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We conjecture and present evidence that any effective field theory coupled to gravity in flat space admits 
at most a finite number of fine tunings, depending on the amount of supersymmetry and spacetime 
dimension. In particular, this means that there are infinitely many non-trivial correlations between 
the allowed deformations of a given effective field theory in the gravitational context. Fine tuning of 
parameters allows us to obtain some consistent CFTs in the IR limit of gravitational theories. Related 
to finiteness of fine tunings, we conjecture that except for a finite number of CFTs, the rest cannot be 
consistently coupled to gravity and belong to the swampland. Moreover, we argue that even though 
matter sectors coupled to gravity may sometimes be partially sequestered, there is an irreducible level of 
mixing between them, correlating and coupling infinitely many operators between these sectors.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The standard lore of effective field theory organizes physics ac-
cording to energy scales. Once the ultraviolet (UV) boundary condi-
tions of an effective field theory are specified, the consequences for 
low energy physics in principle follow from an analysis of renor-
malization group (RG) flow. It is natural to ask whether the param-
eters of the UV completion are completely arbitrary “order one” 
constants, or whether additional structure is required for consis-
tency with quantum gravity. This has direct bearing on a number 
of hierarchy problems in particle physics, including the radiative 
stability of the Higgs mass relative to the Planck scale and the im-
pact of extra sectors on the Standard Models of particle physics 
and cosmology.

In this note we argue that for a given effective field theory in 
flat space coupled to quantum gravity in the same spacetime di-
mension,1 only a finite number of parameters can ever be tuned. More 
precisely, in an effective field theory with cutoff the Planck scale 
Mpl and Lagrangian:

Leff =
∑

i

gi

Mνi
pl

Oi, (1)
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1 Note that a stack of D3-branes in 10D flat space would not satisfy this condition.
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we argue that the infinite set of couplings gi are all determined 
by a finite list of parameters in the effective field theory. More-
over, we conjecture this number only depends on the number of 
supersymmetries and the macroscopic dimension of spacetime.

The primary evidence for our conjecture is that there appear 
to be a finite number of Minkowski vacua arising in string the-
ory compactifications. For example, it is widely believed that there 
are a finite number of Calabi-Yau threefolds, and tadpole cancella-
tion conditions enforce sharp upper bounds on the number of flux 
quanta/discrete parameters. These statements have natural gener-
alizations in the context of M- and F-theory compactifications as 
well. For related discussion of finiteness in the string theory land-
scape, see reference [1].

Even so, the consequences for low energy physics of these sim-
ple observations appear to have not been completely spelled out. 
Finiteness in the number of compactification geometries means 
there are also at most a finite number of tunable parameters in any 
given effective field theory. This greatly limits the structure of low 
energy effective field theories which can emerge in the infrared 
(IR) of a consistent string compactification. For example, assum-
ing that there are only a finite number of conformal field theories 
(CFTs) for a fixed total number of relevant deformations, it implies 
there are a finite number of conformal fixed points which can be 
realized in quantum gravity. Additionally, distinct field theory sec-
tors which are decoupled in the Mpl → ∞ limit are necessarily 
always coupled when gravity is not switched off. While this lat-
ter statement may not at first appear surprising, finiteness in the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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number of allowed compactifications and their moduli means that 
there is an infinite amount of correlated mixing between extra sec-
tors.

The plan in the rest of this note will be to expand on the above 
points. First, we discuss finiteness of the number of CFTs which 
can consistently couple to gravity, also illustrating with examples 
in different dimensions and amounts of supersymmetry. We then 
discuss some additional phenomenological consequences of having 
a finite number of tunable couplings.

2. CFTs and quantum gravity

In this section we consider the coupling of a conformal field 
theory (CFT) in flat space to gravity. CFTs are central to many as-
pects of quantum field theory (QFT), because most QFTs can be 
viewed as moving away from, or towards a conformal fixed point. 
More precisely, by “coupling a CFT to gravity” we mean there is 
a gravitational theory with an IR limit which includes the corre-
sponding CFT.

The passage towards and away from a fixed point is dictated by 
its space of possible deformations. In general terms, such deforma-
tions can arise either through varying the couplings of the CFT or 
through operator VEVs. We refer to these as the “parameters” of 
the CFT.

