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 Section 4: Electrostatics of Dielectrics 
Dielectrics and Polarizability 

There are two large classes of substances: conductors and insulators (or dielectrics). In contrast to metals 
where charges are free to move throughout the material, in dielectrics all the charges are attached to 
specific atoms and molecules. These charges are known as bound charges. These charges are able, 
however, to be displaced within an atom or a molecule. Such microscopic displacements are not as 
dramatic as the rearrangement of charge in a conductor, but their cumulative effects account for the 
characteristic behavior of dielectric materials.  

When an external electric field is applied to a dielectric material this material becomes polarized, which 
means that acquires a dipole moment. This property of dielectrics is known as polarizability. Basically, 
polarizability is a consequence of the fact that molecules, which are the building blocks of all substances, 
are composed of both positive charges (nuclei) and negative charges (electrons). When an electric field 
acts on a molecule, the positive charges are displaced along the field, while the negative charges are 
displaced in a direction opposite to that of the field. The effect is therefore to pull the opposite charges 
apart, i.e., to polarize the molecule. 

It is convenient to define the polarizability  α of an atom in terms of the local electric field at the atom: 

 locα=p E . (4.1) 
where p is the dipole moment. For a non-spherical atom α will be a tensor. 

There are different types of polarization processes, depending on the structure of the molecules which 
constitute the solid. If the molecule has a permanent moment, i.e., a moment is present even in the 
absence of an electric field, we speak of a dipolar molecule, and a dipolar substance. 

 

 

 

 

 

 

 

 
Fig.4.1 (a) The water molecule (b) CO2 molecule. 

An example of a dipolar molecule is the H2O molecule in Fig.4.1a. The dipole moments of the two OH 
bonds add vectorially to give a nonvanishing net dipole moment. Some molecules are nondipolar, 
possessing no permanent moments; a common example is the CO2 molecule in Fig.4.1b. The moments of 
the two CO bonds cancel each other because of the rectilinear shape of the molecule, resulting in a zero 
net dipole moment in the absence of electric field. 

Despite the fact that the individual molecules in a dipolar substance have permanent moments, the net 
polarization vanishes in the absence of an external field because the molecular moments are randomly 
oriented, resulting in a complete cancellation of the polarization. When a field is applied to the substance, 
however, the molecular dipoles tend to align with the field. The reason is that the energy of a dipole p in a 
local external field Eloc is locU = − ⋅p E . It has a minimum when the dipole is parallel to the field. This 
results in a net non-vanishing dipole moment of the material. This mechanism for polarizability is called 
dipolar polarizability. 
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If the molecule contains ionic bonds, then the field tends to stretch the lengths of these bonds. This occurs 
in NaCl, for instance, because the field tends to displace the positive ion Na+ to the right (see Fig.4.2), and 
the negative ion Cl- to the left, resulting in a stretching in the length of the bond. The effect of this change 
in length is to produce a net dipole moment in the unit cell where previously there was none. Since the 
polarization here is due to the relative displacements of oppositely charged ions, we speak of ionic 
polarizability. 
 
 

 

 
Fig.4.2 Ionic polarization in NaCl. The field displaces Na+ and Cl- ions in opposite directions, 
changing the bond length. 

Ionic polarizability exists whenever the substance is either ionic, as in NaCl, or dipolar, as in H2O, 
because in each of these classes there are ionic bonds present. But in substances in which such bonds are 
missing - such as Si and Ge - ionic polarizability is absent. 

The third type of polarizability arises because the individual ions or atoms in a molecule are themselves 
polarized by the field. In the case of NaCl, each of the Na + and Cl - ions are polarized. Thus the Na+ ion 
is polarized because the electrons in its various shells are displaced to the left relative to the nucleus, as 
shown in Fig.4.3. We are clearly speaking here of electronic polarizability. 

Fig. 4.3   Electronic polarization:   (a) Unpolarized atom,   (b) Atom polarized as a result of the field. 

Electronic polarizability arises even in the case of a neutral atom, again because of the relative 
displacement of the orbital electrons. 

In general, therefore, the total polarizability is given by 

 e i dα α α α= + + , (2) 

which is the sum of the electronic, ionic, and dipolar polarizabilities, respectively. The electronic 
contribution is present in any type of substance, but the presence of the other two terms depends on the 
material under consideration. 

