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Abstract

Fine-tuning has received much attention in physics, and it states that the fundamental constants of 
physics are finely tuned to precise values for a rich chemistry and life permittance. It has not yet 
been applied in a broad manner to molecular biology. However, in this paper we argue that biological 
systems present fine-tuning at different levels, e.g. functional proteins, complex biochemical 
machines in living cells, and cellular networks. This paper describes molecular fine-tuning, how it can 
be used in biology, and how it challenges conventional Darwinian thinking. We also discuss the 
statistical methods underpinning fine-tuning and present a framework for such analysis.

Keywords: Bayesian; fine-tuning; complexity; specificity; design; waiting time problem; model 
selection

1. Introduction

Fine-tuning has obtained much attention in physics, and many studies have been accomplished since 
Brandon Carter presented his first results at the conference honoring Copernicus’s 500th birthday 
(Carter 1974). Luke Barnes has published a good review paper on the fine-tuning of the universe 
(Barnes 2012), and Lewis and Barnes wrote an up to date book (2016). This naturally raises the 
question whether it is appropriate to introduce and address fine-tuning in biology as well.

The term fine-tuning is used to characterize sensitive dependences of functions or properties on the 
values of certain parameters (cf. Friederich 2018). While technological devices are fine-tuned 
products of actual engineers and manufacturers who designed and built them, only sensitivity with 
respect to the values of certain parameters or initial conditions are considered sufficient in the 
present paper. We define fine-tuning as an object with two properties: it must a) be unlikely to have 
occurred by chance, under the relevant probability distribution (i.e. complex), and b) conform to an 
independent or detached specification (i.e. specific).

The notion of design is also widely used within both historic and contemporary science (Thorvaldsen 
and Øhrstøm 2013). The concept will need a description for its use in our setting. A design is a 
specification or plan for the construction of an object or system, or the result of that specification or 
plan in the form of a product. The very term design is from the Medieval Latin word “designare” 
(denoting "mark out, point out, choose”); from “de” (out) and “signum” (identifying mark, sign). 
Hence, a public notice that advertises something or gives information. The design usually has to 
satisfy certain goals and constraints. It is also expected to interact with a certain environment, and 
thus be realized in the physical world. Humans have a powerful intuitive understanding of design that 
precedes modern science. Our common intuitions invariably begin with recognizing a pattern as a 
mark of design. The problem has been that our intuitions about design have been unrefined and pre-
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theoretical. For this reason, it is relevant to ask ourselves whether it is possible to turn the tables on 
this disparity and place those rough and pre-theoretical intuitions on a firm scientific foundation. 

Fine-tuning and design are related entities. Fine-tuning is a bottom-up method, while design is more 
like a top-down approach. Hence, we focus on the topic of fine-tuning in the present paper and 
address the following questions:  Is it possible to recognize fine-tuning in biological systems at the 
levels of functional proteins, protein groups and cellular networks? Can fine-tuning in molecular 
biology be formulated using state of the art statistical methods, or are the arguments just “in the 
eyes of the beholder”? 

2. Statistical methods

The real world is complicated, and scientific models must handle it by simplifying matters, 
approximate and focus on some aspects of a structural or numerical investigation, namely the 
aspects that interest us. Mathematical models have proven invaluable in several fields of both 
science and engineering (Quarteroni 2009). In biology, they provide structured abstractions that 
enable the study of design, organization and evolution of biological systems. Whenever we use 
mathematics in order to study some observational phenomena, we must essentially begin by 
building either a deterministic or a stochastic model to represent the phenomena, which are the two 
main types of mathematical framework used in science. 

For a large number of situations the deterministic mathematical model will suffice. However, there 
are also many phenomena which require a different mathematical model for their investigation, 
stochastic (often called probabilistic) models.  A model is stochastic when it is able to represent 
different choices and to provide information on the probability of these choices.  It differs from 
deterministic models, where the conditions determine the actual outcome and no choices are 
represented. The randomness of a stochastic model is either epistemic or ontological. Epistemic 
randomness represents our lack of knowledge within a deterministic framework, whereas ontological 
randomness corresponds to a more fundamental uncertainty. Even if all the initial conditions of an 
experiment were known, a model with ontological randomness would still only provide probabilities 
for a range of possible observable outcomes (Coffman 2014).

In order to summarize all possible ways to choose the outcome of a stochastic model, with different 
probabilities, a distribution is used. This distribution (or likelihood) typically involves some unknown 
parameters (such as the mean or standard deviation). Each possible parameter setting gives rise to a 
different stochastic model. The collection of all such stochastic models is usually referred to as a 
statistical model. The objective of statistical inference is not to predict the randomness of a statistic 
model (whether epistemic or ontological). The best we can do is to infer (or estimate/test) the values 
of the unknown parameters, and based on this estimate the probabilities of a certain event  which 𝐴
represents a specific collection of possible outcomes. 

Within statistic modeling there are two main traditions for doing this, the Frequentist and Bayesian 
schools (see Fig. 1), which differ in the way they treat parameters.  Frequentists generally consider 
parameters to be fixed but unknown. Probabilities are interpreted as the fraction of times an event 
occurs, if it is possible to repeat an experiment a large number of times under identical 
circumstances. Bayesians rather assign probability distributions to parameters, according to a prior 
distribution, which either represents subjective beliefs or prior knowledge.  In any case, there is a 
modeled continuity between past and present in Bayesian statistics, since new observations are used 
to update subjective beliefs or prior knowledge into a posterior distribution according to Bayes’ Rule. 



Consequently, the posterior distribution also takes the observed outcomes of the experiment into 
account. A Bayesian speaks of the probability of a parameter or a theory , while a true frequentist 𝜃
can speak only of the consistency of the evidence with the parameter or the theory, through 
hypothesis testing or confidence regions. While there is fundamental philosophical difference 
between the frequentist and Bayesian approaches, many statisticians use both models, depending on 
the type of problem they study. 

Fig. 1. Schematic description of a deterministic (I, III) and stochastic (II, IV) models. All types of models involve 
parameters (or more generally possible theories or explanations). For a given parameter, the outcome of a 
deterministic and stochastic model is non-random and random respectively. The Bayesian models I and II treat 
the parameter (or collection of parameters)  as random, whereas the abduction and frequentist models III and 𝜃
IV treat it as fixed. The outcome  is either completely determined by the parameter (I, III) or it is an 𝑥
observation of a random quantity , with a distribution  (the likelihood) that depends on the parameter 𝑋 𝑃(𝑥|𝜃)
(II, JV). The sample space  is the collection of all outcomes that are possible for at least one , whereas an Ω 𝜃
event  is a subset of the sample space, that is, a specific collection of outcomes. The parameter space  is 𝐴 ⊂ Ω Θ
the set of possible values of the parameter, with each  giving rise to a different deterministic or stochastic 𝜃 ∈ Θ
model. For II and IV, the collection  of all stochastic models is usually referred to as a 𝑀 = {𝑃( ∙ │𝜃);𝜃 ∈ Θ}
statistical model. 

Nonparametric statistics is a way to release assumptions on the distribution of outcomes of a 
stochastic model. The word is actually a misnomer, since infinitely many (or a very large number of) 
parameters are used in these kinds of models to represent the greater uncertainty of how data is 



distributed, so that data to a larger extent “speaks for itself”. Although nonparametric statistics was 
first developed within a frequentist setting, it is actually consistent with a Bayesian approach as well.    

Bayesian statistics was pioneered through the work of Thomas Bayes (who introduced Bayes’ Rule) 
and Pierre-Simon Laplace. It was the prevailing view of statistics throughout the 19th century. Then, 
through the work of Ronald Fisher, Jerzy Neyman, Egon Pearson and others, frequentist statistics 
came to dominate during most of the 20th century. More recently, Bayesian statistics has seen an 
upswing, not the least through the development of effective simulation methods, such as Markov 
chain Monte Carlo and Approximate Bayesian Computation, which enable complex models to be 
studied within a Bayesian framework (Berger 1985; Lehmann and Casella 1998; Gilks et al. 1996).

Both schools have impressive records of successful application. Classical frequentist statistics is well 
suited for designed repeatable experiments. It has a larger record because numerous results, tailored 
for these methods, were obtained with mechanical calculators and printed tables of special statistical 
distribution functions. Bayesian methods have been highly successful in the analysis of information 
that is naturally sequentially sampled (like radar and sonar).  It has also been applied within such 
diverse areas as philosophy or religion and social science, for instance in order to analyze 
complicated decision making, where debates and other types of social interactions are taken into 
account (Korb 2003; Howson and Urbach 2006; Chen et al. 2010; Chandler and Harrison 2012).

A common task of proving fine-tuning is to demonstrate that a certain event  is very unlikely to 𝐴
occur by chance, that is, to show that the probability  of this event, the prevalence, is small. 𝑃(𝐴)
Typically,  is a classification; that an existing observation is fine-tuned. But it is also possible that  𝐴 𝐴
corresponds to a future observation being fine-tuned, a prediction. Regardless of whether  𝐴
represents a classification or a prediction, a stochastic model (II or IV in Fig. 1) can be used in order to 
determine the probability 

                                                             𝑃(𝐴|𝜃) = ∑
𝑥 ∈ 𝐴

𝑃(𝑥|𝜃)                                               (1)

for each parameter value , by summing the probabilities of all outcomes included in . Since the 𝜃 𝐴
parameter  is typically unknown, one needs to estimate it from data.  𝜃

With a frequentist approach, a point estimate  is used, and this leads to an estimate 𝜃 = 𝜃(data)

                                                               𝑃 (𝐴) = 𝑃(𝐴│𝜃)                                                      (2)

of the prevalence. In order to quantify the uncertainty of (2), a frequentist might translate a 
confidence region of possible values of  into a confidence interval of possible values of . A 𝜃 𝑃(𝐴|𝜃)
Bayesian, on the other hand, regards the parameter as random and computes a posterior 
distribution of the parameter, by combining the prior and the likelihood according to Bayes’ Rule, i.e. 

. This leads to an estimate𝑃(𝜃│data) = 𝑃(data│𝜃)𝑃(𝜃)/𝑃(data)

                                                       𝑃 (𝐴) = ∑
𝜃

𝑃(𝐴│𝜃)𝑃(𝜃|data)                                 (3)

of the prevalence. In order to assess the uncertainty of (3), a Bayesian may translate the posterior 
distribution of the parameter  into a posterior distribution of the prevalence . For complex 𝜃 𝑃(𝐴|𝜃)
models, whether a frequentist of Bayesian approach is used, it is often the case that  is 𝑃(𝐴│𝜃)
unknown for all values  of the parameter. In this case one typically computes an estimate  of 𝜃 𝑃(𝐴|𝜃)

 and then inserts it into (2) or (3).  𝑃(𝐴│𝜃)



Equation (1) is actually consistent with a deterministic model (I or III in Fig. 1) as well, with  𝑃(𝐴|𝜃)
equal to 1 or 0 depending on whether the observed event  is consistent with theory  or not. In 𝐴 𝜃
particular, there is a way of reasoning denoted abductive reasoning (cf. III of Fig. 1) or inference to 
the best explanation (Walton 2001). An explanation is a story  about an event  that has occurred, 𝜃 𝐴
and this kind of explanatory inference play a central role, both in ordinary life and contemporary 
science. Abduction was introduced by Charles Peirce as a form of logical inference that starts with a 
set of observations  and seeks to find the simplest and most likely explanation for the observations. 𝐴
Peirce considered it a topic in logic, but not as formal or mathematical logic. Computer science, 
expert systems and artificial intelligence research frequently employ abduction. In our framework, it 
can be viewed as a procedure of choosing the hypothesis or theory  that best explains the available 𝜃
data , based on some guiding principle. This process yields a plausible conclusion but does not 𝐴
positively verify it. Ernan McMullin (1992) even refers to abduction as “the inference that makes 
science.” 

