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Deep neural networks are workhorse models in machine learning with multiple layers of nonlinear
functions composed in series. Their loss function is highly nonconvex, yet empirically even gradient
descent minimization is sufficient to arrive at accurate and predictive models. It is hitherto unknown why
deep neural networks are easily optimizable. We analyze the energy landscape of a spin glass model of deep
neural networks using random matrix theory and algebraic geometry. We analytically show that the
multilayered structure holds the key to optimizability: Fixing the number of parameters and increasing
network depth, the number of stationary points in the loss function decreases, minima become more
clustered in parameter space, and the trade-off between the depth and width of minima becomes less severe.
Our analytical results are numerically verified through comparison with neural networks trained on a set of
classical benchmark datasets. Our model uncovers generic design principles of machine learning models.
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Nonlinear multiparameter fitting is ubiquitous in science,
from cosmology [1] to biophysics [2]. The key challenge is
nonconvexity: Typically fitting is done by finding param-
eters that minimize the discrepancy between model pre-
diction and data, known as the loss function. The loss
functions of nonlinear models often have many minima and
minimization algorithms converge to local minima rather
than the global minimum.
Nonetheless, models often used in machine learning

appear to circumvent this problem. The workhorse model,
deep neural networks [3], comprises multiple layers of
nonlinear functions composed in series. Deep neural net-
works achieved near-human accuracy in tasks such as
image recognition [4] and translation [5]. However, the
success of the deep neural network raises two fundamental
unsolved puzzles: First, industrial models have millions of
parameters [6] and the loss function is highly nonconvex,
yet surprisingly even a simple gradient descent algorithm is
able to find accurate and predictive models. Second, it is
long known that “shallow” neural networks—models that
comprise a sum, rather than composition, of nonlinear
functions—can approximate any smooth function [7].
However, deep neural networks empirically outperform
shallower neural networks [8].
The surprising effectiveness of deep neural networks

is often explained in terms of the classes of expressible
functions. Seminal works show that the multilayered
structure allows deep neural networks to disentangle highly
curved manifolds in input space into flat manifolds [9–11].
Some argue that deep neural networks expresses “physical”
functions: they can be mapped to the renormalization group
[12] and implicitly imposes the physics of symmetry,

locality, and compositionality [13]. However, recent
numerical experiments problematize explanations based
expressivity: shallower neural networks can match the
accuracy of deep neural networks as long as one uses
the trained deep neural network to augment the dataset by
predicting labels of unlabeled data [14]. This observation
suggests that deep and shallow networks are comparable in
expressivity. An explanation of why deep neural networks
are effective must therefore turn to whether one can actually
find optimal parameters given data, i.e., optimizability.
Pioneering works show that for Gaussian random func-

tions, critical points that take a value much larger than the
global minimum are exponentially likely to be saddle
points in the high dimensional limit [15–19]. Modeling a
neural network as a Gaussian random function, some argue
that the value that the loss function takes at most local
minima is similar to the global minimum and this is why
local minima are “good enough” [20–22]. However, this
does not directly explain why deep neural networks, in
particular, outperform shallow neural networks. Pioneering
numerical studies of the energy landscape of loss functions
using methods developed for molecular systems [23–26]
focused on shallow neural networks.
In this Letter, we build on the spin glass model of deep

neural networks introduced in Ref. [21] and derive novel
analytical results describing the geometry of the loss
function landscape as a function of network depth. We
show that fixing the number of parameters and increasing
network depth, the number of stationary points in the loss
function decreases, minima become more clustered in
parameter space, and the trade-off between the depth
and width of minima becomes less severe. We verify our
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results through comparison with neural networks trained on
a set of classical benchmark datasets.
We consider a fully connected feed-forward network

with H − 1 hidden layers where layer k − 1 has nk−1 nodes
and each of them is connected to the nk nodes of layer k.
The networks we consider take input vectors X ∈ Rn0

entering the 0th layer and returns scalar outputs Y from the
Hth layer

YðX;wÞ ¼ qθfWT
Hθ½WT

H−1…θðWT
1XÞ�g; ð1Þ

where the matrices Wk contain the weights w and the
functions θ are the activation functions. We restrict the
analysis to rectified linear units (ReLUs) θðxÞ¼maxðx;0Þ.
The normalizing constant q will be specified later to
compare different architectures. We label paths in the
network as ði; jÞ, where j labels any of the P paths from
a given component Xi of the input vector. The quantity

