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 There are two related purposes of this chapter. One is to generate interest in a new 

and fascinating approach to understanding behavioral measures based on quantum 

probability principles. The second is to introduce and provide a tutorial of the basic ideas 

in a manner that is interesting and easy for social and behavioral scientists to understand.  

 It is important to point out from the beginning that in this chapter, quantum 

probability theory is viewed simply as an alternative mathematical approach for 

generating probability models. Quantum probability may be viewed as a generalization of 

classic probability. No assumptions about the biological substrates are made. Instead this 

is an exploration into new conceptual tools for constructing social and behavioral science 

theories.  

 Why should one even consider this idea? The answer is simply this (cf., 

Khrennikov, 2007). Humans as well as groups and societies are extremely complex 

systems that have a tremendously large number of unobservable states, and we are 

severely limited in our ability to measure all of these states. Also human and social 

systems are highly sensitive to context and they are easily disturbed and disrupted by our 

measurements. Finally, the measurements that we obtain from the human and social 

systems are very noisy and filled with uncertainty. It turns out that classical logic, classic 

probability, and classic information processing force highly restrictive assumptions on 

the representation of these complex systems. Quantum information processing theory 

provides principles that are more general and powerful for representing and analyzing 

complex systems of this type.  

 Although the field is still in a nascent stage, applications of quantum probability 

theory have already begun to appear in areas including information retrieval, language, 
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concepts, decision making, economics, and game theory (see Bruza, Lawless, van 

Rijsbergen, & Sofge, 2007; Bruza, Lawless, van Rijsbergen, & Sofge, 2008; also see the 

Special Issue on Quantum Cognition and Decision to appear in Journal of Mathematical 

Psychology in 2008).  

 The chapter is organized as follows. First we describe a hypothetical yet typical 

type of behavioral experiment to provide a concrete setting for introducing the basic 

concepts. Second, we introduce the basic principles of quantum logic and quantum 

probability theory. Third we discuss basic quantum concepts including compatible and 

incompatible measurements, superposition, measurement and collapse of state vectors.  

 A simple behavioral experiment. 

 Suppose we have a collection of stimuli (e.g., criminal cases) and two measures: a 

random variable X with possible values xi , i = 1,..,n, (e.g. 7 degrees of guilt); and a 

random variable Y with possible values yj , j = 1,…,m (e.g., 7 levels of punishment) under 

study. A criminal case is randomly selected with replacement from a large set of 

investigations and presented to the person. Then one of two different conditions is 

randomly selected for each trial:  

Condition Y: Measure Y alone (e.g. rate level of punishment alone). 

Condition XY: Measure X then Y (e.g. rate guilt followed by punishment). 

Over a long series of trials (say 100 trials per person to be concrete) each criminal 

case can be paired with each condition several times. We sort these 100 trials into 

conditions and pool the results within each condition to estimate the relative frequencies 

of the answers for each condition. (For simplicity, assume that we are working with a 
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stationary process after an initial practice session that occurs before the 100 experimental 

trials).  

The idea of the experiment is illustrated in Figure 1 below where each measure 

has only two responses, yes or no. Each trial begins with a presentation of a criminal 

case. This case places the participant in a state indicated by the little box with the letter z. 

From this initial state, the individual has to answer questions about guilt and punishment. 

The large box indicates the first of the two possible measurements about the case. This 

question appears in a large box because on some trials there is only the second question 

in which case the question in the large box does not apply. The final stage represents the 

second (or only) question. The paths indicted by the arrows indicate all the possible 

answers for two binary valued questions. 

     Figure 1: Illustration of various possible measurement outcomes for condition XY. 

 

Classic probability theory. 

 Events. Classic probability theory assigns probabilities to classic events.1 An 

event (such as the event x = X > 4 or the event y = Y < 3 or the event z = X +Y = 3) is 

defined algebraically as a set belonging to a field of sets. There is a null event represented 

                                                 
1 For simplicity we restrict our attention to experiments that produce a finite number of outcomes.  

 z 

 y1  x1 

 x2  y2 



  Quantum Probability 5 

by the empty set ∅ and a universal event U that contains all other events. New events can 

be formed from other events in three ways. One way is the negation operation, denoted 

~x, which is defined as the set complement. A second way is the conjunction operation 

x∧y which is defined by intersection of two sets. A third way is the disjunction operation 

x∨y defined as the union of two sets. The events obey the rules of Boolean algebra: 

1. Commutative: x∨y =  y∨x 

2. Associative: x∨(y∨z) = (x∨y)∨z 

3. Complementation: x∨(~y∧y) = x 

4. Absorption: x∨(x∧y) = x 

5. Distributive: x∧(y∨z) = (x∧y)∨(x∧z). 

The last axiom, called the distributive axiom, is crucial for distinguishing classic 

probability theory from quantum probability theory.  

Classic Probabilities. The standard theory of probability used throughout the 

social and behavioral sciences is based on the Kolmogorov axioms:  

1.  1 ≥ Pr(x) ≥ 0,  Pr(∅) = 0,  Pr(U) = 1. 

2.   If x ∧ y = ∅ then Pr(x ∨ y) = Pr(x) + Pr(y). 

When more than one measurement is involved, the conditional probability of y given x is 

defined by the ratio: 

Pr(y|x) = Pr(y∧x)/Pr(x), 

which implies the formula for joint probabilities 

 Pr(y∧x) = Pr(x)⋅ Pr(y|x). 
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Classic Probability Distributions. 

The simple experiment above is analyzed as follows. Consider first condition XY. 

We observe n ⋅  m distinct mutually exclusive and exhaustive distinct outcomes, such as 

xiyj which occurs when the pair xi and yj are observed. Other events can be formed by 

union such as the event xi = xiy1∨ xiy2∨…∨xiym and the event yj = x1yj∨ x2yj∨…∨ xnyj. 

New sets can also be defined by the intersection operation for sets such as the event xi∧yj 

= xiyj. These sets obey the rules of Boolean algebra, and in particular, the distributive rule 

states that  yj = yj ∧U = yj∧(x1∨x2,…,∨xn) = (yj∧x1)∨(yj∧x2),…,∨(yj∧xn) .  For binary 

valued measures (n=m=2), all of the nonzero events are shown in Table 1.  

Table 1: Events generated by Boolean Algebra operators. 

Events y1 y2 (y1∨y2) 

x1 x1∧y1  x1∧y2 x1∧(y1∨y2) 

x2 x2∧y1 x2∧y2 x2∧(y1∨y2) 

(x1∨x2) y1∧(x1∨x2) y2∧(x1∨x2) U = (x1∨x2) ∧ (y1∨y2) 

Note: y1∧(x1∨x2) = (x1∧y1)∨(x2∧y1).  

The Boolean rules are used in conjunction with the Kolmogorov rules to derive 

the law of total probability :  

 Pr(yj) = Pr(yj∧U) = Pr((yj∧(x1∨x2∨…∨xn))  

= Pr((yj∧x1)∨(yj∧x2) ∨…∨(yj∧xn)) 

=  ∑ i Pr(xi∧yj) .  

