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a b s t r a c t

This paper critically examines energy-momentum conservation and local (differential) notions of gravi-
tational energy in General Relativity (GR). On the one hand, I argue that energy-momentum of matter is
indeed locally (differentially) conserved: Physical matter energy-momentum 4-currents possess no
genuine sinks/sources. On the other hand, global (integral) energy-momentum conservation is contingent
on spacetime symmetries. Local gravitational energy-momentum is found to be a supererogatory notion.
Various explicit proposals for local gravitational energy-momentum are investigated and found wanting.
Besides pseudotensors, the proposals considered include those of Lorentz and Levi-Civita, Pitts and Baker. It
is concluded that the ontological commitmentweought to have towards gravitational energy in GRmimics
the natural anti-realism/eliminativism towards apparent forces in Newtonian Mechanics.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Energy and its conservation are a pivotal part of almost all of
physics. Fromearlyon, attempts todefineenergy for thegravitational
field in GR sparked controversy. Progress in this regard was in part
responsible for GR's reinvigoration as mainstream physics from the
1950s on (see Schutz, 2012; Kennefick, 2007, Ch.11,12). But the quest
for a fully satisfactory account of gravitational energy continues. In
the following, I examine whether in GR gravitational energy - the
energy ascribable to spacetime itself - is a meaningful local (differ-
ential) notion: Does there exist something like gravitational energy-
momentum density? A related question concerns the validity of
energy-momentum conservation: Does non-gravitational/matter
energy-momentum 4-current possess sources or sinks?

The aimof the present paper is conceptual analysis: Canor should
one endorse realism about local gravitational energy in GR, drawing
only on the latter's fundamental concepts? (I will steer clear of the
question of whether a higher-level concept of gravitational energy
exacts some form of realist commitmentewhether, for instance, an
effective gravitational energy, definable in a certain domain, counts
as a “real pattern” in the sense of Dennett (1991).1) My objective is
I respond elsewhere.
conceptual clarification: What can be said about local gravitational
energy within GR's fundamental ontology and ideology?

I contest the existence of local gravitational energy in GR. It will
be argued to be an eliminable concept. Nonetheless, there is
considerable continuity between GR and its precursors. Locally, the
energy-momentum of matter is indeed conserved, with no need for
gravitational energy contributions to restore an energy balance.
The difference between GR and its precursors relevant here lies
solely in the fact that GR's inertial frames are only defined locally, in
contrast to the globally defined ones in Classical Mechanics (CM) or
Special Relativity (SR).

Those views are widespread amongst relativists. The paper will
seek to vindicate them. To date, a systematic review and evaluation
of the arguments in favour of them, as well as an exposition of a
coherent account are pending. This I will attempt to provide.

I will proceed as follows. In §2, I will first (§2.1) explore local
energy-momentum conservation in generic spacetimes: Can the
vanishing covariant derivative of the energy-momentum tensor be
interpreted as a local energy conservation law? What are the role
and status of gravitational energy-momentum in such conservation
laws? §2.2 zooms in on symmetric spacetimes. In particular, I
address the question of global energy conservation. §3 is devoted to
local representations of gravitational energy. I first (§3.1) criticise
Lorentz and Levi-Civita's tensorial proposal and elaborate on the
necessity of non-tensorial expressions for gravitational energy-
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2 Presumably, Lam has in mind something like Earman & Friedman's definition of
inertial frames explicitly determined by a time-like Killing vector (1973, pp. 353). It
remains unclear, however, why a natural general-relativistic generalisation of the
notion of inertial frame in Newtonian Gravity (e.g. p. 332), should employ such a
strong prerequisite. (The Newtonian counterpart only involves a time-like vector
field simpliciter.) For one, strictly speaking this restricts the existence of inertial
frames a priori to stationary spacetimes. Thereby, one precludes any even remotely
realistic scenarios. The motivation behind Earman and Friedman's stipulation is to
preclude spacetimes, such as G€odel's, in which no globally defined reference frames
exist. These they dismiss for not allowing of a “globally consistent time sense” (p.
353). Suffice it to say here that Earman and Friedman fall short of a cogent argu-
ment why the non-orientability of certain spacetimes is supposed to be linked to
inertial frames specifically: Why should we assume that the problems of how to
interpret such spacetimes originate in the non-existence of global inertial frames?
It seems no less plausible to concoct a definition of inertial frames that applies to
such non-orientable spacetimes e and dismiss the latter (should one feel so in-
clined, at all) as unphysical on independent grounds. By contradistinction, I'll adopt
the weaker and more natural notion of general-relativistic inertial frames, identi-
fying them with freely falling frames (e.g. DiSalle, 2009, sect. 2.9).
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momentum. Exemplarily, I subsequently (§3.2) study pseudo-
tensorial approaches via the Noether Theorems and expound their
main problems. §3.3 discusses Pitts' proposal for an infinitely many
component object for representing gravitational energy. Another
proposal, based on the cosmological constant, is studied in §3.4. A
summary of my conclusions is provided in §4.

I build upon pioneering work by Hoefer (2000). He characterises
what he declares the “received view” of local representations of
gravitational energy-momentum by the following three claims:
Firstly, one postulates the vanishingof the covariant divergenceof the
energy-momentum tensor of matter, VbTab ¼ 0. Secondly, since in
general it does not satisfy a proper continuity equation vbTab ¼ 0, the
vanishing covariant divergence of the energy-momentum tensor
forms a conservation law proper only for the sum of material plus
gravitational energy-momentum. That is: One posits contributions
from gravitational energy, not included in Tab. Neglecting these con-
tributions is supposed to result in apparent non-conservation of
energy-momentum,which iswhat vbTabu0 is interpreted as. Thirdly,
such gravitational energy contributions are then lumped into one
object, theso-called “pseudo-tensor” tab; inferredonly indirectly, such
that a continuity equation of the type vbðTab þ tabÞ ¼ 0 is restored.

Hoefer rejects this received view on two grounds: Firstly, the
non-uniqueness of tab, in his opinion, undermines its well-
definedness. Secondly, he takes its non-tensorial nature to obviate
interpreting tab as an intrinsically meaningful, well-defined quan-
tity. With the jury still out on future progress with respect to quasi-
local definitions of energy in GR (which try to associate energy-
momentum (density) not with individual spacetime points, but
onlywith extended,finite regions of spacetime), Hoefer enjoins us to
relinquish both the notion of local gravitational energy-momentum
and conservation of energy-momentum in GR altogether.

Hoefer's arguments are not likely to sway believers in gravita-
tional energy. To beginwith, his claim that the gravitational energy-
momentum pseudotensor tab is inferred “only indirectly”, insinu-
ating its ad-hoc character, is misleading: As we will sketch in x3.3,
tab arises in a direct way no less naturally than energy-momentum
in other field theories.

Hoefer's objections, too, call for further clarification. For one, the
nature of the ambiguity and non-uniqueness of pseudotensors must
be fleshed out: What does it consist in? How severe is it? Is it phys-
ically significant? Furthermore, vis-�a-vis Hoefer's objection to the
lack of coordinate invariance, one may be tempted to bite the bullet:
What is inherently wrong with non-tensors? In itself, an object's
non-tensoriality need not undercut its meaningfulness: The
connection coefficients, Ga

bc ¼ 1
2g

adðvcgdb þ vbgdc � vdgbcÞ, attest to
that. They are endowedwith both a physical and geometricmeaning,
representing inertial structure, and (in the language offiber bundles)
connecting thefibers of the vector bundle over different points of the
base manifold, respectively. Even if one shares Hoefer's skepticism
towards pseudotensors, are they indeed the only way to locally
represent gravitational energy?Might there exist other approaches?
The answer is yes. Bel and Robinson, for instance, have proposed a
tensor which mimics the way the electromagnetic energy-
momentum tensor is constructed from the Faraday tensor (see, for
instanceHorský&Novotný,1969, sect. III.4). Tobesure, asa candidate
for gravitational energy the Bel-Robinson tensor is not immune to
criticism: Neither it nor any of its powers possess the right units of
energy-momentum. It would thus mandate a novel constant of na-
ture, i.e. an additional structure, absent in GR simpliciter.

This leads us to Lam's recent refinement of Hoefer's critique
(Lam, 2011). He adverts to the need to introduce additional struc-
ture, in order for local energy-momentum conservation to hold and
gravitational energy-momentum to be well-defined.
Lam discusses the important special case of spacetimes instan-
tiating a so-called Killing field (see x2.2). He argues that only such
spacetimes allow VbT

ab ¼ 0 to be interpreted as a well-defined
local (and global) notion of energy-momentum conservation.

Lam suggests the following construal: “[…] a time-like Killing
vector field can be understood as defining a global inertial frame,
which can represent a global familyof inertial observers all at restwith
each other” (p. 5). This global inertial frame, Lam asserts, “[…] can be
understood in a certain sense as anondynamical background structure
with respect to which integral nongravitational energy-momentum
can be obtained. […] A fully dynamical metric field would prevent
theexistenceof suchglobal symmetries. […] In this sense, thenatureof
gravitational energy seems to be linked to the failure of certain global
symmetries and, most importantly to the lack [of] non-dynamical
background structures, that is to background independence” (ibid).
In other words, GR's background independence (absence of non-
dynamical objects), Lam argues, subverts energy-momentum.

Lam deserves credit for honing Hoefer's analysis of the pseu-
dotensor by specifying what in his opinion their ambiguity consists
in: the freedom to insert a term of the form vcUa½bc�, i.e. antisym-
metric in b and c, into the continuity equation without altering it:
vbðTab þ tab þ vcUa½bc�Þ≡vbðTab þ tabÞ: The pseudotensor, Lam con-
cludes, hence lacks uniqueness in that any tab ¼ vcUa½bc� � 1

2kG
ab

equally satisfies the continuity equation. Here we have exploited
the Einstein Equations, Gab ¼ 2kTab:

He also sharpens Hoefer's principal argument against pseudo-
tensors, their coordinate-dependence. “In particular, at any space-
time point or along any world-line, there is a coordinate system in
which ½tab� vanishes. Since different coordinate representations are
just different mathematical descriptions, relevant physical entities
are usually taken to correspond to coordinate-independent entities
[…]. So, the coordinate […] dependence of ½tab� shows that there is
no (unique) gravitational energy-momentum, in the sense that
such a quantity cannot be in general unambiguously defined at any
spacetime point” (p. 6).