wðkÞ
ði;jÞ denotes the weight connecting layer k − 1with layer k

along path ði; jÞ.
For simplicity, we consider a classification task: Let

ζ ¼ maxwjYðX;wÞj be the maximum of the absolute
value of the network output for admissible weight con-
figurations. We consider a random labeling scenario where
the ground truth Y true takes values �ζ independent of input
X. Our goal is to characterize the loss function LðwÞ ¼
EAjY true − YðX;wÞj for this randomly labeled dataset.
To make analytical progress, we map this neural network

architecture onto a spin glass Hamiltonian via a series of
elegant approximations introduced in Ref. [21]. We rewrite
Eq. (1) by replacing the ReLUs by activation functions
A ∈ f0; 1g,

YðX;wÞ ¼ q
Xn0
i¼1

XP
j¼1

XiAði;jÞ
YH
k¼1

wðkÞ
ði;jÞ: ð2Þ

Wenext introduce the key approximations: First, the input
of the network is assumed to consist of independent and
standard normally distributed random variables. The acti-
vation functionsA are independent andBernoulli distributed
with probability p of being 1. Second, the number of
different weights Λ is assumed to be the Hth root of the
total number of paths in the network. Moreover, among all
possible weight combinations of the Λ number of weights,
each configuration is assumed to appear almost equally
often. Third, the weights ðwnÞ are assumed to satisfy, after
rescaling, a spherical constraint ð1=ΛÞPΛ

n¼1 w
2
n ¼ 1. This

spherical constraint models regularization methods com-
monly used in the literature that penalizes the magnitude of
the weights.
Under the three previously stated assumptions, and

choosing q ¼ Λ−ðH−1Þ=2, the loss function LðwÞ has the
same distribution as pHλðwÞ, where HλðwÞ is the H-spin
spherical spin glass Hamiltonian

HΛðwÞ ¼
1

ΛðH−1Þ=2
XΛ

i1;…;iH¼1

Zi1;…;iH

YH
k¼1

wik ð3Þ

and Zi1;…;iH are independent, identical, and standard
normally distributed.
We consider networks with different number of layers H

but with the same number of parameters Ne, and the same
input layer of size ninput and a scalar output layer. All layers
aside from the scalar output layer and the input layer of size
n0 shall be assumed to be of equal size n1 ¼ � � � ¼ nH−1.
The number of network parameters is then given as Ne ¼
ðH − 2Þn21 þ ðn0 þ 1Þn1 and the number of weights is

Λ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0ðn0 þ 2Þ þ 4ðH − 2ÞNe þ 1
p

− ðn0 þ 1Þ
2ðH − 2Þ

�ðH−1Þ=H

× n1=H0 : ð4Þ

Number of critical points.—The spin glass Hamiltonian
(3) is nonconvex. We thus analyze how the number of
critical points varies as a function of the number of layers.
The number of critical points N C over the complex
numbers is (up to complex conjugation)

N C ¼ ðH − 1ÞΛ − 1

H − 2
: ð5Þ

The number of expected real critical points is

N R¼
2Λ−1ðH−1ÞΛ=2ΓðΛ−1=2Þffiffiffi

π
p

HΛ−1=2ΓðΛÞ
�
2ðΛ−1Þ

×2F1

�
1;Λ−

1

2
;
3

2
;
H−2

H

�
þ2F1

�
1;Λ−

1

2
;
Λþ1

2
;
1

H

��
;

ð6Þ
where 2F1 is the hypergeometric function. The expressions
(5) and (6) show a similar qualitative asymptotic; cf. Fig. 1.
Because of its simplicity, we sketch only a proof of Eq. (5)
and refer the reader to the Supplemental Material [27] for a
proof of Eq. (6), which builds on Ref. [33].
Proof of Eq. (5).—The loss function is a homogeneous

symmetric random polynomial. We illustrate the link
between the two for H ¼ 2 when the Hamiltonian is just
HΛðwÞ ¼

