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1. INTRODUCTION

This paper concerns the issue of whether and how perceptual dimensions
interact from a differential geometric standpoint. Earlier efforts in this di-
rection initiated depiction of percepts, viewed ‘in the large,’” that is, where
the percepts are sufficiently separated that discrimination is virtually per-
fect (Townsend & Spencer-Smith, 2004). Hence, the percepts can be treated
in that framework as deterministic. In the present investigation, we take up
the same type of question when discrimination is imperfect due to noise or
closeness of the stimuli. This is accomplished as a generalization of General
Recognition Theory, hereafter abbreviated as GRT (Ashby & Townsend,
1986; see also, Ashby, 1992, Maddox, 1992, and Thomas, 1999, 2003). The
original GRT dealt with percepts as points lying in an orthogonally coordi-
nated space associated with distinct densities associated with the stimulus
set.

We have found that the present explorations in non-Euclidean spaces
tend to bring up novel aspects of relationships between stimulus dimensions
and perceptual dimensions that were not immediately evident in the usual
Euclidean milieu. Thus, in addition to providing some “first-order” exten-
sions of GRT to elementary manifolds, we view this paper as propadeutic
to several potential new lines of inqguiry.

Until we are deeper within the paper, it may seem that we are study-
ing systems devoid of response properties. However, within the early de-
terministic framework it is assumed, as in Townsend & Thomas (1993)
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or Townsend, Solomon, Wenger, & Spencer-Smith (2001), that standard
psychophysical responses are acquired. Later, as we enter the hard-to-
discriminate, and therefore probabilistic milieu, we will be discussing an
identification paradigm (readily generalizable to categorization) where an
observation point in a manifold leads inexorably to a response. A word
about our conception of perceptual entities seems in order. We believe
that in fact most objects in physical stimulus space are things like shapes,
sounds, etc. that lie in infinite dimensional spaces. We also think that
people can process these as complex percepts sometimes homeomorphic or
even diffeomorphic to the physical stimulus. For instance, think of perceiv-
ing or internally imaging a friend’s face. Some of our previous papers have
begun to deal with this aspect of perception (see, e.g., Townsend, Solomon,
Wenger, & Spencer-Smith, 2001; Townsend & Thomas, 1993).

However, it is also evident that somehow perceiving organisms are able
to filter out dimensions (e.g., brightness or color) and categorical entities
(e.g., stripes on a tiger, or the orthographic RED, independent, say, of print
color) from the original object. Further, most of psychology in general and
psychophysics in particular treats perceptual stimuli as points in a relatively
simple space, usually a space with orthogonal coordinates and often with
a Euclidean or sometimes a Minkowski power metric. Other possibilities,
such as tree metrics (e.g., Tversky, 1977) are occasionally considered too;
Dzhafarov and Colonius (1999), build a theory based on Finsler and more
general metrics that derive from discriminability functions.

We focus on points from two continua, assuming either elementary stim-
ulus presentation (e.g., sound intensity and sound frequency), or that di-
mensional reduction through filtering (e.g., attentional) has already taken
place (e.g., as in abstracting the color from an object). Thus, we shall
treat the problem of stimulus continua, with a finite number of response
assignments [i.e., a type of category). However, many of the later state-
ments concerning common experimental paradigms will be true for stimuli
as discrete categories (e.g., letters of the alphabet, words, ete.).

The format of our study will be somewhat tutorial in form with oc-
casional references to instructive volumes, since many readers may not be
conversant with differential geometry.! Although there are many terms
which involve several modifiers, we will give acronyms for very few of them
to lessen opportunities for confusion. Also, we will drop some of the modi-
fiers when it is transparent to which theoretical object we are referring.

Following Townsend & Spencer-Smith (2004) we take the concept of a

! Probability theory and stochastic processes and, especially for psychometricians, lin-
ear algebra, remain the modal mathematical education for social scientists. However,
this state of affsirs is changing with incressing influences of many areas of applied and
pure mathematics into social and especially cognitive science,
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coordinate patch or simply “patch” in differential geometry as forming an
appropriate level of description for a beginning treatment of dimensional
independence on manifolds. First, we require a definition of a stimulus
domain, which for simplicity we restrict to two dimensions. It is explicit
that all possible pairs of stimulus dimension values be potentially available
for perception.

Definition 1 A two-dimensional stimulus domain is an open set in the
plane: D = U x V C R2, where U and V may be finite or infinite open
intervals, R is the real line, and R2 is the plane with the Buclidean metric.

We should note that, ", n = 1,2 etc., will not be armed with the
Euclidean metric unless so stated, as in Definition 1. R™ unadorned with a
metric denotes the usual set of orthogonal coordinates. Note that the pres-
ence or absence of physical units is left open. The next definition adapts the
notion of a proper coordinate patch that is also a diffeomorphism (that is,
a map between manifolds that has an inverse such that both the map and
the inverse are smooth- see, e.g., more or less in order of increasing sophis-
tication: O'Neill, 1966; Boothby, 2003; Kobayashi & Nomizu, 1991, 1969;
Lang, 1985). Our assumptions in this treatise will be rather tight and may
in some instances be considerably loosened. For instance, the diffeomor-
phic assumption in Definition 2 below is fairly demanding. This constraint
helps keep matters relatively straightforward, but these aspects should be
generalizable in the future (e.g., as the case demands, to immersions, sub-
mersions, or non-smooth mappings-see Summary and Discussion).

Here, we investigate cognitive modeling using the simplest type of dif-
ferential manifold, namely spaces that can be represented as orientable
surfaces. One way that such spaces might be produced in the brain is by
mapping, say, a physical object of n dimensions into a space of n + k&
dimensions. For instance, a pair of fundamental frequencies wy, wg, as a
stimulus may produce sounds involving the overtones of wy and ws through
non-linearities. There may be other psychological dimensions produced by
the same two stimulus dimensions. Thus, even a finite distribution of colors
on a piece of art or in a room can stimulate distinct values in aesthetics
scales simply by apparently minor rearrangement of the color placements.

Alternatively, it could be that any such psychological manifold is more
chimerical. For example, if the psychological metric, is non-Euclidean, say
Riemannian, then it could be associated with a certain kind of manifold
even though the manifold as a surface might be rather a ‘second-thought’
construction. In any event, we shall keep the material simple by invoking
only one extra dimension, assuming that the manifold is two dimensional
and lies in three dimensional space. Generalization to higher dimensional
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embeddings (e.g., & two dimensional surface in a k-dimensional Euclidean
space) is easy, if more tedious.

Definition 2 A proper perceptual patch X : D — M C R? is a one-to-one,
diffeomnorphic map of an open set D of R* into %2, and onte M. Thus we
specify X by a coordinate function X(u,v) = (z(u,v),y(u,v), z(u,v)) in
R Let us call the psychological coordinates ¢ € @ and i € ¥, respectively,
where & x T is a subset of R, In general, ¢ and ¥ will be functions of (u,
v but neither is necessarily identical to any of &, y, or z. If we focus on the
coordinates produced by holding v or u constent, respectively, and vary the
other, the proper perceptual patch X is interpreted as @ parameterization of
D,

There is an induced diffeomorphism ¥ : T — M for 1T = {#(u,v) ¢
(u,v) € D} x {s(u,v) : (u,v) € D} C R*which provides the coordinate
chart for the manifold M. Through this map and its inverse, the psycho-
logical experiences being studied can be considered as either points in M
or as points in the set 1. Moreover, we will occasionally require the map
Z : I — 11 defined by £ = ¥~1(X). In cases where a psychological coor-
dinate is identical to a coordinate in the embedding space or a monotonic
function of it (e.g., as in the patch z = ¢(u,v), ¥ = ¥(u,v),z = ¥(u,v)),
the coordinate is directly ‘readable’ from M itself,

Figure 1 illustrates the general relationship between the stimulus domain
D, the psychological space M and the psychological coordinates. In this
example, the manifold M is the modified geographical upper half-sphere of
radius 1. A perceptual patch might be defined as the map

X(u,v) = (cos(u)cos(v), sin{u)eos(v), sin(v)) ,

with U = {(—=/2,7/2) and V = (—=/2,7/2).

Insert Figure 1 about hers

As mentioned above, deterministic separability has been introduced by
Townsend & Spencer-Smith (2004). We present a slightly modified form
here. There are two fundamental classes of deterministic separability in
their scheme, one called domain-range separability. This notion captures
the traditional emphasis on whether perceptual dimensions interact or not,
as functions of specified physical dimensions. For instance, suppose M =
%2, and let X{u,v} = (p{u),9(v)); this is a trivial example of domain
range separability. In contrast, the fact that equi-loudness contours in
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sound perception are functions of both intensity and frequency implies that
loudness is not deterministically a separable function of intensity.

The second class of separability is called range-alone separability and
this concept pertains to properties that adhere to M itself, without reference
to the map X. An example of a property associated primarily with M itself
is local orthogonality; that is, the tangent vectors to the coordinates ¢,
are always orthogonal at every point of M (see Townsend & Spencer-Smith,
2004). We shall mainly be concerned with domain-range separabilty in this
study, but range-alone separability will be expanded on below.

It is worth remarking that some of our developments require a metric
and some do not, rendering them more general objects. For instance, local
orthogonality requires an inner product in the tangent space, which then
readily produces a metric. However, the following definition, as well as
Definitions 1 and 2 do not necessitate a metric.