The relative magnitudes of the various contributions in (2) are such that in nondipolar, ionic substances 
the electronic part is often of the same order as the ionic. In dipolar substances, however, the greatest 
contribution comes from the dipolar part. This is the case for water, for example.  

Polarization 

If electric field is applied to a medium made up of large number of atoms or molecules, the charges bound in 
each molecule will respond to applied field which will results in the redistribution of charges leading to a 
polarization of the medium. The electric polarization P(r') is defined as the dipole moment per unit volume. 
The polarization is a macroscopic quantity because it involves averaging of the dipole moments over a 
volume which contains many dipoles. We assume that the response of the system to an applied field is 
linear. This excludes ferroelectricity from discussion, but otherwise is no real restriction provided the field 
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strengths do not become extremely large. As a further simplification we suppose that the medium is 
isotropic. Then the induced polarization P is parallel to E with a coefficient of proportionality that is 
independent of direction: 
 0 eε χ=P E . (4.3) 

The constant χe is the electric susceptibility of the medium.  

An important point to note that the electric field which enters eq. (4.3) is the a macroscopic electric field 
which is different from a local electric field entering eq. (4.1). The macroscopic field is the average over 
volume with a size large compared to an atomic size.   

Now we look at the medium from a macroscopic point of view assuming that the medium contains free 
charges characterized by the charge density ρ and bound charges characterized by polarization P. We can 
build up the potential and the field by linear superposition of the contributions from each macroscopically 
small volume element δV at the variable point r'.  The free charge contained in volume δV is ρ(r') δV and 
the dipole moment of δV is P(r')δV. If there are no higher macroscopic multipole moment densities, the 
contribution to the potential δΦ(r,r') caused by the configuration of moments in δV is given without 
approximation by 
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provided r is outside δV.  The first term is the contribution from free charges and the second term is due 
to a volume distribution of dipoles. We now treat  δV as (macroscopically) infinitesimal, put it equal to 
d3r', and integrate over the volume of the dielectric to obtain the potential 
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To simplify this equation we use the identity 
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where ′∇  implies differentiation with respect to r'. This allows us to rewrite Eq. (4.5) as follows: 
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We can take this integral by parts. Taking into account  

 ( ) 1 1( ) ( )
   ′ ′ ′ ′ ′ ′∇ ⋅ = ⋅∇ + ∇ ⋅    ′ ′ ′− − −    

P r P r P r
r r r r r r

, (4.8) 

an integration by parts transforms the potential into 
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We can now use the divergence theorem to transform the third term in eq.(4.9) to the integral over surface 
of the dielectric, which results in 
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As follows from this expression, the polarization of the medium produces an effective charge which can 
be interpreted as a macroscopic bound charge or polarization charge. There are two contributions to the 
bound charge – bulk and surface. The volume charge density is given by  

 ( ) ( )Pρ = −∇ ⋅r P r . (4.11) 

The presence of the divergence of P in the effective charge density can be understood qualitatively. If the 
polarization is nonuniform there can be a net increase or decrease of charge within any small volume. For 
example in Fig.4.4a, at the center of this region, where the tails of the dipoles are concentrated, there is an 
excess of negative charge. 
 

 

 

 

a        b 

Fig. 4.4 Origin of polarization-charge density. (a) bulk charge density due to the divergence of 
polarization; (b) surface charge density due to uncompensated charges of the surface.  

The surface charge density is  

 ( ) ( )Pσ = ⋅r P r n . (4.12) 

This contribution is present even for the uniform polarization within a finite volume. In this case the 
average polarization charge inside the dielectric is zero, because if we take a macroscopic volume, it will 
contain equal amount of positive and negative charges and the net charge will be zero. On the other hand 
if we consider a volume including a boundary perpendicular to the direction of polarization, there is a net 
positive (negative) charge on the surface which is not compensated by charges inside the dielectric, as is 
seen in Fig.4b. Therefore, the polarization charge appears on the surface on the dielectric. 

In deriving Eq.(4.10) we can integrate over all the space. In this case the surface integral (the third term in 
this equation) vanishes due to the assumption of the finite volume of the dielectric. The expression for the 
potential then becomes 

 [ ]
3

0

1( ) ( ) ( )
4 all space

d r ρ
πε

′
′ ′ ′Φ = −∇ ⋅

′−∫r r P r
r r

. (4.13) 

In this case, the surface polarization charge (4.12) is implicitly included in ( )−∇ ⋅P r  due to the abrupt 
change of the polarization at the surface. This can be seen from the following consideration.  