Notwithstanding its improvement over Hoefer's account, Lam's
own remains unsatisfactory:

For one, as we will see below, while it is true that the existence
of Killing symmetries is sufficient for the validity of local energy-
momentum conservation, it is not necessary-e-contrary to what
Lam seems to suggest. More precisely, Lam implicitly presupposes
an gratuitously strong definition of inertial reference frames for GR,
one that posits the existence of Killing fields.2

Lam's elucidations regarding the problematic status of and link
between energy-momentum conservation and gravitational en-
ergy are deficient, as well. The connection between energy-
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momentum conservation, gravitational energy, symmetries and
GR's background independence remains hand-waving-e-not least,
since a precise definition of background independence is notori-
ously tenuous (see, e.g. Pooley, 2015, esp. sect. 7; Read,
unpublished).

As in Hoefer's case, a proponent of gravitational energy is likely
to counter Lam's ambiguity objection to pseudotensors by asking in
what ways the situation differs from other field theories. It is crucial
to note that theway pseudotensors arise in GR in a standardway via
the Noether Theorems. Lam mentions them in a footnote. But he
does not expand on the connection. This would have preempted a
potential misunderstanding: The form of the continuity equation
both Hoefer and Lam discuss is restricted to special (unimodular)
coordinates, satisfying jgj :¼ detðgmnÞ ¼ 1. But such a restriction is
unnecessary. More importantly, it is not the source of the (vicious)
coordinate-dependence of pseudotensorial expressions.

Furthermore, a naive reading of what Lam offers as another way
to understand the pseudotensor -namely as nonlinear corrections
to the linearized Einstein tensor, i.e. higher perturbative orders3- is
problematic. It suggests that the nonlinearity of the Einstein
Equations reflects the fact that gravitational energy acts as a source
of the gravitational field itself. This is misguided: Firstly, a consistent
implementation of self-energy in (linear) Newtonian Gravity cre-
ates its own problems (see Giulini, 1997). Secondly, the desire to
explain GR's nonlinearity stems from comparing it to linear the-
ories. Both physically, with the familiar linear theories being non-
fundamental, and structurally, such a comparison is implausible,
though: Rather, one should compare GR with likewise non-linear
vectorial Yang-Mills-type theories (cf. Deser, 1970). An immediate
lesson is: nonlinearity is not the source of GR's troublewith its field-
energy.

Similarly, Lam's objection of coordinate-dependence is not
persuasive. Coordinate-dependence by itself need not be prob-
lematic: As long as a coordinate-dependent structure has the same
symmetry group as the one of the given spacetime, the coordinate
dependence is benign. It becomes vicious only if the coordinate-
dependent object is not invariant under the spacetime's symme-
try transformations. I revert to this in x3.3. Although I concur with
Lam's thought that coordinate-dependence of the type pseudo-
tensors elicit amounts to an unphysical gauge-fixing, we must
clarify whether pseudotensors are benign or vicious in the sense
just mentioned.

Hoefer and Lam raise deep questions, and I am largely in
agreement with their positions. The following paper intends to
supplement their work, attempting to fill some of the indicated
lacunae and to provide a systematic account of local energy-
momentum conservation and local notions of gravitational en-
ergy within GR.
6 Note that with this fixed volume element, unimodularity introduces an abso-
lute structure, extraneous and inimical to GR's overall non-absoluteness (cf., for
instance, Anderson, 1967). The choice of unimodular coordinates is directly related
to inertial frames e a concept that will occupy centre stage in the subsequent
analysis. With respect to their global/integral properties, unimodular coordinates
2. Energy-momentum conservation in local form

2.1. Energy-momentum conservation in generic spacetimes

In lieu of the ordinary (partial) zero-divergence for the matter
energy-momentum tensor, in GR we have the zero covariant

divergence, VbTab ¼ 0. Here, Tab ¼ � 2ffiffiffiffi
jgj

p d
dgab ð

ffiffiffiffiffiffijgjp
L Þ denotes the

matter energy-momentum tensor, with the matter Lagrangian L ¼
3 E.g. Hobson et al., 2006, p. 473 for a similar claim.
4 For how spinorial matter fits into the picture see Pitts, 2011.
5 Despite representing gravity via variational derivatives of a gravitational

Lagrangian, Einstein never systematically defined energy-momentum tensor vari-
ationally nor did he work with matter Lagrangians (see Pitts, 2016a).
L ðgab;j;Vaj;Va;bj; ::Þ for the (tensorially generic4) matter fields
j.5 Throughout, a Lagrangian approach will be assumed also for
GR's matter sector. The vanishing of the covariant divergence holds
independently of the Einstein Equations: It follows from
diffðM Þ-invariance, the imposition that the dynamical matter var-
iables j satisfy the Euler-Lagrange Equations, and the above form of
the matter Lagrangian (see e.g. op. cit., sect. 3 for technical details).

In the literature (e.g. Brading and Brown, 2002; Weinberg, 1972,
p. 166; Padmanabhan, 2010, p. 213, it is sometimes stated that
VbT

ab ¼ 0 does not express local energy-momentum conservation
simpliciter; rather, it is aid to denote the degree to which conser-
vation is violated. This is supposed to quantify the extent to which
energy-stress density/flux is no longer source-free/sink-free in
generic reference frames:

vbT
ab ¼ �2Gða

bcT
bÞcðu0Þ (1)

This is not the most perspicuous way of formulating the problem. It
distracts from what is special about GR's energy-momentum: In
which regard does the above situation differ from conservation of
the external electric 4-current, VajaðextÞ ¼ 0? After all, it too can be

rewritten to yield apparent “sources/sinks” in generic reference
frames:

vajaðextÞ ¼ �Ga
abj

b
ðextÞðu0Þ (2)

Only for unimodular coordinates (modulo global re-scalings),
i.e. coordinates satisfying

ffiffiffiffiffiffijgjp ¼ const:, does the “source term” of
the continuity equation on the r.h.s. vanish.6

(The restriction to unimodular coordinates can be lifted. By

considering the weight-1 vector density ~j
a
ðextÞ ¼ ffiffiffiffijgp ���jaðextÞ, one ob-

tains a 4-current that satisfies a continuity equation in every coor-
dinate system:

va~j
a
ðextÞ≡0 (3)

The electric charge flux ~j
a
ðextÞ thus defined is locally conserved

without qualification.)
To see what is troublesome about energy-momentum in GR

specifically, we must be more circumspect. Consider an arbitrary
time-like vector x. Along its direction, one can define the energy-

momentum 4-current ja½x� ¼ Ta
b x

b. Unless x is special (in a sense
to be made precise presently), the covariant divergence of this 4-

current does not vanish, Vaja½x� ¼ TabV
axbs0. This yields an ordi-

nary continuity equation with non-vanishing source/sink terms in
any reference frame: In no reference frame is ja½x� locally conserved.
(The transition to a vector density is of no avail here.)

In short: The external electric 4-current satisfies an ordinary
continuity equation for some coordinate systems e namely unim-
odular ones. (The corresponding weight-1 density does so even for
can be regarded as the closest counterparts of Lorentz/Euclidean coordinates on
generically curved manifolds: They preserve a constant volume element.
vajaðextÞ ¼ �Ga

abj
b
ðextÞ yields a continuity equation proper, only if one selects as

reference frames those counterparts of inertial reference frames in Minkowski
spacetime. But the latter cease to be distinguished in GR. One conclusion of my
subsequent arguments is that we should take GR's notion of inertial structure more
seriously: We need not, nor should not, import it from non-GR theories.



7 Landau and Lifshitz (1975, p. 283) insist (with neither argumentation nor even
explication) that any serious candidate for energy must satisfy a continuity equa-
tions in all reference frames. I reject this assumption: There is nothing wrong with
(and hence nothing to ameliorate in) an equation that does not take its simplest
form in non-inertial frames. Presumably, what motivates Landau and Lifshitz's
reasoning is Einstein's (erroneous) interpretation of general covariance as an
extension of the Relativity Principle, asserting the equivalence of all reference
frames (cf. Norton, 1985).

8 Due to his own interpretation of GR, Einstein had no such qualms talking about
“inertial” and “gravitational” components of the decomposition of the geodesic
equation (see Lehmkuhl, 2010).

9 The improved form of the REI avoids the objections against its usual form (cf.
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every coordinate system.) By contrast, whether the energy-
momentum 4-current ja½x� satisfies an ordinary continuity equa-
tion (for some reference frames) depends on the choice of its di-
rection x.

In generic (“non-symmetric”, see x2.2) spacetimes, what are
these distinguished directions of energy-momentum flux along
which one would register the absence of sinks/sources? For inspi-
ration, consider a free-falling observer x. In her proper (comoving)
reference frame g; we have xa

��
g ¼ da0 and Ga

bc

��
g ¼ 0. The corre-

sponding energy-momentum 4-current ja½x� that x measures along
her worldline is source-/sinkfree: vaja½x�jg ¼ 0. Sources/sinks would

appear for x only, when adopting reference frames other than her
proper one. The energy-momentum 4-current along the worldline
of observers not in free-fall, i.e. non-inertial observers, is locally
conserved in no reference frame.

How to construe these sinks/sources in local energy-
momentum 4-currents for generic reference frames and along
generic directions? Does it seriously jeopardise real energy-
momentum conservation (in a sense to be made precise)? For an
answer, I will first identify the class of xs picked out by the apparent
anisotropy of local energy-momentum conservation, as well as the
reference frames for which energy-momentum is un-
controversially conserved locally.

A prior side-glance to CM is instructive. There, an analogous
problem arises for apparent/fictitious/inertial forces, e.g. the Cori-
olis or centrifugal force. They flout Newton's Third Law of action-
reaction. In contrast to genuine ones, apparent forces do not
mediate physical interactions. They are not causes nor are they
caused (cf. Nerlich, 1989, sect. 5). We do not ascribe them the status
of entities “out there”, forces as real as, say, the Lorentz force. They
are more like shadows: ontologically dependent, causally inert and
explanatorily non-fundamental. We are wont to conceive of them
as springing from descriptions in non-inertial coordinate systems.
Ontologically, apparent forces are reduced to inertial motion, as it
appears from non-inertial reference frames. They are artefacts of
physically artificial descriptions (e.g. Maudlin, 2012, pp. 23 fn. 7).

