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A Critique of the Asymptotic Safety Program
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The present practice of Asymptotic Safety in gravity is in conflict with explicit calculations in
low energy quantum gravity. This raises the question of whether the present practice meets the
Weinberg condition for Asymptotic Safety. I argue, with examples, that the running of Λ and G
found in Asymptotic Safety are not realized in the real world, with reasons which are relatively
simple to understand. A comparison/contrast with quadratic gravity is also given, which suggests
a few obstacles that must be overcome before the Lorentzian version of the theory is well behaved.
I make a suggestion on how a Lorentzian version of Asymptotic Safety could potentially solve these
problems.

1. PREFACE

Asymptotic freedom describes the situation where the coupling constants of a quantum field theory run to zero at
asymptotically high energy. For renormalizeable theories, this running is logarithmic in the momentum.

Asymptotic safety (AS) describes the situation where the coupling constants run to an ultraviolet fixed point where
the couplings are finite but where the beta functions vanish. While this can happen in a renormalizeable field theory
[1] where the running is logarithmic, its most common application is in the study of gravity [2–5] . In this case, the
running is generically power-law, because of the dimensional coupling constants. In this paper I am discussing only
the gravitational case with power-law running.

There is a conflict between the much of the present practice in AS and known explicit calculations of quantum
processes in quantum gravity. This was originally pointed out in work with M. Anber [6]. At low energy calculations of
quantum gravity processes can be carried out in the rigorous Effective Field Theory (EFT) treatment [7, 8] and we can
compare these observables with the practice of Asymptotic Safety. More recently, explorations of quadratic gravity
[9–19], which involves curvature-squared terms in the action, also shed light on the connection to AS. Quadratic
gravity is a renormalizeable theory for quantum gravity in the ultraviolet. It is somewhat more tentative and needs
further exploration itself. However, it provides a calculational framework which is reasonably close to AS, such that
it provides an interesting lessons for AS.

The present paper is an attempt to explain many of the issues involved. It has been invited to be part of a volume
describing an overview of running couplings in gravity. It is meant both as a summary of concerns aimed at the AS
community, and as an explication of the core issues for an outsider audience. As such it will contain comments which
are unnecessary for an AS practitioner, as well as occasional technical details aimed only at the experts. I hope that
this document can serve this dual purpose.

The reader will also notice that I often use the phrase “present AS practice”. This is because I want to differentiate
between what is often done in the present AS literature from what could be the ultimate understanding of Asymptotic
Safety. The AS paradigm is potentially an attractive resolution to the puzzle of quantum gravity. However, the present
status is not yet a successful resolution. This article is then an attempt to point out shortcomings in the present
practice as well as to point to future directions which may be fruitful.

1.1. Key contrasts: Euclidean vs Lorentzian, powers vs logarithms, cutoffs vs dimensional regularization

As a preview to the more technical discussion which follows, let me mention some of the important issues which
are central to that discussion.
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The foundational technique of AS practice is the Euclidean functional integral. One studies this with an infrared
cutoff and integrates out quantum effect in an energy scale around the cutoff. This is a variation of our usual way
of using cutoffs in that the cutoff is introduced to keep the quantum effects above the cutoff and removes those with
scales below the cutoff. The variation of the coupling parameters with that scale gives the renormalization group flow
of the couplings. It is understood that running the cutoff down from the UV fixed point down to a zero value for the
cutoff will then include all of the quantum corrections.

However, it is also common practice in the community to assign a meaning to the parameters at given values of the
cutoff. For example, the running Newton constant in AS is often parameterized as

G(k) =
G

1 +Gk2/g∗
(1)

where k is the cutoff, and g∗ is related to the fixed point in a way that will be described below. The use of the
symbol k makes it tempting to think of k as a momentum (in practice it is closer to a mass cutoff) and to think of
the resulting G(k) as one that depends on the momentum scales in a reaction. This is incorrect, as we will see from
direct examples in Sect. 3.1. Moreover, even if it were a Euclidean momentum, its Lorentzian counterpart would be
ill-defined. A large Euclidean momentum can translate to a massless on-shell Lorentzian particle if k2

0 − k2 = 0 or to
positive or negative values of the various kinematic invariants in reactions (i.e. s > 0 or t < 0) The basic question
then is whether G(k) at finite values of the cutoff has any physical meaning. Explicit calculations suggest that it does
not.

A second point to watch is that the important features of AS do not occur when dimensional regularization is used.
For example, if one truncates to the Einstein action, then the Newton constant does not run in dimensional regulariza-
tion, contradicting Eq. 1. At one level, this can be blamed on a known weakness of dimensional regularization. Near
d = 4 it cannot identify quadratic divergences as it includes integrations over all scales. So it is perfectly allowable to
use cutoffs to identify effects at a particular scale around the cutoff. But in the end, real physics should not depend
on the regularization scheme. I take it as given that dimensional regularization provides an acceptable regularization
scheme to describe physical processes in field theory. I know of no counter-example. So in the end, any scheme which
uses cutoffs to define the theory should give the same physical predictions. We need to understand how AS can do
that. This is not a trivial constraint. In fact, we can understand how this occurs, but the resolution tells us that the
running G(k) is not valid for physical processes.

The other feature to be aware of, before we start describing the details, is the difference between logarithmic running
constants and power-law running. Our experience in renormalizeable field theories is with logarithmic running.
The need to use running couplings comes from the existence of large logarithms. If we measure the coupling at a
renormalization scale µr and apply it at an energy scale s, there will be large corrections of order α(µr) log(s/µ2

r).
Use of the renormalization group lets us take that original measurement up to the scale µ2

r ∼ s, t, in which case
there are no longer any large logarithms. Note that the signature of the kinematic invariants does not matter as
log s/µ2

r ∼ log t/µ2
r up to small factors as long as s and t are both of order µ2

r, even though s and t have opposite
signs. Moreover, µr is an unphysical parameter. In the end, µr disappears from physical processes.

However, AS applied to gravity requires something different, which is power-law running. Because most of the
couplings in the most general Lagrangian are dimensionful, one multiplies them by powers of the scale in order to
define dimensionless variables. For example the Newton constant is modified by

g(k) = Gk2 (2)

The running of this dimensionless coupling is that which defines the fixed point. In this case

g →
k→∞

= g∗ , (3)

hence the notation of Eq. 1. However, now we must make contact with physical processes. If we imagine measuring
G at some scale µ2

r, one is faced with the question of making the measurement of at some values of s or t of order µ2
r.

But s and t generally carry opposite signs, and g(s) and g(t) are wildly different quantities in a way that does not
occur in logarithmic running. Moreover, as we will see, there is no reason to expect that something like G(s) captures
the actual effect of quantum corrections to G. Higher order momentum dependence generally refers to new operators,
where the factors of s or t come from extra derivatives on the fields. These new operators need not enter reactions in
the same way as the lowest order operator.



