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1 Introduction: Science and the Philosophy of

Science

The ancient “problem of the criterion” is a chicken-or-the-egg problem regarding
knowledge and criteria for knowledge, a problem that arises more specifically in
relation to science and the philosophy of science. How does one identify reliable
knowledge without a reliable method in hand? But how does one identify a
reliable method without reliable examples of knowledge in hand? Three pos-
sible responses to this problem were entertained by Roderick Chisholm: one
can be a skeptic, or identify a reliable method(s) (“methodism”), or identify
reliable particular cases of knowledge (“particularism”) [Chisholm, 1973]. But
why should the best resources be all of the same type? Mightn’t some methods
and some particular cases be far more secure than all other methods and all
other particular cases? Must anything be completely certain anyway? Why not
mix and match, letting putative examples and methods tug at each other until
one reaches (a personal?) reflective equilibrium?

This problem arises for knowledge and epistemology, more specifically for
science and the philosophy of science, and somewhere in between, for inductive
inference. Reflective equilibrium is Nelson Goodman’s method for induction
(as expressed in John Rawls’s terminology). One needn’t agree with Goodman
about deduction or take his treatment of induction to be both necessary and
sufficient to benefit from it. He writes:

A rule is amended if it yields an inference we are unwilling to ac-
cept; an inference is rejected if it violates a rule we are unwilling
to amend. The process of justification is the delicate one of making
mutual adjustments between rules and accepted inferences; and in
the agreement achieved lies the only justification needed for either.

All this applies equally well to induction. An inductive inference,
too, is justified by conformity to general rules, and a general rule by
conformity to accepted inductive inferences. Predictions are justified
if they conform to valid canons of induction; and the canons are valid
if they accurately codify accepted inductive practice. [Goodman, 1983,
p. 64, emphasis in the original]

Most scientists and (more surprisingly) even many philosophers do not take
Hume’s problem of induction very seriously, though philosophers talk about it
a lot. As Colin Howson notes, philosophers often declare it to be insoluble and
then proceed as though it were solved [Howson, 2000]. I agree with Howson
and Hans Reichenbach [Reichenbach, 1938, pp. 346, 347] that one should not
let oneself off the hook so easily. That seems especially true in cosmology
[Norton, 2011]. Whether harmonizing one’s rules and examples is sufficient is
less clear to me than it was to Goodman, but such reflective equilibrium surely
is necessary—though difficult and perhaps rare.

My present purpose, however, is partly to apply Goodman-esque reasoning
only to a special case of the problem of the criterion, as well as to counsel
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unification within physical inquiry. What is the relationship between philos-
ophy of science (not epistemology in general) on the one hand, and scientific
cosmology and its associated fundamental physics, especially gravitation and
space-time theory (not knowledge in general) on the other? Neither dictation
from philosopher-kings to scientists (the analogue of methodism) nor complete
deference to scientists by philosophers (the analogue of particularism) is Good-
man’s method. It is not popular for philosophy to give orders to science, but
it once was. The reverse is more fashionable, a form of scientism or at least
a variety of naturalism. I hope to show by examples how sometimes each side
should learn from the other.

While Goodman’s philosophy has a free-wheeling relativist feel that might
make many scientists and philosophers of science nervous, one finds similar views
expressed by a law-and-order philosopher of scientific progress, Imre Lakatos.
According to him, we should seek

a pluralistic system of authority, partly because the wisdom of the
scientific jury and its case law has not been, and cannot be, fully
articulated by the philosopher’s statute law, and partly because the
philosopher’s statute law may occasionally be right when the scien-
tists’ judgment fails. [Lakatos, 1971, p. 121]

Thus there seems to be no irresistible pull toward relativism in seeking reflective
equilibrium rather than picking one side always to win automatically.

2 Healing the GR vs. Particle Physics Split

A second division that should be overcome to facilitate the progress of knowledge
about gravitation and space-time is the general relativist vs. particle physicist
split. Carlo Rovelli discusses

. . . the different understanding of the world that the particle physics
community on the one hand and the relativity community on the
other hand, have. The two communities have made repeated and
sincere efforts to talk to each other and understanding each other.
But the divide remains, and, with the divide, the feeling, on both
sides, that the other side is incapable of appreciating something basic
and essential. . . . [Rovelli, 2002]

This split has a fairly long history going back to Einstein’s withdrawing from
mainstream fundamental physics from the 1920s—that largely being quantum
mechanics, relativistic quantum mechanics and quantum field theory. A further
issue pertains to the gulf between how Einstein actually found his field equations
(as uncovered by recent historical work [Renn, 2005, Renn and Sauer, 1999,
Renn and Sauer, 2007]) and the much better known story that Einstein told
retrospectively. Work by Jürgen Renn et al. has recovered the importance of
Einstein’s “physical strategy” involving a Newtonian limit, an analogy to elec-
tromagnetism, and a quest for energy-momentum conservation; this strategy
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ran along side the better advertised mathematical strategy emphasizing his prin-
ciples (generalized relativity, general covariance, equivalence, etc.). Einstein’s
reconstruction of his own past is at least in part a persuasive device in defense of
his somewhat lonely quest for unified field theories [van Dongen, 2010]. Readers
with an eye for particle physics will not miss the similarity to the later successful
derivations of Einstein’s equations as the field equations of a massless spin 2 field
assumed initially to live in flat Minkowski space-time [Feynman et al., 1995], in
which the resulting dynamics merges the gravitational potentials with the flat
space-time geometry such that only an effective curved geometry appears in the
Euler-Lagrange equations. One rogue general relativist has recently opined:

HOW MUCH OF AN ADVANTAGE did Einstein gain over his col-
leagues by his mistakes? Typically, about ten or twenty years. For
instance, if Einstein had not introduced the mistaken Principle of
Equivalence and approached the theory of general relativity via this
twisted path, other physicists would have discovered the theory of
general relativity some twenty years later, via a path originating in
relativistic quantum mechanics. [Ohanian, 2008, p. 334, capitaliza-
tion in the original].

