

At first glance this form seems to suggest that Dμν is UV-finite as soon as Dv is
replaced by Dv,R defined by Eqs. (G.46)–(G.48). However, ΠL/T,d also contains UV-
divergent subgraphs. The following 2-loop contribution may illustrate this point,
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If one replaces G0 by G0
v +G0

d one recognizes that besides the obvious pure vacuum
loop absorbed in Dv also mixtures between the first order vertex correction loop of
the vacuum, Eq. (G.24), and G0

d-type propagators occur. The counterterms required
to keep such subgraphs finite are, however, completely determined by vacuum QED:
similar to the renormalization of overlapping divergences, each vacuum subgraph in
a (larger) non-vacuum diagram has to be supplemented individually by its associated
counterterm (this also holds for multi-loop vacuum subgraphs).

For the discussion of inhomogeneity corrections to the RLDA one also needs the
inverse response function χ−1

μν . However, χ−1
μν (q) can not be an inverse of χμν(q)

in the conventional understanding of an inverse matrix, as the transversality relation
(H.14) requires

qμ χμν(q)χ−1,νρ(q) = 0 ,

which is not compatible with

χμν(q)χ−1,νρ(q) = g ρ
μ .

In the present context χ−1,μν(q) is therefore defined to satisfy

χμν(q)χ−1,νρ(q) = g ρ
μ − qμ qρ

q2 . (H.36)

When multiplied with a quantity for which the transversality condition qμ f μ = 0
holds, χ−1,νρ behaves like an ordinary inverse. For this type of inverse one obtains

χ−1,μν(q) = −D0(q)gμν +Π−1,μν(q) (H.37)

Π−1,μν(q) =
1

ΠL(q)
Pμν

L − 1
ΠT(q)

Pμν
T . (H.38)

The product of (H.37) with χμν , Eq. (H.33), can be shown to satisfy Eq. (H.36) by
use of (H.22)–(H.24) and (H.26).

As far as explicit approximations for the polarization functions ΠL/T are con-
cerned, only very little is known even in the static limit. The complete frequency

dependence is available for the noninteracting limit Π (0)
L/T, i.e. the relativistic gener-

alization of the Lindhard function [620, 756]. In addition to its vacuum part (G.23)
one has

Π (0)
d,μν(q) = −i

∫
d4 p

(2π)4 tr
[
γμ G0

d(p)γν G0
d(p−q)

]
−i

∫
d4 p

(2π)4 tr
[
γμ G0

v(p)γν G0
d(p−q)

]
−i

∫
d4 p

(2π)4 tr
[
γμ G0

d(p)γν G0
v(p−q)

]
.
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Π (0)
d,μν is sometimes called the no-sea limit of the full Π (0)

μν —quite generally the no-
sea approximation Πns,μν is defined by neglect of all those contributions to a closed
fermion loop which do not vanish in the limit kF → 0. This no-sea form is not
identical with the result of the more frequently applied no-pair approximation. The
latter approximation amounts to neglecting the negative energy states completely.
In the present context projecting out the negative energy states at all steps of the
calculation is equivalent to a complete neglect of the negative energy component
G−(p) of the fermion propagator,

Π (0)
d,μν(q) 
=−i

∫
d4 p

(2π)4 tr
[
γμ G0

+(p)γν G0
+(p−q)

]
= Π (0)

np,μν(q) .

For subsequent use we note the long-wavelength expansion of the static limit of

Π (0)
μν ,

Π (0)
L,d(0,qqq) = −mkFη

π2

{
1− 1

3

[
1+2

β
η

arsinh(β )
]

Q2 + . . .

}
(H.39)

Π (0)
T,d(0,qqq) =

mkFη
π2

{
− 2

3
β
η

arsinh(β )Q2 + . . .

}
(H.40)

Π (0)
v,R(0,qqq) =

1
60π2

qqq4

m2 + . . . , (H.41)

where Q = |qqq|/(2kF) and

β =
(3π2n0)1/3

m
; η = (1+β 2)1/2 . (H.42)

Beyond the noninteracting limit only the vacuum part of the 2-loop contribution to
the polarization function has been evaluated [757, 758]. In addition, the screening
length ΠL,d(0,000) is related to the energy density via the compressibility sum rule
[759],

d2

dn2
0

[
ts(n0)+ exc(n0)

]
=− 1

ΠL,d(0,000)
, (H.43)

so that the long wavelength limit of higher orders of ΠL,d can be obtained from the
associated contributions to the energy density. Finally, in the context of the quark-
gluon gas the high temperature limits of certain classes of higher order diagrams
have also been examined (see e.g. [760]). These results are, however, only of limited
interest in the present context aiming at T = 0 and m≥ |qqq|.

H.3 Ground State Energy

The exchange-correlation energy of the RHEG constitutes the basis for the RLDA.
At the same time, it provides an instructive example for the application of the renor-
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malization procedure described in Appendix G. We start by emphasizing that the
ground state energy is defined with respect to the vacuum energy as in (8.56) with
V μ = 0 (compare [621, 755]),

ERHEG = 〈Ψ0|Ĥhom|Ψ0〉−〈0|Ĥhom|0〉+ΔEhom , (H.44)

where 〈0|Ĥhom|0〉 is the energy of the interacting, homogeneous vacuum and ΔEhom

represents the counterterms required to keep ERHEG UV-finite. In the case of the
electron gas Eq. (H.44) is applied on the level of the energy density, rather than the
infinite energy itself.

The kinetic energy density ts of the noninteracting RHEG can be evaluated with-
out application of the UV-renormalization procedure [761],

ts(n0) = 〈Ψ0|
[
ψ̂(x),

(
− iγγγ ·∇∇∇+(1− γ0)m

)
ψ̂(x)

]
|Ψ0〉

−〈0|
[
ψ̂(x),

(
− iγγγ ·∇∇∇+(1− γ0)m

)
ψ̂(x)

]
|0〉

= i lim
y→x

s tr
[(
− iγγγ ·∇∇∇+(1− γ0)m

)
G0

d(x− y)
]

=
k5

F

10π2m
Φs(β ) (H.45)

Φs(β ) =
10
β 5

[
1
8

(
βη3 +β 3η− arsinh(β )

)
− 1

3
β 3

]
(H.46)

(the electron rest mass has been subtracted). The Hartree (electrostatic) energy of
the RHEG vanishes, if one takes the neutralizing positive charge background into
account. Following closely the derivation of Eq. (4.88), the xc-energy of the RHEG
can be written in terms of a coupling constant integral over the current–current re-
sponse function [618, 538],

exc(n0) =
i
2

∫ 1

0
dλ

∫
d4q

(2π)4 D0
μν(q)

[
χμν

λ (q)−χμν
v,λ (q)

]
+Δehom . (H.47)

χμν
λ is given by (H.33) with the coupling strength e2 replaced by λe2, χμν

v,λ repre-

sents its vacuum limit and Δehom is the energy density corresponding to the coun-
terterm ΔEhom.

The first order term (in e2) in (H.47), i.e. the exchange energy of the RHEG
(according to Eq. (8.92)), is the simplest energy contribution for which the UV-
renormalization is nontrivial. The basic problem associated with the renormalization
of energies (rather than Green’s functions) is that energy expressions can not be
rewritten entirely in terms of renormalized n-point functions. At least one overall
loop integration remains to be treated separately (the q-integration in (H.47)). As an
additional complication, this outermost loop integration often leads to overlapping
divergences. An example for this statement is provided by the exchange energy,
which is obtained if the full χμν

λ in Eq. (H.47) is replaced by its noninteracting limit

Π (0),μν . Visualizing the resulting integral graphically,
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,2iex n0 (H.48)

one realizes that three divergent 1-loop subgraphs contribute to the electron gas
loop,

,iΠ 0
μν iΣ 1 (H.49)

While the UV-divergence of the Π (0)
μν -subgraph is eliminated by the subtraction of

the vacuum exchange energy in (H.48), the two (identical) self-energy subgraphs
require additional counterterms. As one is facing overlapping divergences in (H.48)
each divergent subgraph has to be renormalized individually. Of course, only the
vacuum contribution to Σ (1) requires renormalization,

ex(n0) =
i
2

∫
d4q

(2π)4 D0
μν(q)

[
Π (0),μν(q)−Π (0),μν

v (q)
]

−i
∫

d4 p
(2π)4 tr

[
G0

d(p)ΔΣ (1)
v (p)

]
. (H.50)

The second line represents the lowest order contribution to the UV-counterterm

Δehom. As discussed in detail in Appendix G, the self-energy counterterm ΔΣ (1)
v is

defined so that the renormalized vacuum self-energy Σv,R, Eq. (G.44), satisfies the
standard on-shell normalization condition (G.45), i.e. on the 1-loop level one ob-
tains (G.58). Using the decomposition of G0, Eq. (H.2), ex(n0) can thus be rewritten
as

ex(n0) =
1
2

∫
d4q

(2π)4

∫
d4 p

(2π)4 D0
μν(q) tr

[
G0

d(p+q)γμ G0
d(p)γν]

−i
∫

d4 p
(2π)4 tr

[
G0

d(p)Σ (1)
v,R(p)

]
. (H.51)

The second term on the right-hand side vanishes according to Eqs. (H.3), (G.45),[
(p/+m)Σv,R(p)

]
p2=m2

= 0 .