= ∑ i Pr(xi)⋅Pr(yj|xi) . 
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Thus the marginal probability distribution for Y is determined from the joint probabilities, 

and this is also true for X. Finally, Bayes rule follows from the conditional probability 

rule, joint probability rule, and the law of total probability:  

Pr(yj|xi) =  ୔୰ ሺ௬ೕר௫೔ሻ
୔୰ ሺ௫೔ሻ

ൌ ୔୰ ሺ௬ೕሻ·୔୰ ሺ௫೔|௬ೕሻ
∑ ୔୰ሺ௬ೖሻ·୔୰ሺ௫೔|௬ೖሻೖ

 . 

In our experiment, recall that under one condition we measure X then Y, but under 

another condition we only measure variable Y. According to classic probability, there is 

nothing to prevent us from postulating joint probabilities such as Pr(xi∧yj) for condition 

Y, which only involves a single measurement. Indeed, the Boolean axioms require the 

existence of all the events generated by that algebra. Only yj is observed, but this 

observed event is assumed to be broken down into the counterfactual events, 

(yj∧x1)∨(yj∧x2) ∨…∨(yj∧xn). In particular, during condition Y, the event xi∧yj can be 

considered the counterfactual event that you would have responded at degree of guilt xi to 

X if you were asked (but you were not), and responding level of punishment yj when 

asked about Y.  Thus all of the joint probabilities Pr(xi∧yj |Y) are assumed to exist even 

when we only measure Y. So in the case where only Y is measured, we postulate that the 

marginal probability distribution, Pr(yj), is determined from the joint probabilities such as 

Pr(xi∧yj) according to the law of total probability. This is actually a big assumption that is 

routinely taken for granted in the social and behavioral sciences.  

This critical assumption can be understood more simply using Figure 1. Note that 

under condition Y, the large box containing X is not observed. However, according to 

classic probability theory, the probability of starting from z and eventually reaching y1 is 

equal to the sum of the probabilities from the two mutually exclusive and exhaustive 

paths: the joint probability of transiting from z to x1 and then transiting from x1 to y1 plus 
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the joint probability of transiting from z to x2 and then transiting from x2 to y1. How else 

could one travel from z to y1 without passing through one of states for x? 

If we assume the joint probabilities are the same across conditions, then according 

to the law of total probability we should find Pr(yj | XY) = Pr(yj |Y).  Empirically, 

however, we often find that Pr(yj | XY) ≠ Pr(yj |Y), and the difference is called an 

interference effect (Khrennikov, 2007).  Unfortunately, when these effects occur, as they 

often do in the social and behavioral sciences, classic probability theory does not provide 

any way to explain these effects. One is simply forced to postulate a different joint 

distribution for each experimental condition. This is where quantum probability theory 

can make a contribution. 

Quantum probability Theory. 

 Events. Quantum theory assigns probabilities to quantum events (see Hughes, 

1989, for an elementary presentation). A quantum event (such as Lx representing X > 4 or 

Ly representing Y < 3 or the event z = X +Y = 3) is defined geometrically as a subspace 

(e.g. a line or plane or hyperplane, ect.) within a Hilbert space H (i.e., a complex vector 

space).2  There is a null event represented by the zero point in the vector space, and the 

universal event is H itself.  New events can be formed in three ways. One way is the 

negation operation, denoted Lx
⊥, which is defined as the maximal subspace that is 

orthogonal to Lx. A second way is the meet operation x∧y which is defined by 

intersection of two subspaces Lx∧Ly. A third way is the join operation x∨y defined as the 

span of two subspaces Lx , Ly. Span is quite different than union, and this is where 

quantum logic differs from classic logic. Quantum logic obeys all of the rules of Boolean 

                                                 
2 For simplicity, we will only consider finite dimensional Hilbert spaces. Quantum probability theory 
includes infinite dimensional spaces, but the basic ideas remain the same for finite and infinite spaces.   
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logic except for the distributive axiom, i.e., it is not necessarily true that Lz∧(Lx∨Ly) = 

(Lz∧Lx)∨(Lz∧Ly).  

 Figure 2 illustrates an example of a violation of the distributive axiom. Suppose H 

is a 3-dimensional space. This space can be defined in terms of an orthogonal basis 

formed by the three vectors symbolized |x〉, |y〉, and |z〉 corresponding to the three lines Lx, 

Ly , Lz in Figure 2.3 Alternatively, this space can be defined in terms of an orthogonal 

basis defined by the three vectors |u〉, |v〉, and |w〉 corresponding to the lines Lu , Lv , Lw in 

Figure 2.4 Consider the event (Lu∨Lw)∧(Lx∨Ly∨Lz). Now the event (Lx∨Ly∨Lz) spans H 

and (Lu∨ Lw) is a plane contained within H and so (Lu∨Lw)∧(Lx∨Ly∨Lz) =  Lu∨Lw. 

According to the distributive axiom, we should have (Lu∨Lw) ∧ ( (Lx∨Ly) ∨ Lz ) = 

(Lu∨Lw)∧(Lx∨Ly) ∨ (Lu∨Lw)∧Lz. The first part gives (Lu∨Lw)∧(Lx∨Ly) = Lu because these 

two planes intersect along the line Lu. The second part gives (Lu∨Lw)∧Lz = 0 because the 

intersection between the line and the plane is exactly at zero. In sum, we find that  

     (Lu∨Lw)∧(Lx∨Ly∨Lz) = Lu∨Lw ≠(Lu∨Lw)∧(Lx∨Ly) ∨ (Lu∨Lw)∧Lz = Lu ∨ 0 = Lu. 

This inequality is a violation by quantum logic of the distributive axiom of Boolean logic. 

 

 

 

 

 

 

                                                 
3 Dirac notation is used here. The ket |v〉 corresponds to a column vector, the bra 〈z| corresponds to a row 
vector, the bra- ket 〈x|y〉 is an inner product, and 〈x|P|y〉 is a bra-matrix-ket product. 
4 |u〉 =  |x〉/√2+ |y〉/√2;  |v〉 = |x〉/2+|y〉/2+|z〉/√2 ;  |w〉 = −|x〉/2+|y〉/2+|z〉/√2 
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Figure 2:  Violation of distributive axiom 

 

Probabilities. Quantum probabilities are computed using projective rules that 

involve three steps. First, the probabilities for all events are determined from a unit length 

state vector |z〉 ∈ H, with | |z〉 | = 1. This state vector depends on the preparation and 

context (person, stimulus, experimental condition). More is said about this state vector 

later, but for the time being, assume it is known. Second, to each event Lx there is a 

corresponding projection operator Px that projects a state vector |z〉 in H onto Lx.5  Finally, 

probability of an event Lx is equal to the squared length of this projection: 

Pr(x) = |(Px|z〉|2 = (Px|z〉)†(Px|z〉) = 〈z|Px
†Px|z〉 = 〈z|Px ⋅ Px|z〉 = 〈z|Px |z〉.  

                                                 
5 Projection operators are Hermitian and idempotent: P = P† = PP. 
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Figure 3 illustrates the idea of projective probability: In this figure, the squared length of 

the projection of |z〉 onto Lx1 is the probability of the event Lx1 given the state |z〉. 

Figure 3: Illustration of projective probability. 