3

2. FOUNDATIONAL ISSUES

2.1. There is no gravitational running of regular coupling constants

There are obviously gravitational corrections to ordinary reactions which occur in the Standard Model. Robinson
and Wilczek suggested that it could be useful to define the gravitational correction to the running coupling constants
of the theory [20]. For example, for the gauge couplings, this could take the form

β(g,E) ≡ dg

d lnE
= − b0

(4π)2
g3 + a0

E2

M2
P

g (4)

After a large number of papers in the literature [21–24], on various sides of this issue, it has become clear that this
does not occur. The reasons are instructive for our discussion of Asymptotic Safety.

The first significant reason is kinematic. In Lorentzian reactions, the variable E2, can have either a positive or
negative sign. For example, if the reaction e+e− → µ+µ− has the gravitational correction

M∼ e2(1− aGs)
s

(5)

where s = (p1 + p2)2 > 0 and a is some constant. For the reaction e+µ− → e+µ−, related to it by crossing symmetry,
will have the form

M∼ e2(1− aGt)
t

(6)

with t = (p1 − p3)2 < 0 having the opposite sign from s. The gravitational corrections will go in different directions
in the two reactions. If the first reaction has a decreasing coupling, the second one will have an increasing coupling.
In more complicated QED reactions, there will be many kinematic invariants which span the range of sizes and signs.
These effects cannot be captured by a running coupling constant. If one attempts to measure the effective electric
charge at a renormalization scale s = µ2

r using e+e− → µ+µ−, such as e2(µR) = e2(1− aGµ2
r) that coupling will not

be useful in describing the crossed reaction or in other more complicated reactions.
The other significant reason is universality. The gravitational corrections carrying powers of the energy are not

actually a renormalization of the electric charge, but are described by new operators with extra derivatives. For
example, if we take the bare QED Lagrangian to be

L =
1

4e2
0

FµνF
µν (7)

then after loop corrections the energy dependent terms would be reflected in operators such as

L =
1

4e2
FµνF

µν + aGFµν2F
µν + bGψ̄σµνi /Dψ∂µAν + cGψ̄i /DD2ψ + ... (8)

These operators can enter different reactions in different ways, depending on the particle content and kinematics of
those processes. Their contribution is not generally in the same manner as the original renormalized charge, and then
is not generally able to be described by a running charge.

It should be noted that because the graviton is massless, not all the gravitational corrections are described by local
operators. There can be non-local effects reflecting the long distance propagation of the graviton. However, this
feature does not change the discussion above.

This brief discussion follows most closely Ref. [21] where further examples are given, but is also reflected in different
ways in Refs. [22].

2.1.1. Using a cutoff does not imply the running of a coupling constant

In response to criticisms such as the above, some authors suggested that using a cutoff regularization scheme would
produce a running coupling [23]. This is not correct, and again it is useful for our purposes to understand why.

We first note that using dimensional regularization there is no gravitational renormalization of the electric charge
when neglecting the masses of the fermions. This follows from power-counting with a dimensional coupling G.
Temporarily neglecting the fermion masses, the only dimensional factor in dimensional regularization comes from the
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factor µ4−d inserted in Feynman integrals in order to keep the dimensions correct. This yields factors of logµ2 in
intermediate steps in calculations but could never produce a factor Gµ2 in gravitational calculations. With fermion
masses, the gravitational corrections are of the form

L =
1 + aGm2

4e2
0

FµνF
µν + ... (9)

where a is some constant and the ellipses refer to the momentum dependent corrections discussed above. When
measuring the electric charge one finds

1 + aGm2

4e2
0

=
1

4e2
r

(10)

and one expresses predictions in terms of the renormalized charge er. One is left only with the momentum dependent
operators described above.

Real physics does not depend on the nature of the regularization scheme. However, the authors [23] suggested
that the use of a cutoff regularization could be used to define a running coupling which would capture the quantum
gravitational effects at a given scale. That is, by using a cutoff Λ one would define the beta function

β(g,Λ) ≡ dg

d ln Λ
= − b0

(4π)2
g3 + a0

Λ2

M2
P

g (11)

This would get around the kinematic and universality problems of the Robinson-Wilczek suggestion. The reasoning
is vaguely Wilsonian - by using a cutoff one includes effects which occur below that scale. One rebuttal is that one
must also include effects which occur above that scale, and the overall physics is independent of the separation scale.
However, even if one neglects this, the cutoff effect disappears in renormalization procedure. The introduction of a
cutoff does lead to a renormalization of the bare electric charge, of the form

L =
1 + a0GΛ2

4e2
0

FµνF
µν + .... (12)

with the suggestion that

1 + a0GΛ2

4e2
0

=
1

4e(Λ)2
(13)

However when one calculates a physical process, this effect enters the amplitude just like the renormalized charge,
and the correct identification is

1 + aGΛ2

4e2
0

=
1

4e2
r

(14)

and this manifestation of Λ disappears from the physical amplitude [24]. In the end, cutoff regularization and
dimensional regularization do agree in physical amplitudes.

2.1.2. Log running vs power-law running

The above sections illustrate a truism - There are no power-law running coupling constants in 4D Minkowski
quantum field theory.

Logarithmic running works because the logarithm is directly tied to renormalizaton. In the QED case, photon
exchange with the vacuum polarization leads to a factor of

M∼ e2
0

q2[1 + Σ(q)] + iε
(15)

where Σ(q) is scalar part of the vacuum polarization. No matter how one chooses to regularize it, the vacuum
polarization contains a divergent term and a logarithm of q2. The divergence and the logarithm share the same
coefficient. If we measure the charge using e+e− → µ+µ− at a renormalization scale s = µ2

R with s = (p1+p2)2 >> m2
e,

this result becomes

e2(µR)

s[1− α
3π log −s

µ2
R

] + iε
(16)
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Because the logarithm comes along with charge renormalization, it occurs in every reaction in the same fashion.
And because of the properties of the logarithm, the same running coupling would apply to the crossed reaction
e+µ− → e+µ− with the change s→ t.

Power-law effects do not share these features. There is no universal connection of power-law corrections to the
renormalization of the charge. And because of Minkowski kinematics, the effects in different channels can go in
opposite directions.

That being said, it is possible in any one calculation to define a running coupling for that particular process. This
may be a useful procedure. However, in field theory, a coupling constant has multiple duties. It not only describes
that one particular process, but also must describe a multitude of others. These can differ in the arguments, i.e.
λ(φ) vs λ(q2), and also on the nature of the process. The same coupling needs to describe not only space-like vs
time-like reactions such as we have used as examples above, but also multi-particle reactions which involve many
more particles than the simplest reaction. It is this multiplicity of uses where attempts to define power-law running
couplings fail. The same definition which works in one setting will in general fail in the these other settings. The logic
and mathematics which tell us that logarithmic running coupling constants are useful does not apply to power-law
running.

The reader may object that Wilson has taught us the value of coarse-graining as a way to define couplings at
different scales, and that this procedure has been verified in condensed matter systems even including power-law
re-scalings. However, the couplings in these condensed matter examples do not have as many applications as the
couplings in scattering processes. And the 3D setting for condensed matter systems does not display the kinematic
variety of Minkowski reactions. It is easy to understand how the Wilsonian rescaling in condensed matter may be
useful, while corresponding Minkowski QFT applications are more complicated.