Even though the original version of abduction was not stochastic, one still refers to a plausible result 
as relatively likely to be true, compared to competing hypotheses, given the background knowledge. 
In Fig. 1III, this would mean that all the likely hypotheses, theories, explanations or parameter values 
generate outcomes deterministically within the observed event , i.e. .  In recent years, 𝐴 𝑃(𝐴│𝜃) = 1
several statisticians have become interested in a more mathematical version of abduction that is 
probabilistic in nature, with Bayesian inference as a special case (Douven and Wenmackers 2017). 
Some authors have argued that not only is abduction compatible with Bayesianism, it is a much-
needed supplement to it (Douven 2017). This leads to a probabilistic view of abduction, where past 
events are analyzed through a stochastic Bayesian model (II), with a distribution being assigned to all 
possible theories or explanations. The analyst must then assign a prior to all possible explanations, 
using some criterion such as simplicity or scope. The likelihood, on the other hand, describes the 
distribution of outcomes for each possible explanation and thereby quantifies whether a theory 
explains the observed event well or not.  In principle we may also frame abduction within a 
frequentist framework (IV), where all explanations are treated as fixed. One may argue though that a 
frequentist approach is less appealing, since the past event only happened once, whereas the 
likelihood within a frequentist framework involves probabilities that require a hypothetical 
assumption of how the outcome would appear if the experiment was repeated (a counter-factual).  
With a Bayesian approach, there is more freedom in modeling the distribution of counter-factuals, 
and hence the likelihood. When a past event is observed before they study begins, statisticians refer 
to it as an observational study. It is well known that sometimes (but not always) the likelihood of 
such a study needs to be adjusted in order to account for the way in which the past event was 
observed, also within a Bayesian approach (Rosenbaum 2010). A designed experiment, on the other 
hand, is planned before the outcomes occur, and then the likelihood simply describes the 
randomness involved in the experiment. 

3. Some historical background of fine-tuning

The biochemist Lawrence Henderson (1878–1942) at Harvard University wrote one of the first books 
to explore concepts of fine-tuning in the universe (Henderson 1913). He discusses the significance of 
water and the environment with respect to living things, arguing that life depends entirely on the 
very specific environmental conditions on the Earth, particularly with regard to the prevalence and 
properties of water.



In the 1970s the astrophysicist Brandon Carter worked on a kind of counterfactual analysis of 
cosmology by asking the question: Suppose the laws of physics had been a bit different from what 
they actually are, what would the consequences be? (Davies, 2006). Carter was the first to name and 
employ the term Anthropic Principle in his important contribution to the 1973 Poland conference 
honoring Copernicus’s 500th birthday. To his surprise, it turned out that many of the parameters 
necessary for life to exist in our universe, must fall within very narrow margins, or the universe would 
either not exist or not be able to support life. In his lecture, Carter derived the Anthropic Principle 
(AP) in reaction to the Copernican Principle, which states that humans do not occupy a privileged 
position in the universe. As Carter said on Copernicus’s birthday: 

"Although our situation is not necessarily central, it is inevitably privileged to some extent" 
(Carter 1974). 

The chances that the universe should be life permitting are so infinitesimal as to be 
incomprehensible and incalculable.  

Having said this, it should also be noted that there is also a critique of the Antrophic Principle, 
referred to as the Weak Anthropic Principle (WAP). WAP states that only in a life-supporting universe 
will there be living beings around who are able to observe it. In the terminology of Section 2, we say 
that the act of discovering that we live in a life-permitting universe is part of an observational study, 
and therefore we have to modify the likelihood accordingly. Although there is some truth in this 
objection against the AP, it is also problematic. Indeed, if we apply the WAP principle consistently to 
other occasions where we discover regular or unexpected patterns, we should never be able to infer 
fine-tuning or design as an explanation. Philosopher John Leslie gives the picture of a person that 
very unexpectedly survives a fire squad. Is he then allowed to infer that all poppers missed 
deliberately (because of someone planning this to happen) or not? (Leslie 1989).

It is hard to give a definitive answer to the number of fine tuning parameters. Based on the items 
discussed in Barrow and Tiplers' classic book (1988) there are about 100, and the Royal Astronomer 
Martin Rees lists six dimensionless constants that give overall fine-tuning to the universe (1999). The 
finely tuned universe is like a panel that controls the parameters of the universe with about 100 
knobs that can be set to certain values. In the framework of Section 2, the parameter  is a vector 𝜃
with 100 components (the knobs), the sample space  is the set of all possible universes (including Ω
no universe at all), whereas  is either the set of possible universes, or the set of those possible 𝐴
universes that are also hospitable. If you turn any knob just a little to the right or to the left, the 
result is either a universe that is inhospitable to life or no universe at all. If the Big Bang had been just 
slightly stronger or weaker, matter would not have condensed, and life never would have existed. 
The odds against our universe developing were “enormous” – and yet here we are, a point that 
equates with religious implications, as expressed by Brian Schmidt at the Australian National 
University: 

Like a Bach fugue, the Universe has a beautiful elegance about it, governed by laws whose 
mathematical precision is meted out to the metronome of time. These equations of physics 
are finely balanced, with the constants of nature that underpin the equations tuned to values 
that allows our remarkable Universe to exist in a form where we, humanity, can study it. A 
slight change to these constants, and poof, in a puff of gedanken experimentation, we have a 
cosmos where atoms cease to be, or where planets are unable to form. We seem to truly be 
fortunate to be part of Our Universe (Lewis and Barnes 2016, p. xi).

What Brian Schmidt refers to as a “gedanken experiment”, is often called “multiuniverses”, i.e. an 
enormous supply of universes and each one a little different. There is a subtle difference between 



the set of possible universes  referred to above (of which one is assumed to exist), and a multiverse Ω
theory, which holds that some or all of these universes exist in parallel. This multiverse hypothesis is 
not backed up with any empirical support, and may be regarded as a rather speculative idea.

A probabilistic argument presumes adequate knowledge of (the limits on) the space of possibility. It 
presupposes that current knowledge provides an accurate, unbiased statistical account of, or means 
of determining, what may or may not happen by chance. As Colyvan et al. (2005) and Dembski (2014, 
pp. 128-129) have argued, the fine-tuning argument for our universe is not a strict statistical 
argument, since it involves features that need to be in place before the universe can be said to exist 
and operate. And there is no way of assigning a probability distribution as reference associated with 
the universe in that early stage. Probabilities for the initial formation of the universe are by its nature 
independent of known processes operating in our present universe, i.e. “gedanken probabilities”. 

William Dembski, who mainly belongs to the frequentist’s school in statistics, regards the fine-tuning 
argument as suggestive, as pointers to underlying design. We may describe this inference as 
abductive reasoning or inference to the best explanation. This reasoning yields a plausible conclusion 
that is relatively likely to be true, compared to competing hypotheses, given our background 
knowledge. In the case of fine-tuning of our cosmos, design is considered to be a better explanation 
than a set of multi-universes that lacks any empirical or historical evidence.  If the 
existence/habitability of a universe follows deterministically from the fine-tuned initial conditions, 
such a frequentistic approach leads to a model for the physical universe that is essentially 
deterministic (cf. III of Fig. 1). A Bayesian approach, on the other hand, corresponds to a model with 
deterministic outcomes for each parameter, but randomness still enters in the choice of parameters 
(cf. I of Fig. 1). 

As noted in Section 2, a more general type of abductive reasoning is closely related to a Bayesian 
stochastic model. By applying methods from Bayesian statistics, several authors have framed a 
stronger conclusion than Dembski. Robin Collins (2012), Richard Swinburne (2012) and Vesa Palonen 
(2008; 2017) give the fullest and most up-to-date detailed account of the argument, and conclude 
that the possible existence of a multiverse does not greatly diminish the powerful force of the 
argument from fine-tuning to the existence of design. The main argument of their Bayesian analyses 
is that even under a multiverse we should use the proposition “this universe is fine-tuned” as data, 
even if we do not know the ‘true standing ’ of our universe. Since multiverse hypotheses do not 
predict fine-tuning for this particular universe any better than a single universe hypothesis, it follows 
that multiverse hypotheses are not plausible explanations for fine-tuning. Therefore, our data on 
cosmic fine-tuning does not offer support to the multiverse hypotheses. For physics in general, 
irrespective of whether there really is a multiverse or not, the rational consequence of the above 
discussion is that we should prefer those theories which best predict (for this or any universe) the 
phenomena we observe in our universe. 

One of the surprising discoveries of modern biology has been that the cell operates in a manner 
similar to modern technology, while biological information is organized in a manner similar to plain 
text. Words and terms like "sequence code", and "information", and "machine" have proven very 
useful in describing and understanding molecular biology (Wills 2016). The basic building blocks of 
life are proteins, long chain-like molecules consisting of varied combinations of 20 different amino 
acids. Complex biochemical machines are usually composed of many proteins, each folded together 
and configured in a unique 3D structure dependent upon the exact sequence of the amino acids 
within the chain. Proteins employ a wide variety of folds to perform their biological function, and 
each protein has a highly specified shape with some minor variations. 



In the 1990s, a huge amount of publications and proceedings started to appear, with the book 
“Evidence of Purpose”, edited by Sir John Marks Templeton with papers from 10 distinguished 
scientists, as one of the first (Templeton 1994). Michael Behe and others presented ideas of design in 
molecular biology, and published evidence of “irreducibly complex biochemical machines” in living 
cells. In his argument, some parts of the complex systems found in biology are exceedingly important 
and do affect the overall function of their mechanism. The fine-tuning can be outlined through the 
vital and interacting parts of living organisms. In “Darwin’s Black Box” (Behe 1996), Behe exemplified 
systems, like the flagellum bacteria use to swim and the blood-clotting cascade, that he called 
irreducibly complex, configured as a remarkable teamwork of several (often dozen or more) 
interacting proteins. Is it possible on an incremental model that such a system could evolve for 
something that does not yet exist? Many biological systems do not appear to have a functional viable 
predecessor from which they could have evolved stepwise, and the occurrence in one leap by chance 
is extremely small. To rephrase the first man on the moon: “That's no small steps of proteins, no 
giant leap for biology.” 

Living forms exhibit structures and functions that can best be understood as nano-level engineering. 
In 1998 Bruce Alberts, president of the National Academy of Sciences, published an important paper 
preparing the next generation of molecular biologists: The Cell as a Collection of Protein Machines 
(Alberts 1998). 

4. Main results and discussion

In this section, we will present and discuss some relevant observations from experimental biology. 
This will be done in the light of the theory of stochastic models, outlined in Section 2. More 
specifically, we will identify events  whose probability  is very low under naturalistic stochastic 𝐴 𝑃(𝐴)
models, and argue that these represent extreme examples of fine-tuning. 

4.1 Functional proteins
Natural proteins are known to fold only to a limited number of folds. The designability of a structure 
is defined as the number of sequences folding to the structure (Zhang et al. 2014). Some of these 
folds are frequently occurring and often referred to as highly designable, whereas some others are 
rarely observed and are less designable. Li et al. (1996) first introduced this concept of protein 
designability. One interesting aspect of their study was that the structures differed strongly in 
designability, and highly designable structures were only a small fraction of all structures.

