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INTRODUCTION 

Few of us can any longer keep up with the flood of scientific literature, 
even in specialized subfields. Any attempt to do more, and be broadly 
educated with respect to a large domain of science, has the appearance of 
tilting at windmills. Yet the synthesis of ideas drawn from different sub- 
jects into new, powerful, general concepts is as valuable as ever, and the 
desire to remain educated persists in all scientists. This series, Aduances in 
Chemical Physics, is devoted to helping the reader obtain general informa- 
tion about a wide variety of topics in chemical physics, which field we in- 
terpret very broadly. Our intent is to have experts present comprehensive 
analyses of subjects of interest and to encourage the expression of individ- 
ual points of view. We hope that this approach to the presentation of an 
overview of a subject will both stimulate new research and serve as a per- 
sonalized learning text for beginners in a field. 
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STUART A. R ~ C E  
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I. INTRODUCTION 

An accurate representation of the electronic structure of atoms and 
molecules requires the incorporation of the effects of electron correlation,' 
and this process imposes severe computational difficulties. It is, therefore, 
only natural to investigate the use of new and alternative formulations of 
the problem. Many-body theory methods24 offer a wide variety of attrac- 
tive approaches to the treatment of electron correlation, in part because of 
their great successes in treating problems in quantum field theory, the sta- 
tistical mechanics of many-body systems, and the electronic properties of 
solids. 

The pioneering work of Kelly5 on atoms provided the first comprehen- 
sive utilization of many-body theory methods to describe electron correla- 
tion in these systems. These studies investigated the use of diagrammatic 
many-body perturbation theory, an approach that appeared to be quite 
different from the more traditional wave function methods. However, if a 



EQUATIONS OF MOTION- GREEN’S FUNCTION ‘METHOD 3 

summation is made of the diagrams that Kelly found numerically to be the 
most important, the final result can then be shown to formally be equiva- 
lent to the sum-of-the-pairs wave function theories6 that had previously 
been proposed by Sinanogu,’ Nesbet,8 and others. Thus, Kelly’s work pro- 
vided the first calculation of this sum-of-the-pairs variety. The framework 
of many-body perturbation theory also introduced a new vehicle for gain- 
ing physical understanding of the important processes in atomic electronic 
correlation. Furthermore, the work of Kelly has resulted in the introduc- 
tion of a vast number of approximations and techniques that have had a 
wide impact on other approaches to electronic correlation. 

Many-body Green’s function- equations of motion methods” lo  appear to 
differ more strongly from wave function theories than does many-body 
perturbation theory. In wave function approaches it  is necessary to evaluate 
energy differences, (excitation energies, ionization potentials, electron af- 
finities, etc.) by determining the individual state energies and then evaluat- 
ing their differences. On the other hand, the Green’s function-equations of 
motion methods generate these energy differences directly. 

There have also been other attempts to evaluate these energy differences 
directly.”-’3 These methods utilize Rayleigh-Schrodinger perturbation the- 
ory to express the energies for both states with a common orbital basis. 
When the perturbation series for the two state energies are subtracted, it is 
found that there is a considerable cancellation of identical terms from the 
individual series. 

In all these direct energy difference methods the hope is that by a 
cancellation of common terms in the individual state energies, greater ef- 
ficiency and accuracy can be achieved as compared with the traditional 
single state approaches. In addition, the equations of motion (EOM) and 
the many-body Green’s function (MBGF) methods introduce a different 
operator algebra and outlook into the problem. This has the disadvantage 
of malung the material quite incomprehensible to many practitioners of 
atomic and molecular quantum mechanics on one hand, but it also raises 
the possibility of the generation of new and useful insights into these elec- 
tronic processes. These methods also introduce a new many-electron basis, 
to be called the many-body basis, which may be superior in some aspects, 
both conceptually and in terms of practical calculations, to the traditional 
configuration set. Throughout the discussion that follows we attempt to 
bridge the language gap between the many-body theory methods and the 
traditional wave function approaches by noting many of the strong paral- 
lels between the EOM method and traditional wave function theories, sim- 
ilarities that may often be obscured by the different formalism of the 
former. 
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A critical analysis of the Green’s function-equations of motion method 
requires the resolution of the following questions: ( I )  Are these Green’s 
function-equations of motion methods formally different from traditional 
wave function or many-body perturbation theory approaches? Even if they 
are not, these methods should still be of considerable utility because of the 
new insights and approaches afforded by them. (2)  If indeed the answer to 
the first question is affirmative, it is of interest to determine the manner in 
which the many-body Green’s function- equations of motion methods dif- 
fer from the more traditional approaches. This is imperative if we are to be 
able to make meaningful comparisons of calculations that have been per- 
formed using the two types of theory. The reduction of these method types 
to a common language would thereby enhance our physical understanding 
of the important processes in determining the electronic structure of atomic 
and molecular systems. ( 3 )  I t  is also important to determine which types of 
systematic approximation can be utilized within the Green’s function- 
equations of motion methods to provide results that are at  least as accurate 
as those obtainable from the most sophisticated configuration interaction 
treatments now available. 

These three questions have motivated a series of our studies of both the 
formal and computational aspects of the Green’s function-equations of 
motion methods. 