Fig.4.5 

Assume that polarization P(r) has discontinuity at the surface as is shown in Fig.4.5.  Consider a small 
pill box enclosing a small section of the volume and surface of the polarized material. From the 
divergence theorem we have  
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 3( ) ( )
V S

d r da∇⋅ = ⋅∫ ∫P r P r n . (4.14) 

If the region is small enough this results in 

 ( ) 3
out in da d r⋅ − ⋅ = ∇ ⋅P n P n P . (4.15) 

Taking into account that 0out =P  and in =P P  we have  

 3da d r⋅ = −∇ ⋅P n P , (4.16) 

Thus −∇ ⋅P  must have a delta-function at the surface, and we still have the surface polarization charge so 
that on the surface  
 3

P Pda d rσ ρ= . (4.17) 

Thus, the polarization charge can always be represented by   

 Pρ = −∇ ⋅P . (4.18) 

It is important to note that the total polarization charge is always equal to zero. This is the consequence of 
the charge conservation – by inducing an electric polarization in a material we do not change the total 
charge. Mathematically this fact can be easily seen from eq.(4.18) – the integration of the polarization 
charge over any closed surface which enclosed the volume of a polarized material gives zero according to 
the divergence theorem.   

We can, therefore, make a general statement that the presence of the polarization produces an additional 
polarization charge so that the total charge density becomes 

 total free Pρ ρ ρ ρ= + = −∇ ⋅P . (4.19) 

We can therefore, rewrite the expression for the divergence of E as follows:  

 [ ]
0

1 ρ
ε

∇ ⋅ = −∇ ⋅E P . (4.20) 

It is convenient to define the electric displacement D, 

 0ε= +D E P , (4.21) 

Because this field is generated is generated by free charges only. Using the electric displacement  the 
Gauss’s law takes the form 
 ρ∇ ⋅ =D . (4.22) 
In the integral form it reads as follows:  
 3( )

S
V

da d rρ⋅ =∫ ∫D n r


. (4.23) 

This is particularly useful way to represent Gauss’s law because it makes reference only on free charges.  

Connecting D and E is necessary before a solution for the electrostatic potential or fields can be obtained. 
For a linear response of the system (4.3) the displacement D is proportional to E, 

 0 0 0 eε ε ε χ ε= + = + =D E P E E E , (4.24) 
where  
 0 (1 )eε ε χ= + . (4.25) 

is the electric permittivity; εr = ε/ε0 = 1 + χe  is called the dielectric constant or relative electric 
permittivity.  
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If the dielectric is not only isotropic, but also uniform, then ε is independent of position. The Gauss’s law  
(4.22) can then be written 

 ρ
ε

∇ ⋅ =E . (4.26) 

In this case all problems in that medium are reduced to those with no electric polarization, except that the 
electric fields produced by given charges are reduced by a factor ε/ε0. The reduction can be understood in 
terms of a polarization of the atoms that produce fields in opposition to that of the given charge. One 
immediate consequence is that the capacitance of a capacitor is increased by a factor of ε/ε0 if the empty 
space between the electrodes is filled with a dielectric with dielectric constant ε/ε0.  

Now we consider a couple of simple examples. 

1. A slab with a uniform polarization pointing perpendicular to the surface 

Assume that we have a slab of a dielectric which has a uniform polarization pointing in the z direction (Fig.4.6). 
In this case we have non-zero surface polarization charges, Pσ = +P  on the top surface and Pσ = −P  on 
the bottom surface, resulting in the electric field 0/ε= −E P  in the slab and 0=E  outside the slab. The 
electric displacement 0 0ε= + =D E P  is zero everywhere.    

 

 

Fig.4.6 

If the polarization is uniform and parallel to the surfaces then the electric field E is zero, everywhere is 
space and thus =D P  inside the slab and 0=D  outside. 

