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Quantum Neurocomputation and Signal Processing

Hamid Eghbalnia, Amir Assadi
University of Wisconsin, Madison

ABSTRACT

In this paper we consider a Quantum computational algorithm that can be used to
determine (probabili stically) how close a given signal is to one of a set of previously
observed signal stored in the state of a quantum neurocomputional machine.  The
realization of a new quantum algorithm for factorization of integers by Shor and its
implication to cryptography has created a rapidly growing field of investigation.
Although no physical realization of quantum computer is available, a number of
software systems simulating a quantum computation process exist.  In light of the
rapidly increasing power of desktop computers and their abilit y to carry out these
simulations, it is worthwhile to investigate possible advantages as well as
realizations of quantum algorithms in signal processing applications.  The algorithm
presented in this paper offers a glimpse of the potentials of this approach.  Neural
Networks (NN) provide a natural paradigm for parallel and distributed processing
of a wide class of signals. Neural Networks within the context of classical
computation have been used for approximation and classification tasks with some
success. In this paper we propose a model for Quantum Neurocomputation (QN)
and explore some of its properties and potential applications to signal processing in
an information-theoretic context.  A Quantum Computer can evolve a coherent
superposition of many possible input states, to an output state through a series of
unitary transformations that simultaneously affect each element of the superposition.
This construction generates a massively parallel data processing system existing
within a single piece of hardware.  Our model of QN consists of a set of Quantum
Neurons and Quantum interconnections. Quantum neurons represent a normalized
element of the n-dimensional Hilbert space - a state of a finite dimensional quantum
mechanical system.  Quantum connections provide a realization of probabilit y
distribution over the set of state that combined with the Quantum Neurons provide a
density matrix representation of the system.  A second layer with a similar
architecture interrogates the system through a series of random state descriptions to
obtain an average state description.   We discuss the application of this paradigm to
the quantum analog of independent states using the quantum version of the
Kullback-Leibler distance.

INTRODUCTION

Quantum computation spurred recently by the work of Shor, has led to a new
consideration of information theoretic notions which can be used to study these
questions.  It has been suggested that the modern digital computer inherited its



atomistic mode of computation from the concepts proposed by the Neuron Doctrine
following the pioneering work of Ramon y Cajal.  Cross-fertili zation from the fields
of synthetic computation and natural computation has led to ideas such as parallel
and distributed processing, soft computing, associative memory, as well as
application of information theoretical techniques in computing to evaluation of
information carrying capacity of spikes in the brain.  However, evidence to date
seems to point to the unavoidable fact that the very problems that are most diff icult
for computers to address are problems that are routinely handled by natural
computation and those that are routinely handled by computers pose the most
diff iculty for natural computing systems.   For example, extraction of spatial
structure (pattern recognition) from a visual scene in the presence of occlusions,
perspective distortions, intensity variations and shadows are effortless tasks for the
visual system. While perfect recall of vast quantities of data, indefinite storage,
perfect repetition and similar tasks continue to be in the domain of synthetic
computation.

In light of shortcomings of current computational model in certain applications, it
seems appropriate to consider alternative information-theoretic measures based on
alternative computational paradigms that could be used to analyze and possibly
expand our current arsenal of algorithms.  We emphasize that our work is to
investigate alternative computational models and study how the solution of given
problems can be cast (and possibly simpli fied) in the new setting.  Although
quantum computers do not exist, simulation of algorithms suggested by this
paradigm on standard machines may offer practical alternatives for specific
problems.  A discussion of the ideas can be found in [1,2,3,4,6,8] and references
therein.  In this paper we focus on some early work in formulating a computational
model for distinguishing states of a system.  The outline of the paper is as follows.
After a brief discussion of our model in this section we then conduct a brief review
of quantum information theory and establish the notation in this paper.  We then
follow with examples that ill ustrates how new possibiliti es arise in the quantum
computational paradigm.  We then describe the quantum analog of kullback-Leibler
distance and describe an algorithms for using this measure to distinguish states.

Motivated by the channel theory in the human visual system, we consider an
information theoretic model based on the principals of quantum computation.  We
consider encoding of signals in a quantum system and investigate algorithms for
retrieval of such information.  A simple visual aid for understanding the quantum
system can be realized as a system composed of a two fully interconnected layers of
quantum neurons as depicted in figure 1.



Figure 1. Layer A is the depicted in lighter (gray) color and layer B is depicted in
the darker (Green) color with corresponding colors for inter-layer and black for
intra-layer connections.  Layer A maintains the state of the system and layer B will
be used to prepare random states for measuring the state of the system.

Roughly speaking, layer A maintains the state of the system and layer B is used to
ascertain an average property which can be used to distinguish states.