It is much clearer that these derivations work to give Einstein’s equation
than it is what they mean. Do they imply that one needn’t and perhaps
shouldn’t ever have given up flat space-time? Do they, on the contrary, show
that theories of gravity in flat space-time could not succeed, because their best
effort turns out to give curved space-time after all [Ehlers, 1973]? Such an
argument is clearly incomplete without contemplation of massive spin 2 grav-
ity [Ogievetsky and Polubarinov, 1965, Freund et al., 1969]. But it might be
persuasive if massive spin 2 gravity failed—as it seemed to do roughly when
Ehlers wrote (not that he seems to have been watching). But since 2010
massive spin-2 gravity seems potentially viable again [de Rham et al., 2011,
Hassan and Rosen, 2011, Maheshwari, 1972] (though some new issues exist). Do
the spin-2 derivations of Einstein’s equations suggest a conventionalist view that
there is no fact of the matter about the true geometry [Feynman et al., 1995,
[pp. 112, 113]? Much of one’s assessment of conventionalism will depend on
what one takes the modal scope of the discussion to be: should one consider only
one’s best theory (hence the question is largely a matter of exegeting General
Relativity, which will favor curved space-time), or should one consider a vari-
ety of theories? According to John Norton, the philosophy of geometry is not
an enterprise rightly devoted to giving a spurious air of necessity to whatever
theory is presently our best [Norton, 1993, pp. 848, 849]. Such a view suggests
the value of a broader modal scope for the discussion than just our best cur-
rent theory. On the other hand, the claim has been made that the transition
from Special Relativity to General Relativity is as unlikely to be reversed as
the transition from classical to quantum mechanics [Ehlers, 1973, pp. 84, 85].
If one aspires to proportion belief to evidence, that is a startling claim. The
transition from classical to quantum mechanics was motivated by grave empiri-
cal problems; there now exist theorems (no local hidden variables) showing how
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far any empirically adequate physics must diverge from classical. But a con-
structive derivation of Einstein’s equations from a massless spin-2 shows that
one can naturally recover the phenomena of GR without giving up a special
relativistic framework in a sense. The cases differ as twilight and day. Ehlers’s
remarks are useful, however, in alerting one for Hegelian undercurrents or other
doctrines of inevitable progress in the general relativity literature. A classic
study of doctrines of progress is ([Bury, 1920]).

3 Bayesianism, Simplicity, and Scalar vs. Ten-

sor Gravity

While Bayesianism has made considerable inroads in the sciences lately, it is
helpful to provide a brief sketch before casting further discussion in such terms.
I will sketch a rather simple version—one that might well be inadequate for sci-
ence, in which one sometimes wants uniform probabilities over infinite intervals
and hence might want infinitesimals, for example. Abner Shimony’s tempered
personalism discusses useful features for a scientifically usable form of Bayesian-
ism, including open-mindedness (avoiding prior probabilities so close to 0 or 1
that evidence cannot realistically make much difference) [Shimony, 1970]) and
assigning non-negligible prior probabilities to seriously proposed hypotheses.

With such qualifications in mind, one can proceed to the sketch of Bayesian-
ism. One isn’t equally sure of everything that one believes, so why not have
degrees of belief, and make them be real numbers between 0 and 1? Thus one
can hope to mathematize logic in shades of gray via the probability calculus.
Bayes’s theorem can be applied to a theory T and evidence E:

P (T |E) = P (T )
P (E|T )

P (E)
. (1)

One wakes up with degrees of belief in all theories (!), “prior probabilities.”
One opens one’s eyes, beholds evidence E, and goes to bed again. While asleep
one revises degrees of belief from priors P (T ) to posterior probabilities P (T |E).
Today’s P (T |E) becomes tomorrow’s prior P (T )′. Then one does the same
thing tomorrow, getting some new evidence E′, etc. Now the priors P (T ) might
be partly subjective. If there are no empirically equivalent theories and everyone
is open-minded, then eventually evidence should bring convergence of opinion
over time (though maybe not soon).

A further wrinkle in the relation between evidence and theory comes from
looking at the denominator of Bayes’s theorem, P (E) = P (E|T )P (T )+P (E|T1)P (T1)+
P (E|T2)P (T2)+ . . . . While one might have hoped to evaluate evidence theory T
simply in light of evidence E, this expansion of P (E) shows that such an evalu-
ation is typically undefined, because one must spread degree of belief 1 − P (T )
among the competitors T1, T2, etc. Hence the predictive likelihoods P (E|T1),
etc., subjectively weighted, appear unbidden in the test of T by E. Theory
testing generically is comparative, making essential reference to rival theories.
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This fact is sometimes recognized in scientific practice, but Bayesianism can
alert one to attend to the question more systematically.

Scientists and philosophers tend to like simplicity. Simplicity might not be
objective, but there is significant agreement regarding scientific examples. That
is a good thing, because there are lots of theories, especially lots of complicated
ones, way too many to handle. If degrees of belief are real numbers (not in-
finitesimals), then normalization ΣiPi = 1 requires lots of 0’s and or getting
ever closer to 0 on some ordering [Earman, 1992, pp. 209, 210]. There is no
clear reason for prior plausibility to peak away from the simple end. Plausi-
bly, other things equal, simpler theories are more plausible a priori, getting a
higher prior P (T ) in a Bayesian context. Such considerations are vague, but
the alternatives are even less principled.