Inertial reference frames are inherently distinguished by “nat-
ural” (as opposed to “forced”) motion (cf., for instance, Brown, 2007,
p. 163). This class of kinematic states, privileged as default motion,
is furnished the theory's inertial structure. Bodies moving inertially
do not call for deeper explanations of this kind of motion (Janssen,
2009; Nerlich, 1979). Only non-inertial motion does: When a body
deviates from inertial motion we ask for causes—in the form of
external forces.

“Inertially framed” accounts afford simpler explanations than a
“non-inertially framed” one. They are adjusted to the spacetime
geometry, thereby making explicit what merits realist commit-
ment. Conversely, extra terms that arise in non-inertial frames are
representational (or perspectival) artefacts of physically unnatural
descriptions.

How do these remarks bear upon GR's local energy-momentum
conservation? Firstly, they answer which directions are distin-
guished in generic spacetimes: directions along natural/inertial
motion. In GR, this is motion along (time-like) geodesics (for sys-
tematic and historical details, see e.g. DiSalle, 2009, esp.2.9; Petkov,
2012; Knox, 2013, esp. sect. 2). Secondly, we also get an answer to
what the privileged reference frames are: the inertial ones. In GR,
the latter are identified as free-fall frames g, the coordinates
adjusted to them being normal coordinates. (Henceforth, I will use
Fermi's.) By construction, their connection coefficients vanish,
Ga
bc

��
g
¼ 0.

For a geodesic/free-fall trajectory z, the inertial frame g is
comoving. Concomitantly, in the adapted inertial coordinates, za ¼
const: In consequence, the energy-momentum 4-current along
free-fall trajectories z is locally conserved, vaja½z�jg ¼ 0:

The lesson to be drawn is this: Apparent violations do not evince
a real break-down of local energy conservation. Nor do they betray
that we have neglected some (presumably: gravitational) energy
contributions. Rather, such “violations” are artefacts of an unphys-
ical direction for the 4-current or of adopting non-inertial frames.7

Neither should unsettle us. GR's matter energy-momentum 4-
current is free of sinks/sources no less than in CM or SR. In these,
as well, energy can appear not to be locally conserved, when
adopting non-inertial/accelerated reference frames.

GR and pre-GR theories differ, of course, in their specific inertial
structure. I will outline the ramifications these differences entail for
global energy-momentum conservation shortly (x2.2). But first, it is
apposite to discuss GR's local energy-momentum conservation
from a different angle that links it to gravitational energy.

Following Einstein in his 1916 GR review paper (see Hoefer,

2000, p. 191), vbTab ¼ �2Gða
bcT

bÞc has occasionally (e.g. Brading &

Brown, 2002, p. 17) been dubbed the “response equation”. Puta-
tively, it captures the interchange of energy-momentum between
gravitational and ordinary energy-momentum - gravity's back-
reaction upon matter. I commented already on how focusing of
the decomposition of Tab’s vanishing covariant divergence,

0≡VbTab ¼ vbTab þ 2Gða
bcT

bÞc; is misleading.8

One can reformulate the response equation interpretation (REI)
more judiciously.9 Recall that for generic spacetimes and x, the
covariant divergence of the energy-momentum flux along x does
not vanish:

Vaja½x� ¼ TabVax
bðu0Þ (4)

According to the ameliorated REI, the non-vanishing Vaja½x� re-
flects the intertwinement of gravitational and matter energy-
momentum. The presence of sinks/sources in the 4-current on
the r.h.s. is attributed to the neglect of gravitational energy contri-

butions. (Equivalently, consider the weight-1 density ~j
a½x� :¼ffiffiffiffiffiffijgjp

ja½x�. The corresponding continuity equationwith source terms

is: va~j
a½x� ¼ ffiffiffiffiffiffijgjp

Ta
bVax

b.)
What is the relationship then between the presence of gravi-

tational energy and the presence of sinks/sources? Is the former
necessary for the latter? That is: Is gravitational energy the only
reason for the failure of the conservation of matter (non-gravita-
tional) energy-momentum? This seems implausible: In inertial

frames, the r.h.s. of Vaja½x� ¼ TabVax
b reduces to Ta

bvax
b. The latter,

however, is not straightforwardly related to gravity: One would
expect gravitational degrees of freedom to be encoded in metric-
dependent quantities. The fact that the 4-current ja½x� contains
sinks/sources thus would not be related to gravity, either. (One may
object to evaluating Vaja½x� in inertial reference frames, as in the
latter, gravity has been “geometrised away”. Rather than an
Read, 2018).
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objection, this objection just anticipates the conclusion for which I
ultimately argue.)

With reason, the REI can, however, take the presence of gravi-
tational energy to be sufficient for the presence of sinks/sources in
ja½x�. Equivalently by contraposition, Vaja½x� ¼ 0 should imply the
absence of gravitational energy. This makes sense: If the matter
energy-momentum 4-current contains no sources/sinks, gravita-
tional energy does not contribute to the energy balance.

Does anything more interesting follow from this claim of the REI
for gravitational energy? For an answer, first recall our earlier dis-
cussion that in generic spacetimes energy-momentum 4-currents
along directions other than along inertial trajectories are physi-
cally ungrounded: We need not extend our realist commitments to
such quantities. Now consider a situation (in a non-symmetric
spacetime) with gravitational energy present. According to the
REI (again by contraposition), it would follow that Vaja½x�s0. This is
possible (in non-symmetric spacetimes) only for xs that describe
non-inertial trajectories or a description in non-inertial reference
frames. Hence, this non-conserved form of ja½x� is barred from our
realist commitment. In short: The REI implies that gravitational
energy leads to what would appear as a violation of local energy-
momentum conservation. Our analysis of inertial motion, howev-
er, disclosed that the energy-momentum 4-currents that appar-
ently are not locally conserved are unphysical.

Consequently, according to the REI -as a plausible link between
gravitational energy and local energy-momentum conservation-
gravitational energy is an idle wheel: Real energy-momentum
-energy-momentum meriting realist commitment-is locally
conserved in GR; gravity does not contribute to the energy balance
equation.

This renders precise and corroborates Norton's conjecture that
GR, as a theory that “geometrises away”10 gravity, also compro-
mises gravitational energy. Like apparent forces in CM, gravity is
not a force arising from gravitational interaction, a real entity. In GR,
gravity is not a force: Gravitational phenomena are manifestations
of non-Minkowskian inertial structure (see Earman & Friedman,
1973, sect. 5; Norton, 2003; Nerlich, 2013).11 GR thereby in-
augurates a shift in what phenomena are in need of explanations in
terms external causes (see Nerlich, 2013, Ch. 8; Dorato, 2014) Non-
vanishing gravitational energy is an artefact of bestowing on di-
rections and non-inertial reference frames a physical significance
that in truth they lack.12 (Of course, in generic spacetimes -those
lacking time-like Killing fields-inertial reference frames exist only
“locally”: Only along a single, privileged (geodesic) time-like path
10 “Geometrising away”must not be confused with “transformed away”. The former
denotes the fact that gravitational phenomena are not attributed to external forces
which deflect particles from their rectilinear inertial paths, (see, for instance,
Maudlin, 2012, Ch. 6). Rather, they are reconceptualised as manifestations of a non-
Newtonian/non-Minkowskian inertial structure. “Transforming away”, on the other
hand, suggests that one could make these effects disappear though a suitable
choice of coordinates. This is not the case for GR: Consider, for instance, the wave-
equation for the Faraday tensor in general-relativistic Einstein-Maxwell Theory
with external current Ja . It contains gravity-related curvature terms (see Read et al.,
2017 (ms), sect. 2,3 for details):

VcV
cFab ¼ Fd½bRa�d � RabcdF

cd � V½bJa�:

As tensors, these curvature-containing terms cannot be eliminated through any
choice of coordinates.
11 Cf. Dewar & Weatherall, 2018, esp. section 5 for the similar case of Newton-
Cartan-Theory, a geometrised version of Newtonian Gravity.
12 In [rDürr, 2018 ms], the case of gravitational waves, and the question whether
they carry energy, is discussed. I argue that the standard arguments supposed to
demonstrate that they do are not convincing. An alternative account of the spin-up
of binary systems is given. (Of course, I do not deny the reality of gravitational
waves and their effects. I only deny that they transport energy.)
can we find coordinate-systems whose time-like axes move iner-
tially. I return to this later on in x2.2.) In short: Non-vanishing
gravitational energy is the result of a spurious realist commit-
ment. I will call this position “eliminativism about gravitational
energy”.

Taking seriously GR's inertial structure, I argued in this section
that local energy-momentum conservation is valid in GR. Apparent
violations in GR for certain reference frames and along certain di-
rections merit no more realist commitment than violations of
Newton's Third Law by apparent forces. Just as one should be an
eliminativist about apparent forces in CM, one should be an elim-
inativist about those energy-momentum 4-currents in GR that are
not conserved.

In pre-GR theories, local energy-momentum conservation gives
rise to an invariant global conservation law, as well: The energy of
matter contained in a closed space-like hypersurface remains
constant across time. Does this also hold in GR?
2.2. Local energy conservation in symmetric spacetimes

In the previous section we considered generic spacetimes,
devoid of symmetries. What changes with respect to energy-
momentum conservation in a spacetime with symmetries?

In CM, it is often said (e.g. Landau & Lifshitz, 1976, x6e9) that
conservation of energy and linear/angular momentum are corre-
lated with the homogeneity of time and the homogeneity/isotropy
of space, respectively, via Noether's First Theorem. (The latter re-
mains neutral, though, about spacetime symmetries per se.13

Rather, it establishes a link between conserved quantities and
symmetries of an action under rigid coordinate transformations
(see Sus, 2017for a lucid account). But because in CM Euclidean
coordinates are inertial coordinates, one may identify rigid trans-
formations as time/space translations.)

