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a b s t r a c t

The paper starts with an introduction to the basic mathematical model of classical probability (CP), i.e.
the Kolmogorov (1933) measure-theoretic model. Its two basic interpretations are discussed: statistical
and subjective. We then present the probabilistic structure of quantum mechanics (QM) and discuss the
problem of interpretation of a quantum state and the corresponding probability given by Born’s rule.
Applications of quantum probability (QP) to modeling of cognition and decision making (DM) suffer from
the same interpretational problems as QM. Here the situation is even more complicated than in physics.
We analyze advantages and disadvantages of the use of subjective and statistical interpretations of QP. The
subjective approach toQPwas formalized in the framework ofQuantumBayesianism (QBism) as the result
of efforts from C. Fuchs and his collaborators. The statistical approach to QP was presented in a variety of
interpretations of QM, both in nonrealistic interpretations, e.g., the Copenhagen interpretation (with the
latest version due to A. Plotnitsky), and in realistic interpretations (e.g., the recent Växjö interpretation).
At present, we cannot make a definite choice in favor of any of the interpretations. Thus, quantum-like
DM confronts the same interpretational problem as quantum physics does.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recently the mathematical formalism of quantum mechanics
(‘QM’ henceforth), especially the apparatus of quantumprobability
(‘QP’ henceforth), started to be widely used outside of physics for
the modeling of cognition and decision making (‘DM’ henceforth)
in psychology, psychophysics, economics, finance, political science
and the wider social sciences, see the basic monographs (Asano,
Khrennikov, Ohya, Tanaka, & Yamato, 2015; Bagarello, 2012; Buse-
meyer & Bruza, 2012; Ezhov & Berman, 2003; Haven & Khrennikov,

∗ Corresponding author.
E-mail address: Andrei.Khrennikov@lnu.se (A. Khrennikov).

2013; Khrennikov, 2010) and the recent review articles (Buse-
meyer, Wang, Khrennikov, & Basieva, 2014; Plotnitsky, 2014) and
references therein; as well as a selection of some recent publica-
tions relevant to probabilistic foundations (Aerts, Sozzo, & Tapia,
2012; Aerts, Sozzo, & Veloz, 2015; Atmanspacher & Filk, 2014a,b;
Atmanspacher, Haven, Kitto, & Raine, 2014; de Barros & Oas, 2014,
2015; de Barros & Suppes, 2009; Sozzo, 2015). Such models can
be called quantum-like to distinguish them from genuine quan-
tum physical models. In quantum-like models we explicitly do not
refer to quantum physical processes which (may) take place in
biological systems, in particular, in the brains of decision mak-
ers. Our modeling is based on the quantum-like paradigm (see
Khrennikov, 2010): the process of DM within bio-systems with
a complex information structure (e.g., by humans) is described
by QP. This paradigm has an empirical origin: there is plenty of

http://dx.doi.org/10.1016/j.jmp.2016.02.005
0022-2496/© 2016 Elsevier Inc. All rights reserved.
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probabilistic data available, e.g., in cognitive psychology and psy-
chophysics which exhibit the violation of the basic laws of classi-
cal probability (‘CP’ henceforth), e.g. the formula of total probability
(‘FTP’ henceforth) (see, e.g., Busemeyer & Bruza, 2012; Khren-
nikov, 2010) or the Bell inequality (see, e.g., Conte et al., 2008;
Khrennikov, 2010). Violations of the laws of classical probability
theory by quantum physical systems were discussed by many au-
thors (see, e.g., Feynman & Hibbs, 1965, or Khrennikov, 2009). This
situation is well modeled by QP based on Born’s rule connect-
ing complex probability amplitudes (complex state vectors, wave
functions) with real probabilities. One could make the argument
that it could be useful to try tomodel similar violations of classical-
ity outside of physics with the aid of the same calculus. However,
this apparent similarity does surely not guarantee that the formal-
ism which worked so well in one domain of science, in physics,
will work as well in other domains. Its fruitfulness can be justi-
fied by successful applications. We remark that the situation does
not differ so much from physics. QM is held in very high esteem
because it works so well. On the other hand, the project on the jus-
tification of the impossibility of its reduction to classical statistical
models (see, e.g., von Neumann, 1955, or Bell, 1987), still has not
been completed (Khrennikov, 2008, 2010).1

Applications of the quantum formalism and, in particular,
QP to model cognition and DM can be characterized as really
successful (see Asano et al., 2015; Bagarello, 2012; Busemeyer
& Bruza, 2012; Busemeyer et al., 2014; Ezhov & Berman, 2003;
Haven & Khrennikov, 2013; Khrennikov, 2010; Plotnitsky, 2014)
for various studies. At the same time one has to be cautious. One
cannot expect that the whole body of QM would be useful for
such applications. Moreover, it may happen that some cognitive
or social phenomena would not be covered completely by the
standard quantum formalism (cf. Khrennikov, Basieva, Dzhafarov
& Busemeyer, 2014). It maywell be that more general probabilistic
models have to be developed (see Khrennikov, 2010).

We remark that although QM works very well, its theoretical
and philosophic justification is far from complete. In particular, QM
suffers from the problem of interpreting a quantum state (wave
function) (see, for example, Khrennikov, 2009; Plotnitsky, 2006,
2009). The present situation is characterized by a huge diversity of
interpretations and this cannot be considered as acceptable. Since
QM is about probabilities (it does not predict the individual outputs
of measurements), the problem of the interpretation of a quantum
state is very closely related to the problemof the interpretation of a
probability. In this paper we analyze the probability interpretation
dimension of QM in connection to DM and to applications of
QM’s cognitive psychology. Of course, the state interpretation
problem is not reduced to the interpretation of probability given
by Born’s rule. Thus, in this paper we shall treat the problem of an
interpretation of QM only partially.

