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Protein folding, the determination of the lowest-energy configuration of a protein,

is an unsolved computational problem. If protein folding could be solved, it would

lead to significant advances in molecular biology, and technological development in

areas such as drug discovery and catalyst design. As a hard combinatorial optimi-

sation problem, protein folding has been studied as a potential target problem for

adiabatic quantum computing. Although several experimental implementations have

been discussed in the literature, the computational scaling of these approaches has

not been elucidated. In this article, we present a numerical study of the (stoquastic)

adiabatic quantum algorithm applied to protein lattice folding. Using exact numer-

ical modelling of small systems, we find that the time-to-solution metric scales ex-

ponentially with peptide length, even for small peptides. However, comparison with

classical heuristics for optimisation indicates a potential limited quantum speedup.

Overall, our results suggest that quantum algorithms may well offer improvements

for problems in the protein folding and structure prediction realm.
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I. INTRODUCTION

The structure of a protein captures crucial information about its biological function and

therapeutic potential [1]. Knowledge of a proteins’ structure unlocks valuable biological in-

formation, ranging from the ability to predict protein-protein interactions [2], to structure-

based discovery of new drugs [3] and catalysts [4]. Unfortunately, experiments to determine

protein structure are challenging and require extensive time and resources [1, 5, 6]. As of

February 2020, the TrEMBL database [7] contained 176 million protein sequences, while

only 160,000 protein structures have been deposited in the Protein Data Bank [8]. A reli-

able computational algorithm for the template-free prediction of a protein’s structure and

its folding pathway from sequence information alone would enable annotation of millions of

proteins and could stimulate major advances in biological research. However, despite steady

improvements in the past six decades [9–11], a consistent and accurate protein folding algo-

rithm has remained elusive.

Over the past decade, there have been attempts to leverage quantum computing for

protein structure prediction. The biological structure of a protein is thought to correspond

to the minimum of a free energy hypersurface, which for even small peptides is too vast

for any classical computer to explore exhaustively [10]. A type of quantum computation

that may be appropriate to help is adiabatic quantum computing (AQC), an approach to

exploiting the physics of a controlled quantum system that is considered to be of potential

use in optimisation problems (whether classical or quantum in nature) [12]. Typically, the

set of possible solutions is mapped to a register of qubits with a binary encoding, and the

objective function is represented as a physical Hamiltonian, Hproblem, whose eigenvectors and

eigenvalues are respectively problem solutions and their scores. In particular, the ground

state |Φ〉 (or the respective ground eigenspace) corresponds to the global minimum of the

problem. An adiabatic algorithm starts by initialising the register of qubits in the ground

state |Ψ(0)〉 of a given Hamiltonian, Htrivial, whose ground state is easy to prepare, and

gently transforming into the problem Hamiltonian, Hproblem. If the evolution is slow enough,

the adiabatic theorem of quantum mechanics [13] ensures that the final state |Ψ(T )〉 will be

infinitesimally close to |Φ〉.

Protein chemistry applications of quantum computing have concentrated on a simplified

prototype known as the protein lattice model [14], which has been used as a coarse-grained
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FIG. 1: (A) Liquorice representation of a randomly generated short protein (peptide) with

sequence AVSQVADGILS. In this depiction, every stick represents a bond between two

atoms, and the colour of the corresponding half of the stick identifies the nature of the

atom: green is carbon, white is hydrogen, blue is nitrogen and red is oxygen. The spheres

that surround the sticks, representing van der Waals volume, have been coloured by

residue identity. (B) Lattice model of the peptide in (A). The protein is represented as a

self-avoiding walk on a lattice, where every node corresponds to a residue. Amino acids

that are distant in the sequence but are spatial neighbours induce complex interactions

(represented as dotted blue lines) that stabilise a particular fold. Above the dotted lines,

we display the Miyazawa-Jernigan stabilisation energy of the contact.