2.2. Weinberg formulation of Asymptotic Safety

The vision for Asymptotic Safety for gravity was formulated by Weinberg [2]. He invokes a situation where all the
coupling constants run to fixed values at high energy. This includes the dimensionful couplings, when rescaled by a
universal dimension. He defines dimensionless variables gi by multiplying by a scale µ. For example, one would have
gG = Gµ2 and gΛ = Λvac/µ

4, where Λvac is the vacuum energy density1.
Specifically, Weinberg formulates the hypothesis using scattering processes and other reactions. Using these dimen-

sionless coupling he suggests that these rates could have the form

R = µDRf

[
E

µR
, X, gi(µR)

]
(17)

where X stands for all the other dimensionless physical variables. Here µR is meant to be a renormalization point,
as used above. Because physics cannot depend on the arbitrary choice of the renormalization point, one can choose
µR = E and have the result that the rate behaves as

R = EDf [1, X, gi(E)] (18)

Aside from the pre-factor (which would involve D = −2 for a total cross-section) the rates would then depend on the
couplings gi(E) as E →∞. Asymptotic safety is defined by the condition that the running couplings go to constant
values gi(E)→ gi∗ at high energy, or equivalently that their beta functions vanish

β(gi) = E
∂

∂E
gi = 0 (19)

This is the UV fixed point. The implication here is that instead of blowing up with the energy, as GE2 would, these
factors go to constant values.

We can see from the discussion of coupling constants in the previous subsection that this needs to be generalized
somewhat, as there is no unique energy E in Minkowski reactions. We do not want to include the kinematic variables
in the running parameters, such as gi(s), gi(t), ... because of the kinematic ambiguity and differing signs. The best

1 I will try to keep separate the vacuum energy density Λvac (which much of the particle physics community refers to as the cosmological
constant) from other definitions of the cosmological constant. Much of the Asymptotic Safety community uses the symbol Λ for a
different version Λ = −Λvac/8πG = −Λred. For this combination, I will use Λred (with red standing for “reduced”)
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that we can hope for is to choose all of the kinematic variables of order the renormalization point, |s| ∼ |t| ∼ ... ∼ µ2
R

and write the rate as

R = µDRf

[
s

µ2
R

,
t

µ2
R

, ...X, gi(µR)

]
. (20)

In this formulation it is not clear how the renormalization scale µR drops out of physical observables. However,
that can work out in a given process by explicitly performing the renormalization and demanding that the result is
independent of µR. That demand then identifies the renormalization group flow of the couplings. The larger question
is whether, having done this renormalization in one process, the result generalizes to other processes and is useful in
describing the quantum effects of the full theory. This will be explored below in explicit examples, with a discouraging
conclusion.

2.3. The practice of Asymptotic Safety

This section is clearly meant primarily for readers outside the AS community. It tries to very briefly explain the
formalism and physics of the calculations. However, there are important comments towards the end of Sect. 2.3.1
that are intended for all readers.

The present practice of Asymptotic Safety does not study reaction rates, but rather evaluates the flow of the
Euclidean functional integral in a background field formulation. That is, the functional integral is a function of the
metric, curvatures and covariant derivatives.. The logic here is that once all quantum corrections are included in
the Euclidean functional integral, the result can be continued to Lorentzian spaces, and the metric and curvatures
expanded in the external fields in order to obtain the amplitudes that the Weinberg criterion envisions. I will call this
the ideal AS program.

However, for the most part in present applications this logic is not followed in practice2. Rather rather than
evaluating the full functional integral, one evaluate the evolution from the UV fixed point down to some cutoff k
including quantum corrections above k. Without evaluating the quantum corrections below the cutoff, it is then
assumed that the resulting gi(k) are the appropriate couplings to use in something like the Weinberg criterion in real
world applications at the scale k. That is, gi(k) ∼ gi(E ∼ µR ∼ k). There is also necessarily a truncation of the
basis (to be discussed soon) in such applications. There is an extra logical step required if these assumptions are to
be true. This can be called the practical AS program.

One complication of the AS program is that the basis set of operators is infinite, with a corresponding infinite number
of coupling constants. The renormalization flow for a theory such as gravity mixes operators of all dimensions, with
the only restriction being that of general covariance. In the action, there will be local terms of the form

L =
√
−g
[
−Λvac −

1

16πG
R+ c1R

2 + c2CµναηC
µναη + d1R

3 + d2R2R+ ...

]
(21)

This series can be ordered by powers of derivatives, such that only the operators with few derivatives are relevant
for the low energy limit. This is what is done in the effective field theory treatment. However, Asymptotic Safety
concerns the high energy limit and all operators become active as the energy goes to infinity. The ideal program then
would involve all possible operators with their coefficients3. However in the ideal program these coefficients are not
all independent. The infinite set of couplings would be described by a few relevant couplings and only special values
of the parameters would be consistent with the Asymptotic Safety hypothesis.

Practicality requires that this be truncated at some order. The AS community has explored a remarkable range of
such truncations, and the overall picture that emerges has so far been independent of the truncation. For the purposes
of this paper, I will assume that the truncation problem is not a fundamental obstacle. Nevertheless, we can examine
truncations to see what might be issues for the full program, as in Sects. 4.1 and 4.2.

The fundamental equation of AS practice, the Wetterich equation [26], describes the change of the Euclidean

2 Codello et al. [25] have pursued the ideal program to reproduce some of the results of chiral perturbation theory. The chiral logs emerge
in the IR limit as k → 0

3 There are also non-local contributions to the functional integral. It is assumed that these are fully parameterized by the coefficients of
the local operators.
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functional integral Γk, again defined to include quantum fluctuations above the scale k, under a change in scale4 .

k
∂

∂k
Γk =

1

2
Tr

[(
1

δ2Γk

δgδg +Rk

)
k
∂

∂k
Rk

]
(22)

Here Rk is the cutoff function which suppresses momentum modes below k. Conceptually, it is like a mass below the
scale k and zero above k, chosen in some smooth way so that there is not a discontinuity. An example is

Rk = (k2 −D2)θ(k2 −D2) (23)

In understanding the variation δ2Γk/δgδg, one notes that g schematically represents the metric and any other fields
in the theory. If the functional contained DµgD

µg then the variation would be −D2. So conceptually, this equation is
similar to k∂kTr log(D2 +m2

k). Of course the real case is very much more complicated by the interactions and all the
indices. A positive feature of the flow equation is that the flow only depends on the physics near the cutoff scale k.
Higher scales have already been included and no longer enter because of the vanishing of ∂kRk at high k, while lower
scales are suppressed by the cutoff. Qualitative results have so far been independent of the choice of the function,
although numerical results do depend modestly on the choice.

Much work has gone into exploring the existence and properties of the UV fixed points. To do this one first
identifies a truncation in the basis. One starts at finite k and uses the Wetterich equation to flow to higher scales.
In the infinite dimensional space of coupling constants, the fixed points live on finite dimensional “critical surface”.
Common expectation is that this is two or three dimensional. This leaves a two or three dimensional family of
solutions. When one flows from the fixed point to the IR at k = 0, one will have two or three undetermined constants.
In particular Λvac and G at k = 0 are not predicted. But in principle there are predictions for an infinite number of
other constants in the local effective Lagrangian.