Inherent in quantum computation is the need to address the measurement problem.
Five minimal requirements are often cited as necessary for the existence of a
quantum computer.  A particularly important element is the necessity that it be
possible to subject the quantum system to "strong" measurements. "Strong" simply
refers to measurement that determines which orthogonal eigenstate of some
particular Hermitian operator the quantum state belongs to.  This "Strong"
measurement will , at the same time, project the wavefunction of the system
irreversibly into the corresponding eigenfunction. One standard example of such a
measurement is the Stern-Gerlach experiment in which the z-component of a spin-
1/2 particle is projected into one of its two eigenvalues. Unfortunately, many actual
quantum measurements in the laboratory are of a "weak" nature. For a complete
discussion we refer the reader to the textbooks [5,7,9] , and outline the idea here for
our purposes.

The individual quantum system, say a single spin-1/2 system, might interact very
weakly with the measurement apparatus.  This means: the probabilit y that the
apparatus registers "spin up" is only weakly correlated with the actual wavefunction
amplitude for the spin to be up. A more quantitative statement would say that there
exist weak measurements on a state � � � � � � � � � such that one can obtain "spin

up" with probabilit y

( )2 1 1
2 2P aδ↑ = − +



for arbitrarily small δ 	 After such measurements the quantum state of the system
has been disturbed hardly at all - thus the term weak.  However, in "weak"
measurements littl e information has been gained by the measurement about the state
of the spin. In some cases weak measurements are satisfactory for learning about the
quantum properties of systems.  Examples of these cases occur when they can be
done on macroscopically large ensembles, involving either many replicas of the
same quantum system (e.g. typical in NMR), or when many identical runs of the
same quantum measurement can be performed.  By averaging over such ensembles,
good knowledge of the state 
  above can be obtained, no matter how small δ is.  It
is not clear whether these weak measurements satisfy the requirements in quantum
computation.  However, this is a fundamental problem where progress appears to be
taking place.

QUANTUM INFORMATION THEORY

In this section we briefly review aspect of the quantum formalism and quantum
information theory needed for our discussion. In the quantum formalism the state of
a system with a finite set of states T is characterized by a unit vector (up to a phase

factor of ie φ ) |ψ  in the complex Hilbert space � that is equipped with a

Hermitian scalar product �
 �
 .  Corresponding to each classical states a we have

the standard vectors a ∈ �  which form an orthonormal basis of � . Time

evolution of a quantum system is given by a transformation via a unitary operator:

|Uψ ψ=  Where U represents the unitary operator. Elements of �  are usually

denoted as ζ , and the scalar product is denoted by ζ η .  Therefore, it is

natural to think of ζ  as defining a linear functional :ζ η ζ η�
 on

�
and the space of such functionals is denotes by � � � .  Elements of � and � � �

have a coordinate representation and in this representation one can think of them as
column and row vectors respectively.  Based on the above, given two vectors, a
natural construction for a linear operator on � can be given as:

,ζ η η ζ∈ ⇒ ∈ ⊗� � � � �
We denote the result of application of a linear operator : →� �� �

 to a vector as

ζ
��

.  The following notation is common and useful:

ζ η ζ η ζ η•= =
�� �� ��

 where •��
is the adjoint.

Orthogonal projection of a vector ζ , denoted by ζΠ , is projection onto a

linear subspace of �  This projection operator is used in giving the probabili stic



interpretation of the quantum formalism as well as the relation between the system
and its subsystems. In an analogous manner to standard probabilit y theory, the
quantum probabilit y depends on a quantum state and a linear subspace.  From these
two, the probabili stic interpretation is given as:

( )P Trζ ζ ρ= Π = Π

 Where  ρ ζ ζ=   is called the density operator associated to the state   ζ .

A generic density operator is said to represent a mixed state of the system, while
quantum states defined so far are called pure.   Density operators evolve through

unitary operations as well according to: U Uρ ρ •�
.

The concept of information in quantum physics is introduced through Von
Neumann entropy as:

( ) logS Trρ ρ ρ= −

where ρ represents the mixture state defined by i i i
i

pρ ψ ψ= ∑ where ip is

the probabilit y of occurrence of the state  iψ .  The relative entropy of a pair of

states is defined as:

( ) ( )|| logS Trρ η ρ ρ η= −
�

and defines a directed distance between the two states which enjoys most properties
of a distance function except symmetry.  Similar to the results in classical
probabilit y theory the probabilit y for erroneous identification of a state after N
measurement decreases as an exponential with exponent of N times the distance
between the two states to be measured.  Corresponding to the mutual information in
classical entropy and the bound it establishes on a communication channel, Holevo
established the following upper bound on the mutual information as:

( ) ( ) ( ) ( ) ( )|| || ||i i i i i i
i i i

S p S p pχ ρ ρ ρ ρ ρ η ρ η= − = = −∑ ∑ ∑� � �

This quantity expresses an average relative entropy from the average state ρ  to the

members of the signal ensemble.