If we consider the coupling of such a theory to gravity, the 
parameters controlling such deformations will correspond to dy-
namical fields, as in general any quantum gravitational theory is 
conjectured to have no free parameters [2]. Indeed, in the context 
of string compactification, one should expect that all of the pa-
rameters appearing in a putative CFT originate from vevs of fields 
which are light relative to the Planck scale. Such fields could origi-
nate from operators within the CFT itself, or from fields outside of 
the CFT coupled to gravity. But such parameters cannot be tuned 
arbitrarily. For quantum gravity in Minkowski space, this follows 
directly from the conjectured finiteness of such vacua in string 
theory [2].2 Combining these statements, we learn that of the a 
priori infinitely many possible deformations of a CFT, only a finite
number of them can be fine tuned, and the rest are determined in 
terms of the fine tuned ones!

This in particular implies that if we want to obtain a CFT in the 
infrared limit of a gravitational theory, it had better be the case 
that the total number of relevant deformations and VEVs that takes 
us away from the conformal point are not too large. Otherwise, we 
may not have enough light modes in the gravity theory to fine 
tune in order to realize the CFT point. Assuming that for a fixed 
number of relevant deformations there are only a finite number of 
CFTs, which seems quite reasonable, we thus conclude that only a 
finite number of CFTs can be realized as IR limits of a gravitational 
theory. In other words nearly all CFTs belong to the swampland!

Of course it is not a priori clear that we can get any CFT in 
the infrared limit of a gravitational theory. As we shortly explain, 
however, these are abundant in string constructions, and arise by 
tuning all relevant deformations to zero in a given string compact-
ification. Moreover, we find that this fine tuning is not limited only 
to relevant deformations and in some cases some of the irrelevant 
operators can also be tuned to zero. But we will find that almost 
all irrelevant parameters are necessarily switched on in quantum 
gravity.

Having spelled out the general reason to expect such conjec-
tures to be true, we now turn to explicit examples illustrating the 
main points.

2 For AdS vacua [3] there is a refined version of this conjecture which appears 
to hold. The reason for the caveat is that even though fluxes allow one to tune the 
size of the AdS space, this is correlated with the size of the extra dimensions.
3. Examples

We organize our discussion of examples according to the num-
ber of spacetime dimensions, as well as the number of supersym-
metries.

Consider first the case of 6D SCFTs. Such theories admit either 
N = (2, 0) or N = (1, 0) supersymmetry, namely sixteen or eight 
real supercharges, respectively. In both cases, there is a conjec-
tural classification of the resulting theories which can result from 
string/F-theory compactification. An interesting feature of these ex-
amples is that there are no supersymmetric relevant or marginal 
deformations of these theories [4,5]. Instead, all the parameters are 
obtained from operator VEVs.

For interacting 6D SCFTs with (2, 0) supersymmetry there is 
a famous ADE classification which is obtained from compactifica-
tions of type IIB on hyperkahler geometries with an ADE singular-
ity [6]. Such geometries all have the local presentation C2/�AD E
with �AD E ⊂ SU (2) a finite order subgroup.3 All other (2, 0) SCFTs 
are then obtained by taking tensor products of these basic build-
ing blocks. Such theories are then classified by semi-simple Lie 
algebras g1 × ... × gn with each gi a simple ADE Lie algebra. In 
all these cases, the space of possible deformations is controlled by 
the number of tensor multiplets which is given by the rank of the 
corresponding semi-simple Lie algebra. This leads to an infinite list 
of such SCFTs.

Even so, nearly all of these theories belong to the 6D swamp-
land since they cannot be coupled to 6D (2, 0) supergravity. In this 
case, the total rank of the semi-simple Lie algebra g1 × ... × gn is 
bounded above by:

rank(g1 × ... × gn) ≤ 21 (2)

This follows from anomaly cancellation for (2, 0) supergravity cou-
pled to matter fields, which in this case fixes the total number of 
tensor multiplets to be 21 (see reference [8]). Thus, any non-trivial 
CFTs that can emerge must fit within this constraint. This is also 
consistent with the fact that to reach a (2, 0) supergravity theory 
from compactification of type IIB strings in the first place, we need 
to use a K3 surface, and there is only one manifold of this topol-
ogy.