 

Probability distributions for a single variable.  

Consider, for the moment, the measurement of a single variable, say the degree of 

guilt, X, which can produce one of n distinct outcomes or values, xi i = 1,...,n. For this 

section we assume that each outcome xi cannot be decomposed or refined into other 

distinguishable parts. For the time being, we are ignoring the second measure Y. Later we 

will relax this assumption. 

For each distinct outcome xi we assign a corresponding line or ray, Lxi. 

Corresponding to this subspace is a unit length vector, called a basis state and symbolized 

as |xi〉, that generates this ray by multiplication of a scalar, a⋅|xi〉. Thus the basis states are 

assumed to be orthonormal: they have inner products 〈xi|xj〉 = 0 for all pairs of states, and 

lengths |〈xi|xi〉| = 1 for each state. We can interpret the basis state |xi〉 as follows: if the 

person is put into the initial state |z〉 = |xi〉, then you are certain to observe the outcome xi. 

 x1 

  x2 

z

Px1|z〉 

  Pr(x1) = |Px1|z〉|2 
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The projector, Pxi, projects any point |z〉 in the Hilbert space onto the subspace Lxi, 

and it is constructed from the outer product Pxi = |xi〉〈xi| .  The resulting projection equals 

(|xi〉〈xi|) ⋅|z〉 = |xi〉〈xi|z〉 = 〈xi|z〉⋅|xi〉 where 〈xi|z〉 is the inner product.  The inner product, 〈xi|z〉 

is interpreted as the probability amplitude of transiting to state |xi〉 from state |z〉. (In 

general, this can be a complex number.) The probability of any event Lxi equals the 

squared projection,  |Pxi |z〉|2 = | |xi〉〈xi|z〉 |2 = | |xi〉 |2 ⋅ | 〈xi|z〉 |2 = 1⋅|〈xi|z〉|2 = |〈xi|z〉|2.  In other 

words, the probability of transiting to state |xi〉 from state |z〉 equals the squared magnitude 

of the probability amplitude,  |〈xi|z〉|2.  

The probability of the meet of two events, x∧y, is equal to the squared length of 

the projection of the intersection. For example, if x = xi∨xj and y = xi∨xk  then x∧y = xi 

and Pr(x∧y ) = Pr(xi) = |〈xi|z〉|2.  For xi ≠ xj, the joint event is zero, Lxi∧Lxj = 0, and the 

projection onto zero is zero, so the joint probability is Pr(xi∧xj) = |0|2 = 0. The join of two 

events, say xi∨xj, is the span of the two basis vectors, {|xi〉, |xj〉}, and the projector for this 

subspace is Pxi∨xj = Pxi + Pxj =|xi〉〈xi| + |xj〉〈xj|.  The probability for the event xi∨xj is simply 

the sum of the separate probabilities,  

     |Pxi∨xj |z〉|2 = | (|xi〉〈xi| + |xj〉〈xj|) ⋅|z〉 |2 = | |xi〉 ⋅〈xi|z〉 + |xj〉 ⋅〈xj|z〉 |2 = |〈xi|z〉|2  + |〈xj|z〉|2, 

where the final step follows from the orthogonality property. Finally, for any |z〉 we have 

PH ⋅|z〉 = |z〉 and so |PH ⋅|z〉|2 = | |z〉 |2 = |〈z|z〉|2 = 1. This also implies that  

PH  = ∑ i Pxi = ∑ i |xi〉〈xi|  = I,  

where I is the identity operator I⋅|z〉 = |z〉. From these properties we see that quantum 

probabilities obey rules analogous to the Kolmogorov rules: 
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1. 1 ≥ |Px|z〉|2 ≥ 0,  Pr(0) = 0, Pr(H) = 1.   

2. If Lx ∧ Ly = 0 then Pr(Lx ∨ Ly) = Pr(Lx) + P(Ly). 

The state vector. 

 It is time to return to the problem of defining the state vector |z〉 prior to the 

measurement.  This vector can be expressed in terms of the basis states as follows: 

|z〉 = I⋅|z〉 = ( ∑ i |xi〉〈xi|  ) ⋅ |z〉 =  ∑ i |xi〉〈xi|z〉 = ∑ i 〈xi|z〉 ⋅ |xi〉. 

Thus the initial state vector is a superposition of the basis states. The inner product 〈xi|z〉 

is the coefficient of the state vector corresponding to the |xi〉 basis state. To be concrete, 

one can define |xi〉 as a column vector with zeros everywhere except that a one is placed 

in row i. Then the initial state is a column vector |z〉 containing coefficient 〈xi|z〉 in row i.  

The probability of obtaining xi equals the squared amplitude, |〈xi|z〉|2. Thus we 

form the initial state by choosing coefficients that have squared amplitudes equal to the 

probability of the outcome: choose 〈xi|z〉 so that Pr(xi) = |〈xi|z〉|2 . In sum, when only one 

measurement is made, quantum probability theory is not much different than 

Kolmogorov probability theory.  

Effect of measurement. 

After one measurement, say X, is taken, and an arbitrary event x is observed, then 

this measurement changes the state from the initial state |z〉 to a new state |x〉 which is the 

normalized projection on the subspace Lx. In fact, one way to prepare an initial state is to 

take a measurement, which places the initial state equal to a state consistent with the 

obtained event.  This is called the state reduction or state collapse assumption of quantum 

theory.  Prior to the measurement, the person was in a superposed state, |z〉, but after 
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measurement the person is in a new state |x〉. In other words, measurement changes the 

person. 

Social and behavioral scientists generally adopt a classical view of measurement, 

which assumes that measurement simply records a pre-existing reality. In other words, 

properties exist in the brain at the moment just prior to a measurement, and the 

measurement simply reveals this preexisting property. Consider condition Y of our 

experiment, during which only the punishment level is measured. Even though guilt is 

not measured in this condition, it is still assumed that the criminal case evokes some 

specific degree of belief in guilt for the person. We just don’t bother to measure its 

specific value. Thus both properties exist even though we only measure one of them.  

The problem with the classical interpretation of measurement can be seen most 

clearly by reconsidering the example shown in Figure 1 with binary outcomes. If we 

present a case, then we suppose that it evokes a degree of belief in guilt and a level of 

punishment.   Under condition Y, we only measure the level of punishment. If we 

measure level y1, then event y1 = y1∧(x1∨x2) has occurred (here we assume that values x1, 

x2 are mutually exclusive and exhaustive). According to the distributive axiom, this event 

means that either the person is in the low guilty state and intends to punish at the low 

level (i.e., x1∧y1) prior to our measurement (i.e., the brain experienced the upper path in 

Figure 1), or the person is in the high guilty state and intends to punish at the low level 

(i.e., x2∧y1) just prior to our measurement (i.e., the brain experienced the lower path in 

Figure 1). Condition XY simply resolves the uncertainty about which of these two 

realities existed at the moment before the measurement.   
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The classic idea of measurement is rejected in quantum theory (see, e.g.  Peres, 

1998, p. 14). According to the latter, measurements create permanent records that we all 

can agree upon.  To see how this creative process arises in quantum theory, suppose the 

distributive axiom fails. Referring again to Figure 1, if we measure punishment state y1, 

then event y1∧(x1∨x2) has occurred. But this does not imply the existence of any specific 

degree of belief in guilt. We cannot assume that either (x1∧y1) or (x2∧y1) and not both 

existed just prior to measurement (i.e., we cannot assume that either the upper path, or the 

lower path is traveled, see Feynman, Leighton, & Sands, page 9). If we measure X first in 

condition XY, then this measurement will create a state with a specific belief in guilt 

before measuring the punishment. 