I t  is possible to provide a partial answer to question I without ever be- 
coming enmeshed in the complicated details of Green’s function-equation 
of motion theories. The simple reasoning is as follows.14* Is Any “black box” 
that produces the electronic energy levels of a many-electron system must 
somehow be related to the electronic Hamiltonian for the system or func- 
tions of this electronic Hamiltonian. Similarly, any theory that directly 
provides energy differences must be related to the only quantum mechani- 
cal operator whose eigenvalues are the energy differences. This operator is 
the Liouville operator L,  which is defined by its action on an arbitrary op- 
erator A by 

L A = [ H ,  A ] = H A - A H  

where H is the electronic Hamiltonian for the system and the square 
brackets denote the commutator as usual. Thus the equations of motion- 
Green’s function methods must somehow differ from their wave function 
counterparts, which are based on the approximate solution of the eigen- 
functions and eigenvalues of the electronic Hamiltonian H .  

There have been a number of attempts to use Liouville operator 
techniques to directly evaluate energy differences. These attempts intro- 
duce the operator basis set, ( l i ) ( j l ) ,  where ( l i ) )  is a set of basis func- 
tions. The eigenfunctions of L are then represented as linear superposition 
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of the basis operators, 

These attempts have considered simple problems like the anharmonic oscil- 
lator problem in a harmonic oscillator basis or the hydrogen atom in a 
Gaussian-type basis, generally with rather poor results. The reason for these 
difficulties is rather clear. Given N basis functions {li)}, there are N z  ba- 
sis operators { t i )  ( j l } .  Consequently, the equations for the eigenvalues and 
eigenvectors of L represent equations of rank N 2  X N 2 ,  as compared with 
the usual equations for the eigenfunctions and eigenvalues of H, which are 
of the much smaller dimension, N X N. Hence this simple-minded Liouville 
operator approach merely compounds the mathematical difficulties al- 
ready inherent in standard Hamiltonian methods. 

The Green’s function-equations of motion methods can be shown not 
to suffer from the N 2  problem of the naive use of Liouville operator meth- 
ods. As discussed below, it is found that the corresponding Green’s func- 
tion-equations of motion methods are problems that generate matrices of 
dimension 2 ( N -  1) when the original basis has been generated from all 
possibilities that arise from a given orbital basis set. Likewise, it can be 
shown that the Green’s function method can be represented as particular 
subblocks (submatrices) of the resolvent of the Liouville operator, whereas 
the equations of motion methods consider the eigenvalues and eigenvectors 
of the Liouville operator in the same particular representation. 

The one-electron Green’s function has its poles at the ionization poten- 
tials and electron affinities of an atom or molecule, whereas the poles of 
the two-electron Green’s function are located at the excitation energies.’ 
Furthermore, the residues of the Green’s function at these poles yield in- 
formation about the transition amplitudes. Two main approaches have been 
followed in the evaluation of many-body Green’s functions. The first in- 
volves the evaluation of a diagrammatic perturbative expansion for the 
Green’s f ~ n c t i o n , ’ ~ - ~ ~  and the latter looks for an approximate solution of 
the hierarchy of equations3- 36-4’ that the many-body Green’s function 
obeys. The work of Cederbaum and c o - ~ o r k e r s ~ ~ - ~ *  concerning the one- 
electron Green’s function is a particularly noteworthy example of the di- 
agrammatic technique. These investigators have developed a variety of ap- 
proximations and have provided extensive numerical data concerning the 
importance of specific diagrams. 

The propagator technique, which attempts to solve the hierarchy of 
equations for the many-body Green’s function, has been facllitated by the 
use of inner projection techniques and the superoperator representation of 
Goscinski and L ~ k m a n . ~ ~  Ohrn and c o - ~ o r k e r s ~ * - ~ ~  have applied these 
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techniques to the evaluation of ionization potentials of atomic and molecu- 
lar systems. Several authors37. 43-48 ha ve discussed the relationship between 
the EOM and MBGF approaches and have compared the various nu- 
merical schemes. Because these many-body EOM and Green's function 
methods are so closely related formally, the results obtained from one pro- 
cedure provides information that is pertinent to all. 

All calculations discussed here involve the use of a finite (therefore in- 
complete) set of analytical one-electron basis functions. A specific finite 
orbital basis set defines a finite set of Ne-electron wave functions or basis 
configurations that spans a finite-dimensional Ne -electron subspace of the 
full Hilbert space. Within this finite dimensional space any Ne -electron 
wave function can be expanded in terms of all the basis configurations (that 
have the correct symmetry). For almost all systems of interest, when rea- 
sonably accurate one-electron basis sets are used, this full N, -electron basis 
expansion becomes prohibitively large, and accurate ways must be found 
of truncating the expansion. Much of the effort in electronic structure 
theory concentrates on devising better and more concise means of ap- 
proximating the most important parts of the configuration space for the 
problem at hand. One of the central goals of this work is to systematically 
and critically investigate this problem for the equations of motion method. 