In fact, one can in principle also classify all possible 6D SCFTs 
which can be obtained from singular limits in the moduli space of 
IIB compactified on a K3 surface (see e.g. [6,9])4:

MI I B � O (�5,21)\O (5,21)/(O (5) × O (21)). (3)

To get a 6D SCFT, we have the necessary condition that the root 
system for the corresponding semi-simple Lie algebra embeds in 
�5,21. As two examples in this class, note that we can get a single 
group corresponding to the D21 theory. As another example, note 
that we can get three decoupled SCFTs, E8 × E8 × A5 coupled to 
(2, 0) supergravity in six dimensions. Both examples saturate the 
upper bound of 21 tensor multiplets, and the latter example also 
shows we can have multiple decoupled CFTs in the deep infrared.

Consider next 6D theories with minimal N = (1, 0) supersym-
metry. Anomaly cancellation, along with physical constraints such 
as the requirement that all kinetic energy terms remain positive 
definite imposes stringent conditions on admissible low energy 
theories. Embedding such theories in string theory imposes addi-
tional limitations, cutting this to a finite list of possibilities [10]. 

3 There is also some choice in the topological data of these theories associated 
with the spectrum of various defect operators (see e.g. [7]). This will not play an 
important role in our considerations.

4 Observe also that compactifying on a further S1 leads to a dual description in 
terms of heterotic strings on T 5.
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The broadest class of UV completions is obtained via compactifica-
tions of F-theory (see e.g. [10–12] as well as the review [13]). In 
F-theory, all such vacua are realized by a choice of an elliptically 
fibered Calabi-Yau threefold with base B a Kähler surface. The di-
mension of the tensor branch moduli space is h1,1(B) − 1 while 
the number of hypermultiplets of the Higgs branch moduli space 
is counted by h2,1 of the Calabi-Yau threefold. 6D SCFT sectors arise 
from simultaneously collapsing P 1’s in the base B , and a classifica-
tion of the infinite list of possibilities was completed in references 
[14,15] (see [16] for a review). It is also possible to couple some 
of these 6D CFTs to gravity (see e.g. [17–19]). An example of this 
sort is to take the Calabi-Yau threefold (T 2 × T 2 × T 2)/Z3, where 
we tune the complex structure of each T 2 to admit a Z3 symme-
try. We will revisit this example in lower dimensions as obtained 
by compactification on further circles.

Nevertheless, almost all of the 6D (1, 0) CFTs, with the excep-
tion of a finite number of them, require a non-compact Calabi-Yau 
threefold. This means they cannot be dynamically coupled to grav-
ity in six dimensions. Let us briefly review this finiteness property. 
There are general finiteness results on the existence of elliptically 
fibered Calabi-Yau threefolds [21,22] which in turn imply upper 
bounds on the number of tensor, vector and hyper multiplets [10]. 
While the exact upper bound is unknown, in practice, the largest 
dimension for the tensor branch moduli space is 193, as found in 
[23,24], which fits with general statements available for F-theory 
models with a toric base [12]. Indeed, there is a rigorous upper 
bound on the Hodge numbers h1,1 and h2,1 of elliptic threefolds 
with a toric base [20], and there is a general expectation that mov-
ing beyond the toric case will not greatly affect these bounds. For 
our present purposes, this of course means that the number of 
6D SCFTs which can be consistently coupled to 6D supergravity 
is also finite. Despite this finiteness in the allowed realizations of 
(1, 0) SCFTs coupled to gravity arising in string theory, anomaly 
cancellation constraints allow in principle infinitely many possible 
SCFTs coupling to gravity [10]. However, at least some of these infi-
nite families can be ruled out by additional consistency conditions 
[25], and it is natural to conjecture that when all constraints are 
imposed only a finite number of them will survive.

In the case of 5D SCFTs, the superconformal algebra allows for 
N = 1 supersymmetry, namely eight real supercharges. One way 
to generate a large class of examples is to consider M-theory com-
pactified on a Calabi-Yau threefold with at least one divisor which 
collapses to a point at finite distance in moduli space. Such singu-
larities are expected to generate most, if not all of the possible 5D 
SCFTs. The general point is that these canonical singularities are 
localized at isolated patches of the Calabi-Yau, but are coupled to 
one another by effects inherited from 11D supergravity.