2. Capacitor with a dielectric material inside 

Another simple example is the parallel plate capacitor (Fig.4.7a). Assume that a battery voltage 
is applied to the plates of the capacitor so that the plates acquire a surface charge σ. In the 
absence of dielectric material the polarization is zero in all the space and therefore  

 0

0,
,

outside
inside

ε
σ


= = 


D E , (4.27) 

 

 

Fig.4.7     a       b  

Now we remove the battery so that the surface charge is fixed and slide a dielectric slab between the 
plates (Fig.4.7b). The dielectric material obtains a uniform polarization, giving rise to surface polarization 
charges. However, D responds to only free charges, thus it is unchanged by the introduction of the 
dielectric slab. E responds to all charges, so it changes. Since ( ) 0/ε= −E D P ,  and P is parallel to E, we 
see that E decreases in magnitude. The ratio of the electric field between the plates before and after the 
dielectric was introduced is 

 
0 0

1
/ /

dielectic dielectic dielectic

vacuum dielectic rε ε ε ε
= = =

E E E
E D E

, (4.28) 

where εr is the dielectric constant. 

P 
+ + + +  
 
− − − −  

E 
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3. A sphere with a radial polarization distribution  

Another simple example is a sphere with the radial distribution of polarization (Fig.4.8). The magnitude 
of the polarization is constant and only the direction charges. Thus, the polarization is     

 

 
0,

ˆ,
outside

P inside


= 


P
r

 (4.29) 

Fig.4.8 

This polarization of obviously produces a surface polarization charge on the surface of the sphere which 
is equal to P Pσ = ⋅ =P n .  The volume polarization charge can be found using eq.(4.18) which leads to 

 ( )2
2

1 2ˆP
PP P r

r r r
ρ ∂

= −∇ ⋅ = − ∇ ⋅ = − = −
∂

P r . (4.30) 

We see that the volume polarization charge is distributed over all the sphere and diverges at the center of 
the sphere. The total polarization charge is zero. Indeed, the total volume polarization charge is  

 3 2 2

0

2 4 4
R

P
Pd r r dr R P
r

ρ π π = − = − 
 ∫ ∫ , (4.31) 

the total surface polarization charge is 24 R Pπ .   

4. Polarization of a point charge. 

Consider a positive point charge q placed at the origin of an infinite dielectric medium of electric 
permittivity ε. We need to find polarization and polarization charges. Since the system has a spherical 
symmetry, we can use a Gauss’s law (4.22) to find the electric displacement D: 

 
S

da q⋅ =∫ D n


, (4.32) 

where the integration is performed over a sphere of radius r centered at the origin. This leads to  

 2
ˆ

4
q
rπ

=D r , (4.33) 

Consequently the electric field is  

 2
ˆ

4
q

rε πε
= =

DE r . (4.34) 

According to eq. (4.21), the polarization is 

 0 0 0
0 2 2 2 2

ˆ ˆˆ 1
4 4 4 4

qq q q
r r r r

ε ε ε ε
ε

π πε π ε π ε
−   = − = − = − =   

   

r rP D E r , (4.35) 

The polarization charge is  

 ( )30 0
2

ˆ
4P
q q

r
ε ε ε ε

ρ δ
π ε ε

− −    = −∇ ⋅ = − ∇ ⋅ = −    
    

rP r . (4.36) 

We have therefore a polarization at the origin which has an opposite sign to the free charge q. The sum of 
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the free and polarization charge is 0

r

qqε
ε ε

= , which gives a correct electric field (4.34) if we use this 

charge in Coulomb’s law. We note that the total polarization charge is not zero because the system 
considered is infinite and hence the positive polarization charge are located at infinity.  

Boundary conditions 

For solving electrostatics problems one needs to know boundary conditions for the electric field.  

 

 

 

 

 

 

 

 

Fig. 4.9   Schematic diagram of the boundary surface between different media. 

Consider a boundary between different media, as is shown in Fig.4.9. The boundary region is assumed to 
carry idealized surface charge σ. Consider a small pillbox, half in one medium and half in the other, with 
the normal it to its top pointing from medium 1 into medium 2. According to the Gauss’s law 

 
S

da Aσ⋅ =∫ D n


, (4.37) 

where the integral is taken over the surface of the pillbox  and A is the are of the pillbox lid. In the limit 
of zero thickness the sides of the pillbox contribute nothing to the flux. The contribution from the top and 
bottom surfaces to the integral gives ( )2 1A − ⋅D D n , resulting in   

 2 1D D σ⊥ ⊥− = , (4.38) 

where D⊥  is the component of the electrical displacement perpendicular to the surface. Eq. (4.38) tells us 
that there is a discontinuity of the D⊥  at the interface which is determined by the surface charge.  