In any scientific theory one has to distinguish the formalism and
its interpretation. Themathematical formalism ofmodern classical
probability theory is based on measure theory (see Kolmogorov,
1933). However, it is interesting (and it maybe not so well
known) that Kolmogorov not only developed the commonly used
mathematical formalism of probability theory (including purely
mathematical contributions such as Kolmogorov’s theorem on the
existence of the probability measure for a stochastic process and
the strong law of large numbers), but he also endowed his theory

1 The von Neumann theorem was strongly criticized for its un-physical
assumptions, by Margenau, Bell and Ballentine. Experimental verification of a
violation of Bell’s inequality is a very challenging project, since it is very difficult to
perform the loophole free experiment producing statistically acceptable data (see,
e.g., Khrennikov, Ramelow et al., 2014) for analysis and Hensen et al. (2015) for the
most recent success in this area.

with a special interpretation of probability, i.e. the Kolmogorov
interpretation. Thus, just as in any theory, in Kolmogorov’s theory
onehas to distinguish between themathematical formalismand its
interpretation. Besides the genuine Kolmogorov interpretation, his
formalism can be interpreted in different ways. Among the huge
variety of interpretations of probability, we point to two of the
most known and applicable interpretations:
• ST statistical interpretation (Feller, 1968; Khrennikov, 2009;

Kolmogorov, 1933; Plotnitsky, 2009; Rocchi, 2014; von Mises,
1957);

• SUB subjective (Bernardo & Smith, 1994; de Finetti, 1990;
Ramsey, 1931; Rocchi, 2003, 2014; Savage, 1954).
ST: probability is a characteristic of a ‘‘mass phenomenon, or a

repetitive event, or simply a long sequence of observations (see von
Mises, 1957). Here probability cannot be assigned to an individual
event. The condition of the event’s repeatability (in theory infinite
repeatability) is crucial. Numerically, probability is defined as the
limit of frequencies (in von Mises’ theory this is the definition of
probability and in Kolmogorov’s theory it is a consequence of the
law of large numbers).

SUB: probability is assigned to an individual event A and it
represents the degree of the personal belief in the non/occurrence
of A. Thus, such probability is private and individual.

Now we want to couple the interpretations of a quantum state
and the corresponding probability given by Born’s rule. This cou-
pling leads to two important interpretations of a quantum state:
• STQ statistical (ensemble) interpretation (Bohr, Pauli, Dirac, von

Neumann, Einstein, Schrödinger, de Broglie, Bohm, Margenau,
Ballentine)2 (see, e.g., Khrennikov, 2009; Plotnitsky, 2006,
2009);

• QBism quantum Bayesian (subjective) interpretation (see, e.g.,
Fuchs, 2011; Fuchs & Schack, 2013, 2015).
STQ can be characterized by a diversity of ‘sub-interpretations’

depending on whether the results of observations can be treated
independently of the measurement procedures or not (the prob-
lem of realism in QM). QBism was created recently and it has yet
just one version. As we can see from the STQ-list, this interpre-
tation dominates in the quantum community. In terms of recent
contributions to its development we can mention the Växjö inter-
pretation (see Khrennikov, 2002); the realist contextual statistical
interpretation; the statistical Copenhagen interpretation invented
by A. Plotnitsky3 and the non-realist statistical interpretation. At
the same time, the recent quantum information revolution stimu-
lated the dissemination ofQBism. However, it is still considered as
an exotic ‘non-physical’ interpretation of QM.4

Now, suppose one applies QP to model the DM-process, e.g., in
psychology, psychophysics or economics. She/he is immediately
confrontedwith the cognitive/mental version of the problemof the
interpretation of quantum states and probabilities: the problem
whichwas not solved in quantum physics andwas ‘imported’ from
it to cognitive science, DM, psychology or psychophysics. More-
over, novel applications induce novel interpretational issues. Our
aim is to analyze the specifics of the use of STQ andQBism tomodel
cognition andDM. The problem is very complex and at themoment
we are only able to present some reasons in favor of and against
each of these interpretations.Wehope that our analysiswill stimu-
late the further emergence of foundational studies on the problem
of the interpretations of mental states (belief states) and the corre-
sponding probabilities inQP-modeling ofDMandproblem solving.

2 It is interesting that very different interpretations of QM can keep the same
interpretation of probability. For example, both the Copenhagen interpretation and
the de Broglie–Bohm interpretation treat probability statistically.
3 It was presented in his talk at the conference ‘‘Quantum Theory: from

Foundations to Technologies’’, Växjö -2015.
4 QBism is often labeled as one of the neo-Copenhagen interpretations of QM.

This is a totally wrong viewpoint on QBism (see, for example, Mermin, 2014).
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2. Classical probability

In the 19th century George Boole wrote the book ‘‘An Investi-
gation of the Laws of Thought on Which are Founded the Mathe-
matical Theories of Logic and Probabilities’’ (Boole, 1958). This was
the first mathematical model of the process of thinking based on
the laws of reasoning which nowadays is known as Boolean logic.
This logic, also known as classical logic, plays a crucial role in in-
formation theory, DM, computer science and artificial intelligence
and digital electronics.

Boolean logic serves as the basis of modern probability theory
(Kolmogorov, 1933), which is based on the representation of
events by sets, subsets of some set Ω , the sample space, or space
of elementary events. The system of sets representing events, say
F , matches with the operations of Boolean logics; F is a so-called
σ -algebra of sets.5 It is closed with respect to the (Boolean)
operations of (countable) union, intersection, and complement (or
in logical terms ‘and, or, not’). Thus, by applying any theorem of
probability theory, e.g., the central limit theorem, we use classical
Boolean logic.
Mathematical formalism.

The set-theoretic model of probability was presented by Kol-
mogorov (1933). It is based on the following two natural (from the
viewpoint of classical logic) axioms:

• (AK1) events are represented as elements of a σ -algebra and
operations for events are described by Boolean logic;

• (AK2) probability is represented as a probability measure.

For the convenience of the reader, we present the definition
of a probability measure: p is a (countably) additive function on
a σ -algebra F : p(∪∞

j= Aj) =


∞

j= p(Aj), for Aj ∈ F , Ai ∩ Aj =

∅, i ≠ j, which is valued in [0, 1] and normalized by 1. A triple
P = (Ω,F , p) is called the (Kolmogorov) probability space.

We also remind the definition of a random variable as a mea-
surable function, a : Ω → R. In applications of CP, e.g. to
classical statistical physics and thermodynamics or to cognitive
modeling, psychology and psychophysics, random variables rep-
resent observables.

Wepoint out thatmodernprobability theory is an axiomatic the-
ory, in the same way, as say geometry is. The history of the devel-
opment of geometry showed us that one can play with axiomatic
systems and develop a variety of geometric models.
Conditional probability and formula of total probability.

One of the basic laws of the Kolmogorovian model, the formula
of total probability (‘FTP’ henceforth),will play a very important role
in our further considerations. Before we go to the FTP, we point to
the exceptional role which is played by conditional probability in
the Kolmogorovian model. This sort of probability is not derived in
any way from the ‘usual probability’. Conditional probability is per
definition given by the Bayes formula:

P(B|C) = P(B ∩ C)/P(C), P(C) > 0. (1)

By Kolmogorov’s interpretation it is the probability of an event
B to occur under the condition that an event C has occurred. One
can immediately see that this formula is one of the strongest
exhibitions of the Boolean structure of the model: one cannot
even assign conditional probability to an event without using the
Boolean operation of intersection. Let us consider a countable
family of disjoint sets Hk belonging to F such that their union is
equal to Ω and P(Hk) > 0, k = 1, . . . . Such a family is called a
partition of the spaceΩ .