One way to generate a large class of examples of this sort is 
to take a 6D (1, 0) SCFT and compactify it on a circle [26,27]. An 
illustrative example of this type is given by the Calabi-Yau three-
fold (T 2 × T 2 × T 2)/Z3, where we tune the complex structure of 
each T 2 to admit a Z3 symmetry. There are precisely 27 orbifold 
fixed points, each of which is locally characterized by the geometry 
C3/Z3 which in the resolved phase is described by a P 2 collaps-
ing to zero size. In the limit where the Calabi-Yau threefold decom-
pactifies, we have 27 5D SCFTs decoupled from 5D supergravity, 
each of which is described by a 5D SCFT [28,29]. The Coulomb 
branch is given by 27 5D N = 1 vector multiplets, each with a 
real scalar. The Coulomb branch parameter dictates the size of the 
P 2, and there are BPS states obtained from M2-branes wrapped on 
curves in each P 2. In particular, even in the limit where we cou-
ple to quantum gravity, all 27 Coulomb branch parameters can be 
tuned to zero independently.

But it is also true that when gravity is switched on, these differ-
ent sectors cannot be completely decoupled. To see this, suppose 
we go away from the CFT point by moving onto the Coulomb 
branch, giving finite size to each P 2. In this case, some of the 
BPS states which were previously massless at the CFT point (cor-
responding to M2-branes wrapped on curves inside each P 2) now 
acquire a mass proportional to mi ∼ φi the Coulomb branch pa-
rameter. Here, we have normalized the scalar fields to have mass 
dimension one and fermions to have dimension two. If we denote 
by L the characteristic length scale of the T 2’s, there is a Kaluza-
Klein (KK) mass scale MK K ∼ 1/L. Integrating out the whole tower 
of KK states from compactification of the 11D supergravity model 
will induce various higher-dimension operators in the 5D effective 
field theory. This includes higher derivative interactions as well 
as four-fermion interactions. Indeed, letting ψi denote one such 
fermionic field describing 5D excitations of an M2-brane wrapped 
on a curve, it is not difficult to see that exchange of the KK tower 
of 11D supergravity modes induces interactions between fermions 
in previously decoupled sectors of the form5:

Lmix ⊃ mim j

M3
pl M

2
K K

ψ iψiψ jψ j, (4)

with Mpl the 5D Planck scale. Since we also have mi ∼ φi , we learn 
that there is a mixing term of the form:

Lmix ⊃ CijOiO j (5)

where Oi = φiψ iψi , O j = φ jψ jψ j , and

Cij ∼ 1

M5
pl

(
Mpl

MK K

)2

. (6)

Observe that although naive dimensional analysis might suggest 
Cij ∼ 1/M5

pl , this is really a lower bound on the strength of this 
interaction. The 5D Planck scale is related to the 11D Planck scale 
M11D and the Kaluza-Klein scale MK K via:
(

MK K

M11D

)6 (
Mpl

M11D

)3

∼ 1. (7)

Since we have assumed L is large relative to the 11D Planck length 
anyway, this also means:

Mpl > M11D > MK K (8)

So returning to line (6), we learn that Cij � 1/M5
pl . In other words 

the strength of the interaction between two CFTs is at the very 
least dictated by the Planck scale, but there can be additional en-
hancement when there is a hierarchy between the Kaluza-Klein 
scale and the 5D Planck scale. This example also illustrates that al-
though we can sometimes tune the relevant deformations to zero 
(reaching a fixed point), irrelevant deformations and interactions 
between different CFTs cannot be tuned away.

Let us now turn to 4D examples. Here, we consider stringy ex-
amples with N = 4, 2, 1 supersymmetries, and briefly comment on 
the non-supersymmetric case.

Consider first 4D N = 4 theories. These SCFTs are labelled by 
a choice of semi-simple gauge group and can all be viewed as 
descending from compactification of the 6D (2, 0) theories on a 
suitable T 2 (possibly with twists). Coupling such sectors to super-
gravity has been studied in the literature (see e.g. [31]) but does 
not appear to impose any significant constraint on the actual mat-
ter content of the theory.