2.3.1. AS at one-loop

In order to see the FRG machinery at work, we can look at the illuminating calculation of Codello and Percacci
[27], which is described as a one-loop evaluation including terms up to the order curvature-squared. This example
also allows a comparison with a conventional treatment of quadratic gravity, which will be given in Sec. 4.

The Euclidean action is parameterized by five couplings, in the form

S =

∫
d4x
√
g

[
1

8πG
Λred −

1

16πG
R+

1

2λ
C2 − ω

3λ
R2 +

θ

λ
E

]
. (24)

Here C2 is the Weyl tensor squared, and E is the Gauss-Bonnet term. The vacuum energy is defined by Λvac =
− 1

8πGΛred. In four dimensions, E is a total derivative and does not influence any local physics. This will be evidenced
in the flow as the parameter θ does not influence any of the other physical parameters. The dimensionful parameters
are Λred and G, while λ, ω, θ are dimensionless. To create dimensionless parameters one defines G̃ = Gk2 and
Λ̃ = Λredk

−2.
The evolution of the curvature-squared coefficients is exactly the same as was previously calculated in dimensional

regularization [10, 11].

βλ = − 1

(4π)2

133

10
λ2

βω = − 1

(4π)2

25 + 1098ω + 200ω2

60
λ

βθ =
1

(4π)2

7(56− 171θ)

90
λ

(25)

These run only logarithmically in the usual way. In particular, the coefficient of the Weyl-squared term is asymptoti-
cally free and runs logarithmically to zero. The coefficient ω runs to a fixed point ω∗ = −0.023. Note however that in

4 The Wetterich equation is more general than its application to AS, and Asymptotic Safety could in principle be addressed without the
Wetterich equation (i.e. see Sec. 4.3 for a possiblity). However, present practice in AS involves this equation.
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this evaluation the coefficient of the R2 term ω/3λ is also indicative of asymptotic freedom because λ is asymptotically
free.

The remaining two couplings have an evolution

βΛ̃ = −2Λ̃ + 1
(4π)2

[
1+20ω2

256πG̃ω2
λ2 + 1+86ω+40ω2

12ω λΛ̃
]
− 1+10ω2

64π2ω λ+ 2G̃
π − q(ω)G̃Λ̃

βG̃ = 2G̃− 1
(4π)2

3+26ω−40ω2

12ω λG̃− q(ω)G̃2
(26)

with q(ω) = (83 + 70ω+ 8ω2)/18π. The initial factor in each beta function (±2) is due to the explicit factor of k used
to make the couplings dimensionless. The remaining are due to perturbative interactions and these need to be large
in order to cancel the ±2 if the beta function is to vanish. These perturbative terms are not found in dimensional
regularization because they require powers of the cutoff.

If we follow Ref. [27] and set ω and λ to their fixed point values, the flow can be solved exactly. Expressing the
result in terms of the Newton constant G and vacuum energy density Λvac0 defined at k = 0, one finds,

G(k) =
G

1 + Gk2

g∗

(27)

with g∗ ≈ 1.4 and

Λvac(k) = Λvac0 −
1

16π2
k4 (28)

The quartic k dependence of Λvac is particularly striking. Evaluated at LHC energies, it would imply

Λvac(10TeV) ∼ −1014ρN ∼ −1061Λvac0 (29)

where ρN is the density of the nucleus and Λvac0 ∼ (10−3eV)4 is the present experimental vacuum energy. It is also
notable that the vacuum energy itself does not run to a UV fixed point. It increases without bound, and only the
rescaled value Λ̃ ∼ Λvac(k)/k4 stays finite.

However, this dependence is k4 is actually illusory when it comes to applications of this parameter. Recall that
Λvac(k = 0) = Λvac0 is meant to describe the vacuum energy density with all quantum corrections included, and
Λvac(k) is meant to describe that parameter with only quantum effects above the scale k included. This implies that
when we use Λvac(k) we need also to add in the quantum corrections below k. For the vacuum energy this is seen to
be related to ∫ k d3p

(2π)3

1

2
ωp =

4π

(2π)3

∫ k

0

p2dp
1

2
p =

1

16π2
k4 (30)

If we add this back into Eq. 28 we get the full vacuum energy5. The running value is seen to be the full value with
the effects of the momentum scales up to k removed.

Similar considerations apply for the running G(k). When using G(k) one is instructed to also add in the quantum
corrections from scales 0 up to k. When this is done, one obtains the full G, which is the measured value.

We see that Λ(k) and G(k) are incomplete coupling constants. From their definition they include physics above the
cutoff scale but not below. Indeed, insights from effective field theory indicate that the lower energy physics is the
region that is dynamically important. Because of the uncertainty principle, physics from high energy scales beyond
the active scale k appears as local effects, parameterized by coefficients in a local action. Low energy physics can
influence those local coefficients also (such that the cutoff scale disappears from physical observables) but also include
dynamical effects from low energy propagation. The momentum dependence that we will see in the reactions to be
described in Sect. 3.1 all comes from low energy, as the high energy effects are only seen in the occasional unknown
coefficient, such as d1 in Eq. 37. Because they are incomplete, parameters such as Λ(k) and G(k) do not know
about this low energy physics, and it is therefore not surprising that they do not capture the quantum physics seen
in physical observables.

The AS running is an iterated one-loop calculation. The renormalization group is used to iterate the the matching
at the scale k, which is itself performed at one loop order. For example, the full program has been performed in the
quadratic truncation approximation of this section in Ref. [30]. This is an appropriate way to improve on the one-loop
result of Codello and Percacci, but it does not change the fundamental interpretation of the cutoff dependence.

5 The apparently missing factor of 2 in Eq. 30 - for the 2 graviton helicity states - appears to come from the fact Eq. 30 involves
a non-covariant cutoff, while the Wetterich equation is a (Euclidean) covariant treatment. See also Ref. [28, 29]. Nevertheless, the
principle remains the same. I thank Roberto Percacci for this observation.
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3. THE CASE AGAINST A RUNNING GN AND Λ

Quantum corrections and matter effects will clearly modify the physical value of G and of the other parameters.
However it is not a requirement that these organize themselves in a functional form that is usefully described by a
running coupling. We can look at observables to see if this is the case.

The function G(k) is defined to include all of the quantum effects above the cutoff scale k. In principle, it is
designed to be supplemented by including all of the quantum effects below the scale k also when using it to calculate
some observable. The matching scale k is unphysical and should drop out from physical observables once all quantum
effects are included. Nevertheless, it is common AS practice to use Gk as if it were the effective Newton constant at
an energy of order k. However, one can see by direct calculations that this is not the case [6].

3.1. Explicit calculations

Let us start by listing a series of physical amplitudes which have been calculated to one loop order. All of these
have been calculated with the assumption that the value of the cosmological constant at low energy can be neglected.
The results are then functions of G and in some, but not all, cases contain coupling constants which are equivalent
to a four-derivative truncation of the effective action. These reactions are observables. The question is whether we
can define a useful running G from these observables.