In some ways, quantum systems are more deterministic than classical random 

error systems. Suppose we measure X twice in succession, and suppose the first measure 

produced an event x. According to a quantum system, when we measure X a second time 

in succession, we would certainly observe the event x again because  

Pr(x|x) = |〈Px|x〉|2 =| |x〉 |2 = 1. 

Thus the event remains unchanged until a different type of measurement is taken. If a 

new type of measurement is taken after the first measurement, then the state changes 

again, and the outcome becomes probabilistic. 

According to a random error system, the observed values are produced by a true 

score plus some error perturbation that appears randomly on each trial. In that case, the 

probability of observing a particular value should change following each and every 

measurement, regardless of whether or not the same measurement is taken twice in 

succession.  
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It is interesting to note that social and behavioral scientists are aware of the 

quantum principle. When they design experiments to obtain repeated measurements for a 

particular stimulus, they systematically avoid asking participants to judge the same 

stimulus back to back. Instead, they insert filler items (other measurements) between 

presentations (to avoid the deterministic result), and these filler items disturb the system 

to generate probabilistic choice behavior for spaced repetitions of the target items. 

Probabilitydistributions for two or more measurements.  

After first measuring X and observing the event x, the state changes to |x〉 = 

Px|z〉/|Px|z〉|, where Px is the projector onto the subspace Lx. Note that the squared length of 

the new state remains equal to one, |〈x|x〉|2 =1, because of the normalizing factor in the 

denominator. This is important to maintain a probability distribution over outcomes of Y 

for the next measurement after measuring X. The probabilities for the next measurement 

are based on this new state. If we first measure X and observe the event x, then the 

probability of observing y when Y is measured next equals  

Pr(y|x) = |Py|x〉|2.  

This updating process continues for each new measurement. 

Quantum probability is more general than Kolmogorov probability when more 

than one measurement is involved. Quantum logic does not have to obey the distributive 

axiom of Boolean logic when more than one measurement is involved.  If more than one 

measurement is made, then according to quantum theory, the analysis of the experimental 

situation depends on how one represents the relationship between the measurements X 

and Y. There are two possibilities: the measures may be compatible or incompatible.   
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Compatible Measurements.  

Now we consider the problem of two measurements, and we first consider the 

case in which the two measures are compatible. Intuitively, compatibility means that X 

and Y can be measured or accessed or experienced simultaneously or sequentially without 

interfering with each other. Psychologically speaking, the two measures can be processed 

in parallel. If the measures are compatible, then we form the basis vectors for the two 

measurements from all the possible combination of distinct outcomes for X and Y of the 

form xiyj. The complete Hilbert space is defined by n⋅m orthonormal basis vectors,  |xiyj〉, 

i = 1,…,n and j = 1,…,m, spanning a n⋅m dimensional space. For example, in condition 

XY, the vector |xiyj〉 corresponds to observing xi from X and yj from Y. The orthogonal 

property implies for example that 〈xiyj|xjyk〉 = 0 and the normal property implies 〈xiyj|xiyj〉 

= 1. This is called the tensor product space for two measures.  

Notice that the event xi is no longer a distinct outcome, and instead it is a course 

grain outcome that can be decomposed into more refined parts: Lxi = |xiy1〉∨|xiy2〉∨… 

∨|xiym〉. Furthermore, the meet xi ∧ yj produces the subspace Lxi∧Lyj =  |xiyj〉. This implies 

that the distribution rule holds for this representation: 

 Lxi = |xiy1〉∨|xiy2〉∨… ∨|xiym〉 = (Lxi∧Ly1)∨(Lxi∧Ly2)∨…∨(Lxi∧Lym).  

Thus Table 1 provides an appropriate description of all the relevant events for binary 

outcomes. In other words, the assumption of compatible measures requires the existence 

of all joint events, and the individual outcomes can be obtained from the joint events. 

The projection operator for the event Lxi,yj is equal to Pxi,yj = |xiyj〉〈xiyj|. The 

projection operator for the event Lxi is equal to Pxi = ∑ j Pxi,yj  = ∑ j |xiyj〉〈xiyj |.  The 
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projection operator for the event Lyj is equal to Pyj = ∑ i Pxi,yj  = ∑ i |xiyj〉〈xiyj |.  The 

orthogonality properties imply  

|xiyj〉〈xi yj| = ( ∑ j |xiyj〉〈xiyj| ) ⋅ ( ∑ i |xiyj〉〈xiyj|  ) = Pxi ⋅ Pyj =  Pyj ⋅ Pxi .  

The first equality implies that the projection for the joint event Lxi, yj can be viewed as a 

series of two successive measurements or vice-versa. The second equality shows that the 

projectors for X commute with the projectors for Y; the order of projection does not 

matter, and both orders project onto the same final subspace.  The difference, [Pxi ⋅ Pyj − 

Pyj ⋅ Pxi], is called the commutator, and it is always zero for compatible measures.  

Now let us consider a series of two measurements. Using the reduction principle, 

if X is measured first and xi is observed, then the new state after measurement is |xi〉 = 

Pxi|z〉/|Pxi|z〉|; similarly if Y is measured first and we observe yj, then the new state after 

measurement is |yj〉 = Pyj|z〉/|Pyj|z〉|. Consider again the probability of the event Lxi, yj when 

viewed as a series of projections. 

Pxi, yj|z〉 = Pxi ⋅ (Pyj |z〉) = Pxi ⋅ |yj〉 ⋅ | Pyj|z〉 |  

Pyi, xj|z〉 = Pyj ⋅ (Pxi |z〉) = Pyj ⋅ |xi〉 ⋅ | Pxi|z〉 |  

and  

Pr(xi∧yj) = | Pxi, yj|z〉 |2 = | Pxi ⋅ |yj〉 |2 ⋅ | Pyj|z〉 |2  = Pr(xi|yj) ⋅ Pr(yj).     

Pr(yj∧xi) = | Pyj, xi|z〉 |2 = | Pyj ⋅ |xi〉 |2 ⋅ | Pxi|z〉 |2  = Pr(yj|xi) ⋅ Pr(xi).   

From the last two equations we obtain the conditional probability rule: 

 Pr(xi|yj) =  | (Pxi ⋅ |yj〉 |2  = |Pxi, yj|z〉|2 / | Pyj|z〉 |2  , 

Pr(yj|xi) =  | (Pyj ⋅ |xi〉 |2  = |Pyj, xi|z〉|2 / | Pxi|z〉 |2  . 

Note that in general, | Px|z〉 |2 ≠ | Py|z〉 |2, and so Pr(yj|xi) ≠ Pr(xi|yj). 
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The projection onto Lxi is  Pxi⋅|z〉 = ∑ j |xiyj〉〈xiyj|z〉 and the probability of this event 

equals  

Pr(xi) =∑ j |〈xiyj|z〉|2  = ∑ j | Pxi ⋅ |yj〉 |2 ⋅ | Pyj|z〉 |2  .   