One can now apply Bayesian considerations to gravitational theory choice in
the 1910s. One recalls that Einstein had some arguments against a scalar theory
of gravity, which motivated his generalization to a tensor theory. Unfortunately
they don’t work. As Domenico Giulini has said,

On his way to General Relativity, Einstein gave several arguments
as to why a special-relativistic theory of gravity based on a mass-
less scalar field could be ruled out merely on grounds of theoretical
considerations. We re-investigate his two main arguments, which
relate to energy conservation and some form of the principle of the
universality of free fall. We find such a theory-based a priori aban-
donment not to be justified. Rather, the theory seems formally per-
fectly viable, though in clear contradiction with (later) experiments.
[Giulini, 2008, emphasis in original]

Scalar (spin-0) gravity is simpler than rank-2 tensor (spin-2). Having one
potential is simpler than having 10, especially if they are self-interacting. With
Einstein’s help, Gunnar Nordström eventually proposed a scalar theory that
avoided the theoretical problems mentioned by Giulini. Given simplicity con-
siderations, Nordström’s theory was more probable than Einstein’s a priori :
P (TN) > P (TGR). Einstein’s further criticisms are generally matters of taste.
So prior to evidence for General Relativity, it was more reasonable to favor
Nordström’s theory. As it actually happened, Einstein’s ‘final’ theory and the
evidence from Mercury both appeared in November 1915, leaving little time
for this logical moment in actual history. Einstein’s earlier Entwurf theory
[Einstein and Grossmann, 1996] could be faulted for having negative-energy de-
grees of freedom and hence likely being unstable (a problem with roots in La-
grange and Dirichlet [Morrison, 1998]), though apparently no one did so.

Where was the progress of scientific knowledge—truth held for good reasons?
Mercury’s perihelion gave non-coercive evidence confirming GR and disconfirm-
ing Nordström’s theory. It was possible to save Nordström’s theory using some-
thing like dark matter, matter (even if not dark—Seeliger’s zodiacal light) of
which the mass had been neglected [Roseveare, 1982]. Hence there was scope
for rational disagreement because Nordström’s theory was antecedently more
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plausible
P (TN ) > P (TGR)

but evidence favored Einstein’s non-coercively

0 < P (EMerc|TN) < P (EMerc|TGR).

The scene changed in 1919 with the bending of light, which falsified Nord-
ström’s theory: P (EL|TN ) = 0. There were not then other plausible theories
that predicted light bending, so P (EL|TGR) ≈ 1 >> P (EL). It is possible to ex-
aggerate the significance of this result, as happened popularly but perhaps less
so academically [Brush, 1989], where a search for plausible rival theories that
also predicted light bending was made. (Bertrand Russell may have consid-
ered Whitehead’s to be an example [Russell, 1927, pp. 75-80].) Unfortunately
many authors wrongly take Einstein’s arguments against scalar gravity seriously
[Giulini, 2008]. In the long run one does not make reliable rational progress by
siding with genius as soon as possible: Einstein made many mistakes (often
correcting them himself), some of them lucky [Ohanian, 2008] (such as early
rejection of scalar theories), followed by barren decades. Given this Bayesian
sketch, it was rational to prefer GR over Nordström’s scalar theory only when
evidence from Mercury was taken into account, and not necessarily even then.
The bending of light excluded scalar theories but did not exclude possible rival
tensor theories.

4 General Relativity Makes Sense about Energy

Resolving conceptual problems is a key part of scientific progress [Laudan, 1977].
In the 1910s and again in the 1950s controversy arose over the status of energy-
momentum conservation laws of General Relativity. Given Einstein’s frequent
invocation of energy-momentum conservation in his process of discovery leading
to General Relativity [Einstein and Grossmann, 1996, Renn and Sauer, 1999,
Brading, 2005, Renn and Sauer, 2007], as well as his retrospective satisfaction
[Einstein, 1916], this is ironic. Partly in response to Felix Klein’s dissatisfac-
tion, Emmy Noether’s theorems appeared [Noether, 1918]. Her first theorem
says that a rigid symmetry yields a continuity equation. Her second says that
a wiggly symmetry yields an identity among Euler-Lagrange equations, making
them not all independent. For General Relativity there are 4 wiggly symme-
tries, yielding the contracted Bianchi identities ∇µGµ

ν ≡ 0. In the wake of the
conservation law controversies there emerged the widespread view that gravi-
tational energy exists, but it ‘is not localized’. This phrase appears to mean
that gravitational energy isn’t anywhere in particular, though descriptions of
it often do have locations. That puzzling conclusion is motivated by math-
ematical results suggesting that where gravitational energy is depends on an
arbitrary conventional choice (a coordinate system), and other results that the
total energy/mass does not.

While the energy nonlocalization lore is harmless enough as long as one
knows the mathematical results on which it is based, it has self-toxifying quality.
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Having accepted that gravitational energy isn’t localized, one is likely to look
askance at the Noether-theoretic calculations that yield it: pseudotensors. The
next generation of textbooks might then dispense with the calculations while
retaining the lore verbally. Because the purely verbal lore is mystifying, at that
point one formally gives license to a variety of doubtful conclusions. Among
these are that because General Relativity lacks conservation laws, it is false—a
claim at the origins of the just-deceased Soviet/Russian academician A. A. Lo-
gunov’s high-profile dissent [Logunov and Folomeshkin, 1977]. One also hears
(for references see ([Pitts, 2010]) that the expansion of the universe, by virtue
of violating conservation laws, is false (a special case of Logunov’s claim). One
hears that the expansion of the universe is a resource for creation science by giv-
ing a providing a heat sink for energy from rapid nuclear decay during Noah’s
Flood. Finally, one hears that General Relativity is more open to the soul’s
action on the body than is earlier physics, because the soul’s action violates en-
ergy conservation, but General Relativity already discards energy conservation
anyway. That last claim is almost backwards, because Einstein’s equations are
logically equivalent to energy-momentum conservation laws [Anderson, 1967].
(If one wants souls to act on bodies, souls had better couple to gravity also.) The
question whether vanishing total energy of the universe (given certain topolo-
gies) would permit it to pop into being spontaneously is also implicated.

Given that Noether’s theorems—the first, not just the second—apply to GR,
can one interpret the continuity equations sensibly and block the unfortunate
inferences? The Noether operator generalizes canonical stress-energy tensor to
give conserved quantities due to symmetry vector fields ξµ [Bergmann, 1958,
Trautman, 1962, Sorkin, 1977, Goldberg, 1980, Szabados, 1991]. For simpler
theories than GR, the Noether operator is a weight 1 tangent vector density
Tµ
νξ

ν , so the divergence of the current ∂µ(Tµ
νξ

ν) is tensorial (equivalent in all co-
ordinate systems), and, for symmetries ξν , there is conservation ∂µ(Tµ

ν ξ
ν) = 0.