The most elemental quantum gravity process is the scattering of two gravitons. The lowest order scattering ampli-
tude involves a large number of individual tree diagrams but is given by the simple form

Atree(++; ++) = i
κ2

4

s3

tu
, (31)

where the signs +,− refer to helicity indices and s, t, u are the usual Mandelstam variables. In power counting, this
is a dimensionless amplitude of order GE2. This was calculated at one loop order with the result. The one loop
amplitudes have been calculated by Dunbar and Norridge [31]. These are of order G2E4 and take the form

A1−loop(++;−−) = −i κ4

30720π2

(
s2 + t2 + u2

)
,

A1−loop(++; +−) = −1

3
A1−loop(++;−−)

A1−loop(++; ++) =
κ2

4(4π)2−ε
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
Atree(++; ++) × (s t u) (32)

×

 2

ε

(
ln(−u)

st
+

ln(−t)
su

+
ln(−s)
tu

)
+

1

s2
f

(
−t
s
,
−u
s

)

+2

(
ln(−u) ln(−s)

su
+

ln(−t) ln(−s)
tu

+
ln(−t) ln(−s)

ts

)  ,
where

f

(
−t
s
,
−u
s

)
=

(t+ 2u)(2t+ u)
(
2t4 + 2t3u− t2u2 + 2tu3 + 2u4

)
s6

(
ln2 t

u
+ π2

)
+

(t− u)
(
341t4 + 1609t3u+ 2566t2u2 + 1609tu3 + 341u4

)
30s5

ln
t

u

+
1922t4 + 9143t3u+ 14622t2u2 + 9143tu3 + 1922u4

180s4
. (33)

Other amplitudes can be obtained from these by crossing. I have discarded some purely infrared effects, including the
expected IR radiative divergence. As noted by ‘t Hooft and Veltman, this reaction and all pure graviton processes
will be independent of any coupling constants other than G at this order, because the possible terms in the action
vanish by the equations of motion Rµν = 0.
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Another core process is the gravitational potential for heavy masses. Including the leading quantum correction the
potential has the form

V (r) = −GMm

r

[
1 +

41

10π

G

r2

]
, (34)

This particular definition is derived from the low energy limit of the scattering amplitude. I have dropped the leading
classical correction. The quantum correction is universal, independent of the spin of the heavy particles.

The bending of light around a massive object can also be reliable calculated [34–36].

θ ' 4GNM

b
+

15

4

G2
NM

2π

b2
+

(
8buS − 47− 64 log

b

2b0

)
~G2

NM

πb3
+ . . . . (35)

Here 1/b0 in the logarithm is the infrared cutoff which removes the IR singularities of the amplitude. Here there is
not a universal behavior. The coefficient buS is a parameter which depends on the intrinsic spin of the particle. It
has values 371/120, 113/120,−29/8 for scalars, the photon and the graviton respectively.

Dunbar and Norridge have also calculated the gravitational scattering of a massless scalar particle, φ+ φ→ φ+ φ
[37]. At tree level, this has the form.

Mtree = i
κ2

4

[
st

u
+
su

t
+
tu

s

]
. (36)

with as usual κ2 = 32πG. In this process there is a higher order operator which is needed to absorb the divergences
which arise at one loop. This is

L2 = d1(DµφD
µφ)2 (37)

Including the renormalization of this higher order operator, the one loop hard amplitude is

Mh = i
κ4

(4π)
2

{
(s4 + t4)

8st
ln(−s) ln(−t) +

(s4 + u4)

8su
ln(−s) ln(−u) +

(u4 + t4)

8tu
ln(−t) ln(−u)

+
(s2 + 2t2 + 2u2)

16
ln2(−s) +

(t2 + 2s2 + 2u2)

16
ln2(−t) +

(u2 + 2t2 + 2s2)

16
ln2(−u)

+
1

16

(
st

u
+
tu

s
+
us

t

)(
s ln2(−s) + t ln2(−t) + u ln2(−u)

)
+

[
− (163u2 + 163t2 + 43tu)

960
ln

(
−s
µ

)
− (163u2 + 163s2 + 43us)

960
ln

(
−t
µ

)
− (163s2 + 163t2 + 43ts)

960
ln

(
−u
µ

)
+ dren1 (µ)(s2 + t2 + u2)

]}
, (38)

where µ is an infrared scale. Again a purely infrared effect has been removed.
Anber and I have used the Dunbar-Norridge method to find the amplitudes for two different species of particles [6].

In the reaction A+B → A+B we find that the hard amplitude is

Mh = i
κ4

(4π)
2

[
1

8

(
s4 ln(−s) ln(−t) + u4 ln(−u) ln(−t)

)
− 1

16t

(
s3 + u3 + tsu

)
ln(−t) +

1

16

(
s2 ln2(−s) + u2 ln2(−u)

)
+
us

16t

(
s ln2(−s) + t ln2(−t) + u ln2(−u)

)
+

1

240

(
71us− 11t2

)
ln(−t)− 1

16

(
s2 ln(−s) + u2 ln(−u)

)]
,

(39)

For the crossed process, A+ Ā→ B + B̄, one exchanges s↔ t, which yields a significantly different functional form.
It is easy to see by inspection that there are no common factors for the power-law corrections to these processes.

This is an immediate indication that there will not be a useful definition of a running G which is useful in all processes.
This is not a surprise as these kinematic effects do not amount to a direct renormalization of G. However, we can
still proceed with an attempt to define a renormalization of G at a higher renormalization scale µR and look at the
outcome.
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First consider graviton-graviton scattering. If we wish to renormalize this at high energy, we would like a kinematic
configuration where all the kinematic variables are of the same large energy. In this case, we chose the central physical
point s = 2E2, t = u = −E2. If we use the amplitude A(++; ++) and use this point to determine G(E), we find

G2(E) = G2

1 +
κ2E2

(
ln2 2 + 1

8

(
2297
180 + 63π2

64

))
8π2

 . (40)

We see that this definition leads to a growing running coupling G(E), as opposed to the expectation from asymptotic
safety of a decrease in strength at high energy. Of course, since we are here using perturbation theory, we only should
be obtaining the first order term in the expansion. Nevertheless the disagreement on the sign is clear.

We could alternatively consider the crossed reaction A(+,−; +,−) which is obtained from A(+,+; +,+) by the
exchange s ↔ t. This makes the quantum corrections somewhat different, with the corresponding kinematic factor
being

1 +
κ2t

16π2

[
ln
−s
t

ln
−u
t

+
su

2t2
f

(
−s
t
,
−u
t

)]
= 1 +

κ2E2
(

29
10 ln 2− 67

45

)
16π2

(41)

instead of the factor in Eq. 40.
If we used identical scalar particle scattering at the same kinematic point to identify a running coupling the result

would be

G(E) = G

[
1− κ2E2

360 (4π)
2

(
609 ln

E2

µ2
+
(
340π2 + (123− 340 ln 2) ln 2

))]
. (42)

The single log term which appears in Eq. 42 could reasonably be associated with the higher order operator d1, and
perhaps should be removed from this expression. Using the scattering of non-identical particles, one would find for
A+B → A+B,

Mtotal =
iκ2E2

2

[
1− κ2E2

10(4π)2

(
(19 + 10 ln 2) ln

(
E2

µ2

)
+ 5

(
π2 − (ln 2− 1) ln 2

))]
. (43)

which would lead to yet a different running G(E). On the other hand, usingA+ Ā→ B + B̄ we would have

Mtotal =
iκ2E2

8

[
1 +

κ2E2

10(4π)2

(
9 ln

(
E2

µ2

)
− 5π2 + (19 + 5 ln 2) ln 2

)]
. (44)

The crossing problem is obvious here.
There is not much point to continue. It is clear that any application to other processes will yield yet other discordant

results. Even if we have an operational definition of a running G at a higher renormalization point in one process, this
definition does not apply to other reactions. This is not surprising, as the quantum corrections here are not related
to a renormalization of G.