GR's spacetime symmetries are expressed by means of Killing
vectors x, the infinitesimal generators of a spacetime's isometries.
They are defined via a vanishing Lie-drag of the metric along them

0 ¼ Lxgab ¼ VðaxbÞ (5)

Killing vectors give constants of motion along a geodesic xaðtÞ,
with the affine parameter t:

d
dt

ð _xaxaÞ ¼ 0 (6)

For energy-momentum Ta
b in particular, the existence of a

time-/spacelike Killing field x gives rise to an energy-momentum 4-

current ja½x� ¼ Tab x
b that satisfies a local conservation law,

Vaja½x� ¼ TabVaxb ¼ �TabVbxa ¼ �TabVaxb≡0 (7)

In inertial frames g, it even simplifies to a familiar, ordinary
continuity equation, 0≡Vaja½x�jg ¼ vaja½x�: (As in x2.1, the transition
to the vector density yields a continuity equation in all reference
frames.) The Killing field thus provides a distinguished direction
along which energy-momentum has no sinks/sources. The status of
conservation of an energy-momentum 4- current along a Killing
field is the same as that of conservation of the external electric 4-
current in Maxwellian electrodynamics.

Assuming that Ta
b has compact support (or benign fall-off

conditions), the 4-current ja½x� also gives rise to an associated
invariant, globally conserved “charge” Q ½x� ¼ R

S

dSaja½x� (with the
13 I am grateful to Brian Pitts (Cambridge) for pressing me on this point.
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trivial difference between violation of energy-momentum and energy momentum
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directed infinitesimal volume element dSaÞ: Q ½x� doesn't depend on
the choice of the Cauchy hypersurface S (see, for instance,
Padmanabhan, 2010, Ch. 6.5 for details).

Spacetimes with Killing symmetries thus admit of both, local
and global energy-momentum conservation. Minkowski space, for
instance, possesses ten Killing fields, corresponding to the 10-
dimensional Lie algebra of the Lorentz group. They are associated
with conservation of energy, linear and angular momentum. The
coordinates that are adapted to the time-/spacelike Killing vectors
correlated with energy-momentum conservation are globally
defined (as opposed to defined only at a point or along a curve, as in
the GR case for Riemann or Fermi normal coordinates, respectively)
inertial coordinates—the familiar Cartesian/Lorentz coordinates.

Contrast the situation with the non-symmetric spacetimes from
x2.1. In the absence of Killing symmetries x, the 4-current ja½x� is
source-/sinkfree merely for the only inherently distinguished di-
rections available in such spacetimes: xs along inertial/free-fall
trajectories. The coordinates adapted to the inertial frames are
comoving. They are only defined along the inertial paths, not
globally. For non-Killing x, the 4-current ja½x� does not yield a well-
defined global charge: Different 3þ1-decompositions of spacetime
imply different charges, each such slicing in itself being but an
arbitrary conventional choice. In particular, the charges are not
conserved across time: For a 3þ1-decomposition of the manifold
into the one-parameter family of spacelike hypersurfaces fSs : sg,
we have:

d
ds

Z
Ss

dSaja½x�u0 (8)

Generic spacetimes lack Killing symmetries. In particular, in
generic spacetimes energy-momentum fails to be conserved glob-
ally. This is illustrated the “singularly striking example”
(Schr€odinger, 1950, p. 105) of the decrease of energy in a closed
bounded universe (cf. Misner, Thorne, & Wheeler, 1974, x19.4 for
technical details): “In simple models the loss [of energy contained
in a closed 3-vol] can be computed and equals the amount of work
the pressure would have to do to increase the volume, if a piston
had to be pushed back as in the case of an adiabatically expanding
volume of gas.” However, Schr€odinger stresses, this is a fictional
account: There is no piston nor any boundary through which en-
ergy could escape. Global energy conservation just ceases to be
valid for the expanding universe.

Strictly speaking, such inertial frames, in which energy-
momentum is conserved, have zero-volume. Consequently, mat-
ter energy-momentum is conserved only in systems of zero-
volume: Prima facie, energy-momentum would thus fail to be
conserved in any systems of interest. Only point-/line-/plane-/hy-
perplane-like things could happen in inertial frames, precluding
nearly everything physicists like to study. Is this an inacceptable
consequence, tantamount to a reductio?

Two considerations attenuate the objection. Firstly, many sys-
tems of interest, such as the chemical energy in my car's engine, are
sufficiently small: Relative to the relevant scales, they occupy zero-
volume. For all practical purposes these systems' energy-momenta
then are conserved. (From a Newtonian perspective, their gravita-
tional potential energy does not change.) Secondly, also cases of
non-negligible energy-momentum non-conservation can be
handled for most practical purposes e within a certain regime.
Notice that the degree of non-conservation is well-quantifiable.
14 Essentially, this is the case in the regime in which the PPN-formalism is
applicable and in which the Equations of Motions (i.e. the field equations for
matter/non-gravity) admit of a Lagrangian formulation (cf. Poisson & Will, 2016).
Within some degree of accuracy and suitably small world-tubes
around inertial paths,14 it is thus possible to restore the apparent
conservation. One only needs to add the “missing” bits by fiat: From
aNewtonian perspective, these would correspond to the Newtonian
gravitational potential energy (and its post-Newtonian correction)
to the non-gravitational energy-balance. But from the more
fundamental perspective of GR, this potential gravitational energy
is fictitious: They are translations (or projections) of GR phenomena
onto a pre-GR framework.15 (This fictional “Newtonised” account
ceases to be available beyond a certain degree of accuracy, and in
particular, if the curvature effects are very strong even for the
relevant volume scales.)

This brings us back to GR's gravitational energy. In x2.1e2, we
achieved a transparent account of local energy conservation in GR.
In it, gravitational energy was wholly absent. One may take this
absence at face value - to the effect that in GR gravitational energy
is dispensable. Some will deem this too quick. They may shrug off
that absence as irrelevant to the possibility of meaningfully defining
gravitational energy-momentum. But is there any motivation for
that? Carroll (2010), for instance, impugns this. With respect to
concocting notions of gravitational energy to restore the violation
of global energy conservation, he writes: “the entire point of this
exercise is to explain what's going on in GR to people who aren't
familiar with the mathematical details”. Yet, it seems fair to coun-
tenance that our analysis of energy-momentum conservation may
not have been the right starting point for a search of gravitational
energy.16 Next, I will therefore squarely examine extant proposals
for local representations of gravitational energy.
3. Local gravitational energy

3.1. Tensorial hopes?

Only a year after presenting GR in its full form, Einstein applied
to it Noether's Second Theorem (avant la lettre). From the invari-
ance under arbitrary coordinate transformations as the general
symmetry of GR's action (modulo surface terms), four continuity
equations ensue (see Brading, 2005) for historical and mathemat-
ical details):

vb

� ffiffiffiffiffiffi
jgj

p �
Tba þ t b

a

��
¼ 0 (9)

Here, t b
a is a suitable object, called “energy-momentum pseudo-

tensor”. It corresponds to the Noether-current for the purely
gravitational Lagrangian. (More on this shortly.) It is non-unique:
Due to its anti-symmetry in the upper indices, inserting an arbi-

trary term of the form vcU
½bc�
a into the continuity equation leaves the

latter unaffected.
The most prominent example of a pseudotensor is Einstein's:

t b
a ¼ 1ffiffiffiffiffiffijgjp

 
�Sdba þ

 
vS

vðvbgcdÞ
� ve

vS

v
�
vb;egcd

�
!
vagcd

!
(10)

Here, S ¼ ffiffiffiffiffiffijgjp
gabGd

a½bG
c
c�d is the so-called the truncated/

“GG-”Lagrangian.
depletion via transport (cf. also Weatherall, 2016, Ch.2, fn 103).
16 Suppose one shares this view. That is: Suppose that one disputes that consid-
erations of energy conservation have a direct bearing on gravitational energy. Then,
the simple Geroch-Malament argument against a local gravitational energy in GR
that Dewar and Weatherall (2018, pp. 1) cite is blocked.
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Four features of the Einstein pseudotensor stand out, under-
scoring the continuity with other field theories. Firstly, like other
energy-momenta from relativistic field theory, it contains solely
first derivatives of the field variables, gab: Einstein's pseudo-
tensor is constructed fully analogously to energy-momentum in
other field theories via the customary Noetherian machinery.17

The reason is that rather than the full Einstein-Hilbert
Lagrangian (plus nondynamical and boundary terms) we may
utilize the GG-Lagrangian, itself containing only first derivatives
of gab (see e.g. Hobson, Lasenby, & Efstathiou, 2006, Ch. 19;
Poisson, 2007; Ch. 4.1 for technical details). Secondly, Einstein's
pseudotensor is index-asymmetric. This mars its utility for
defining angular momentum. But the shortcoming can be
amended by the Belinfante-Rosenfeld symmetrisation (see
Belinfante, 1940; Rosenfeld, 1940). This technique is familiar
from the likewise non-symmetric energy-momenta in hydro- or
electrodynamics (The technicalities shall not detain us.). Thirdly,
although the Einstein pseudotensor transforms tensorially only
under affine transformations, the continuity equation,

vbð
ffiffiffiffiffiffijgjp ðTb

a þ t b
a ÞÞ ¼ 0, is valid for every coordinate system.

Fourthly, the weak-field limit reproduces the classical potential
energy, and yields reasonable “kinetic” terms for gravitational
waves (see e.g. Maggiore, 2007, Ch. 1e3).

Yet, GR's general covariance makes things a little more deli-
cate, when it comes to the symmetrisation procedure and the
non-tensoriality. Leclerc, 2006, (p. 3) cautions that the Belinfante-
Rosenfeld symmetrisation presupposes a distinction of certain
coordinates inherently not warranted in GR: “The Belinfante
procedure relies on the Noether current corresponding to global
Poincar�e (coordinate) transformations. Certainly, any diffeo-
morphism invariant action will also be globally Poincar�e
invariant, but there is no apparent need, a priori, to favor a certain
subgroup. In our opinion, this is against the spirit of general
relativity. (For instance, in [GR] with cosmological constant, the
de Sitter subgroup is at least equally well justified.)” So, if one
requires that a suitable candidate for gravitational energy-
momentum be index-symmetric, and given that the Belinfante-
Rosenfeld symmetrisation exalts certain symmetries in an ad-
hoc way, then Einstein's pseudotensor seems just not suitable.
One might counter: Don't free-fall inertial frames already privi-
lege the Poincar�e transformation? Consequently, the Poincar�e
group would seem already distinguished. It is unclear, however,
that this distinction is relevant. Local Poincar�e transformations
relate only inertial frames. But in inertial frames the Einstein
pseudotensor vanishes, anyway. (N.B. This argument does not
apply to non-gravitational energy-momenta. The Belinfante-
Rosenfeld symmetrisation thus does not elevate the Poincar�e
group in any ad-hoc way.)