GR (the Lagrangian density, not the metric!) has uncountably many ‘rigid’
translation symmetries xµ → xµ + cµ, where cµ,ν = 0, for any coordinate sys-
tem, preserving the action S =

∫
d4xL. These uncountably many symmetries

yield uncountable conserved energy-momentum currents. Why can’t they all be
real? The lore holds that because there are infinitely many currents, really there
aren’t any. But just because it’s infinite doesn’t mean it’s 0 (to recall an old
phrase). Getting ∞ = 0 requires an extra premise, to be uncovered shortly. For
GR, the Noether operator is a conserved but nontensorial differential operator
on ξ, depending on ∂ξ also. Hence one obtains coordinate-dependent results,
with energy density vanishing at an arbitrary point, etc., the usual supposed
vices of pseudotensors. If one expects only one energy-momentum (or rather,
four), it should be tensorial, with the transformation law relating faces in dif-
ferent coordinates. But Noether tells us that there are uncountably many rigid
translation symmetries.

If one simply ‘takes Noether’s theorem literally’ [Pitts, 2010] (apparently
novelly, though Einstein and Tolman [Tolman, 1930] said nice things about
pseudotensors), then uncountably many symmetries imply uncountably many
conserved quantities. How does one get ∞ = 0? By assuming that the infin-
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ity of conserved energies are all supposed to be faces of the same conserved
entity with a handful of components—the key tacit premise of uniqueness.
Suppose that one is told in Tenerife that “George is healthy” & “Jorge está
enfermo” (is sick). If one expects the two sentences to be equivalent under
translation (analogous to a coordinate transformation), then one faces a con-
tradiction: George is healthy and unhealthy. But if George and Jorge then
walk into the room together, there is no tension: George 6= Jorge. An ex-
pectation of uniqueness underlies most objections to pseudotensors, but it is
unclear what justifies that expectation. Making more sense of energy con-
servation makes its appearance in Einstein’s physical strategy in finding his
field equations less ironic. Indeed, conservation due to gauge invariance is a
key step in spin-2 derivations, which improve on Einstein’s physical strategy
[Einstein and Grossmann, 1996, Deser, 1970, Pitts and Schieve, 2001]. Noether
commented on converses to her theorems [Noether, 1918]; one should be able
to derive Einstein’s equations from the conservation laws, much as the spin-2
derivations do using symmetric gravitational stress-energy (hence perhaps need-
ing Belinfante-Rosenfeld technology).

But what is the point of believing in gravitational energy unless it does
energetic things? Can it heat up a cup of coffee? Where is the physical interac-
tion?1 Fortunately these questions have decent answers: gravitational energy is
roughly the nonlinearity of Einstein’s equations, so it mediates the gravitational
self-interaction.

Why did Hermann Bondi changed from a skeptic to a believer in energy-
carrying gravitational waves [Bondi, 1957]?2 Given a novel plane wave solution
of Einstein’s equations in vacuum, his equation (2), he wrote:

there is a non-flat region of space between two flat ones, that is,
we have a plane-wave zone of finite extent in a non-singular metric
satisfying Lichnerowicz’s criteria [reference suppressed]. Consider
now a set of test particles at rest in metric (2) before the arrival of
the wave. [Bondi, 1957]

After the passage of the wave, there is relative motion.

Clearly, this system of test particles in relative motion contains en-
ergy that could be used, for example, by letting them rub against a
rigid friction disk carried by one of them. [Bondi, 1957]

This has argument carried the day with most people since that time: gravita-
tional energy-transporting waves exist and do energetic things.

This argument has roots in Feynman [Anonymous, 2015] [DeWitt, 1957, p.
143] [Feynman et al., 1995, xxv, xxvi] [Kennefick, 2007]. John Preskill and Kip
Thorne, drawing partly on unpublished sources, elaborate.

At Chapel Hill, Feynman addressed this issue in a pragmatic way,
describing how a gravitational wave antenna could in principle be de-
signed that would absorb the energy “carried” by the wave [DeWi 57,

1This question was articulated Erik Curiel.
2I thank Carlo Rovelli for mentioning Bondi.

10



Feyn 57]. In Lecture 16, he is clearly leading up to a description of a
variant of this device, when the notes abruptly end: “We shall there-
fore show that they can indeed heat up a wall, so there is no question
as to their energy content.” A variant of Feynman’s antenna was
published by Bondi [Bond 57] shortly after Chapel Hill (ironically,
as Bondi had once been skeptical about the reality of gravitational
waves), but Feynman never published anything about it. The best
surviving description of this work is in a letter to Victor Weisskopf
completed in February, 1961 [Feyn 61]. [Feynman et al., 1995, xxv,
xxvi]

Gravitational energy in waves exists in GR, and one of the main objections to
localization can be managed by taking Noether’s theorem seriously: there are in-
finitely many symmetries and energies. Another problem is the non-uniqueness
of the pseudotensor, which one might address with either a best candidate (as
in Joseph Katz’s work) or a physical meaning for the diversity of them in rela-
tion to boundary conditions (James Nester et al.). Even scalar fields have an
analogous problem [Callan et al., 1970]. With hope there as well, energy in GR,
though still in need of investigation, isn’t clearly a serious conceptual problem
anymore. That is scientific progress à la Laudan.

5 Change in Hamiltonian General Relativity

Supposedly, change is missing in Hamiltonian General Relativity [Earman, 2002].
That seems problematic for two reasons: change is evident in the world, and
change is evident in Lagrangian GR in that most solutions of Einstein’s equa-
tions lack a time-like Killing vector field [Ohanian and Ruffini, 1994, p. 352]. A
conceptual problem straddling the internal vs. external categories is “empirical
incoherence,” being self-undermining. According to Richard Healey,

[t]here can be no reason whatever to accept any theory of grav-
ity...which entails that there can be no observers, or that observers
can have no experiences, some occurring later than others, or that
there can be no change in the mental state of observers, or that ob-
servers cannot perform different acts at different times. It follows
that there can be no reason to accept any theory of gravity ...which
entails that there is no time, or no change. [Healey, 2002, p. 300]

Hence accepting the no-change conclusion about Hamiltonian GR would under-
mine reasons to accept Hamiltonian GR. Change in the world is safe. But what
about the surprising failure of Hamiltonian-Lagrangian equivalence?