PΛ
i1¼1ðXi1;i1=

ffiffiffiffi
Λ

p Þw2
i1
þPΛ

i1<i2
ð½Xi1;i2 þ Xi2;i1 �=ffiffiffiffi

Λ
p Þwi1wi2 . In order to have a sum of random variables
Yi1;i2 þ Yi2;i1 with the symmetry property Yi1;i2 ¼ Yi2;i1 to
be distributed like Xi1;i2 þ Xi2;i1 one can choose Yi1;i2 ¼
ðXi1;i2 þ Xi2;i1Þ=2 ∼N ð0; 1=2Þ. Critical weights w of
HΛðwÞ are precisely the generalized eigenvectors
satisfying for j ∈ f1;…;Λg the eigenvalue equation
Λð1−HÞ=2PΛ

i2;…;iH¼1 Yj;…;iH

Q
H
k¼2 wik ¼ λwj, where two

solutions ðλ;wÞ; ðλ0;w0Þ to the eigenproblem coincide if
there is t ≠ 0 such that tλH−2 ¼ λ0 and tw ¼ w0.
Substituting λ ¼ γH−2 in the eigenvalue equation yields
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Λ-many homogeneous equations of degree H − 1 in Λþ 1
many variables λ; w1;…; wΛ. The multihomogeneous
Bézout’s theorem [34] (Chap. 4, Sec. 2. 2) implies that
such an equation has exactly ðH − 1ÞΛ solutions where we
discard the equivalence class of the zero solution λ¼wi¼0

to end up with ðH − 1ÞΛ − 1 solutions. Removing the
H − 2 degeneracy, due to roots of unity e2πi=ðH−2Þ, coming
from the λ ¼ γH−2 substitution, shows that the number
of critical weights satisfies Eq. (5). This has been
obtained using methods from toric geometry in Ref. [35]
(Theorem 1.2) (see the Supplemental Material [27]). ▪
Figure 1 show that Eq. (5) implies that the number of

critical points is a nonmonotonic function of the number of
layers. Importantly, the number of critical points decreases
as the number of layers increases for a deep network, thus
deep networks are more optimizable because there are less
critical points that traps the optimizer. Figure 1 also shows
that the number of critical points increases as a function of
depth for shallow networks. This agrees with the early
experience with deep learning in the 1980s and 1990s—a
one layer neural network is inefficient in learning composi-
tional features, yet simply adding a fewmore layers to a one
layer neural network causes performance to deteriorate
because the number of critical points proliferates and the
loss function becomes nonoptimizable [8]. The deep
learning boon began when there were sufficient computa-
tional resources to train a very deep neural network.
The scaling in the number of critical points in our model

deep neural network is similar to a molecular energy
landscape. The number of critical points in a molecular
energy landscape ∼eγN with N the number of particles
[36,37]. Equation (6) shows that

N R ∼ exp

�
logHn1=H0

2ðH − 2Þð½H−1�=½2H�Þ N
½ðH−1Þ=ð2HÞ�
e

�

in the limit Ne → ∞ and H fixed. As such, if we consider
deep neural networks as a molecular system, the effective

number of particles (or degrees of freedom) is NðH−1Þ=ð2HÞ
e ,

which depends on both the number of parameters
and, intriguingly, the number of layers. Increasing depth
decreases the scaling exponent, which maps to increasing
the range of intermolecular potential [38].
Location of minima.—We next study where the critical

points are located in weight space. Intuitively, the more
clustered they are, the easier it is for an optimizer to search
for minima. Let Crtð−∞; EÞ denote the set of critical points
for which the loss function takes values in ð−∞;ΛEÞ.
For an interval I ⊂ ½−1; 1� we study the number of pairs
ðw;w0Þ of critical weights in Crtð−∞; EÞwith relative angle
w · w0=Λ contained in I. This set will be denoted by
fCrt½ð−∞; EÞ; I�g2. Note that the Euclidean distance
kw − w0k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΛ − w · w0Þp

. As we study large Λ
asymptotics, minima occur predominantly at low energies
such that we may assume that all energies are sufficiently
small, i.e., E=p∈ð−∞;−

ffiffiffi
2

p
=σ�, where σ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H=½2ðH−1Þ�p
.