The above expression is the quantum version of the law of total probability. From the 

above facts, we can derive a quantum analogue of Bayes rule:  

Pr(yj|xi) = | Pyj ⋅ |xi〉 |2 = 
ቚ௉ೣ ೔|௬ೕۄቚ

మ
·ቚ௉೤ೕ|௭ۄቚ

మ

∑ ቚ௉ೣ ೔|௬ೖۄቚ
మ

·ቚ௉೤ೖ|௭ۄቚ
మ

ೖ
   . 

 Let us re-examine the initial state vector |z〉 for the case of two compatible 

measurements. As before, this state vector can be described in terms of the basis vectors: 

|z〉 = I⋅|z〉 = (∑ i ∑ j |xiyj〉〈xiyj|  ) ⋅ |z〉 = ∑ i ∑ j 〈xiyj|z〉 ⋅ |xiyj〉. 

Once again, we see that the initial state is a superposition of the basis states. The inner 

product 〈xiyj|z〉 is the coefficient of the state vector corresponding to the |xiyj〉 basis state. 

The probability of obtaining the joint event xiyj equals the squared amplitude of the 

corresponding coefficient, |〈xiyj|z〉|2. Thus we form the initial state by choosing 

coefficients that have squared amplitudes equal to the probability of the joint outcome: 

choose 〈xiyj|z〉 so that Pr(xiyj) = Pr(xi∧yj) = |〈xiyj|z〉|2 . 

In sum, all of these results exactly correspond to the classic probability rules. In 

short, quantum probability theory reduces to classic probability theory for compatible 

measures.  If all measures were compatible, then quantum probability would produce 

exactly the same results as classical probability.6  

 

 

                                                 
6 This is not quite true. We are disregarding change caused dynamic laws, and we are only focusing on 
change caused by measurement at this point. 
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Incompatible measures.   

Incompatibility means that X and Y cannot be measured or accessed or 

experienced simultaneously. Psychologically speaking, the two measures must be 

processed serially, and measurement of one variable interferes with the other. This 

implies that X produces n distinct outcomes xi i = 1,…,n that cannot be decomposed into 

more refined parts, because we can’t simultaneously measure Y.  Also, Y produces n 

distinct outcomes yi i = 1,…,n that cannot be decomposed into more refined parts, 

because we can’t simultaneously measure X. In this case, we assume that the outcomes 

from the measure X produce one orthonormal set of basis states, |xi〉, i = 1,…,n; and the 

outcomes of Y produce another orthonormal set of basis states |yj〉,  j = 1,…,n. To account 

for the fact that one measure influences the other, it is assumed that one set of basis states 

is a linear transformation of the other. Thus we now have two different bases for the same 

n-dimensional Hilbert space.   

This idea is illustrated in Figure 4 shown below. In this figure, we assume that the 

outcomes are binary. The outcomes of the first measure (regarding the guilt) are 

represented by the basis vectors |x1〉 and |x2〉, and the outcomes of the second measure 

(regarding the punishment) are represented by the basis vectors |y1〉 and |y2〉. Note that the 

basis vectors for the Y measure are an orthogonal rotation of the basis vectors for the X 

measure (and vice-versa). One can either use the |x1〉 and |x2〉 basis to describe the state 

vector |z〉 or use the |y1〉 and |y2〉 basis to describe this same state but they cannot be used 

at the same time. 
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Figure 4: Illustration of rotated basis vectors for incompatible measurements 

 

 

One cannot experience or measure both variables simultaneously because if one 

measures X, then one needs to project the state |z〉 on to the X basis rather than the Y basis. 

If one measures X and finds the value x1 then the outcome for the next measurement of Y 

must be uncertain (Pr(yj) = |〈yj|x1〉|2). Similarly, if one measures Y, then the Y bases must 

be used. Also if Y is measured first and the value y1 is observed, then the outcome for the 

next measurement on X must be uncertain (Pr(xi) = |〈xi|y1〉|2). It is impossible to be certain 

about both values simultaneously! Therefore, it is impossible to completely measure all 

the values of the system. This is essentially the idea behind the famous Heisenberg 

uncertainty principle (Peres, 1995, Ch. 2).   

The distributive axiom of Boolean logic is violated with incompatible measures. 

For example, considering Figure 4, note that |xi〉∧|yj〉 = 0 for all i and j.  

Ly1 = Ly1∧(Lx1∨Lx2) ≠ (Ly1∧Lx1)∨(Ly1∧Lx2) = 0 ∨ 0 = 0. 

Because of incompatibility, the event Ly1∧Lx1 is impossible and so is the event Ly1∧Lx2, 

but the event Ly1 is clearly possible. This is where quantum probability deviates from 

x1

  x2

z

y1

 y2
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classic probability. Table 2 shows the events for incompatible measures, clearly showing 

violations of the distributive axiom. 

Table 2: Events generated by incompatible measures. 

 Events y1 y2 y1∨y2 

x1 ∅ ∅ (y1 ∨ y2) ∧ x1 

x2 ∅ ∅ (y1 ∨ y2) ∧ x2 

x1∨x2 (x1 ∨ x2) ∧ y1 (x1 ∨ x2) ∧ y2 (x1 ∨ x2) ∧ (y1 ∨ y2) 

Note: Ly1 = Ly1∧(Lx1∨Lx2) ≠ (Ly1∧Lx1)∨(Ly1∧Lx2) = 0 

To get a deeper understanding of the violation of the distributive axiom, let us 

return to Figure 1 again. Suppose only Y is measured, and we observe y1. How does the 

person go from the initial state |z〉 to this observed state |y1〉? We cannot say ‘The person 

traveled one of two paths: either the |z〉  |x1〉  |y1〉 path or the |z〉  |x1〉  |y2〉, but we 

are uncertain about which path was taken.’ In other words, if the person intends to punish 

at the low level, then we cannot say he or she reached that decision either by concluding 

that the person was guilty at a low degree or by concluding that the person was guilty at a 

high degree. When we do not measure guilt, we cannot assume that the person is 

definitely in one of these two guilt states, and instead the person is indefinite (or 

superposed) between these two states. When we do not observe what happens, quantum 

theory allows for a more general type of uncertainty regarding state changes as compared 

to classical probability theory. 

The fact that there are two different bases for the same Hilbert space implies that 

the same state vector can be described by two different bases: 
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|z〉 = I·|z〉 = (∑ i |xi〉〈xi| ) ⋅ |z〉 = ∑ i |xi〉〈xi|z〉, 

|z〉 = I·|z〉 = (∑ i |yi〉〈yi| ) ⋅ |z〉 = ∑ i |yi〉〈yi|z〉. 