The equations of motion method has its origins in nuclear physics, where 
Rowel' first developed it as a means of understanding nuclear energy level 
structure. McKoy and c o - ~ o r k e r s ~ ~ - ' ~  refined the theory for the calcula- 
tion of electron excitation energies and presented molecular calculations for 
a variety of different approximation schemes. S i m ~ n s ' ~ " ~  and YeageP in- 
dependently developed the analogous EOM theory for ionization poten- 
tials and electron affinities. The present numerical ~ o r k ~ ~ - ~ ~  deals mainly 
with the ionization potentials- electron affinity (IP- EA) variant of the 
EOM theory. However, because of the analogous nature of the excitation 
energy theory, many of the conclusions reached from the IP-EA calcula- 
tions have immediate applicability to EOM excitation energy calculations. 
Some excitation energy calculations on simple systems are utilized here to 
illustrate important facets of the general theory. 

Section I1 develops the EOM theory both for excitation energies and for 
ionization potentials and electron affinities. After the main EOM equa- 
tions have been derived, the nature of a complete operator basis set in EOM 
calculations is determined and is shown to differ from the mathematically 
complete set. The many-body opera.tor basis is described, and approxima- 
tions introduced in practical calculations are discussed. There follows an 
explanation of the various divisions that are utilized to separate the IP-EA 
operator basis into primary and secondary subspaces. Numerical evidence, 
presented in Section 111, indicates that the traditional division of the EOM 
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operator space into primary and secondary subspaces (and the effectively 
equivalent partition in Green’s function methods) for ionization potentials 
and electron affinities is not generally adequate. Section I1 also develops a 
more extensive IP-EA EOM theory, based on a generalized division of the 
operator space, which is introduced in view of the difficulties presented in 
Section I11 and of recent developments in configurational selection meth- 
o d ~ ~ ~ - ~ ~  for generating accurate approximations to the full configuration 
interaction matrix. 

All IP-EA calculations given in Section 111 involve systems in which the 
initial state is a closed-shell state and a single determinant is used for a 
zeroth-order approximation to the ground-state wave function. This restric- 
tion to closed-shell ground states and single-determinant, zeroth-order wave 
functions has been common to nearly all EOM work, as well as to almost 
all the related propagator and diagrammatic Green’s function calculations. 
In Section III.C, we present results on nitrogen that indicate the need for 
developing a satisfactory equation of motion-Green’s function theory that 
allows for a multiconfigurational zeroth-order, ground-state wave function 
(corrected perturbatively). In Section III.F, excitation energy calculations 
are reported for beryllium, to compare results using a multiconfigurational 
reference state with the analogous calculations based on a reference wave 
function having a single determinant. These studies further substantiate the 
superiority of the multiconfigurational approach. In Section IV we briefly 
review current  attempt^^^-^^ to devise an approximate theory that incorpo- 
rates a multiconfigurational ground state and describe what we believe, 
based on our numerical evidence, to be necessary for a general, truly relia- 
ble, and accurate multiconfigurational equations of motion theory. 

In Section II1.A the differences between the IP-EA EOM methods of 
S i m ~ n s ~ ~  and Yeager& are analyzed numerically for nitrogen. Section 1II.B 
reports EOM ionization potentials for this gas using a series of different 
orbital basis sets. These results lead to the conclusion that EOM calcula- 
tions using small basis sets are unreliable, much as is the case for config- 
uration interaction and other traditional methods. This study is of interest 
because the early EOM results of S i m ~ n s ~ ~ - ~ ’  appeared to indicate just the 
opposite; namely, that EOM calculations using small basis sets provided 
consistently accurate ionization potentials and electron affinities, presuma- 
bly because of some cancellation of errors inherent in the method. 

Section 1II.C presents results of a study of certain third-order terms in 
the EOM equation that had previously been neglected in IP-EA calcula- 
tions. It is found that some of these terms are reasonably small but not 
negligible, whereas the inclusion of others in the EOM equation can cause 
a complete breakdown of the traditional perturbative EOM method for 
nitrogen when using the standard choice of the primary operator space. 
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Different choices of the primary space are shown to remedy the difficul- 
ties. In Section 1II.D the 15 to 40 eV photoelectron spectrum for nitrogen, 
including shake-up lines, is calculated, given the generalized definition of 
the EOM primary space. The peak intensities as well as peak positions are 
calculated. 

In Section III.E, EOM ionization potentials and electron affinities are 
compared with accurate configuration interaction (CI) results for a number 
of atomic and molecular systems. The same one-electron basis sets are 
utilized in the EOM and CI calculations, allowing for the separation of ba- 
sis set errors from errors caused by approximations made in the solution of 
the EOM equation. EOM results are reported for various approximations 
including those for the extensive EOM theory developed in Section 11. Sec- 
tion II1.F presents results of excitation energy calculations for helium and 
beryllium to address a number of remaining difficult questions concerning 
the EOM method. 

Section IV summarizes the major conclusions of these investigations and 
outlines the extension and generalization of the EOM theory based on the 
results of our numerical studies. 

