
Physics Letters B 782 (2018) 198–201
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Quantum-gravity predictions for the fine-structure constant

Astrid Eichhorn ∗, Aaron Held, Christof Wetterich

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 April 2018
Accepted 7 May 2018
Available online 9 May 2018
Editor: A. Ringwald

Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge 
coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure 
constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running 
of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, 
leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of 
the predicted fine-structure constant depends on the matter content of the grand unified model. It is 
proportional to the gravitational fluctuation effects for which computational uncertainties remain to be 
settled.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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Numerous speculations have attempted to explain the value of 
the fine-structure constant for decades. Within the standard model 
the renormalization flow of the U(1) gauge coupling has a Landau 
pole, indicating incompleteness at very high scales. This problem is 
absent if the electroweak interactions are embedded in an asymp-
totically free grand unified theory (GUT). In an asymptotically free 
setting the value of the gauge coupling is, however, a free parame-
ter and cannot be predicted. On the other hand, for a large number 
of matter fields, N > Nc , asymptotic freedom is lost and the Lan-
dau pole is back for any nonzero value of the gauge coupling α
at the scale of spontaneous GUT-symmetry breaking MGUT. We ar-
gue that additional fluctuations of gravitational degrees of freedom 
in the transplanckian range of momenta beyond the Planck mass 
M change the situation dramatically. For N > Nc , the flow of α
is driven towards a fixed point α∗ , such that α(M) = α∗ becomes 
predictable. The fixed point defines “gravi-gauge theories” as non-
perturbatively renormalizable interacting quantum field theories 
(QFT) for gauge theories and quantum gravity. In addition, an in-
frared (IR) unstable fixed point at α = 0 is present for all N >Nc .

Grand Unified Theories are an attractive scenario for beyond-
standard-model physics, as they explain exact charge neutrality 
of atoms by unifying the leptons and quarks into combined rep-
resentations [1–3]. The gauge group SO(10) adds a right-handed 
neutrino to each generation and provides a simple explanation 
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for small neutrino masses. Other parts of the necessary beyond-
standard-model physics, such as the generation of baryon asym-
metry, can find an explanation within GUTs. The observed value of 
the Higgs boson mass and absence of other new physics at the LHC 
may suggest that the standard model could be valid to consider-
ably higher scales [4,5]. Approximate unification of gauge couplings 
for energies around 1016 GeV adds to the credibility of GUT sce-
narios. It is this unified gauge coupling whose value at the Planck 
scale M we aim to predict. For energies below M , the perturba-
tive renormalization flow of gauge theories without gravity relates 
α(M) to the observed low-energy couplings such as the electro-
magnetic fine-structure constant.

In the asymptotic-safety scenario [6], the high-energy behav-
ior of running couplings is dominated by an interacting Renor-
malization Group (RG) fixed point, at which the scale-dependence 
vanishes. In contrast to asymptotic freedom, asymptotic safety can 
be realized for perturbatively renormalizable [7] as well as per-
turbatively non-renormalizable models [8]. The asymptotic-safety 
scenario provides a framework in which a GUT-extension of the 
standard model could be combined with a QFT of the metric into 
an ultraviolet (UV) complete, predictive model of quantum gravity 
and matter [4,9,10]. Based on the groundbreaking work by Reuter 
[11], functional Renormalization Group [12] studies have accumu-
lated compelling evidence for the viability of asymptotic safety in 
gravity [13–18]. The exploration of gravity-matter models has pro-
duced tantalizing hints that an ultraviolet complete model of mat-
ter and gravity could exist [9,10,19–34] and could explain some of 
the free parameters of the standard model [4,9,10,21,35–37].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Flow of α as a function of the cutoff scale k. Finite values of 0 < α1 < αUV <

α2 at some ultraviolet scale kUV are mapped to an IR interval of allowed values for 
k < kUV. This interval shrinks to the fixed-point value α∗ for kUV/k → ∞.

1. Mechanism

For GUTs without gravity the 1-loop beta function for the run-

ning gauge coupling α(k) = g(k)2

4π at renormalization scales k be-
yond MGUT is given by

k∂k α = βα = (N −Nc)
α2

4π
. (1)

For SO(10) the critical value Nc equals 50. It is determined by the 
contribution of gauge-boson fluctuations plus the minimum matter 
contributions of three chiral fermion generations in the 16 rep-
resentation and a complex scalar in the 10 representation which 
accounts for the Higgs doublet. The number N reflects the contri-
butions from all additional matter fields, in particular the scalars 
needed for spontaneous breaking of the GUT-symmetry. We are in-
terested in the regime N > Nc where the modification of βα by 
graviton fluctuations is needed in order to make the model viable.