5 Here the symbol σ encodes ‘‘countable’’. In American terminology such systems
of subsets are called σ -fields.

Theorem 1. Let {Hk} be a partition. Then, for every set B ∈ F , the
following formula of total probability holds

p(B) =


k

p(Hk)p(B|Hk). (2)

This formula plays a crucial role in classical decision theory based
on the Bayesian procedure for probability updating (PU). The events
Hk are treated as hypotheses and the probabilities p(Hk) as prior
probabilities. Especially interesting for us is the case, where a partition
is induced by a discrete random variable a taking values {αk}. Here,
Hk = {ω ∈ Ω : a(ω) = αk}. Let b be another discrete random
variable. It takes values {βj}. For any βj, we have p(b = βj) =

k p(a = αk)P(b = βj|a = αk). Here p(a = αk) = p(Hk).

Bell’s inequality in Wigner’s form.
We start with a trivial application of classical probability theory

exploring the additivity of probability and its non-negativity.
Consider three events A, B, C . It is convenient to use the

notations

A ≡ A+, {A ≡ A−, B ≡ B+, {B ≡ B−,

C ≡ C+, {C ≡ C−,
(3)

where, for a set O, the symbol {O denotes its complement, i.e.,
{O = Ω \ O = {ω ∈ Ω : ω ∉ O}.

Theorem 2 (Bell–Wigner Inequality). The following inequality holds:

P(A+ ∩ B+)+ P(B− ∩ C+) ≥ P(A+ ∩ C+). (4)

Proof. For each term of (4), we shall use the equality P(A) =

P(A ∩ B) + P(A ∩ {B). For the first term, the event A+ ∩ B+ plays
the role of A in this equality and the event C+ plays the role of B.
We have

P(A+ ∩ B+) = P(A+ ∩ B+ ∩ C+)+ P(A+ ∩ B+ ∩ C−). (5)

In the same way we obtain

P(B− ∩ C+) = P(B− ∩ C+ ∩ A+)+ P(B− ∩ C+ ∩ A−), (6)

P(A+ ∩ C+) = P(A+ ∩ C+ ∩ B+)+ P(A+ ∩ C+ ∩ B−). (7)

By adding the first two equalities we come to the expression

P(A+ ∩ B+ ∩ C+)+ P(A+ ∩ B+ ∩ C−)+ P(B− ∩ C+ ∩ A+)

+ P(B− ∩ C+ ∩ A−). (8)

Commutativity of the operation of intersection implies that P(A+∩

B+) + P(B− ∩ C+) equals P(A+ ∩ C+) plus a non-negative term.
Hence, (4) holds.

This inequality plays a fundamental role in modern quantum
physics (in spite of its mathematical triviality). It is one of the so
called ‘Bell type’ inequalities. In QM it is derived from two basic
physical assumptions: locality and realism.

In the above considerations the assumption of realism R was
encoded in the possibility to represent events by subsets of some
set Ω . This set-representation provides objectivization of events;
the eventsA, B, C exist independently ofmeasurements performed
by an observer.

The assumption of locality L was encoded in the possibility to
operate with only three events, A, B, C (and their complements).
In general one has to start with indexes a, b, c determining
experimental settings, orientations of beam splitters. In the local
model, the events are completely determined by corresponding
settings, A ≡ Aa, B ≡ Bb, C ≡ Cc . In the nonlocal model, in the
experiment with the pair of orientations (x, y) the events depend
on this pair of orientations, e.g., A(a,y), where y = b, c. In fact, in the
Bell scheme the physical space time is not present at all. Therefore,
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it ismore natural to speak about (non)contextuality (see Dzhafarov
& Kujala, 2013, 2014a,b; Khrennikov, 2010).

Violation of ‘Bell type’ inequalities by QP is the main reason
to reject the so-called local realism and it led to the cardinal
reconsideration of the foundation of physics. One has to accept
that either nature cannot be described by a realist model or it
is nonlocal: NR or NL. We remark that here ‘or’ is non-exclusive.
A part of the quantum community really believes that nature
combines NR andNL. However, themajority selected either NR and
L, e.g., Zeilinger (2010), or R and NL, e.g., Gisin and Aspect (2014).

To derive Bell’s inequality (under the assumption of locality) as
a consequence of the use of the classical probability model (based
on Kolmogorov axiomatics), all events can be represented in the
set-theoretic framework and it is possible to set a single measure to
define probabilities of all those events and, hence, by the laws of
Boolean algebra of their intersections. Thus, from this viewpoint
the violation of the ‘Bell type’ inequalities is just a sign of the
impossibility to use Boolean algebra for some events and/or the
impossibility to define the probability measure serving for all such
events. By exploring this interpretation (NR and L) of the violation
of ‘Bell type’ inequalities in cognitive science and psychology
one says that cognitive systems and, in particular, humans use
non-Boolean logic in the process of DM leading to nonclassical
probabilistic statistics. Another possibility is nonlocality (more
general contextuality) of brain’s functioning. Such a brain can
proceed by using classical Boolean logic and data processed by it
can be represented in Kolmogorov’s model. We remark that in this
cognitive framework nonlocality is not so mystical as in quantum
physics. The brain is the very small physical object comparingwith
the velocity of propagation of electromagnetic waves. Its different
areas, can actively communicate and create nonlocal probabilistic
settings. There is no need in action at a distance (cf. de Barros &
Suppes, 2009).
Statistical and subjective interpretations of probability.

Kolmogorov’s probability theory (as any scientific theory) con-
sists of two parts: the mathematical formalism and interpretation.
Now we turn to its interpretation:

‘‘[. . . ] we may assume that to an event A, which may or may not
occur under conditions Σ , is assigned a real number P(A) which
has the following characteristics:

• (a) one can be practically certain that if the complex of
conditions Σ is repeated, a large number of times, N , then if
n be the number of occurrences of event A, the ratio n/N will
differ very slightly from P(A);

• (b) if P(A) is very small, one can be practically certain that when
conditions Σ are realized only once, the event A would not
occur at all’’.

The (a)-part of this interpretation is nothing else than the
frequency interpretation of probability (see von Mises, 1957). This
is the essence of the ‘statistical interpretation of probability’ which
is mathematically justified by the law of large numbers (a theorem
in the Kolmogorov measure-theoretic mathematical model).

The (b)-part is a more complicated statement. The referring to
‘‘to be practically certain’’ that ‘‘the event A would not occur at
all’’ can be treated as a subjective element of Kolmogorov’s inter-
pretation of probability (see also the discussion belowon Cournot’s
principle and Bernoulli’s moral certainty). Since ‘‘practically’’ de-
pends on the viewpoint of a decisionmaker, this is a step, although
small (since here probability is treated objectively with objectifi-
cation through calculation of frequencies), towards the subjective
interpretation of probability by de Finetti (1990). For Kolmogorov,
the objectivity of statistical probability is encoded in the complex
of conditions (context) Σ , it is its objective property, determined
by its repeatability.