11. THEORY 

A. Derivation of the EOM Equations 
Let (0) be the exact N,-electron ground state of the Born-Oppenheimer 

Hamiltonian H for a given atomic or molecular system. Likewise, let [ A )  
be some exact excited state of interest for the same system with the same 
nuclear geometry. The corresponding state energies are denoted Eo and EA, 
respectively. For excitation energy calculations [ A  ) is an excited N,- 
electron state, whereas in ionization potential or electron affinity cases 1 A ) 
is an ( N ,  - ])-electron state or an (N,+ 1)-electron state, respectively. The 
commutator of H with the operator 0: = I A )  (01 is easily evaluated, 

[ H,~’,t]=Hlh)(Ol-lA)(OlH 

For IP (EA) calculations, it is necessary to define H to be the N,-electron 
Hamiltonian when it acts on N,-electron states and the ( N ,  - 1)[(N, + I)]- 
electron Hamiltonian when it operates on ( N ,  - l)[(N, + l)]-electron states, 
and so on. This is simply accomplished by defining H = E M f M H M f M ,  
where H M  is the M-electron Hamiltonian and PM is the projection operator 
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cx= 

onto the space of all M-electron states. When H is expressed in second 
quantized notation,2 it automatically has this property. 

Equation 1 is an equation of the sort we are seeking; i t  yields the vertical 
energy difference (EA - E,) directly. One problem in calculating E, - E, 
from (1) is immediately obvious. 6: involves Ih) and lo), and if these 
quantities are to be calculated separately, we have not gained anything from 
(1) over the traditional approach. 

1. Primitive EOM Equations 

One possible means of circumventing the problem of handling both I h ) 
and (0) is to expand 61 in an appropriate set of basis operators, 

c: 
cz” 

61 = c;o/ 
i 

and to determine equations governing the C:’s. One such set of equations 
is readily obtained upon substituting (2) into (1) and multiplying from the 
left by the adjoint of one of the basis operators, yielding 

2 O,[ H ,  011 qA = ( E ,  - E,)  2 OjO,tqA 
i i 

(3) 

which is an operator matrix eigenvalue equation with eigenvalues ( E ,  - E,) 
and eigenvectors 

(4) 

Equation 3 still presents problems. First, it is an operator equation. Most 
of the expertise that has been developed in electronic structure calculations 
has centered on equations involving matrix elements of operators, rather 
than the operators themselves. Second, and also important, the vast 
majority of the solutions of (3) are ones in which we have no interest. 
Within the limited orbital basis set approximation, there are only a finite 
number n of linearly independent N, -electron states, or configuration 
functions, that can be formed. Within this basis, the “exact” N, -electron 
energies E,, E , ,  . . . , En- and the corresponding “exact” N,-electron states, 
(0) , . . . , I n - I ) , are, respectively, the eigenvalues and eigenwctors of the n 
X n  Hamiltonian matrix (i.e., the solutions of the complete CI problem for 
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the finite orbital basis). For the excitation energy problem there are n z  op- 
erators of the type IX)(h'l (where Ih) and [A ' )  are exact Ne-electron 
states), and it follows that n' must be the dimensionality of the space that 
{O,?) spans. Hence (3) has n2 solutions, whereas the original Schrodinger 
equation for the same finite orbital basis set has only n solutions. A similar 
difficulty with (3) persists for calculation of ionization potentials or elec- 
tron affinities. 

Despite these difficulties, Lasaga and Karplus" have discussed the 
calculation of excitation energies based on an operator equation related to 
(3). Simons and Dalgaard'l have proposed a perturbation approach to a 
similar operator problem. To date, however, numerical applications have 
been limited to the analysis of the singlet excitation of ethylene in Pariser- 
Parr-Poplea' (PPP) model, a two-level problem.80 

Both difficulties with (3) are overcome by taking the ground-state expec- 
tation value of (3) to produce 

To show that (5) has the desired n solutions as opposed to the n2 solu- 
tions of (3), consider the specific set of basis operators, {O,?)= ( lA) (X ' l ) ,  
where the states I h ) and I A') are exact Ne-electron states. In terms of this 
operator basis set, the matrices (OIOi[ H ,  O]]lO) and (01 OiO] 10) are read- 
ily found to be diagonal. If O] = Ih)(O( and h f O ,  then (5) yields 

If O]=IX)(X'l and X'#O (h=0,1,  ..., n -  l ) ,  then (5) trivially gives O = O .  
The remaining case is 0,t = 10) (01, where the matrix element (OlO,O,t 10) = 1 
while (01 O, [ H ,  O,t]lO) = 0. Thus the operator 10) (01 corresponds to a zero 
eigenvalue for (5) .  Therefore, only n basis operators, I X ) (01, X = 0,1,. . . , 
n - 1, contribute nontrivially to (5). 

2. Double Commutator EOM Equatiom 

Actual numerical calculations introduce double commutator EOM equa- 
tions" for excitation energies and for ionization potentials and electron af- 
finities that, respectively, are 
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where ( , } is the anticommutator, {A, B} = A B + B A .  Equations 6 and 7 
are just simple linear matrix eigenvalue equations with = EA - Eo as ei- 
genvalues and the q A ’ s  (which give Of) as eigenvectors. Equations 6 and 7 
are often derived by assuming that the adjoint of Of satisfies the annihila- 
tion condition 

in analogy with raising and lowering operators in the harmonic oscillator 
problem.s3 If (8) holds, it follows that 

(01 [ H ,  of] 0; 10) = (01 010; 10) = 0 (9) 