The mechanism behind a prediction for the value of the gauge 
coupling is quite simple, and arises from a competition of quantum 
fluctuations of gravity and quantum fluctuations of matter fields 
and gauge bosons. At small values of the gauge coupling, the grav-
ity contribution dominates. This contribution renders the gauge 
coupling asymptotically free [10,19–23]. In this regime the gauge 
coupling increases as the momentum scale is lowered, cf. initial 
values α(k) < α∗ in Fig. 1. In contrast, at large values of the gauge 
coupling, the matter contributions dominate and draw the gauge 
coupling towards smaller values, cf. initial values α(k) > α∗ in 
Fig. 1. The antiscreening effect of gravity and gauge boson fluc-
tuations and the screening effect of matter fluctuations cancel for 
a critical value α∗ of the gauge coupling. This fixed point translates 
into a unique low-energy value of α.

More precisely, the graviton fluctuations induce an anomalous 
dimension ηg for the flow of α, according to

βα = ηg α + (N −Nc)
α2

4π
. (2)

As illustrated in Fig. 2, the system is dominated by the interplay 
of two fixed points: For ηg < 0 the free fixed point at α = 0 is IR 
repulsive under the impact of gravity. Simultaneously, the presence 
of gravity induces an interacting fixed point at

α∗ = − 4π ηg

N −Nc
. (3)

It is IR attractive, if the gravity-induced anomalous dimension is 
negative
ηg = −cg
k2

M2(k)
, (4)

with M(k) the running Planck mass. The coefficient cg depends on 
further gravitational couplings, such as the cosmological constant. 
Explicit studies all indicate cg ≥ 0 [10,19–23]. In particular, the 
presumably dominant transverse traceless tensor (graviton) fluc-
tuations yield a manifestly positive contribution [10]. Uncertainties 
on the precise value remain due to different matter content and 
calculation schemes. Values quoted range between ηg ≈ −1.6 [21]
and ηg ≈ −0.1 [10]. An important part of this difference arises 
from the dependence of the fixed-point value of k2/M2(k) on the 
number and nature of matter degrees of freedom. The value ob-
tained from [21] refers to an Abelian gauge-gravity system, while 
[10] takes into account the effect of minimally coupled standard 
model fields.

The two-loop term does not alter this fixed-point structure, as 
it scales with α3N ′ , where N ′ depends linearly on the number of 
scalar representations and is accordingly suppressed by a factor α. 
Its influence is very small except if N is very close to Nc , such 
that the one-loop term nearly vanishes. The two-loop term enters 
βα with a positive sign and therefore lowers the effective Nc at 
which the IR fixed point appears.

At the fixed point associated with asymptotically safe quan-
tum gravity one has M∗(k) ∼ k such that ηg indeed takes a con-
stant value ηg ∗ as expected for fixed-point behavior. The value 
k2/M2∗(k) = 8πG∗ corresponds to the fixed-point value of the di-
mensionless Newton coupling G . The precise value of G∗ depends 
on the matter content [23–29], and uncertainties due to the com-
putational scheme remain as well. A reasonable range estimate for 
our GUT setting may be ηg∗ = − 1

4π , but we will leave this quantity 
undetermined in the following.

In the limit of fixed ηg , as realized at transplanckian scales, the 
flow eq. (2) has the solution

α(k) = α∗
1 +

(
kUV

k

)ηg
(

α∗
αUV

− 1
) , (5)

where we start at some scale kUV with α(kUV) = αUV. As kUV
increases, any interval α1 < αUV < α2, with finite α2, α1 > 0, is 
mapped to smaller and smaller intervals at k = M . This is demon-
strated in Fig. 1. For kUV → ∞, this interval shrinks to the fixed 
point α(M) = α∗ . In more detail, an upper bound for α(k) fol-
lows for αUV → ∞. In the limit kUV/k → ∞ it coincides with α∗ . 
For 0 < αUV < α∗ one observes a crossover behavior between the 
two fixed points at 0 and α∗ . Since the asymptotically free fixed 
point at α = 0 is unstable towards the IR, any αUV > 0 reaches α∗
at k = M for kUV/k → ∞. Quantum gravity is defined by a non-
perturbative fixed point. If one chooses the one with α∗ 	= 0, the 
prediction α(M) = α∗ follows.