An important goal is to obtain an estimate of the overall prevalence of sequences adopting functional 
protein folds, i.e. the right folded structure, with the correct dynamics and a precise active site for its 
specific function. Douglas Axe worked on this question at the Medical Research Council Centre in 
Cambridge. The experiments he performed showed a prevalence between 1 in 1050 to 1 in 1074 of 
protein sequences forming a working domain-sized fold of 150 amino acids (Axe 2004). Hence, 
functional proteins require highly organised sequences, as illustrated in Fig. 2. Though proteins 
tolerate a range of possible amino acids at some positions in the sequence, a random process 
producing amino-acid chains of this length would stumble onto a functional protein only about one in 
every 1050 to 1074 attempts due to genetic variation. This empirical result is quite analog to the 
inference from fine-tuned physics. That is, we may regard the space  of all possible proteins as the Ω
outcomes of a stochastic model, where each outcome is a string of letters (amino acids). The 
prevalence  is the probability of the event  that a randomly chosen amino acid sequence 𝑃(𝐴𝑝) 𝐴𝑝



leads to a functional protein (or more generally a protein with some characteristic patterns), whereas 
 involves all bio-chemical constants of relevance for protein formation. 𝜃𝑝

Fig. 2. Diagram of a typical 3D folded protein domain, as studied by Axe (2004). This β-lactamase consists of 
two structural domains, and only the larger one is shown here (153 amino acids, PDB entry 1ERM).

The experimental results reported by Douglas Axe are empirical studies of a single protein that 
typically would be involved as one of the constituent parts of a coherent Behe-system (see Section 
4.2). Protein sequence space may look like a limitless desert of maladjusted sequences with only a 
few oases of working sequences, as outlined by Axe. Another study examines the probability of 
finding ATP binding proteins from a random sample of sequence space regardless of the fold (Ferrada 
and Wagner 2010). The authors estimated a probability of 1 in 1011 to find an ATP binding protein, 
suggesting a higher probability than found by Axe. Recently Kozulic and Leisola (2015) made careful 
analyses of these results, and concluded that even with very conservative conditions, the probability 
of finding ATP binding activity that would function in a cell, would be less than 1 in 1032. Estimates 
like these depend on various factors (the components of the parameter vector ), including the 𝜃𝑝

length of the proteins considered. They indicate that the probability of finding a functional protein in 
sequence space can vary broadly, but commonly remains far beyond the reach of Darwinian 
processes (Axe 2010a). Some authors have even suggested that the original amino acid repertoire 
consisted of only four or five amino acids, in order to reduce the gigantic sequence space, and “rule 
out the big number game” (Dryden et al. 2008). However, this will need another type of genetic 
code, something considered highly speculative. Hence, for a typical functional protein we may state 
experimentally:

                                                               𝑃 (𝐴𝑝) < 10 ―50                                                       (4)

The functional protein arguments outlined above are empirical studies based on a standard 
statistical estimation of prevalence, using either a frequentist or a Bayesian framework (2)-(3). Such 
studies are commonly performed within scientific research by Monte Carlo estimates of the 
prevalence (cf. the discussion below (3)), examining a randomly selected sample from the entire 



population. Using such estimates, the proteins of life are found to be specific kinds of events with 
low probability. Notice however that the prevalence will depend on how the stochastic model of 
protein formation is built. The simplest approach is to choose the amino acids of the protein 
sequence independently and randomly, as above. A more refined approach is to model protein 
evolution (as briefly discussed in Section 5). Randomness is then built into an ancestral tree of 
proteins, whose dynamics is driven by random drift through reproduction, random mutations and 
natural selection. The parameters  of such a model include the size of the protein population, the 𝜃𝑝

effective population size, mutation rates and the fitness of organisms carrying a certain protein, 
where organisms with well functioning proteins are assigned a higher fitness.  Axe also elaborates on 
the massive improbabilities of anything like functional proteins arising by natural selection (Axe 
2016). The search space turns out to be too impossibly vast for blind selection to have even a slight 
chance of success.  The contrasting view is innovations based on ingenuity, cleverness and 
intelligence. An element of this is what Axe calls “functional coherence”, which always involves 
hierarchical planning, hence is a product of fine-tuning. He concludes: “Functional coherence makes 
accidental invention fantastically improbable and therefore physically impossible” (Axe 2016, p. 160).

Life as it is today is an interdependent DNA-protein world (Voie 2006). However, RNA-molecules can 
function both as enzyme (“protein”) and as replicator (“DNA”). Eugene Koonin (2007, 2012) has 
made a theoretical study of the path from a putative RNA world to an explicit translation system (like 
a “DNA-protein world”). He found this path to be incredibly steep (Koonin 2012, p. 376), even under 
the best-case scenario. Koonin studied the requirements of a specified coupled replication-
translation RNA-system to emerge, after our universe was formed, within an O-region of planets.  
Assuming that the replication-translation RNA-system corresponds to an -mer with  𝑛 𝑛 = 1800
nucleotides, he calculated vanishingly small odds

                                                               𝑃 (𝐴𝑅𝑁𝐴) ≈
𝑡

𝐸(𝑇) < 10 ―1018                                                       (5)

for it to emerge within a time interval of length  seconds after the Big Bang. The quantity 𝑡 = 3 × 1017

 in the denominator of (5) is the expected waiting time until the the 𝐸(𝑇) = 4𝑛/(1021 × 5 × 1022)
first coupled replication-translation RNA-system emerges by chance somewhere among the  1021

planets of the O-region. It is assumed that each one of these planets has the same dimension as the 
earth, and a rate of  molecules per second at which -mers are formed within its habitable 5 × 1022 𝑛
layer.   

Koonin raises a rather speculative solution of an infinite multiverse: the Many Worlds in One (MWO). 
This changes the very definition of what is possible and likely in such a way that the probability of the 
realization of any scenario in an infinite multiverse is 1. The odds do not matter anymore. 
Nevertheless, Koonin has presented a detailed calculation of a threshold for biological evolution. He 
also states that the RNA-World hardly has the potential to evolve beyond very simple "organisms" 
(Koonin 2012, p. 366).

4.2 Protein complexes
Proteins rarely work alone. They can interact with a variety of different molecules, but it is their 
simultaneous interactions with one another at the same location that account for many of the 
functions of the cell (Jones and Thornton 1996). Proteins in a protein complex are linked by non-
covalent protein–protein interactions. Protein complexes are a form of quaternary structure. These 
complexes are fundamental in many biological processes and together they form various types of 
molecular machinery that perform a vast array of biological functions. Protein assemblies are at the 



basis of numerous biological machines by performing actions that none of the individual proteins 
would be able to do. There are thousands, perhaps millions of different types and states of proteins 
in a living organism, and the number of possible interactions between them is enormous. Proper 
assembly of multiprotein complexes is important, and change from an ordered to a disordered state 
leads to a transition from function to dysfunction of the complex. Some protein complexes can be 
quite constant and exist for the lifetime of the cell while others can be transient, accumulated for 
some purpose and broken down when no longer needed. A Behe-system of irreducible complexity 
was mentioned in Section 3. It is composed of several well-matched, interacting modules that 
contribute to the basic function, wherein the removal of any one of the modules causes the system 
to effectively cease functioning. 

Behe does not ignore the role of the laws of nature. Biology allows for changes and evolutionary 
modifications. Evolution is there, irreducible design is there, and they are both observed. The laws of 
nature can organize matter and force it to change. Behe’s point is that there are some irreducibly 
complex systems that cannot be produced by the laws of nature: 

If a biological structure can be explained in terms of those natural laws [reproduction, 
mutation and natural selection] then we cannot conclude that it was designed…  however, I 
have shown why many biochemical systems cannot be built up by natural selection working 
on mutations: no direct, gradual route exist to these irreducible complex systems, and the 
laws of chemistry work strongly against the undirected development of the biochemical 
systems that make molecules such as AMP1 (Behe 1996, p. 203).

Then, even if the natural laws work against the development of these “irreducible complexities”, 
they still exist. The strong synergy within the protein complex makes it irreducible to an incremental 
process. They are rather to be acknowledged as fine-tuned initial conditions of the constituting 
protein sequences. These structures are biological examples of nano-engineering that surpass 
anything human engineers have created. Such systems pose a serious challenge to a Darwinian 
account of evolution, since irreducibly complex systems have no direct series of selectable 
intermediates, and in addition, as we saw in Section 4.1, each module (protein) is of low probability 
by itself. 

Extensive arguments have been written about whether or not Darwinian evolution can plausibly 
explain irreducibly complex systems (Behe 2001; 2004; 2019, 283-301; Miller 2004; Dembski 2004; 
Pallen and Matzke 2006; Liu and Ochman 2007; Doolittle, 2012). Irreducible complexity does not 
mean that irreducibly complex systems are logically impossible to evolve based on existing modules. 
One cannot definitively rule out the possibility of an indirect, circuitous route. A well-known 
subsystem of the bacterial flagella (called TTSS secretion system) performs a function distinct from 
the flagellum. However, finding a subsystem of a functional system that performs some other 
function is hardly an argument for the original system evolving from that other system. As the 
complexity of an interacting system increases, the likelihood of such an indirect route drops quickly. 
Hence, Darwinian explanations of irreducibly complex systems are improbable. Ultimately, this is a 
question that must be studied both experimentally and by computer simulations. Behe’s concept of 
irreducible complexity has not been falsified by computer models (Ewert 2014), and there are 

1 AMP: Adenosine Monophosphate is a nucleotide that is found in RNA and plays important role for 
intracellular signaling. Its delusive function is also used especially in diabetic products as bitterness 
suppressor.



presently no detailed Darwinian accounts of the evolution of any such biochemical or cellular system, 
“only a variety of wishful speculations” (Harold 2003, p. 205).

In the framework of Section 2, the set of all possible protein complexes is regarded as the sample 
space  of a stochastic model. According to a naturalistic model, the outcomes are generated Ω
randomly by evolution, driven by random drift through reproduction, random mutations and natural 
selection. The prevalence , i.e. the fraction of functioning protein complexes, will typically be 𝑃(𝐴)
even smaller than in Section 4.1, since it requires even more for a complex of proteins to function 
compared to one single protein. 

Indeed, the stochastic model of protein complexes is quite involved, including, for instance, physical 
interaction. Physical interactions between proteins are specific types of interactions, and a Behe-
system may be analyzed by the biochemical principle of complementarity. When a biologically active 
protein complex consists of more than one separate subunit, the so-called quaternary structure 
describes the topology of contacts, i.e. how the constituent units come together in space. The 
surface molecules in such a biological system fit together both because of special and electrostatic 
complementarity. Contours of one subunit of the system are complementary to the contours of the 
others, and regions of positive excess charge on the surface of one unit must fit closely with regions 
of negative excess charge on the others, as illustrated in Fig. 3. In addition, hydrophobicity and other 
physicochemical properties are also involved in the final configuration. The asymmetry between the 
proteins involved is conventionally divided into “bait” and “prey” (Scholtens et al. 2008). The bait is 
the protein whose interaction partners we are seeking; the prey proteins are those proteins detected 
to interact with a particular bait. The basic subunits fit into the multi-subunit system like a big 3D 
puzzle. 