A key issue involves where one looks for change, and relatedly, one what
means by “observables.” According to Earman (who would not dispute the
point about the scarcity of solutions with time-like Killing vectors), “[n]o genuine
physical magnitude countenanced in GTR changes over time.” [Earman, 2002]
Since the lack of time-like Killing vectors implies that the metric does change,
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clearly genuine physical magnitudes must be scarce, rarer than tensors. Tim
Maudlin appeals to change in solutions to Einstein’s equations: “stars col-
lapse, perihelions precess, binary star systems radiate gravitational waves. . . ”
but “a sprinkling of the magic powder of the constrained Hamiltonian formal-
ism has been employed to resurrect the decomposing flesh of McTaggart.. . . ”
[Maudlin, 2002] Maudlin’s appeal to common sense and Einstein’s equations is
helpful, as is Karel Kuchař’s [Kuchař, 1993], but one needs more detail, moti-
vation and (in light of Kuchař’s disparate treatments of time and space) consis-
tency.

Fortunately the physics reveals a relevant controversy, with reformers recov-
ering Hamiltonian-Lagrangian equivalence [Mukunda, 1980, Castellani, 1982,
Sugano et al., 1986, Gràcia and Pons, 1988, Pons et al., 1997, Pons and Shepley, 1998,
Pons and Salisbury, 2005, Pons et al., 2010]. Hamiltonian-Lagrangian equiva-
lence was manifest originally [Rosenfeld, 1930, Anderson and Bergmann, 1951,
Salisbury, 2010]; its loss needs study. In constrained Hamiltonian theories [Sundermeyer, 1982],
some canonical momenta are (in simpler cases) just 0 due to independence of
L from some q̇i; these are “primary constraints.” In many cases of interest
(including electromagnetism, Yang-Mills fields, and General Relativity), some
functions of p, q, ∂ip, ∂iq, ∂j∂iq are also 0 in order to preserve the primary con-
straints over time. Often these ‘secondary’ (or higher) constraints are familiar,

such as the phase space analog ∂ip
i = 0 of Gauss’s law ∇ · ~E = 0, Gauss-

Codazzi equations embedding space into space-time in General Relativity, etc.
Some constraints have something to do with gauge freedom (time-dependent re-
descriptions leaving the state or history alone). One takes Poisson brackets (q,
p derivatives) of all constraints pairwise. If the result is in every case 0 (perhaps
using the constraints themselves), then all constraints are “first-class,” as in
Clerk Maxwell’s electromagnetism, Yang-Mills, and GR in their most common
formulations. In General Relativity, the Hamiltonian, which determines time
evolution, is nothing but a sum of first-class constraints (and boundary terms).
Given that first-class constraints are related to gauge transformations, the key
question is how they are related. Does each do so by itself, or do they rather
work as a team? There is a widespread belief that each does so individually
[Dirac, 1964]. Then the Hamiltonian generates a sum of redescriptions leaving
everything as it was, hence there is no real change. This is a classical aspect of
the ‘problem of time’. Some try to accept this conclusion, but recall Healey’s
critique.

Because Einstein’s equations and common sense agree on real change, some-
thing must have gone wrong in Hamiltonian GR or the common interpretive
glosses thereon, but what? Here the Lagrangian-equivalent reforming party
has given most of the answer, namely, that what generates gauge transfor-
mations is not each first class constraint separately, but the gauge genera-
tor G, a specially tuned sum of first-class constraints, secondary and primary
[Anderson and Bergmann, 1951, Castellani, 1982, Pons et al., 1997, Pons, 2005,
Pons et al., 2010]. Thus electromagnetism has two constraints at each point but
only one arbitrary function; GR has eight constraints at each point but only four
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arbitrary functions. Indeed one can show that an isolated first-class constraint
makes a mess [Pitts, 2014b, Pitts, 2014a], such as spoiling the relation expected
relation q̇ = δH

δp
making the canonical momentum equal to the electric field or

the extrinsic curvature of space within space-time. These canonical momenta
are auxiliary fields in the canonical action

∫
dtd3x(pq̇−H), and hence get their

physical meaning from q̇. Because each first-class constraint makes a physical
difference by itself (albeit a bad one), the GR Hamiltonian no longer is forced
to be generate a gauge transformation by being a sum of them. There is change
in the Hamiltonian formalism whenever there is no time-like Killing vector, just
as one would expect from Lagrangian equivalence.

We have been guided by the principle that the Lagrangian and
Hamiltonian formalisms should be equivalent. . . in coming to the
conclusion that they in fact are. [Pons and Shepley, 1998, p. 17]

By the same token, separate first-class constraints don’t change pq̇ − H by (at
most) a total derivative, but G does [Pitts, 2014b, Pitts, 2014a].

To get changing observables in GR, one should recall the distinction be-
tween internal and external symmetries. Requiring that observables have 0
Poisson bracket with the electromagnetic gauge symmetry generator is just to
say that things that we cannot observe (in the ordinary sense) are unobservable
(in the technical sense). By contrast, requiring that observables have 0 Poisson
bracket with the gauge generator in GR implies that the Lie derivative of an
observable is 0 in every direction. Thus anything that varies spatiotemporally is
“unobservable”–a result that cannot be taken seriously. The problem is gener-
ated by hastily generalizing the definition from internal to external symmetries.
Instead one should permit observables to have Lie derivatives that are not 0
but just the Lie derivative of a geometric object—an infinitesimal Hamiltonian
form of the identification of observables with geometric objects in the classical
sense [Nijenhuis, 1952], viz., set of components in each coordinate system and a
transformation law.

6 Einstein’s Real Λ Blunder in 1917

One tends to regard perturbative expansions and geometry as unrelated at best,
if not negatively related.