The other feature of pseudotensors -their non-tensorial nature-
looks even more suspect in light of GR's geometric, coordinate-free
spirit. Doesn't non-tensoriality conflict with the invariance one
would naturally demand of real objects? Before pursuing this
further in x3.2, we should enquire into the necessity of pseudo-
tensors: Could pseudotensors for local representations of gravita-
tional energy-momentum perhaps be avoided? Several
authoritative texts (e.g. Misner et al., 1974, p. 467), deny this,
pointing to the Equivalence Principle: Since gravity, the argument
goes, can always be made to vanish locally by adopting a free-fall
reference frame, gravitational energy can always be “transformed
away”.
17 See Schr€odinger, 1950, Ch.XI; Dirac, 1975, Ch. 31, 31 for a more convenient
expression.
However, the argument has a flaw: It presupposes that the
alleged gravitational energy-momentum depends only on first de-
rivatives of the metric. Only they could be “transformed away” in
suitable coordinates. Why insist on that assumption? Pauli (1981,
Ch. 61), for instance, voiced his misgivings along the following
lines: Gravity manifests itself as curvature (think e.g. of geodesic
deviation), represented by the Riemann tensor,

Rdabc ¼ v½bG
d
c�a þ Ge

a½cG
d
b�e: But the latter is built from up to second

derivatives of the metric. Hence, one might expect any natural
representation of gravitational energy-momentum likewise to be
built from up to second derivatives of the metric.

From the Noetherian perspective on pseudotensorial gravita-
tional energy (more on this in x3.2), such considerations might
appear futile: Why seek an object with second derivatives, when
the terms in the Einstein-Hilbert Lagrangian that contain higher
derivatives make no difference to the field equations? In response,
note that although a Lagrangian approach is often fertile, it is
unclear whether the Lagrangian is more than a mathematical
expedient, useful but not physical e comparable to, say, ghost
fields in gauge quantum field theory. Suppose first that one adopts
a merely instrumentalist stance towards the Lagrangian, i.e.
regarding the Einstein-Hilbert Lagrangian as not physical in any
direct sense. The co-existence of Lagrangians that do not differ
merely by surface terms might suggest this view (espoused, for
instance, by Brown and Holland (2004, pp. 7)). Then independent
criteria would be needed to make plausible the physical signifi-
cance of the Einstein pseudotensor. Here, Pauli's considerations
would be pertinent e and may be viewed as disfavoring the Ein-
stein pseudotensor's suitability. Suppose now that one did
consider the Lagrangian as something physical. For instance, the
role the action plays for, say, in the Feynman path integral or its
connection link to black hole horizons (see e.g. Padmanabhan,
2005) might suggest such a realism. But then it would matter
whether one considered the full Einstein-Hilbert Lagrangian, its
“GG”-version or perhaps a completely different Lagrangian e

irrespective of their contribution to the field equations (or lack
thereof) upon variation. In conclusion, Pauli's objection cannot be
brushed aside.

Recently, Curiel (2014) closed this loop-hole. There exists indeed
no tensor with the natural desiderata for representing gravity:
Apart from the Einstein tensor, no symmetric, divergence-free,
homogeneous (for reasons of dimensionality) rank 2-tensor that
vanishes, if the spacetime is flat (Rdabc ¼ 0), can be constructed from
up to second derivatives of the metric.

In fact, Lorentz and Levi-Civita proposed the Einstein tensor,
Gab ¼ Rab � 1

2Rgab (or, for reasons of dimensionality, � 1
2kGab) as a

suitable representation of gravitational energy (for a historical ac-
count of this proposal, see Pauli, 1981, fn. 350e351; Cattani & De
Maria, 1993, esp. sect. 5e11). We now turn to this proposal.

At first blush, it looks attractive. Firstly, the Einstein tensor is a
bona fide tensor. Secondly, it also obeys a bona fide covariant
conservation law: the contracted Bianchi identity, VbG

ab≡0. The

attendant total energy-momentum ðLLCÞTab ¼ � 1
2kG

ab þ Tab, sat-
isfies both an ordinary and covariant continuity equation,

vbððLLCÞT
ab Þ ¼ VbððLLCÞT

ab Þ ¼ 0. Thirdly, the Einstein tensor is the
exact gravitational counterpart of the matter energy-momentum
tensor: Whereas the latter is defined variationally as
Tab ¼ � 2ffiffiffiffi

jgj
p d

dgab ð
ffiffiffiffiffiffijgjp

L ðmÞÞ; one obtains the Einstein tensor (up to a

proportionality factor) by replacing the matter Lagrangian by the
purely gravitational Einstein-Hilbert Lagrangian,
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Gabf
1ffiffiffiffiffiffijgjp d

dgab

� ffiffiffiffiffiffi
jgj

p
R
�

(11)

Two objections speak against the proposal: physical implausi-
bility and vacuity, respectively. Firstly, consider the Einstein Equa-
tions in vacuum. This, on Lorentz and Levi-Civita's proposal, would
yield vanishing gravitational energy, Gab ¼ 0. But that is counter-
intuitive: Since the Einstein tensor is constructed from traces of the
Riemann tensor, a solution of the vacuum Einstein Equations has in
general non-vanishing Weyl structure. The latter encapsulates
gravitational radiation (see e.g. Padmanabhan, 2010, pp. 263) for
technical details). Prima facie one would expect it to possess
gravitational energy e contrary to Lorentz and Levi-Civita's pro-
posal. Equally implausibly, it purports that there are no differences
between gravitational energy in the exterior of a static and, say,
charged rotating black hole, respectively: In either case, gravita-
tional energy would be zero.

Besides doubts regarding its physical plausibility, it seems
mysterious and contrived that, on Lorentz and Levi-Civita's pro-
posal, anymatter energy-momentum is exactly counterbalanced by
gravitational energy. (Note that in all possible spacetimes, the total
energy always vanishes, � 1

2kGab þ 2kTab ¼ 0.) It is elusive what
positing such an entity would help explain. In his correspondence
with Levi-Civita, Einstein (1917, cited in op. cit., pp. 77) made this
point. In a letter to him, Levi-Civita concedes that his proposal is
indeed sterile in that “[…] the energy principle would lose all its
heuristic value, because no physical process (or almost none) could
be excluded a priori. In fact, [in order to get any physical process]
one only has to associate with it a suitable change of the [gravita-
tional field]”.

In short: Lorentz and Levi-Civita's proposal lacks physical
informativeness. The charge is aggravated by the fact that the
contracted Bianchi identities, VbGab≡0; as mathematical identities,
barely count as conservation laws in any substantive sense. (By
contrast, VbT

ab ¼ 0 requires a certain coupling of the metric to the
matter fields. It thus hinges on physically substantive assumptions
(for details, see Read, Lehmkuhl, & Brown, 2017 (ms), sect. 3).

In consequence, Curiel's theorem seems to entail that local no-
tions of gravitational energy will invariably conjure up non-
tensoriality. In the following, I will exemplarily focus on pseudo-
tensors, the most common type of non-tensorial objects. (The
critique of other non-tensorial objects resorted to in order to avoid
pseudotensors, e.g. via tetrads, carries through (for details, see
Szabados, 2012, sect. 3.1.4e3.1.6).
18 The same argument rebuts Read's remark that, on the (standard) response
equation interpretation (see x2.1) even in flat spacetime VaTab ¼ 0, implies non-
conservation of energy for arbitrary coordinates (see Read, 2018). In adapted/in-
ertial coordinates of flat spacetime -viz. (global) Lorentz coordinates- VaTa

b ¼ 0
reduces to vaTab ¼ 0.
3.2. Pseudotensors

The Noetherian framework is the royal road to gravitational
energy in GR. Field-theorists (e.g.Weinberg,1972)may feel inclined
to treat GR like any other Lagrangian theory. Regarding the tech-
nical procedure, they may well be right (see the standard field-
theoretical treatments in Horský & Novotný, 1969, or Barbashov
& Nesterenko, 1983; for other possible advantages of their
perspective, cf. Pitts, 2016b, Pitts, 2016c). (I will ignore potential
issues with diverging action integrals: The metric need not fall-off
“nicely”.) But interpreting the results is more subtle. Goldberg
(1958, p. 319; cf. Horský & Novotný, 1969, pp. 427), for instance,
observes: “Clearly, the existence of a complex with a vanishing
divergence is insufficient evidence for the conservation of a phys-
ically interesting quantity.” To this I now turn.

Can pseudo-tensorial expressions adequately represent gravi-
tational energy-momentum 4-currents? I challenge this. Two
problems afflict pseudotensors: One is a problematic coordinate-
dependence, the other a danger of arbitrariness/ad-hocness, due
to ambiguity. While the second problem can be somewhat
tempered, this comes at the price of trivializing the content of local
gravitational energy-momentum.

The first problem stems from a formal property of pseudo-
tensors: They are invariant only under affine transformations. Un-
der more general transformations, pseudotensors are coordinate-
dependent. Should this disconcert us? Not necessarily: Calling to
mind the Kleinian conception of geometry, Wallace (2016) recently
reiterated that nothing is inherently baneful about coordinate-
dependent objects. For pseudotensors, however, the coordinate-
dependence is “vicious” (Pitts): In general, the preferred coordi-
nate transformations do not pick out the characteristic invariants of
the spacetime. The spacetime symmetries do not align with the
pseudotensor's symmetry group. This is highlighted by the fact that
pseudotensors do not transform like 4-vectors neither under purely
spatial transformations, xm/x

0m ¼ ðx0; x
0 iðxjÞÞ, “which mean

nothing more than a mere renumbering of points of the three-
dimensional configuration space” (Horský & Novotný, 1969, p.
431), nor under purely temporal ones, xm/x

0m ¼ ðx00ðx0Þ; xiÞ,
encoding “a continuous change in the rate and setting of the co-
ordinate clock” (ibid.). In this sense, pseudotensors require struc-
ture absent in a given (non-flat) spacetime.