Consequently, the standard renormalization scheme eliminates the vacuum correc-
tions to ex(n0) completely. The first line of (H.51) can be evaluated straightfor-
wardly [618–620],

ex(n0) = eNRHEG
x (n0) Φx(β ) (H.52)
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eNRHEG
x (n0) = − e2

4π3 k4
F (H.53)

Φx(β ) = 1− 3
2

[
η
β
− 1

β 2 arsinh(β )
]2

. (H.54)

Moreover, using the decomposition of the photon propagator into the Coulomb and
the transverse interaction, ex(n0) can be split accordingly [535, 620],

eC/T
x (n0) = eNRHEG

x (n0) ΦC/T
x (β ) (H.55)

ΦC
x (β ) =

5
6

+
1

3β 2 +
2η
3β

arsinh(β )

−2η4

3β 4 ln(η)− 1
2

(
η
β
− arsinh(β )

β 2

)2

(H.56)

ΦT
x (β ) =

1
6
− 1

3β 2 −
2η
3β

arsinh(β )

+
2η4

3β 4 ln(η)−
(

η
β
− arsinh(β )

β 2

)2

. (H.57)

The UV-renormalization procedure is particularly involved for the correlation
energy ec, which we also discuss here for completeness. Most of the counterterms
provided by Δehom are, however, included if the basic expression (H.47) is rewritten
in terms of the renormalized response function χμν

R,λ ,

exc(n0) =
i
2

∫ 1

0
dλ

∫
d4q

(2π)4 D0
μν(q)

[
χμν

R,λ (q)−χμν
v,R,λ (q)

]
+Δ ẽhom (H.58)

(the exchange energy has not been subtracted). The only remaining divergence (to
be eliminated by Δ ẽhom) now originates from the outermost loop integration in
(H.58). It can be explicitly discussed within the so-called random phase (or ring) ap-

proximation (RPA) in which ΠL/T is approximated by its 1-loop contribution Π (0)
L/T

[618, 762]. Insertion of Eq. (H.33) into (H.58) then gives

eRPA
xc (n0) =

i
2

∫ 1

0
dλ

∫
d4q

(2π)4

[
D0(q)Π (0)

L (q)

1−λD0(q)Π (0)
L (q)

−2
D0(q)Π (0)

T (q)

1+λD0(q)Π (0)
T (q)

−3
D0(q)Π (0)

v,R(q)

1−λD0(q)Π (0)
v,R(q)

]
+Δ ẽhom,RPA .

The coupling constant integration can be performed directly, if Eqs. (H.30), (H.31)
and (H.34) are used,
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eRPA
xc (n0) = − i

2

∫
d4q

(2π)4

[
ln
[
1−Dv,R(q)Π (0)

L,d(q)
]

+2ln
[
1+Dv,R(q)Π (0)

T,d(q)
]]

+Δ ẽhom,RPA . (H.59)

At this point it is convenient to define the vacuum-screened exchange energy,

ex,s(n0) =
i
2

∫
d4q

(2π)4

[
Dv,R(q)Π (0)

L,d(q)−2Dv,R(q)Π (0)
T,d(q)

]
+Δ ẽhom,RPA , (H.60)

which requires renormalization similar to its unscreened counterpart. After subtrac-
tion of ex,s from eRPA

xc one obtains for the correlation energy [762]

eRPA
c,s (n0) = − i

2

∫
d4q

(2π)4

[
ln
[
1−Dv,R(q)Π (0)

L,d(q)
]

+2ln
[
1+Dv,R(q)Π (0)

T,d(q)
]

+Dv,R(q)Π (0)
L,d(q)−2Dv,R(q)Π (0)

T,d(q)
]
. (H.61)

This expression is UV-convergent as it stands, as the lowest order diagram included

in (H.61) contains Π (0)
L/T,d already two times.1 Finally, one can define the no-sea

approximation of (H.61) by neglecting all screening effects due to vacuum polariza-
tion. Decomposing the result into a Coulomb and a transverse component, one ends
up with

eC,RPA
c,ns (n0) = − i

2

∫
d4q

(2π)4

{
ln
∣∣∣1−D0(q)Π (0)

L,d(q)
∣∣∣+D0(q)Π (0)

L,d(q)
}

(H.62)

eT,RPA
c,ns (n0) = −i

∫
d4q

(2π)4

{
ln
∣∣∣1+D0(q)Π (0)

T,d(q)
∣∣∣−D0(q)Π (0)

T,d(q)
}

. (H.63)

eC/T,RPA
c,ns (n0) has been evaluated numerically for arbitrary n0 [538, 622]. The high-

density (ultrarelativistic) limit of eRPA
c,ns is given by [618, 621]

eRPA
c,ns (n0) −−−→

β�1

e4k4
F

12π4

(
3
2

ln
α
π

+1.3761+ . . .

)
=

e4k4
F

12π4

(−7.796+ . . .
)
, (H.64)

where α is the fine structure constant.
In order to arrive at the RPA+, which we understand as the combination of the

RPA with the remaining second order (e4) contributions, the two second order ex-
change (SOX) diagrams,

1 After Wick-rotation of q0 in (H.61) one e.g. finds Π (0)
L,d(iq0,qqq)∼ (qqq2 +q2

0)
−1 and Π (0)

v,R(iq0,qqq)∼
(qqq2 + q2

0) ln |qqq2 + q2
0| for large q0 and |qqq| so that two factors of Π (0)

L,d(iq
0,qqq) together with the two

photon propagators are sufficient to ensure UV-convergence of the outermost loop integral.



478 H Relativistic Homogeneous Electron Gas

2 2 , (H.65)

have to be added to eRPA
c . In contrast to the nonrelativistic situation the two right-

most diagrams do not vanish. Both types of diagrams require renormalization be-
yond the subtraction of their vacuum limit indicated in Eq. (H.65). The density
dependence of these diagrams is not known completely. In the ultrarelativistic limit
one finds for the sum of both graphs (the individual contributions are not gauge
invariant) [621]

eSOX
c (n0) −−−→

β�1

e4k4
F

12π4

(−3.18±0.12
)
, (H.66)

so that eSOX
c amounts to roughly 40% of the RPA in this limit.

One can also analyze the 2-loop contribution to the screened exchange (H.60),

,

which (in our definition) is beyond the no-sea approximation. Its ultrarelativistic
limit is [621],

e(2)
x,s (n0) −−−→

β�1

e4k4
F

12π4

[
ln

(
2

kF

m

)
− 11

6

]
. (H.67)

In the limit of very high densities e(2)
x,s thus dominates over all other known xc-energy

contributions. However, the densities required for e(2)
x,s to be of the same order of

magnitude as eRPA+
c are extremely high, kF/m≈ 103, so that e(2)

x,s is not relevant for
electronic structure calculations.

No calculations of ec beyond the RPA+ are found in the literature.

H.4 Ground State Four Current

After the extensive discussion of the ground state energy little remains to be said
concerning the ground state four current of the RHEG. Due to norm conserva-
tion, the interacting current must be identical with the current of the noninteracting
RHEG, that is n0 gμ0, in real space. If one expresses the current expectation value in
terms of the interacting propagator (H.1),

〈Ψ0| ĵμ(x)|Ψ0〉=− i lim
y→x

s tr
[
G(x,y)γμ

]
,
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one realizes that all higher order contributions resulting from the perturbation ex-
pansion of G must cancel order by order. This will be demonstrated explicitly for
all first order vacuum contributions. To first order one obtains diagrammatically

.