Cournot’s principle.
The (b)-part of Kolmogorov’s interpretation of probability is

also known as Cournot’s principle. Its first version is due to
J. Bernoulli (1713) who related mathematical probability to moral
certainty/impossibility: ‘‘Something is morally certain if its prob-
ability is so close to certainty that the shortfall is imperceptible’’.
‘‘Something is morally impossible if its probability is no more than
the amount by which moral certainty falls short of complete cer-
tainty’’. In spite of our above remark that there is a subjective ele-
ment in the (b)-part of Kolmogorov’s interpretation (and Cournot’s
principle),—setting the level of moral impossibility, those who
used this principle treated probability objectively. Subjectivists, as
de Finetti, rejected it.
Contextuality of Kolmogorov theory.

This reference to Σ is very important for our further consid-
erations. Kolmogorov pointed out that each probability space is
determined by its own complex of conditions (context) Σ . For ex-
ample, he definitely would not be surprised by the violation of the
Bell-type inequalities if the pairs of events occur under different
contexts, e.g. the pair of events (A+, B+), (B−, C+), (A+, C+) in the
Bell–Wigner inequality occurs for three different contextsΣj, j =

1, 2, 3. In general, each of these contexts determines its own prob-
ability space PΣj = (ΩΣj ,FΣj , pΣj). Since the Bell–Wigner in-
equalitywas proven byworking in a single Kolmogorov probability
framework, the possibility of its violation in a multi-space frame-
work is not surprising.

3. Classical decision making through the Bayesian probability
update

The classical scheme of DM is based on the Bayesian probability
update (‘PU’ henceforth). There is a set of states of nature Θ =

{θ1, . . . , θm} (or ‘states of mind’ in applications to cognition and
psychology); a random variable A is given and it is taking values
from the set X = {x1, . . . , xm}; and for each state of nature θ one
can get the probability distribution π(x|θ), x ∈ X .

As a starting point, say Alice assigns the probabilities to possible
states of nature, π(θ). It can be considered as the probability
distribution of a random variable B.

Alice then measures the random variable and updates the prior
probability distribution on the basis of information gained from
this concrete result of measurement. The classical PU is based on
the Bayes rule:

π(θ |x) =
π(x|θ)π(θ)

p(x)
, p(x) =


θ

π(θ)π(x|θ), (9)

where the last equality is FTP (2).
In the formalism of PU and DM, instead of a collection Θ of

states of nature (mind), we can consider a collection of hypotheses
(Hk) forming the disjoint partition of the sample space Ω . The
Bayesian PU can be used to update the probabilities of these
hypotheses as the evidence A = x appears: π(Hk|x) =
π(x|Hk)π(Hk)

p(x) , p(x) =


k π(Hk)π(x|Hk).

Subjective and frequentist interpretations of classical Bayesian
inference.

Bayesian inference is simple mathematically. However, its in-
terpretation reflects the diversity of interpretations of probabil-
ity. Originally (by Bayes) all probabilities in (9) were interpreted
as subjective probabilities (see de Finetti, 1990). The prior probabil-
ities π(θ) represent Alice’s degrees of belief that the real state of
nature (mind) is θ , prior to the information about the value x of
A. The same is valid for the conditional probabilities π(x|θ), like-
lihoods. These are degrees of Alice’s belief that A would take the
value x if the state θ were realized. The output π(θ |x) of PU (9) is
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the degree of belief that the state of nature is θ , in light of the in-
formation that A = x. This subjective probability viewpoint on the
Bayesian PU is widely used and is known as Bayesianism.

However, the mathematical formula (9) can be interpreted in
a totally different way, in the frequentist framework (see von
Mises, 1957, or Rocchi, 2003, 2014). Here probabilities are assigned
not to individual events, but they rather represent frequencies
of realization of parameters in a long series of experiments. The
values of the prior probabilities π(θ) as well as the likelihoods
π(x|θ) are estimated on the basis of statistical data available
before the measurements of A. The output of (9), π(θ |x), gives the
probability that the state of nature is θ , conditioned on the result
A = x, i.e. in a long sequence of experiments, the frequency of
realization of θ conditioned on the value x of A approaches π(θ |x)
(see von Mises, 1957).

For a subjective Bayesian, the probability distribution given by
(9) reflects knowledge about the present state of nature (mind)
after collecting data. For a frequentist, (9) does not reflect such
knowledge: it is not about the ‘present state’, as this state is the
only unknownparameter, andπ(θ |x) is its probability distribution.

The subjective approach can be used in DM to make an
individual decision. Suppose that the parameter θ is dichotomous,
θ = θ1, θ2. The odds in favor of an event is given by the ratio of the
probability that it will occur to the probability that it will not; so
one sets

O(θ1) =
π(θ1|x)
π(θ2|x)

=
π(x|θ1)π(θ1)
π(x|θ2)π(θ2)

. (10)

If

O(θ1) > 1 (11)

then Alice decides that the state θ = θ1. In the opposite case she
takes θ = θ2.

The frequentist approach can be used in DM as well, but for
decisions which can be repeated for many trials (in theory for
infinitely many trials). Here the odds-function (10) is used not for
the individual DM, but for estimating the frequency of realization
of the state of the world (mind) θ1 compared to the state of the
world (mind) θ2. Of course, not every DM can be embedded into
the frequentist framework.
Cromwell rule.

Wepoint to one important feature of the classical PUand, hence,
the classical DM model. For some state of nature (including the
mind): if a decision maker, Alice, assigned to some state θ the
prior probability zero, then any PU would lead again to a zero
posterior probability. In this case the Bayesian PU simply idles. It
can thus be argued that such PU excludes any possibility to come
to novel creative decisions. In the same way if π(θ) = 1, then
p(x) = π(x|θ) andπ(θ |x) = 1. Here again, the Bayesian PU simply
idles. To escape Bayesian idling, one has to follow the so-called
Cromwell rule (see Lindley, 1991): ‘‘the use of prior probabilities of
0 or 1 should be avoided, except when applied to statements that
are logically true or false’’. Thus, all possibilities (even ‘practically
impossible’) have to be taken into account by assigning them,
although very small but nevertheless, nonzero probabilities ϵ >
0. However, the use of the Cromwell rule leads to huge lists of
possible states of nature (mind) which all have to be taken into
account in the process of PU. It generates incredible computational
difficulties. In the situation when a decision has to be made as
quickly as possible, the applicability of the Bayesian PU is really
questionable. Therefore, it would be attractive to proceed without
this rule and at the same time to escape Bayesian idling. Such a
possibility is provided by the quantum scheme of DM which is
based on a generalization of the Bayesian PU, see the next section.