If the X basis is used to describe the state vector |z〉, then the inner products, 〈xi|z〉, form 

the coordinates for |z〉. We can represent the initial state vector in this basis by a column 

vector, ψ, with 〈xi|z〉 in row i. The marginal probability distribution for X is Pr(xi) = | ψi|2 

= |〈xi|z〉|2 .  But if the Y basis is used to describe the state vector |z〉, then the inner 

products, 〈yi|z〉, form the coordinates for |z〉. We can represent the initial state vector in 

this basis by a column vector, φ, with 〈yi|z〉 in row i.  The marginal probability 

distribution for Y is Pr(yj) = | φi|2 = |〈yj|z〉|2.  No joint distribution exists, but both marginal 

distributions are derived from a common state vector |z〉.  The equality of the two 

representations implies 

∑ i |xi〉〈xi|z〉 = ∑ i |yi〉〈yi|z〉, 

 〈xj|∑ i |xi〉〈xi|z〉 = 〈xj|∑ i |yi〉〈yi|z〉, 

 ∑ i 〈xj |xi〉〈xi|z〉 =  ∑ i 〈xj |yi〉〈yi|z〉, 

 〈xj|z〉 = ∑ i 〈xj |yi〉〈yi|z〉, 

which is the linear transformation that maps coefficients of the state described by the Y 

basis into coefficients of the state described by the X basis. The inner product, 〈xj |yi〉 = 

〈yi|xj〉*, is the probability amplitude of transiting to the |xj〉 state from the |yi〉 state. The 

squared amplitude, |〈xj |yi〉|2 equals the probability of observing xj on the next 

measurement of X given that yi was previously obtained from a measure of Y. A similar 

argument produces  

∑ i 〈yj |xi〉〈xi|z〉 = 〈yj|z〉 , 
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which is the linear transformation that maps coefficients of the state described by the X 

basis into coefficients of the state described by the Y basis. The inner product, 〈yj |xi〉, is 

the probability amplitude of transiting to the |yj〉 state from the |xi〉 state. The squared 

amplitude, |〈yj |xi〉|2 equals the probability of observing yj on the next measurement of Y 

given that xi was previously obtained from a measure of X.  

 In sum, one constructs the first marginal distribution from (a) the inner products 

such as 〈xi|z〉 relating the initial state to the states for the first basis; and (b) the second 

marginal distribution is constructed from the inner products such as 〈yj |xi〉 relating the 

states from the first basis to the states of the second basis.  

 The inner products relating one basis to another must satisfy several important 

constraints. First, the fact that |〈xj |yi〉|2 = |〈yi |xj〉|2 implies that incompatible measurements 

must satisfy Pr(xj |yi) = Pr(yi |xj), which is called the law of reciprocity (Peres, 1995, p. 

34). Of course, classic probability does not need to satisfy this constraint.  It is important 

to note that the law of reciprocity only holds for transitions between basis states. It does 

not hold for more general (course grained) events.  

 Second, consider the matrix of coefficients, U , with element 〈yi |xj〉 in row i and 

column j representing the transition to state |yj〉 from state |xi〉. Then the initial state 

described with respect to the X basis, ψ, is related to the initial state described with 

respect to the Y basis, φ, by the linear transformation φ = U⋅ψ. Similarly, the initial state 

described with respect to the Y basis, φ, is related to the initial state described with 

respect to the X basis, ψ, by the linear transformation ψ = U†⋅φ. Notice that φ = UU†⋅φ 

and ψ = U†U⋅ψ. Thus this matrix must be unitary, U†U = I = UU†, where I is the identity 

matrix. This unitary property guarantees that the transformation preserves the lengths of 
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the vectors (to one) before and after transformation.  The unitary property implies that the 

transition matrix T, with elements |〈yi |xj〉|2 in row i and column j, must be doubly 

stochastic. That is, both the rows and columns of T must sum to unity, which is called the 

doubly stochastic law (Peres, 1995, p. 33). The transition matrix for classic probability 

theory must be stochastic (only the columns must sum to one), but it does not need to be 

doubly stochastic.  

Thus quantum probabilities for incompatible measures must obey two laws that 

are not required by classic probability: the law of reciprocity and the doubly stochastic 

law. Classic probability must obey the law of total probability which is not required by 

quantum probabilities for incompatible measures. These three properties can be used to 

empirically distinguish quantum versus classical models.  

The projection operator for the event Lxi is Pxi = |xi〉〈xi| and the projector for the 

event Lyj is Pyj = |yj〉〈yj|. It is interesting to compare the two projections produced by 

measuring Y first followed by X:  

Pxi ⋅ Pyj = |xi〉〈xi|⋅|yj〉〈yj| = 〈xi|yj〉|xi〉〈yj|  

with the two produced by the measuring X first followed by Y:  

Pyj ⋅ Pxi = |yj〉〈yj|⋅|xi〉〈xi| = 〈yj|xi〉|yj〉〈xi|. 

The difference, called the commutator, is 

 Pxi ⋅ Pyj – Pyj ⋅ Pxi = 〈xi|yj〉|xi〉〈yj| − 〈yj|xi〉|yj〉〈xi|, 

which is nonzero for some i and j. This implies that different orders of measurement can 

produce different final projections and thus different probabilities. In other words, 

quantum probability provides a theory for explaining order effects on measurements, a 

problem which is replete throughout the social and behavioral sciences.     
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Let us now examine the event probabilities in the case of incompatible measures. 

Here we have to carefully analyze the different experimental conditions separately. First 

consider condition XY.  In this case we have  

Pr(yj∧xi|XY) = | PyjPxi ⋅ |z〉 |2 = |〈yj|xi〉|2 ⋅ |〈xi|z〉|2 = Pr(yj|xi, XY) ⋅ Pr(xi|XY), 

so that  

 Pr(yj|XY) = ∑ i |〈xi|z〉|2⋅|〈yj|xi〉|2  

similar to that found with classic probability and with compatible measurements.  

To get a more intuitive idea, refer again to Figure 1. The probability of responding 

x1 to question X on the first measure equals the squared probability amplitude of 

transiting from the initial state |z〉 to the basis vector |x1〉, which equals Pr(x1|XY) = 

|〈x1|z〉|2. Given that first measurement produces x1, and the state now equals |x1〉, the 

probability of responding Y = y1 to second question is equal to the squared probability 

amplitude of transiting from |x1〉 to |y1〉, which equals Pr(y1|x1,XY) = |〈y1|x1〉|2. The 

probability of observing X = x1 on the first test and then Y = y1 on the second test equals 

Pr(x1|XY)⋅Pr(y1|x1,XY) = |〈x1|z〉|2 ⋅ |〈y1|x2〉|2.  A similar analysis produces 

Pr(x2|XY)⋅Pr(y1|x2,XY) = |〈x2|z〉|2 ⋅ |〈y1|x2〉|2 for the probability of observing X = x2 on the 

first test and then Y = y1 on the second test. Thus the probability of observing Y = y1 on 

for the XY condition equals Pr(y1|XY) = |〈x1|z〉|2⋅|〈y1|x1〉|2 + |〈x2|z〉|2⋅|〈y1|x2〉|2. 