Our second theorem is that the upper bound to distance
between minima is

lim sup
Λ→∞

1

Λ
log

�
EjfCrt½ð−∞; EÞ; I�g2j

EjCrtð−∞; EÞj
�

≤ sup
r∈I

sup
v∈ð−∞;E=pÞ

ΨHðr; v; EÞ; ð7Þ

where

ΨHðr; v; EÞ ¼
1

2
þ E2

2p2
þ 1

2
log

�ðH − 1Þð1 − r2Þ
1 − r2H−2

�

−
1

2

��
v

v

�
;ΣUðrÞ−1

�
v

v

��

þ
Z

2

−2

log j ffiffiffi
2

p
σv − xj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − x2

p

2π
dx:

ΣðrÞ ¼ −ð1=HÞðb1ðrÞb2ðrÞ
b2ðrÞ
b1ðrÞÞ is a matrix defined by

αHðrÞ ¼ fH −H½rH − ðH − 1ÞðrH−2 − rHÞ�2g−1;
b1ðrÞ ¼ −H þ αHðrÞH3ðr2H−2 − r2HÞ; and
b2ðrÞ ¼ −HrH − αHðrÞH3r3H−4½r2 þHðr2 − 1Þ2 − 1�:

Proof.—The full proof is in the Supplemental Material
[27]. Our proof strategy combines the asymptotics for the
minima of the Hamiltonian [39] (Theorem 10) with the
upper bound on the angle between minima [39] (Theorem 5
and Lemma 6). ▪
Figure 2 shows that the number of minima, relative to the

total number of minima, that are close to other minima
[cf. Eq. (7)] increases as the number of layers increases.
In other words, minima are more clustered for deeper
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FIG. 1. The number of real critical pointsN R, Eq. (6), in a deep
neural network decreases as a function of depth for a fixed
number of parameters Ne and n0 ¼ 10.
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networks, thus deep networks are more optimizable com-
pared to shallower ones. Interestingly, minima that attain a
low value of the loss function (more negative E=p) are
further apart, yet increasing network depth brings even
those minima closer together in weight space.
Width of minima.—We now turn to examine how the

width of minima varies with the value of loss function that
it attains. To measure basin volume at minima Wq, we
consider the entropy SðWqÞ ¼ − log detfHess½LðWqÞ�g,
with Hess being the Hessian matrix [23,24,40]. Within
the harmonic approximation, larger entropy corresponds to
larger basin volume. Intuitively, if wider minima are also
deeper, then the function is easy to optimize, whereas
functions with deep and narrow minima are difficult to
optimize.
The expected entropy of the Hessian of the minima of the

loss function that takes value ΛE satisfies asymptotically

E½SðHessLÞjΛE�

≃ −ðΛ − 1Þ logðpÞ þ Λ − 1

2
log

�
Λ

2ðΛ − 1ÞHðH − 1Þ
�

−
Λ − 1

π

Z ffiffi
2

p

−
ffiffi
2

p log

				σ
ffiffiffiffiffiffiffiffiffiffiffiffi
Λ

Λ − 1

r
E
p
− t

				
ffiffiffiffiffiffiffiffiffiffiffiffi
2 − t2

p
dt: ð8Þ

Proof.—We start by studying a small energy intervalE ¼
ðE − ε; E þ εÞ around some energy E, where we assume that
the auxiliary interval G ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ=ðΛ − 1Þp

E=p is contained
in ð−∞;−

ffiffiffi
2

p �, as minima of the loss function and the spin
glass Hamiltonian are known to appear at low energies for
large values of Λ [19]. ▪
Let MHΛ

ðΛE=pÞ be the event that the Hamiltonian
possesses a minimum at some energy in the interval
ΛE=p. We are interested in finding the expected

entropy at those points. We first rewrite this conditional
expectation in terms of an auxiliary random variable
X ¼ σHΛ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛðΛ − 1Þp

and a GOE matrix MΛ−1 of size
Λ − 1 using the tower property and the probability dis-
tribution of the spin glass Hessian [18] (Lemma 1.1)

E½SðHessHΛÞjMHΛ
ðΛE=pÞ�

¼
EðE½SðHessHΛÞ1MHΛ ðΛE=pÞjfHΛg�Þ

EðP½MΛ−1 ≥ X;X ∈ GjfXg�Þ : ð9Þ

We now consider the asymptotic behavior of the numerator
and denominator separately for large Λ. The distribution
of the Hessian of HΛ [19] (Lemma 1.1) allows us to
express the numerator in terms of an auxiliary function
fβðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛ − 1Þ=ð2πσ2Þ

p R
G e−½E2ðΛ−1Þ=2σ2� log jt − xjdx.