Below the Planck scale MPlanck, gravity becomes sub-dominant 
very quickly. The running Planck mass M(k) is given by

M2(k) = M2
Planck + ξ k2, (6)

where ξ is roughly of order 1. Near the asymptotically safe fixed 
point, M(k) is a relevant, parameter. Thus its low-energy value, 
M(k → 0) = MPlanck, is an input for the model. From eq. (6) it fol-
lows that the Planck scale MPlanck acts as the transition scale from 
the fixed-point regime to the classical gravity regime. In the former 
M(k) ∼ k is a consequence of fixed-point scaling, while the latter 
implies M(k) = MPlanck = const, since the second term in eq. 6 be-
comes unimportant. Accordingly, quantum-gravity fluctuations are 
suppressed by positive powers of the energy over the Planck scale 
in the classical regime which is then well-described by eq. (2) with 
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Fig. 2. Flow generator βα as a function of α, evaluated for the fiducial value in 
eq. 10 and N = Nc + 50. The arrows on the curve indicate the flow towards the IR. 
We also display the effect of strengthening gravity fluctuations, parameterized by 
ηg , and of increasing matter fluctuations, parameterized by N .

ηg = 0. For k 
 MPlanck, the RG flow towards the IR is determined 
by quantum fluctuations of the fields in the GUT model, driving the 
gauge coupling away from the fixed-point value. For any given GUT 
model with a specific sequence of spontaneous symmetry break-
ing, the value α(M) required to reach the observed values in the 
IR differs slightly, but typical values lie close to α(MGUT) ≈ 1/40, 
requiring α(MPlanck) close by. In turn, α(MPlanck) is close to the 
fixed point α∗ in Eq. (3). A value α∗ ≈ 1/40 can be achieved by 
a balance between the gravity effect and the matter contribution, 
encoded in the two quantities ηg and N . Let us assume that the 
additional matter fields contributing to N are scalars in various 
representation of the GUT symmetry, as needed for spontaneous 
symmetry breaking. With NR the number of R-representations one 
has [38]

N = 1

3

(
N10 + 4N16 + 8N45 + 12N54 + 28N120 + 70N126

+ 68N144 + 56N210

)
, (7)

where all NR except N126 refer to the number of real representa-
tions. For a realistic value α∗ ≈ 1/40 and a value N −Nc ≈ 40, the 
gravity-induced anomalous dimension must be of order ηg ∼ − 1

4π . 
An increase of N may lead to an increase of −ηg and we leave 
open the question if for too large N the fixed point in the gravity 
sector disappears [23,25–29].

For the case of SU(5), one finds Nc = 85/3 (including three chi-
ral fermion generations in the 10 and 5̄ and a complex scalar 5 for 
the SM-Higgs) and

N = 1

3

(
N5 + 3N10 + 7N15 + 5N24 + 28N35 + 22N40

+24N45 + 35N50 + 49N70

)
, (8)

where all NR but N24 refer to complex representations.

2. Constraints for model-building

For the above mechanism to work, the GUT model has to be in 
a regime where βα is positive for large α. This requires a sufficient 
number of matter fields to be added to the model beyond those 
representations containing the three generations of standard model 
fermions and the standard model Higgs. Hence, there is a lower
bound on the number of matter fields in various representations 
of the GUT symmetry group,

Nlower = Nc . (9)
The fixed-point value α∗ is the maximal possible value for α(M)

for a renormalizable QFT that can be extended to kUV → ∞, 
cf. eq. 5 and Fig. 1. Realistic phenomenology requires that α∗ is 
not much smaller than 1/40. Writing eq. (3) in the form

α∗ = ηg

ηg fiducial

1

N −Nc
, ηg fiducial = − 1

4π
, (10)

we infer the upper bound

Nupper
(
ηg

) = 1

αph(M)

ηg

ηg fiducial
+Nc . (11)

If the fixed point with α∗ 	= 0 is chosen for defining the ultraviolet 
completion of the quantum gravity gauge model, the value Nupper
is precisely the value for which a realistic gauge coupling is ob-
tained. Here, αph(M) is related to the observed gauge couplings 
by the renormalization flow between M and low energy scales. 
The precise flow depends on the GUT-symmetry breaking mecha-
nism and the content of particles with mass between M and MGUT. 
For a large number of such particles αph(M) is typically somewhat 
larger than 1/40, since the gauge coupling decreases between M
and MGUT.