Now we consider a rectangular contour C such that it is partly in one medium and partly in the other and 
is oriented with its plane perpendicular to the surface. Since the curl of electric field is zero we have 

 0d⋅ =∫ E l


. (4.39) 

For the rectangular contour C of infinitesimal height this integral is equal to  ( )2 1E E l−  , where E   is the 
component of electric field parallel to the surface. This implies that    

 2 1=E E  , (4.40) 

i.e. the tangential component of electric field is always continuous. 

The electrostatic potential is continuous across the boundary. Indeed, if we consider two points, one  
above the surface, a,  and the other below the surface, b, then 

E2  D2 

  σ 

E1  
D1 

  l 

 A 
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   ( ) ( ) dΦ −Φ = − ⋅∫
b

a

b a E l . (4.41) 

As the path length shrinks to zero, the integral does too.  

Boundary value problems with dielectrics 

Since the presence of dielectrics equations for the electric field  are 0∇× =E  and /ρ ε∇ ⋅ =E , the 
electrostatic potential defined by = −∇ΦE obeys the Poisson equation  

 2 /ρ ε∇ Φ = − . (4.42) 

Therefore, all the methods of solving boundary value problems in electrostatics discussed in preceding 
sections can readily be extended to dielectric materials. Below we consider a few examples. 

  Fig.4.10a        Fig.4.10b 
 
Example 1: To illustrate the method of images for dielectrics we consider a point charge q embedded in a 
semi-infinite dielectric, with dielectric constant ε1, a distance d away from a plane interface that separates 
the first medium from another semi-infinite dielectric ε2. The surface may be taken as the plane z = 0, as 
shown in Fig.4.10a. We must find the appropriate solution to the equations: 

 
1

, 0zρ
ε

∇ ⋅ = >E . (4.43) 

 
2

, 0zρ
ε

∇ ⋅ = <E . (4.44) 

and  
 0∇× =E , (4.45) 

subject to the boundary conditions (4.38) and (4.40) at z = 0: 

 2 2 2 1 1 1z zD E D Eε ε⊥ ⊥= = =  (4.46) 

 2 1

2 1

x x

y y

E E
E E

=
=

 (4.47) 

where we took in to account that σ = 0. Since 0∇× =E everywhere, E can be obtained from the 
potential = −∇ΦE . We attempt to use the image method by locating an image charge q' at the 
symmetrical position A' shown in Fig.4.10b. Then for z > 0 the potential at a point P described by 
cylindrical coordinates ( ), ,s zφ  will be 

 
1 1 2

1 , 0
4

q q z
R Rπε

 ′
Φ = + > 

 
. (4.48) 
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where 2 2
1 ( )R s d z= + −  and 2 2

2 ( )R s d z= + + . So far the procedure is completely analogous to the 
problem with a conducting material in place of the dielectric ε2 for z < 0. But we now must specify the 
potential for z < 0. Since there are no charges in the region z < 0, it must be a solution of the Laplace 
equation without singularities in that region. Clearly the simplest assumption is that for z < 0 the potential is 
equivalent to that of a charge q" at the position A of the actual charge q: 

 
2 1

1 , 0
4

q z
Rπε
′′

Φ = < . (4.49) 

Now we try to pick the image charges in such a way that the boundary conditions (4.46) and (4.47) are 
satisfied. These conditions involve the following derivatives: 

 
( )3/ 22 2

1 20 0

1 1

z z

d
z R z R s d= =

   ∂ ∂
= − =   ∂ ∂    +

. (4.50) 

and 

 
( )3/ 22 2

1 20 0

1 1

z z

s
s R s R s d= =

   ∂ ∂ −
= =   ∂ ∂    +

. (4.51) 

Using these equations we find that the condition for the continuous normal component of D (4.46), which 
is determined by the z-component of electric field /zE z= −∂Φ ∂ ,  leads to  

 q q q′ ′′− = , (4.52) 

and that the condition of continuous tangential component of E (4.47), which is given by sE
s

∂Φ
= −

∂
,  

results in 

 ( )
1 2

q q q
ε ε

′+ ′′
= . (4.53) 