The advent of supergravity [footnote suppressed] made relativists
and particle physicists meet. For many this was quite a new experi-
ence since very different languages were used in the two communities.
Only Stanley Deser was part of both camps. The particle physicists
had been brought up to consider perturbation series while relativists
usually ignored such issues. They knew all about geometry instead,
a subject particle physicists knew very little about. [Brink, 2006, p.
40]
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But some examples will show how perturbative expansions can help to reveal
the geometric content of a theory that is otherwise often misunderstood, can
facilitate the conception of novel geometric objects that one might otherwise
fail to conceive, and permit conceptual and ontological insight.

Perturbative expansions can help to reveal the geometric content of a theory
that one might well miss otherwise. Einstein in his 1917 cosmological con-
stant paper first reinvented a long-range modification of Newtonian gravity
[Einstein, 1923]—one might call it (anachronistically) nonrelativistic massive
scalar gravity—previously proposed in the 19th century by Hugo von Seeliger
and Carl Neumann. But he then made a false analogy to his new cosmologi-
cal constant Λ, a mistake never detected till the 1940s [Heckmann, 1942], not
widely discussed till the 1960s, and still committed at times today. According
to Einstein, Λ was “completely analogous to the extension of the Poisson equa-
tion to ∆φ − λφ = 4πKρ ” [Einstein, 1923]. Engelbert Schücking, a former
student of Heckmann, provided a firm evaluation. “This remark was the open-
ing line in a bizarre comedy of errors.” [Schucking, 1991] The problem is that
Λ is predominantly 0th order in φ (having a leading constant term), whereas
the modified Poisson is 1st order in φ. Λ gives a weird quadratic potential
for a point source, but the modified Poisson equation gives a massive gravi-
ton with plausible Neumann-Yukawa exponential fall-off [Freund et al., 1969,
Schucking, 1991]. “However generations of physicists have parroted this non-
sense.” [Schucking, 1991] Massive theories of gravity generically involve 2 met-
rics, whereas Λ involves only one. Understanding geometric content sometimes
is facilitated by a perturbative expansion.

7 Series, Nonlinear Geometric Objects, and At-

lases

Perturbative series expansions can also be useful for conceptual innovations. For
example, nonlinear realizations of the ‘group’ of arbitrary coordinate transfor-
mations have tended to be invented with the help of a binomial series expansion
for taking the symmetric square root of the metric tensor [DeWitt and DeWitt, 1952,
Ogievetsky and Polubarinov, 1965, Ogievetskĭi and Polubarinov, 1965]. The ex-
ponentiating technology of nonlinear group realizations [Isham et al., 1971] is
also at least implicitly perturbative. While classical differential geometers de-
fined nonlinear geometric objects (basically the same as particle physicists’ non-
linear group realizations as applied to coordinate transformations) [Tashiro, 1952,
Aczél and Go lab, 1960, Szybiak, 1966], they generally provided no examples.

Perhaps the most interesting example involves the square root of the (in-
verse) metric tensor, or rather a slight generalization for indefinite metrics.
The result is strictly a square root and strictly symmetric using x4 = ict;
otherwise it is a generalized square root using the signature matrix ηαβ =
diag(−1, 1, 1, 1). One has rµαηαβr

βν = gµν and r[µν] = 0. Under coordi-
nate transformations, the new components rµν ′ are nonlinear in the old ones
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[Ogievetsky and Polubarinov, 1965, Pitts, 2012a]. These entities augment ten-
sor calculus and have covariant and Lie derivatives [Tashiro, 1952, Szybiak, 1963].

Defining the symmetric square root of a metric tensor might seem more
of a curiosity for geometric completists than an important insight—but the
symmetric square root of the metric makes an important conceptual difference
with spinor fields used to represent fermions. Spinors in GR are widely be-
lieved to require an orthonormal basis [Weyl, 1929, Cartan and Mercier, 1966,
Lawson and Michelsohn, 1989]. But they don’t, using rµν [DeWitt and DeWitt, 1952,
Ogievetsky and Polubarinov, 1965, Ogievetskĭi and Polubarinov, 1965, Bilyalov, 2002].
One can have spinors in coordinates, but with metric-dependent transforma-
tions beyond 15-parameter conformal group [Ogievetskĭi and Polubarinov, 1965,
Isham et al., 1971, Borisov and Ogievetskii, 1974, Pitts, 2012a], the conformal

Killing vectors for the unimodular metric density ĝµν = (−g)−
1

4 gµν . Such
spinors have Lie derivatives beyond conformal Killing vectors—often consid-
ered the frontier for Lie differentiation of spinors [Penrose and Rindler, 1986, p.
101]—but they sprout new terms in £ξĝµν . One can treat symmetries without
surplus structure and an extra local O(1, 3) gauge group to gauge it away.

The (signature-generalized) square root of a metric, though not very familiar,
fits fairly nicely into the realm of nonlinear geometric objects, yielding a set of
components in every coordinate system (with a qualification) and a nonlinear
transformation law. The entity is useful especially if one wants to know what
sort of space-time structure is necessary for having spin- 12 particles in curved
space-time [Woodard, 1984]. Must one introduce an orthonormal basis, then
discard much of it from physical reality by taking an equivalence class under
local Lorentz transformations? Or can one get by without introducing anything
beyond the metric and then throwing (most of?) it away?

A curious and little known feature of this generalized square root touches
on an assumption usually made in passing in differential geometry. Although
one can (often) make a binomial series expansion in powers of the deviation
of the metric from the signature matrix, and (more often) one can take a
square root using generalized eigenvalues, there are exotic coordinate systems
in which the generalized square root does not exist due to the indefinite sig-
nature [Bilyalov, 2002, Pitts, 2012a, Deffayet et al., 2013]. This fact is trivial
to show in 2 space-time dimensions (signature matrix diag(−1, 1)) using the
quadratic formula: just look for complex eigenvalues. The fact generally has
not been noticed previously because most treatments (a great many are cited in
[Pitts, 2012a]) worked near the identity. Such a point could have been noticed
some time ago by Hoek, but a fateful innocent inequality was imposed that
restricted the coordinates (with signature + −−−).