One first observes that in the pure vacuum limit, G0 → G0
v, all loops vanish, as at

least one part of the graph is a fermion loop with an odd number of vertices (Furry’s
theorem)—only mixtures of vacuum subgraphs with non-vacuum components can
contribute to jμ . Moreover, the right-hand first order diagram need not be consid-
ered any further, as in addition to the electronic charge density the neutralizing pos-
itive background charge density has to be coupled to the polarization graph. Con-
sequently, all diagrams containing tadpoles do not contribute. One is thus left with
the vacuum subgraphs in the remaining first order diagram. Two vacuum subgraphs
are identified, the vertex correction (left part) and the self-energy (right part). How-
ever, after renormalization the vertex correction vanishes on the mass shell due to
the normalization condition (G.52). Therefore the combination of this vacuum sub-
graph with the remainder of the diagram, i.e. the product Γv,RG0

d, is zero. Similarly,
the vacuum self-energy is proportional to (p/−m)2 on the mass shell, Eq. (G.45),
so that products as G0

dΣv,RG0
v vanish. Consequently, after renormalization the terms

containing vacuum subgraphs give no contribution to the four current, as required.
It is obvious that the argument given also applies to higher order contributions. The
necessary counterterms will be denoted as Δ jhom

μ ,

jμ = 〈Ψ0| ĵμ(x)|Ψ0〉+Δ jhom
μ = n0 gμ0 . (H.68)

As in the case of Δehom, Δ jhom
μ is determined by the renormalization of all relevant

vacuum subgraphs.



Appendix I
Renormalization of Inhomogeneous Electron
Gas

In order to prepare the discussion of the relativistic generalization of the HK-
theorem in Sect. 8.3 we finally consider the renormalization procedure for inho-
mogeneous systems, i.e. the full Lagrangian (8.11). Since the underlying renormal-
ization program of vacuum QED is formulated within a perturbative framework (see
Appendix G), we assume that the perturbing potential V μ is sufficiently weak to al-
low a power series expansion of all relevant quantities with respect to V μ . Within
this approach one can explicitly derive the counterterms required for the field the-
oretical version of the relativistic KS equations, i.e. for the four current and kinetic
energy of noninteracting particles. In this Appendix again h̄ = c = 1 is used.

The first quantity of interest is the four current δ jμ(rrr) induced by V μ(rrr). The
perturbation expansion of δ jμ with respect to V μ can be written as

δ jμ(rrr) =
∞

∑
n=1

(−e)n

n!

∫
d3r1 . . .

∫
d3rn χ(n+1)

c,μμ1...μn(rrr,rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) + Δ jinhom
μ (rrr) , (I.1)

where χ(n)
c,μ1...μn represents the static, connected response functions of the RHEG

(for their precise definition see Appendix H) and Δ jinhom
μ denotes the counterterms

which keep δ jμ UV-finite. Of course, δ jμ satisfies current conservation,

∂μ δ jμ(rrr) = ∇∇∇ ·δ jjj(rrr) = 0 ,
∫

d3r δ j0(rrr) = 0 , (I.2)

which is directly related to the transversality of χ(n)
c,μ1...μn displayed in Eq. (H.14).

The induced current (I.1) is automatically UV-finite if the expansion is based on
renormalized response functions, i.e. Δ jinhom

μ just sums up the terms required for

the transition from the unrenormalized χ(n)
c,μ1...μn to their renormalized counterparts.

Introducing an expansion of Δ jinhom
μ in powers of V μ one thus has
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Δ jinhom
μ =

∞

∑
n=1

(−e)n

n!

∫
d3r1 . . .

∫
d3rn Δ χ(n+1)

μμ1...μn(rrr,rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) , (I.3)

where Δ χ(n)
μ1...μn represents the counterterms which keep the connected response

function χ(n)
c,μ1...μn of the RHEG finite.

It is instructive to analyze Δ jinhom
μ for the noninteracting limit of (I.1). Using the

notation of Eqs. (F.39), (F.40) and (H.7) and taking into account the fermion sign
rule, the induced current is given graphically by

ieδ j 0
μ (I.4)

(the multiplicities resulting from different ordering of vertices in case of the higher
order response functions with n ≥ 2 compensate the prefactor 1/n! in (I.1)). While
the noninteracting 3-point function, i.e. the second graph, is UV-finite due to Furry’s
theorem, the noninteracting 4-point function (third diagram) is UV-finite due to its
transversality and all higher order response functions are overall convergent. The
only divergent term to be examined is contained in the first diagram. The counter-

term for the vacuum component of χ(0)
μν , χ(0)

v,μν = Π (0)
v,μν = ω(0)

v,μν/e2, has been de-
rived in Appendix G. Using dimensional regularization, one obtains Eq. (G.60) as
counterterm to the lowest order 2-point function and thus after Fourier transforma-
tion,

Δ j(0)
μ (rrr) =

e
12π2 Γ

(
4−d

2

)
∇∇∇2Vμ(rrr) , (I.5)

if Coulomb gauge, ∇∇∇ ·VVV (rrr) = 0, is used.
The second quantity of interest is the energy shift resulting from the perturbing

potential. This shift can be evaluated by use of the coupling constant integration
technique with respect to V μ . If one scales the associated Hamiltonian (8.43) by λ ,

Ĥext(λ ) =−λe
∫

d3r ĵμ(rrr)Vμ(rrr) , (I.6)

one obtains for the corresponding renormalized ground state energy

E(λ ) = 〈Ψ0(λ )|Ĥhom + Ĥext(λ )|Ψ0(λ )〉
−〈0|Ĥhom|0〉+ΔEhom +ΔE inhom(λ ) . (I.7)

Here |Ψ0(λ )〉 denotes the ground state of the scaled Hamiltonian Ĥhom + Ĥext(λ ).
ΔEhom provides the counterterms which, together with the vacuum expectation
value 〈0|Ĥhom|0〉, keep E(λ ) finite for λ = 0. ΔE inhom(λ ) contains all remaining
counterterms. The energy of actual interest, corresponding to λ = 1, can be ob-
tained by coupling constant integration, following the scheme in Sect. 4.2.1. Using
proper normalization for all λ ,



I Renormalization of Inhomogeneous Electron Gas 483

〈Ψ0(λ )|Ψ0(λ )〉= 1 ,

one obtains by differentiation of (I.7) with respect to λ and subsequent integration
from 0 to 1,

E(λ = 1) = ERHEG− e
∫ 1

0
dλ

∫
d3r jμ(λ ,rrr) Vμ(rrr)+ΔE inhom(λ = 1) .

In this expression jμ(λ ,rrr) stands for the ground state current resulting for the cou-
pling strength λ ,

jμ(λ ,rrr) = 〈Ψ0(λ )| ĵμ(rrr)|Ψ0(λ )〉 ,
and ERHEG = E(λ = 0) is to be understood as renormalized (ΔEhom has been ab-
sorbed into ERHEG). Insertion of (I.1) then allows to perform the λ -integration,

E = ERHEG− e
∫

d3r 〈Ψ0(λ = 0)| ĵμ(rrr)|Ψ0(λ = 0)〉Vμ(rrr)

+
∞

∑
n=2

(−e)n

n!

∫
d3r1 . . .

∫
d3rn χ(n)

c,μ1...μn(rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn)
+ΔE inhom . (I.8)

At this point one can examine ΔE inhom in more detail. Its component linear in V μ ,

ΔE inhom =−e
∫

d3r ΔE(1)
μ V μ(rrr)+O(V 2) ,

has to keep the current expectation value of the unperturbed system, i.e. of the in-
teracting RHEG, finite,

〈Ψ0(0)| ĵμ(rrr)|Ψ0(0)〉+ΔE(1)
μ = n0 gμ0 . (I.9)

It agrees with Δ jhom
μ defined via Eq. (H.68). As discussed in Appendix F, Δ jhom

μ
vanishes in the noninteracting limit. All higher order ingredients of ΔE inhom are de-

termined by the renormalization of the χ(n)
c,μ1...μn . The counterterm ΔE inhom is there-

fore closely related to Δ jinhom
μ , Eq. (I.3),

ΔE inhom =
∞

∑
n=1

(−e)n

n!

∫
d3r1 . . .