These equations can be solved to yield the image charges q' and q": 

 

( )
( )

( )

1 2

1 2

2

1 2

2

q q

q q

ε ε
ε ε

ε
ε ε

−
′ =

+

′′ =
+

 (4.54) 

We can now obtain the potential which is given by 

 ( )
( )

1 2
1 2 2 2 2

1 1 2

1( ) , 0
4 ( ) ( )

q qz z
s d z s d z

ε ε
πε ε ε

 −
 Φ = + >
 ++ − + + 

. (4.55) 

 
( )

2
2 2 2

2 1 2

1 2( ) , 0
4 ( )

qz z
s d z

ε
πε ε ε

Φ = <
+ + −

. (4.56) 

For the two cases 2 1ε ε>  and 2 1ε ε<  the field lines of D are shown qualitatively in Fig.4.11. 



 11 

 

Fig.4.11. Lines of electric displacement for a point charge embedded in a 
dielectric 1 near a semi-infinite slab of dielectric 2. 

 

The polarization-charge density is given by [ ]0(1 / )Pρ ε ε= −∇ ⋅ = −∇ ⋅ −P D . In the regions where ε  
is constant it can be taken out of differentiation which leads to 0(1 / ) 0Pρ ε ε= − − ∇ ⋅ =D , where we took 
into account the Gauss law. Thus, for a linear and uniform dielectric, in the absence of volume free 
charges, it must be no volume polarization charge. In our problem the polarization charge will be only at 
the point of charge q. At the interface between the two dielectrics, however, ε  takes a discontinuous 
jump, as z passes through z = 0. This implies that there is a polarization-surface-charge density on the 
plane z = 0. The latter can be calculated by generalizing eq.(4.12) to the case of two dielectrics:  

 ( )1 2Pσ = − ⋅P P n . (4.57) 

where ˆ= −n z  is the unit normal pointing from dielectric 1 to dielectric 2, and P i (i =1,2) is the polar-
ization in the dielectric i at z = 0. Since 

 ( ) ( )0 0 0i i i i i z
ε ε ε ε

=
= − = − − ∇ ⋅ΦP E , (4.58) 

we find from eqs. (4.55) and (4.56) that  
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1 21
1 1 0 1 0 3/ 2 3/ 22 2 2 2

0 1 1 2
0

2 1 0
3/ 22 2

1 1 2

( ) ( )
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2

z
z

z

d q d z d zP
dz s d z s d z

q d

s d

ε ε
ε ε ε ε

πε ε ε

ε ε ε
π ε ε ε

=
=

 −Φ − + = − − = − − − = 
+   + − + +     

−
−

+  + 

 (4.59) 

( ) ( ) ( )
( )
( )

2 02 2
2 2 0 2 0 3/ 2 3/ 22 2 2 2

0 2 1 2 1 2
0

2 ( )
4 2( )

z
z

z

d q d z q dP
dz s d z s d

ε εεε ε ε ε
πε ε ε π ε ε=

=

−Φ −
= − − = − − = −

+ +   + − +   
.(4.60) 

Therefore, 

 ( )
( )

0 1 2
1 2 3/ 22 2

1 1 22P z z
q dP P

s d

ε ε ε
σ

π ε ε ε
−

= − + =
+  + 

. (4.61) 

In the limit 1 0ε ε=  and 2ε →∞  the electric field inside dielectric 2 becomes very small and hence it 
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behaves much like a conductor. Then the surface-charge density (4.61) approaches the value appropriate 
to a conducting surface,  

 3/ 22 22P
q d

s d
σ

π
= −

 + 
. (4.62) 

Example 2. The second illustration of electrostatic problems involving dielectrics is that of a dielectric sphere 
of radius a with dielectric constant 0/rε ε ε=  placed in a uniform electric field, which at large distances from 
the sphere is directed along the z axis and has magnitude E0, as indicated in Fig.4.12.  