Definition 3 Deterministic domain-range, parameterization, perceptual sep-
arability (DDR-PPS) of two stimulus dimensions is defined by the condition
that the proper perceptual patch X be a parameterization of D = U = V,
with the perceptual coordinates ¢, 1 corresponding respectively to functions
of u, v.

Thus, irrespective of how the nervous system does it, we can think of
the map X as a composition of maps from I/, V' to &, ¥, and then from
there onto M via Y. That is, X{u,v) = Y(d(u),¢(v)) = m € M. (See
Figure 2.)

Insert Figure 2 about here

In Townsend & Spencer-Smith (2004), the designation of domain-range
separability was given to the case where M C ®® and z = z(u) = ¢(u) and
i = y{1) = ¥(v), with = being an arbitrary function of u, v. We now think
parameterization separability should, in contrast to the earlier treatment,
be featured, since this earlier situation, now called “embedding coordinate
perceptual separability,” is obviously a special instance of parameterization
separability (Definition 3). Proposition 1, whose proof is obvious, keeps
this new characterization in order. Figure 3 illustrates this concept.

Insert Figure 3 about here
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Proposition 1 Deterministic domain-range embedding coordinate percep-
tual separability is a special case DDR-PPS of Definition 3.

Is there any sense to thinking of any kind of separability notion when
we focus entirely on the image space and the psychological coordinates
therein, ignoring the I} — M map? We have suggested that the answer to
this query is “yes” (Townsend & Spencer-Smith, 2004). The idea is that
even though the psychological dimensions may be intricate functions of
the manipulated physical variables, there are some properties that are sug-
gestive of separability. Local orthogonality, mentioned above, is one such
option since whether or not the tangents to the psychological coordinates
are at right angles does not depend on whether they are parameterizations
of the physical coordinates, u, v. In another elemental kind of separabil-
ity that depends only on the properties of the range space, Townsend &
Thomas (1993) suggested that one simple type of deterministic perceptual
separability might demand that the perceptual space can be expressed as
{d{u);u e U} = {w{v);v € V} = & % ¥, that is, as the Cartesian product of
the possible values of the psychological coordinates; regardless of whether
@, 1 are each functions only of u, v respectively. This observation leads to
the following definition.

Definition 4 Range Cartesian separability is defined by the condition that
the perceptual coordinates consist of the Cartesian product @ = P,

The upshot here is that there is a kind of deterministic non-separability
when certain combinations of the psychological variables cannot occur. To
see how range Cartesian separability can fail to hold even though the stim-
ulus space is D = U x V and the specified coordinates are functions on
D, consider the map (diu,v),¥(u,v)) = (uinfv),ve*), e >0, v > 1. A
level surface is created by solving for v = e*/* and then finding that
wr = e®=/"4+% VWe gee that v is bounded below by e®v'#? here, and hence

the range is not equivalent to
&= U= {(u,v): (u,v) € D} = {9plu,v) : (w,v) € D} = (0,00) (1, x).

The next proposition establishes the relationship between range-alone
Cartesian separability and DDR-PPS.

Proposition 2 {4A) DDR-PFS implies that Il = ® x W and therefore that
renge-alone Cartesion separability is in force.
(B) Cartesian range-alone separabilty does not imply DDR-FPPS.

Proof. A. Under these conditions, each value of ¢ corresponds to a
specific v-trajectory in M, say d(u) = X (ugs, V') and similarly each 1({v) =
X(U,uy). Then cleatly, IT = Us X(us, V)xUyp X(U, vy) =3 x .
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B. As a counterexample, consider the maps ¢(u, v) = vu®and {u,v) =
uv® where u, v, a, b are positive on the real line, a, b fixed parameters,
say, a,b > 1. In this case, ¢ is primarily a function of u, for instance,
loudness as a function primarily of intensity, secondarily of v = frequency;
and vice versa for ¢ = pitch. One can then solve for a given level surface,
¢ = ¢, v=u""¢, and find that ¥ = u (u—2¢,)® so that for every ¢, € R+
all legitimate values of ' are produced. Similar results obviously occur in
the reverse function, and Cartesian range-alone separability occurs, since
{{#(uv),¥(up))}= & x ¥ . But, observe that coordinate domain-range
perceptual separability does not hold. =

In principle, an investigator can empirically determine whether DDR-
PPS holds through various psychophysical methods, such as variations on
Stevens' direct scaling methods. Equi-loudness contours are an example.
However, even if DDR-PPS is valid, it could be that probabilistic mecha-
‘nisms, including correlation of noise in the two dimensional channels, could
invalidate separability at the local, tough-to-discriminate stochastic level.
We turn to this question next.

2. PROBABILISTIC DOMAIN-RANGE
PERCEPTUAL SEPARABILITY AND
PERCEPTUAL INDEPENDENCE

In general, we refrain at present from specifying the source of probabilism—
it may be from the outer environment, internal noise, etc. Any such specifi-
cation will depend on more micro-level or process-oriented interpretations.
As far as our technical considerations presently are concerned, it matters
little, although the technical difficulty can vary. Next, we will have a couple
of evident propositions.

The earlier Ashby & Townsend (1986) work, as in the present, is de-
scriptive to a point, in the sense that we are deliberating at a geometric
level, without direct reference to underlying time-oriented dynamics. The
reader is referred to MacMillan and Creelman (2005) for a survey of the
current state of multivariate detection theory and methods in Cartesian co-
ordinates. We assume that the perceptual activity and decisions in, say, a
2x2 factorial design take place in a way equivalent to some type of decision
rule on M itself. For instance if, as we shall postulate, M is partitioned into
a set of four mutually exclusive regions, then the probability measures over
those regions will determine the stochastic structures of interest in our en-
deavor. On the other hand, if the decision occurs after filtering operations
are performed that map the psychological point to a different space, such
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as the plane, then it could be that the topological or geometric aspects of
M are inherited by this tertiary space, or not.

MNext, we require the probabilistic structure obtained by placing proba-
bility densities on M. This approach stipulates that associated with each
stimulus (u, v) € D is a probability density function on M given point-wise
by plz, y, z|u, v) with the understanding that any such point (z,y, 2] resides
on M via the map X. Also there is a function p(d,4|u,v) that depends
conjointly on (u,v). We abuse the notation in using the same symbol “ p”
for both functions, allowing that there is a 1-1 relation between(z, y, z) € M
and (¢, 4¢) € I1. Indeed, the distribution on M can also be pulled back to
D. In any event, we can think of p as being a member of a family depending
on u, v, each pair (u, v) of which determines a unique probability density
function. As discussed more below and as suggested by Figure 1, we can
discuss the psychological coordinates as they exist in planar II, or as they
exist through a mapping ¥ from IT onto M. This facilitates the following
definition.

Definition 5 Fvery setfing of u, v engenders a joint probability distribu-
tion on ¢, o in I, that is pid, ¥|u, v). Since a setfing of u, v (say w = u,,
v = 11,) leads, in the deterministic sense, to values ¢, ¥ of dab, we can
also express p(d, P|uo, vo) = P, W[, ¥,)-

It is an interesting sidelight of this picture that even though a number of
parameters dependent on « could be defined on T1, the parameter space will
gtill be one dimensional. For instance, suppose the probability density on 11
is normal with the mean and variance being functions of «. Then the mean
and variance are clearly functionally dependent due to their dependence
on w. Perhaps the relationships of stochastic model parameters and their
dependence may be of aid in the geometrical side of matters (but see, e.g.,
M. Levine, 2003, for a discussion of the complexity of relationships between
quantity of latent variables and dimensionality). The succeeding definition
establishes a potential linkage between the stochastic and deterministic
milieus but it will not be seen much in the following material.

Definition 6 The distribution on M is said to satisfy convergent deter-
minism if there erists o converging sequence of p as a function of a magni-
tude parameter T such that ple, ¥|w,, va; I) — pld,, @ ug, ve; I) as T grows
large, where (¢, 1) is the image of (1, v ).

Convergent determinism then ensures a connection between the stochas-
tie situation and the high signal-to-noise ration situation when perception
becomes deterministic. The parameter [ can refer to any physical dimen-
sion(z) that increase discriminabiliity such as contrast, salience, etc. Yet,
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Definition 6 does not imply that reports, say, in magnitude estimation will
be deterministic even though discrimination among the presented stimuli
is high.

Next, we require an apparatus for integration in the manifold M. We
have interest in the geometric aspects of spaces and hence an approach
based on the exterior caleulus of Grassman and Cartan (e.g., Kobayashi
& Nomizu, 1969, 1991; see Lang, 1993 for a discussion of the relationship
of measures to exterior forms on manifolds) seems called for. The latter
immediately and elegantly provides for the institution of the metric into
the integral.

Thus, we define a volume form (which is always possible if M is ori-
entable, which we take as a postulate) or in our elementary case, an area
form, which we denote by dM.? The idea is that dM is an operator (tech-
nically, a covariant tensor of order 2) which operates on a pair of vectors
{contravariant tensors) to measure an infinitesimal area. In a Riemannian
manifold, this operator will be closely linked to the metric function gi;(m)
defined at a point m of M, which determines scale.