Combining ( 5 )  and (9) immediately yields (6) and (7). However, Herman 
and Freed72 have shown that the annihilation condition (8) is, in general, 
not satisfied for the excitation energy problem when [A) is of the same 
symmetry as 10). In fact, the equation Of 10) = [A), which is usually taken 
to define Of, does not hold for Of’s that are general solutions of (6). These 
conclusions result from the realization that the set of operators { 10) (01, 
Ih’)(A”l; A’, A ” # O }  (IA’),IA”) are eigenstates of H) give only zero matrix 
elements when inserted for Oi or qt in (Ol[O;,[ H, O,t]]lO) and (Ol[Oi, O,t]lO). 
Therefore, the most general Of that satisfies 

is given by72 

of = ) ( 0 1  +ao,o lo> (01 + 2 a A , , A ”  I A’) (A”I (1  1) 
h‘,h”#O 

for arbitrary values of 
and 0, lO)  = O  but rather has 

and ah., A,,. This Of does not satisfy Oi 10) = Ih) 

oflo) = I A >  +“O.OIO) (12) 
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Since the matrices (Ol[Oi,[H, O;]]lO) and (Ol[Oi, O,t]lO) are block diagonal 
by symmetry, ao,o can be nonzero for excitation energy calculations only if 
Ih) and (0) are of the same symmetry. For the IP-EA variant of the the- 
ory, only operators that increase or decrease the number of electrons in the 
system are allowed in the basis. Therefore, there can be no lO)(Ol term in 
the operator expansion for IPS and EAs. 

Equation 10 can be derived from (12) and (13), without introducing the 
inconsistent assumptions 01 10) = I h ) and 0, lO) = 0, as follows.70* ’* It fol- 
lows from (12) that 

[ H ,  o,t]lO> =H(lh) +“o,olO))-o:H10) 

= E,  I X )  + ~ O ~ O , O l O )  - E,(IX) +~0 .010) )  

= ( E,  - E0)I ) 

= %( 01 10) - a0,o 10)) (14) 

and therefore 

Subtracting ( 1  5) and (16) gives the desired result (10). Substitution of the 
operator expansion (2) for 01 yields (6) for the excitation energy case. The 
derivation of (7) for the IP-EA variant of the theory follows in a similar 
fashion. I t  is clear that the a’s in (1 1) are fixed by the choice of operator 
basis because for a given operator basis, the matrix eigenvalue equations 
(6) and (7) yield unique results. 

The derived EOM equations (6) [(7)] are linear matrix eigenvalue equa- 
tions for the exact excitation energies (ionization potentials and electron 
affinities). The eigenvectors give an 01 satisfying conditions (12) and (13) 
(with ao,o = O  for IPS and EAs). The most general 0: is expressed in terms 
of the basis operators IX’)(X”l by (11). In Section I1.B we investigate the 
form of the EOM equation when represented in terms of other possible sets 



EQUATIONS OF MOTION-GREEN'S FUNCTION METHOD 13 

of basis operators, since the ( IA ' ) (A" l }  set is generally unavailable. The 
question of operator completeness is discussed in some detail. 

3. Hermitian Equations for Approximate Calculations 

In practical numerical calculations an approximate ground-state wave 
function is employed in (6) and (7). The matrices (Ol[Oi,[H, O,t]]lO) and 
(Ol{Oi,[ H ,  O,+]}lO) are then not necessarily Hermitian". 50, 66* '' (they are 
when 10) is exact). A symmetrized form of the EOM equations can readily 
be obtained by noticing that a similar derivation to that producing (6) and 
(7) yields", 66 

(Ol[ [ 01 9 9 l o >  =wA(ol [ Oi 9 Of] l o >  (17) 

(Ol{ [Ol? H ] , o f } l O )  = w A ( O I { o j , o i } ( o )  (18) 

and 

for excitation energies and ionization potentials, respectively. Introducing 
the expansion for Oi, (2), into (17) and (18) and adding (6) and (17) yields 

(ol[ O;, H,O]]lO)qA=aAx (01[Oi?O]] Io)~A (19) 
i i 

for excitation energies, with the definition 

The corresponding symmetrized equations for ionization potentials and 
electron affinities are 

The matrices in (19) and (21) are Hermitian even when an approximate 
ground-state wave function is employed." 

4. Motivation for Double Commutator Equations 

So far the reasons for introducing the double commutator form of the 
equations in (6) and (7) and then in (19) and (21) have not been men- 
tioned, even though this form has required a more lengthy derivation. The 
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double commutator formalism is suggested" by comparison of low-order 
perturbation expansions of the EOM equations with the corresponding 
equations of many-body Green's function methodsu* 45 and time-dependent 
Hartree-Fock theory.84 The practical advantage of the double commutator 
formulation exists because the introduction of commutators produces final 
equations that have a lower operator rank. The meaning of this term is most 
clearly illustrated by the simple example where the operators in question are 
expressed in second quantized notation. Consider two one-body operators 
in second quantized notation 

where u: and uk are the second quantized creation and destruction opera- 
tors associated with spin orbital k, respectively, for some prescribed orbital 
basis set. 