∫
d3rn Δ χ(n)

μ1...μn(rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) , (I.10)

where Δ χ(1)
μ ≡ Δ jhom

μ has been introduced for brevity. The only counterterm on the
noninteracting level, corresponding to (I.5), is given by

ΔE(0),inhom =− e2

24π2 Γ
(

4−d
2

)∫
d3rVμ(rrr)∇∇∇2V μ(rrr) . (I.11)
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The total energy counterterm (I.10) can be decomposed into contributions to the
individual energy components. Again this can be demonstrated directly for the non-
interacting case. Here the total energy is just a sum of the external potential energy,

Eext =−e
∫

d3rVμ(rrr)
[
gμ0n0 +δ jμ(rrr)

]
+ΔE(0),inhom

ext , (I.12)

which, consistent with (I.5), requires the counterterm

ΔE(0),inhom
ext =− e2

12π2 Γ
(

4−d
2

)∫
d3rVμ(rrr)∇∇∇2V μ(rrr) , (I.13)

and the noninteracting kinetic contribution Ts which absorbs the remainder of (I.11),

ΔT inhom
s =

e2

24π2 Γ
(

4−d
2

)∫
d3rVμ(rrr)∇∇∇2V μ(rrr) . (I.14)

The first order counterterms (I.5) and (I.11) are an explicit manifestation of the fact
that, quite generally, Δ jμ and ΔE inhom are completely determined by the external
potential and the average density n0 of the weakly inhomogeneous system. Only
these two quantities enter Eqs. (I.3) and (I.10). The resulting dependence of Δ jμ and
ΔE inhom on V μ is obvious, while that on n0 results from the multi-loop contributions
to the response functions.



Appendix J
Gradient Corrections to the Relativistic LDA

While the RLDA for Exc[ j] is based on the xc-energy density of the RHEG,
Eq. (H.47), the expansions (I.1) and (I.8) allow the derivation of systematic correc-
tions to the RLDA. Restricting the discussion to the linear response contributions,
Eq. (I.1) reduces to

δ jμ(qqq) =−eχμν(q0 = 0,qqq)Vν(qqq) , (J.1)

with the total current given by jμ(xxx) = n0gμ0 + δ jμ(xxx) (response functions are al-
ways understood to be renormalized in this appendix, so that counterterms are not
displayed explicitly; h̄ = c = 1 is again used). Using the inverse of χμν , Eq. (H.36),
one can rewrite (J.1) as

χ−1
ρμ (0,qqq)δ jμ(qqq) = −eVρ(qqq) , (J.2)

where Coulomb gauge has been utilized. With Eqs. (J.1) and (J.2) the second order
(V 2) contribution to (I.8) can be rewritten as

δELR =−e
∫

d3q
(2π)3 δ jμ(qqq)Vμ(qqq)− 1

2

∫
d3q

(2π)3 δ jμ(qqq)χ−1
μν (0,qqq)δ jν(−qqq) .

After insertion of the result (H.37) for the inverse response function,

δELR = −e
∫

d3q
(2π)3 δ jμ(qqq)Vμ(qqq)+

1
2

∫
d3q

(2π)3 δ jμ(qqq)D0(−qqq2)δ jμ(−qqq)

−1
2

∫
d3q

(2π)3 δ jμ(qqq)Π−1
μν (0,qqq)δ jν(−qqq) , (J.3)

one can identify the first term as the linear response contribution to Eext, Eq. (8.82),
the second one as the induced Hartree energy (8.84). The third term represents
the inhomogeneity corrections to the kinetic energy (δT LR

s ) and to the xc-energy
(δELR

xc ). δT LR
s is obtained from the noninteracting limit of Π−1

μν (qqq,0), so that the two
contributions can be separated easily. Utilizing the tensor structure of Π−1

μν (qqq,0),
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Eq. (H.38), as well as current conservation, qqq · jjj(qqq) = 0, one arrives at

δT LR
s +δELR

xc = −1
2

∫
d3q

(2π)3

{
δ j0(qqq)δ j0(−qqq)

ΠL(0,qqq)
+

jjj(qqq)· jjj(−qqq)
ΠT(0,qqq)

}
, (J.4)

where δ jjj(qqq) = jjj(qqq) has been used.
In the next step one extracts that component of (J.4) which is part of the RLDA.

This procedure involves only the δ j0-dependent term in (J.4) and follows closely
the discussion of Sect. 4.4.1. For the weakly inhomogeneous gas of interest an ex-
pansion of the RLDA energy to the order (δ j0)2 gives

T RLDA
s [n0 +δ j0]+ERLDA

xc [n0 +δ j0]

=
∫

d3r
[
ts(n0 +δ j0(rrr))+ exc(n0 +δ j0(rrr))

]
=

∫
d3r

[
ts(n0)+ exc(n0)+

(
dts
dn0

(n0)+
dexc

dn0
(n0)

)
δ j0(rrr)

+
1
2

(
d2ts
dn2

0

(n0)+
d2exc

dn2
0

(n0)
)

δ j0(rrr)2 + . . .

]
. (J.5)

The first order term in (J.5) vanishes due to norm conservation, Eq. (I.2). The second
order term can be rewritten by use of the compressibility sum rule (H.43),

T RLDA
s [n0 +δ j0]+ERLDA

xc [n0 +δ j0]

=
∫

d3r [ts(n0)+ exc(n0)]− 1
2

∫
d3q

(2π)3

δ j0(qqq) δ j0(−qqq)

Π (0)
L (0,000)

. (J.6)

The second order term in (J.6) has to be subtracted from the complete inhomogene-
ity correction (J.4) as it is already contained in the RLDA,

δ T̃ LR
s +δ ẼLR

xc = −1
2

∫
d3q

(2π)3

{
δ j0(qqq)

[
1

ΠL(0,qqq)
− 1

ΠL(0,000)

]
δ j0(−qqq)

+
jjj(qqq)· jjj(−qqq)
ΠT(0,qqq)

}
. (J.7)

Equation (J.7) explicitly demonstrates the current-dependence of relativistic den-
sity functionals. However, at this point δ T̃ LR

s and δ ẼLR
xc are given as functionals

of n0 (inside ΠL/T) and δ j0, but not yet as functionals of the complete density
j0 = n0 + δ j0. Two paths can be followed towards the construction of actual den-
sity functionals: on the one hand, one can rewrite (J.7) as a fully nonlocal den-
sity functional utilizing either that j0(xxx)− j0(yyy) = δ j0(xxx)− δ j0(yyy) [6, 85] or that
∇∇∇ j0(xxx) = ∇∇∇δ j0(xxx) [158] (compare Sect. 4.4.2). On the other hand, one can restrict
oneself to a long-wavelength expansion of the response kernels in (J.7), assuming
δ jμ(qqq) to be strongly localized around qqq = 000, i.e. δ jμ(xxx) to be rather delocalized.
The latter approach leads to gradient corrections.
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However, due to the limited information available for the relativistic polarization
functions ΠL/T no applications of (J.7) to Exc have been reported so far. In order to
illustrate the basic scheme of the gradient expansion we therefore consider Ts. After
insertion of (H.39) and (H.40) into (J.7) and subsequent Fourier transformation one
finds

δT [2]
s =

1
72m

∫
d3x

1
n0η

[
1+2

β
η

arsinh(β )
][

∇∇∇δ j0(xxx)
]2

+
3π
4

∫
d3x

∫
d3y

1
arsinh(β )

jjj(xxx) · jjj(yyy)
|xxx− yyy| , (J.8)

where the long-wavelength expansion has been taken into account to order qqq2 (de-
noted by the superscript [2]—β ,η are given by Eq. (H.42)) and current conservation
has been used in the second term. In the first term on the right-hand side of (J.8) one
can now utilize ∇∇∇δ j0(xxx) = ∇∇∇ j0(xxx) and, correct to second order, kF = [3π2 j0(xxx)]1/3.
However, the density-dependent prefactor 1/arsinh(β ) of the current component
cannot be expressed unambiguously in terms of j0(xxx) as now two spatial variables
are available. As in the case of the complete linear response corrections (J.7) one is
left with a choice for this substitution.1 If one abbreviates this (symmetric) function
of xxx and yyy by β̄ (xxx,yyy), one obtains

δT [2]
s [ j] =

1
72m

∫
d3x

[∇∇∇ j0(xxx)]2

j0(xxx)
1
η

[
1+2

β
η

arsinh(β )
]

+
3π
4

∫
d3x

∫
d3y

1

arsinh(β̄ (xxx,yyy))
jjj(xxx) · jjj(yyy)
|xxx− yyy| , (J.9)

where β is now understood as β = [3π2 j0(xxx)]1/3/m (η =
√

1+β 2). Equation (J.9)
demonstrates that current density functionals are inherently nonlocal, even in the
long-wavelength limit.

One should note that the vacuum parts of Π (0)
L/T do not contribute to δT [2]

s as
the normalization condition (G.48) together with (H.32) suppresses any vacuum

contribution of the order qqq2. On the other hand, Π (0)
v,R does contribute to higher order

inhomogeneity corrections (for details and a comparison with the real space gradient
expansion of Ts see [532]).