In order both to connect the issue of pseudotensors with our
thoughts from xII, and to prepare the discussion of another proposal
in x3.3, it is rewarding to revisit two historical complaints about
pseudotensors' coordinate-dependence (for a detailed account, see
Cattani & De Maria, 1993). Soon after Einstein's proposal of his
pseudotensor, Schr€odinger explicitly computed it for an incom-
pressible fluid sphere. He showed that through a suitable choice of
coordinate one can make the Einstein pseudotensor vanish. Ein-
stein responded by showing that for systems of several masses, at
least the Einstein pseudotensor cannot be made to vanish every-
where. Reversing Schr€odinger's argument, Bauer subsequently
observed that for suitable coordinates Einstein's pseudotensor also
allows for even flat space possessing non-vanishing gravitational
energy.

What to make of these objections? Let's look at Pitts' answers to
them. According to Pitts (2010), Bauer failed to adapt his co-
ordinates to the spacetime theories. But shouldn't the choice of
non-adapted coordinates be irrelevant in a generally covariant
theory? Isn't evaluating the gravitational energy-momentum flux
cbj

b½h� ¼ cbt
b
ah

a for some observer c and along some direction h

merely a question of convenience, not of principled importance?
This casts Pitts' reply into doubt. For him, everything is as it should
be - once one adopts privileged, adapted coordinates.

In x2.1, we identified the distinguished coordinates as inertial
coordinates. In flat spacetime, these are globally Lorentzian. In
them, the metric takes on a constant value everywhere; its de-
rivatives vanish. Hence, the pseudotensor is indeed zero. So, Pitts is
right in his counter to Bauer: Adapting the coordinates to the
symmetries of flat spacetime resolves Bauer's paradox.18

What does this reasoning imply for Schr€odinger's objection, i.e.
when applied to pseudotensors on non-flat spacetimes? From the
definition of Einstein's pseudotensor, it is evident already that in
inertial (i.e. Fermi or Riemann) coordinates it vanishes: Pitts' reply
to Bauer thus trivialises the physical significance of the Einstein
pseudotensor!
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Pitts gainsays this conclusion. According to him, the vanishing
of the Einstein pseudotensor in, say, the exterior of a Schwarzs-
child black hole, when adopting uni-modular quasi-Cartesian co-
ordinates, would be worrisome only if it could be made to vanish
in a neighbourhood (thereby spoiling quasi-locality), or if the
Einstein pseudotensor indeed vanished for every coordinate sys-
tem. Neither is the case. More specifically, Pitts avers that there
exist infinitely many components of gravitational energy (x3.3).
Hence, according to Pitts, one need not be disquieted by the fact
that some components are zero. This retort hinges crucially on
Pitts' own proposal for gravitational energy in GR. Reasons for
scepticism about its adequacy will be presented in x3.3. Suppose
here that the reader shares my scepticism. Then, the reasoning we
reconstructed for Pitts' (perceptive!) above reply to Bauer un-
dermines his reply to Schr€odinger: The adapted local inertial co-
ordinates for the Schwarzschild case are indeed uni-modular
quasi-Cartesian. In these coordinates, the Einstein pseudotensor is
zero. (Inertial coordinates are adapted to free-fall frames: In them,
the metric takes on a constant numerical value.)

Let's dwell a little on the vicious coordinate-dependence. It can
become virulent also in practice - generalising Schr€odinger's
point. For instance, the Landau-Lifshitz pseudotensor -an alter-
native to Einstein's (see below)- yields negative energy densities
for Reissner-Nordstr€om spacetimes, when calculated in quasi-
Cartesian coordinates (Virbhadra, 1991). Negative energy den-
sities violate the weak energy condition.19 Therefore, they are
usually (e.g. Malament, 2012, Ch. 2.5) considered unphysical. By
contrast, calculations of Einstein's and other pseudotensors give
reasonable and mutually consistent results for Kerr-Schild Carte-
sian coordinates. For cylindrical gravitational waves, the pseudo-
tensor exhibits a similar coordinate-dependence: Their energy-
momentum densities associated with the Einstein pseudotensor
vanish in polar coordinates; Cartesian coordinates, by contrast,
yield reasonable results (Rosen & Vibhadra, 1993). But what dis-
qualifies quasi-Cartesian coordinates a priori? Kerr-Schild Carte-
sian coordinates are not adapted, either: They are not inertial
coordinates. The same applies to the cylindrical gravitational
wave: The global Cartesian coordinates employed there are not
inertial.

The second problem of pseudotensors consists in their non-
uniqueness (see Trautmann, 1962, esp. sect. 5-5; Anderson, 1967,
Ch. 13 for details). An infinite number of possible alternative
pseudo-tensors exists. None is a priori privileged over the other.We
saw already that it does not affect the validity of a continuity

equation, T b
a ¼ ffiffiffiffiffiffijgjp ðTb

a þ t b
a Þ; if we add an arbitrary super-

potential of the form � vcU
½bc�
a :

vb

�
T b

a � vcU
½bc�
a

�
≡vbT

b
a (12)

Such an addition amounts to a re-distribution of total energy-
momentum. Depending on how the metric falls off, this re-
distribution is physically significant.

Via a choice of a superpotential and the Einstein Equations, one
can define arbitrary pseudotensors:

ffiffiffiffiffiffi
jgj

p
t b
a ¼ vcU

½bc�
a þ 1

2k

ffiffiffiffiffiffi
jgj

p
Gb
a (13)

Different choices of superpotentials correspond to different
pseudotensors. Einstein's, for instance, follows from von Freud's
choice of the superpotential,
19 That is: For a time-like vector field x and the energy-momentum-tensor Tab the
energy-density relative to x is positive.Tabx

axb � 0
ðFÞU½bc�
a ¼ 1

2k
ffiffiffiffiffiffijgjp gadve

�
jgjgb½dge�c

�
(14)

Is underdetermination the issue here? If so, wherein does the
situation differ from the non-uniqueness of energy-momenta in
other classical field theories? After all, they too are only defined up
to a superpotential.

Consider the so-called “Bergmann form” of superpotentials:

ðBÞU½ab�
:¼ ðFÞU½ab�

c xc (15)

Here, xa generates a one-parameter group of coordinate trans-

formations whose variations, dxb ¼ εxbðxÞ leave the action (quasi-)
invariant, with an infinitesimal ε. This one-parameter group forms a
subgroup of the general continuous group of coordinate trans-
formations. (In other words: We have a theory with local gauge
symmetry that allows for a non-trivial global subgroup. In this case,
we can combine Noether's First and Second Theorem. For details,
see e.g. Brading and Brown, 2002, sect.5; Brading, 2002, 2005;
Ohanian, 2013.) Then, in vacuo (Ta

b ¼ 0) one has purely gravita-
tional (axial-/pseudo-vectorial) energy-momentum 4-current
along x as

ffiffiffiffiffiffi
jgj

p
ta½x� ¼ vb

�
ðFÞU½ab�

c xc
�

(16)

In the presence of matter (with the associated 4-current

Tab x
bs0), we have the total energy-momentum 4-current along x,

~j
a
ðtotÞ½x� :¼

ffiffiffiffiffiffi
jgj

p �
ta þ Tab x

b
�

(17)

It can be re-written via a superpotential,

~j
a
ðtotÞ½x� ¼ vc

�
ðFÞU½ac�

b xb
�

(18)

Due to the asymmetry in the superpotential's upper indices, the
r.h.s satisfies an ordinary continuity equation in all coordinate

systems va~j
a
ðtotÞ½x� ¼ 0:

Consonant with our terminology of x2.1, the total-energy-
momentum 4-current jaðtotÞ possesses no sinks/sources.

Note that the quantities xc need not constitute a vector field
(Trautmann, 1962). E.g. choosing them such that the components
x
bgabffiffiffiffi
jgj

p are constants yields an alternative to Einstein's, widespread in

astrophysical applications (cf. Poisson & Will, 2016) - the Landau-

Lifshitz pseudo-tensor ðLLÞtab. (It has the merits of being index-

symmetric, ðLLÞt½ab� ¼ 0 and built from only 1st derivatives of the

metric (Landau & Lifshitz, 1975, x96): ðLLÞt½ab� ¼ 0tab þ ffiffiffiffiffiffijgjp
Tab ¼

vcð
ffiffiffiffiffiffijgjp

gadðFÞU½bc�
d Þ:).

All known pseudotensors can be derived from the von-Freud
and Bergmann form, including Lorentz and Levi-Civita's proposal
(for details, see Goldberg, 1958; Trautmann, 1962, p. 190; Horský &
Novotný, 1969).

The freedom to choose any superpotential renders the local
representation of gravitational energy banefully under-determined.
There exist infinitely many superpotentials, one for each possible

(not necessarily tensorial!) xb. However, no such xb is inherently
privileged in a generic spacetime (with exceptions to be discussed
presently): Each corresponds to a possible “gauge” of pseudo-
tensors. The gravitational energy-momentum 4-current

ta½x� ¼ 1ffiffiffiffi
jgj

p ~t
a½x� ad-hoc privileges a direction. Equivalently, with

each choice of a ta½x� one exalts -by an ad-hoc stipulation a one-
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parameter group of coordinates transformations, by itself failing to
be privileged.20

This is not merely a sin against GR's spirit. Different energy-
momentum complexes can yield different energy distributions for
the same gravitational background.21 E.g. the energy for the exte-
rior of the Kerr-Newman black hole, determined via Møller's
pseudotensor, equals twice the energy, obtained from Tolman's,
Einstein's or Landau/Lifshitz's pseudotensor (Virbhadra, 1990).22

The ambiguity thus threatens the well-definedness of gravita-
tional energy-momentum.

By contrast, the freedom in the choice of superpotentials is in
most cases benign in pre-GR theories. Firstly, due to the compact-
ness of the support of matter fields and suitable fall-off conditions,
it doesn't affect the values of the corresponding Noether charges.
Secondly, the spacetime settings of pre-GR theories contain sym-
metries. Their associated Killing vectors then serve as such a
compass for privileged directions. I turn to this now.