Thus, a big enough state space is an important first step in
the Bayesian approach to DM. From the start, we have to account

even for the most inconceivable possibilities by considering the
corresponding states of nature (e.g., that themoon ismade of green
cheese (see Lindley, 1991)). In the quantummodel, though, we are
free to assign to them zero priors. Of course, the invariance of the
extreme probabilities, zero and one, with respect to the Bayesian
PU is just one of the symptoms of classical Boolean logic in the
process of DM when modeled with the aid of CP.

4. Quantum states, observables, and probabilities

The state space of a quantum system is based on a complex
Hilbert space.6 Denote it by H . This is a complex linear space
endowedwith a scalar product, a positive-definite non-degenerate
Hermitian form. Denote the latter by ⟨·|·⟩. It determines the norm
on H, ∥φ∥ =

√
⟨φ|φ⟩.

A reader who does not feel comfortable with the abstract
framework of functional analysis can simply proceed with the
Hilbert space H = Cn, where C is the set of complex numbers,
and the scalar product ⟨u|v⟩ =


i uiv̄i, u = (u1, . . . , un), v =

(v1, . . . , vn). Instead of linear operators, one can considermatrices.
Pure quantum states are represented bynormalized vectors,ψ ∈

H : ∥ψ∥ = 1.
In the standard QM (Dirac–von Neumann formalism) a quan-

tum observable A is represented by a Hermitian operator Â. Let
there be given a state ψ and a quantum observable with the spec-
tral decomposition Â =


i aiPi, where ai are eigenvalues of Â,

and Pi are orthogonal projectors onto the corresponding eigen-
subspaces. The system of mutually orthogonal projectors (Pi) is
known as the orthogonal partition of the unit operator:


i Pi =

I, Pi ⊥ Pk, i ≠ k.
We remark that by the spectral postulate of QM, in any

measurement of A, one can get only one of its eigenvalues ai. In
many physical considerations, the magnitudes of the eigenvalues
of Â play the crucial role. For example, they determine the energy
levels of atoms and, hence, the spectrum of radiation. However,
in quantum information the magnitudes are not important. Here
(ai) are just labels. The latter viewpoint is very useful for our
applications to DM, see Section 5.

By the basic probabilistic law of QM, Born’s rule, the probability
to get the number ai as the result of a measurement is equal to

p(A = ai|ψ) = ⟨Piψ |ψ⟩ = ∥Piψ∥
2. (12)

If after ameasurement of the A-observable one plans to perform
a measurement of another observable B, represented by the
Hermitian operator B̂ =


i biP

′

i , then one needs to know even
the output state resulting from the firstmeasurement (through the
feedback reaction of the measurement to the initial state): ψi =
Piψ

∥Piψ∥
. This is nothing else than the quantum version of the classical

rule for a probability update. In QM it is known as the projection
postulate andmeasurements inducing feedbacks of such a type are
called von Neumann–Lüders measurements.

For the B-measurement following theA-measurement, the state
ψi plays the same role as the state ψ has played for the A-
measurement.

Observables of the von Neumann–Lüders class serve well into
the general quantum DM scheme which will be presented in Sec-
tion 5. It matches well with statistical (ensemble) interpretations
of QM. In principle, it can be used even for the subjective interpre-
tation. However, QBism (for its justification) uses generalized ob-
servables given by positive operator valued measures (POVMs) (see

6 However, it is not a total Hilbert space.
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Khrennikov, 2010; Khrennikov, Basieva et al., 2014 for a discus-
sion). This is not just a mathematical peculiarity. This is the cru-
cial point of QBism’s treatment of the Born rule (see, for example,
Fuchs, 2011; Fuchs & Schack, 2013). Even for an observable A of the
von Neumann–Lüders class, to interpret the equality (12), QBists
have to proceedwith a POVMdetermining a prior quantum stateρ.

5. Quantumdecisionmaking through update of the belief state

There is given a complex Hilbert space H representing belief
states of Alice. There are two given observables B = θ1, . . . , θm and
A = x1, . . . , xm. The first one corresponds to the determination of
the state of nature (of mind) and the second one to the collection
of additional information (which will be used for PU). Denote the
corresponding Hermitian operators asA andB. Here,A =


x xE

a
x

andB =


θ θE
b
θ , where (Eb

θ ) and (E
a
x ) are orthogonal projectors

corresponding to eigen-subspaces of these operators.
We consider the following PU-scheme. Alice creates an initial

mental representation of the situation given by a pure quantum
state ψ0 ∈ H , a belief state (thus here ∥ψ0∥ = 1). With the aid
of this state, she assigns the subjective probability to the ‘states of
nature’ by performing direct measurements of B and she gets the
prior probabilities:

π(θ) = ⟨Eb
θψ0|ψ0⟩ = ∥Eb

θψ0∥
2. (13)

This observation is a process of DM about possible probabilities for
θ .

Remark. By introducing the prior probabilities we have to impose
the assumption that by performing ‘prior-measurement’ Alice
does not modify the initial belief state ψ0. It can be perfectly
reproduced again to be used for further mental measurements.
In comparison to physics, this assumption is natural. In physics
it is always assumed that there is a preparation procedure
generating an ensemble of systems in the same state. Of course,
everybody understands that this is only a theoretical idealization
and the real experimental situation is more complicated. Thus, the
mental analog of this physical assumption on a state preparation
procedure is that the brain which is going to solve some
concrete problem, is able to prepare the same belief state (at
least approximately (see Khrennikov, Basieva et al., 2014) for
a discussion on the stability in the mental state preparation).
However, for some mental contexts this assumption may be
very restrictive. In principle, it is possible to proceed without
it. The determination of the prior probabilities is just a tool of
the traditional Bayesian approach. It is really important to start
with an assignment of the prior probabilities, since they are
explicitly present in the update rule (9). The quantum scheme is
about the updates of states and not only probabilities. The state
update leads to the posterior probabilities. But the same quantum
(-like) state encodes probability distributions for outcomes of
incompatible observables. Such distributions cannot be unified
without appealing to states since there is no joint probability
distribution.

In principle we can proceed without the explicit assignment of
the prior probabilities π(θ) given by (13). Thus, the prior mea-
surement of the B-observable can be eliminated from the quantum
scheme of PU. So, we can start simply with the preparation of the
initial belief state ψ0 and its update resulting from gaining infor-
mation with the aid of the A-observable, see below.

Now Alice wants to update the probabilities of θ on the basis
of additional information from themeasurement of A. By using the
quantum rule for conditional probabilities we get

π(θ |x) =
⟨Eb
θE

a
xψ0|Ea

xψ0⟩

∥Ea
xψ0∥

2
. (14)

This is the basic quantum PU rule corresponding to observables of the
von Neumann–Lüders type.