   Fig.4.12 

Both inside and outside the sphere there are no free charges. Consequently the problem is one of solving 
the Laplace equation with the proper boundary conditions at r = a. From the axial symmetry of the geometry 
we can take the solution to be of the form a Legendre polynomial expansion. The solution is different for 
the region inside and outside the sphere and take the form:   

  
0

( , ) (cos )l
in l l

l
r A r Pθ θ

∞

=

Φ =∑ ,  r < a (4.63) 

 ( )1

0
( , ) (cos )l l

out l l l
l

r B r C r Pθ θ
∞

− −

=

Φ = +∑ ,  r > a (4.64) 

The coefficients lA  , lB   and lC  are to be determined from the boundary conditions. From the boundary 
condition at infinity suggesting that  

 0 cos ,E r r aθΦ→ −   (4.65) 

we find that the only non-vanishing lB  is 1 0B E= − . The other coefficients are determined from the 
boundary conditions at r = a. The electrostatic potential should be continuous on the surface and hence 

 in outr a r a= =
Φ = Φ . (4.66) 

Since there are no free surface charge the normal component of the electric displacement should also be 
continuous on the surface and hence  

 0
in out

r a r ar r
ε ε

= =

∂Φ ∂Φ
− = −

∂ ∂
. (4.67) 

Now we substitute the series (4.63) and (4.64) in these boundary conditions. For the first boundary 
condition  (4.63) this leads  

 0 1 1
0 0

1(cos ) (cos )l l
l l l l ll

l l
A a P E a C P

a
θ δ θ

∞ ∞

+
= =

 = − + 
 

∑ ∑ . (4.68) 

Since this equation must be valid for all θ, the coefficient of each Legendre function must be equal and 
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therefore  

 

1
1 0 3

2 1 , 1l
l l

CA E
a

CA l
a +

= − +

= ≠
 (4.69) 

The second boundary condition  (4.64) leads to 

 1
0 0 1 2

0 0

1(cos ) ( 1) (cos )l
l l l l ll

l l
lA a P E l C P

a
ε θ ε δ θ

∞ ∞
−

+
= =

 = − − + 
 

∑ ∑ . (4.70) 

Since this equation must be valid for all θ, the coefficient of each Legendre function must be equal and 
therefore  

 

1
1 0 3

0

2 1
0

2

( 1) , 1l
l l

CA E
a

ClA l l
a

ε
ε
ε
ε +

= − −

= − + ≠
 (4.71) 

The second equations in  (4.69) and (4.71) can be satisfied simultaneously only with 0l lA C= = for all 
1l ≠ . The remaining coefficients are given in terms of the applied electric field E0  

 
1 0

3
1 0

3
2

1
2

r

r

r

A E

C a E

ε
ε
ε

= −
+
−

=
+

 (4.72) 

The potential is therefore 

 0
3( , ) cos

2in
r

r E rθ θ
ε

Φ = −
+

,  r < a (4.73) 

 
3

0 0 2

1( , ) cos cos
2

r
out

r

ar E r E
r

εθ θ θ
ε

−
Φ = − +

+
,  r > a (4.74) 

It is easy to see that the potential inside the sphere describes a constant electric field parallel to the applied 
field with magnitude 

 0
3

2in
rε

=
+

E E . (4.75) 

Outside the sphere the potential is equivalent to the applied field E0 plus the field of an electric dipole at 
the origin with dipole moment: 

 3
0 0

14
2

r

r

aεπε
ε

−
=

+
p E ,   (4.76) 

oriented in the direction of the applied field. 

The dipole moment can be interpreted as the volume integral of the polarization P. The polarization is 

 ( ) ( )
0 0 0

1
3

2
r

r

ε
ε ε ε

ε
−

= − =
+

P E E . (4.77) 

 



 14 

 
Fig. 4.13   Dielectric sphere in a uniform field E0, showing the polarization on the left 
and the polarization charge with its associated, opposing, electric field on the right. 

It is constant throughout the volume of the sphere and has a volume integral given by (4.76). The 
polarization-surface-charge density is 

 ( )
0 0

1
3 cos

2
r

P
r

E
ε

σ ε θ
ε

−
= ⋅ =

+
P n . (4.78) 

This can be thought of as producing an internal field directed oppositely to the applied field, so reducing the 
field inside the sphere to its value (4.75), as sketched in Fig. 4.13. 

