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Conserved charges in general relativity
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We present a precise definition of a conserved quantity from an arbitrary covariantly conserved
current available in a general curved spacetime. This definition enables us to define energy and
momentum for matter by the volume integral. As a result we can compute charges of well-known
black holes just as an electric charge of an electron in electromagnetism by the volume integration of
a delta function singularity. As a byproduct we show that the definition leads to a correction to the
known mass formula of a compact star in the Oppenheimer-Volkoff equation. We finally comment
on a definition of generators associated with a vector field on a general curved manifold.
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1. INTRODUCTION

Since Einstein submitted papers on general relativity
[1], classical or quantum field theory on a curved space-
time has extensively been investigated. When spacetime
is curved, the physical quantities defined on flat space-
time are required to be modified suitably in accordance
with general covariance. For example, a conserved cur-
rent, which exists in the presence of global symmetry in
the system [2], is modified to be a covariantly conserved
one on a general curved spacetime.

However there has been no general argument to define
a conserved charge from a covariantly conserved current,
which inevitably causes a problem to define energy and
momentum. Einstein originally argued that the conser-
vation law of energy and momentum for matter follows
as long as they are combined with those for gravitational
field [1]. (See also [3].) The corresponding energy mo-
mentum tensor for the gravitational field, however, is not
covariant under general coordinate transformation. As a
result an energy defined as in the case of flat spacetime
depends on a coordinate system and conserves only in
the particular frame.

One way to circumvent this issue is to define an en-
ergy locally on the asymptotic region of spacetime called
quasi-local energy. Initially the quasi-local energy and
momentum were studied on an asymptotically flat space-
time by recasting gravity system into the Hamiltonian
dynamics known as the ADM formalism [4]. (See also
[5].) They are defined by a surface integral in the asymp-
totic region, by which the invariance under a class of
general coordinate transformations preserving a bound-
ary condition was achieved. This result has been further
extended for a more general curved spacetime with sur-
face terms suitably incorporated [6–10]. A caveat in this
extension is that boundary terms accompany with diver-
gence even in the flat spacetime, so that one needs to
subtract it by comparing a reference frame or by adding
local counter terms.

The authors of the present letter investigated a prop-

erty of a black hole holographically realized by the flow
equation method [11]. In the study we encountered a
situation to evaluate the energy of the total system with
matter spread all over the space, which is required to
be evaluated by the volume integral of the energy den-
sity. We discovered a definition of a conserved charge
from a covariantly conserved current in a general curved
spacetime, which improves the one given in [12, 13] for
special backgrounds. This allows us to define energy and
momentum for matter in a form of the volume integral
at an arbitrary time slice of a given curved spacetime.
A virtue is to enable one to evaluate charges of black
holes just like an electric charge of the electron in electro-
magnetism by the volume integral of the delta function
singularity. As a byproduct of our approach, we apply
our definition to the mass of a compact star and discover
that there is a correction to the mass formula obtained
from the Oppenheimer-Volkoff equation.

2. CONSERVED CHARGE FROM

COVARIANTLY CONSERVED CURRENT

Consider any classical or quantum field theory on a
general curved spacetime. Suppose there exists a covari-
antly conserved current Jµ, ∇µJ

µ = 0, where ∇µ is the
covariant derivative for the metric gµν . Then we claim
that the following quantity is conserved under the given
time evolution

Q(t) :=

∫

Mt

dd−1~x
√

|g|J0(t, ~x), (1)

where Mt represents a time slice of the spacetime M at
the time t, g denotes the determinant of gµν , and d is the
dimension of the spacetime M . If there exists boundary
for Mt, we set the boundary condition for the fields to
fall off sufficiently fast at boundary of Mt for all t. We
emphasize that g is the determinant of the metric in the
total spacetime, which contains the time components.
To show this, we assume the spacetime has the foli-

ation structure for simplicity. (The same argument is
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used in literature. For example, see [14].) Let us con-
sider the same quantity defined by (1) at another time
slice with t′ greater than t, and take a submanifold M ′

with the foliation structure whose boundary contains Mt

and Mt′ . Such a manifold may be written formally as
M ′ =

∏

t≤s≤t′ Ms. Under the boundary condition, the
difference between Q(t′) and Q(t) becomes

Q(t′)−Q(t) =

∫

M ′

ddx∂µ(
√

|g|Jµ(t, ~x)) = 0, (2)

where we use ∂µ(
√

|g|Jµ(t, ~x)) =
√

|g|∇µJ
µ(t, ~x) = 0.