5 One way to derive this coupling is to consider the force between wrapped 
M2-branes and anti-M2-branes.
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By contrast, the stringy list of possibilities is quite limited. 
Much as in our discussion of 6D (2, 0) theories coupled to grav-
ity and the bound of line (2), the total rank is bounded above by:

r ≤ 22. (9)

One way to get the maximal rank is by compactification of type II 
strings on K 3 × T 2 or equivalently heterotic strings on T 6, lead-
ing to the Narain charge lattice �6,22 with a gauge group of total 
rank 22. The 6 × 22 deformations of the Narain lattice correspond 
to deforming the N = 4 matter sectors with the Coulomb branch 
VEVs in the Cartan of the group. In this case there are no relevant 
deformations of N = 4 SCFTs preserving N = 4 SUSY. There are 
also other compactifications known where we can also get reduced 
ranks, as in CHL strings [30] by including automorphism twists of 
heterotic strings after compactification on torii. Thus it is natural 
to conjecture that r = 22 is the maximum rank of N = 4 super-
symmetric theories that can be coupled to N = 4 supergravity in 
flat space.

Let us now proceed to 4D N = 2 SCFTs coupled to N = 2 su-
pergravity. There are a number of ways to generate examples of 
this sort. The largest known class of examples is obtained from 
compactification of type II strings on Calabi-Yau threefolds. Let us 
in particular consider type IIB on Calabi-Yau threefolds. The non-
compact versions of these manifolds near singularities are known 
to lead in the IR to 4D N = 2 SCFTs [33] (see also [34–37]). For 
example, if we consider hypersurface singularities of the type:

uv + f (z1, z2) = 0 (10)

where u, v, z1, z2 ∈ C and f (z1, z2) is a quasihomogeneous poly-
nomial, we get an SCFT in the IR. Let us assign weights q1, q2 to 
z1, z2 such that

f (λq1 z1, λ
q2 z2) = λ f (z1, z2). (11)

Deformations away from the fixed point correspond to adding 
monomials in za

1zb
2 to f (z1, z2). Such a deformation has weight 

aq1 + bq2. We can organize the various types of deformation away 
from the fixed point using the quantity w = (1 − q1 − q2). In par-
ticular, we have:

Operator VEVs: 0 ≤ aq1 + bq2 < w (12)

Relevant Deformation: w ≤ aq1 + bq2 < 1 (13)

Marginal Deformation: aq1 + bq2 = 1 (14)

Irrelevant Deformation: 1 < aq1 + bq2 ≤ 2w. (15)

There are, of course many additional deformations which are auto-
matically set to zero in the deformation ring. These are all irrele-
vant operator deformations of the SCFT.

To illustrate, consider the special case:

f (z1, z2) = zn
1 + zn

2 (16)

which is known as the (An−1, An−1) Argyres-Douglas theory (see 
e.g. [32]). In this case q1 = q2 = 1/n and monomials in the sin-
gularity deformation ring are given by za

1zb
2 which has weight 

(a + b)/n. The ring of deformations is generated by those mono-
mials with 0 ≤ a, b ≤ n − 2. In the physical theory, these sort ac-
cording to the following inequalities:

Operator VEVs: 0 ≤ a + b < n − 2 (17)

Relevant Deformation: n − 2 ≤ a + b < n (18)

Marginal Deformation: a + b = n (19)

Irrelevant Deformation: n < a + b ≤ 2n − 4. (20)
We can now ask whether this and related examples of N = 2
SCFTs can be coupled to quantum gravity. From the perspective 
of string compactification, this is equivalent to asking whether we 
can find such singularities in compact Calabi-Yau threefolds.6 First 
of all, since it is widely believed that there are only a finite number 
of Calabi-Yau threefolds, this would immediately imply only a finite 
number of such models can appear in quantum gravity. Far more 
non-trivial is that this set is non-empty: some of these examples 
consistently embed in compact examples.

To illustrate, consider type IIB on a Calabi-Yau threefold given 
by an elliptic fibration over a base P 1 × P 1. The minimal Weier-
strass model for this geometry is:

y2 = x3 + xf8,8 + g12,12 (21)

where f8,8 is homogeneous of bidegree (8, 8), i.e., it is a poly-
nomial of degree 8 in homogeneous coordinates of each P 1, and 
g12,12 has bidegree (12, 12). Consider, in the affine patch near the 
origin the following choices:

f8,8 = −3

4
+ βz8

1z8
2 (22)

g12,12 = 1

4
+ z12

1 + z12
2 . (23)

The higher order term in line (22) corresponds to an irrelevant 
deformation of the local singularity structure near z1 = z2 = 0. The 
local geometry after a suitable coordinate shift in x and y, results 
in the (A11, A11) Argyres-Douglas theory:

uv + z12
1 + z12

2 = 0. (24)

As can be seen from this example in a quantum theory of grav-
ity we can fine tune not only all the relevant operator VEVs and 
deformations but also some of the irrelevant operators that could 
appear. For example, keeping the higher order terms we see that 
some of the irrelevant deformations are also set to zero and the 
first irrelevant term that appears in f8,8 is z8

1z8
2.