Next consider first the probability of responding to question Y alone. The 

projection of the initial state onto the Lyj event is   

Pyj ⋅ |z〉 = |yj〉〈yj| ⋅ |z〉 = |yj〉〈yj|z〉, and so 

Pr(yj|Y) = 〈z|yj〉〈yj|yj〉〈yj|z〉 = |〈yj|z〉|2 . 
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More intuitively, this is obtained from the squared amplitude of transiting from the initial 

state |z〉 to the basis vector |yj〉 without measuring or knowing anything about the first 

question. Expansion of the identity operator produces the following interesting results: 

Pr(yj|Y) = |〈yj|z〉|2 = |〈yj|I|z〉|2 =  | ∑ i 〈yj|(|xi〉〈xi|)|z〉  |2 = | ∑ i 〈yj|xi〉〈xi|z〉  |2 . 

Thus we find that Pr(yj|Y) ≠ Pr(yj|XY) and this difference can explain interference effects. 

Let us analyze the interference effect in more detail for the special case shown in Figure 1 

in which there are only two outcomes for each measure. 

|〈y1|z〉|2 = (〈y1|x1〉〈x1|z〉 + 〈y1|x2〉〈x2|z〉)(〈y1|x1〉〈x1|z〉 + 〈y1|x2〉〈x2|z〉)*  

= |〈y1|x1〉〈x1|z〉|2 + |〈y1|x2〉〈x2|z〉|2 + 〈y1|x1〉〈x1|z〉〈y1|x2〉*〈x2|z〉* + 〈y1|x2〉〈x2|z〉〈y1|x1〉*〈x1|z〉* 

=  |〈y1|x1〉〈x1|z〉|2 + |〈y1|x2〉〈x2|z〉|2 

+ |〈y1|x1〉|⋅|〈x1|z〉|⋅|〈y1|x2〉|⋅|〈x2|z〉|⋅(݁௜·ۦ௬భ|௫భۧۦ௫భ|௭ۧۦ௬భ|௫మۧۦ௫మ|௭ۧ ൅ ݁ି௜·ۦ௬భ|௫భۧۦ௫భ|௭ۧۦ௬భ|௫మۧۦ௫మ|௭ۧ) 

= |〈y1|x1〉〈x1|z〉|2 + |〈y1|x2〉〈x2|z〉|2 

+  |〈y1|x1〉|⋅|〈x1|z〉|⋅|〈y1|x2〉|⋅|〈x2|z〉|⋅(Cos(θ) + i⋅ Sin(θ) + Cos(θ) − i⋅ Sin(θ)) 

=  |〈y1|x1〉〈x1|z〉|2 + |〈y1|x2〉〈x2|z〉|2 + 2|〈y1|x1〉|⋅|〈x1|z〉|⋅|〈y1|x2〉|⋅|〈x2|z〉|⋅Cos(θ), 

where θ is the angle of the complex number 〈y1|x1〉〈x1|z〉〈y1|x2〉*〈x2|z〉* in the complex 

plane (see Figure 5 below).  If we restrict the probability amplitudes to real numbers, then 

we are restricted to the horizontal line in Figure 4, so that  θ = 0 or π, and Cos(θ) = ±1.  
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Figure 5: The angle between probability amplitudes. 

 

Note that the first two terms in the above expression for Pr(y1|Y) exactly match 

those found when computing Pr(y1|XY). If the cosine in the third term is zero, then 

Pr(y1|Y) – Pr(y1|XY) = 0 and there would be no interference. Thus the difference Pr(y1|Y) 

– Pr(y1|XY) is contribute solely by the cosine term, which is called the interference term. 

Here we see the uniquely quantum prediction of interference effects for incompatible 

measures.    

Quantum probability provides a more coherent and elegant explanation 

interference effects than classic probability theory. The former uses a single interference 

coefficient (θ) to relate the two marginal distributions, Pr(y1|Y)  and Pr(y1|XY). Whereas 

the classic probability theory postulates two separate joint probability distributions and 

derives the marginals for each condition from these separate joint distributions.     

It is also worthwhile to compare the probabilities of the binary valued responses 

for condition XY with YX:    

Pr(x1∧y1|XY) = | Py1Px1 ⋅ |z〉 |2 = |〈x1|z〉|2⋅|〈y1|x1〉|2   

Pr(y1∧x1|YX) = | Px1Py1 ⋅ |z〉 |2 = |〈y1|z〉|2⋅|〈x1|y1〉|2. 

Note that |〈y1|x1〉|2 = |〈x1|y1〉|2 and so  

Real

Complex

 〈y1|x2〉*〈x2|z〉*〈y1|x1〉〈x1|z〉 

 θ 
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Pr(x1∧y1|XY) – Pr(y1∧x1|YX) = |〈x1|y1〉|2⋅(|〈x1|z〉|2 − |〈y1|z〉|2), 

which differs from zero as long as |〈x1|z〉|2 ≠|〈y1|z〉|2. An illustration of these two different 

projections is illustrated in Figure 6 below. Once again, quantum theory provides a direct 

explanation for the relation between the distributions produced by the two conditions, 

whereas classic probability theory needs to assume an entirely new probability 

distribution for each condition.   

Figure 6: Projections for the initial state on two different basis vectors. 

 

 Finally it is interesting to re-examine the conditional probabilities for 

incompatible measures.  

 Pr(y1|x1,XY) = |〈y1|x1〉|2 = |〈x1|y1〉|2 = Pr(x1|y1,YX). 

This law of reciprocity places a very strong constraint on the quantum probability theory. 

This relation only holds, however, for complete measures that involve transitions from 

one basis state to another.  It is no longer true for course measurements which are 

disjunctions of several basis vectors. 
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Why Complex Numbers?  

Consider again Figure 1 which involves binary outcomes for each measure. If we 

are restricted to real valued probability amplitudes, then we obtain the following 

simplification of our basic theoretical result for incompatible measures: 

       Pr(y1|Y) =  |〈y1|x1〉|2〈x1|z〉|2 + |〈y1|x2〉|2〈x2|z〉|2 ± 2·|〈y1|x1〉||〈x1|z〉||〈y1|x2〉||〈x2|z〉|. 

The interference term is now simply determined by the sign and magnitude of 

|〈u|x〉||〈x|z〉||〈u|y〉||〈y|z〉|. 

Complex probability amplitudes can be shown to be needed under the following 

conditions and results. Suppose we can perform variations on our basic experiment by 

changing some experimental factor, F. Suppose we find that changing the experimental 

factor, from level F1 to level F2, produces the same sign of the interference effect, but 

increases the magnitude of the interference: 

 |Pr(y1|Y,F2) – Pr(y1|XY,F2) | > | Pr(y1|Y,F1) – Pr(y1|XY,F1) |  

Also suppose that this same manipulation does not change the joint probabilities so that 

Pr(x1∧y1|XY,F1) =  |〈y1|x1〉|2〈x1|z〉|2  = Pr(x1∧y1|XY,F2) , 

Pr(x2∧y1|XY,F1) =  |〈y1|x2〉|2〈x2|z〉|2 = Pr(x2∧y1|XY,F2).   

Then these results imply that changes in this factor F leave |〈y1|x1〉〈x1|z〉||〈y2|x2〉〈x2|z〉| 

constant and vary Cos(θ) instead. 