Fig. 3. Simple illustration of a local configuration based on electrostatic complementary of a Behe-system with 
three hydrogen-bonded pairs in a crystal. This figure displays positive (blue) and negative (red) isosurfaces of 
the deformation electron density.  The electrostatic interaction energies (kJ mol−1) for nearest neighbor pairs of 
molecules are indicated in yellow numbers. Molecular pattern recognition and protein docking involves steric, 
electrostatic and other physicochemical properties. The figure is adapted from Faraday Discussions (Edwards et 
al. 2017).

The principle of complementarity was first proposed by Nobel Prize winner Paul Ehrlich (1854-1915). 
It resonates throughout the whole of biochemistry, and continues to underpin much of modern 
research into the mode of action of enzymes (Hall 2000, p. 303). Protein docking and pattern 



recognition at the molecular level is based on multilevel complementarity (geometry, charge, 
hydrophobicity etc.). 

Dembski applies the term “Discrete Combinatorial Object” to any of the biomolecular systems which 
have been defined by Behe as having “irreducible complexity” (Dembski 2002, pp. 289-302). The 
Drake equation is an expression often used in astrobiology to estimate the prevalence of active 
civilizations in our galaxy.  By analogy to the Drake equation, Dembski proposes an equation based 
on three independent events: Ap: originating the building blocks (protein chains) of the protein 
complex (as outlined in Section 4.1), Al: localizing the building blocks in the same place, and Ac: 
configuring the bulding blocks correctly to form the complex. Then the probability of a protein 
complex is the multiplicative product of the probabilities of the origination of its constituent parts, 
the localization of those parts in one place, and the configuration of those parts into the resulting 
system (contact topology). This leads to the following estimate for the probability of a protein 
complex (PC) composed of N independent building blocks:

       𝑃(𝐴𝑃𝐶) =
𝑁

∏
𝑛 = 1

[𝑃(𝐴(𝑛)
𝑝 | 𝜃(𝑛)

𝑝 ) ∙  𝑃(𝐴(𝑛)
𝑙 | 𝜃(𝑛)

𝑙 ) ∙  𝑃(𝐴(𝑛)
𝑐 | 𝜃(𝑛)

𝑐 )],                 (6)

where , , and  are the parameters involved in forming the protein chain, the localization 𝜃(𝑛)
𝑝 𝜃(𝑛)

𝑙 𝜃(𝑛)
𝑐

and the configuration of the th building block. Modeling the formation of structures like protein 𝑛
complexes via this three-part process of production, convergence and assembly, is of course 
problematic because the parameters in the model are very difficult to estimate. Therefore, 
analogous to the Drake equation, the usefulness of the equation is not in the solving, but rather in 
the contemplation of all the various concepts which science must incorporate when considering the 
question of how to explain this kind of complex structures. Even if we take P(Ap) equal to 1, and thus 
assume there are no problematic obstacles involved in generating the building blocks; and also 
eliminate the localization probability by collapsing chance to necessity (self-organization), P(Ac) can 
still pose huge obstacles to the chance configuration of the quaternary structure of operative 
biological systems (Csermely 2010). This problem of estimating P(Ac) seems quite intractable, but it 
may be addressed by performing perturbation experiments (Antal et al. 2009). The idea is to take a 
functional system, perturb it, and determine how perturbation affects the probability of retaining 
function. There is much of biological work to be done here, empirically and theoretically, and it is 
important to be open for any type of conclusions from new experiments. For instance, can we allow 
that irreducible complexity in the present tells us little or nothing about functional precursors in the 
past?

As we have seen, the stochastic model of protein complexes involves more complicated types of 
outcomes than the protein models of Section 4.1. Whereas single proteins correspond to strings of 
amino acids, the protein complexes are often represented as graphs. Much of the research in 
studying protein interactions has been done with the use of mathematical graph theory (Chiang et al. 
2007; Su et al. 2018). Graph theory is a straightforward and flexible way of implementing real 
interactive systems. The language of graph theory offers a mathematical abstraction for the 
description of such relationships. An important role for graphs is statistical modeling. A directed 
graph model is appropriate for bait to prey systems, in which a multinomial error model is used to 
represent the interactions. Both global and local statistics on the topology of interaction graphs aim 
to infer the nature and behavior of interactions of the protein complex. Su et al. (2018) have 
addressed the issue of significance testing procedures for real biological protein complexes. Their 
statistical studies show that the interactions in such complexes occur much less randomly than 
expected by chance.



Fig. 4. Representing protein complexes as graphs. The complementary configuration of a Behe-system is 
shown. Its molecular pattern recognition is based on steric, electrostatic and other physicochemical properties. 
From 3Dcomplex.org at http://shmoo.weizmann.ac.il/elevy/3dcomplexV6/About.cgi 

The bait-prey model is in itself a way to model fine-tuning of protein modules. Moreover, the final 
function of the protein complex is achieved by complementarity between the binding cavity of the 
protein and its substrate. This involves an additional level of fined tuned complementarity with 
respect to the interacting groups of atoms that are involved in the ultimate function of the protein 
complex, a factor that additionally lowers the prevalence  of functioning protein complexes. 𝑃(𝐴𝑃𝐶)

There is also an additional level of information that should be accounted for in a stochastic model of 
protein complexes. This level of information is embedded in the language of molecular 
complementarity, which may also be understood as a biosemiotic sign language, i.e. signals written 
and read at the molecular level. Biosemiotics is in general the study of signs, of communication, and 
of information in living organisms. Charles Peirce is considered to be one of the founders of 
semiotics, and hence also of biosemiotics. In biosemiotics, the sign, rather than the molecule, is the 
basic unit for the study of life (Hoffmeyer 1997). Our current preferential focus on the genome and 
amino acid sequences needs to be complemented by a similar focus on the senome (Baluška and 
Miller 2018), representing the sum of all the activities of the living cell and its apparatus (Compagno 
2018).

4.3 Cellular networks
As Denis Noble states, biological systems function as a full orchestra with its different elements 
playing ensemble the score of life (Noble 2006). Protein complexes perform their biological functions 
in a cooperative manner through their participation in many biological processes and networks, from 
the nucleus to the cell membrane. Cellular networks are also known to contain feedback loops and 
cycles. A stochastic model with cellular networks as outcomes is exceedingly complex. However, 
Bayesian models provide one of the most flexible frameworks for modeling such networks in terms 
of Dynamic Bayesian networks. In order to describe these structures, modern textbooks often utilize 
the pedagogical similarities between the cell's network and a modern city, or “smart city” (Daempfle 
2016).

http://shmoo.weizmann.ac.il/elevy/3dcomplexV6/About.cgi


Fig. 5. Example showing a cellular network, with a β-lactamase protein ampC (red) and its most confident 
interactors. From string-db.org. String is a database of known and predicted protein-protein interactions. The 
interactions include indirect (functional) and direct (physical) associations.

Studying protein interaction networks of all proteins in an organism (the “interactomes”) remains 
one of the major challenges in modern biology, and constitutes the objective of systems biology. 
Statistical methods to reconstruct cellular networks is a vast and fast developing area of research, 
including Bayesian networks, Gaussian graphical models and graph-based methods for data from 
experimental interventions and perturbations (Markowetz and Spang 2007). Random graphs may 
also be used for modeling cellular networks. They are described in terms of a random process that 
generates them, and the parameters of this random process are chosen so that the edge 𝜃
configuration of the resulting random graph makes sense in comparison to real data. These resulting 
graphs should capture the fact that genes and gene products are connected in highly organized 
networks of information flow through the cell, which themselves do not work in isolation. We 
observe correlations between genes by the presence of other genes. Correlation graphs generate the 
simplest correlation structures of genes, whereas Bayesian networks encompass a more 
sophisticated set of models, with more intriguing correlations. 

Perturbation experiments are key to inferring gene function and regulatory pathways, and a common 
genetic technique is to perturb a gene of interest and to study which other genes' expressions that 



are affected. Several types of perturbations have a large effect on network stability, and a graph 
theoretical study shows that protein complex interaction networks are non-random networks (Jalan 
2013; Huang et al. 2016; 2019). Low randomness means that the probability of any two randomly 
chosen nodes to be wired to each other is very low or zero. However, although results such as these 
indicate the difficulty of random naturalistic processes to generate protein networks, there is still 
much work to be done before we can make more sense of biological networks in the light of fine-
tuning.  Network-based analysis falls into the following major categories: (a) motif identification and 
analysis, (b) global architecture study, (c) local topological properties, and (d) robustness of the 
network under different types of perturbations. 

As we have outlined above, the internal organization of the cell comprises many layers. The genome 
refers to the collection of information stored in the DNA, while the proteome covers the set of all 
proteins. The metabolome contains small molecules (sugars, salts, nucleotides, and amino acids) that 
participate in metabolic reactions required for the maintenance and usual function of a cell, and all 
the proteins in the cell interact in a great network called the interactome. To understand the 
complexity of living cells, research will need to build models on all these layers. Statistical modeling 
of these systems may provide deeper insight into our understanding of the physical and biological 
universe, as displayed in Table 1.

Table 1. The table gives an overview of scientific data and statistical models. The data structure 
corresponds to the outcome  of the corresponding model for Proteins, Molecular motors and 𝑥
Cellular networks, or the specificity (functioning)  of this outcome for fine-tuned physics.𝑓(𝑥)

Empirical data Data structure Type of model    Section

Fine-tuned 
physics

Binary indicator 
of function.

Bayesian inference or
Abductive inference

3

Proteins Random 
sequences

Frequentistic inference or 
Bayesian  inference

4.1

Molecular 
motors

Random graphs Frequentistic inference or 
Bayesian inference 
(preliminary)

4.2

Cellular 
networks

Random graphs Bayesian inference
(preliminary)

4.3

In the following two sections, we will discuss some further implications and mathematical modeling 
questions related to fine-tuned systems.

5. Achieving fine-tuning in a conventional Darwinian model: the waiting time problem



In this section we will elaborate further on the connection between the probability of an event and 
the time available for that event to happen. In the context of living systems, we need to ask the 
question whether conventional Darwinian mechanisms have the ability to achieve fine-tuning during 
a prescribed period of time. This is of interest in order to correctly interpret the fossil record, which is 
often interpreted as having long periods of stasis interrupted by very sudden abrupt changes (Bechly 
and Meyer 2017). Examples of such sudden changes include the origin of photosynthesis, the 
Cambrian explosions, the evolution of complex eyes and the evolution of animal flight. The 
accompanying genetic changes are believed to have happen very rapidly, at least on a 
macroevolutionary timescale, during a time period of length . In order to test whether this is 𝑡
possible, a mathematical model is needed in order to estimate the prevalence  of the event  𝑃(𝐴) 𝐴
that the required genetic changes in a species take place within a time window of length .    𝑡

More specifically, in the framework of Section 2 we consider a time interval of length  (typically 𝑡
measured in units of generations) and ask the question whether evolutionary mechanisms 
(mutations, natural selection, and random genetic drift) may change a DNA-string of nucleotides for a 
whole population (species), from one pattern to another through a series of  coordinated genetic 𝑚
changes. The outcome   is the evolutionary path of the system from the starting point of the 𝑥
interval,  is the time required to bring about a series of  specific changes and  is the set 𝑇 = 𝑇(𝑥) 𝑚 𝐴
of all outcomes  for which these changes take place within time . This corresponds to a prevalence 𝑥 𝑡

, where  is random, with a distribution that assigns probabilities to all 𝑃(𝐴│𝜃) = 𝑃(𝑇(𝑋) ≤ 𝑡|𝜃) 𝑋
possible outcomes, according to a population genetic model of the system, whereas  includes the 𝜃
parameters of that model, such as the (effective) size of the population, the length of the DNA-string, 
the mutation rate, the type of genetic changes required in each of the  steps, and the selective 𝑚
fitness of individuals that have acquired  genetic changes.  For instance, if the final target 𝑖 = 0,1,…,𝑚
of the evolutionary process is an irreducibly complex system with  subunits, the fitness of the 𝑚
corresponding targeted DNA-string is higher that the fitness of individuals with no genetic changes (

, whereas individuals that have acquired  genetic changes should have even 𝑖 = 0) 𝑖 = 1,…,𝑚 ― 1
lower fitness than those with no genetic changes. The larger the population is, the more difficult it is 
for deleterious mutations of the intermediate steps to spread and get fixed in the whole population. 
Therefore, the prevalence  of an irreducibly complex system is extremely small for all but very 𝑃(𝐴)
small populations.    