The commutator of these operators is 

where the usual second quantized fermion anticommutator relationships 
have been utilized. Thus the commutator of the two one-body operators is 
a one-body operator, and the simple product of the two is a two-body 
operator. Excitation operators conserve the number of electrons in the sys- 
tem, and thus must contain terms with equal numbers of creation and de- 
struction operators. Each term therefore has a product of an even number 
of operators. On the other hand, ionization and electron attachment opera- 
tors change the number of electrons by one; terms then have an odd num- 
ber of creation and annihilation operators. The example presented in (23) 
can be generalized as follows; the anticommutator of two operators, each 
of which involves an odd number of creation/destruction operators, re- 
sults in an operator with two less creation/destruction operators than the 
product of the original two operators. If one or both of the operators has 
an even number of second quantized operators, it is the commutator that 
lowers the operator rank by 2 from that for the product of the two opera- 
tors. This can be a practical advantage in the evaluation of matrix ele- 
men t~ . '~  More important, because of the lower hole-particle rank of the 
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double commutators, it is generally argued”, 50-52 that they are less sensi- 
tive to the details of the approximate ground-state wave function used in 
actual computations. 

One manner in which this lack of sensitivity to the detailed structure of 
the ground-state wave function manifests itself is that the EOM-Green’s 
function theories account for some electron correlation effects, even when 
an uncorrelated ground state is employed. This is evident, for instance, from 
the fact that an estimate of the ground state correlation energy can be 
obtained from time-dependent Hartree-Fock (TDHF) theory.84 (TDHF 
theory is equivalent to low-order EOM excitation energy theory with an 
uncoi-related ground state.”) This TDHF correlation energy agrees in sec- 
ond order with the Rayleigh-Schrodinger perturbation result. Moreover, 
Pickup and G o ~ c i n s k i ~ ~  have analyzed the second-order corrections af- 
forded by the one-electron Green’s function theory to Koopmans’s theo- 
rernE5 ionization potentials and electron affinities. They demonstrate that 
certain terms can be ascribed to changes in correlation on removal or addi- 
tion of an electron. These second-order contributions to the Green’s func- 
tion are present even when an uncorrelated ground state is employed. 

There is a price that is incurred by the use of the double commutator. 
Deexcitation operators of the form 

also arise as solutions of (19) with eigenvalues E,  - E,. This means that the 
size of the operator basis set required for the excitation energy calculation 
has to be increased from n [for ( 5 ) ]  to 2(n- 1) [for (19)]. The question of 
which 2(n- 1) operators from the complete n2-operator basis can be used 
for the EOM equations, a question of “EOM completeness” of operator 
bases is discussed more fully in Section 1I.B. 

5. Iterative Improvement of Approximate Ground-State 
Wave Functions 

Rowe” and later M c K o ~ ~ ~ - ~ ~  suggested that the condition 0 , IO)  =O be 
used to improve an approximate ground-state wave function once 0: has 
been obtained from the EOM equations (19) or (21). The EOM equations 
and condition 0 , l O )  = 0 could be solved iteratively. However, the annihi- 
lation condition is not, in general, fulfilled by an EOM excitation operator, 
even if the exact ground state is used and a complete operator basis is em- 
p10yed.’~ Instead, (13) is the appropriate condition that should be em- 
ployed to iteratively improve an approximate ground-state wave function, 
where O L ~ , ~  can be obtained as (01 0: 10). However, numerical evidence pre- 
sented in Section 111 indicates that a simple self-consistent procedure based 



16 M .  F .  HERMAN, K .  F .  FREED, AND D .  L. YEAGER 

on (13) and (19) or (21) has rather poor convergence properties, and a more 
sophisticated (and cumbersome) procedure is necessary.86 

Similar problems arise in the calculation of transition matrix elements 
using EOM excitation operators. Some previous work has been based on 
the equation 02 (0) = ( A )  for a description of the excited or ion state. Since 
the correct equation is 01 (0) = I A )  + 10) (01 in 
01 must be incorporated in a correct treatment of transition matrix ele- 
ments or excited-state properties. A useful way of eliminating this problem 
is to employ a commutator expression for the transition matrix element 
(Ol[d, O1]lO), where b is the transition operator. This form has the ad- 
vantage of the reduction of operator rank due to the c o m m u t a t ~ r . ~ ~  

lo), the component 

B. Linear Independence of Basis Operators with Respect 
to EOM Equations 

Consider the particular set of basis operators for the excitation energy 
case 

{Oif}={~X)(h’~;X,X’=O,1, ..., N = n - l }  (24) 

with (IX)} being the exact configuration interaction (CI) N,-electron wave 
functions that can be constructed within the given orbital basis. The opera- 
tor basis, defined by (24), is complete in the sense that any other choice of 
basis operators for the space can be expanded in this set of ( N +  1)’ opera- 
tors. However, it is overcomplete with respect to the EOM equation (19). 
Only the 2 N-dimensional subset of these operators [ 1 A )  (Ol,lO) (A 1; A =  
1,. . . , N} contributes nontrivially to (19). The remaining operators always 
give zero matrix elements when substituted into (Ol[Oi, H ,  O]]lO) and 
(Ol[Oi, O]] lO) .  With this set of 2 N operators, (19) is diagonal, and its solu- 
tion trivial. 