proxy for structure prediction [15, 16]. In this model, the protein is described by a self-

avoiding walk on a lattice, whose energy is determined by the contacts between adjacent

amino acids, and the minimum energy is identified with the biologically active form of the

protein. Unfortunately, the problem of finding the protein configuration that minimises the

energy is known to be NP-hard [17, 18]. In the context of quantum computing, several

encodings (i.e. instructions to map the problem to a Hamiltonian operator and the solu-

tions to a binary string) have been proposed [19–21], some of which have also been tested

experimentally in D-Wave processors [21, 22]. Recent work has attempted extensions of the

protein lattice model [23], and even off-lattice models [24]. Although multiple algorithmic

approaches have been suggested, there is not, to our knowledge, any numerical or analytical

study establishing the computational scaling of adiabatic quantum computing for protein
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folding applications.

In this article, we present an extensive numerical study of protein lattice folding in ide-

alised, error-free, closed-system adiabatic quantum computing, such as might be achievable

in future devices with long coherence times in the presence of error correction [25, 26], or with

fault-tolerant universal quantum computers employing Hamiltonian simulation [27]. In par-

ticular, we have computed the minimum spectral gaps and optimised time-to-solution (TTS)

metrics for a large dataset of hard problems. The spectral gaps display a strongly vanishing

behaviour, which according to the adiabatic theorem leads one to anticipate a quadratically

stronger upper bound in runtime. However, our simulations of unitary evolution reveal a

scaling that is several orders of magnitude milder. When compared with classical stochastic

optimisation heuristics, we find some evidence of a limited quantum speedup.

II. RESULTS

We generated a large dataset of peptide (i.e. short proteins) problems with unique ground

energy minima (UGEM) containing between 6 and 9 amino acids in 2D, and between 6 and

8 amino acids in 3D. We examined a total of 29,503 peptide sequences, an approximately

equal number of cases in both dimensions (15,173 in 2D and 14,330 in 3D) and lengths

(approximately 4,500 cases per length at a given dimension, with the exception of 2D length

7, where it is challenging to generate UGEM cases, and we considered only 1,700 cases).

These cases were generated by random sampling of the 20 standard amino acids, but are

expected to display properties similar to realistic proteins, as established in several studies

[28]. Using this dataset, we expressed the problems as Ising-like Hamiltonians by means of

the turn circuit encoding described by Babbush et al. [20] and performed several numerical

simulations to study the scaling of the minimum gap and time evolution.

A. Spectral gap

We start our analysis by determining the minimum spectral gap, ∆, between the ground

state and the first excited state. It is often stated (based on theoretical arguments) that

the runtime of the adiabatic algorithm is proportional to O(∆−2) [29]. Unfortunately, many

problems exhibit an exponentially vanishing gap with increasing problem size [30–32], and
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FIG. 2: (A, B) Distributions of log10 ∆, the decimal logarithm of the minimum spectral

gap between the ground state and first excited state energy levels, for UGEM peptides of

different size in 2D (A) and 3D (B). These violin plots employ a Gaussian kernel density

estimation method to show a smooth representation of the distribution of data. In the 2D

case (A), it is clear that the median gap remains approximately constant, while the worst

case gap grows exponentially. In the 3D case (B), a similar effect is observed, although it is

made less clear by the particular behaviour of length 8 peptides, which always have their

optimal structures arranged in a cube. (C, D) Least-squares fit of subsamples of the data

to different functional models. The rate of decay of the minimum spectral gap varies

significantly between quantiles.

in particular it is believed that no form of quantum computing is able to efficiently solve

NP-complete problems, or at least no such report has withstood scrutiny [29, 33]. The

distribution of gaps for the protein lattice problem in 2D and 3D is shown in Figure 2.

The distribution of gaps at a given length resembles a skewed Gaussian distribution: the

majority of gaps are concentrated around a narrow center spanning two orders of magnitude,

and there are long, thick tails (containing 5-10% of the data) that spread away several
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more orders of magnitude to one side. The extent of these tails present a severe decrease.