It is important here to differentiate between mutational adaptations which are based on internally-
coded information and those which are the results of mere chance. More specifically, one or several 
mutations of the former kind are needed to build up new information and move the system from 
state  to . But at the same time, other random mutations of the second kind will arrive, and 𝑖 𝑖 + 1
sometimes these mutations destroy information and move the system back from state  to state 𝑖

. The effect of such back mutations is to enlarge the required time  to reach the target of  𝑖 ― 1 𝑇 𝑚
coordinated genetic changes, and consequently making the prevalence  of an irreducibly 𝑃(𝐴)
complex system even smaller.  

In order to estimate the prevalence of the system, we thus need to find the distribution of the 
waiting time  until  coordinated genetic changes take place. For one single change ( , this is 𝑇 𝑚 𝑚 = 1)
a well studied problem of population genetics when the target represents a single point mutation 
(Crow and Kimura 1970; Durrett 2008). These results have been generalized to more complicated 
settings with , where the target represents a whole DNA-string of nucleotides, using either 𝑚 = 1
analytical approximations (Durrett and Schmidt 2007; Behrens and Vingron 2010; Tu rul et al. 2015) g
or simulations (Sanford et al. 2015).



The distribution of the waiting time for  genetic changes includes a pioneering article of Kimura 𝑚 = 2
(1985), and more recent publications in the context of tumour spread by Komarova et al. (2003) and 
Iwasa et al. (2004). The mathematical results of the latter two papers were used by Durrett and 
Schmidt (2008, 2009) in order to estimate the time required for two coordinated mutations to 
change the expression of a gene in such a way that the first mutation deactivates a binding site 
within a nearby regulatory region, whereas the second mutation activates a second binding site 
within the same regulatory region. This work was later extended by Durrett et al. (2009), to an 
arbitrary number  of mutations. 𝑚

Behe (2007) has argued that  coordinated mutations seems to be the edge of what evolution is 𝑚 = 2
capable of achieving, with the development of chloroquine resistance in the parasite that causes 
malaria (P. falisparum) as a well known example. Behe (2009) also stressed the importance of 
including back mutations in models for the waiting time of coordinated mutations. This has been 
confirmed, in different contexts, by Axe (2010b) and Hössjer et al. (2018). In one section of the latter 
paper the authors consider a system with   subunits, each of which may experience forward and 𝑚
backward mutations independently, back and forth, in any order. They further assume a neutral 
model where all intermediate states of   acquired forward mutations have no selective 𝑖 = 1,…,𝑚 ―1
disadvantage. It is proved in equation (12.109) of Hössjer et al. (2018) that the expected waiting time 
until the system acquires all  forward mutations, is approximately𝑚

                                                            𝐸(𝑇) ≈
(1 + 𝐶)𝑚

𝑚𝐶𝑢                                                   (7)

when  is large,  with  the probability of a forward mutation per generation and individual, and 𝑚 𝑢 > 0
the probability of a backward mutation per generation and individual denoted by . If each 𝐶𝑢 > 0
subunit is a single DNA nucleotide A,G, C or T, then typical parameter values are  and 𝑢 = 10 ―8/3

, since only one mutation out of three is a forward mutation (corresponding to the targeted 𝐶 = 3
nucleotide of that subunit), whereas all mutations are back mutations. The waiting time in (7) is 
approximately exponentially distributed, so by Taylor expansion the prevalence is given as 

                                  𝑃(𝐴) = 𝑃(𝑇 ≤ 𝑡) ≈ 1 ― exp ( ―
𝑡

𝐸(𝑇)) ≈
𝑡

𝐸(𝑇).                      (8)

Notice in particular that the expected waiting time in (7) grows with  at an exponential rate when 𝑚
back mutations are allowed ( , whereas the prevalence in (8) decreases exponentially with . 𝐶 > 0) 𝑚
The waiting time grows even more quickly with  for an irreducibly complex system with back 𝑚
mutations, since the intermediate states are not neutral but deleterious. Consequently, the 
prevalence  of an irreducibly complex system with back mutations is exceedingly small even for 𝑃(𝐴)
moderately large .𝑚

A number of authors have tried to overcome the waiting time problem by proposing mechanisms of 
change within the evolutionary pathway  that shorten the time to reach the target. These 𝑋
mechanisms include symbiogenesis, the action of transposable elements, horizontal gene transfer, 
and the use of alternative evolutionary pathways. However, LeMaster (2018) argues that none of 
these mechanisms really solve the waiting time problem.    

It is also possible to address the waiting time problem in the context of fine-tuning of structures of 
the living cell that connect to the origin of life, such as proteins (see equation (5) of Section 4.1), 
protein complexes (Section 4.2) or the genetic code (Wichmann and Ardern, 2019). The prevalence 𝑃

 then corresponds to the probability that (some aspect of) life arose (𝐴) = 𝑃(𝑇(𝑋) ≤ 𝑡) ≈ 𝑡/𝐸(𝑇)
purely by chance within a prescribed time frame . Whereas the fine-tuning of the diversity of live 𝑡



(given that life first occurred) requires a Darwinian (biological) evolutionary process  in order to 𝑋
estimate the probability  that the observed genomic structure occurred randomly, within a 𝑃(𝐴)
prescribed time frame, the origin on life corresponds to a scenario where  is a chemical 𝑋
evolutionary process.     

6. Modelling of fine-tuning in biological systems

6.1 Previous modeling work 

Intelligent Design (ID) has gained a lot of interest and attention in recent years, mainly in USA, by 
creating public attention as well as triggering vivid discussions in the scientific and public world. ID 
aims to adhere to the same standards of rational investigation as other scientific and philosophical 
enterprises, and it is subject to the same methods of evaluation and critique. ID has been criticized, 
both for its underlying logic and for its various formulations (Olofsson 2008; Sarkar 2011). 

William Dembski originally proposed what he called an "explanatory filter" for distinguishing 
between events due to chance, lawful regularity or design (Dembski 1998). Viewed on a sufficiently 
abstract level, its logics is based on well-established principles and techniques from the theory of 
statistical hypothesis testing. However, it is hard to apply to many interesting biological applications 
or contexts, because a huge number of potential but unknown scenarios may exist, which makes it 
difficult to phrase a null hypothesis for a statistical test (Wilkins and Elsberry 2001; Olofsson 2008). 

The re-formulated version of a complexity measure published by Dembski and his coworkers is 
named Algorithmic Specified Complexity (ASC) (Ewert et al. 2013; 2014).  ACS incorporates both 
Shannon and Kolmogorov complexity measures, and it quantifies the degree to which an event is 
improbable and follows a pattern. Kolmogorov complexity is related to compression of data (and 
hence patterns), but suffers from the property of being unknowable as there is no general method to 
compute it. However, it is possible to give upper bounds for the Kolmogorov complexity, and 
consequently ASC can be bounded without being computed exactly. ASC is based on context and is 
measured in bits. The same authors have applied this method to natural language, random noise, 
folding of proteins, images etc (Marks et al. 2017).

6.2 Towards a general statistical framework for testing fine-tuning

More recently, George Montañez published a model for detecting fine-tuning that incorporates 
randomness and specificity, and which unifies many previous attempts (Montañez 2018). In order to 
describe this method, let  be a function that quantifies, for each outcome , how specified it 𝑓(𝑥) 𝑥 ∈ Ω
is, with a larger value corresponding a higher degree of specificity. Let  be the observed outcome, 𝑥obs

and define the set

                                  𝐴 = {𝑥 ∈ Ω; 
𝑃(𝑥|𝜃)

𝑓(𝑥) ≤
𝑃(𝑥obs|𝜃)

𝑓(𝑥𝑜𝑏𝑠) }                                  (9)

of outcomes which are either at least as unlikely or at least as specified as the observed one. The 
prevalence  corresponds to the outlyingness of , that is, how likely it is to observe an 𝑃(𝐴) 𝑥obs

outcome at least as improbable and/or specified as .  Another possibility is to define an event 𝑥obs

                                        𝐴 = {𝑥 ∈ Ω; 𝑓(𝑥) ≥ 𝑓(𝑥obs)},                                  (10)



that consists of all outcomes at least as specified as the observed one. An advantage of (10) over (9) 
is that (10) makes it possible to treat models where some outcomes are discrete whereas others are 
continuous, as is common in problems with censoring and truncation. 

The choice of specificity function  is crucial. In the simplest case an outcome is either specified or 𝑓
not, quantified as 1 or 0. This corresponds to an indicator function 

                                                   𝑓(𝑥) = 1(𝑥 ∈ 𝐴),                                             (11)

where  is the set of specified outcomes, that is, a function that equals 1 for all outcomes in  and 0 𝐴 𝐴
for all outcomes outside of . Notice that (10) retrieves  whenever  satisfies (11) and we observe a 𝐴 𝐴 𝑓
specified outcome ( ). 𝑥obs ∈ 𝐴

In other applications, there are different degrees of specificity, and this requires more sophisticated 
choices of  than (11). It is possible, for instance, to state Haldane’s Dilemma in the framework of 𝑓
(10). Haldane (1932) asked the question whether natural selection is capable of removing deleterious 
mutations as they arrive within a species over time. If not, they may cause a mutational load that 
increases to such an extent that the survival of the species is threatened (Lynch et al., 1993). Such an 
increased mutational load corresponds to an increase of genetic entropy (Sanford 2008) or a 
decreased biological fitness. Haldane’s Dilemma is in fact related to the waiting time problem of 
Section 5. More specifically, we ask the following question: If a population evolved randomly during a 
time period of length , then at the end of this time period what fraction of individuals  within the 𝑡 𝑥
population  would have a fitness  at least as large as the one observed, , for some Ω 𝑓(𝑥) 𝑓(𝑥obs)
individual alive at this time point? In the context of (8), this corresponds to a prevalence 𝑃(𝐴│𝜃)

, where  is the fitness of a randomly chosen individual  at the end of = 𝑃(𝑓(𝑋) ≥ 𝑓(𝑥obs)|𝜃) 𝑓(𝑋) 𝑋
the time period, according to predictions of an evolutionary model. 