One can evade the charge of ad-hoc privileging arbitrary di-
rections by attending to those directions that are inherently privi-
leged. (Recall x2.) Consider first symmetric spacetimes. Here, the

directions along Killing field xbare privileged.
For such spacetimes, Komar (1959) arrived at the following

expression for the superpotential:

KU½ab�½x� ¼ 1
2k

vb

� ffiffiffiffiffiffi
jgj

p
V½axb�

�
(19)

The resulting total 4-current (weight-1 density) reads:

~J
a
ðtotÞ ¼

ffiffiffiffiffiffi
jgj

p �
ta½x� þ Tabx

b
�
¼ vb

�
K ½Uab�

�
(20)
20 A complementary argument can be obtained from the Hamiltonian perspective.
Together with the Hamiltonian constraints and appropriate coordinate conditions,
the Hamiltonian takes the form of the surface integral.

H ¼ � c4

16pG

X
a;b¼1;2;3

I
i0

dsa

0
@vbhab � dab

X
g¼1;2;3

hgg

1
A:

Here, dsa denotes the surface element on spacelike infinity i0 and hab is the spatial
metric induced on the spacelike hypersurfaces of the 3þ1-foliation (see e.g. Poisson,
2007, Ch. 4.2 for technical details). Using different Hamiltonian formalisms, this
surface integral can be represented in different ways, as volume integrals with
different integrands:

� The standard ADM form:

H ADM ¼ � c4

16pG

Z
d3x

X
a;b¼1;2;3

0
@vavbhab � dab

X
g¼1;2;3

hgg

1
A

� Dirac's form:

H D ¼ c4

16pG

Z
d3x

X
a;b¼1;2;3

va

�
jgj12vb

�
ggab

��

with gab as the inverse of hab and g ¼ detðgabÞ.

� Schwinger's form: H S ¼ c4
16pG

R
d3x

P
a;b¼1;2;3

vavbðggabÞ

Although the resultant total energies all agree, H ADM ¼ H D ¼ H S , the integrands,
i.e. gravitational energy densities, differ non-trivially. Sch€afer, 2014, p. 17) concludes
that “the notion of gravitational binding energy density has no physical or obser-
vational meaning.
21 This does not seem to be the rule, though (Multam€aki et al., 2008).
22 The energy distributions of the Einstein and Møller pseudotensor differ also for
the deSitter, the Schwarzschild solution, the charged regular metric, the stringy
charged black hole and G€odel-type spacetimes (Gad, 2004, p. 2).
Thanks to its anti-symmetry, Komar's superpotential can be re-
written explicitly as a genuine tensor density of weight one:

vb

� ffiffiffiffiffiffi
jgj

p
V½axb�

�
¼

ffiffiffiffiffiffi
jgj

p
Vb

�
V½axb�

�
(21)

Consequently, JaðtotÞ ¼ 1ffiffiffiffi
jgj

p ~J
a
ðtotÞ is indeed a genuine vector. It is

covariantly conserved:

0 ¼ va~J
a
ðtotÞ ¼

ffiffiffiffiffiffi
jgj

p
VaJaðtotÞ (22)

Given that VaðTab x
bÞ ¼ 0, it follows that also the gravitational

energy-momentum 4-current ta½x�, too, is a genuine vector that is
covariantly conserved, Vata½x� ¼ 0.

In analogy to the ontological status of apparent forces, I argued
earlier that for energy-momentum balances we should be realists
only about those terms that survive in inertial frames *, i.e. upon
switching to normal coordinates.

Evaluating the gravitational 4-current,

ta½x� ¼ 1ffiffiffiffiffiffijgjp �
vb

�
KU½ab�½x�

�
�

ffiffiffiffiffiffi
jgj

p
Tab x

b
�

(23)

in normal coordinates and harnessing the Killing property yields:

tm½x�j* ¼
1
2k

vnv
½nxm� � Tmn x

n ¼ �1
k
xm � Tmn x

n (24)

Here, , ¼ hmnv
mvn denotes the flat-space, Cartesian d’Alembert

operator.
However, neither term making up this 4-current is suitably

connected with gravitational degrees of freedom to represent local
gravitational energy-momentum.

Consider first the second term, Tm
n x

n
: It is the (conserved) matter

energy-momentum flux along the direction of the Killing field. As
such, it is unrelated to gravitational degrees of freedom.

The first term, xm ¼ � vmðvnxnÞ, encodes how the “source den-
sity” vnx

n of the Killing field varies along inertial worldlines. It, by
contrast, is related to gravitational degrees of freedom via the
identity, holding for all Killing fields (e.g. Padmanabhan, 2010, p.
220)

VbVaxc ¼ Rdbacx
d (25)

A simple calculation shows that

,xm ¼ Rmn x
n (26)

So, albeit indeed related to gravitational effects (taken here to be
represented by curvature effects), the first term is too coarsely
related to gravitational effects: In particular, it ascribes to all
matter-free regions of any arbitrary spacetime the same value: zero.
This seems counterintuitive.

In conclusion, for symmetric spacetimes, the pseudotensorial
candidate for gravitational energy-momentum paradoxically turns
out not to be related in the right way to gravitational degrees of
freedom.

For non-symmetric spacetimes, the only inherently privileged xs
are those describing inertial trajectories. In the adapted/comoving
(i.e. normal) coordinates, the Bergmann form trivially vanishes.
(Recall: gj* ¼ const:) Harking back to our thoughts in x2.1, we educe
that resulting gravitational energy-momentum 4-current worthy of
realist commitment is zero:

ta½x�j* ¼ 0 (27)
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In summary, for both cases where the arbitrariness objection to
pseudotensors could seemingly be averted, we wind up with the
same conclusion as in x2.1e2: Gravitational energy-momentum is
trivialised. With the problem of vicious coordinate-dependence
still looming without remedy, it thus seems preferable to reject
the pseudotensorial approach to local gravitational energy-
momentum altogether.

I will therefore move on and inspect two heterodox alternative
proposals from the more recent philosophical literature.

3.3. Pitts' object

Recently, Pitts (2010) made an astute suggestion: Take your pet
pseudotensor, and declare the totality of its values in every possible
coordinate system an infinite-component object sui generis, with
each component corresponding to the value of the pseudotensor in
some coordinate system. Since each component satisfies a conti-
nuity equation, so does the whole object (suitably defining de-
rivatives for such objects).

Pitts' object provides thoughtful answers to the criticism of x2.2:
By construction, it is coordinate-independent. Hence, it extricates
gravitational energy-momentum from vicious coordinate-
dependence. Pitts rightly extols this.

What about the ambiguity/arbitrariness problem? It persists. If
one picks one pseudotensor of the Goldberg-Bergmann type and
“Pittsifies” it, one obtains indeed a well-defined object. Yet, why
prefer this pseudotensor over others? In terms of the Von Freud or
Bergmann form, different choices for a preferred direction for a
gravitational energy-momentum are still possible. Hence, one can
construct again an infinite number of Pitts objects, one for each
pseudotensor. Furthermore, why not Pittsify other, non-
pseudotensorial expressions (involving e.g. background metrics or
auxiliary connections, each in itself no less suitable a priori)? This
exacerbates the ambiguity. (Normally, one could plausibly discard
such objects as parasitic on auxiliary structure that GR simpliciter
lacks. Pitts' strategy deprives one of this argument: The object
Pittsified over, say, all possible auxiliary metrics no longer depends
on this auxiliary structure; only each coordinate does. In conse-
quence, in order to restrict Pittsification to pseudotensors, Pitts has
to summon other arguments than he has presented so-far.)

He might parry by demonstrating that one particular Pitts ob-
ject, say, the Pittsified Belinfante-Rosenfeld symmetrized Einstein
pseudotensor, is indeed the best candidate. This is certainly
conceivable: The list of attractive pseudotensors of the Bergmann
form can be further whittled down by excluding e.g. the Landau-
Lifshitz pseudotensors or the Møller pseudotensor (on account of
its anomalous factor, diagnosed by Katz (1985)). To-date, though,
such a comprehensive analysis is still pending.

Should our hopes for uniqueness be dashed, Pitts, 2017, (sect.
13.4) envisages a way to turn this vice into a virtue: As the action
contains infinitelymany symmetries, it may appear natural to allow
for infinitely many gravitational energies. Perhaps, Pitts proposes,
this proves an advantage in the context of black hole thermody-
namics: After all, Nester and collaborators suggested that different
gravitational energies correspond to different free energies and the
like under different boundary conditions. However, to judge that
such considerations buttress Pitts' proposal seems premature: At
present, it is controversial (see e.g. Dougherty & Callender, 2016)
whether the correspondence between black hole thermodynamics
and thermodynamics is substantive, rather than a speculation
based on partial and formal analogies.

So, let's assume that the (non-)uniqueness problem defies a
satisfactory resolution. In that case, Pitts (2017, p. 270) rightly
warns against double standards: One must not demand of gravi-
tational energy, what non-gravitational energy does not satisfy,
either. Pitts points out that non-uniqueness poses a problem even
for scalar fields (Callan, Coleman, & Jackiw, 1970). GR's gravita-
tional energy (Pitts-style) would then appear no worse off than
other field theories. But this, I think, is misleading: Attempts to
improve the (Belinfante-Rosenfeld-symmetrized) canonical
energy-momentum tensor, “[…] are largely ‘ad hoc’ procedures
focused on special models of field theory, often geared to the
needs of quantum field theory and ungeometric in spirit” (Forger
& R€omer, 2003, p. 3). Requiring a certain “ultra-locality”, Forger
and R€omer show in a geometric, systematic manner that
uniqueness of the energy-momentum tensor can be restored: For
non-gravitational matter, it coincides with the variationally
defined energy-momentum tensor. (For its gravitational coun-
terpart, the Einstein tensor, this leads us back to Lorenz and Levi-
Civita's proposal of x3.1.)

Of course, Forger and R€omer's result can scarcely lay claim to a
proof from indubitable first principles. If thus one regards it as little
more than a stipulation, it would be unfair to decry Pitts' proposal
as wanting for its inability to solve the uniqueness problem:Nobody
who champions some realism for gravitational energy in GR has
solved it. The point of the critique of Pitts' proposal in this section
then could therefore only be twofold: Firstly, to question some of
Pitts' insinuations that his proposal provides any particular
advantage. This might eventually turn out to be true, but at present,
more work needs to be done. Secondly, I happily grant Pitts' pro-
posal the status of the most promising avenues for realists about
gravitational energy. Hence, if even it suffers from grave problems
e so much the better for eliminativism.