In principle, this formalism can be extended to quadratic and cubic response,
which allows the derivation of higher order gradient terms. In practice, however, the
limited knowledge of the corresponding response functions restricts the usefulness
of a first-principles determination of relativistic gradient corrections.

As a final point one should mention that gradient corrections to the relativistic
Ts[n] have also been derived by real-space methods [764–766, 763, 767]. These gra-
dient terms serve as an extension of the relativistic Thomas-Fermi model [761, 768],
in which the many-body problem is approached by direct solution of the basic vari-

1 In contrast to the linear response approach the real space gradient expansion of Ts[ j] determines
the current contribution to the second order gradient correction completely [763].
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ational equation (8.72). A summary of results and details, as e.g. use of the renor-
malization procedure, can be found in [72, 532, 769, 770]. Expressing the noninter-
acting relativistic kinetic energy in terms of the density n = j0,

Ts =
∫

d3x
{

t [0]
s [n]+ t [2]

s [n]+ t [4]
s [n]+ . . .

}
, (J.10)

one finds for the case of a purely electrostatic external potential (in contrast to the
case of a full four potential) the expressions

t [0]
s [n] =

(3π2n)5/3

π2m
1
β

[
1
8

(
βη3 +β 3η− arsinhβ

)− β 3

3

]
(J.11)

t [2]
s [n] =

1
72m

(∇n)2

nη

[
1+2

β
η

arsinhβ
]

. (J.12)

The more complicated expression for t [4]
s [n] will not be given here. The agreement

of (J.11) with (H.45) and of (J.12) with the density-dependent contribution to (J.9)
is obvious.

Results for atoms and molecules obtained by direct application of the variational
principle (without the intermediary of orbitals) are not of chemical accuracy. The
functionals can, however, be useful for obtaining reasonable estimates of properties
of systems that can not be investigated in such detail, for instance systems in the
astrophysical field. For this purpose, it is of interest to note, that a temperature-
dependent version of the relevant functionals has been derived as well [771].



Appendix K
Gordon Decomposition

The starting point for the derivation of the Gordon decomposition of the spatial
components of the relativistic four current operator,

ĵμ = ψ̂†αμ ψ̂ (αμ = γ0γμ) , (K.1)

is the field equation satisfied by the field operators ψ̂ , i.e. the Dirac equation,(
ih̄cγμ ∂μ −mc2− eγμ Aμ

)
ψ̂ = 0 , (K.2)

in which the potential Aμ may be operator-valued (∂μ is defined in Eq. (8.4)). Note,
however, that all subsequent steps can equally well be gone through for a current
expressed in terms of single-particle orbitals,

jμ = ∑
k

Θkφ †
k αμ φk ,

as long as the orbitals satisfy a differential equation of the type (K.2) (as, for in-
stance, the KS spinors).

The hermitian conjugate of (K.2) is given by

ψ̂†γ0
(
−ih̄cγμ←−∂μ −mc2− eγμ Aμ

)
γ0 = 0 , (K.3)

as (γμ)† = γ0γμ γ0. The vector bar over
←−
∂μ indicates that the derivative acts on the

field operator to its left. Contraction of the field equation (K.2) with ψ̂†αk and of its
hermitian conjugate (K.3) with αkψ̂ gives

ψ̂†αk (ih̄cγμ ∂μ −mc2− eγμ Aμ
)

ψ̂ = 0

ψ̂†γ0
(
−ih̄cγμ←−∂μ −mc2− eγμ Aμ

)
γ0αkψ̂ = 0 .

If one adds up both equations, one obtains
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ψ̂†
[
ih̄cγ0

(
γkγμ ∂μ − γμ γk←−∂μ

)
−2mc2αk− eγ0

(
γkγμ + γμ γk

)
Aμ

]
ψ̂ = 0 .

In the next step the scalar products in Minkowski space are split into their space-time
components, utilizing the commutation relations (8.7)–(8.9),

ψ̂†
[
− ih̄c

(
γk∂0 + γk←−∂0

)
+ ih̄cγ0

(
γkγ l∂l− γ lγk←−∂l

)
−2mc2αk−2eγ0Ak

]
ψ̂ = 0 .

At this point one can use

γkγ l =
1
2

({
γk,γ l

}
+
[
γk,γ l

])
= gkl− iεkl jΣ j with Σ j =

(
σ j 0
0 σ j

)
(K.4)

to obtain

− ih̄c∂0

(
ψ̂†γkψ̂

)
+ ih̄cψ̂†γ0

(
∂ k−

←−
∂ k

)
ψ̂ + h̄cεkl j∂l

(
ψ̂†γ0Σ jψ̂

)
−2mc2ψ̂†αkψ̂−2eAkψ̂†γ0ψ̂ = 0 .

Most of the individual terms in this equation are easily identified with established
quantities. With the definitions1

ĵμ =
(

n̂,
ĵjj
c

)
(K.5)

ĵjjp = − ih̄
2m

ψ̂†γ0
(−→

∇∇∇ −←−∇∇∇
)

ψ̂ (K.6)

m̂mm =
eh̄

2mc
ψ̂†γ0ΣΣΣψ̂ (K.7)

ρ̂s = ψ̂†γ0ψ̂ (K.8)

(note the additional factor of c which is included in the three-vector jjj as compared
to the spatial components of jμ !) for the paramagnetic current ĵjjp, the magnetization
density m̂mm and the scalar density ρ̂s one finds

− ih̄c∂0
(
ψ̂†γγγψ̂

)
+2mc ĵjjp +

2mc2

e
∇∇∇× m̂mm−2mc ĵjj−2eAAAρ̂s = 0 .

Extracting the spatial components of the current, one finally ends up with

1 Note the relation between the gradient vector and the covariant components ∂k,

∇∇∇ =
(

∂
∂ r1 ,

∂
∂ r2 ,

∂
∂ r3

)
= (∂1,∂2,∂3) .
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ĵjj = − ih̄
2m

∂0
(
ψ̂†γγγψ̂

)
+ ĵjjp +

c
e

∇∇∇× m̂mm− e
mc

AAAρ̂s . (K.9)

In the case of stationary systems the first operator on the right-hand side does not
contribute to any expectation value of ĵjj,

〈Ψ0| ĵjj|Ψ0〉 = 〈Ψ0| ĵjjp|Ψ0〉+ c
e

∇∇∇×〈Ψ0|m̂mm|Ψ0〉− e
mc

AAA〈Ψ0|ρ̂s|Ψ0〉 . (K.10)

Note that the precise definition of AAA (in particular, its sign) is determined by the
differential equation (K.2).



Appendix L
Some Useful Formulae

The body of this text relies on the knowledge of a largish number of mathematical
relations. A much abbreviated list is offered here.

• Laurent expansion, theorem of residues:
A complex-valued function f (z), which is analytic in the domain D ⊂C and has
an isolated pole of k-th order at a point z0 enclosed by D , can be expanded for
all z ∈D as (Laurent expansion)

f (z) =
∞

∑
n=−∞

an(z− z0)n , (L.1)

with the coefficients an given by

an =
∮

C

dz′

2πi
f (z′)

(z′ − z0)n+1 . (L.2)

Here the closed path C is contained fully in the domain, has a counterclockwise
orientation, and encloses z0, but no other singular point. The coefficient a−1, the
residue, is given by

a−1 =
∮

C

dz
2πi

f (z) . (L.3)

A generalization to the case that the path encloses a set of isolated poles is the
theorem of residues,∮

C

dz
2πi

f (z) = sum of the residues of all poles enclosed by C . (L.4)

A prominent example for the application of (L.4) is the contour integral repre-
sentation of the step function,

Θ(x) =
∫ ∞

−∞

dω
2πi

eiωx

ω− iη
, (L.5)



494 L Some Useful Formulae

which is used to implement the time-ordering required for many response and
Green’s functions in frequency space.

• Dirac identity:
For integrations over frequency often the integral representation of the δ -function,

δ (x) =
∫ ∞

−∞

dω
2π

eiωx , (L.6)

or the Dirac identity,

2πiδ (x) =
1

x− iη
− 1

x+ iη
(L.7)

1
x− iη

= P
1
x

+πiδ (x) (L.8)

1
x+ iη

= P
1
x
−πiδ (x) (L.9)

is used (P denotes the Cauchy principal value integral).
• Fourier representation of Coulomb interaction:

Whenever the Coulomb interaction has to be integrated over the complete space,
use of the following regularized form is necessary

∫
d3q

(2π)3

eiqqq·rrr

qqq2 + μ2 =
e−μ|rrr|

4π|rrr| . (L.10)

• General identities for commutators:

[ÂB̂,Ĉ] = Â[B̂,Ĉ]+ [Â,Ĉ]B̂ (L.11)

eÂ B̂e−Â =
∞

∑
n=0

1
n!