In the formalism of quantum PU and DM, instead of a collection
Θ of states of nature (mind), we can consider a collection of
hypotheses (Hk) which are represented by projectors forming a
mutually orthogonal partition of the unit operator,


k Hk = I .

As for the classical PU, the probabilities in (14) can be
interpreted either as subjective or as frequency based, which
leads to two basic interpretations of the quantum state; (i) the
subjective one structured as QBism (Section 7) or; (ii) the
statistical one represented by a variety of interpretations in the
‘spirit of Copenhagen’ or in the spirit of the Einstein ensemble
interpretation. See Section 6 for the so-called Växjö interpretation.

By the subjective interpretation, ψ0 represents the belief state
of Alice (i.e., representing her private beliefs). She first updates
this state by measuring the A-variable (in general, this is a
self-measurement performed unconsciously) and on the basis of
this update, she assign new degrees of belief to the values of the
parameter θ . We can speculate7 that Alice’s brain really uses the
quantum-like representation of probabilities and that she makes
decisions by using odds given by the quantum analog of the
classical Bayesian odds (again in the case of the dichotomous θ ):

O(θ1) =
π(θ1|x)
π(θ2|x)

=
⟨Eb
θ1
Ea
xψ0|Ea

xψ0⟩

⟨Eb
θ2
Ea
xψ0|Ea

xψ0⟩
. (15)

Thus, we can speculate that Alice’s brain really computes (uncon-
sciously) the quantity O(θ1) and if it is larger than 1, she makes the
decision that θ = θ1.

By the statistical interpretation, (14) is not about the internal
structure of the process of DM, but it describes the statistical
distribution in a long series of DM-experiments.

The use of the subjective interpretation, in particular, of QBism,
is more attractive from the viewpoint of modeling cognition. The
statistical interpretation can be used to model statistical data ob-
tained in experimental studies in psychology and psychophysics.

Proposition. Quantum PU coincides with classical Bayesian PU iff
operators representing observables commute.

Proof. (a) Suppose that [A,B] = 0. In general (regardless
of commutativity) by using the quantum rule for conditional
probabilities we get

p(x|θ) =
⟨Ea

xE
b
θψ0|Eb

θψ0⟩

∥Eb
θψ0∥

2
; (16)

we also have

p(x) = ⟨Ea
xψ0|ψ0⟩ = ∥Ea

xψ0∥
2. (17)

For the quantum PU commutativity of projectors implies:

π(θ |x)p(x) = ⟨Eb
θE

a
xψ0|Ea

xψ0⟩ = ⟨Ea
xE

b
θE

a
xψ0|ψ0⟩

= ⟨Eb
θ (E

a
x )

2ψ0|ψ0⟩ = ⟨Eb
θE

a
xψ0|ψ0⟩. (18)

In the same way

p(x|θ)p(θ) = ⟨Ea
xE

b
θψ0|Eb

θψ0⟩ = ⟨Eb
θE

a
xE

b
θψ0|ψ0⟩

= ⟨Ea
x (E

b
θ )

2ψ0|ψ0⟩ = ⟨Ea
xE

b
θψ0|ψ0⟩. (19)

By using commutativity once again we obtain that π(θ |x)p(x) =

p(x|θ)p(θ).

7 But just speculate, because quantum-like modeling cannot provide us with
deeper insights on the brain’s functioning. The brain is treated as a black box.



E. Haven, A. Khrennikov / Journal of Mathematical Psychology ( ) – 7

(b) Suppose that, for any stateψ0, PU is given by the Bayes rule.
This means that

⟨[Ea
x , E

b
θ ]ψ0|ψ0⟩ = 0 (20)

for any pure state ψ0. For a complex Hilbert space this necessarily
implies that [Ea

x , E
b
θ ] = 0.

From the quantum PU rule (14), it is clear that this PU does
not idle for π(θ) = 0, 1. Thus, a quantum agent can ignore
the Cromwell rule. This is a very important feature of PU in the
QP-framework. Quantum PU can lead to novel creative decisions
(as opposed to the classical PU which idles for states θ with zero
prior probability).

We remark that in the previous considerations, the initial
belief state is a pure state. This assumption is quite natural from
the psychological viewpoint: i.e. to start with a superposition of
possibilities represented by a pure state. However, the scheme
works as well for any initial belief state represented as a most
general quantum state, a so-called mixed state, given by a density
operator ρ. Observables A and B also can be of the most general
form given by POVMs. Such generalization is especially important
for QBism, Section 7, where the A-observable has to be an
informationally complete POVM.

A comparison of the classical Bayesian and quantum rules for
PU is a novel and interesting topic for experimental research (see
Basieva, Pothos, Trueblood, Khrennikov, & Busemeyer, submit-
ted for publication; Khrennikova, 2014) for the first steps in this
direction.

6. Växjö interpretation: inter-relation of Born’s rule and FTP

This interpretation (see Khrennikov, 2002), was born out
of an attempt to combine consistently the views of Einstein
and Bohr (see, for instance, Khrennikov, 2009; Plotnitsky, 2006,
2009: realism and contextuality). It is the (ensemble) statistical
interpretation. It was born from the observation that, in fact, Bohr’s
contextuality does not imply nonrealism.8 Thus, a theory can (but
need not) be both contextual and realist. Contextuality has to
be treated statistically as contextuality of probabilities, i.e. their
dependence on experimental contexts. By theVäxjö interpretation,
QM is a special mathematical formalism to work with contextual
probabilities for families of, in general, incompatible contexts. In
particular, by this interpretation the violation of Bell’s inequality
is simply a consequence of the contextuality of the experimental
test (as in the psychological test presented by Conte et al., 2008).
The main distinguishing feature of QP is its complex Hilbert space
representation. All quantum contexts can be unified with the
aid of a quantum state ψ . Thus, QP is not simply a probability

8 In discussions on quantum foundations, the issues of reality and realism are
very delicate. ‘Copenhageners’, Bohr, Heisenberg, Pauli, Dirac, von Neumann, Fock,
and others did not deny the reality of, e.g. atoms and electrons. They deny a
possibility of a realist description of quantum phenomena: a possibility to treat
properties of quantum systems independently of measurement devices. For them
QM is complete, i.e. any deeper description of micro-phenomena than given by QM
is impossible. This statement is known as leading to the impossibility of introducing
hidden variables. In applications of the QM-methods to cognition, the claims about
the impossibility of a deeper description than the operational quantum-like one,
have to be takenwith caution.We cannot ignore the presence of neurophysiological
models of the brain functioning (i.e., the modeling by tools from system biology).
At this point in time, we are not (yet?) able to connect them with the quantum-
like model. However, it would be dangerous to reject a possibility of establishing
such connection completely. Therefore, the Växjö interpretation is really useful for
cognitive and psychological applications. In contrast to interpretations in the spirit
of Copenhagen (see Plotnitsky, 2006, 2009), this interpretation is not anti-realist
(but the price for realism is contextuality). The same can be said about quantum-like
modeling in economics. One cannot simply deny the classical models of economics.
Here ‘hidden parameters’ exist as well.

model based on a family of Kolmogorov probability spaces labeled
by contexts. It contains a ‘transcendental element’ ψ whose
interpretation is still one of themain problems ofmodern quantum
physics. We remark that cognitive processes, in particular, DM
are fundamentally contextual. Therefore, contextual probability
models (and not only QP) are very useful in applications which
model cognition and DM (see, for example, Dzhafarov & Kujala,
2013, 2014a,b, Khrennikov, 2010).