Since the operator set described in (24) is not in general known, different 
operator basis sets must be chosen. Any new set of basis operators can al- 
ways be expressed as a linear combination of the (N+  l)’ operators given 
in (24). It is obvious that the new operator basis set can also yield only 2N 
linearly independent equations when inserted into (19). To study this prob- 
lem of linear dependence among the EOM equations in more detail, con- 
sider the following simple analysis.’’ Let (19) be expressed in terms of some 
set of 2 N basis operators, {a!} ,  as 

&CA = W A W A  (25) 

where 62 and 1D are the matrices formed from (O1[Qi ,  H,!dJ]lO) and 
(Ol[Qi ,  QjJlO) ,  respectively. Expanding the S2! in terms of the exact 



EQUATIONS OF MOTION- GREEN’S FUNCTION METHOD 17 

where O(’)’ is the column whose elements are in the subset of relevant op- 
erators, S ,  = { ~ A ) ( O ~ , ~ O ) ( A [ ;  A =  1, ..., N } ,  and 0(2)t is the column con- 
taining the remaining N 2  + 1 “irrelevant” O,? operators; X and Y are the 
corresponding matrices of expansion coefficients. Inserting (26) into (25)  
yields 

The matrices A‘ and D‘ are formed from (OI[Oi(’), H ,  Oj’)’]lO) and 
(Ol[O/’), q(‘)’]lO), respectively, and involve matrix elements containing only 
the 2 N  relevant operators. The matrix elements containing the other 
( N 2  + 1) operators, Oi(2)t, are identically zero; thus they do not appear in 
(27). Equations 25 and 27 are equivalent to the secular equation 

I X I ~ - I A ’  - W A ~ r ~  = O  (28) 

Therefore, the 2 N  a!, chosen as the operator basis for (25), yield the same 
eigenvalues wA when inserted into (1 9) as the 2 N operators in S, ,  provided 
the condition 1x1 * # O  is satisfied (or, equivalently, when 191 = 1x1 2*IDI # O ) .  

It is to be emphasized that at most 2 N  basis operators can yield linearly 
independent equations when substituted into (19). A set of 2 N basis opera- 
tors for which 191 # O  forms what is often called a “complete” set of basis 
operators for EOM calculations in that they give the desired excitation en- 
ergies. However, when expanding one set of operators in terms of a differ- 
ent operator basis as in (26), a basis of ( N +  1)* operators is in general 
needed. Thus there are two entirely different senses in which an operator 
can be “complete.” EOM completeness involves 2 N  operators, but ( N +  
are necessary for general operator completeness. 

Similar logic holds for the IP-EA case. Here the operator basis set 
{ ~ A m - , ) ( A ~ ~ ,  m=1,2 ,  ...}, with [ A m - , )  and [A;) exact m - 1  and m 
electron states, respectively, within some orbital basis, is a complete set of 
basis operators in the customary sense of the term. However, only I A ,  - , ) 
(01 and lO)(A,+, l  contribute nontrivially to (21) .  Thus this smaller set is 
EOM complete. This EOM complete set yields the IPS and minus the EAs 
as its eigenvalues, as can be verified by direct substitution of the basis op- 
erators I A N c - , ) ( O l ,  l O ) ( A N e + , 1  into (21). If a general set of basis operators, 
reducing the number of electrons by one, is employed in the solution of the 
EOM equations, (ZI), it has a dimensionality equal to the number of IPS 
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plus the number of EAs for the orbital basis set; and if the overlap matrix 
in (21) is not singular, the EOM equations yield the exact IPS and exact EAs 
within the finite orbital basis approximation (i.e., identical to the IPS and 
EAs generated by an exact CI calculation with the orbital basis). 

Alternatively, the fact that (21) yields both the IPS and EAs can be viewed 
as a consequence of the anticommutator and Symmetric double anticom- 
mutator having the symmetries 

{ q , o]} = { o],o, 1 
{ oi, H ,  01) = - { O] ,H,  Oi} (29) 

The basis set appropriate for the EA case (i.e., a basis of operators that 
increase the number of electron by unity) is just {O,} ,  the adjoint of the op- 
erator basis set employed for IPS. Equation 29 causes (21) to yield eigen- 
values for the EA basis that have the same magnitude but opposite sign as 
when the IP basis is utilized. Thus the IP and EA calculations using (21) 
are essentially identical. 

We proved earlier that the excitation energy equation (19) yields the ex- 
act excitation energies and the exact de-excitation energies (just the nega- 
tives of the excitation energies) when any EOM complete operator basis is 
used. This is, likewise, a consequence of the symmetry of the symmetric 
double commutator and the commutator. 

[ oi, H,O,’] = [ 01, H , O i ]  

and 

[ oi ,o,’ ] = - [ 01, Oil 

respectively. 

C. Operator Basis Sets Used in Calculations 
In the previous subsections we discussed one possible operator basis set: 

COT} = {IX)(Ol ,  l O ) ( X l ) ,  where 10) and IX) are exact initial and final states 
within the finite space defined by the set of orbitals used. The EOM equa- 
tion, (19) or (21), is diagonal in this basis. Obviously, however, this basis 
set is not a useful one for practical calculations, since the exact states, (0) 
and I X ) , are unknowns. 

The basis commonly employed in EOM calculations is expressed in terms 
of second quantized creation and destruction operators. To introduce this 
many-body basis, it is convenient to consider a reference determinant, a0, 
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approximation to 10). For instance, Qo is usually taken to be the SCF wave 
function when dealing with a closed-shell system, & I O U &  this is, of course, 
not the only possibility. Unless explicitly stated otherwise, we use the Greek 
letters p ,  v, . . . , to denote orbitals that are occupied in Qo (commonly re- 
ferred to as hole orbitals) and the Latin letters, m, n,  . . . , to denote orbitals 
that are not occupied in Q0 (often called particle orbitals). 