Because m = X(u,v) for some (u,v) in D, we can also write gi;(u,v).
In addition, the prime vectors to employ in the computation are, in fact,
the basis vectors of a tangent space fixed at point m. These basis vectors
vield a parallelogram whose area is the local infinitesimal measure for which
we are looking.

In the event that the metric is inherited from the map X, which would
naturally be of interest to us, it is known as a Riemannian metric or first
fundamental form. It turns out that we can then express

dMI:Xu,,Xu} = \fg‘ll_r}gg - gfzdﬂd'i‘},

where X, and X, are the partial derivatives of X and g5 = (X1, X;),
the inner product of the partial derivatives with regard to i or j where
either iz equal to u or v. Note that we have successfully “pulled back™ the
computation from M to D = U x V. The role of the factor /911922 — 9%
is to expand or shrink various part of M relative to D.

In our case, though, we are more interested in ¢, ¢ as the psychological
coordinates rather than the stimulus values u, ». We don’t know, of course,
if something like a direct map from stimulus space D to psychological co-

2Using forms for integration necessitates keeping track of the orientation of
M, so that the oriented wvolume, Vol®(vy,vs,..,vn) where the +'s gpan the par-
allepiped, is + Vol(vy,va,..vn) if DET(vy,v2,..va) = 0 and - Vol(vy,vz.. .va) if
DET{(v1,¥2,....vn) <= 0. Because of this facet, some writers call such forms, “pseado
forms”. It i3 assumed in our text that the orientation has been sccounted for and the
form properly “signed”.
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ordinate space I1, for instance via Z, occurs or if, more likely, the latter are
‘picked off' or interpreted from M, asin (¢, ¢) = Y1 X(u,v) = Z-1, using
the notation from Figures 1-3. In any event, we can express the partial
derivatives of ¥ as

Bu du
s L
and
fu du
Yw = X“E + XHE.

Having restructured the coordinates in terms of ¢, 1, we shall now refer the
developments in the previous paragraph to the psychological coordinates.
Thus, the stimulus set I for example iz replaced by IT in the ¢, ¢ plane.

Regardless of the specific metric, the area of the region B on M can
then be found from computing

[ dM = [ dM(¥y, Yy)
B B

where B’ is the area corresponding to B in the planar set ® x ¥. The
terms ¥ and Y}, refer to the standard coordinate basis vectors in the tan-
gent space of M, TMy, at an arbitrary point m = ¥(éa) of M. They
correspond to (1,0) and (0,1) in %2 in the plane and in fact are the push
forward of these basis vectors to M. Finally, the density function, p, on M
can simply be instated in the integrals above analogously to the situation
in ®".

The earlier Ashby & Townsend (1986) concept of perceptual separability
can be viewed as a probabilistic realization of a 2-dimensional domain-range
coordinate separability (also see Townsend, Hu and Ashby, 1981; Townsend,
Hu & Evans, 1984; Townsend, Hu & Kadlec, 1988). Observe again that the
fact that the results or models can be plotted in the plane does not imply
flatness unless a flat metric is imposed.

How should we formulate the probabilistic version of domain-range sep-
arability on M7 We can take a hint from the earlier construction in ordi-
nary rectangular coordinated space by Ashby & Townsend (1986). They
considered the 2x2 table of settings of the two stimulus dimensions; these
in effect form (i.e., map to) a parameter space. It was assumed that the
stimulus dimensions were associated with psychological variables, although
allowing that each of the latter variables might, in effect, be functions of
both stimulus variables. The psychological space was assumed to be 2-
dimensional. Since typically, only a 2x2 performance matrix containing the
relative frequencies of responses to the four stimuli are gathered from an
experiment, the location of the probability distributions in this space have
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to be estimated in a sense from the data. This procedure is analogous to
how one carries out Thurstone scaling, or signal detection or discrimination
in 1-dimensional settings.

In any event, each cell in the stimulus table then was associated with
a hypothetical joint probability distribution in ®?. Ashby & Townsend
(1986) next defined probabilistic perceptual separabilty of the psychological
dimension (e.g., ¢) paired with stimulus dimension u, as the requirement
that the marginal distribution on that dimension (@), after integrating out
the psychological dimension associated with stimulus variable v (e.g., ¥,
would be constant over the other stimulus settings of variable v. Notice
that this definition does not imply stochastic independence, or vice versa.

To initiate the proceedings, we may simply reiterate the Ashby & Townsend
(1986) definition with the present notation.

Definition 7 Probabilistic domain-range parameterization perceptual sep-
arability (PDR-PPS) of ¢ against ¥ holds if and only if, for each physical
stimulus value u, the marginal distribution for ¢, namely p(d|u, v), is in-
variant across settings of v. If this is the case we can write p(dlu,v) =
pld|u). Separability of ¥ against ¢ likewise holds when p{i|u, v) is inde-
pendent of v for each v and 1.

Identifying coordinate space with psychological space M, probabilistic
domain-range perceptual separability of ¢ from ' is seen to be equivalent
to the condition that

I plz,y, zlu, v)dM = [ p(@, ¥|u, v)dy = p{d|u, v) = p(d|u)

where the first term may be interpreted as the integral over {X 1Y (#, ¢'):
¥ € U and (¢, ¢) € I1} in the pull back to I x V. Separability of ¢ from
¢ on M is defined in the same manner.

As an example in the present context, Definition 7 suggests that a para-
meter set associated with one psychological dimension, say ¢, is a function
of only one physical dimension u and not the other, v. Hence, for instance,
if the mean and variance were established to be the defining parameters
for o, then they would be functions only of » and not v. Integrating over
i would then erase the mean and variance associated with v and leave a
distribution on ¢ depending only on @ (and implicitly on © and not v).

One way to think of what is happening in separability is that in perceiv-
ing the ‘coordinates’ in M in a separable fashion, the observer is performing
in a way that is equivalent to mapping M into the & x ¥ plane.

Proposition 3 PDR-PPS holds if DDR-PPS holds and, for any stimulus
value (1, vy) and any fived u € U, the ‘marginal’ distribution obfained by
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integrating p(x, v, z|u,, vs) over {(z,y,2)|X " (z,y,2) € (u,V)} is indepen-
dent of u,.

Proof. Simply re-form Z7': @& x ¥ — D as before, Z7(¢,¢) =
X-1¥ (¢, ¢). Then Z7{H(u), ¥(v)) = (u,v) and so 21, o) = XLz, v, 2).
o

Note that if the marginal condition in M stipulated in Proposition 3 is
abrogated, then even if DDR-PPS is in force, PDR-PS can fail to heold.

To this point, we have the following set-up: We can investigate the
properties of the stochastics on M via the plane ® x ¥. The geometric
properties of M as expressed in the metric gi; will be transferred there,
Separability is defined as the invariance of a marginal distribution on either
of the psychological dimensions when integrating out the other. These
concepts are illustrated in the example in the penultimate section.

3. EVIDENCE ASSESSMENT

Somehow a decision must be made. Of course, the decision must be a
function of the observations. As we learned from univariate signal detection
theory, the decision plays an important role in performance. Within the
literature on multivariate psychophysics and perception, there was scant
consideration of this aspect of behavior. Ashby & Townsend (1986) showed
that in some ways decisional structure played an even more critical role than
stimulus structure in studying various types of perceptual independence.
Thus, decisional structure ecould obscure perceptual independencies, reveal
them authentically, or in rare cases, render an appearance of perceptual
independence where there was none,

The observations in IT have to be mapped into the appropriate set of
decisions. A natural intermediary is the evidence space, which may include
a bias that is response oriented (e.g., Luce, 1963; Townsend, 1971) or stim-
ulus oriented (Lappin, 1978; Nosofsky, 1992). Then a subsequent function
on the biased evidence maps the latter into one of the finite set of decisions.
We see more on evidence space below.

Ashby & Townsend (1986) found that an assumption of decisional sepa-
rability is crucial in readily exposing the underlying perceptual interactions
among dimensions. Decisional separability requires that an implicit or ex-
plicit decision based on a dimension be independent of the decision about
the other dimension. In a space with orthogonal coordinates, this require-
ment implies that the decision boundaries are straight lines that are parallel
to one axis and orthogonal to the other. However, orthogonality is not a
necessary prerequisite as our new definition indicates.
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Definition 8 Decisional separability of ¢ from o is the condition that the
criterion that ¢ ezceed [or fail to erceed) a certain value dy, is defined by
a boundary in M identified with the constant ¢y trajectory (i.e., varying
1 while holding ¢ constant). So, the response variable on ¢ is ay if the
observed ¢ is to the “left” of ¢y and ap if it is fo the “right” of ¢y. Decisional
separability of ¥ from ¢ is defined analogously. (See Figure {.)

Insert Figure 4 about here

Thus, each decision bound is itself a value of the psychological variable
and simultaneously a trajectory of the other variable holding the first con-
stant. Patently, just as with perceptual separability, the notion is not a
symmetric relation. Of course, in [I we immediately find that decisional
separability is true if and only if the decision boundaries are appropriately
parallel to the ¢, 9 axes. Next, we see some relationships of decisional
separability to certain other important notions.

Proposition 4 Decisional separability does not require: (A ) Cartesian range
separability; (B) Any type of domain-range separability.

Proof. A. Merely observe that selecting an arbitrary criterion on either
P, ¥ does not depend on what values exist on the other dimension.