The two-slit experiment (see, e.g. Khrennikov, 2010 for a
non-physicist friendly presentation) plays a fundamental role in
QP, and it can be considered as a PU procedure. There are given
prior probabilities that an electron (photon) S passes each of the
slits, p(i), i = 1, 2. Typically, it is assumed that p(i) = 1/2 (the
slit configuration which is symmetric with respect to the source).
There are also given transition probabilities q(x|i) that S is detected
at the point x of the registration screen under the assumption
that S passed the ith slit. The latter probabilities can be found
in experimental contexts Ci, i = 1, 2, when only the ith slit is
open (we still follow Feynman andHibbs (1965) in straightforward
fashion). Then, we want to predict the probability q(x) that S is
detected at the point x in context C12 (when both slits are open).
It is convenient to work with discrete observables, so let x = j =

1, 2, . . . (i.e. the registration screen is divided into discrete cells).
If the contexts C1, C2, C12 are probabilistically compatible, then

classical probability theory is applicable through FTP: q(j) =
i p(i)q(j|i). However, probabilities calculated with the aid of the

quantum formalism do not match with the classical FTP. And it
is clear why: contexts Ci, i = 1, 2, and C12 are incompatible.
Their incompatibility is a consequence of complementarity, the
wave-particle duality. If we represent the probabilities in FTP by
using the Born rule, we can easily see that this formula is violated.
The statistical data from experiments with electrons and photons
also violates FTP. Thus, the classical FTP cannot be used in the
quantum framework. Hence, it has to be modified. What would be
themost natural modification? It is an additive perturbation of FTP
of the form: q(j) =


i p(i)q(j|i)+δ(j), where δ(j) is a perturbation

term—‘interference term’. If δ(j) = 0, we obtain the classical FTP.
We remark that for real data it is more natural to speak, not about
the explicit equality to zero, but about the existence of a small
ϵ > 0 such that δ(j) < ϵ. In this way we smoothly transit from
the classical case (compatible contexts) to the nonclassical case
(incompatible contexts). The magnitude of δ(j) can be interpreted
as a measure of deviation from classicality. In QM, δ(j) has the
meaning of the interference term. It can be positive: constructive
interference or it can be negative: destructive interference.

The two-slit experiment is just a special example of the quan-
tum probability update via FTP with the interference term in-
volving two incompatible observables, A and B. In the two-slit
experiment, A is the ‘what slit passing observable’ (expressing the
position of S) and B gives the point of detection on the photo-
emulsion screen (expressing the momentum of S).

Let us now proceed in the abstract framework. To simplify
considerations, we restrict (for a moment) considerations to a
dichotomous observable A. We also assume that both A and B are
observables of the von Neumann–Lüders type. Then, it is possible
to show that quantum FTP has the following form (see Khrennikov,
2010):

q(j) =


i

p(i)q(j|i)+ 2 cos θj


i

p(i)q(j|i), (21)

where θj indicates some angles combined of quantum phases.
Thus, for observables of the von Neumann–Lüders type, the
relative magnitude of the interference term is characterized by
the inequality: λ(j) =

δ(j)
2
√

i p(i)q(j|i)
≤ 1. We can say that

for the von Neumann–Lüders observables, the deviation from
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the classical FTP is relatively small. However, by considering
generalized quantum observables given by POVMs, we can obtain
λ(j) > 1 (see Khrennikov & Basieva, 2014). Thus, in the case
of a dichotomous observable A, the quantum formalism covers
violations of FTP for all possible magnitudes. In this case, QM
just describes all probability update schemes violating FTP up
to some degree (including the classical case where there is no
violation). This is a very simple and heuristically clear treatment
of QP as a generalization of the classical statistical inference. In the
case of non-dichotomous A, the mathematics is more complicated.
However, the heuristics are the same.

7. Subjective interpretation and decision making

The subjective interpretation of the quantum state andQP is the
cornerstone of QBism (see Fuchs & Schack, 2013 (cf. Haven, 2008)).
Fuchs and Schack (2015, (p. 3)) mentioned that:

‘‘The fundamental primitive of QBism is the concept of experi-
ence. According to QBism, quantummechanics is a theory that any
agent can use to evaluate his expectations for the content of his
personal experience.

QBism adopts the personalist Bayesian probability theory
pioneered by de Finetti (1990) and Ramsey (1931) and is put in
modern form by Bernardo and Smith (1994) and Savage (1954)
among others. This means that QBism interprets all probabilities,
in particular those that occur in quantummechanics, as an agent’s
personal, subjective degrees of belief. This includes the case of
certainty—even probabilities 0 or 1 are degrees of belief..[..]..’’

Fuchs and Schack (2015, (p. 4)) also mention that:
‘‘In QBism, a measurement is an action an agent takes to

elicit an experience. The measurement outcome is the experience
so elicited. The measurement outcome is thus personal to the
agent who takes the measurement action. In this sense, quantum
mechanics, like probability theory, is a single user theory. A
measurement does not reveal a pre-existing value. Rather, the
measurement outcome is created in the measurement action’’.

The subjective interpretation of probability corresponding to
the quantum(-like) representation of the mental state matches
well the quantum(-like) modeling of DM. A human being, say
Alice, assigns subjective probabilities to different alternatives in
DM. These probabilities, as was emphasized by de Finetti, ‘‘do
not exist’’, i.e., they do not have any objective value. They are
totally private and represent the degrees of Alice’s belief. By getting
new information, Alice updates the probabilities by using the
‘quantum Bayes rule’. Here probabilities are assigned to individual
decisions, e.g. to buy or not to buy this concrete financial asset.
This is a very consistent picture and its applicability, not only to
cognition modeling, psychology, psychophysics, economics, but
even to molecular biology was discussed in very much detail by
Asano et al. (2015).