The parameters  of this model include the fitness distribution at the beginning of the time period, 𝜃
the (effective) size of the population, the mutation rate, and the mutational spectrum (the 
distribution of fitness changes caused by mutations). If the mutational spectrum is such that 
mutations are neutral on average, then Fisher’s Fundamental Theorem of Natural Selection (Fisher 
1930, Price 1972) predicts that biological fitness increases over time, corresponding to a large 
prevalence . However, it is well known (Kimura 1979) that most mutations are slightly 𝑃(𝐴)
detrimental. Basener and Sanford (2018) recently extended Fisher’s Theorem, allowing for arbitrary 
mutational spectra. In particular, they showed that Kimura’s mutational spectrum implies a fitness 
decreases over time, in line with the predictions of Haldane’s Dilemma. Consequently, the 
prevalence  is very small for species that have existed for a long period  of time. 𝑃(𝐴) 𝑡

Regardless of whether (9) or (10) is used, and regardless of whether  corresponds to a binary or 𝑓
continuous function, the prevalence  involves a number of unknown parameters . Therefore, in 𝑃(𝐴) 𝜃
order to estimate the prevalence we need some training data set (=data) different from   in order 𝑥obs

to estimate the unknown parameters, either through a frequentist approach (2) or a Bayesian 
approach (3). In the former case   is referred to as a -value. We also face the challenge that the 𝑃(𝐴) 𝑝
prevalence  depends on . We must either know  beforehand or be able to estimate it in some 𝑃(𝐴) 𝑓 𝑓
way (this is related to the abovementioned difficulty of framing a null hypothesis of testing). Our 
previous examples in Sections 3–5 correspond to a binary specificity (11), where  (or 𝑓(𝑥) = 1
equivalently ) when  is  a universe that either exists or is habitable (Section 3) or when  is a 𝑥 ∈ 𝐴 𝑥 𝑥
protein or protein complex that functions (Sections 4.1–4.2). In Section 5 we addressed the waiting 
time problem and asked the question whether the time  until a pre-specified sequence of 𝑇 = 𝑇(𝑥)



changes of an evolutionary path  occur, is less than  or not. This corresponds to the binary 𝑥 𝑡
specificity function (11) with .  For Haldane’s Dilemma we rather used a continuous 𝐴 = {𝑥;𝑇(𝑥) ≤ 𝑡}
specificity function that corresponds to biological fitness.

6.3 Model selection

A general approach is to detect fine-tuning by demonstrating that the prevalence of the event (9) or 
(10) is low. A critic may say that this to some extent is a “fine-tuning-of-the gaps”-argument, since we 
may never know for sure whether a better naturalistic model, with a much higher prevalence, will be 
found in the future. That is, if the prevalence  is low, we have only falsified one specific 𝑃(𝐴)
naturalistic model, not necessarily naturalism in general. Of course, we can never be sure whether a 
better naturalistic explanation will be found later on or not. However, one may argue that the most 
suitable approach of science is to compare the best explanations founds so far within two competing 
worldviews. This naturally leads to model selection. Recall from Fig. 1 that a statistical model  is a 𝑀
collection of data generating mechanisms  for all parameters  that the model allows for.  It is 𝑃( ∙ |𝜃) 𝜃
possible for some problems to suggest a design model  that competes with the currently most 𝑀1

promising naturalistic model , in terms of which model explains data the best. 𝑀2

Such a model selection can be performed by computing estimates  and  of the 𝑃(𝐴|𝑀1) 𝑃(𝐴|𝑀2)
prevalence of  (chosen as in (9) or (10)) for both models and then choosing the model with the 𝐴
largest estimated prevalence. The prevalence of each model can be estimated by a frequentist (2) or 
a Bayesian approach (3). In either case, the prevalence corresponds to the outlyingness of , so 𝑥obs

that the chosen model is the one for which  is least of an outlier. We may interpret such a model 𝑥obs

selection between  and  as a comparison of the two models’ goodness-of-fit, to the set  of all 𝑀1 𝑀2 𝐴
possible data sets that are at least as specified as .  A more traditional kind of model selection, 𝑥obs

which does not take specificity into account, is to compare the goodness-of-fit of the observed 
outcome  for both competing models by comparing  and , or versions of 𝑥obs 𝑃(𝑥obs|𝑀1) 𝑃(𝑥obs|𝑀2)
these probabilities that are penalized by model size. This corresponds to choosing  in (2) or 𝐴 = {𝑥obs}
(3). 

We believe the model selection approach is very promising for future fine-tuning research. It can be 
used, for instance, when deciding whether the diversity of life is best explained by Darwinian 
macroevolution ( ) or a design-inspired model ( ). Examples of design-inspired models are the 𝑀2 𝑀1

Dependency Graph of Winston Ewert (2018), and a forest of microevolutionary family trees, where 
the species within each family tree descend from a designed common ancestral population (Tan 
2015; 2016). One may also study the more restricted problem of human/chimp ancestry, and 
compare a model  with common ancestry of the two species, with a unique origin model , 𝑀2 𝑀1

according to which each species is founded by one single couple (Sanford and Carter 2014; Hössjer et 
al. 2016a; 2016b, Carter et al. 2018, Hössjer and Gauger, 2019). In order to extend and strengthen 
the results of these articles, data  could involve not only DNA patterns, but also one or several 𝑥
layers of organization from the cell, as outlined in Section 4. 

7. Concluding remarks

Statistical modeling and inference on molecular systems may provide valuable insights for our way to 
understand the physical and biological universe.  In this paper, we have elaborated on basic 
information from DNA sequences, proteins, protein complexes, signaling pathways and networks, 



using the prevalence  of an observed event  of fine-tuning, which corresponds to a Shannon 𝑃(𝐴) 𝐴
information of . By elaborating such models, we may adequately capture some of the ―log2𝑃(𝐴)
richness of the natural world. In this context, statistical methods are part of a new approach that in 
many cases enable us to quantify how challenging it is for naturalistic, random processes to explain 
contemporary scientific observations and material, and instead propose fine-tuning as a credible 
alternative explanation.

The laws, constants, and primordial initial conditions of nature present the flow of nature. These 
purely natural objects discovered in recent years show the appearance of being deliberately fine-
tuned. Functional proteins, molecular machines and cellular networks are both unlikely when viewed 
as outcomes of a stochastic model, with a relevant probability distribution (having a small ), and 𝑃(𝐴)
at the same time they conform to an independent or detached specification (the set  being defined 𝐴
in terms of specificity).  These results are important and deduced from central phenomena of basic 
science. In both physics and molecular biology, fine-tuning emerges as a uniting principle and 
synthesis – an interesting observation by itself.

In this paper we have argued that a statistical analysis of fine-tuning is a useful and consistent 
approach to model some of the categories of design: “irreducible complexity” (Michael Behe), and 
“specified complexity” (William Dembski). As mentioned in Section 1, this approach requires a) that a 
probability distribution for the set of possible outcomes is introduced, and b) that a set  of fine-𝐴
tuned events or more generally a specificity function  is defined. Here b) requires some apriori 𝑓
understanding of what fine-tuning means, for each type of application, whereas a) requires a 
naturalistic model for how the observed structures would have been produced by chance. The 
mathematical properties of such a model depend on the type of data that is analyzed. Typically a 
stochastic process should be used that models a dynamic feature such as stellar, chemical or 
biological (Darwinian) evolution. In the simplest case the state space of such a stochastic process is a 
scalar (one nucleotide or amino acid), a vector (a DNA or amino acid string) or a graph (protein 
complexes or cellular networks).    

A major conclusion of our work is that fine-tuning is a clear feature of biological systems. Indeed, 
fine-tuning is even more extreme in biological systems than in inorganic systems. It is detectable 
within the realm of scientific methodology. Biology is inherently more complicated than the large-
scale universe and so fine-tuning is even more a feature. Still more work remains in order to analyze 
more complicated data structures, using more sophisticated empirical criteria. Typically, such criteria 
correspond to a specificity function  that not only is a helpful abstraction of an underlying pattern, 𝑓
such as biological fitness. One rather needs a specificity function that, although of non-physical 
origin, can be quantified and measured empirically in terms of physical properties such as 
functionality. In the long term, these criteria are necessary to make the explanations both 
scientifically and philosophically legitimate. However, we have enough evidence to demonstrate that 
fine-tuning and design deserve attention in the scientific community as a conceptual tool for 
investigating and understanding the natural world. The main agenda is to explore some fascinating 
possibilities for science and create room for new ideas and explorations. Biologists need richer 
conceptual resources than the physical sciences until now have been able to initiate, in terms of 
complex structures having non-physical information as input (Ratzsch 2010). Yet researchers have 
more work to do in order to establish fine-tuning as a sustainable and fully testable scientific 
hypothesis, and ultimately a Design Science. 



References

Alberts, B. (1998). The Cell as a Collection of Molecular Machines: Preparing the Next Generation of 
Molecular Biologists. Cell  92, 291-294. https://doi.org/10.1016/S0092-8674(00)80922-8 

Antal, M.A.,  Böde, C., Csermely, P. (2009). Perturbation waves in proteins and protein networks:  
Applications of percolation and game theories in signaling and drug design. Current Protein and 
Peptide Science 10, 161-172. https://doi.org/10.2174/138920309787847617 

Axe, D.D. (2004). Estimating the prevalence of protein sequences adopting functional enzyme folds. J 
Mol Biol. 341(5), 1295-1315. https://doi.org/10.1016/j.jmb.2004.06.058 

Axe, D.D. (2010a). The Case Against a Darwinian Origin of Protein Folds. BIO-Complexity 2010 (1), 1-
12. https://doi.org/10.5048/BIO-C.2010.1 

Axe, D.D. (2010b). The limits of complex adaptation: An analysis based on a simple model of 
structured bacterial populations. BIO-Complexity 2010(4). https://doi.org/10.5048/BIO-C.2010.4 

Axe, D.D. (2016). Undeniable: How Biology Confirms our Intuition that Life is Designed, HarperOne.

Baluška,  F., Miller, W.B. (2018). Senomic view of the cell: Senome versus Genome, Communicative & 
Integrative Biology 11(3), 1-9. https://doi.org/10.1080/19420889.2018.1489184 

Barnes, L.A. (2012). The Fine-Tuning of the Universe for Intelligent Life. Publications of the 
Astronomical Society of Australia 29(4), 529-564. http://dx.doi.org/10.1071/AS12015 

Barrow, J.D., Tipler, F.J. (1988). The Anthropic Cosmological Principle. Oxford University Press.

Basener, W. F., J. C. Sanford. (2018). The fundamental theorem of natural selection. J. Math. Biol. 76: 
1589-1622. https://doi.org/10.1007/s00285-017-1190-x 

Bechly, M. , Meyer, S.C. (2017). The fossil record and universal common ancestry. Theistic Evolution, 
A Scientific, Philosophical, and Theological Critique, Moreland J.P., Meyer, S.C., Shaw C., Gauger, A.K.. 
and Grudem, W. (eds.) Crossway Publ, Wheaton IL, pp. 331-361.  

Behe, M.J. (1996). Darwin’s Black Box: The Biochemical Challenge to Evolution, The Free Press: New 
York.

Behe, M.J. (2001). Reply to my critics: A response to reviews of Darwin’s Black Box: The Biochemical 
Challenge to Evolution. Biol Philos 16,685–709. https://doi.org/10.1023/A:1012268700496 

Behe, M.J. (2004). Irreducible Complexity: Obstacle to Darwinian Evolution. In: Dembski WA, Ruse M 
(eds.) Debating Design: From Darwin to DNA. Cambridge University Press, pp. 352–370.

Behe, M.J. (2007). The Edge of Evolution. The Search for Limits of Darwinism.  New York: Free Press. 

