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Quantum Neurocomputation and Signal Processing

Hamid Eghbalnia, Amir Assadi
University of Wisconsin, Madison

ABSTRACT

In this paper we mnsider a Quantum computational agorithm that can be used to
determine (probabili sticdly) how close agiven signal isto one of a set of previously
observed signal stored in the state of a quantum neurocomputional machine. The
redization of a new quantum algorithm for fadtorizaion of integers by Shor and its
implicéion to cryptography has creaed a rapidly growing field of investigation.
Although ro physicd redizadion of quantum computer is available, a number of
software systems smulating a quantum computation processexist. In light of the
rapidly increasing power of desktop computers and their ability to carry out these
simulations, it is worthwhile to investigate possble alvantages as well as
redizations of quantum algorithmsin signal processng applicaions. The dgorithm
presented in this paper offers a glimpse of the potentials of this approach. Neural
Networks (NN) provide anatural paradigm for parallel and distributed processng
of a wide dass of signals. Neural Networks within the cntext of classcd
computation have been used for approximation and classficaion tasks with some
success In this paper we propcse amodel for Quantum Neurocomputation (QN)
and explore some of its properties and pdential applicaions to signal processngin
an information-theoretic context. A Quantum Computer can evolve a oherent
superposition of many posshle input states, to an output state through a series of
unitary transformations that simultaneoudly affed ead element of the superposition.
This construction generates a massvely paralel data processng system existing
within a single pieceof hardware. Our model of QN consists of a set of Quantum
Neurons and Quantum interconnedions. Quantum neurons represent a normalized
element of the n-dimensional Hilbert space- a state of afinite dimensional quantum
medhanicd system. Quantum connedions provide a redizaion of probability
distribution over the set of state that combined with the Quantum Neurons provide a
density matrix representation of the system. A seocond layer with a similar
architedure interrogates the system through a series of random state descriptions to
obtain an average state description. We discussthe goplicaion of this paradigm to
the quantum analog of independent states using the quantum version of the
Kullbad-Leibler distance

INTRODUCTION

Quantum computation spurred recently by the work of Shor, has led to a new
consideration of information theoretic notions which can be used to study these
guestions. It has been suggested that the modern digital computer inherited its



atomistic mode of computation from the concepts proposed by the Neuron Doctrine
foll owing the pioneaing work of Ramon y Cajal. Crossfertili zation from the fields
of synthetic computation and natural computation has led to ideas guch as parallel
and dstributed processng, soft computing, asciative memory, as well as
applicaion of information theoreticd techniques in computing to evaluation of
information carrying capadty of spikes in the brain. However, evidence to date
seans to pdnt to the unavoidable fad that the very problems that are most difficult
for computers to address are problems that are routinely handled by natural
computation and those that are routinely handled by computers pose the most
difficulty for natural computing systems.  For example, extradion of spatial
structure (pattern reaognition) from a visual scene in the presence of ocdusions,
perspedive distortions, intensity variations and shadows are dfortlesstasks for the
visual system. While perfed recdl of vast quantities of data, indefinite storage,
perfed repetition and similar tasks continue to be in the domain of synthetic
computation.

In light of shortcomings of current computational model in certain applications, it
seams appropriate to consider aternative information-theoretic measures based on
aternative computational paradigms that could be used to analyze and pcssbly
expand aur current arsenal of agorithms. We emphasize that our work is to
investigate dternative computational models and study how the solution of given
problems can be cat (and possbly simplified) in the new setting.  Although
guantum computers do not exist, simulation of algorithms suggested by this
paradigm on standard machines may offer pradicd aternatives for spedfic
problems. A discusgon of the ideas can be found in [1,2,3,4,6,8] and references
therein. In this paper we focus on some ealy work in formulating a computational
model for distingushing states of a system. The outline of the paper is as foll ows.
After a brief discusson of our model in this sdion we then conduct a brief review
of quantum information theory and establish the notation in this paper. We then
follow with examples that ill ustrates how new posshbiliti es arise in the quantum
computational paradigm. We then describe the quantum analog of kullbadck-Leibler
distance and describe an algorithms for using this measure to distinguish states.

Motivated by the dannel theory in the human visual system, we mnsider an
information theoretic model based on the principals of quantum computation. We
consider encoding of signals in a quantum system and investigate dgorithms for
retrieval of such information. A simple visual aid for understanding the quantum
system can be redized as a system compaosed of atwo fully interconneded layers of
guantum neurons as depicted in figure 1.
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Figure 1. Layer A isthe depicted in lighter (gray) color and layer B is depicted in
the darker (Green) color with correspondng colors for inter-layer and Hadk for
intra-layer connedions. Layer A maintains the state of the system and layer B will
be used to prepare randam states for measuring the state of the system.