For an example of complex scalars coupling to quarks and lep-
tons, N10 = 6, N120 = 4, N126 = 1 and real scalars N54 = 1, N45 = 3, 
N210 = 1, where multiplicities may be motivated by a generation 
symmetry, one obtains N − Nc = 130/3, leading to a realistic α∗
for ηg near ηg fiducial.

3. Discussion

For a suitable matter content the interplay of grand unified 
gauge theories with quantum gravity renders the fine-structure 
constant predictable. While a precise value for this prediction has 
to wait for a quantitative settlement of the gravity-induced anoma-
lous dimension ηg , several important conclusions can already be 
drawn at the present stage. The perhaps most important one is 
that an interacting fixed point in the flow of gravitational and 
gauge couplings establishes “gravi-gauge theories” as candidates 
for a consistent renormalizable QFT for all known interactions. 
Second, other couplings beyond the gauge coupling may become 
predictable. The basic mechanism is very simple, see, e.g., [37]. 
Some couplings that correspond to relevant or marginal couplings 
for the flow at energies below M (the usual renormalizable cou-
plings) may actually be irrelevant couplings for the flow at ener-
gies above M , corresponding to irrelevant directions in the vicinity 
of the non-perturbative fixed point. This entails a key change in 
the predictivity of the model: While a perturbatively relevant or 
marginal coupling corresponds to a free parameter of the model, 
the low-energy values of irrelevant couplings are fixed uniquely. 
This is a direct consequence of the nature of an irrelevant coupling, 
which is attracted towards the fixed-point value during the flow to 
the infrared. Examples discussed so far are the quartic coupling of 
the Higgs doublet, whose very small fixed-point value translates to 
a Higgs mass around 126 GeV with a few GeV uncertainty [4], or 
the deviation of the mass term of the Higgs doublet from the crit-
ical value of the phase transition that may explain the hierarchy 
between the electroweak scale and the Planck scale by the resur-
gence mechanism [34]. One expects similar fixed points for the 
parameters in the effective potential for the GUT-scalars.

An interacting fixed point underlying a quantitative determi-
nation of standard model parameters has been proposed for the 
Abelian hypercharge coupling in [21] and found to be in the vicin-
ity of the standard-model value in [10].

Another example are predictable Yukawa couplings [9,35]. The 
flow equation for the Yukawa coupling y of the third generation 
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(say between a scalar 10-plet and fermions in SO(10)) has a struc-
ture similar to eq. (2) for transplanckian scales k,

k∂k y2 = ηy y2 + ay y4, (12)

with ay > 0. Both gauge boson and gravity fluctuations contribute 
to the anomalous dimension

ηy = −by g2 − c y
k2

M2(k)
. (13)

If ηy remains negative in the presence of the gravity contribution 
c y [9,31–33], one finds an interacting fixed point similar to eq. (3)

y2∗ = −ηy

ay
. (14)

At the fixed point one predicts the ratio

y2∗
g2∗

= 1

ay

(
by + 4π c y k2

α∗ M2(k)

)
. (15)

For k much smaller than M , the ratio y2/g2 starts deviating from 
the fixed-point value in eq. (15) since the gravity fluctuations ef-
fectively decouple in eq. (13). The ratio y2/g2 is then attracted 
towards a partial fixed point [39–42], first to the one of the GUT-
model, and after spontaneous GUT-symmetry breaking to the one 
of the standard model. As compared to the standard model with 
g∗ = 0, the additional negative contribution to ηy from g2∗ 	= 0 in 
GUT models favors the occurrence of this fixed point.

The Yukawa coupling determined by the fixed point (15) typ-
ically determines the mass of the top quark. There are several 
possibilities for the quarks and leptons with smaller mass. If their 
Yukawa couplings correspond to the vicinity of the free fixed point 
y∗ = 0 of eq. (12), they cannot be predicted. Alternatively, a second 
Yukawa coupling, e.g., relevant for the bottom quark, may be deter-
mined by the fixed-point behavior in a more complex setting [35]. 
Finally, the GUT-symmetry may be supplemented by a generation 
symmetry whose spontaneous breaking can induce a small param-
eter λ. Mixings between doublets (with respect to the weak SU(2) 
subgroup) carrying different generation charges are suppressed by 
different powers of λ. They can be responsible for the hierarchi-
cal pattern of fermion masses and mixings [43,44]. The analogous 
Frogatt–Nielsen mechanism [45] would require additional super-
heavy fermion generations.

The way to a complete, realistic gravi-gauge theory still seems 
long. Important partial results, as in the present letter, should en-
courage an increased effort towards a more precise quantitative 
settlement of the flow contributions from gravity fluctuations.
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