Behe, M.J. (2009). Waiting longer for two mutations. Genetics 181(2), 819-820; 
https://doi.org/10.1534/genetics.108.098905 

Behe, M.J. (2019). Darwin Devolves: The New Science about DNA that Challenges Evolution. 
HarperOne 

Behrens, S., Vingron. M. (2010). Studying evolution of promoter sequences: a waiting time problem.  
J. Comput. Biol. 17(12), 1591-1606. https://doi.org/10.1089/cmb.2010.0084 

https://doi.org/10.1016/S0092-8674(00)80922-8
https://doi.org/10.2174/138920309787847617
https://doi.org/10.1016/j.jmb.2004.06.058
https://doi.org/10.5048/BIO-C.2010.1
https://doi.org/10.5048/BIO-C.2010.4
https://doi.org/10.1080/19420889.2018.1489184
http://dx.doi.org/10.1071/AS12015
https://doi.org/10.1007/s00285-017-1190-x
https://doi.org/10.1023/A:1012268700496
https://doi.org/10.1534/genetics.108.098905
https://doi.org/10.1089/cmb.2010.0084


Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. New York: Springer 
Series in Statistics. 

Carter, B. (1974). Large Number Coincidences and the Anthropic Principle in Cosmology. IAU 
Symposium 63: Confrontation of Cosmological Theories with Observational Data. Dordrecht: Reidel. 
pp. 291–298. https://doi.org/10.1007/s10714-011-1257-8 

Carter, R.W., Lee, S.S., Sanford, J.C. (2018). An overview of the independent histories of the human Y 
chromosome and the human mitochondrial chromosome. Proc. Eighth Int. Conf. Creat. Whitmore 
J.H. (ed.), pp. 131-151. https://doi.org/10.15385/jpicc.2018.8.1.15 

Chandler, J., Harrison, V.S. (eds.) (2012). Probability in the Philosophy of Religion. Oxford: Oxford 
University Press. 

Chen, M.H. et al. (eds.) (2010). Frontiers of Statistical Decision Making and Bayesian Analysis. In 
Honour of James O. Berger. New York: Springer.

Chiang, T., Scholtens, D., Sarkar, D., Gentleman, R., Huber, W. (2007). Coverage and error models of 
protein-protein interaction data by directed graph analysis. Genome Biology 9,R186. 
https://doi.org/10.1186/gb-2007-8-9-r186 

Coffman, J.A. (2014). On the meaning of chance in biology. Biosemiotics 7(3), 377–388. 
https://doi.1007/s12304-014-9206-z. 

Colin, H., Urbach, P. (2006). Scientific Reasoning. The Bayesian Approach. Peru, IL: Open Court. 

Collins, R. (2012). The teleological argument: an exploration of the fine-tuning of the universe. In 
Craig, W.L., Moreland, J.P. (eds.): The Blackwell Companion to Natural Theology. Chichester: 
WileyBlackwell, pp. 202-281. 

Colyvan M., Garfield, J.L., Priest, G. (2005). Problems with the argument from fine-tuning. Synthese 
145(39), 325–338. https://doi.org/10.1007/s11229-005-6195-0

Compagno, D. (ed.) (2018) Quantitative Semiotic Analysis. Lecture Notes in Morphogenesis. Springer. 
https://doi.org/10.1007/978-3-319-61593-6 

Crow, J.F., Kimura, M. (1970). An Introduction to Population Genetics Theory. Caldwell, New Jersey: 
The Blackburn Press.  

Csermely, P., Palotai, R., Nussinov, R. (2010) Induced fit, conformational selection and independent 
dynamic segments: an extended view of binding events. Trends in Biochemical Sciences 35(10), 539-
546. https://doi.org/10.1016/j.tibs.2010.04.009 

Daempfle, P. (2016). Essential Biology: An Applied Approach, chap 3. Kendall Hunt Publishing 
Company.

Davies, P. (2006). The Goldilocks Enigma: Why Is the Universe Just Right for Life? Houghton Mifflin 
Harcourt, p. ix.

Dembski, W.A. (1998). The design inference: eliminating chance through small probabilities. 
Cambridge University Press, Cambridge.

Dembski, W.A. (2002). No Free Lunch. Why Specified Complexity Cannot Be Purchased without 
Intelligence, pp. 289-302. Rowman & Littlefield.

https://doi.org/10.1007/s10714-011-1257-8
https://doi.org/10.15385/jpicc.2018.8.1.15
https://doi.org/10.1186/gb-2007-8-9-r186
https://doi.1007/s12304-014-9206-z
https://doi.org/10.1007/s11229-005-6195-0
https://doi.org/10.1007/978-3-319-61593-6
https://doi.org/10.1016/j.tibs.2010.04.009


Dembski, W.A. (2004). Still Spinning Just Fine: A Response to Ken Miller: 1–12. Available: 
http://www.arn.org/docs2/news/wd_still_spinning.htm Accessed 6 November 2018. 

Dembski, W.A. (2014). Being as Communion. A Metaphysics of Information. Ashgate.

Doolittle, R.F. (2012). The Evolution of Vertebrate Blood Clotting. Univ Science Books.

Douven, I., Wenmackers, S. (2017). Inference to the Best Explanation versus Bayes’s Rule in a Social 
Setting. The British Journal for the Philosophy of Science 68(2), 535–570. 
https://doi.org/10.1093/bjps/axv025 

Douven, I. (2017). Abduction. The Stanford Encyclopedia of Philosophy (Summer 2017 Edition). Zalta 
EN (ed.).  https://plato.stanford.edu/archives/sum2017/entries/abduction/ 

Dryden, D.T., Thomson, A.R., White, J.H. (2008). How much of protein sequence space has been 
explored by life on Earth? Journal of the Royal Society interface 5 (25), 953-956.

Durrett, R. (2008). Probability Models for DNA Sequence Evolution. New York: Springer. 

Durrett, R., Schmidt, D. (2007). Waiting for regulatory sequences to appear. Ann. Appl. Prob. 17(1), 1-
32. https://doi.org/10.1214/105051606000000619 

Durrett, R., Schmidt, D. (2008). Waiting for two mutations: With applications to regulatory sequence 
evolution and the limits of Darwinian evolution. Genetics 180, 1501-1509. 
https://doi.org/10.1534/genetics.107.082610 

Durrett, R., Schmidt, D. (2009). Reply to Michael Behe. Genetics 181(2), 821-822. 
https://doi.org/10.1534/genetics.109.100800 

Durrett, R., Schmidt, D., Schweinsberg, J.(2009). A waiting time problem arising from the study of 
multi-stage carinogenesis. The Annals of Applied Probability 19(2), 676-718. 
https://doi.org/10.1214/08-AAP559 

Edwards, A.J., Mackenzie, C.F., Spackman, P.R., Jayatilaka, D., Spackman, M.A. (2017). Intermolecular 
interactions in molecular crystals: what’s in a name? Faraday Discussions 203, 93-112. 
https://doi.org/10.1039/C7FD00072C 

Ewert, W. (2014). Digital irreducible complexity: A survey of irreducible complexity in computer 
simulations. BIO-Complexity 2014 (1), 1–10. https://doi.org/10.5048/BIO-C.2014.1. 

Ewert, W. (2018). The dependency graph of life. BIO-Complexity 2018(3), 1-27. 
https://doi.org/10.5048/BIO-C.2018.3. 

Ewert, W., Marks II, R.J., Dembski, W.A. (2013). On the Improbability of Algorithmic Specified 
Complexity. Southeastern Symposium on System Theory, IEEE, Baylor Univ, Waco, pp. 68-70.

Ewert, W., Dembski, W.A., Marks II, R.J. (2014). Algorithmic Specified Complexity. In Jonathan 
Bartlett et al. (ed.), Engineering and the Ultimate: An Interdisciplinary Investigation of Order and 
Design in Nature and Craft. Blyth Institute Press, pp. 131-149.

Ferrada, E., Wagner, A. (2010). Evolutionary Innovations and the Organization of Protein Functions in 
Genotype Space. PLOS ONE 5(11), Article Number: e14172. 
https://doi.org/10.1371/journal.pone.0014172 

Fisher, R A.. 1930. The genetical theory of natural selection. Oxford, England: Clarendon Press. 
https://doi.org/10.5962/bhl.title.27468 

http://www.arn.org/docs2/news/wd_still_spinning.htm
https://doi.org/10.1093/bjps/axv025
https://plato.stanford.edu/archives/sum2017/entries/abduction/
https://doi.org/10.1214/105051606000000619
https://doi.org/10.1534/genetics.107.082610
https://doi.org/10.1534/genetics.109.100800
https://doi.org/10.1214/08-AAP559
https://doi.org/10.1039/C7FD00072C
https://doi.org/10.5048/BIO-C.2014.1
https://doi.org/10.5048/BIO-C.2018.3
https://doi.org/10.1371/journal.pone.0014172
https://doi.org/10.5962/bhl.title.27468


Friederich, S. (2018). Fine-Tuning. The Stanford Encyclopedia of Philosophy (Winter 2018 Edition), 
Edward N. Zalta (ed.). Available https://plato.stanford.edu/archives/win2018/entries/fine-tuning/ 

Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.) (1996). Markov Chain Monte Carlo in Practice. 
London: Chapman and Hall.

Haldane, J.B. (1932). The Causes of Evolution. Princeton, NJ: Princeton University Press.

Hall, N. (ed.) (2000). The New Chemistry. Cambridge University Press.

Harold, F. (2003). The Way of the Cell: Molecules, Organisms and the Order of Life. New York: Oxford 
University Press. 

Henderson, L.J. (1913). The fitness of the environment: an inquiry into the biological significance of 
the properties of matter. The Macmillan Company.

Hoffmeyer, J. (1997). Biosemiotics: Towards a new synthesis in biology. European J. Semiotic Stud. 
9(2), 355-376.

Huang, C.H., Chen, T.H., Ng, K.L. (2016). Graph theory and stability analysis of protein complex 
interaction networks. IET Syst. Biol. 10 (2), 64–75. https://doi.org/10.1049/iet-syb.2015.0007 

Huang, C.H., Tsai, J.P.J., Kurubanjerdjit, N., Ng, K.L. (2019). Computational analysis of molecular 
networks using spectral graph theory, complexity measures and information theory (manuscript). 
https://doi.org/10.1101/536318 

Hössjer, O., Bechly, G. and Gauger, A. (2018). Phase-type distribution approximations of the waiting 
time until coordinated mutations get fixed in a population. Stochastic Processes and Algebraic 
Structures - From Theory Towards Applications. Volume 1: Stochastic Processes and Applications, in 
Silvestrov, S., Malyarenko A. and Rancíc, M. (eds.), Springer Proceedings in Mathematics and 
Statistics, pp. 245-313. https://doi.org/10.1007/978-3-030-02825-1_12 

Hössjer, O., Gauger, A., Reeves, C. (2016a). Genetic modeling of human history part 1: Comparison of 
common descent and unique origin approaches. BIO-Complexity 2016(3), 1-36. 
https://doi.org/10.5048/BIO-C.2016.3 

Hössjer, O., Gauger, A., Reeves, C. (2016b). Genetic modeling of human history part 2: A unique 
origin algorithm. BIO-Complexity 2016(4), 1-36. https://doi.org/10.5048/BIO-C.2016.4 

Hössjer, O., Gauger, A. (2019). A single couple human origin is possible. BIO-Complexity 2019(1):1-21.  
https://doi.org/10.5048/BIO-C.2019.1 

Iwasa, Y., Michor, F., Nowak, M. (2004) Stochastic tunnels in evolutionary dynamics. Genetics 166, 
1571-1579 

Jalan, S. (2013). Importance of randomness in biological networks: A random matrix analysis. 
Pramana-Journal of Physics 84(29), 285-293.