RougHy spe&king, layer A maintains the state of the system and layer B is used to
ascertain an average property which can be used to distinguish states.

Inherent in quantum computation is the need to addressthe measurement problem.
Five minimal requirements are often cited as necessary for the eistence of a
guantum computer. A particularly important element is the necessty that it be
possble to subjed the quantum system to "strong’ measurements. "Strong' simply
refers to measurement that determines which orthogonal eigenstate of some
particular Hermitian operator the quantum state belongs to. This "Strong"
measurement will, at the same time, projed the wavefunction of the system
irreversibly into the crresponding eigenfunction. One standard example of such a
measurement is the Stern-Gerlach experiment in which the zcomponent of a spin-
1/2 particle is projeded into one of its two eigenvalues. Unfortunately, many acual
guantum measurements in the laboratory are of a "we&" nature. For a complete
discusson we refer the reader to the textbodks [5,7,9] , and autline the ideahere for
our purposes.

The individual quantum system, say a singe spin-1/2 system, might interad very
wedkly with the measurement apparatus. This means. the probability that the
apparatus registers "spin up" is only wedkly correlated with the a¢ual wavefunction
amplitude for the spin to be up. A more quantitative statement would say that there
exist wesk measurementson astate a | 1) + b | |} such that one can obtain "spin

P =5 - 35)+ %

up" with probability



for arbitrarily small O . After such measurements the quantum state of the system
has been disturbed hardly at al - thus the term we&. However, in "we&"
measurements littl e information has been gained by the measurement about the state
of the spin. In some caes wedk measurements are satisfadory for leaning about the
guantum properties of systems. Examples of these caes occur when they can be
done on maaoscopicdly large ensembles, involving either many replicas of the
same quantum system (e.g. typicd in NMR), or when many identicd runs of the
same quantum measurement can be performed. By averaging over such ensembles,
good knowledge of the state a above can be obtained, no matter how small d is. It
is not clea whether these wegk measurements stisfy the requirements in quantum
computation. However, thisis afundamental problem where progressappeasto be
taking place

QUANTUM INFORMATION THEORY

In this ®dion we briefly review asped of the quantum formalism and guantum
information theory needed for our discusgon. In the quantum formali sm the state of
a system with afinite set of states T is charaderized by a unit vedor (up to a phase

fador of e‘“’) |L/l> in the complex Hilbert space H that is equipped with a
Hermitian scdar product <|> Corresponding to eadt clasdcd states a we have

the standard vedors |a> UH  which form an orthonorma basis of H . Time
evolution of a quantum system is given by a transformation via aunitary operator:
L/l> =U |L,U> Where U represents the unitary operator. Elements of 7 are usually
denoted as |Z > and the scdar product is denoted by <Z |I7> Therefore, it is
natural to think of <Z| as defining a linea functional <Z|:|I7>|—><Z|I7> on

"H and the spaceof such functionals is denotes by H . Elementsof { and H*
have a oordinate representation and in this representation one can think of them as
column and row vedors respedively. Based on the @ove, given two vedors, a

natural construction for alinea operator on 7 can be given as.

2)n)0m0 |n) (| omon
We denate the result of application o alinea operator A : H — H to avedor as
A|Z>. The following ndationis common and wseful:

glan)=cIan)=(n<]s)

where A’ isthe ajoint.

Orthogoral projedion o a vedor |Z> denoted by [1 |Z> is projedion oro a
linea subspaceof H This projedion operator is used in gving the probabili stic



interpretation d the quantum formalism as well as the relation between the system
and its subsystems. In an analogows manner to standard probability theory, the
guantum probability depends on a quantum state and a linea subspace From these
two, the probabili stic interpretationis given as:

P=(¢|N[¢)=Tr (o)
Where p=|Z><Z| is cdled the density operator assciated to the state |Z>

A generic density operator is sid to represent a mixed state of the system, while
guantum states defined so far are cdled pure. Density operators evolve through

unitary operations as well acordingto: p+—U pU".

The oncept of information in quantum physics is introduced through Von
Neumann entropy as.

S(p)=-Trplogp
where P represents the mixture state defined by p = z o] |L,Ui><L,Ui |Where p.is

the probability of occurrence of the state |L,Ui> . The relative entropy d a pair of
statesis defined as:
2(plin)=S(p)-Trplogn

and cefines adireded dstance between the two states which enjoys most properties
of a distance function except symmetry. Similar to the results in classcd
probability theory the probability for erroneous identification o a state dter N
measurement deaeases as an exporential with exporent of N times the distance
between the two states to be measured. Correspondng to the mutual informationin

classcd entropy and the boundit establishes on a ommunicaion channel, Holevo
establi shed the following upper bound orthe mutual information as:

X :S(P)_z piS(pi): Z pip(pi "p): Z piﬁ(pi ||I‘I)—@(P ”rl)

This quantity expresses an average relative entropy from the average state O to the
members of the signal ensemble.