In the dataset of 2D peptides, the size of the worst-case gaps decrease by five orders of

magnitude within a length increase of four amino acids, but only an order of magnitude and

a half within the last three lengths considered. Similar results are seen for the 3D peptides.

Length 8 three-dimensional peptides show smaller gaps because of their distinct distribution

of energetic levels due to cubic symmetry.

This steep decline for the hardest instances is in contrast with the small decrease experi-

enced by an average peptide. The vast majority of the examples populate the area around

the median gap, exhibiting a steady but far slower decline. A close examination of the violin

plots for the 2D examples also reveals that the position of the peak of the distribution tends

to rise as the sequence length increases, and in fact, if we ignore the tails of the distribution,

the average gap increases rather than decreases. In interpreting this finding, it is important

to keep in mind that our dataset is composed of peptide folding problems that are hard

by design, since they have only one ground state solution (plus, in some cases, symmetry-

equivalent configurations). These problems are known to be classically very hard [17, 18]. In

addition to the lack of structure of NP-hard problems, the proportion of lowest-energy solu-

tions in the solution space is minimal, so randomised algorithms will find it very challenging

to find the ground state.

We characterised the scaling of the gap using regression analysis by Maximum Likelihood

Estimation (see Methods for details). Four functional forms were considered: polynomial,

xα, exponential, eαx, square exponential, eαx
2

and cubic exponential, eαx
3
. We then employed

several standard model selection criteria, detailed in Appendix A, to select the model that

better explains the data. The polynomial model xα, with α ≈ −0.75 in 2D and α ≈ −0.4

in 3D, is selected by all criteria, and is significantly better than the second best model.

We also binned the data into different quantiles and repeated the inference, to account

for the inhomogeneity of the results (see Tables II and III in Appendix A). In 2D, the

polynomial model is consistently selected across all quantiles, and in 3D, there are some

quantiles where the exponential and cubic exponential are selected, which is probably due

to the limited range of the dataset and the symmetry effect discussed above. We observed

a notable variation of the coefficients across quantiles, as depicted in Figures 2C and 2D.

For example, the first quantile, 0-10%, with α = −3.23 in 2D and α = −3.65 in 3D for

the polynomial model, contains examples whose gaps vanish at a notably larger rate. On
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the other hand, the two upper quartiles (75-90% and 90-100%) display positive α values,

showing that the gap actually widens with increasing size. Only a portion of the problem

instances exhibits fast gap vanishing.

This data does not allow us to conclude that the gap vanishes polynomially. Our results

are reminiscent of a previous study on the Exact Cover problem by Young et al. [34, 35]. In

that study, it was described that, while the scaling of the spectral gap at small problem sizes

is consistent with a polynomial [33], at large problem sizes the scaling turns exponential.

Similarly, the fraction of problem instances exhibiting small gaps increases at large problem

size [35]. We have been unable to study the behaviour of the protein lattice problem at

greater sizes, given the large number of qubits and the difficulty of obtaining Hamiltonian

expressions beyond 9 amino acids. However, we hypothesise that the protein lattice problem

presents exponentially vanishing spectral gaps that will hinder a polynomial-time solution

by quantum annealing.

B. Zero-temperature simulations

The minimum spectral gap imposes an upper bound on the running time of the adiabatic

algorithm, but in order to understand the behaviour of the process we need to access the

evolution of the quantum state during the computational process. The numerical integration

of the Schrödinger equation is costly, making the assessment of our entire dataset of circa

30,000 peptides beyond our resources. Instead, we selected two samples based on spectral

gap values. The first sample contains the set of peptides with the smallest gaps (worst-case

set), while the second sample is a random selection of peptides (random set). In both cases,

each sample contains 100 peptides per chain length of a given dimension, giving a total of

1,400 instances.