We note also that having set the cosmological constant to zero at low energy, it stays zero in the scattering
amplitudes. All the corrections come in at higher powers in the energy, in accord with the power counting theorems
of the effective field theory. The cosmological constant also does not run in these scattering amplitudes.

The examples here are evidence against the Weinberg criterion for AS, as applied to the parameters Λ and G. Even
if we do not attempt to use the FRG form of the running G, there is no other form that does the job either. Nature
does not organize itself like that at low energy.

It is possible that in one given process - say, FLRW cosmology for example - it could be useful to define power-law
running parameters for use in that setting and those running parameters might asymptote to an non-trivial UV fixed
point. However, even if this is the case it would not imply that this defines a consistent quantum field theory of
gravity. Such a field theory would have to be broadly applicable to all observables, and we have seen above a broad
class of observables which do not share a useful running G.

3.2. The driving force of the tadpole graph

We can look beyond the formalism and identify what is going wrong in the functional RG approach to the running G.
The diagram driving the flow for this operator is the tadpole diagram of Fig. 1. This diagram vanishes in dimensional
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FIG. 1: The tadpole diagram on the left has an insertion of an operator involving the background field. When applied, this
operator is expanded in powers of the external field, as on the right-hand side. The momenta of the external fields do not flow
through the loop.

regularization for massless particles. It is non-vanishing when evaluated with a cutoff. The issue is not really whether
it vanishes or not, but that is a symptom. Since physical processes can be regularized dimensionally, we should not
be surprised that there is not a signal of this diagram in the physical amplitudes. The more important feature is
that this diagram does not feel the values of the external momenta, and here cutoff and dimensional regularization
agree. Even with a cutoff, there is no external momentum flowing in loop. This tells us that the diagram does not
know about the momentum scales of the physical reactions, and so cannot correspond to the use of running coupling
depending on those scales. Once we identify how to treat this diagram, we will be able to bring the cutoff regularized
result into agreement with dimensional regularization. To demonstrate this we need to look at the physics of the
background field method.

With background field methods, one can capture the quantum effects using the heat kernel [38–43], defined as

H(x, τ) =< x|e−τD|x > (45)

for some differential operator D. For example the functional determinant can be evaluated using

∆S =

∫
d4xTr < x| logD|x > (46)

with

< x| logD|x >= −
∫ ∞

0

dτ

τ
< x|e−τD|x > + C (47)

The local heat kernel is expanded in powers of τ with the Seeley-DeWitt coefficients ai, with the result

H(x, τ) =
i

(4π)d/2
e−τm

2

τd/2
[
a0(x) + a1(x)τ + a2(x)τ2 + ...

]
(48)

in an arbitrary dimension d. The contribution to the action is then

< x| logD|x >=
−i

(4π)d/2
[
mdΓ(−d/2)a0(x) +md−2Γ(1− d/2)a1(x) +md−4Γ(2− d/2)a2(x) + ...

]
(49)

As an example which is simpler than the graviton itself consider a scalar coupled to gravity with the Lagrangian

√
−gL =

√
−g 1

2

[
gµν∂µφ∂νφ−m2φ2

]
(50)

in which the coefficients have the form

a0(x) = 1

a1(x) =
1

6
R

a2(x) =
1

180
RµναβR

µναβ − 1

180
RµνR

µν +
1

72
R2 (51)
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From this we see that a0 is associated with the cosmological constant, a1 is associated with the renormalization of
G and a2 is asssociated with curvature-squared terms. In the AS beta functions this dependence is convoluted with
the influence of the cutoff function, but this association remains true. I have included both a mass and a dimension
d in order to make the following points. In dimensional regularization for the massless graviton, we would set m = 0
and the coefficients of a0 and a1 would vanish. The divergence in the coefficient a2 is non-vanishing in the massless
limit and is the usual divergence that one finds at one loop order. But also, in this evaluation the mass m serves as
a proxy for the IR cutoff of AS, with m2 ∼ k2. So we see that the k4 and k2 dependence of the running couplings
comes form the a0 and a1 coefficients respectively.

We can learn a bit more by looking at the ingredients to these heat kernel coefficients. Working in flat space for
simplicity, we consider the differential operator as

logD = log[dµd
µ +m2 + σ(x)] = log[2 +m2 + V (x)]

= log

[
(2 +m2)(1 +

1

2 +m2
V )

]
= log[2 +m2] +

1

2 +m2
V +

1

2

1

2 +m2
V

1

2 +m2
V + .... (52)

where dµ = ∂µ + Γµ(x) and σ(x) describe some interactions. Inserting a set of momentum eigenstates, we see that
the first two terms in the heat kernel expansion are tadpole loops

∼
∫

d4p

(2π)4
× log[2 +m2] ∼

∫
dm2

∫
d4p

(2π)4

1

p2 +m2
(53)

and

∼
∫

d4p

(2π)4

1

p2 +m2
× V (x) (54)

These two are represented in Fig. 1. The key point here is that the tadpole has no external momenta flowing in
these loops. This implies that when matrix elements are taken of the resulting effective Lagrangian, there will be no
external momentum dependence coming from the a0 and a1 coefficients. This is already evident in the discussion of
the one-loop running contributions to Λ and G in Sect. 2.3.1. In contrast, the a2 term is given by a bubble diagram,
with two vertices and two propagators. It does involve the external momenta because it involves the interaction V
at different spacetime points. In addition to the local divergence which is contained in a2 there is a non-local log q2

dependence. This can also be identified by a non-local version of the heat kernel method [42, 43].
Combined with the discussion of Sect. 2.3.1, we arrive at an understanding of how the cut-off regularization can

agree with dimensional regularization. The dimensional regularization case integrates over all momenta with no
separation of scales. The result is that the physical values of Λvac and G are not modified. In the cutoff regularization
case, the so-called running couplings of Λ(k) and G(k) represent these parameters with quantum effects only above
the scale k included. They are actually incomplete couplings, where the the physics below the scale k is missing.
Technically, they are described by the tadpole diagram in which no momentum flows. When supplemented by the rest
of the loop below k we again get the physical values of the parameters as the dependence on the separation scale must
vanish. There is no external momentum flowing through these loops so that there is no net effect on the kinematic
features of scattering amplitudes. This confirms that the k dependence in G(k) does not correspond to running in any
kinematic sense. In contrast, the bubble diagram, associated with a2 will contain logarithmic momentum dependence.
Both dimensional regularization and cutoff regularization will agree on this and logarithmically running couplings
associated with the a2 coefficient will be physical.