B. Clearly, the notion of decisional separability is independent of what
transpires with respect to the map from D to II. That is, decisional sepa-
rability is a range type of property. =

How might such a property be generated? We must now consider how
the percepts (¢, 1) relate to evidence regarding the response alternative.
The evidence space records the evidence in favor of each alternative and
permits a decision to be made on some comparison based on this evidence.
The mapping of the psychological space into the evidence space assumes
the role of the so-called discriminant function in pattern recognition theory
(e.g., Milsson, 1965; Townsend & Landon, 1982). Set the evidence map
e: M — E, where the range space is a subset of R* so that

e(m) = (eq1(m), e1a(m), ez1(m), e2z(m}))

and e;; maps an observation into R as the strength of perceptual indica-
tion for response a;b;. Assume that the evidence map and its inverse are
continuous.

In general, the evidence function can include learning and motivational
biases; and in fact, biases based on either the responses (most common, e.g.,
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as in Luce’s recognition choice theory, 1963) or as noted above, on stimulus
bias (e.g., Lappin, 1978; Nosofsky, 1992). To constrain the theoretical
development, we adopt the MAX rule of decision, that is, response = a;b; if
and only if e;; = masxg(ew ). This decision rule covers an enormous number
of decision possibilities including both optimal and non-optimal strategies
(for some of these, see Townsend & Landon, 1982). It does not include
certain probabilistic decision strategies such as probability matching,

Consider the pairs of functions ess — €12 = ey, €2 — €31 = €2, 93— =
€3, €12 — €31 = €4, €12 — €11 = €5, €31 — €11 = €5. Let

Exn = {meM:e(m)>0elm)>0e(m) >0}
= M= z23{m € M : ei(m) > 0}

that is, Egg is where egp dominates the other functions so that response asby
will be made in this region. And so on, for the other response alternatives.

Proposition 5 (A) If §={m & M : e;(m) =0,¢e5(m) # 0 for j # 1} and
de;/dp # 0, then § is a I-dimensional closed submanifold between a region
Ezs and Eyg, and similarly for other regions Ey;. (B) Fach region Eij is
connected.

Proof. A. This result is a generalization into differential manifolds of
the inverse function theorem (see, e.g., Hirsch, 1976).

B. This result follows from the topological fact that a continuous image
of a connected manifold is connected (e.g., Munkres, 1975). =

As yet, we have no means of enforcing decisional separability. The next
definition opens a path to this end.

Definition 9 Diseriminant decomposability on both dimensions obfains if
there erist two independent, I-dimensional discriminant functions oy, 8,
i,j = 1,2, where a; is a function only of ¢ and B; is a function only
of 1, such that e;; = maxp[er] holds if and only if oy = maxy[a] and
B;= maxg[3,].

Proposition 6 If discriminant decomposability holds on both dimensions
and the differences « = ag — oy and § = 5, — 3, are monofonic functions
of their respective arguments ¢, ¢, then decisional sepambility will hold,

Proof. We can simply compute as — a; and 3, — 5, and partition
M into regions where these differences are negative or positive. Further,
under the stipulations, either difference will be 0 on a tie between the o or
& values, and the ties partition $ x T space into two disjoint sections apiece,
They can both be [ only once where the two straight and orthogonal lines
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cross. The lines of separation and the intersection point, being of dimension
1 or (), must be of measure 0 relative to the underlying densities. m

A natural example forms when o is the likelihood of alternative u; and
3; is the likelihood of v; and @ /ap is monotonic decreasing and similarly
for the 3 ratio. These likelihoods can be taken from the marginal densities,
whether or not independence of ¢, 1 holds.

The next assignment is to formulate analogues to the Ashby & Townsend
{1986) observable implications of separability. In that paper, it was shown
that under decisional separability, an earlier statistic, marginal response in-
variance (earlier employed in testing for feature independence in a test then
called across-stimulus invariance; Townsend, Hu & Ashby, 1981; Townsend
& Ashby, 1982; Townsend, Hu & Evans, 1934; Townsend, Hu & Kadlec,
1988) was equivalent to perceptual separability.

Let the probability of giving a response identified with level “" of phys-
ical dimension U and level “5” of dimension V" be P(a;, b;j|u;, v;). The usual
complete factorial identification paradigm has two levels on each dimension
and four responses overall corresponding to the four stimulus combinations
of the 2x2 values. For generality, let & be the complement to k, ie., if
there are two levels and k =1 then kf =2 and vice versa. Then, following
Ashby & Townsend (1986), we can state the definition of marginal response
invariance as follows,

Definition 10 Marginal response invariance is defined as the satisfaction
of the condition

P[a.;|u.k, T.-'] - P{Gh bj|uk,¢r] + P[a;, b,-a|uhv:|
Plaq, bylug, vf) + Plas, bj [ug, vf) = Plaglug, o)

for any v, wf € V, and likewise for pairs u, w € U.

Note that indeed, the marginal probability of responding that u is at
level %" depends on wu, but not on the level of v. Next comes a proposition
that indicates the conditions under which PDR-PPS will be revealed by
marginal response invariance. Naturally, the stipulation concerns decisional
variables, since marginal response invariance involves response frequencies
while PDR-PFS only involves the perceptual distributions themselves,

Proposition T (4] If decisional separability holds, then PDR-PPS im-
plies marginal response invariance. (B) If marginal response invariance
holds everywhere in the presence of decisional separability, then PDR-PPS
is implied. Thus, under decisional separability, perceptual separability, and
marginal response invarionce are basically equivalent,
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Proof. A. Assume that decisional separability holds for ¢ over o, and
that two stimulus values of v have been specified. Decisional separability
entails that the decision pertaining to an observed value ¢ depends only on
which side of a criterion ¢y, it falls. Then, one integrates over the proper
range of ¢ (i.e., summing over the response probability for reporting either
b, or its alternative) and the “{" side of the division of the space by ¢, in
order to calculate the marginal probability of a; (i.e., level *“i" for dimension
¢) under the two stimulus settings. Marginal response invariance states that
for two distinct settings of v, the marginal probability of reporting a; will be
the same. But, it must be that the integrals formed under the two settings
of v are indeed the same since the probability measure is identical as

Plag, bl vy) + Ploa, bafus, ) = | i p(6, lus, v;)dgde

& &
[ pl@lui)de = [ [ p(eb, dlug, vil)dody
da T go
= Plag, b |uwi, vif) + Plag, ba|ui, vif).
B. If marginal response invariance is in force for all settings of v and for

any decisional boundary for u (and therefore ¢) then because of decisional
separability,

o "
I v | p(z,y, zlug, vj)dM '—‘{df P, Ylui, vj)dody

- ﬁp(m,y,z|m.vjf:ndM= [ J 2l hus, vy

Fee

so that [3, p(6| uiv;) dé = [E, p(d| u, v;7) do for all v; and v;7 and
¢;. Because of the uniqueness of the relation of the distribution with the
parameter sets, it follows that both sides are invariant across v, for all ¢y,
which implies PDR-PS. m

Strictly speaking, without decisional separability, marginal response in-
variance and PDR-PS are logically unrelated. There is an asymmetry in
what one might conclude from data. If separability is not experimentally
supported, that is, marginal response invariance fails, then one cannot
know from this analysis alone if perhaps the absence of decisional sepa-
rabilitymight not have ruined the chances for true underlying separabilty
to manifest itself in the data. But, if perceptual separability is supported
by the success of marginal response invariance, then there are fewer cases
where a combination of a certain kind of decisional bound and failure of
perceptual separability might nevertheless lead to a misleading appearance
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of separability. An example of such an anomaly is mean shift integrality
(e.g., Kadlec & Townsend, 1992; Maddox, 1992).

4. PERCEPTUAL INDEPENDENCE

Along with the perceptual and decisional separabilities, the other founding
concept of general recognition theory is “perceptual independence”. Inde-
pendence is a notion that is so ubiquitous that it is probably impossible to
confine it to one concept even in highly related areas of discourse. Ashby &
Townsend (1986) chose to assign the term, with a modifier—“perceptual,”
to represent the finest grain level with which we were dealing, that of prob-
abilistic independence of perceptual dimensions, within a single stimulus.
That is, perceptual independence is a within-stimuwlus condition and as is
perhaps befitting, this usage coincides with that in probability and stochas-
tic processes theory. Observe again, that in contrast, perceptual separabilty
refers to across-stimulus invariances (see, e.g., Townsend & Ashby, 1982).
Hence, logically, perceptual independence has nothing to do with domain-
range considerations. Nevertheless, later discussion will indicate how the
domain-range map could indeed play a strategic role, despite the logical
distinction,

It is straightforward to define perceptual independence for manifolds
more general than the Euclidean. But on region IT, we can express matters
analogously to Ashby & Townsend [1986).

Definition 11 Perceptual independence will be said to hold for o given
experimental condition (u,v) if p(¢, ¥|u, v) = p(dlu, v)p(¥|u, v).

Again, notice that it is not automatically assumed that the marginal
probability density on ¢ is a function only of u for that would be tanta-
mount to forcing perceptual separability as well, which is a logically distinet
concept. Unfortunately, psychologists have frequently conflated separabil-
ity and independence.