[
Â,

[
Â,

[
. . .

[
Â, B̂

]]
. . .

]]︸ ︷︷ ︸
n times

. (L.12)

• Commutators involving field operators:
The following basic commutator of four field operators can be derived directly
from the anticommutation rules (2.6) and (2.7),[

ψ̂†(rrr1σ1)ψ̂(rrr2σ2) , ψ̂†(rrr3σ3)ψ̂(rrr4σ4)
]

= −δ (3)(rrr1− rrr4)δσ1σ4 ψ̂†(rrr3σ3)ψ̂(rrr2σ2)

+δ (3)(rrr2− rrr3)δσ2σ3 ψ̂†(rrr1σ1)ψ̂(rrr4σ4) . (L.13)

Use of this result leads to

0 =
[
ψ̂†(rrrσ)ψ̂(rrrσ) , ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)

]
(L.14)

0 =
[∫

d3r ψ̂†(rrrσ)∇∇∇2ψ̂(rrrσ) ,
∫

d3r′ ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)
]

(L.15)
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0 =
[
ψ̂†(rrrσ)ψ̂(rrrσ)ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′) , ψ̂†(rrr′′σ ′′)ψ̂(rrr′′σ ′′)

]
=

[
ψ̂†(rrrσ)ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)ψ̂(rrrσ) , ψ̂†(rrr′′σ ′′)ψ̂(rrr′′σ ′′)

]
. (L.16)

With the relation (L.13) one can also evaluate the commutator of the density (2.4)
and the paramagnetic current (2.158)[

ĵjjp(rrr), n̂(rrr′)
]

=
−ih̄
2m

[
∇∇∇δ (3)(rrr− rrr′)

]
∑
σ

[
ψ̂†(rrrσ)ψ̂(rrr′σ)+ ψ̂†(rrr′σ)ψ̂(rrrσ)

]
+

ih̄
2m

δ (3)(rrr− rrr′)∇∇∇n̂(rrr) . (L.17)

Similarly, one obtains for the commutator of the kinetic energy and density op-
erators [

T̂ , n̂(rrr)
]

= ih̄∇∇∇ · ĵjjp(rrr) . (L.18)

• Pauli matrices:
The basic commutators (anticommutators) of the Pauli matrices,

[σi,σ j] = 2i ∑
k

εi jk σk (L.19){
σi,σ j

}
= 2δi j , (L.20)

indicate that these operators are generators of the group SU(2) . The matrices
are hermitian σ†

i = σi . These properties, together with a statement on the two
eigenvalues of σz , allows the determination of an explicit representation

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (L.21)

For handling Pauli matrices the following identity is often helpful,

(σσσ ·aaa) (σσσ ·bbb) = aaa ·bbb+ iσσσ · (aaa×bbb) , (L.22)

which can be derived from the basic commutators.
The corresponding commutation relations of the relativistic (4×4) Pauli matrices
(8.138) are [

Σ i,Σ j] = 2i ∑
k

εi jk Σ k (L.23){
Σ i,Σ j} = −2gi j . (L.24)

A standard representation is

ΣΣΣ =
(

σσσ 000
000 σσσ

)
. (L.25)
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• Feynman rules:
These rules define the transition between the Feynman diagrams representing the
individual contributions to the perturbation expansion of Green’s functions (and
all quantities related to them) and the corresponding analytical expressions. They
are set up here in a rather general form which allows a coherent treatment of all
kinds of (sub)diagrams in real space, including diagrams contributing to n-point
functions such as the self-energy and the response function. The critical diagrams
which require this extended form are those for which there are vertices to which
only a single line (electron or interaction) is attached, as for instance the first
order self-energy (3.125).
The four basic elements of Feynman diagrams representing the perturbation ex-
pansion for inhomogeneous systems are:

– The noninteracting (as for instance the KS) Green’s function (3.124),

G0(rrrσt,rrr′σ ′t ′) =
∫

dω
2π

e−iω(t−t ′) G0(rrrσ ,rrr′σ ′,ω) (L.26)

= r σ t rσt

G0(rrrσ ,rrr′σ ′,ω) = ∑
l

{
(1−Θl)

φl(rrrσ)φ ∗l (rrr′σ ′)
ω− εl/h̄+ iη

+Θl
φl(rrrσ)φ ∗l (rrr′σ ′)
ω− εl/h̄− iη

}
.

– The Coulomb interaction, suitably extended to the time domain, in order to
simplify the rules,

w(rrr− rrr′, t− t ′) = δ (t− t ′)
e2

|rrr− rrr′| = r t rt . (L.27)

– The simple vertex, drawn as a bold dot,

rσt

The lines attached to the dot only serve as an indication that there are (at most)
two solid and one wiggly line connected to a single vertex.

– If present, an additional perturbing external potential,

vext r rt (L.28)

Any given Feynman diagram is translated into an algebraic expression according
to the following rules:

1. Distinguish between simple endpoints of lines (be it solid or wiggly), i.e. end-
points not attached to a bold dot, and endpoints at vertices, characterized by
the bold dot. The former endpoints will be called external points in the fol-
lowing, the latter internal endpoints.
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2. Distinguish between internal vertices, at which one incoming and one outgo-
ing solid (electron) line and one wiggly (interaction) line meet, and external
vertices, at which one or two of these attached lines are missing.

3. Label all vertices and external points by some number i.
4. Replace each directed solid line for which the arrow points from a vertex or

an external point j to a vertex or an external point i by G0(rrriσiti,rrr jσ jt j).
5. Replace each wiggly line connecting the vertices or external points i and j by

w(rrri− rrr j, ti− t j) (the direction plays no role, as the interaction is symmetric
under exchange of its arguments).

6. Replace each wiggly line with a cross at its end attached to vertex i by vext(rrri).
7. Replace each external vertex i with only one line attached by

δ (3)(rrri− rrri′)δ (ti− ti′)δσi,σi′ .

The space-time labels rrriti and rrri′ti′ are two of the arguments of the n-point
function to which the diagram contributes. The same applies to both spin la-
bels, if a wiggly line is attached to the vertex. On the other hand, if a solid
line is attached to the vertex, the spin label σi is the spin index of this internal
solid line attached, while σi′ denotes a spin argument of the n-point function.

8. Integrate over all coordinates and times associated with internal vertices,∫
d3ri dti ,

and sum over all spins associated with internal endpoints of solid lines.
9. If the rules lead to Green’s functions G0 for which both time arguments co-

incide, ti = t j = t, interpret these functions as G0(rrriσit,rrr jσ jt + η) and take
the limit η → 0+ at the end of the calculation. This can only happen if the
solid line ends at the same point as it starts, or if the start and end point of G0

are connected by a single interaction line. This procedure ensures the proper
operator ordering of ψ̂0 and ψ̂†

0 at equal times.
10. Multiply the resulting expression by a factor of

(−i/h̄)n+m il (−1)F

for a diagram which contains n interaction, m external potential and l electron
lines as well as F closed loops of solid lines.

11. Adjust the overall prefactor to the quantity (Green’s or response function, den-
sity, energy, . . . ) which is evaluated, in accordance with the definition of this
quantity. In the case of an energy (or vacuum amplitude) diagram take care of
the multiplicities involved (see e.g. [95]).

For a homogeneous system, for which no external potential is present, a represen-
tation in momentum space is the appropriate choice. The three remaining basic
elements after Fourier transformation are:

– The noninteracting Green’s function:
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– The Coulomb interaction (in the screened form given above):

( ) =
π
+μ

= . (L.30)

– The simple vertex:

ω σ ω σ

ω
.

k

k

(L.31)

The Feynman rules for a distinct diagram are in this case:

1. Assign a direction to each interaction (wiggly) line; associate energy (ω) and
momentum to each line (be it solid or wiggly) and conserve energy and mo-
mentum at each vertex.

2. Replace each directed solid line for which the arrow points from vertex or
external point j to vertex or external point i by G0(kkk,ω,σiσ j).