4. COMPARISON WITH QUADRATIC GRAVITY

In this section, I discuss the AS result for the truncation including terms of order curvature squared, summarized
above in Section 2.3.1, with work on quadratic gravity, which uses the same operator basis but which does not use
the AS machinery.

There are three points to be made in this comparison. 1) At least at one loop, this AS truncation is unsatisfactory
in that when continued to Lorentzian spaces it contains a tachyon. It also contains a ghost state and violates causality
on short time scales, although these may be less disastrous. 2) Further analysis of the ghost state indicates that there
is an obstruction to the continuation from Euclidean space to Minkowski space, as there is a pole in the upper right
quadrant of the complex q0 plane. These are both problems that could could be due to the specific truncation, but
which could in principle surface at any order of truncation in AS. 3) The third point is more positive: A focus on
higher order terms in the graviton propagator may be useful for a Lorentzian variant of Asymptotic Safety.
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4.1. Tachyons and ghosts

Because there are higher order terms in the most general action, the gravitational propagator will contain higher
powers of q2. With a truncation at order of the curvature-squared, this implies terms up to q4 in the propagator.
Normally these are forbidden by the Källen-Lehmann representation of the propagator,

D(q) =
1

π

∫ ∞
4m2

f

ds
ρ(s)

q2 − s+ iε
(55)

with the spectral function ρ(s) being positive definite, which says that the propagator can fall by at most q−2 at high
momentum6 . It then becomes clear that some of the usual assumptions of QFT (which forms the basis of the KL
representation) must be given up in Asymptotic Safety (also in quadratic gravity). Some of the dangers are evidenced
in the partial fraction decomposition of the propagator

iD(q) =
i

q2 − aq4/M2
=

i

q2
− i

q2 −M2/a
. (56)

Here, M is the intrinsic scale of the higher order terms, and I have included a parameter a = ±1 because the higher
order behavior can come with either sign. For both signs of a, the second term in the partial fraction decomposition
automatically comes with the “wrong” overall sign - it is a ghost. For a = −1 the ghost is also tachyonic in that it
occurs for spacelike values of the four-momenta7. As far as I know, there is no way to rescue this situation. It leads to
an unstable state with runaway production of tachyons. The a = +1 ghost is non-traditional in QFT, but seems to be
more manageable. When treated properly, it can lead to a unitary theory [16], but one which violate microcausality
[17, 44]. However, these options are ones which any truncation of AS will be forced to confront.

The parameters of the one-loop AS solution given in Sec. 2.3.1 imply a tachyon in the spin-zero propagator and a
a = +1 ghost in the spin-two propagator. Let us defer the discussion of the spin-two ghost to the next subsection. The
spin-zero tachyon is a serious problem if it were to survive at higher order truncations. There is a bit of history/physics
to understand concerning the tachyon. The first ingredient is that in this case, the high mass state is not ghost-like.
It is the massless pole in the spin-zero channel which is ghost-like. That is, instead of Eq. 56, one has an overall
minus sign,

iD0(q) =
−i

q2 − aq4/M2
=
−i
q2

+
i

q2 −M2/a
. (57)

That the massless pole is ghost-like is acceptable because the massless spin-zero component can be shown to be a
gauge artifact [45]. The historical aspect is that several early works on the renormalization of quadratic gravity use
what is now recognized to be the “wrong” sign without recognizing that this lead to tachyons. Adopting a modern
parameterization for the quadratic terms, we have

S =

∫
d4x
√
−g
[

1

6f2
0

R2 − 1

2f2
2

CµναβC
µναβ

]
(58)

in Lorentzian space. These signs lead to a normal massive spin-zero state, and the a = +1 spin two ghosts. Early
work used the opposite sign on the 1/6f2

0 term, and concluded that both f0 and f2 are asymptotically free [10, 11].
With the non-tachyonic sign, f0 is no longer asymptotically free [14]. The Euclidean action of Sec. 2.3.1 shares yields
asymptotic freedom for the overall R2 coupling, and then would share the tachyonic property when continued to
Lorentzian space.

It is possible that the tachyonic state could be removed using a higher order truncation. However, this is already
an indication that simply obtaining a UV fixed point in the Euclidean FRG is not sufficient to claim that one has a
well-behaved Lorentzian theory. Each truncation must be checked separately. It is even more difficult to understand
the ideal case, with no truncation.

6 There is the caveat that the KL representation does not necessarily apply to gauge-variant fields because the spectral function then does
not correspond to the insertion of physical states.

7 Reminder: my metric convention is (+,−,−,−).
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4.2. Obstacles to analytic continuation

The spin-two ghost in the quadratic truncation presents a more generic problem. There can be unexpected obstacles
to the analytic continuation from Euclidean to Lorentzian spaces.

The location of the poles in the propagator has been explored in the quadratic gravity literature. I am particularly
biased towards my own recent work with G. Menezes [16, 17], which is representative of the present status. The
heavy ghost state will necessarily be unstable due to the coupling with the light gravitons and other light degrees of
freedom. Including that coupling leads to a self-energy term in the propagator

iD2(q) =
i

q2 + Σ(q)− q4/M2
(59)

where Σ(q) is the self energy. In gravity, there is a cut starting at q2 = 0 where the self energy develops an imaginary
part Im Σ(q) = γ(q). Unitarity requires γ(q) ≥ 0. The ghost resonance then has the form near q2 = M2

iD2(q) =
i

q2 − q4

M2 + iγ(q)

=
i

q2

M2 [M2 − q2 + iγ(q)(M2/q2)]

∼ −i
q2 −M2 − iγM

. (60)

This puts the resonance pole above the real axis

q2 = M2 + iγM (61)

rather than usual resonances which occur below the real axis. In Ref [17] we have labeled ghost resonances with this
pole location as Merlin modes as they propagate backwards in time. We note that this construction would also work
for higher order ghosts in the spin two channel. The fact that unitarity requires that γ(q) ≥ 0, implies that all further
ghost states would also live above the real axis.

For the purposes of quadriatic gravity, this is an arguably acceptable result. The resulting theory is unitary and
stable near Minkowski space [16], but violates microcausality on timescales of order the width [17, 44], which is
proportional to the inverse Planck scale. A look at the underlying calculations shows that this would appear to
continue to happen if the propagator was defined with yet higher order dependence even if there were other unstable
ghosts induced, as long as there were no tachyonic states allowed. An AS theory defined in Lorentzian space would
presumably share these acceptable features.

The danger for the present program of Asymptotic Safety is somewhat different. The original AS theory is defined
in Euclidean space. To reach the real world, this needs to be continued to Lorentzian space. In amplitudes, this is
accomplished by a rotation of the momentum space contour from the real axis to the imaginary axis, and is legitimate
because there are no poles crossed by the rotation. The usual QFT rotation from Minkowski to Euclidean space
is a tool which proves to be useful because of the usual analyticity properties of amplitudes. In the presence of
higher derivatives, these analyticity properties are upset. This implies that there is no longer any guarantee that
the Eucldean theory and the Minkowski theory share the same properties. The spin-two ghost found above is such a
problem as would be any further ghosts.