What is the commonly observable relation from experiments pertain-
ing to the theoretical notion of perceptual independence? It is a statistic
called sampling independence deriving from earlier usage in probing inde-
pendence of feature processing (e.g., Townsend, Hu and Ashby, 1981; Ashby
& Townsend, 1986). At the risk of confusing previous readers of GRT, we
would like to alter the name of “sampling independence” to “report in-
dependence” to emphasize that this statistical property is an observable.
We again use the definitions relating to experimentally observable response
probabilities from above.
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Definition 12 Consider an erperimental setting of the stimulus dimen-
sions u, v. Then, report independence is defined by the properiy that
P(a;, bj|u, v) = [Plas, bjlu, v)+P(as, bjflu, v)][P(ai, b |u, v)+Plast, bjlu, v)].

Hence, report independence requires that the joint likelihood of report-
ing a; and b; equals the product of the marginal probabilities of reporting
them. This definition is in line with the notion of probabilistic indepen-
dence, but of course, the report probabilities, both joint and marginal, are
integrals over the underlying probability densities. Note that it is not nec-
essary to require that the observer explicitly report each value of the two
dimensions. As long as there is a 1-1 assignment of stimulus pairs to re-
sponses, report independence can be checked. Thus, in the first instance,
the experimenter could require that the observer respond “This trial I saw
dimension A at level 1 but dimension B at level 2. Alternatively, she/he
could require that the observer respond R;, i = 1,2,3.4, with R; correspond-
ing to level 1 on both dimensions, iz to level 1 on dimension A but level
2 on dimension B and so on. In either case, it is straightforward to assess
report independence.

Next, we require a proposition to link up perceptual independence and
report independence. The natural proposition depends strongly on deci-
sional separability as it did earlier. Obwviously, just as in the case of separa-
bility, in M the densities are ‘perturbed’ by the stretching factor. However,
given a stimulus (wug,vg), on integration the independence of, say, the 4
trajectory representing the psychological value say, ¢ and the ¢ trajectory
representing psychological value ¢, will be established, even if we were
directly integrating in x, y, = on M.

Proposition 8 If decisional separability holds for a given experimental set-
ting, then perceptual independence and report independence are eguivalent.

Proof. Assume decisional separabilty.
A. Perceptual independence implies report independence. With deci-
sional separability,

Plag, ba|u,v)
= T T p(¢,¥lu,v)dédy = T p(dlu,v)ds T p(wlu, v)dw
Yo g $o W

0 oo oo o0
= [HJ;E&I';P['ﬁeT-'l‘WuU:Idﬁﬁd"ﬁf J [ plelu, v)dddy]

wea g
go oo o0 o
[ 1 & 1 [p(6vluc)dodé+ T | p(d,¢iu,v))dody]

= [P(az, ba|u,v) + Plaz, bilu, v)][Plas, balu, v) + Plag, beju, v)].
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B. Report independence for all », v implies perceptual independence.
Because of decisional separability, just noting

P(ag, balu, v) = [P(a, balu, v)+Plag, bi|u, v)][P(ay, balu, v)+P(az, ba|u, v)]

and reversing the argument of part A proves the result. m

We have concentrated on how things look in IT space which is virtu-
ally identical to the Cartesian circumstances in Ashby & Townsend (1986).
Moreover, unless DR-PPS is true, the map Y carrying & x T into M will
not coincide with the X map. Some further remarks concerning the rela-

tionship between separability and independence will be made in the next
section.

5. PROBABILISTIC RANGE-ALONE
SEPARABILITY AND PERCEPTUAL
INDEPENDENCE

What happens when we move from a tight linkage of each physical dimen-
sion to their respective perceptual images? Can, for instance, such notions
as separability and independence still have any empirical referent? These
issues are explored in this section.

We begin with the fairly minimalist assumption that there exist two
pevchological dimensions everywhere which possess tangents that are lin-
early independent. Further, we continue to assume that there exists a map-
ping that carries the equi-magnitude trajectories of each dimension into a
psychological plane & x ¥. Obviously though, these no longer need be co-
incident with the original physical dimensions, u and v. That is, no longer
will X(u, V) =Y (é, ¥), where ¢ is the image of u.

First, since DDR-PS obviously does not hold, could there exist proba-
bility distributions such that PDR-PS still is true? This appears to be an
open problem. Basically, a functional equation that captures this general
issue is, for separability of ¢ over ¢, and when ¢ depends on both u, v but
¢ only depends on u,

) 15,

% ! p{@.mu,ﬂwﬂwﬁ
L Oplo, dle(u), ¥(u,v)) Op(u) Bp(d, |(u), P(u, v)) S
o 36 (u) Edp+ | L I

The first term is always zero but the second being zero establishes the
condition for PDR-PS. If perceptual independence holds, then the eritical



20 Townsend, Aisbett, Busemeyer, Assadi

equation is
r Op(¥le(u, v)) Oblu, v)
thp(u, ) Fu

Since we assumed that p is a function of the parameter 1{u,v) and ¥ is a
function of v, both non-trivial, then it's clear that these two functions must
trade-off in such a way over & x ¥ that the integral is nil.

As noted earlier, if ¢, 4 are dependent under p, even if the parameters
are separate functions only of u, v, ¢{u) and (v}, then this dependence may
ruin PDR-PS. Yet, it is also possible that PDR-PS is true although perhaps
unlikely. This situation is akin to what has been defined as “marginal
selective influence” (Townsend & Schweickert, 1989; see also Townsend,
1984, Townsend & Thomas, 1993) in response time theory.

Next, we turn to the issue of redefining the stimulus dimensions in order
to enforce DDR-PS. If we had access to the internal sites of @ x T, in prin-
ciple we might be able to ascertain if the marginal distributions of ¢ and
iy were invariant over the parameter settings, say ¢, 4/ respectively. How-
ever, behaviorally there is no way to make this stipulation empirical without
creating a new stimulus domain (or doing something logically equivalent).
Thus, we can now establish a new physical domain D*, actually a diffec-
morphism of the old one, D, such that the new physical coordinates u®,
v* in D* now correspond respectively to functions of ¢, ¥, and hence are
PDR-PS with regard to ¢, 4. Consider two settings (u,v) and {uf,v/) of
D that result in the respective joint densities p(¢, 1¥|u, v) and p(¢, ¥|ut, vf).
Suppose further that these settings are such that, according to the scales,
¢ remains the same whereas v is changed. This situation corresponds to
that in the domain-range situation where u is held constant.

dep = 00,

Definition 13 Consider that two different settings of the stimulus are pre-
sented such that the ¢ sensations would be the same if no noise were
present—the stimulus has been altered so that only the ¢ dimension changes.
Then range-alone, probabilistic perceptual separability (RA-PPS) of ¢ from
i iz defined os the requirement that the marginal distribution on ¢, afier
integrating over the ¢ variable, will be the same for both settings.

Since we have stipulated that ¢ is unchanged by integrating over the
other variable, we can simply write this requirement in terms of the re-
spective densities under the two settings:p(e, ¥|u, v) = p(d, ¥lul v]) for the
first and p(¢, Ylur, w) = pld, ¥|ul, v3) for the second. Note that ¢, as one
of the two sensory parameters of the density, will be unchanged as is u®.
Similarly, in general an absence of PDR-PS finds that

;I: ple, ¥lu, v)dy = p(¢lu, v) # pllu, vr) = { Py wlud, vr)dep.
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Is there any empirical content left in this situation? The answer is
clearly “yes" as long as the scientist has some guide as to the possible un-
derlying dimensions as functions of u, v. The idea would be to use macro-
scopic methods (e.g., magnitude estimation, cross-modality matching, etc.)
first to map out the way in which two physical dimensions interact (e.g., as
in equi-loudness contours) to produce the psychological dimensions (e.g.,
Baird, 1977; see also Townsend & Spencer-Smith, 2004). Then, in princi-
ple one can carry out tests such as those for marginal response invariance.
Naturally, some aspects of marginal response invariance will have to change
to reflect the fact that u does not accurately represent ¢ any longer and
similarly for v and 1.

Nevertheless, for each distinct combination of values of ¢ and v, there
will still be a unique u, v that produce exactly that psychological pairing.
Now that D" is defined, such notions as marginal response invariance and
decisional separability follow immediately, and at least in principle and
perhaps in practice with effort, RA-PPS can still be tested.

The situation for perceptual independence is a bit different, in that since
we are working with a single stimulus setting, the report independence test
can be carried out immediately, without fretting about a remap of D — D*
first. Everything is as before in the domain-range milieu.

6. A PSYCHOLOGICAL SPACE AND
TWO DISTRIBUTIONS

A strong contender for the most studied pair of dimensions, with regard to
issues of independence, are the orientation and size of a line-at-an-angle,
often in the context of a definite (-angle line and an are, producing pie-
slice like figures (Shepard, 1964). Most published studies have assessed
the orientation and size dimensions to be separable. Thus, Shepard (1964)
and Nosofsky (1985) found MDS plots to be reasonably rectangular, which
within the deterministic milieu suggests separability. MDS fits using a city
block metric, again in highly discriminable stimuli have generally been more
successful than a Euclidean metric (e.g., Dunn, 1983; Hyman & Well, 1967,
1968; Shepard, 1964). More recently, using GRT methodology, Kadlec &
Hicks (1998) has substantiated both perceptual independence and percep-
tual separability as well as decisional separability. (Potts, Melara & Marks,
1998) provide a thorough parametric investigation of experimental condi-
tions that do or do not lead to separability with the Shepard (1964) stimuli.