The problem of a spherical cavity of radius a in a dielectric medium with dielectric constant 0/rε ε ε=  and 
with an applied electric field E0 parallel to the z axis, as shown in Fig.4.14, can be handled in exactly the 
same way as the dielectric sphere. In fact, inspection of boundary conditions (4.66) and (4.67) shows that 
the results for the cavity can be obtained from those of the sphere by the replacement 0/ε ε  to 0 /ε ε . 
Thus, for example, the field inside the cavity is uniform, parallel to E0, and of magnitude: 

 0
3

2 1
r

in
r

ε
ε

=
+

E E . (4.79) 

Similarly, the field outside is the applied field plus that of a dipole at the origin oriented oppositely to the 
applied field and with dipole moment 

 3
0 0

14
2 1

r

r

aεπε
ε
−

= −
+

p E .  (4.80) 

 
Fig.4.14.    Spherical cavity in a dielectric with a uniform field applied. 

 

Electrostatic energy in dielectrics 

In free space we derived the energy of a distribution of charge ( )ρ r  by assembling the distribution little 
by little, bringing infinitesimal pieces of charge in from infinity. Following this reasoning we found that 

 31 ( ) ( )
2

U d rρ= Φ∫ r r . (4.81) 

This is in general not true in the presence of dielectrics (however, as we will see, it may be true in some 
cases). In the presence of dielectrics work must also be done to induce polarization in the dielectric, and it 
is not clear if this work is included in the equation above.  
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When dielectrics are present we will use a somewhat different argument (which still corresponds to the 
same procedure). Suppose that there is initially some macroscopic charge density ( )ρ r , potential ( )Φ r , 
and fields ( )E r  and ( )D r . Imagine that some infinitesimal change in the charge density, ( )δρ r , is made. 
To first order in ( )δρ r , the change in energy of the system is 

      3( ) ( )U d rδ δρ= Φ∫ r r , (4.82) 

where the integration is performed over all space. The point is that this is the interaction energy of ( )δρ r  
with the sources already present (and which produce ( )Φ r ); the interaction energy of ( )δρ r with itself is 
second-order in small (infinitesimal) quantities.  

The change in D which arises as a consequence of the change ( )δρ r  in the charge density is related to the 
latter by the equation ( )δ ρ δρ∇ ⋅ + = +D D  and therefore δρ δ= ∇ ⋅ D , where δD  is the resulting change 
in D, so we can write the change in the energy as  

      ( ) 3U d rδ δ= ∇ ⋅ Φ∫ D , (4.83) 

Now 

      ( ) ( ) ( ) ( )δ δ δ δ δ∇ ⋅ Φ = ∇ ⋅ Φ + ⋅ ∇Φ = ∇ ⋅ Φ − ⋅D D D D D E , (4.84) 

and hence integrating by parts we obtain 

      ( ) 3 3U d r d rδ δ δ= ∇ ⋅ Φ + ⋅∫ ∫D D E . (4.85) 

The divergence theorem turns the first term into a surface integral, which vanishes for a localized charge 
distribution if the integration is performed over all space: 

      ( ) ( )3 0
V S

d r daδ δ∇ ⋅ Φ = Φ ⋅ =∫ ∫D D n


. (4.86) 

Therefore, the work done is equal to 

       3U d rδ δ= ⋅∫ D E . (4.87) 

So far it implies to any material. Now, if the material is a linear dielectric, then ε=D E , so infinitesimal 
increments 

      ( ) ( )21 1
2 2

Eδ δ ε εδ δ⋅ = = ⋅ = ⋅D E E E D E . (4.88) 

Thus the change in the electrostatic energy is  

       ( ) 31
2

U d rδ δ= ⋅∫ D E . (4.89) 

Now we build the free charge up from zero to the final configuration. This corresponds to integrating 
from zero field up to the final field (a functional integration), 

       ( )3

0

1
2

U d r δ= ⋅∫ ∫
D

D E . (4.90) 

 This leads to 

 31
2

U d r= ⋅∫D E . (4.91) 
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This result is valid only for linear media and leads to eq. (4.81). Indeed, using = −∇ΦE  and integrating 
(4.91) by parts, we obtain 

 ( )3 3 31 1 1
2 2 2

U d r d r d r= − ⋅∇Φ = − ∇ ⋅ Φ + Φ∇⋅∫ ∫ ∫D D D . (4.92) 

Through the divergence theorem, the first term yields a surface term which vanishes at infinity. The 
second term becomes 

 3 31 1 ( ) ( )
2 2

U d r d rρ= Φ∇⋅ = Φ∫ ∫D r r . (4.93) 

Thus for a linear dielectric, the original formula is valid. 

 