This proves thatQ(t) is independent of t. The chargeQ is
a scalar under the assumption, though the generalization
is straightforward. Note that Q is not a scalar if it is
defined from a higher rank tensor rather than the vector.
This formula can be applied to the computation of a

conserved charge for any gravitational systems with a
Killing vector. A covariantly conserved current associ-
ated with a Killing vector ξ can be constructed as

Jµ = T µ
νξ

ν , (3)

where T µ
ν is the given energy momentum tensor for

matter. It can be easily shown that this is covariantly
conserved by using ∇µT

µ
ν = 0 and ∇µξν + ∇νξµ = 0

[13, 15, 16]. In the next section we compute charges of
several black holes by using this formula.

3. CONSERVED CHARGES OF BLACK HOLES

In this section we compute a conserved charge for well-
known black holes employing the presented formula.

3-1. Schwarzschild black hole

In order to explain a key idea of the calculation we
start with the simplest setup. That is, we begin with the
Einstein equation

Rµν −
1

2
gµνR+ Λgµν = 0. (4)

This is satisfied by the Schwarzshild black hole solution:

ds2 =− f(r)(dx0)2 +
1

f(r)
dr2 + r2g̃ijdx

idxj , (5)

where r is the radial coordinate and the d−2 dimensional
manifold fibered over the cone is an Einstein manifold,
whose Ricci tensor is given by (d−2)Rij = (d−3)kg̃ij with
a constant k, and

f(r) =
−2Λr2

(d− 2)(d− 1)
+ k −

2GNM

rd−3
. (6)

Note that for a positive or non-positive k the submanifold
is compact or non-compact, respectively.

Since this is a static solution, there exists a Killing
vector with ξµ = −δµ0 , which corresponds to the time
translation. Thus the corresponding charge is the energy
of the system:

E =

∫

dd−1~x
√

|g|(−T 0
0), (7)

where the matter energy momentum tensor is given by

Tµν =
1

8πGN

(Rµν −
1

2
gµνR+ Λgµν), (8)

with GN the Newton constant. According to the equa-
tion of motion (4) this energy momentum tensor seems
to vanish on shell, but it does not. We emphasize that
it vanishes except a singularity located at r = 0. This
singularity contributes to the charge.
In order to compute the contribution, we expand the

stress tensor perturbatively around infinity to extract a
pole. This can be done by separating the metric into the
regular part ḡµν and the singular part hµν , the latter of
which is given by

hµνdx
µdxν = −δf(dx0)2 +

(

1

f
−

1

f − δf

)

dr2, (9)

where δf = −2M/rd−3. At the leading order, we have

T 0
0 = −

1

2

(

1
√

|ḡ|
∂µ(
√

|ḡ|ḡµν∂νh
0
0)− f̄−1f̄ ′2h0

0

)

+ ∇̄0∇̄σh
σ
0 − h0

0 −
1

2
∇̄µ∇̄σh

σµ + · · · , (10)

where ∇̄µ is the covariant derivative with respect to the
metric ḡµν , f̄ := f − δf , and the ellipsis represents the
higher order terms of h. This must vanish except at the
origin, and indeed this can be written as

T 0
0 =

d− 2

16πGNrd−2
∂r
(

rd−3δf
)

+ · · · , (11)

which has the desired property. Plugging this into (7) we
can compute the charge as

E = −

∫

dd−1~x
√

|g̃|
d− 2

16πGN

∂r
(

rd−3δf
)

= ρVd−2, (12)

where Vd−2 =
∫

dd−2x
√

|g̃| is the volume of the Ein-
stein manifold with g̃ being the determinant of g̃ij , and
ρ = (d − 2)M/(8π) is the energy or mass density. To
evaluate r integral we employ the Stokes’s theorem. Note
that the higher order terms do not contribute to the sur-
face integral. Our result reproduces the known result
obtained by other methods. (For example, see eq.(2.5)
in Ref. [8].)
The first term in Eq. (11) is indeed exact. This can

be seen by calculating T 0
0 directly from the Ricci ten-

sor, and more insightfully, it can be written in a form
proportional to a delta function:

T 0
0 =

d− 2

16πGNrd−2
∂r
(

rd−3F
)

= −ρ
δ(r)

rd−2
. (13)
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We here insert the step function θ for the singular term in

(6), so that F (r) = δf(r)θ(r) and δ(r) = dθ(r)
dr

. Thus the
matter energy momentum tensor T µ

ν for the black hole
can be understood as a distribution. We can calculate E
as the volume integral, which also leads to (12), justifying
the use of the step function to handle the singularity at
r = 0.

3-2. Reissner-Nordström black hole

Below we present a more illuminative computation
of a mass of a charged black hole in general d dimen-
sions, whose metric is given in (5) by replacing f(r) with
fq(r) = f(r) + d−3

d−28πGNq2r−2(d−3), together with the

gauge potential Aµ = (− q
rd−3 + q

rd−3

+

)δ0µ, where q, r+ are

constants[17]. This configuration of gravitational and
gauge fields satisfies the equations of motion given by

Gµν + Λgµν = 8πGN (TG
µν + TA

µν), ∇µF
µ
ν = Jν , (14)

where Fµν := ∇µAν − ∇νAµ and TA
µν := Fµ

αFνα −
1
4gµνFαβF

αβ. Here TG
µν and Jν explicitly represent

the singular contributions of the metric and the gauge
potential at r = 0, respectively. Explicitly (TG +
TA)00 is given in (13) by replacing F with Fq = F +
d−3
d−28πGN q2r−2(d−3).
Since this metric is also static, the energy defined by

(7) is conserved. However this charge diverges, due to
the contribution of the electromagnetic field. Physically,
this divergence can be interpreted as the self-energy for
the charged point particle. Indeed it remains even for the
flat space-time with M = 0 and Λ = 0. Classically, the
charged black hole has the infinite energy due to the infi-
nite electromagnetic energy. Thus the renormalization as
well as the quantization of the gauge field on the curved
space are needed to fix this problem, as was so on the
flat space.
Fortunately, since ∇µ(T

G)µ0 = 0 (thus ∇µ(T
A)µ0 =

0), we can define an energy from the covariantly con-
served TG alone without electromagnetic energy, and
(TG)00 is identically given by (13). We thus obtain

EG =

∫

dd−2~x

∫

dr
√

|g|(TG)
0
0ξ

0 = Vd−2ρ, (15)

which reproduces the result in the special case of [17].
This system allows another conserved quantity, thanks

to the invariance under the U(1) gauge transformation by
δAµ = ∂µθ, which leads to

∂µj
µ = 0, jµ = ∇ν

(

√

|g|Fµν
)

(16)

without using the Maxwell equation. According to
our prescription, Qc =

∫

dd−2x
∫

dr
√

|g|J0 with J0 =

j0/
√

|g| gives the conserved electric charge, which is eval-
uated asQc = Vd−2(d−3)q. At d = 4 for k > 0, Qc = 4πq.

3-3. BTZ black hole

As a final example, we compute a charge different from
a mass. To this end we consider a BTZ black hole and
compute its angular momentum [18]. The metric

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dφ− ω(r)dt)2, (17)

where

f(r) =
r2

L2
− 2GNMθ(r) +

G2
NJ2

4r2
, ω(r) =

GNJ

2r2
, (18)

with M,J are constants, satisfies the Einstein equation
in three dimensions. We insert the step function to the
constant part to emphasize that this solution is valid ex-
cept the origin.
This BTZ black hole has not only a Killing vector with

respect to the time translation but also the one which
rotates the system, ξµ = δµφ . As in the previous cases
the first one defines the mass, which can be similarly
computed as E = M

4 . On the other hand, the second
Killing vector define an angular momentum:

Pφ =

∫

d2x
√

|g|T 0
φ. (19)

T 0
φ is computed from the Einstein tensor as T 0

φ =
− 1

16πGNr
∂r
(

r3ω′(r)
)

. Thus we find Pφ = J
8 , which re-

produces the known result [18].