MOTIVATING EXAMPLES

The following examples serve two purposes: 1) they ill ustrates some of the notation
introduced above and 2) they demonstrates new coding possibiliti es in quantum
states as well as nonlinear behavior of the sum of two interfering observables.
These examples motivates our interest in quantum algorithms.



Example1: Independent States: Suppose we are given X and Y as independent states
both having densities that are half |0> and half |1>.  Then, this computation
ill ustrates that we learn nothing about x by measuring y (as expected).

1/ 41
0 1/ 42
1 1/ 4

0
2 1/ 4

x x yρ ρ ρ ρ

       = = ⊗ =          
1 1

( ) ( ) 2( ln( )) 1
2 2

S x S y= = − =

1 1
( ) 4 ln 2

4 4
S x y

  ⊗ = − =    
( | ) ( ) ( ) 1

( , ) ( ) ( ) ( ) 0

S x y S x y S y

I x y S x S y S x y

= ⊗ − =
= + − ⊗ =

Example2:Classically Correlated States. This example ill ustrates the case for
completely correlated states.  Here x and y are classically correlated,  (either both
|0> or both |1>), and that |00) and |11) are equally likely. Then, we have:

1/ 2

0

0

1/ 2

ρ

 
 
 =
 
 
 

1 1
( ) ( ) 2( ln( )) 1

2 2
S x S y= = − =

1 1
( ) 4 ln 1

4 4
S x y

  ⊗ = − =    
( | ) ( ) ( ) 0

( , ) ( ) ( ) ( ) 1

S x y S x y S y

I x y S x S y S x y

= ⊗ − =
= + − ⊗ =

Example3: Quantum Entangled States. In this example x and y are in the entangled
state |00> + |11> (normalized). The combined state is a pure state that has zero
entropy while a measurement of x or y separately will produce |0> and |1> with
equal probabilit y.  This produces the unexpected result that the mutual information
is greater than the information in either one of the subsystems. We also notice that
the conditional entropy is negative. The extra information in I(X,Y) is sometime
referred to as virtual information (cannot convey information).



1/ 2 1/ 2

0

0

1/ 2 1/ 2

ρ

 
 
 =
 
 
 

( ) 1ln1 3(0ln0) 0S x y⊗ = − − =
( | ) ( ) ( ) 1

( , ) ( ) ( ) ( ) 2

S x y S x y S y

I x y S x S y S x y

= ⊗ − = −
= + − ⊗ =

Example4: Consider the transmission of sequence of qubit signal states of

1 0ψ = and ( )2

1
0 1

2
ψ = + where each transmission can be one of the

states with equal probabilit y of 0.5.  The density matrix of the source is:

1 1 2 20.5 0.5ρ ψ ψ ψ ψ= +  and the Von Neuman entropy can be computes

as defined above.  The communication of this message can be clearly accomplished
by transmitting one qubit per state.  However, quantum source coding theorem
shows that the signal can be asymptotically transmitted using S qubits per state
where S is the Von Neuman entropy.  In the above example a direct calculation
yields S=0.601 qubits.

Example5: Consider the Hilbert space 
2=

� �
with the canonical basis 0

1

0
e

 =  
 

,

1

0

1
e

 =  
 

.  Then, the space of observable on Hilbert space, ( )��
, has as basis

the well -known Pauli spin matrices:

0 1 2 3

1 0 0 1 0 1 0
, , ,

0 1 1 0 0 0 1

i

i
σ σ σ σ

−       = = = =       −       
This is an orthonormal basis for ( ) �

with the scalar product

1
,

2
X Y Tr XY= .  In the pure state 0e the observables 1σ , 2σ and 3σ assume

the values 1, -1 and 1 respectively with probabiliti es 0.5,0.5 and 1.  However, an

elementary calculation shows that the observable 1σ + 2σ has eigenvalues 2± ,

whereas each observable takes has eigenvalues  1± individually.  This points out

the fact that the vectorial sum of two observables in ( ) �
has an essentially

nonlinear feature when the observables are interfering observables.  This stands in
sharp contrast to the way sums of random variables behave in classical probabilit y.