We present a simple space M that can capture the topological and
probabilistic aspects of the data and serve as a guide to potential assay
of the metric, as well as of so far unexplored issues such as curvature and
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existence— or not — of paths and geodesics in the perceptual space for ori-
entation and size. Then we impose two distinct probability densities on
M.

Let ¢ correspond to psychological size, presumably mainly a function of
physical radius u, and v correspond to psychological orientation, presum-
ably mainly a function of physical orientation v. We think of u as standing
for size and contained in the interval (a, b}, a>0, not necessarily bounded
on the right in general, and v as angles in (0, 27), say. Psychological space
M in R® is then assumed to be the surface of revolution produced by the
formula

X(u,v) = (s{u,v), d(u, v) cos¥(u,v), $(u, v) sin ¥(u, v)).

Here, the s(u,v) term deforms the psychological parameters so as to de-
scribe distortion orthogonal to the cross section of the surface, along the =
axis say. We assume s is psychological size ¢, so that

X{u,v) = (¢{u, v), dlu, v) cos u, v), ¢{u, v) sin fu, v)).

For well-behaved functions ¢ and «, X is 1-1 and onto and is further a
diffeomorphism. The various mappings are illustrated in Figure 5.

Figure 5 near here

Assuming ¢, i are perceptually separable as suggested by Kadlec &
Hicks (1988; and under certain circumstance, Potts, Melara & Marks, 1998)
then we have at the deterministic level,

X(u,v) = (¢(u), ¢(u) cos(v(v])), ¢(u) sin(y(v)))

and coordinate space IT = & x ¥, By Definition 3, ¢ and  are then DDR-
PS (deterministically domain-range separable), and by Definition 8 they
are decisionally separable from each other with the boundaries effectively
slicing the cone through the y-z plane, or forming a sector along the z-axis.
In order to go further, we need to retrieve some more differential geometry.

Ultimately, we need the metric. Obviously, we don't know that to begin
with. We do know that the set of points in a space and the metric are
independent. For illustration sake, we employ the metric inherited from the
mapping Y, as Riemannian metric. In our example, ¥, = (1, cos v, sing)
and Yy = (0, —¢sint, ¢ cosy). Hence

o1 = {(1,cos ¢, sin ), (1, cos 4, sinw)) = 1 + (cos ¢) + (siny)® = 2.
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Similarly, g12 = g2 = 0, and g = q‘;z. Then, as observed earlier, the map
Y distorts the ¢, 1 plane in a way captured by +/g11020 — 91!2 = /2.

We can further conclude two immediate points from the fact that (Y5, ¥}
= 0. First, ¥y and Y are the basis vectors for a coordinate system in TpM,
and their inner product being 0 implies that they are orthogonal at every
point m. Hence, this system also obeys the tenet of local orthogonal sepa-
rability (Townsend & Spencer-Smith, 2004).

Furthermore, there is no interaction in the sense that, although the
speed depends on ¢, v (degenerately in ¥, to be sure), the off-diagonal is
0. This statement can be appreciated in the expression for the infinitesimal
increment

ds Vou1(#, ¥) (de)? + 2g12(@, ¥) (de) (dv) + gaz (@, ¥)(de)?

2(d¢)? + ¢ (d)2.

Thus, observe that even if one is, for instance, traveling on the diagonal in
the plane, only the weighted Euclidean values determine magnitude—there
is no interaction of the product of d¢ x dib. The rate of progression along
the ¢ or £ axis is uniform at rate 2 whereas if we move around a circle, the
rate of change is a function of how far out we are along the z-axis (i.e., how
big the size is) we are. This makes sense since the circumference is larger
the farther out we are. Note that even if DDR-PS holds as functions of the
physical stimuli values, the apparent rate of change along the z-axis may
not be uniform as it is moderated by the term (8¢, du)?

A deficiency of the inherited metric of our map from some points of
view may be that it iz not the city block metric. Many studies, though far
from all, have found that the city block fits in MDS scaling of perception of
Shepard stimuli are superior to fits by the Euclidean metric. However, the
studies only test members of the power metric class and sometimes only city
block vs. Euclidean. As far as we know, no general Riemannian metrics
have been attempted with these stimulus patterns. The Euclidean metric is
the only power metric that is also a Riemannian metric. One property that
all the power metrics share is the non-interaction across dimensions (see
Beals, Krantz & Tversky, 1968; Townsend & Thomas, 1993) and Summary
and Discussion below.

Distribution A

Suppose initially that probability density p on the manifold M depicted in
Figure 5 is Gaussian about the determinate mapping of stimulus (w, v).
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That is, we suppose that for points (x,y, 2) in M,

p(=, ¥, zlu,v) = Nezp(—a((z — z(u,v))* + (y — y(u,v))* + (z — 2(u,v))?))

with normalizing function N = N(u, v). In deriving the associated proba-

bility distribution p in coordinate space IT it is necessary to account for the

distortion in M. Setting (¢, ¥p) = ¥ 1 X (u,v), we have

(b, ¥lu, v) = 20N (g, o) exp(—a((¢—g)* +(¢ cos(¥)—py cos(v))*+ (b sin(¥) —dp sin(1p))?))
which by standard trigonometric relations reduces to the following:

p(6, ¥lu, v) = /20N (dy, Yo)ezp(—2a(d® + 65 — ddg — Py cos(¥ — ).

Figure 6 near here

Figures 6 (a) and (b) illustrate this probability density on coordinate
space & x T for two physical stimulus values [u, v).

This is an example when perceptual independence (Definition 11) fails to
hold. If ¢ is a function only of u, however, the example demonstrates prob-
abilistic separability (PDR-PS) of ¢ from . To see this, observe firstly
that the normalizing function N{gy,4;) must be independent of ¥, be-
cause N(dp, o) ~" = fp fo Ny, ¥o) 'p(d|uw) dy do = /2 [ dexp(-
2a(¢? + 6~ 60) ) [ exp(~2a(pdocos(y—1))) d d which is indepen-
dent of ¥y Then [y p(d|uv) d = /2 N(¢)dexp(-2a(d” + 8§ — ddy))
[ exp(—2a(ddyeos(tb—1by))) dy is independent of v, and hence of v,

Even if DDR-PPS holds and ¢ is basically linear in u with slope 1,
as the data suggest (e.g., Baird, 1997, p. 34) and we assume also that
wiv) = v, then probabilistic separability of 1 from ¢ still will not hold. If
psychological size varies from 0 to infinity, and 1 is separated from iy by =
radians so that cos{y—1,) = -1, then [z p(da| uw,v) dé = /2 N{dy) exp(-
2ad]) [ dexp(-2a¢%) dé = /2 N(dy) exp(-2a¢7) (4a)~1. For this term to
be independent of ¢ and hence of u, necessarily N(¢,) is proportional to
exp(2ad]), say N(dy) = c exp(2a¢i). However, if ¢ = 3, so that cos(v
—4g) = 1, then substituting for N(sy) gives [ pldtd| uv) dd= /2 ¢ [5d
exp (-2a¢($—2¢,))) dé which is not independent of ¢,. So for any v we
have demonstrated that the marginal distribution [ p(¢,3| u,v)d¢ cannot
be independent of u for all physical stimulus values v = .
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Distribution B

In contrast, consider the case when the probability density p is Gaussian
on IT about the determinate mapping of stimulus (u, v). That is, we sup-
pose that p(¢,i|u, v) is proportional to exp(-a(¢—¢)®+ (¥—1)?)), where
again we suppose that ¢(u, v}= ¢y and (u, v)= ¥,. (This density func-
tion is illustrated in Figures 6(c) and (d); note that scaling on the ¢ (size)
axis has visually distorted the circularly symmetric functions.) With this
assumed probabilistic structure, perceptual independence obviously holds.
With DDR-PS, probabilistic separability also holds in both directions, since
for example [ p(¢.¥lu, v) dy = exp(-a(d-¢y)®) [gexp (-a(y-vg)?) dv /
Jo Iy p(d¥|u, v) dy dp =exp(-a(d—dy)?) [pexp(-a(d-¢y)*) d¢ is indepen-
dent of v = 1.

These two distributions, A, B along with the definitions and proposi-
tions illustrate several aspects of the theory. Note that Example A has the
joint demsity as independent in z, ¥, 2, as might happen if independent
noise sources are intimately tied to the separate z, y, 2 dimensions. When
interpreted in terms of I1, independence is severed between ¢ and 4. Ex-
ample A also points up potential relationships between independence and
separability, even though the concepts are logically distinct: With non-
independence, it takes a kind of balancing act to rid, say, the marginal
distribution on ¢, from contamination via the “wrong’ stimulus dimension,
in this case v. This balancing act does not occur in this example.

Example B sees independence between ¢ and i, for instance, as we
might expect if independent noise sources are connected with the percep-
tual coordinates ¢, 1. Of course, independence in ¢, ¥ will not transfer to
independence among x, y, 2. Furthermore, if DDR-PS holds then Distrib-
ution B leads directly to PDR-PPS.

Decisional separability then, in the case of Distribution B will eventu-
ate in marginal response invariance and report independence. However,
decisional separability will expose the lack of PDR-PS in the case of Dis-
tribution A through a failure of marginal response invariance. And, it will
also expose an absence of perceptual independence via failure of report
independence.