Descending to theories with even less supersymmetry, there are 
several known constructions of 4D N = 1 SCFTs in limits where 4D 
gravity is decoupled. This includes compactifications of (1, 0) the-
ories from 6D, various singular limits in local geometries, as well 
as brane probes of singular geometries and intersecting branes.

Coupling to gravity is more challenging because in addition to 
specifying a background geometry, it is also necessary to include 
the effects of fluxes and non-perturbative contributions to the low 
energy effective theory including possible generation of superpo-
tentials. In a globally complete model the number of flux quanta 
and branes which can be introduced is also strongly constrained 
by tadpole cancellation considerations [38]. This again imposes a 
finiteness condition on possible SCFTs coupled to gravity. Finally, 
while it would of course be interesting to discuss stringy examples 
with completely broken supersymmetry in flat space, there are at 
present no completely controlled examples of this sort. We leave 
this topic for future work.

4. Phenomenological considerations

Our main conjecture is that embedding an effective field theory 
in quantum gravity only allows a finite number of tunings. From 

6 Note that the non-renormalization theorems of type IIB strings imply that the 
complex structures, which are part of vector multiplets, do not get deformed by 
quantum corrections since the string coupling is in a hypermultiplet. In other words, 
these statements are exact quantum mechanically as well.
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this perspective, it is natural to ask about the potential conse-
quences for particle physics and cosmology. Here, we discuss two 
such aspects, one connected with the possibility of having addi-
tional decoupled extra sectors, and also the extent to which any 
effective field theory in quantum gravity can be fine tuned.

In the context of stringy particle physics models, there can be 
many extra sectors beyond the Standard Model. Such sectors pro-
vide dark matter candidates, and have also been considered in the 
model building literature as a possible means to source supersym-
metry breaking effects. Sometimes the dynamics of these extra 
sectors can lead to problematic effects such as large flavor chang-
ing neutral currents so it is also common to posit that potentially 
problematic higher dimension operators can be suppressed, that is, 
“sequestered” (see e.g. [39]). Some aspects of sequestering in string 
theory have been studied in [40,41]. It was found in reference [42]
that there is often some mixing for different field theory sectors, 
even when placed in different warped throats. Our conjecture on 
the appearance of only a finite number of fine tunings means there 
is an irreducible amount of mixing between any two QFT sectors in 
flat space which will happen with at least the strengths given by 
naive expectations of gravitational effects related to inverse pow-
ers of Mpl . On the constructive side, we note that we can have 
partially sequestered sectors where relevant operators are tuned to 
zero.

This circle of ideas is also of relevance in the specific con-
text of stringy cosmological quintessence models, particularly as 
motivated by general proposed swampland constraints on dark en-
ergy [43,44] (see also [46,47]). As discussed there, to be consistent 
with observations, a quintessence field can couple strongly only to 
the dark sector, and it is natural to view it as part of the dark 
sector. The present considerations allow for some level of seques-
tering, and suggest a general avenue for exploring this class of dark 
matter/quintessence models which are very weakly coupled to the 
visible sector.

Finally, the fact that we can only tune a finite number of pa-
rameters in our low energy effective field theory also has bearing 
on the stability of the electroweak scale in the Standard Model, 
namely that the mass of the Higgs is far smaller than the Planck 
scale. One may naturally ask if quantum gravity has any bearing 
on this question. Naively it may appear that it does not; how-
ever there have already been suggestions that the small value of 
neutrino masses may be related to a refined version of the weak 
gravity conjecture [45,48,49]. Similarly, it has been suggested that 
the resolution of the hierarchy problem may have a swampland ex-
planation [49,50]. Such a fine tuning can arise in a quantum theory 
of gravity, so at least the present conjectures are not inconsistent 
with large hierarchies of scale. Needless to say, it is reassuring that 
the conditions we are proposing here are perfectly compatible with 
our observed Universe!
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