4. MASS OF A COMPACT STAR

Our formula for the conserved charge leads to non-
trivial corrections to a mass of a compact star.

4-1. Oppenheimer-Volkoff equation

Let us consider the energy momentum tensor for the
fluid, given by

T 0
0 = −ρ(r), T r

r = P (r), T i
j = δijP (r), (20)

where ρ(r) is the energy density and P (r) is the pres-
sure. The Oppenheimer-Volkoff equation[19, 20] for the
metric eq. (5) with 1/f(r) in the second term replaced
by another function h(r) becomes

−
dP (r)

dr
=

GNρ(r)M(r)

rd−2

(

1 +
P (r)

ρ(r)

)

h(r)

×

{

d− 3 +
rd−1

(d− 2)M(r)

(

8πP (r) −
2Λ

(d− 1)GN

)}

, (21)

where

1

h(r)
=

−2Λr2

(d− 2)(d− 1)
+ k −

2GNM(r)

rd−3
, (22)
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and

M(r) =
8π

d− 2

∫ r

0

ds sd−2ρ(s), M(0) = 0. (23)

At the surface of the star, the pressure vanishes, P (r =
R) = 0, where R is the radius of the star, and the energy
momentum tensor is covariantly conserved, ∇µT

µ
ν(R) =

0. Since P (r) = ρ(r) = 0 at r > R (outside the star), the
metric becomes the Schwarzschild, namely f(r) = 1/h(r)
with the mass parameter M = M(R) in (5).

4-2. Mass of a compact star

Our definition leads to the conserved total energy of
this system for the Killing vector ξµ = −δµ0 as

E =

∫

dd−2~x

∫ ∞

0

dr
√

−g(r)T 0
0(r)ξ

0(r)

= Vd−2

∫ R

0

dr
√

f(r)h(r)rd−2ρ(r). (24)

This total mass is different from the Schwarzschild mass
parameter. Indeed

8π

(d− 2)Vd−2
× E =

∫ R

0

dr
√

f(r)h(r)
dM(r)

dr

= M(R)−

∫ R

0

dr
M(r)

2

d

dr
log[f(r)h(r)]. (25)

Therefore, an estimation for the compact star mass in-
cluding its maximum mass should be replaced with the
above, though a size of the correction might be small.
(25) also tells us that the total mass of the star can not
be written as a surface term (the 1st term) alone and the
volume integral (the 2nd term) is necessary. Further-
more, the R → 0 limit of (25) formally reduces to the
black hole mass.

5. DISCUSSION

In this letter, we have proposed a general definition
of a conserved charge from any covariantly conserved
current, which requires no specific asymptotic behav-
iors/approximations for the metric, or no subtraction of
boundary contributions. Our definition has reproduced
the mass, electric charge and angular momentum of black
holes known in the literature. Since the covariant formula
requires the non-zero energy momentum tensor to define
the mass, it is clear that the black hole has non-zero en-
ergy momentum tensor at r = 0, like the charged point
particle in the classical electrodynamics. We have also
demonstrated that the mass of the compact star defined
as the conserved charge cannot be written as a surface
term alone, so that it differs from the Schwarzschild mass
employed in literature.

Our proposal is quite generic, so we expect plenty of
applications in future. As such a potential application,
we consider a more general case where any Killing vectors
do not exist. We can still consider a charge or a generator
associated with a general vector field ξµ as

Q[ξ](t) =

∫

Mt

dd−1~x
√

|g|T 0
νξ

ν . (26)

Using the similar argument before, we obtain

dQ[ξ]

dt
=

∫

Mt

dd−1~x
√

|g|ρ(x), (27)

ρ(x) :=
(Gµν + Λgµν)

16πGN

(∇µξν +∇νξµ)

where ρ = 0 if ξ is a Killing vector. A change of the
charge Q[ξ] can be calculated by the volume integral of
ρ, expressed in terms of the gravitational field through
the Einstein equation. (27) may give a hint for a generic

conservation equation in general relativity. This argu-
ment will hold not only for a Lorentzian manifold but
also for a more general one. We will return to this inter-
esting problem in future studies.
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