“We shall assume that [the metric tensor gµν ] is pointwise contin-
uously connected with the Minkowski metric (in the space of four-
metrics of Minkowski signature) and has g00 > 0.” [Hoek, 1982]

The lesson to learn is that there can be feedback from the fibers over space-time
to the atlas of admissible coordinate systems for nonlinear geometric objects
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given an indefinite signature. Naively assuming a maximal atlas causes inter-
esting and quite robust entities not to exist. Such a result sounds rather dra-
matic when expressed in modern vocabulary. But coordinate inequalities are
old [Hilbert, 2007], familiar [Møller, 1972], and not very dramatic classically;
coordinates can have qualitative physical meaning while lacking a quantitative
one. A principal square root is related to the avoidance of negative eigenvalues
of gµνηνρ [Higham, 1987, Higham, 1997]. Null coordinates are fine; the coor-
dinate restriction is mild. Amusingly, coordinate order can be important: if
(x, t, y, z) is bad, switching to (t, x, y, z) suffices [Bilyalov, 2002].

8 Massive Gravity: 1965-72 Discovery of 2010

Pure Spin-2

The recent (re)invention of pure spin-2 massive gravity [de Rham et al., 2011,
Hassan and Rosen, 2011] used the symmetric square root of the metric, as did
the first invention [Ogievetsky and Polubarinov, 1965], though not the second
[Zumino, 1970, Pitts, 2012b]. This problem has a curious history, from which
[Ogievetsky and Polubarinov, 1965] has been unjustly neglected. That paper
highly developed the symmetric square root of the metric perturbatively. It
derived a 2-parameter family of massive gravities, which, I note, includes two
of the original three modern massive pure spin-2 gravities with a flat back-
ground metric. In light of the dependence of the space-time metric on the lapse
function N in a 3 + 1 ADM split, there were only two Ogievetsky-Polubarinov
theories with any chance of being linear in the lapse (hence having pure spin-2
[Boulware and Deser, 1972]), though the naive cross-terms are rather discourag-

ing. These are the n = 1
2 , p = −2 theory built around δαµ (gµνηνα

√−g
2
)

1

2 , a the-

ory reinvented as equation (3.4) of [Hassan and Rosen, 2011], and the n = − 1
2 ,

p = 0 theory built around δµα(gµνη
να

√−g
0
)

1

2 . A truly novel third theory is now
known [Hassan and Rosen, 2011]. A second novel modern result is the nonlin-
ear field redefinition of the shift vector [Hassan et al., 2012], which allows the
square root of the metric to be linear in the lapse.

More striking than the proposal of such theories long ago is the fact that in
1971-2 Maheshwari already showed that one of the Ogievetsky-Polubarinov the-
ories had pure spin-2 nonlinearly [Maheshwari, 1972]! Thus the Boulware-Deser-
Tyutin-Fradkin ghost [Boulware and Deser, 1972, Tyutin and Fradkin, 1972] (the
negative energy sixth degree of freedom that is avoided by Fierz and Pauli to
linear order but comes to life nonlinearly) was avoided before it was announced.
Unfortunately Maheshwari’s paper made no impact, being cited only by Ma-
heshwari in the mid-1980s. With Vainshtein’s mechanism also suggested in
1972, [Vainshtein, 1972], there was no seemingly insoluble problem for massive
spin-2 gravity in the literature. Massive spin-2 gravity was largely ignored from
1972 until c. 2000 largely because of failure to read Maheshwari’s paper. This
example illustrates the point [Chang, 2012] that the history of a science has
resources for current science.
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9 Conclusions

The considerations above support the idea that progress in knowledge about
gravity can be made by overcoming various barriers, whether between general
relativity and particle physics, or between physics and the history and philoso-
phy of science. GR does not need to be treated a priori as exceptional, either
in justifying choosing GR over rivals or in interpreting it. GR is well moti-
vated non-mysteriously using particle physicists’ arguments about the exclusion
of negative-energy degrees of freedom, arguments that leave only a few options
possible. To some degree the same holds even for the context of discovery of
GR, given the renewed appreciation of Einstein’s “physical strategy.”

Because conceptual problems of GR often can be resolved, there is no need
to treat it as a priori exceptional in matters of interpretation, either. Re-
garding gravitational radiation, Feynman reflected on the unhelpfulness of GR-
exceptionalism:

What is the power radiated by such a wave? There are a great many
people who worry needlessly at this question, because of a perennial
prejudice that gravitation is somehow mysterious and different—
they feel that it might be that gravity waves carry no energy at all.
We can definitely show that they can indeed heat up a wall, so there
is no question as to their energy content. [Feynman et al., 1995, pp.
219, 220]

The conservation of energy and momentum—rather, energies and momenta—
make sense in relation to Noether’s theorems. Change, even in local observ-
ables, is evident in the Hamiltonian formulation, just as in the Lagrangian/4-
dimensional geometric form.

To say that GR should not be treated as a priori exceptional is not to endorse
the strongest readings of the claim that GR is just another field theory, taking
gauge-fixing and perturbative expansions as opening moves. The mathematics
of GR logically entails some distinctiveness, such as the difference between ex-
ternal coordinate symmetries (with a transport term involving the derivative
of the field) and internal symmetries as in electromagnetism and Yang-Mills.
Identifying such distinctiveness requires reflecting on the mathematics and its
meaning, as well as gross features of embodied experience, but it does not re-
quire conjectures about the trajectory of historical progress or divination of the
spirit of GR.

Series expansions have their uses in GR. Einstein’s failure to think pertur-
batively in 1917 about the cosmological constant generated lasting confusion
and surely helped to obscure massive spin-2 gravity as an option. Many of the
(re)inventions of the symmetric generalized square root of the metric began per-
turbatively. It permits spinors in coordinates, a fundamental geometric result,
just as was Weyl’s 1929 impossibility claim. Perturbative methods should not
always be used or always avoided; they are one tool in the tool box for the
foundations of gravity and space-time.
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[Cartan and Mercier, 1966] Cartan, Élie. and Mercier, A. (1966). The Theory
of Spinors. Massachusetts Institute of Technology Press, Cambridge. French
original 1937.