It appears that the spin-two ghost state is not just an artifact of the quadratic truncation. In a recent study by
Bosma et al. [46], the spin-two sector was parametrized much more generally,

CµναβW (2)Cµναβ (62)

where W (2) is an arbitrary function. This directly impacts the spin-two propagator which becomes

iD2(q) =
i

q2 − q4W (q2)
(63)

Within the approximations of the calculation [46], the result is approximated by

W (q2) = w∞ +
ρ

α− q2
(64)

where ρ ' 0.015 α ' 1.8 in Planck units and w∞ is a constant which is not determined by the calculation. This will
have ghost poles when

q2W (q2) = 1 (65)

Assuming that there are no tachyonic states, this could yield one or three ghost poles.
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4.3. The graviton propagator and Lorentzian Asymptotic Safety

The higher order momentum dependence in the graviton propagator actually presents an opportunity for version
of AS which is defined from the start in Lorentzian space. Potentially this could circumvent some of the problems
which we have been discussing. However, it would require a reinterpretation of the program.

We have learned that low energy quantum effects involving Λ and G do not organize themselves in the way implied
by present AS practice, or indeed of that suggested by the general Weinberg criterion.

However, we can also see that this may be irrelevant to the high energy behavior of the theory. In quadratic gravity,
the propagator is modified by q4 terms, such that the effects of Λ and G ( of order q0 and q2) are sub-dominant at
high energy, and the result is a renormalizeable theory. So the fact that there is not a good definition of a running
Λ and G is not important for the overall structure of the theory. The parameters of the quadratic curvature terms
are the essential ones for the renormalizablilty and running of the theory. In an AS framework, one could truncate at
yet higher orders. This produces higher powers of momenta in the graviton propagator which are determine its high
energy behavior.

Let us look at the potential for divergences in diagrams with these higher powers of the momenta. Consider the
graviton propagator with the high energy behavior 1/qn. For consistency, we need to keep vertices with powers of
momentum running up to qn, as the same operator which gives momentum dependence to the propagator will also
give new vertices. The most divergent diagrams are the ones with the highest powers of momentum in the vertices,
so we will consider that all vertices carry this maximal momentum factor. Let NV be the number of vertices, NI be
the number of internal propagators, and NL be the number of loops. Then the overall high- momentum dependence
of the diagram will be

(d4q)NL (qn)NV
1

(qn)NI
(66)

from loop momenta, vertices and propagators8. However, the number of internal propagators can be eliminated in
favor of the number of vertices and loops. The relation is

NI = NL +NV − 1 . (67)

This converts the high energy behavior into

qDn = (q)4NL (qn)NV
1

(qn)NL+NV −1
= q(n+NL(4−n)) (68)

which summarizes the divergence structure.
For two derivative actions, n = 2 and we recover the well known power counting behavior of general relativity and

chiral perturbation theory [47]

qD2 = q(2+2NL) (69)

with tree level being q2, one loop having divergences at q4, two loop at q6, etc. For n = 4, such as for quadratic
gravity, we recover power-counting renormalizability , with

qD4 = q4 (70)

independent of the number of loops. For larger values of n we get super-renormalizable behavior, with the diagrams
becoming less divergent with higher loops. For example, for n = 6, the power-counting gives

qD6 = q6−2NL (71)

As the loop order increases, the amplitudes are increasingly focused on the infrared and are no longer divergent.
Phrased differently, tree-level amplitudes are always of order qn by assumption. For any n there will be potential
divergences at one loop order involving effects at order q4. But then for larger n > 4 the diagrams become more
convergent at higher loop order.

8 The factors of q will in general involve external momenta, q− pi and after integration the amplitude will be expressed in terms of these
pi. Using dimensional regularization is useful here as it does not introduce extra dimensionful parameters, and the dimension in any
divergence will be realized in terms of the external momenta.
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This allows a possible reinterpretation of the AS program. Perhaps only some of the couplings need to be have
the running behavior implied by the Weinberg criterion. Sub-dominant couplings such as Λ and G are not important
for the program. This inverts the present practice. Instead of a focus on low dimensional operators, one is more
interested in higher dimensional operators that influence the graviton propagator. Note also that one can work with
a finite basis of essential operators - operators of arbitrary high order are not needed.

Of course, this suggestion is still somewhat vague and needs to be better developed. One still needs to avoid
tachyons and deal with ghosts. But it does point to a form of Asymptotic Safety that can be described from the
start in Lorentzian spaces, and which can be in agreement with explicit calculations at low energy. Moreover, it is
clear that the high momentum behavior of the graviton propagator is of special significance as it determines the UV
properties of loop diagrams.

5. OVERALL ASSESSMENT

We have examined in particular the running Newton constant G(k) within AS and argued that it is not valid for
use in the real world. The reasons for that include:

1) It does not capture the energy dependence in explicit observables. There are kinematic and universality obstacles
to any such use. Note that these examples are also counter-examples to the Weinberg conditions for Asymptotic Safety
if applied to G, Λ.

2) The definition of the running G(k) and Λ(k) are such that they include quantum effects beyond the scale k.
They should be supplemented with the quantum effects below k. When this is done, the intermediate scale k should
disappear.

3) We can also see that the running values of G and Λ arise from the tadpole diagram, which a) vanishes in
dimensional regularization and b) does not contain any external momentum flow through the loop. This loop will not
influence the kinematic behavior of reactions.
The use of these running couplings is not appropriate for phenomenological applications and does not satisfy the goals
of Asymptotic Safety.

This leaves the “ideal” AS program as a possibility. Here one integrates in Euclidean space down from the UV
fixed point all the way to k = 0. This defines an action with an infinite number of terms, which is then to be applied
in Lorentzian space. The infinite number of couplings are correlated - fixed by a smaller number defined at the fixed
point. I have raised two cautions here:

1) Any truncation of this ideal action will have ghosts, and possibly tachyons. These have to be understood and
managed.

2) Any truncation without tachyons will likely have one or more obstacles to the analytic continuation from Eu-
clidean to Lorentzian space. These are poles in the graviton propagator that occur in the quadrants needed for the
Euclidean rotation.

It is possible that both of these points can be overcome. However, even if this occurs, we do not have any indication
on why the resulting theory would satisfy the Weinberg criterion and lead to finite results in physical observables. The
existence of a Euclidean UV fixed point is not sufficient by itself for this result. Indeed, existing truncations do not
satisfy this despite all having such fixed points. One needs to obtain finite results for an infinite number of processes
at an infinite number of kinematic points. One does have an infinite number of couplings, but the mechanism for
success in unknown.

On the more positive side, I have argued that maybe a Lorentzian version of AS could occur through a focus on the
higher order terms contributing to the graviton propagator. The basic point here is that Λ and G become unimportant
at high energy in the graviton propagator when higher powers of of qn appear in the propagator. This is seen in
quadratic gravity where the inclusion of q4 terms in the propagator lead to a renormalizeble theory. I have used power
counting to argue that one could perhaps get a Lorentzian theory with yet higher order terms.
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