A comparison of this sort requires optimising the annealing time to maximise the prob-

ability of success. As described by Rønnow et al. [36], a short run can provide a small,

but sizeable probability that can be amplified by repetition. In many cases, the repetitions

amount to a much shorter runtime that a longer, quasi-adiabatic runtime. We employed

Bayesian optimisation [37, 38] to find the optimal runtime, as detailed in the Methods sec-

tion. The optimised time-to-solution metric, corresponding to the expected runtime to find

the correct solution with probability 50%, is shown in Figure ??A.
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FIG. 3: (A, B). Distributions of the expected quantum annealing runtime T of the

worst-case (A) and random (B) 2D sets. (C, D). Least-squares fit of subsamples of the

data to different functional models for the worst-case (C) and random (D) sets.

The optimisation of the annealing time of an individual run has a significant impact. We

simulated a baseline experiment in which the quantum annealer was run for 1000 a. u., and

found an average improvement in the expected total runtime of 15 orders of magnitude in

2D and 10 orders of magnitude in 3D. We also find a small, but appreciable difference on

the dependence on the gap, as depicted in Table I.

For both the 2D and 3D peptides, the worst-case set containing the smallest gaps does

not require significantly longer expected runtimes than the random set. We performed a

two-tailed Welch’s t test, and found that the random and worst-case sets could not be

distinguished (p-value 0.34, average p-value of subgroup analysis 0.31). In other words, the

fact that a problem presents a very small minimum spectral gap does not necessarily indicate

it will require a long runtime. This apparently contradictory statement might be explained

by the fact that the O(∆−2) scaling in relation to the spectral gap refers to the perfectly

adiabatic algorithm, while in practical terms it is not necessary to guarantee that the final
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FIG. 4: (A, B). Distributions of the expected quantum annealing runtime T of the

worst-case (A) and random (B) 3D sets. (C, D). Least-squares fit of subsamples of the

data to different functional models for the worst-case (C) and random (D) sets.

state has a large fidelity with the ground state, but rather to ensure that it has a sizeable

amplitude in order to obtain the expected result after enough trials. Another possibility to

note is that within the range of problem sizes we inspect there may be only one (or a few)

instances of the minimum (or near-minimum) gap occurring during the adiabatic sweep,

whereas for large problems a near-minimum gap may occur at multiple points. In addition,

the decrease by five orders of magnitude in 2D gaps discussed earlier is also markedly absent

from Figures 3A and 3B.

We performed a scaling analysis identical to the previous section, finding that, for all

cases, either the exponential model is selected over the polynomial, or there is not a signifi-

cant difference between both of them (see Tables IV to VII in Appendix A). In particular, in

2D the polynomial model xα (with α ≈ 0.65) and the exponential model eαx (with α ≈ 0.15

cannot be separated. In 3D, an exponential model eαx with α ≈ 0.45 is selected with high

significance.

Our findings suggest that the protein lattice problem is not as severely affected by the
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ρ 2D ρ 3D R 2D R 3D

Optimised time -0.66 -0.44 0.52 0.38

Baseline -0.73 -0.34 0.62 0.30

TABLE I: Correlation coefficients between expected runtime and gap, for the results

obtaining optimising the individual runtime and the results obtained with a fixed runtime

of 1,000 a.u. ρ is Spearman’s rank correlation coefficient between ∆ and T , which

describes the monotonic relationship between the two variables (ρ = +1 is perfectly

monotonic, ρ = −1 is perfectly inverse monotonic). R is Pearson’s correlation coefficient

between log10

(
1

∆2

)
and log10 T

vanishing of the spectral gap, as might have been expected. Problems with gaps smaller

than 10−2 a.u. (and down to 10−8 a.u.) do not take significantly longer than problems

with a median gap of 0.22 a.u. Moreover, we have established that the adiabatic algorithm

displays an exponential scaling, albeit with a small rate constant. This analysis suggests

that the adiabatic algorithm has a milder scaling than previously expected.