INDEPENDENT COMPONENT ANALYSIS

In classical probabilit y theory mutual information is a measure of channel capacity.
Mutual information ( ; ) ( ) ( ) ( , )I X Y H X H Y H X Y= + − is defined in terms

of Shannon information ( ) logx x
x

H X p p= −∑ of an ensemble { }, XX p  and

measures the number of bits of information obtained about X by observing Y. The
Kullback-Leibler (KL) divergence between the distributions p and q is defined as

( )( | ) ln /K p q p p q= ∫  (the integral is replaced by a sum for discrete

distributions).  The KL distance can be viewed as the mean information required to
turn the prior q into the posterior p.  Thus, Mutual information and KL distance
both measure relative information between two distributions.  This information
theoretic point of view has motivated a number of applications in machine vision as

well as human visual system analysis.  Consider a finite sample 1( , , )nx x! of d-

vectors representing a set of measurements of the “state of nature”.  The key
computational ingredient of Independent Components Analysis (ICA) is to find a
linear map that transforms the observed multi -variate data into a new collection of
statistically independent components.  There are a number of different, mostly
equivalent, ways to formulate Independent Components Analysis.  Most of these
methods amount to minimizing the Kullback-Leibler divergence between the joint
probabilit y and marginal probabiliti es of the output signals.  As is clear from this
discussion, ICA is a linear approach to separating mixtures.  A number of
approaches for extending the ICA approach to include nonlinearities has been
suggested.  However, as noted in the example in the preceding section, nonlinear
affects occur naturally as a byproduct of the quantum physical approach to states of
information and is motivated by success of experimental quantum physics.

QUANTUM COMPONENT ANALYSIS

Consider a system of n neurons each capable of representing an m-qubit state and a
set of probabilit y amplitudes for the states.  This can be represented as an ensemble

of signals { }1 1, , ; , ,n np pψ ψ! ! with the density matrix

i i i
i

pρ ψ ψ= ∑ .  We are given an arbitrary  signal (a state) and we wish to

determine if this signal is close to, or can be approximated by, one of the original
states used to construct the density matrix.  The information available to us is the
density matrix (the entangled states) and not the individual states.  Therefore, we
would like to characterize  the mean information required to distinguish the new



state.  Given a signal η ,  the KL distance for a quantum system is a good measure

of the mean information and is defined as:

( ) ( ) ( )( )( | ) logj j j
j

K Tr E Tr E Tr Eρ η ρ ρ η= ∑
Where E is a positive operator valued measure which describes the basis in which
the state is measured.  A bad choice of basis can make states less distinguishable.
Therefore, one must maximize K above over all possible basis in order to obtain an
optimal KL distance.  The optimization over the space E seriously limits the utilit y
of this formula.  We note here that Holevo bound requires that we maximize the
average distance from the average state to the individual members of the signal
ensemble in order to achieve maximum distinguishabilit y of states.  Thus, the
original encoding scheme of the states plays an important role in determining
distinguishabilit y via the KL distance.

Before we proceed to show how to estimate the mean information, we first show
how this can be equivalently represented in the quantum neurocomputational model

we have proposed.  Consider the Gram matrix ij i j i jG p p ψ ψ= .  This

matrix has the following properties: (1) its nonzero eigenvalues coincide with those
of the density matrix above and thus it has the same entropy, (2) it is always positive
with trace equal to one.   In this context, the interconnections of our Quantum
neurocomputer represent the square root of the product of probabiliti es and the
states of each quantum neuron are as before. Given this equivalence we can
continue to formulate our algorithm in the context of density matrices realizing that
a direct translation to the model above is clear.

Since the KL distance is formulated in terms of the trace operator we wish to have
an effective method of estimating trace.  The estimation of trace of a matrix M in a
d-dimensional Hilbert space spanned by a set of orthonormal states is simple to
compute.  However, the orthonormal states in which the trace must be computed is
not known to us since as discussed before the KL distance must be optimized over
the basis E.  We show here that this computation can be approximated using
sampling over a set of random states using our quantum computer's abilit y to
eff iciently and rapidly compute observations of the form

( )P Trζ ζ ρ= Π = Π .

Consider any set of orthonormal states { }ne and d complex numbers, drawn

randomly (with respect to each component of the complex number) form elements

on the unit circle (so that they have zero mean) designated by ia .  Form the random

vector 
1

d

n n
n

a eζ
=

= ∑ and use this vector to compute the trace of the matrix M:



*

1 1

d d

i j i j
i j

M a a e Meζ ζ
= =

= ∑∑ .  Consider R independent realization of the

random vectors above and examine the average value.

1 *

1 1 1

R d d

ik jk i j
k j i

R a a e Me−

= = =
∑∑∑  and note that based on our assumptions on the

distribution of random complex numbers a, we have: 1 *

1
lim

R

ik jk
R k

R a a−

→∞ =

=∑ " .  It

follows immediately that the trace can be approximated by averaging over a set of
random states.  Therefore, this method provides a computational approach to the
estimation of the Quantum KL distance in a quantum computer modeled by our
quantum neurocomputer.  This model offers the opportunity of simulations based on
software systems meant to simulate quantum computation.  Given a system specified
by an initial set of complex state vectors (such as our quantum neurocomputer) in a
superposition of states, we have devised an algorithm for determining how much
information is contained in a given state about our system.  This method may open
new avenues for signal understanding.
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