We repeat that the use here of the nonclassical rule for PU is
crucial. One cannot approach this rule just by following a classical
subjectivist line of reasoning, e.g. by following de Finetti. We really
have to combine, as was proposed by Fuchs, de Finetti’s subjective
probability with Born’s rule and by exploring some mathematics
of symmetric informationally complete positive operator valued
measures, to derive a new version of FTP, QBism’s FTP (see Fuchs &
Schack, 2015). Thus, Alice following Fuchs,makes PU andhence her
DM is different fromAlice’s following de Finetti. Another important
contribution of the quantum formalism is that it describes not
only probabilities but also states. In the modeling of cognition
and DM it is very natural to associate these quantum-like states
with belief-states (mental-states). The private agent’s perspective
advertised by QBism is again important for us. Classical subjective
probability does not say anything about the belief-states of agents.
They are expressed very roughly as subjective probabilities. The

main distinguishing feature of the quantum representation of
states (both in physics and cognition andDMmodeling) is that they
encode not only probabilities for possible results of compatible
observables, but even of incompatible observables.

We can conclude that, althoughQBism is not sowidely accepted
in the quantum physical community and, in particular, it was
criticized by Khrennikov (2002), it seems to be a very natural
candidate to interpret QP in applications to cognition and DM.

As was pointed out, in spite of its tremendous success, nowa-
daysQBismalso forms the subject of critiques frommany topquan-
tum physicists—those who claim that they ‘do real physics’ and do
not meddle with private beliefs. Some of them even treat QBism
as a form of solipsism. We shall present some arguments defending
the use of the subjective probability interpretation in physics. The
coming discussion is not so important for applications of QBism to
cognition and DM.

The main question which is often asked about QBism by quan-
tum physicists is: Where does the subjective probability come from?
As was remarked, this question can be in principle ignored in
applications of QBism to cognition. We also remark that this ques-
tion is generally about subjective probability (without any clas-
sical/quantum distinction). In principle, it might be discussed in
Section 3. But it became really actual and unescapable in the quan-
tum framework since subjective probability is not frequently used
in classical physics.

In quantum physics C. Fuchs tries to justify the private agent
perspective with the aid of the objective indeterminism of nature
(see James, 1882, 1884). Thus, although subjective probabilities
are personal, they have some degree of objectivity, as representing
nature’s objective indeterminism. The latter has some similarity
with von Neumann’s concept of irreducible quantum randomness.
However, the concept of objective indeterminism is more general.
In particular, in contrast to irreducible quantum randomness, it has
no explicit relation to QM. James invented this concept in 1882 (or
maybe even earlier), long before physicists started to deal with
the peculiarity (in the form of acausality) of the randomness of
outputs of quantum measurements. For James, indeterminism is
a general feature of nature, whether physical or mental. In some
sense Fuchs just wants to restrict the domain of action of Jamesian
indeterminism to the quantum world and in this way he finds
the objective justification of QBism. In some sense the domain of
action of objective indeterminism and hence Bayesianism is not
restricted to quantum physics: classical statistical physics also has
to be treated from the personal agent’s perspective.

We conclude that, in spite of the use of the subjective interpre-
tation of the quantum state and probability, QBism is not a form
of solipsism. QBism’s indeterminism is objective: the objectivity of
nature is exhibited in its ability to produce randomness (see again
James, 1882, 1884).

In this paper we are interested in applications of QBism to
cognition and DM and, as was mentioned, we can proceed without
the objectification of subjective probabilities which Alice assigns
to possible decisions.

8. Statistical interpretation and decision making

By using the statistical interpretation, in general, we cannot
associate QP with the concrete mental state (belief state) of Alice.
In QM we consider an ensemble (and typically it is very large,
say a few million photons) of quantum systems prepared in
the same state. Born’s rule then encodes the prediction about
the probabilities, treated statistically, of the results of possible
measurements. The application of this general statistical setting to
DM and problem solving gives us the following picture. Alice does
not make decisions by assigning probabilities in the concrete act
of DM. The process of selection of one of the possible alternatives
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in DM is not so straightforward. The quantum(-like) model does
not provide a consistent picture of this process. This is a purely
operational model which describes probabilities for decision-
alternatives. Probabilities have the meaning of frequencies for an
ensemble of decision makers.

Although the above operational scheme is completely sufficient
for working with statistical data, one may dream for a deeper
clarification of the DMmechanism. Here we can proceed similarly
to von Neumann (1955) and assume that the concrete mental
state of Alice encodes a kind of irreducible quantum(-like)
randomness. Thus, again by following von Neumann, we can
treat statistical probabilities–frequencies as simply the ensemble
representation of this intrinsic randomness. However, one has to
extend von Neumann’s thesis about such a randomness to the
mental world. During the 1930s–1990s when the physical and
mental worlds were considered (more or less following Descartes’
duality principle) as two totally differentworlds, such an extension
would have been deemed to be unacceptable.

Another possibility is to follow C. Fuchs and explore James’ ob-
jective indeterminism, but combine it with von Neumann’s idea
that QP represents its statistical-frequency realization. Thus here,
in the von Neumann–Fuchs scheme, a decision has in general a
nontrivial contribution of genuine mental randomness, cf. Sec-
tion 7.

However, by keeping the statistical interpretation we do not
have to be coupled to this scheme, i.e. to take into account the
genuine mental randomness. In the more pragmatic version of
the Copenhagen interpretation of QM due to Bohr, Pauli and
recently Plotnitsky, one does not try to ‘explain’ the origin of
quantum randomness. It is considered as an empirical fact that
quantum probabilities, averages, and correlations are the result
of our inability to know some hidden parameters. In applications
to cognition, psychology and psychophysics, we can remain on
the same position, and say that empirical data demonstrated that
such Statistical Copenhagen Interpretation (SCI) provides themost
consistent (at least for now) interpretation of the use of QP in DM.

By using the Växjö interpretation one can proceed with hid-
den variables, but they have to be of the contextual type, i.e. they
cannot be assigned to a system independently of the experimen-
tal context. Such a model can be local, but contextuality also can
lead to violation of Bell’s inequality. By applying this interpreta-
tion to QP-DM we come to the contextual probability viewpoint
of DM. As in SCI, there is no need for objective indeterminism, ir-
reducible quantum randomness, to explain deviations of QP-DM
from CP-DM.

9. Concluding remarks

Both in QBism and the Växjö interpretation, the quantum prob-
abilistic formalism is treated as PU machines. These machines are
nonclassical (see (21) for the FTP used in the Växjö interpretation
and see Fuchs & Schack, 2015 for the corresponding FTP-like rule
of QBism).

At present, it is difficult to select one concrete interpretation.
However,wehope that our analysis has clarified the problemof the
interpretation of probability in QP-DM and that it will stimulate
other researchers to contribute to this exciting and novel field of
research: the foundations of the quantum-like approach to DM.
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