Jones, S., Thornton, J.M. (1996). Principles of protein-protein interactions. Proceedings of the 
National Academy of Sciences of the USA. 93, 13–20. https://doi.org/10.1073/pnas.93.1.13 

Kimura, M. (1979). Model of effectively neutral mutations in which selective constaint is 
incorporated. Proc Natl Acad Sci USA 76(7), 3440-3444. https://doi.org/10.1073/pnas.76.7.3440 

Kimura, M. (1985). The role of compensatory neutral mutations in molecular evolution. Journal of 
Genetics 64(1), 7-19. https://doi.org/10.1007/BF02923549 

https://plato.stanford.edu/archives/win2018/entries/fine-tuning/
https://doi.org/10.1049/iet-syb.2015.0007
https://doi.org/10.1101/536318
https://doi.org/10.1007/978-3-030-02825-1_12
https://doi.org/10.5048/BIO-C.2016.3
https://doi.org/10.5048/BIO-C.2016.4
https://doi.org/10.5048/BIO-C.2019.1
https://doi.org/10.1073/pnas.93.1.13
https://doi.org/10.1073/pnas.76.7.3440
https://doi.org/10.1007/BF02923549


Komarova, N.L., Sengupta, A., Nowak, M. (2003). Mutation-selection networks of cancer initiation: 
tumor suppressor genes and chromosomal instability. Journal of Theoretical Biology 223(4), 433-450. 
https://doi.org/10.1016/S0022-5193(03)00120-6 

Koonin, E.V. (2007). The cosmological model of eternal inflation and the transition from chance to 
biological evolution in the history of life. Biol Direct 2007, 2-15. https://doi.org/10.1186/1745-6150-
2-15 

Koonin, E. V. (2012). Logic of Chance: The Nature and Origin of Biological Evolution. Upper Saddle 
River: FT Press.

Korb, K.A. (2003). Bayesian Informal Logic and Fallacies. Informal Logic 23(2), 41-70  

Kozulic, B., Leisola, M. (2015). Have Scientists Already Been Able to Surpass the Capabilities of 
Evolution? viXra Biochemistry 1504.0130. http://vixra.org/bioch/1504 Accessed 8 November 2018.

Lehmann, E.L., Casella, G. (1998). Theory of Point Estimation, 2nd ed. New York: Springer texts in 
Statistics. 

LeMaster, J.C. (2018). Evolution’s waiting-time problem and suggested ways to overcome it - A 
critical survey. BIO-Complexity 2018 (2), 1-9. https://doi.org/10.5048/BIO-C.2018.2 

Leslie, J. (1989). Universes. Routledge, London. 

Lewis, G.F., Barnes, L.A. (2016). A Fortunate Universe: Life in a Finely Tuned Cosmos. Cambridge 
University Press.

Li, H., Helling, R., Tang, C., Wingreen, N. (1996). Emergence of Preferred Structures in a Simple Model 
of Protein Folding, Science 273, 666–669.

Liu, R., Ochman, H. (2007). Stepwise formation of the bacterial flagellar system, Proc Natl Acad Sci 
USA 104(17), 7116–7121. https://doi.org/10.1073/pnas.0700266104 

Lynch, M.R, Burger, D, Butcher, Gabriel, W. (1993). The mutational meltdown in asexual populations. 
Journal of Heredity 84 (5): 339-344. https://doi.org/10.1093/oxfordjournals.jhered.a111354 

Markowetz, F., Spang, R. (2007). Inferring cellular networks – a review. BMC Bioinformatics, 8 (Suppl 
6): S5. https://doi.org/10.1186/1471-2105-8-S6-S5 

Marks II, R.J., Dembski, W.A., Ewert, W. (2017). Introduction to Evolutionary Informatics. World 
Scientific.

McMullin, E. (1992). The Inference that Makes Science. Milwaukee, WI. Marquette University Press.

Miller, K.R. (2004). The flagellum unspun: the collapse of irreducible complexity. In: Dembski WA, 
Ruse M (eds) Debating Design: From Darwin to DNA. Cambridge University Press, pp 81–97. 

Montañez, G.D. (2018). A unified model of complex specified information. BIO-Complexity 2018(4), 1-
26. https://doi.org/10.5048/BIO-C.2018.4. 

Noble, D. (2006). The Music of Life: Biology Beyond the Genome. Oxford Univ. Press.

Olofsson, P. (2008). Intelligent Design and Mathematical Statistics: A Troubled Alliance. Biol Philos. 
23(4), 545–553. https://doi.org/10.1007/s10539-007-9078-6 

https://doi.org/10.1016/S0022-5193(03)00120-6
https://doi.org/10.1186/1745-6150-2-15
https://doi.org/10.1186/1745-6150-2-15
http://vixra.org/bioch/1504
https://doi.org/10.5048/BIO-C.2018.2
https://doi.org/10.1073/pnas.0700266104
https://doi.org/10.1093/oxfordjournals.jhered.a111354
https://doi.org/10.1186/1471-2105-8-S6-S5
https://doi.org/10.5048/BIO-C.2018.4
https://doi.org/10.1007/s10539-007-9078-6


Pallen, M.J., Matzke, N.J. (2006) .From The Origin of Species to the origin of bacterial flagella, Nature 
Reviews Microbiology 4 (10), 784-790. https://doi.org/10.1038/nrmicro1493 

Palonen, V. (2008). Bayesian considerations on the multiverse explanation of cosmic fine-tuning, 
arXiv.org > physics > arXiv.  https://arxiv.org/abs/0802.4013 

Palonen, V. (2017). A Bayesian Baseline for Belief in Uncommon Events. European Journal for 
Philosophy of Religion 9(3), 159-175. https://doi.org/10.24204/EJPR.V9I3.1909 

Price, G.R. (1972). Fisher's 'Fundamental Theorem' Made Clear. Ann Hum Genet 36 (2): 129-140.

Quarteroni, A. (2009). Mathematical Models in Science and Engineering, Notices of the AMS 56(1), 
10-19.

Ratzsch, D. (2010). There is a place for intelligent design in the philosophy of biology: intelligent 
design in (philosophy of) biology: some legitimate roles. In Ayala FJ, Arp R (eds.), Contemporary 
Debates in Philosophy of Biology. Wiley-Blackwell, pp. 343-363.

Rees, M. (1999). Just Six Numbers: The Deep Forces that Shape the Universe. Phoenix.

Rosenbaum, P. (2010). Design of Observational Studies. New York: Springer.

Sanford J.C. (2008). Genetic Entropy and the Mystery of the Genome, 3rd edition. Waterloo, New 
York: FMS Publications. 

Sanford, J., Brewer, w., Smith, F., Baumgardner, J. (2015). The waiting time problem in a model 
hominin population. Theor. Biol. Med. Model. 12, 18. https://doi.org/10.1186/s12976-015-0016-z 

Sanford, J.C., Carter, R. (2014). In the light of genetics. Adam, Eve and the Creation/Fall. Christian 
Apologetics Journal 12(2), 51-98. 

Sarkar, S. (2011). The science question in intelligent design. Synthese 178(2), 291-305. 
https://doi.org/10.1007/s11229-009-9540-x

Scholtens, D., et al. (2008). Estimating node degrees in bait-prey graphs. Bioinformatics 24, 218–24. 
https://doi.org/10.1093/bioinformatics/btm565 

Su, Y., Zhao C., Chen, Z., Tian, B., He, Z. (2018). On the statistical significance of protein complex. 
Quantitative Biology 6(4), 313–320. https://doi.org/10.1007/s40484-018-0153-6 

Swinburne, R. (2012). Bayes, God, and the Multiverse. In (ed.) J.Chandler J, Harrison V (eds.) 
Probability in the Philosophy of Religion. Oxford University Press, pp. 103-126.

Tan, C.L. (2015). Using taxonomically restricted essential genes to determine whether two organisms 
can belong to the same family tree. Answers Research Journal 8, 413-435. 

Tan, C.L. (2016). Big gaps and short bridges: A model for solving the discontinuity problem. Answers 
Research Journal 9, 149-162.

Templeton, J.M. (ed.) (1994). Evidence of Purpose. Scientists Discover the Creator. Continuum 
Publishing Company, NY.

Thorvaldsen, S., Øhrstrøm, P. (2013). Darwin’s Perplexing Paradox: Intelligent Design in Nature. 
Perspectives in Biology and Medicine 56(1), 78-98. https://doi.org/10.1353/pbm.2013.0000 

https://doi.org/10.1038/nrmicro1493
https://arxiv.org/abs/0802.4013
https://doi.org/10.24204/EJPR.V9I3.1909
https://doi.org/10.1186/s12976-015-0016-z
https://doi.org/10.1007/s11229-009-9540-x
https://doi.org/10.1093/bioinformatics/btm565
https://doi.org/10.1007/s40484-018-0153-6
https://doi.org/10.1353/pbm.2013.0000


Tu rul, M., Paix o, T., Barton, N.H., Tka ik, G. (2015). Dynamics of transcription factor binding site g a c
evolution. PLOS Genet. 11(11), e1005639. https://doi.org/10.1371/journal.pgen.1005639 

Voie, Ø.A. (2006). Biological function and the genetic code are interdependent. Chaos, Solitons and 
Fractals, 28(4), 1000-1004. https://doi.org/10.1016/j.chaos.2005.08.146 

Walton, D. (2001). Abductive, presumptive and plausible arguments. Informal Logic 21 (2), 141–169. 
https://doi.org/10.22329/il.v21i2.2241 

Wichmann, S, Ardern, Z. (2019). Optimality in the standard genetic code is robust with respect to 
comparison code sets.  Biosystems 185:104023. https://doi.org/10.1016/j.biosystems.2019.104023 

Wilkins, J.S., Elsberry, W.R. (2001). The advantages of theft over toil: The design inference and 
arguing from ignorance. Bio Philo 16 (5), 711-724. https://doi.org/10.1023/A:1012282323054 

Wills, P.R. (2016). DNA as information. Phil. Trans. R. Soc. A. 374: 20150417. 
http://doi.org/10.1098/rsta.2015.0417 

Zhang, Jian; Zheng, Fan; Grigoryan, Gevorg (2014). Design and designability of protein-based 
assemblies. Current Opinion in Structural Biology 27, 79-86. http://doi.org/10.1016/j.sbi.2014.05.009 

Highlights

 Statistical methods are appropriate for modelling fine-tuning
 Fine-tuning is detected in functional proteins, cellular networks etc.
 Constants and initial conditions of nature are deliberately tuned
 Statistical analysis of fine-tuning model some of the categories of design
 Fine-tuning and design deserve attention in the scientific community

Author statement 

ST initiated the study, and OH developed the statistical model in section 2. ST and OH designed the 
study and wrote the final manuscript together. Both authors equally contributed to this work and 
approve the manuscript. 

https://doi.org/10.1371/journal.pgen.1005639
https://doi.org/10.1016/j.chaos.2005.08.146
https://doi.org/10.22329/il.v21i2.2241
https://doi.org/10.1016/j.biosystems.2019.104023
https://doi.org/10.1023/A:1012282323054
http://doi.org/10.1098/rsta.2015.0417
http://doi.org/10.1016/j.sbi.2014.05.009






Declaration of Competing Interest 



The authors have no conflict of interest to declare.