C. Comparison with simulated annealing

We have observed that quantum annealing requires exponentially growing runtimes to

find the ground state of a protein lattice model, even in the small range of lengths explored in

our dataset (see Figures 3 and 4). Assuming this remains true of larger systems, as one would

expect, it precludes an exponential speedup, since enumerating all possible conformations

of a lattice model has the same asymptotic complexity. However, an algorithm which scales

significantly better, that is, with a far smaller exponential rate α than the classical case

could still be useful for practical applications.

In this section, we compare quantum annealing with classical simulated annealing using

the data displayed in Figures 5 and 6. Unlike other comparisons of quantum annealing and

classical simulated annealing (e.g. [39]), we have not constrained the classical approach to

solve a problem in the Ising form. More importantly, we consider a NP-hard problem, as

opposed to previous work by Albash et al. [39] that considered simpler problems.

The distributions presented in Figures 5B and 6B show a rapidly growing number of



11

6 7 8 9

Sequence length [aa]

2.5

3.0

3.5

4.0

4.5

5.0
lo

g
1

0
N

6 7 8 9

Sequence length [aa]

2.5

3.0

3.5

4.0

4.5

5.0

lo
g

1
0
N

0-10% 10-25% 25-50% 50-75% 75-90% 90-100%

Quantile

0.0

0.2

0.4

0.6

0.8

1.0

α

xα

eαx

eαx
2

eαx
3

0-10% 10-25% 25-50% 50-75% 75-90% 90-100%

Quantile

0.0

0.2

0.4

0.6

0.8

1.0

α

xα

eαx

eαx
2

eαx
3

A B

C D

FIG. 5: (A, B). Distributions of the expected classical simulated annealing number of

evaluations N of the worst-case (A) and random (B) sets. (C, D). Least-squares fit of

subsamples of the data to different functional models for the worst-case (C) and random

(D) sets.

evaluations. Visually, the runtime appears to display worse-than-exponential growth. Our

model comparison analysis (see Tables VIII to XI in Appendix A) finds that, in all cases, the

model fits to a square exponential eαx
2

with a high level of significance (and this behaviour

is reproduced at every quantile).

There are some theoretical arguments (e.g. [40]) which conjecture that simulated an-

nealing converges in exponential time. The square exponential fit found by our statistical

analysis could be an artifact of parameter optimisation (note that we optimise four param-

eters for a single simulated annealing run, as opposed to only one in quantum annealing).

This anticipates that quantum annealing provides a better scaling. Our results are made

stronger by the fact that in this analysis we have considered only the number of evaluations

of the energy function; however, the cost of evaluating this energy increases with growing

length.

These findings suggest that quantum annealing has an improved performance over sim-
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FIG. 6: (A, B). Distributions of the expected classical simulated annealing number of

evaluations N of the worst-case (A) and random (B) sets. (C, D). Least-squares fit of

subsamples of the data to different functional models for the worst-case (C) and random

(D) sets.

ulated annealing. Over the system sizes we examined, the runtime of quantum annealing

scales approximately exponentially, while simulated annealing shows a rapidly growing func-

tion that fits better to a double exponential.

III. DISCUSSION

In this article, we have presented a numerical investigation of the adiabatic quantum algo-

rithm applied to protein lattice models. We have considered nearly 30,000 protein sequences,

each with a unique global energy minimum, which represent realistic protein problems dis-

playing a folded state, but are also high difficulty instances of a NP-hard problem.

We first turned our attention to the minimum spectral gap, a quantity connected the-

oretically to the runtime of a perfect adiabatic computer. We have observed that the gap

for these protein sequences can decrease quickly in magnitude, although the scaling appears
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to be polynomial in the range of sizes considered. The polynomial scaling was confirmed

by several statistical selection criteria (detailed in the Methods section and Appendix A),

although comparison with prior results reported in the literature leads us to hypothesise

that the gap vanishes exponentially. We have also observed that the worst cases decrease

by five orders of magnitude between 6 and 9 amino acids. This numerical evidence shows

that adiabatic evolution of the computer, where the probability of success nears 100%, will

require rapidly growing runtimes and likely be infeasible for worst-case problems.