3. If a solid line ends at the same point as it starts, or if the start and end point of a
solid line are connected by a single interaction line, interpret the associated G0

as eiωη G0(kkk,ω,σiσ j) and take the limit η → 0+ at the end of the calculation.
4. Replace each wiggly line by w(qqq).
5. Wherever two solid lines meet at some vertex conserve the spin σ at the vertex

and sum over σ .
6. Integrate over all energies and momenta which do not correspond to argu-

ments of the Green’s or n-point function.
7. Multiply the resulting expression by a factor of

(−i/h̄)n+m il (−1)F

for a diagram which contains n interaction, m external potential and l electron
lines as well as F closed loops of solid lines.

8. Adjust the overall prefactor to the quantity (Green’s or response function, den-
sity, energy, . . . ) which is evaluated, in accordance with the definition of this
quantity. In the case of an energy (or vacuum amplitude) diagram take care of
the multiplicities involved.

These rules are identical with those given in [94], Chaps. 9–12.
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no-pair relativistic density functional theory

375
time-dependent density functional theory

328
Hartree-Fock approximation 5

direct potential 7
exchange potential 7
ground state 6
total energy 6

Hartree-Fock equations 6
basis set expansion 8
scaling with basis set size 8

Hartree-Fock orbitals
asymptotic behavior 446

Heisenberg equation of motion 312
Heisenberg Hamiltonian 2
Heisenberg representation 88
Hellmann-Feynman theorem 225
Helmholtz theorem 380
Hilbert space

N-particle 414
antisymmetric basis 415
canonical basis 414, 419

single-particle 413
Hölder inequality 31

Hohenberg-Kohn energy functional
domain 31

Hohenberg-Kohn theorem 11
current density functional theory 51
current spin density functional theory 51
degenerate ground states 18, 19
excited states 55
for lowest state with given symmetry 56
maps 13
minimum principle 17
noninteracting systems 59
nonlocal potentials 13
physical interpretation 17
reductio ad absurdum 15
spin-density functional theory 40
statements 16

Homogeneous electron gas 129
compressibility sum rule 151
relativistic 467
spin-polarized 142

Hubbard bands 216
Hubbard U 215
Hybrid functionals

correlation 282, 283, 286, 287
correlation energy

atoms 141
dispersion force 293
exchange 281, 283, 285, 286
exchange energy

atoms 211
global 281
local mixing 286
screened 285

I

Infrared divergences 358
Inhomogeneous electron gas 145

background charge density 148
correction to exchange-correlation energy

151
correction to kinetic energy 151
correction to total energy 149
electrostatic energy 148
induced density 147
linear response 146
relativistic 481
renormalization 481
screening 147

Integral equation
optimized potential method 238
relativistic optimized potential method

386
magnetization-dependent 387
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spin-dependent 387
Interacting v-representability 21

counterexamples 21
ensemble 22
Levy-Lieb constrained search 25
Lieb functional 32
N-representability 26
on grid 25
pure-state 22
relativistic density functional theory 366
time-dependent density functional theory

324
Ion–ion interaction 3
Ionization potential 39, 79, 86, 87, 100

atoms
exchange-only 258

LDA, GGA
atoms 192

relativistic corrections
atoms 391

J

Janak theorem 76, 77, 216
Jastrow factors 280

K

Kato theorem 163
Kinetic energy

homogeneous electron gas
noninteracting 438, 439

inequality between interacting and
noninteracting 62

relativistic homogeneous electron gas 474
Kinetic energy functional

current density functional theory
behavior under gauge transformation

103
degenerate ground states 75
density-dependent forms 442
functional differentiability 71
gradient expansion 157

second order 205
Lieb functional 71
linear response 64
minimization 62, 72
no-pair relativistic density functional theory

374
noninteracting systems 60
nonlocal forms 442
relativistic density functional theory 368
scaling behavior 220
spin-density functional theory 81

collinear 82
universality 60
von Weizsäcker functional 207

Kinetic energy operator 11
electrons 3
nuclei 3

Kohn-Sham eigenvalues
highest occupied orbital 87
interpretation 84
molecules

exchange-only 258
relativistic corrections

atoms 390, 392
Kohn-Sham equations 57

comparison with Hartree-Fock approach
69, 274

current density functional theory 101, 102
gauge covariance 102

current spin density functional theory 106
degenerate ground states 73, 75
density functional theory 65
no-pair relativistic density functional theory

375
relativistic density functional theory 369,

382
relativistic spin density functional theory

collinear 379
non-collinear 378

self-consistent solution 65
spin-density functional theory 80, 81

collinear 82
time-dependent density functional theory

325, 328
initial values 329
memory 329

time-dependent spin-density functional
theory 335

Kohn-Sham ground state 66
Kohn-Sham kinetic energy 60

relativistic
counterterm 484

Kohn-Sham kinetic energy functional
current-dependence 487
gradient expansion

relativistic 488
Kohn-Sham magnetic field

spin-density functional theory 81
Kohn-Sham perturbation theory 272
Kohn-Sham potential

current density functional theory 102
density functional theory 65
derivation 63
no-pair relativistic density functional theory

375



526 Index

relativistic density functional theory 369
spin-density functional theory 81

collinear 82
time-dependent density functional theory

328
Kohn-Sham single-particle states

asymptotic behavior 87
density functionals 60
spin-density functional theory 81
spin-saturated systems 58

Kohn-Sham system 57
definition 60
Fermi surface

definition 99
ground state 57
Slater determinant 57
spin-density functional theory 80

collinear form 81
Krieger-Li-Iafrate identity 246

L

Lagrangian
fermions 353
noninteracting fermions 449
photons 354
quantum electrodynamics

renormalized 461, 466
relativistic density functional theory 353

Landau gauge 355
Latter correction 141
Laurent expansion 493
LDA+U method 212

atomic Slater integrals 213
double counting correction 216
occupation matrix 213

Lehmann representation
Green’s function 89

periodic systems 94
noninteracting Green’s function 90
response function 118

Levy-Lieb constrained search 25
Levy-Lieb functional 25

functional differentiability 36
Lieb functional 28, 32

convexity 33
functional differentiability 34, 36
in terms of density matrices 36
Lower semicontinuity 34
Tangent functional 34

Lieb-Oxford bound 178
Lindhard function 131

relativistic 472
Linear response

stationary density functional theory 146
time-dependent density functional theory

331
Local density approximation 129

correlation energy
atoms 140, 141

definition 138
exchange energy

atoms 139
exchange potential 138

asymptotic behavior 138
kinetic energy functional 142
potential 138
relativistic exchange 393
spin density functional theory 142, 145

Local field correction 160
Local functional approximation

for superconductors 402
Local spin-density approximation

correlation 145
exchange 142

Long-wavelength expansion 153
Luttinger theorem 88

M

Møller-Plesset energy 273
Magnetic moment

nuclear 4
Magnetization density 40

relativistic 490
relativistic density functional theory 377
spin-density functional theory 80

Meta generalized gradient approximation
correlation energy

atoms 141
exchange energy

atoms 211
Perdew-Kurth-Zupan-Blaha 206, 207
Tao-Perdew-Staroverov-Scuseria 208, 209

Meta-GGA 206
Metric tensor 352
Minimum principle

current spin density functional theory 52
degenerate ground states 21
noninteracting systems 60
relativistic density functional theory 365,

374
total energy 6

Minkowski indices 352
Multiplet states 56

N

N-particle Hilbert space
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basis 7
N-particle states

representation in terms of creation operators
421

N-representability 26
Negative energy states 358
Negative ions 227
No-pair approximation 371

relativistic ground state energy functional
374

relativistic Kohn-Sham equations 375
Noether theorem 356
Non-collinear magnetism

in molecules 45
in solids 45

Non-collinearity 44
Non-uniqueness of ground state in current spin

density functional theory 53
Non-uniqueness of ground state in spin-density

functional theory 42
Noninteracting ensemble v-representability

71
Noninteracting fermions

canonical quantization 449
charge operator

canonical 450
renormalized 452

Green’s function 454
Hamiltonian

canonical 450
renormalized 451, 454

Noninteracting v-representability 60, 70
Lieb functional 71
time-dependent density functional theory

327
Notation

bra-ket 417
bra-vector 417
charge of electron 3
derivative with respect to vector 42
Dirac 417
eigenstates of interacting Hamiltonian 85
Fermi energy 58
Feynman diagrams

quantum electrodynamics 458, 459
first/second quantization 13
Gaussian units 3
Harvard 241
ket-vector 417
local spin density approximation 145
magnetization density 40
many-particle states 6
matrix elements

antisymmetric 429

canonical 428
particle–particle interaction 428
2-particle operators 428

N-particle states 419
antisymmetrized basis 419
ordered basis 419

photon propagator 368, 457, 468
pole shifts 89
relativistic density functional theory 352,