I close with two considerations, both revolving around the phys-
ical significance of Pitts' object. First: Doesn't Pitts owe us an argu-
ment why his object should be considered physically meaningful?
Analogously,wecouldPittsify, say, theelectromagneticpotentialsof a
system: Gather the totality of all its possible gauges into one formal
object. Is this artificial seeming Pittsified 4-potential physically
meaningful? I am not aware of any theoretical or practical context in
which physicists ever calculate infinite numbers of energies.

Pitts could respond: Wherever gravitational pseudotensors are
useful, his proposal affords a coherent interpretation of such
pseudotensors. Let's consider three more concrete forms of this
argument, related to an interpretation to the Noether Theorems,
the equivalence with the Einstein Equations, and Anderson's
framework of geometric objects, respectively.

The first can be cashed out as the ability of Pitts' strategy to
provide an intelligible interpretation of Noether's Theorems for GR.
It gives what seems the natural answer to the question of how
many conserved energies there are in GR, namely: infinitely many
e corresponding to infinitely many possible rigid time translation
symmetries. But the argument is not cogent: Why should the
Noether Theorems be in need of an interpretation? Whether one
thinks they do, depends on one's willingness to regard the
Lagrangian as physical. This is controversial. Arguably, it is actually
more natural to regard the Lagrangian merely as a computational
prop. The Noether machinery is only a tool to conveniently derive
continuity equations. Their validity, however, does not presuppose
anything from the Noetherian framework: They follow from the
field equations alone.

As second elaboration of the argument focuses on the inter-
pretation of these continuity equations. Pitts reminds us of
Anderson's observation that the totality of continuity equations of
all possible pseudotensors is equivalent to the Einstein Equations:
Surely, one may be tempted to conclude, since the latter are
physically meaningful, so is the equivalent totality of continuity
equations, i.e. the local conservation law for the corresponding Pitts
object. At least for the time being, I want to resist that temptation:
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Should one infer from the equivalence of Feynman's path integral
formalism with standard quantum mechanics that their paths
equipped with their complex amplitudes provide a coherent
interpretation of quantum mechanics? This would be too quick
(Zeh, 2011). Likewise, one may challenge that a concept's compu-
tational utility on its own suffices to warrant the kind of realism
that underlies Pitts' reasoning. Compare: It is at least controversial
whether to include the quantum potential amongst the ontology of
Bohmian Mechanics e despite its utility in many applications, such
as the semi-classical approximation schemes (see e.g. Goldstein,
2017, sect. 5 for details).

The third and last worry about the significance of Pitts' object
consists in some discomfort one may feel about the expressly non-
geometric nature of Pitts' object: How does such a non-geometric
and non-tensorially representable object fit into a geometric,
local field theory? Pitts replies: If Anderson's standard formal
framework of geometric objects cannot accommodate gravitational
energy, but the latter is a good idea, seek an alternative framework
that encompasses also non-geometric objects! Tome it seemsmore
cautious to resolve this conflict in favour of the framework of
geometric objects: If forced to choose between a well-established,
useful “global” ontological framework and my hunches about one
quantity whose meaningfulness has conceptually already been
called into question, I prefer to sacrifice the latter.

In summary: While interesting and promising, Pitts' object
leaves questions crucial for its physical significance unanswered.
3.4. The cosmological constant

According to its standard interpretation, one construes the
cosmological constant L as vacuum energy. Based on this standard
interpretation, Baker, 2005, (sect. 4.2) raised the following ques-
tion: If L is the energy contribution from empty space-time,

shouldn't TðLÞ
ab ¼ �L

2kgab count as a natural candidate for gravita-

tional energy-density? Not only does TðLÞ
ab play the functional role of

a (negative) energy density of a perfect “cosmic fluid”, composed
purely of matter-free spacetime, but due to metric compatibility, it

even satisfies a conservation law, VbTðLÞ
ab ¼ 0.

Baker's proposal is a non-starter, however, for three reasons.
Firstly, the Einstein Equations with a cosmological constant, Gab þ
Lgab ¼ 2kTabk, are a minimal extension of Einstein's original GR,
obtained from adding a constant to the Einstein-Hilbert Lagrangian.
Hence, for standard GR, in which the cosmological constant is ab-
sent/zero, the gravitational energy would identically vanish. This
trivializes gravitational energy. Secondly, what is really meant by
interpreting L as vacuum energy? On one common view, this
vacuum energy refers to the sum of the energy fluctuations of the
quantummechanical ground state.23L thus is not energy of “empty
space”. Rather, it is the zero-point energy of an all-pervasive
23 This interpretation of L displays a discrepancy between the quantum field
theoretical predictions and cosmological observations by roughly 120 (!) orders of
magnitude (see e.g. Carroll, 2000; Rugh & Zinkernagel, 2000).
24 By that I mean the following. Construe both sides of the Einstein Equations as
functionals of the metric (as well as, for the energy-momentum tensor, the matter
fields), Gab½gab� ¼ 2kTab½gab;J� (Recall that Tab depends on gab , see Lehmkuhl, 2010
for an analysis.). The Einstein Equations codify how the matter fields and the metric
interdepend (Nerlich, 2013, Ch. 9): Together with initial data, they determine (some
part of) the dynamics of the metric. (Recall that the Einstein Equations constrain,
but don't fix the trace-free part of the Riemann tensor, the Weyl tensor.) The
functional on the r.h.s., Tab½gab;J�, plays the role of a source density, analogously to

the particle current, JaA :¼ dIp
dAa

A
, (say, fermions) of a Yang-Mills field Aa

A and interaction

Lagrangian Ip; (Szabados, 2012, sect. 3.1.2). The functional on the l.h.s., Gab½gab� plays
the role of a field-strength functional, with the metric as the “field strength”.
quantum field, i.e. attributable to matter. Lastly, although TðLÞ
ab

plays the functional role of an energy density, nothing compels us
ascribe it to the r.h.s. of the Einstein Equations, as a source: No less
arewe licenced to ascribe it to the l.h.s., whereL could simply serve
as some parameter of the “gravitational field strength
functional”,24LGab½gab� ¼ Gab þLgab e a status comparable with
parameters featuring in other non-linear theories, e.g. the soliton
equation. Should one indeed interpretL as a property of spacetime
itself, then via a contraction of the Einstein Equations (in vacuum) it
is easily seen to equal scalar curvature of spacetime, unperturbed by
matter: L ¼ 4R: This contradicts what one would expect of a suit-
able notion for gravitational energy: As a contraction of the Rie-
mann tensor, it wouldn't yield any contribution from gravitational
radiation, encoded in Weyl structure. Furthermore, the proposal
does not reduce to the potential energy of Newtonian gravity.

In conclusion, at best, Baker's interpretation ofL as gravitational
energy defies plausibility. At worst, it rests on a conflation of clas-
sical and quantum vacuum.
4. Summary and conclusion

We started the preceding analysis by investigating conservation
of energy-momentum in generic, non-symmetric spacetimes.
Considerations of the priority and explanatory distinction of iner-
tial frames led us to restrict our realist commitments in energy-
momentum balances to the terms retained after an evaluation in
inertial frames and the adapted coordinates. We found that the
matter energy-momentum 4-currents along the inherently
preferred directions in such non-symmetric spacetimes (viz. along
inertial trajectories) possess no sinks/sources. Whilst thus matter
energy-momentum is conserved locally, globally it is not: The
energy-momentum contained in an observer's spacelike hyper-
surface varies in time.

In symmetric spacetimes, the matter energy-momentum 4-
current along their Killing fields is conserved both locally and
globally: The associated “charges” are independent of the choice of
space-like hypersurfaces.

Non-trivial local gravitational energy-momentum did not arise
in these considerations: It turned out to be an idle wheel in the
context of matter energy-momentum conservation. This inspired
the working hypothesis that gravitational energy-momentum is
eliminated in GR: Analogously to apparent forces in CM, it is
reduced to representational artefacts forged by physically unpriv-
ileged descriptions.

Subsequently, we scrutinised proposals for local gravitational
energy-momentum. Nontensorial expressions are inevitable.
Exemplarily, the discussion focused on pseudotensors, as they
emerge naturally from generalizations of Noether's Theorems,
applied to GR's purely gravitational Lagrangian. Pseudotensors face
two main problems: firstly, a mismatch between the spacetime
symmetries and the symmetries that their preferred coordinates
pick out, and secondly an ambiguity that threatens to introduce
arbitrariness/ad-hocness. The latter worry can be allayede but only
at the price of trivializing the gravitational energy-momentum 4-
current. These issues suggest that one abandon also the pseudo-
tensorial route to local gravitational energy-momentum.

As away out, we considered Pitts' strategy to define an infinitely
many component object, via the totality of all possible pseudo-
tensors. Whilst addressing the issue of vicious coordinate-
dependence, Pitts' proposal provided no satisfactory answer to
the problem of arbitrariness. Its physical significance remains
doubtful.

Eventually, we examined and discarded Baker's proposal of the
cosmological constant as candidate for local gravitational energy.
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GR forces us to revise (i.a.) two notions, central to pre-GR
hunches. Firstly, global energy-momentum conservation becomes
a contingent fact, dependent on the contingent symmetries of the
spacetime. Secondly, local gravitational energy-momentum is
eliminated: It is no longer a meaningful physical quantity. In a
sense, it has been geometrized (or rather: “inertialised”) away.

This verdict is largely in agreement with the GR literature (e.g.
Pauli, 1981, p.177;Weyl, 1923, p. 273; Eddington,1923, p. 137). Even
Einstein (1918, in: Gorelik, 2002, p. 25), despite initially advocating
his pseudotensorial approach, ultimately conceded that “(t)hus […]
we come to ascribe more reality to an integral than to its differ-
entials.” Others (e.g. Weyl, 1923, p. 273) concurred: Can we reserve
a realist commitment only for the global (integral) notions of
gravitational energy-momentum? But this is a question for another
day.
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