We then considered optimal adiabatic runs, where the computer is run for a shorter time

to produce a small, but sizeable probability of success that is amplified by repetition. We

have established that this runtime grows exponentially with peptide length, although the

rate of growth was far smaller than the gap analysis suggested. This exponential rate was

found to be approximately equal to 0.15 for 2D examples and approximately 0.75 for 3D

instances. We also found statistical evidence that peptides with very small gaps are not

significantly harder than average cases, and that the exponential rates are almost identical

for these two datasets.

A comparison with classical simulated annealing on our dataset shows that the adiabatic

algorithm is preferable. Statistical modelling seems to suggest that the scaling of simulated

annealing fits best to a square exponential, eαx
2

although theoretical arguments lead us to

expect this behaviour to become exponential with a large rate as problem size increases. This

implies that for large peptide sizes, an adiabatic quantum computer may take significantly

less time than a classical machine running a stochastic algorithm.

One of the reasons why quantum annealing may prove useful for protein folding and

structure prediction is the limited size of interesting problems. More than half the structures

deposited in the Protein DataBank contain fewer than 500 residues, and 80% of the domains

in the CATH database [41] are smaller than 200 residues. Similarly, the average length of a

human protein (from sequences deposited in NCBI) is 480 amino acids. Even if the scaling

of quantum annealing is exponential, as long as the exponential rate is low enough to fold

small proteins or domains in a timely fashion, this approach will be useful for a multitude

of practical problems.

There are other advantages to quantum annealing that could be explored further. When

the adiabatic algorithm fails, the system has been excited to a higher energy state, but

although this will only be a local minimum, it may still be useful. For example, if this result
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is used in a bottom-up approach to explore the conformational space of a protein, it may

still be a good starting point for more complex simulations. In contrast, classical simulated

annealing is not guaranteed to provide a solution that is close to the global minimum.

We believe these results suggest that adiabatic approaches to quantum optimisation may

be a powerful heuristic approach to solve the protein lattice problem. The difficulties of

the quantum approach are shared by the classical simulated annealing approach, while the

scaling is better. Moreover, even in cases where the adiabatic approach fails, it can provide

solutions that despite not being equivalent to the global minimum, are very close to it, and

may be useful in a subsequent refinement procedure. These findings offer encouragement

for further research in quantum protein lattice folding and other hybrid quantum-classical

algorithms for protein structure prediction.

IV. METHODS

A. Problem instance generation

Small peptide sequences with a unique global energy minimum (UGEM) have been shown

to display the properties of real proteins [28]. To produce a large dataset of UGEM problem

instances, we generated protein sequences by random sampling with replacement of the 20

standard amino acids (ARNDCQEGHILKMFPSTWYV). The states of these instances were

enumerated by a brute force algorithm, scoring the energies using the Miyazawa-Jernigan

20-amino acid model [42], and all the sequences with two or more non-equivalent minimum

energy conformations were rejected.

These sequences have to be mapped to an algebraic expression representing the couplings

between individual spins in a programmable Ising model. This expression is often known as

a Polynomial Unconstrained Binary Optimisation (PUBO) [43]. We employ here the turn

encoding approach by Babbush et al. [20], which displays the highest reported efficiency

in the number of qubits. We employed a modified version of SymEngine [44], a computer

algebra system (CAS) developed in C++, to build the Hamiltonians. This modified version

exploits the idempotency of binary variables leading to up to a five orders of magnitude

speedup.

The code used to produce these Hamiltonians, as well as the modified version of



15

SymEngine, are available at https://github.com/couteiral/proteinham.

B. Gap evaluation

We studied the protein Hamiltonians using numerical diagonalisation. An arbitrary

Hamiltonian can be represented by a 2N × 2N matrix, which can reach several terabytes

for some of the peptides in our study. However, every annealing trajectory in this study can

be represented by a time-dependent operator of the form:

H(t) =

(
1− t

T

)
Hstart +

t

T
Hprotein (1)

Hstart =
N∑
i=1

(I − σxi ) (2)

where T is the total annealing time, I is the identity operator in the N -spin space i.e.