MOTIVATING EXAMPLES

The following examples ®rve two purposes: 1) they ill ustrates some of the notation
introduced above axd 2) they demonstrates new coding possbhilities in quantum
states as well as nonlinea behavior of the sum of two interfering observables.
These examples motivates our interest in quantum algorithms.



Examplel: Independent States: Suppcse we ae given X and Y as independent states
both having densities that are half [0> and half [1>. Then, this computation
ill ustrates that we lean nothing about x by measuringy (as expeded).

e OB o, .0 U4 -
px_ 1 p_px py_D 1/4 C
® 30 H 1/4r

(%) = S(y) = 2<—§In<%» =1

S(x0 y) :4@»%@%%:2

S(x]y) =S(x0y)-3(y) =1
(X, y) =S(x) +S(y) -S(x0O y) =0
Example2:Classcdly Correlated States. This example ill ustrates the cae for

completely correlated states. Here x and y are dasscdly correlated, (either both
[0> or bath [1>), and that |00) and |[11) are equally likely. Then, we have:

/2 C
poO O .
U 0 L
. 1/2F
(%) = S(y) = 2(-In(2) =1
2 2

01 [
S(xOy)=4 —Inﬁzmzl
Ha ]
S(x|y) =S(x0y)-3(y) =0
(%, y) =S(x) +S(y) -S(xOy) =1
Example3: Quantum Entangled States. In this example x and y are in the entanged
state |00> + [11> (normalized). The combined state is a pure state that has zero
entropy while ameasurement of x or y separately will produce |0> and |[1> with
equal probability. This produces the unexpeded result that the mutual information
is greder than the information in either one of the subsystems. We dso notice that

the conditional entropy is negative. The extra information in I(X,Y) is ometime
referred to as virtual information (cannot convey information).



/2 1/2C

0 C
p=0 0 C
0 o T
Hi2 12F

S(xOy)=-1In1-3(0In0) =0
S(x|y)=S(x0y)-S(y)=-1
(X, y) =S(x) +S(y) -S(xU y) =2

Exampled: Consider the transmisson of sequence of qubit signal states of
1
Y, = |0> and Y, :ﬁq O) +|1>) where eab transmisson can be one of the

states with equal probability of 0.5. The density matrix of the source is:
p= 0.5|L,Ul> <L/ll| + 0.5|¢12><L,Uz| and the Von Neuman entropy can be computes

as defined above. The cmmunication of this message can be dealy accomplished
by transmitting one qubit per state. However, quantum source @ding theorem
shows that the signal can be asymptoticdly transmitted using S qubits per state
where S is the Von Neuman entropy. In the @ove example adired cdculation
yields S=0.601 qubits.

Example5: Consider the Hilbert space H = € with the canonica basis €, = %)[,
C

0C
€ = %]-E Then, the spaceof observable on Hilbert space (H) , has as basis

the well-known Pauli spin matrices:

__dog 01y 0D [ 0C
“"Ho1g tTmoogt *Th og’ Th -1t

This is an orthonormal basis for (& (H)With the scdar product

1
<X,Y> =ETr XY . Inthe pure state €,the observables 0,, 0,and 0;asume

the values 1, -1 and 1 respedively with probabiliti es 0.5,0.5 and 1. However, an
elementary caculation shows that the observable 0, + O, has eigenvalues ¢\/§ ,
whereas ead observable takes has eigenvalues xlindividually. This points out
the fad that the vedoria sum of two observables in 0(7‘() has an esentialy

nonlinea feaure when the observables are interfering observables. This gands in
sharp contrast to the way sums of random variables behave in classcd probahility.