Using the Wigner semicircle law,

EðE½SðHessHΛÞ1MHΛ ðΛE=pÞjfHΛg�Þ

≃ −
Λ − 1

π

Z ffiffi
2

p

−
ffiffi
2

p f−
ffiffi
2

p ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2 − t2

p
dt

þ Λ − 1

2
log

�
Λ

2ðΛ − 1ÞHðH − 1Þ
�
P½MHΛ

ðΛE=pÞ�:

ð10Þ

For the denominator in Eq. (9), we use the probability
distribution of X and that the lowest eigenvalue of the
random matrixMΛ−1 concentrates at the lower end −

ffiffiffi
2

p
of

the semicircle distribution for Λ large [41] (Theorem 1).
Hence, it follows that E½PðMΛ−1 ≥ X;X ∈ GjfXgÞ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛ − 1Þ=ð2πσ2Þ

p R
G e−½t2ðΛ−1Þ=2σ2�dt. Having obtained

asymptotic expressions for both the numerator and denom-
inator in Eq. (9), we take the limit ε↓0 such that the energy
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FIG. 2. Minima are more clustered for deeper networks. The
figure shows the relative expected number of critical points (7)
that attains a loss function value in the interval ð−∞;ΛEÞ with
jjw − w0jj22 ≤ dΛ with d ¼ 0.02 for fixed number of network
parameters Ne ¼ 400 and n0 ¼ 10.
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network depth. The expected entropy at minima of the loss
function as a function of minima depth for Ne ¼ 400 network
parameters, n0 ¼ 10, and p ¼ 0.8.
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interval E shrinks down to a single energy value E such that
Eq. (8) follows immediately.
Figure 3 shows that the lower in loss function that the

minima attains, the narrower it is, thus there is an “energy-
entropy” competition. The existence of energy-entropy
competition is nontrivial and unlike many atomic cluster
systems analyzed in the literature [42–44], where the lower
minima have larger basins of attraction. However, this
competition is smoothened as the number of layers
increases. For very deep networks, minima that attain a
very low value of loss function has almost the same width
as minima that attain a high value of loss function. As such,
there is less risk of minimization algorithms getting trapped
in wide but very suboptimal local minima. Interestingly, the
presence of energy-entropy competition is different from
many molecular systems, where more stable minima appear
to also have a wider basin of attraction [45].
To verify our analytical results, we consider a classical

set of 10 benchmark datasets [46,47]. Figure 4 shows the
results for one dataset (results for the remaining datasets,
shown in the Supplemental Material [27], agree with the
theory)—the distance between minima decreases as a
function of depth, as shown by the shift in the distribution
of pairwise distance between minima, and the tradeoff
between minima depth and width is eased. Enumerating the
number of critical points is numerically challenging and has
only been done for particle systems with relative small
number of particles [48,49], thus this is outside the scope of
the present study. In the numerical experiments, the input
size is 10, the shallow network comprises 2 hidden layers
and 11 nodes each and the deep network comprises 6
hidden layers with 11 nodes each, such that the total
number of parameters is 726. Further details are discussed
in the Supplemental Material [27].
In summary, we derived a series of analytical results

showing that deep networks are more optimizable than

shallow networks because there are less critical points, the
minima are more clustered, and the energy-entropy trade-
off is eased. We verified our analytical results via a set of
numerical experiments on classical benchmark datasets in
machine learning. Our work sheds light on why deep
learning empirically works from the perspective of opti-
mization, as well as suggests new design principles. For
example, the most optimizable machine learning architec-
ture is one where lower minima are also wider, and we
speculate that analogies between loss function and energy
landscape of atomic systems [42–44] holds the key to
engineering such architectures.
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