I = I1 ⊗ I2 ⊗ . . . IN , σxi is the Pauli X matrix applied to the ith spin in N -spin space, i.e.

σxi =
⊗i−1

k=1 I⊗σx⊗
⊗N

k=i+1 I, and t is the instantaneous time, the independent variable. For

convenience, since energy levels do not depend on annealing speed, we define the annealing

progress s = t
T

. The choice of annealing trajectory is motivated by early proposals [12],

and is the only available trajectory in D-Wave processors [45]. The relative disadvantage of

stoquastic Hamiltonians of the form in equation 2 has been discussed elsewhere [29, 46, 47].

The annealing trajectory defined by equations 1 and 2 can be represented by matrices

whose sparsity grows as O(2N). Sparse matrix methods allow improvements of three to

four orders of magnitudes in memory usage. We used the Krylov-Schur method [48, 49], as

implemented in the SLEPc package [48, 50], to calculate the eigenvalues at different times

of the annealing trajectory. We computed the eigenvalues in increments of 0.1 units, and

interpolated the results using cubic splines. The gap was found as the minimum energy

difference between every curve that ran into the ground state at the end of the evolution,

and any other curve.

C. Quantum annealing simulation

We simulated an idealised quantum annealer at zero temperature, in the absence of noise,

and with perfect control over couplings. This was achieved by numerical integration of the

https://github.com/couteiral/proteinham
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time-dependent Schrödinger equation:

d |Ψ〉
dt

= −iH(t) |Ψ〉 (3)

were, H(t) is the time-dependent Hamiltonian defined in equation 1. We integrated

this equation using the Runge-Kutta 5th order method with adaptive timestepping, as im-

plemented in the PETSc package [51, 52]. Runge-Kutta methods have been previously

validated for studying adiabatic evolution [53]. At the end of the evolution, the final state

|Ψ(t = T )〉 is a vector of amplitudes Ψi whose square modulus |Ψ2
i | is the probability of

measuring a particular binary string in the device.

Several authors have attested the need to use optimal time-to-solution (TTS) metrics

to assess the scaling of an adiabatic algorithm, e.g. [36, 39]. We employed the Bayesian

optimisation package GPyOpt [38] to optimise the annealing time T . We defined an opti-

misation domain between 0.1 and 1,000 a.u., which was considered acceptable after initial

exploration, and ran the algorithm for a maximum of 50 iterations. Default parameters were

used otherwise.

D. Classical simulated annealing

We implemented an energy routine in C++ and tested it against several manual exam-

ples. We employed the gsl siman.h module of the GNU Scientific Library for the classical

simulated annealing subroutine. Parameters were optimised using Bayesian optimisation as

in the previous subsection. The probability of success was estimated from a sample of 100

replicas.

E. Statistical analysis

We performed a non-linear least squares fit of our data using the lmfit library [54]. We

considered four functional models: polynomial, xα, exponential, eαx, square exponential,

eαx
2

and cubic exponential, eαx
3
. The function was augmented by a constant β, which was

set to the average value of the dependent variable for a given length.

We employed three statistical model selection criteria to decide the function that provided

the best explanation of the data: the Akaike information criterion (AIC), the Bayesian
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information criterion (BIC), and the mean squared error (MSE) of the means. The last

method was chosen because of the nature of the dataset: the independent variable is discrete,

hence the model only provides the prediction for 4 values (3 in 3D). Thus, understanding

how the real means differ from the predicted means provides useful information for model

selection.

In addition, in the analysis of quantum annealing and classical simulated annealing data,

given the reduced size, we applied an outlier removal procedure: at every length, we kept

only datapoints contained in µ± 2.5σ. This procedure was not necessary in the analysis of

spectral gap data, given the amount of data.
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