7. SUMMARY AND DISCUSSION
7.1. Roles of the Map X

We have developed the structures for GRT that are suitable for its use
on simple 2-dimensional manifolds. We used coordinates but did not re-
sort to extrinsic concepts (e.g., a normal to a surface). Thus, though we
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have emphasized surfaces, the developments immediately generalize to 2-
dimensional Riemannian manifolds with diffeomorphic physical—sensory
maps; and, with obvious complexification of the notation, from 2-dimensional
physical Euclidean space to n-dimensional manifolds.

We have found it useful in the present enterprise to accentuate the
macroscopic picture of the physical-to-sensory map X which would be de-
terministically visible when discrimination is high (e.g., the psychophysical
loudness as a function of sound intensity, as opposed to the discrimination
of two neighboring tones). This perspective was not so obviously central in
Ashby & Townsend (1986), though it lay in the background of the separa-
hility concepts. But here, it makes clear the distinction between the map X
and the stochastic structure (e.g., see Definition 6). Thus, we demonstrated
in the last section on range-alone separability, that even if the physical space
were re-coordinatized from D to D* so that a new X" will be determin-
istically separable (DDR-PPS), it may not be probabilistically separable
(PDR-PPS).

The underlyving map X plays other strategic roles as well. Consider the
question of decisional separability. It is certainly a highly critical aspect of
performance and is exceedingly important in observing the internal struec-
ture, On the encouraging side is the likelihood that the decision bounds
might be easier for an observer to align with the perceptual axes when the
coordinates are perceptually separable. In fact, in categorization research,
it is has been found that observers first try to establish decision bounds
that are aligned with the simple and evident psychological dimensions and
only if that strategy is ineffectual or highly non-optimal to attempt other
strategies (Ashby & Maddox, 1990, 1992). To be sure, it has been found
in categorization experiments that observers can establish separable deci-
sion bounds with stimuli thought to be integral (Ashby & Gott, 1988) and
non-separable decision bounds with perceptually separable stimuli, if in
each case the bounds are optimal within the experimental setting (Ashby
& Maddox, 1990, 1992). Yet, it does appear that it is easier for people
to set up decisionally separable bounds if the experimental dimensions are
indeed perceptually separable (e.gz., Ashby, 1992, pp. 459#.). Hence, it
seems not unlikely that the assumption of decisional separability might be
reazonable in a number of circumstances,

In another role for X, although perceptual independence is formally un-
tied to separability X, in actuality they may be intertwined. As a simple
example, suppose M = II = ®2 and X is a linear orthogonal map of D =
R2 to 1T but with a rotation so that ¢, ¥ are orthogonal. On the one hand,
if the noise source iz independent in u and v, then it will be correlated in
¢ and 1f. If decisional separabilty holds, then both the failure of percep-
tual separability as well as the failure of perceptual independence can be
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discovered.

If X is deterministically perceptual separable as in DDR-PPS, but the
noise is correlated then again, with the presence of decisional separability,
the satisfaction of probabilistic perceptual separability will be experimen-
tally detectable as will the failure of independence.

7.2. Roles of Metrics

A few remarks are worth making concerning the role of metrics in our pro-
ceedings. We employed the inherited metric as a natural approach. First,
the actual mappings from sensory organs to brain with the various distor-
tions could be directly related to the way in which the Euclidean metrie,
typically employed in the physical sciences, is distorted on the way to the
psvchological representation. However, it could also be that a particular
manifold M is simply one of an equivalence class of isometric spaces that
capture the psychological metric. Of course, it also could be that the actual
metric (assuming one exists) bears little or no relationship to the ‘form’ of
the psychological manifold.

In another interesting aspect, despite the presence of a metric, the main
properties of the theory above are (differentially) topological in nature.
This feature is associated with the usual change-of-variables invariance of
Lesbegue or Riemannian integration. Hence, diffeomorphic alterations of
either the psychological or the physical coordinates that do not mix coordi-
nates will not disturb the main results concerning separability. That is, if
¢ = fla) and ¢ = g(f), where o and 3 are independent parameters and f,
g are 1-1, differentiably invertible, then the conclusions regarding percep-
tual and decisional separability will be unharmed. Independence will not
be distorted to dependence. In contrast, coordinate transformations that
mix the coordinates, for instance, ¢ = f{a, 3) will ordinarily affect both
separability and independence.

Metric issues can also intrude when various questions arise in, for in-
stance, combating mimicking. A case in point regards the attempt by
Kadlec & Townsend (1992) to rule out a perceptually non-separable con-
figuration by applying an empirical test based on measurement of a line in
the perceptual space. However, this was shown to be inappropriate except
when perceptual independence was in force by Thomas (1999, 2003). In
oversimplified form, the metric needs to take the variance of the attendant
distributions into account in making such measurements. The potential re-
lationships of such questions to the ‘true’ underlying psychological metric
appear intriguing but lie beyond the present scope.

With regard to the metric that was emitted from the map in our applica-
tion to the Shepard (1964) stimuli in the previous section, some particular



28 Townsend, Aisbett, Busemeyer, Assadi

and general observations can be made. First, the usually preferred city
block metric being a member of the class of power metrics as noted, it is
only one member of a set of general structures that are in a sense, inde-
pendent functions of the distinct dimensions. Following Beals, Krantz and
Tversky (1968, also see Suppes, Krantz, Luce & Tversky, 1989) we can
write a dissimilarity (not necessarily a metrie) funetion Dz, y) = F(fi(x;
w1, falza, y2)) where F is strictly monotonic in the two arguments from
the two dimensions, a property they called “decomposability”. Note that
F does not mix the coordinate contributions as it would say if

D(z,y) = F(fi(z1, 1), fa(®2, ¥2), frlz1, 01)-fal22, 42))-

Our metric follows this precept by virtue of g2 = 0. However, it can also
be observed that F is invariant across the points in the space, except as the
coordinates appear under the f;. Our metric does not obey this stricture
since gog = ¢°.

Townsend & Thomas (1993) made the point that qualitative properties
put forth by Beals et al. (1968) such as decomposability (above), which
is shared by all the power metrics, may be a more appropriate criterion
for separability than the very strict city block metric per se. However, we
believe that the relationships among the various notions of independence
and separability, including what we might call metric separability (which
would presumably invoke properties such as forms of decomposability) and
DDR-PPS or PDR-PPS deserve more thought and study. Both their inter-
relationships and their direct relationships to task and response structure
may be important considerations.

7.3. Other Approaches to Separability

Clearly this is not the place for a global review of this important but already
vast topic. Ashby & Townsend (1986) provided a few linkages with earlier
(and continuing) approaches such as Garner and colleagues’ and Shepard
and his group and Townsend & Thomas (1993) provide a more extensive,
if not so current, survey. And, we have to neglect the massive psychome-
tric literature that has stemmed from the innovations of Shepard (1964),
Kruskal & Wish (1979) and Carroll & Arabie (1980). However, much more
could be done even excluding the latter realms. For instance, in one sector,
we are collaborating with the laboratory of D. Algom in Israel to integrate
GRT, Garner's approach and our response time technology (e.g., Algom,
Eidels, Kadlec & Townsend, 2005; Melara & Algom, 2003; Townsend &
Nozawa, 1995; Townsend & Wenger, 2004) in investigation of the famous
Stroop effect. Whenever there is indication of significant inhibition (as in
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the Stroop effect) or facilitation (as in, say redundant signal experiments)
(Colonius & Townsend, 1997; Miller, 1982; Mordkoff & Egeth, 1993; Mord-
koff & Yantis, 1991) across dimensions, there is prima facie evidence for
non-separability.

In fact, we envision a taxonomic ‘space’ where various types of indepen-
dence and separability hold sway in part of the space. Contextual influences
in general will be viewed as disabling certain of the independence condi-
tions. ‘Pure’ non-independence systems of interest will include configurality
where we conceive that positive dependences may dominate (e.g., Townsend
& Wenger, 2004; Wenger & Townsend, 2001) and highly inhibitory inter-
actions such as is posited for the Stroop effect.

Multidimensional Fechnerian Scaling

Dzhafarov (2002) applied his and Colonius’ Multidimensional Fechnerian
Scaling (MDFS) to perceptual separability, within the same-different match-
ing setting, rather than identification experiments as is the present work.
His approach is also distinctive in several other more substantive respects.
Notwithstanding, it does appear possible to make a few informal compara-
tive observations in the spirit of scientific communication.

Dzhafarov's modus operandi is to place conditions on functions of prob-
abilities associated with coordinates. And, the coordinates are stimulus
coordinates alone—no perceptual coordinates. Both these aspects differ
from the GRT approach which is to deal with psychological factors like
dissimilarity or distance and bias within a multi-dimensional signal de-
tection (identification) environment. In GRT, perceptual coordinates are
present, and the probabilities are placed on these. These diversities are not
necessarily at odds by any means but they do indicate quite distinet strate-
gies. Perhaps an apt analogy is the relationship of functional equations
on choice probabilities vs. random utility theory (whose scales represent a
state space). For instance, Luce's choice axiom is an example of the former
in its purest form. Later, investigators sought conditions in random utility
theory that satisfied the choice strictures (e.g., Holman & Marley cited in
Yellott’'s 1977 paper). Obviously, GRT is more akin to the random util-
ity approach but could be associated with functional equations expressing
certain regularities.