373, 375
response function

relativistic 470
second quantization 413
single-particle states 6
Slater integral 273
(spin) density functional theory, compact

233
spin quantum number 6, 12

Nuclear potential 6
Nuclei, characterization of 4

O

Occupation number 59
degenerate ground states 74, 75
Fermi distribution 59
fractional 76, 78, 79
spin-density functional theory 82

Optimized (effective) potential method 233
degenerate states 250, 252
integral equation

exchange-only 243
identity with Sham-Schlüter equation

243
normalization of solution 246

relativistic density functional theory 384
spherically symmetric systems 253

Optimized potential method
integral equation 238

Orbital current
relativistic density functional theory 379

Orbital magnetization density 380
Orbital polarization 383, 384
Orbital-dependent exchange-correlation

functionals 227
self-interaction corrected LDA 203

Order-N methods 402
Orthonormality relation

N-particle
first quantized form 415
second quantized form 420

single-particle
first quantized form 414
improper 418
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second quantized form 418

P

Pair density functional theory 402
Pair-correlation function 127

exchange only 175
Paramagnetic current density 101

definition 48
gauge transformation 49
relativistic 490
relativistic density functional theory 377
time-dependent density functional theory

311
Particle number conservation

current spin density functional theory 52
density functional theory 21
periodic systems 98
quantum electrodynamics 361
relativistic density functional theory 374

Particle–particle interaction 11
symmetry, spin-independence 12

Pauli correlation 7, 67
Pauli Hamiltonian 46
Pauli matrices 40

commutation relations 495
identity 495

Pauli spinors 58
Perturbation expansion

quantum electrodynamics 458
Petersilka-Gossmann-Gross equation 338

degeneracy 345
pseudo-eigenvalue problem 339
singlet-triplet excitation 347

Photon propagator
in Coulomb gauge 373
interacting

homogeneous electron gas 468
quantum electrodynamics 457, 458
relativistic homogeneous electron gas

471
noninteracting 368

quantum electrodynamics 458
renormalized 462, 464

Point charge plus continuum model 279
Polarizability

atomic 290
dynamic 341

Pole shifts 89
Post-GGA/LDA treatment 232
Preferred reference frame 353
Primitive vectors 91
Pseudo-eigenvalue problem

time-dependent density functional theory
339

pseudopotentials 12

Q

Quantum electrodynamics 351, 457
Quasi-particle 97
Quasi-particle amplitudes 85

asymptotic behavior 87, 445–447
definition 85
differential equation 86
noninteracting limit 86
periodic systems 94

R

Random phase approximation
correlation energy functional 277
relativistic homogeneous electron gas 477

Real-space cut-off 177, 181
Reciprocal lattice 92
Reductio ad absurdum 15

relativistic density functional theory 361
Relativistic density functional theory 351

notation 352
scalar potential only 376
time-dependent systems 351

Relativistic ground state energy
renormalization 360

Relativistic Kohn-Sham equations 367, 369
Relativistic spin density 379
Relativistic spin density functional theory

collinear 378
non-collinear 377

Renormalization
four current 359
Green’s functions 359
interacting Hamiltonian 359
noninteracting Hamiltonian 358
relativistic density functional theory 364
relativistic ground state energy 360

Renormalization constants 462
Response function 117

advanced 321
analytic properties 119
density–density 117
Dyson equation

homogeneous electron gas 130
frequency space 118
homogeneous electron gas 129

relativistic 471
RPA 132

interacting
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relativistic homogeneous electron gas
468

irreducible 130
relativistic homogeneous electron gas

470
Lehmann representation 119
noninteracting

relativistic homogeneous electron gas
472

proper 130
properties 118
random phase approximation 276
relativistic

transversality 469
relativistic Kohn-Sham system 386
retarded 321

definition 118
interacting system 332, 337
Kohn-Sham system 290, 332, 337

RPA 159
static

Kohn-Sham system 238, 243
symmetry relations 120
time-ordered 124

definition 117
Kohn-Sham system 124

Ritz principle 15
gauge transformation 50

Ritz principle: see also minimum principle 7
Runge-Gross theorem 307, 311

time-dependent current density functional
theory 325

S

s-d transfer energy 392
Scalar density 490

relativistic density functional theory 377
Scaling transformation

density 219
Kohn-Sham states 219
position vector 219
wavefunction 219

Scaling with basis set size 433
exchange matrix elements 436
single-particle matrix elements 434

Schrödinger equation
noninteracting homogeneous electron gas

437
admissible wavefunctions 28
coupled electron-nucleus system 5
interacting system 5, 85
single-particle 57
stationary 13

time-dependent 308
Schwartz inequality 30
Screening

Coulomb interaction 494
Second order exchange 273
Second order exchange energy

relativistic homogeneous electron gas 478
Second order Görling-Levy functional 272

potential 275
Second quantization 13
Self-Consistent-Field approximation 6
Self-energy

exchange contribution 91
exchange-correlation contribution 241
first order 90

quantum electrodynamics 460
renormalized 465, 475

irreducible 90
proper 90
quantum electrodynamics 459
renormalized 463

Self-interaction correction 202, 211, 228
unitarity problem 203

Self-interaction energy
in exchange energy functional 113
in Hartree term 113

Selfconsistent iteration
Hartree-Fock equations 7

Sham-Schlüter equation 242
Shell structure 1
ΣΣΣ -matrices 377

commutation relations 495
Single-particle operators

definition 425
matrix elements 427
second quantized form 426, 427

Single-particle spectrum
degenerate ground states 73

Slater determinant 6, 415
time-dependent Kohn-Sham system 326

Slater exchange 141
Slater integral

atomic 213
notation 273

Spectroscopic constants
exchange-only limit 259

LDA, GGA 193
hybrids 282, 284
LDA, GGA 186, 190
MGGA 190
orbital-dependent functionals 297
relativistic corrections 398

Spin–orbit interaction 4
Spin-density
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definition 43
Spin-density wave 45

bulk Cr 46
Spin-projection on z-axis 58
Spin-spiral 45
Spin-stiffness 143
Stoner exchange 215
Strong interaction limit 279
Strongly correlated systems 230
Summation convention 352
Susceptibility 117

T

Theorem of residues 493
Thomas-Fermi kinetic energy functional

142, 440
Thomas-Fermi models 18, 440
Thomas-Fermi screening length 171
Thomas-Reiche-Kuhn sum rule 342
Time-dependent density

Kohn-Sham system 326
Time-dependent density functional theory

relativistic extension 351
Time-dependent Schrödinger equation

Kohn-Sham system 326
Time-dependent state as density functional

317
Time-evolution operator 122, 320
Time-ordering of operators 88
Total energy minimization 240
Transition metal oxides 217, 230
Transition state 80
Transverse exchange energy 385

relativistic LDA, GGA
atoms 396

Transverse interaction 4, 375
2-Particle density 127

definition 66
helium 68

Kohn-Sham ground state 68
Kohn-Sham perturbation theory 305

orbital-dependent functional 304
Slater determinant 66

2-Particle density matrix functional theory
402

2-Particle operators
definition 425
matrix elements 431
second quantized form 429–431

U

Ultraviolet divergences 359

Uniform electron gas: see homogeneous
electron gas 129

Unit cell 91
Universality 16, 61

time-dependent density functional theory
325

V

Vacuum energy 453
Vacuum polarization 453

first order 460
renormalized 475

quantum electrodynamics 459
renormalized 464

Vacuum state
definition 421

Van der Waals forces 153, 228, 289
C6 coefficient

atoms 290
second order Görling-Levy functional

290
Variational derivative

chain rule 411
definition 405
definition via δ -function 409
Euler-Lagrange equations 411
examples 407
product rule 409

Variational equation
current spin density functional theory 52
density functional theory 21
relativistic density functional theory 366
spin-density functional theory 42, 44

Vertex
quantum electrodynamics 459

Vertex function
first order

quantum electrodynamics 460
irreducible

quantum electrodynamics 459
quantum electrodynamics 457, 458
renormalized 462, 464

Virial relation
exchange energy functional 223
Hartree energy functional 223

Virial theorem
conventional 221, 222, 226
density functional theory 222, 224, 226
Hellmann-Feynman theorem 224

Von Weizsäcker kinetic energy functional
207, 287, 442

Vorticity
current density functional theory 103
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current spin density functional theory 107

W

Ward-Takahashi identity 460
Wavevector decomposition 170

cut-off procedure 173
Weighted density approximation 201

Wigner crystal 135
Wigner-Seitz radius 133

atoms 134
solids 134

X

Xα exchange 141
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