[Castellani, 1982] Castellani, L. (1982). Symmetries in constrained Hamiltonian
systems. Annals of Physics, 143:357–371.

[Chang, 2012] Chang, H. (2012). Is Water H2O? Evidence, Realism and Plural-
ism, volume 293 of Boston Studies in the Philosophy and History of Science.
Springer, Dordrecht.

[Chisholm, 1973] Chisholm, R. M. (1973). The Problem of the Criterion: The
Aquinas Lecture, 1973. Marquette University Press.

[de Rham et al., 2011] de Rham, C., Gabadadze, G., and Tolley, A. J. (2011).
Resummation of massive gravity. Physical Review Letters, 106:231101.
arXiv:1011.1232v2 [hep-th].

[Deffayet et al., 2013] Deffayet, C., Mourad, J., and Zahariade, G. (2013).
A note on “symmetric” vielbeins in bimetric, massive, perturbative and
non perturbative gravities. Journal of High Energy Physics, 1303(086).
arXiv:1208.4493 [gr-qc].

[Deser, 1970] Deser, S. (1970). Self-interaction and gauge invariance. General
Relativity and Gravitation, 1:9–18. arXiv:gr-qc/0411023v2.

[DeWitt and DeWitt, 1952] DeWitt, B. S. and DeWitt, C. M. (1952). The
quantum theory of interacting gravitational and spinor fields. Physical Re-
view, 87:116–122.

[DeWitt, 1957] DeWitt, C. M. (1957). Conference on the Role of
Gravitation in Physics at the University of North Carolina, Chapel
Hill, March 1957, WADC Technical Report 57-216. Wright Air
Development Center, Air Research and Development Command,
United States Air Force, Wright Patterson Air Force Base, Ohio.
https://babel.hathitrust.org/shcgi/pt?id=mdp.39015060923078;view=1up;seq=7,
scanned from the University of Michigan.

[Dirac, 1964] Dirac, P. A. M. (1964). Lectures on Quantum Mechanics. Belfer
Graduate School of Science, Yeshiva University. Dover reprint, Mineola, New
York, 2001.

[Earman, 1992] Earman, J. (1992). Bayes or Bust? A Critical Examination of
Bayesian Confirmation Theory. Massachusetts Institute of Technology Press,
Cambridge.

[Earman, 2002] Earman, J. (2002). Thoroughly modern McTaggart: Or, What
McTaggart would have said if he had read the General Theory of Relativity.
Philosophers’ Imprint, 2(3). http://www.philosophersimprint.org/.

19

http://arxiv.org/abs/1011.1232
http://arxiv.org/abs/1208.4493
http://arxiv.org/abs/gr-qc/0411023
http://www.philosophersimprint.org/


[Ehlers, 1973] Ehlers, J. (1973). The nature and structure of spacetime. In
Mehra, J., editor, The Physicist’s Conception of Nature, pages 71–91. D.
Reidel, Dordrecht.

[Einstein, 1916] Einstein, A. (1916). Hamiltonsches Prinzip und allgemeine Rel-
ativitätstheorie. Sitzungsberichte der Königlich Preussischen Akademie der
Wissenschaften, Sitzung der physikalisch-mathematisch Klasse, pages 1111–
1116. Translated as “Hamilton’s Principle and the General Theory of Rela-
tivity” in H. A. Lorentz, A. Einstein, H. Minkowski, H. Weyl, A. Sommerfeld,
W. Perrett and G. B. Jeffery, The Principle of Relativity, 1923; Dover reprint
1952, pp. 165-173.

[Einstein, 1923] Einstein, A. (1923). Cosmological considerations on the general
theory of relativity. In Lorentz, H. A., Einstein, A., Minkowski, H., Weyl,
H., Sommerfeld, A., Perrett, W., and Jeffery, G. B., editors, The Principle
of Relativity, pages 175–188. Methuen, London. Dover reprint, New York,
1952. Translated from “Kosmologische Betrachtungen zur allgemeinen Rel-
ativitätstheorie,” Sitzungsberichte der Königlich Preussichen Akademie der
Wissenschaften zu Berlin (1917) pp. 142-152. This translation is reprinted in
the Einstein Papers.

[Einstein and Grossmann, 1996] Einstein, A. and Grossmann, M. (1996). Out-
line of a generalized theory of relativity and of a theory of gravitation.
In Beck, A. and Howard, D., editors, The Collected Papers of Albert Ein-
stein, Volume 4, The Swiss Years: Writings, 1912-1914, English Translation,
pages 151–188. The Hebrew University of Jerusalem and Princeton Univer-
sity Press, Princeton. Translated from Entwurf einer verallgemeinerten Rel-
ativitätstheorie und einer Theorie der Gravitation, Teubner, Leipzig, 1913.

[Feynman et al., 1995] Feynman, R. P., Morinigo, F. B., Wagner, W. G., Hat-
field, B., Preskill, J., and Thorne, K. S. (1995). Feynman Lectures on Grav-
itation. Addison-Wesley, Reading, Mass. Original by California Institute of
Technology, 1963.

[Freund et al., 1969] Freund, P. G. O., Maheshwari, A., and Schonberg, E.
(1969). Finite-range gravitation. Astrophysical Journal, 157:857–867.

[Giulini, 2008] Giulini, D. (2008). What is (not) wrong with scalar grav-
ity? Studies in History and Philosophy of Modern Physics, 39:154–180.
arXiv:gr-qc/0611100v2.

[Goldberg, 1980] Goldberg, J. N. (1980). Invariant transformations, conserva-
tion laws, and energy-momentum. In Held, A., editor, General Relativity and
Gravitation: One Hundred Years After the Birth of Albert Einstein, volume 1,
pages 469–489. Plenum Press, New York.

[Goodman, 1983] Goodman, N. (1983). Fact, Fiction, and Forecast. Harvard
University Press, Cambridge, fourth edition.

20

http://arxiv.org/abs/gr-qc/0611100
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