The first condition of Dzhafarov's theory, called “weak perceptual sep-
arability™ assumes that increments of probability of detection of a stimulus
difference is a function of each of the dimensional differences, for instance,
on u, v in our terms. So it could be written something like

Pr[increase in detecting a difference in going from (u,v) to
(w+ su,v + sv); ¢ positive real and small | stimulus (u, v)] =
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Flincrease in detecting a difference in going from u to u + su,
increase in detecting a difference in going from v to v + sv |
stimulus (u,v)).

Note that even though F' separates out the stimulus dimensions, the
probabilities for both dimensions can still depend on the entire stimulus
point (x, v). In most interpretations in terms of GRT, it appears this
would engender a failure of PDR-PPS in our machinery, except perhaps for
special cases where v becomes ‘ineffective’ relative to the u probabilities
and vice-versa. _

The second condition, called “detachability,” is that when all the di-
mensions but one are held fixed and the one varied, then the probability of
increase in detecting a difference does not depend on the values of the fixed
dimensions. Again, informally,

Prlincrease in detecting a difference in going from (u,v) to
(u+ su,v); s positive real and small | stimulus (u, v)] is the
same for all values of v.

In this condition, contrary to the first, natural transitions to GRT would
seem to imply PDR-PS. For instance, if the individual dimensional prob-
abilities are interpreted as marginals as is natural, then the transference
from FMS3 to GRT seems reasonable.

It appears of interest to investigate these relationships more deeply, but
the present comments appear to intimate some intriguing hints® Since
MDFS is presently occupied mostly with same-different designs as opposed
to identification, study of the relationships may require additional defini-
tions and /or assumptions (and Robin Thomas's work on interpretations of
GRT in same-different designs may be of assistance).

Potential Extensions of theTheory

Generalization to many-one maps X is a clear direction to take in the future,
given the phenomena of perception. For instance, when sensory dimensions
map into preference scales, it is typically expected that these functions are
non-monotonic (e.g., Coombs, 1964).

However, in some cases, the need is merely apparent, not real. One
instance is the constancy of many percepts, typically best handled within
invariance of say, perceptual operators. In other cases, it is fair to first
negotiate the early down-sizing map, and then to figure in the nature of

Y Dzhafarov (20034, b) has shown that certain conditions on discrimination probabili-
ties rule out natural Thurstonian (and therefore perhaps GRT) models of same different
discrimination. Discussion of this result exceeds the present scope.
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the early sensory—perceptual map. This does not short-change the early
physical—sensory function, but provides a division of labor. For instance,
the laws of establishment of hues as functions of the infinite dimensional
light spectrum, might act somewhat independently of the geometry of the
hue-brightness-saturation manifold.

When actually requisite, the theory of immersions is likely a first consid-
eration. Thus, these may be appropriate for non-monotonic perceptual— preference
maps. They permit many-one and non-homeomorphic (even if the map is
one-one) maps but assume local one-one structure, that is, that the dif-
ferential (dX : Tiy D — TmM) to the range space (i.e., the coordinate
Jacobian) is of the same rank as the domain. Since Rank(dX ) < min(Rank
D, Rank M), in our present milien, an immersion suggests that certain as-
pects of the physical world, in particular the point-to-point correspondence,
is maintained at least locally. The natural alternative to immersions would
be to assume a submersion where d¥ is of the same rank as M. It follows
that locally the full scope of the perceptual space is being utilized. Im-
mersions are typically more useful than submersions. For instance, if X is
a one-one homeomorphic immersion, then locally it is an embedding and
therefore locally shares the resident topology of M (e.g., Boothby, 2003).
Further, if the points of D that map to the same points of M are not too
close, the probability densities map enjoys the sufficient properties that
allow, say, separabilty to be present and measurable.

It seems inevitable that more sophisticated spaces will ultimately be
required in the cognitive, social, and even biological sciences than have
hitherto been the mainstays. There have been scattered examples of efforts
to expand psychology’s spatial purview over the past fifty years but we
suspect that the well has hardly been tapped in this regard. Fifty years
from now could see spatial models very different from even the most ex-
otic offerings from today's cafeteria, including the present approach. One
exceedingly critical feature that has been scarce in cognitive science, has
been the invention of direct experimental tools that permit, encourage, and
interact with evolving theories of psychological spaces. At present, short of
specific geometric model fitting, there is little to aid us in direct implemen-
tation of the notions proffered here. We do however, hope that the kinds of
issues that arise in the present development will help to move us forward
toward pursuit of an expanded set of perspectives and tools.
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Figure 1. Example of proper perceptual patch X from 2 dimensional
physical stimulus space to a hemisperical manifold in psychological space,
with coordinate map ¥ from psychological coorsinate space to the same
manifold. The induced mapping (¢, ) to the coordinate space & x U is
not neccesarily Cartesian, and is not necessarily onto & x 0.

Figure 2. X has deterministic domain-range parametrized perceptual
separability (DDR-PPS) when the diagram above exists and commutes.
Here, all maps are onto, the horizontal maps are the projections onto the
Cartesian components and ¥: & x & — M exists such that X = Yol[¢x ).

Figure 3.(a) X is a deterministic domain-range embedding if for some f:
R? — R the diagram exists and commutes, where ¢ is defined on U and o
is defined on V. (b) Example of an embedding in which the 2-D coordinate
space is mapped to a surface in J-space.

Figure 4. Decisional separability of ¢ from 1 exists if the above commu-
tative diagram exists for i = 1 and 2 and &; = {¢: ¢ < ¢} and $2 = {¢: @
> o and where M; U M3 U B =M and M, N Mz = @. B is the decision
boundary and response a; is observed for stimulus (u, v} whenever X{u, v}
(= M-.'.

Figure 5. Example of patch mapping to a conic surface of revolution.
Equi-sized squares in coordinate space map to different sized areas (2D
volumes) in psychological space M, due to the distortion factor of V2.

Figure 6. Unnormalized densities on $x ¥ plane given stimulus (g, ¥).(a)
and (b): p(¢, ¥lu,v) = dexp(—al(d — dg)* + (dcos(v) — g cos(i))® +
(¢sin(y) — dgsin(y))?)). (c) and (d):p(¢, Ylu, v) = exp(—3a((d — ¢o)* +
{t"’i%?n}:}l For (a) and (c): (g, vq) = (0.7, 3); for (b) and (d): (¢, ¥o)
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STIMLLLS DO

Figure 1: Example of proper perceptual patch X from 2 dimensional physical stimulus
space to a hemisperical manifold in psychological space, with coordinate map Y from
psychological coorsinate space to the same manifold. The induced mapping (¢, %) to the
coordinate space @ x ¥ is not neccesarily Cartesian, and is not necessarily onto & = T,

U~ D=Uk¥F = F

2 Yorpy  fw \x
¢ &~ II -+ ¥
ir

M

Figure 2: X has deterministic domain-range parametrized perceptual separability (DDR-
PPS) when the diagram above exists and commutes. Here, all maps are onto, the
horizontal maps are the projections onto the Cartesian components and ¥: & x 0 — M
exists such that X = ¥Fold = o).
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D=3V ’
T R i '

M=0x¥ —» R —*Rig R =R
itaf

M=z ¥

fa)

Figure 3: (a) X is a deterministic domain-range embedding if for some £ R — R
the diagram exists and commutes, where ¢ is defined on U7 and 1 is defined on V. {b)
Example of an embedding in which the 2-D coordinate space i mapped to a surface in
d-space.

¥ —s B
I"ﬂ Tido @ J'
nf idertity

=¥ —s o, c M
i

Figure 4;: Decisional separability of ¢ from  exists if the above commutative diagram
exists for i = 1 and 2 and @ = {¢x ¢ < ¢y} and $2 = {&: ¢ > fpland where My LU M2
UEB=Mand My N Mz =&, B is the decision boundary and response a; is ohserved
for stimulus (u, v) whenever X/u, v) € M;.
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STIMUT DOMATIN

PEFCHOLOONAL SPACE

Figure 5: Example of patch mapping to a conic surface of revolution. Equi-sized sguares
in coordinete space map to different sized areas (2D volumes) in pgychelogical space M,
due to the distortion factor of v 24.




g8 'b"a'.?-': L {I:-r.l_.n{?] :I:|I'- pue {q) 103 g ‘4ol
= (% 0] :(o) pue (=) 107 (% — &) + (% — &) )og—)dxs = (a‘n|n ‘g)d:(p) pue (2]
((g(( O )unne O — (e ) 4 ([ Ot)oos O — (f)eos @) + (99 —¢))o—)dxa @ = (2 n|n ‘p)d
Hq) puw (&) (4 O snnuorys usald suwjd § ¥ $ TO FIISUSP PRI[RULIOUU[} g aIndig

{#® (=

153 souapuadapuy reuoisua T Joj Afojopoyiapy pug LHO



P

i
Y 'ﬁ':‘:tb“"?t;ﬂ‘& - f_ll lgiF b
. r,";'rl *“_I‘""‘W"f‘"“ﬂﬁ*'h, A
ek o O Peben Spamcoigt et

- i

L

U, W RS Ss St e IR



https://www.researchgate.net/publication/303255774