INDEPENDENT COMPONENT ANALYSIS

In clasdcd probability theory mutual information is a measure of channel capadty.
Mutual information | (X;Y)=H(X)+H(Y)—H(X,Y)is defined in terms

of Shannon information H(X) = —Z p,log p, of an ensemble {X, px} and

measures the number of bits of information obtained about X by observing Y. The
Kullbadk-Leibler (KL) divergence between the distributions p and qis defined as

K(p|q):IpIn(p/q) (the integral is replaced by a sum for discrete

distributions). The KL distance ca be viewed as the mean information required to
turn the prior q into the posterior p. Thus, Mutual information and KL distance
both measure relative information between two dstributions.  This information
theoretic point of view has motivated a number of applicaionsin macdine vision as

well as human visual system analysis. Consider a finite sample (X,,-:, X,) of d-

vedors representing a set of measurements of the “state of nature”. The key
computational ingredient of Independent Comporents Analysis (ICA) is to find a
linea map that transforms the observed multi-variate data into a new colledion o
statisticdly independent comporents. There ae a number of different, mostly
equivalent, ways to formulate Independent Comporents Analysis. Most of these
methods amount to minimizing the Kullbadk-Leibler divergence between the joint
probability and marginal probabiliti es of the output signals. Asis clea from this
discusson, ICA is a linea approach to separating mixtures. A number of
approaches for extending the ICA approach to include nonlineaities has been
suggested. However, as noted in the example in the precaling sedion, nonlinea
affeds occur naturally as a byproduct of the quantum physicd approac to states of
information and is motivated by successof experimental quantum physics.

QUANTUM COMPONENT ANALYSIS

Consider a system of n neurons ead capable of representing an m-qubit state and a
set of probability amplitudes for the states. This can be represented as an ensemble

of sgras  {jW.), W) P, pfwith  the  densty  matrix
p= z o] |l,,lli><l,,lli | . We ae given an arbitrary signal (a state) and we wish to
I

determine if this sgnal is close to, or can be gproximated by, one of the origina
states used to construct the density matrix. The information avail able to us is the
density matrix (the entangled states) and not the individual states. Therefore, we
would like to charaderize the mean information required to distinguish the new



state. Given asigna 17, the KL distance for a quantum system is a good measure
of the mean information and is defined as:

K(pIm = 3 Tr(pE, )iog(Tr (oE, ) Tr (nE )

Where E is a paositive operator valued measure which describes the basis in which
the state is measured. A bad choice of basis can make states less distinguishable.
Therefore, one must maximize K above over al possble basisin order to oltain an
optimal KL distance The optimizaion over the spaceE serioudy limits the utility
of this formula. We note here that Holevo baund requires that we maximize the
average distance from the average state to the individua members of the signal
ensemble in order to achieve maximum distinguishability of states. Thus, the
original encoding scheme of the states plays an important role in determining
distinguishability viathe KL distance

Before we proceal to show how to estimate the mean information, we first show
how this can be equivalently represented in the quantum neurocomputational model

we have propcsed. Consider the Gram metrix Gij =\ PP <L,Ui ‘L,Uj>. This

matrix has the foll owing properties: (1) its nonzero eigenvalues coincide with those
of the density matrix above and thusit has the same entropy, (2) it is always positive
with trace @ual to one. In this context, the interconnedions of our Quantum
neurocomputer represent the sguare root of the product of probabilities and the
states of ead quantum neuron are @ before. Given this equivalence we can
continue to formulate our algorithm in the context of density matrices redizing that
adired trandation to the model aboveisclea.

Since the KL distanceis formulated in terms of the traceoperator we wish to have
an effedive method d estimating trace The estimation of traceof a matrix M in a
d-dimensional Hilbert space spanned by a set of orthonormal states is sSmple to
compute. However, the orthonormal states in which the tracemust be computed is
not known to us snce a discussed before the KL distance must be optimized over
the basis E. We show here that this computation can be gproximated using
sampling over a set of random states using our quantum computer's ability to
efficiently  and rapidly =~ compute  observations  of the  form

P=(Z|N|Z)=Tr(pM).
Consider any set of orthonormal states {|en>} and d complex numbers, drawn

randomly (with resped to ead component of the complex number) form elements
on the unit circle (so that they have zeo mean) designated by a, . Form the random

d
vedor |Z > = Z a, |eh> and use this vedor to compute the traceof the matrix M:
n=



d d
(¢IMZ) = Z Za:aj (q‘Mej>. Consider R independent redizaion of the
=1 =

random vedors above and examine the average value.
d

R d
R_lz Z &, <q ‘ Mej> and note that based on our assumptions on the
=1 =1 1=

R
distribution of random complex numbers a, we have: || m R_lz aa, =1. It
R- o =
follows immediately that the trace ca be gproximated by averaging over a set of
random states. Therefore, this method provides a computational approach to the
estimation of the Quantum KL distance in a quantum computer modeled by our
guantum neurocomputer. This model offers the oppatunity of ssimulations based on
software systems meant to simulate quantum computation. Given a system spedfied
by an initial set of complex state vedors (such as our quantum neurocomputer) in a
superposition of states, we have devised an algorithm for determining how much
information is contained in a given state aout our system. This method may open
new avenues for signal understanding.
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