 Consider the example from physics called the paradox of recombined beams 

(French & Taylor, 1978, p. 295-296, also refer to Figure 1). In this experiment, a plane 

polarized photon (z) is shot through a quarter wave plate to produce a circularly polarized 

photon. There are two possible channel outputs for the quarter wave plate, a left 

clockwise or right clockwise rotation (labeled x1 = left or x2 = right in Figure 1).  A final 
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detector determines whether the output from the quarter wave plat can be detected 

(symbolized y1 in Figure 1) by a linear polarized detected rotated at angle φ with respect 

to the original state of the photon. In this situation, the critical factor F which is 

manipulated is the angle φ between the initial and final linear polarization.  

The two channel outputs from the quarter wave plate form two ortho-normal 

bases, |x1〉 and |x2〉, for representing the state. The probability amplitude of transiting from 

the initial state to the final state equals  

〈y1|z〉 = 〈y1|I|z〉 = 〈y1|(|x1〉〈x1| + |x2〉〈x2|)|z〉 = 〈y1|x1〉〈x1|z〉 + 〈y1|x2〉〈x2|z〉. 

When the right channel is closed, then probability of passing through the left 

channel is |〈x1|z〉|2 = ½, and the probability of detection is also |〈y1|x1〉|2 = ½.   The same is 

true when the left channel is closed: then the probability of passing through right channel 

is |〈x2|z〉|2  = ½ and the probability of detection is  |〈y1|x2〉|2 = ½. When both channels are 

open, then the probability of detection is Cos(φ)2. Therefore, we have 5 equations and 

four unknowns ( 〈x1|z〉, 〈y1|x1〉, 〈x2|z〉, 〈y1|x2〉 ):   

|〈x1|z〉| = |〈y1|x1〉| = |〈x2|z〉|= |〈y1|x2〉| = √½ , 

〈y1|x1〉〈x1|z〉 + 〈y1|x2〉〈x2|z〉 = Cos(φ). 

The first set of equations does not depend on φ, but the last one does. Therefore, we are 

forced to find a solution using complex numbers.  In this case, the solutions are 〈x1|z〉 = 

1/√2 = 〈x2|z〉,  〈y1|x1〉 = e-iφ/√2, 〈y1|x2〉 = eiφ/√2. 

What is the difference between probability mixture and superposition? 

A superposition state is a linear combination of the basis states for a 

measurement. The initial state |z〉 is not restricted to just one of the basis states. 

According to quantum logic, if Lx1 is an event corresponding to the observation of x1 and 
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Lx2 is another event corresponding to the observation y, then we can form a new 

disjunction event Lx1 ∨ Lx2 which is the set of all linear combinations 

|z〉 = a⋅|x1〉 + b⋅|x2〉 , where |a|2 +  |b|2 = 1. 

In the above case, the initial state, |z〉, would be in a superposition state with respect to the 

basis states for measure A. In this case we observe the value x1 with probability |〈x1|z〉|2 = 

|a|2 and we observe the value x2 with probability |〈x2|z〉|2 = |b|2.  

It is difficult to interpret the superposition state. The following interpretation is 

invalid and is only applicable to classic states: immediately before measurement, you are 

either in state |x1〉 with probability |a|2 or you are in state |x2〉 with probability |b|2. The 

latter describes a classic mixed state rather than a quantum superposition state. Quantum 

theory allows for both mixed states and superposition states, but these two types make 

distinctive probability predictions (an example is provided at the end of this section). 

There is no well agreed upon psychological interpretation of a superposition state and the 

interpretation of this concept has produced great controversy (Schroedinger’s cat 

problem).  But it is something like a fuzzy and uncertain representation of a state.  

 To clearly see the difference between a mixed state and a superposition state, 

consider the following example. Consider again Figure 1 with binary outcomes. Suppose 

the two bases are related to each other as follows: 

|y1〉 =  (|x1〉 + |x2〉)/√2, 

|y2〉 =  (|x1〉 −|x2〉)/√2, 

|x1〉 =  (|y1〉 + |y2〉)/√2, 

|x2〉 =  (|y1〉 − |y2〉)/√2. 
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After a measurement of Y = y1, we are in state |y1〉  = (|x1〉 + |x2〉)/√2; from this state we 

find Pr(x1) = Pr(x2) = .50, and Pr(y1) = 1, Pr(y2) = 0. This can be distinguished from the 

following mixed state:  there is a .50 probability that we are in basis state |x1〉, and there is 

a .50 probability that we are in basis state |x2〉. Note that if you are in state |x1〉, then y1 

and y2 are equally likely measurements for Y; and if you are in state |x2〉, then y1 and y2 

are again equally likely measurements for Y. Thus the mixed state produces Pr(x1) = 

Pr(x2) = Pr(y1) = Pr(y2) = .50, which differs dramatically from the probabilities produced 

by the superposition state. In sum, an equal mixture of |x1〉 and |x2〉 does not produce the 

same results as an equally weighted superposition of |x1〉 and |x2〉. However, to reveal this 

difference, it is necessary to obtain probabilities from two different incompatible 

measures, X and Y.  

Concluding Comments 

 Quantum probability was discovered by physicists in the early 20th century solely 

for applications to physics. But Von Neumann axiomatized the theory and discovered 

that it implied a new logic, quantum logic, and a new probability, quantum probability.  

Just as the mathematics of differential equations spread from purely physical applications 

in Newtonian mechanics to applications throughout the social and behavioral sciences, it 

is very likely that the mathematics of quantum probability will also see new applications 

in the social and behavioral sciences.  Such applications have already begun to appear in 

areas including information retrieval, language, concepts, decision making, economics, 

and game theory (see Bruza, Lawless, van Rijsbergen, & Sofge, 2007; Bruza, Lawless, 

van Rijsbergen, & Sofge, 2008; also see the Special Issue on Quantum Cognition and 

Decision to appear in Journal of Mathematical Psychology in 2008). 
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 Quantum probability reduces to classical probability when all the measures are 

compatible. But quantum probability departs dramatically from classical probability 

when the measures are incompatible. In particular, quantum probabilities do not have to 

obey the law of total probability as required by classical probabilities. Thus one can view 

quantum probability as a generalization of classical probability with the inclusion of 

incompatible measures. However, there are several important restrictions on quantum 

probabilities for incompatible measures. In this case the quantum probabilities must obey 

the law of reciprocity and the doubly stochastic law, which classical probabilities do not 

have to obey.  

 There are several advantages for using a quantum probability approach over a 

classical probability approach. First, the quantum approach does not always require or 

need to assume a joint probability space to derive and relate marginal probabilities from 

different measures. Marginal probabilities from different measures can all be derived 

from a common state vector without postulating a common joint distribution. Second, 

quantum probability theory provides an explanation for order effects on measurements, 

which is a pervasive problem in the social and behavioral sciences. Third, quantum 

probability provides an explanation for the interference effect that one measure has on 

another measure, which is another pervasive problem of measurements in the social and 

behavioral sciences. Finally, quantum probabilities allow for deterministic as well as 

probabilistic behavior, which matches human behavior better than random error theories.  

 Quantum probability theory is a new and exciting field of mathematics with many 

interesting and potentially useful applications to the social and behavioral sciences. The 
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intention of this chapter was to show the simplicity, coherence, and generality of 

quantum probability theory.   
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