For excitation energy calculations, the customary EOM basis set has the 
and 

a~afta,a, produce approximate single and double excitations, respectively, 
since they remove electrons from orbitals that are occupied in Qo and add 
an equal number of electrons to orbitals that are vacant in Qo, respectively. 
The operators aLa, and a~a~a,a,, are approximate single and double de- 
excitation basis operators, respectively. The full operator basis set includes 
up to N, -fold excitations and de-excitations for an N,-electron system. 

For ionization potentials, the customary EOM basis has the form (O:} 
= {a,, a,, a,u~~a,.  a,a~a,, . . . }. These operators each annihilate one more 
electron than is created, thus producing an (N, - 1)-electron function when 
operating on an N,-electron function. The operator a, removes an electron 
from an orbital that is occupied in reference determinant, and a ,a~a ,  re- 
moves one electron from a hole orbital and excites a second electron from 
a hole orbital to a particle orbital. The operator a; removes an electron 
from the particle orbital m and a,a~a, removes an electron from a particle 
orbital and “de-excites” another electron from a particle orbital to a hole 
orbital. For electron affinities, the adjoints of the operators in the IP basis 
from the standard EOM operator basis. 

Often, rather than the simple strings of second quantized operators (e.g., 
u~af;a,a,,), spin- and/or space-symmetry-adapted linear combinations of 
these operators are ~ t i l i z e d . ~ ~ ~  ”* 66* 67 Since the EOM matrix equations are 
block diagonal according to symmetry, the use of symmetry-adapted basis 
operators results in a reduction in the size of the resultant matrix ei- 
genvalue problem. 

When the EOM excitation basis operators (aka,, a ~ a f t a , , ~ , , ,  . . . } or EOM 
ionization basis operators (a,,, a,a~a,,, . . . } act on the ground-state wave 
function (either approximate or exact), the many-electron basis wave 
functions 0: 10) that are formed are linear combinations of many determi- 
nants. (Since 10) is taken to include correlation effects, it is a linear com- 
bination of many determinants.) This is in contrast to the basis of config- 
urations employed in CI calculations, which are generally symmetry- 
adapted linear combinations of only a few determinants. Since in large-scale 
EOM or CI calculations, it is necessary to truncate the basis set of opera- 
tors or configurations employed, respectively, the EOM method often in- 
cludes the effects of many more excited-state or ionized-state configura- 

form (uLu,, aLa,, a~afta,a,,, a,a,a,a,, t t  . . . }. The operators, at a 
P. 
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tions of a given size basis than the comparable CI calculation. However, 
the relative weights of the determinants in O/lO) are fixed by the weights 
of the various determinants in 10). Roughly speaking, the correlation in the 
upper state is being crudely approximated using the information about the 
ground-state correlation in (0) based on the expectation that certain types 
of electron correlation are fairly invariant to changes in state. The conver- 
gence of EOM ionization potential calculations with respect to the size and 
constitution of the operator basis is studied in Section 111. 

The EOM excitation energy basis also contains the primitive de-excita- 
tion operators {alfa,, a~a~a,a,,, . . . 1, which have no direct counterparts 
in CI theory. The EOM IP-EA operator basis, likewise, has the analogous 
operators {a,, a,a~a,,,. ..}. These operators have been shown to be im- 
portant for the inclusion of effects due to changes in correlation between 
the initial and final states of the system.36* 4345 

The 01 obtained from the EOM equation provide direct physical insight 
into the important electronic mechanisms present in the 10) -+I A) transi- 
tion. By scanning the list of expansion coefficients for 01, it is possible to 
isolate zeroth-order processes, such as, for instance, electron removal from 
a specific orbital accompanied by an excitation from one orbital to another, 
as important for a certain ionization. The same information is surely pre- 
sent in the results of CI calculations; however, it may not be as clearly ex- 
hibited when comparing two long lists of CI expansion coefficients. 

Manne" has shown that the basis configurations 0: (0) provide the cor- 
rect number of linearly independent wave functions for the calculation of 
ionization potentials and electron affinities as long as (0) is not orthogonal 
the reference determinant a,,, which is used in the definition of the many- 
body basis {@}. Dalgaard" has provided the analogous result for the ex- 
citation energy case. To prove that the operators are what we term "EOM 
complete," however, it remains to be proved that the EOM metrics are 
nonsingular for these bases. Dalgaard" has noted that for the IP-EA case 
this operator basis must yield a nonsingular metric. This can be proved as 
follows. Divide the operator basis into two sets 

{ a t }  = {a,, a,a:a,, a,a:a,at,a, ,...) 

and 

{ P + )  = {a,, a,alfa,, a,a~a,a:a,, . . . ) 

The block of the metric between the two sets vanishes, ( O l { P , a t ) l O )  =0, 
since {a, ,  a,) = {a:, a ; )  = O  whether or not p = v  and m = n .  Thus it is suffi- 
cient to show that each of the blocks (Ol{a,at]lO) and (Ol{fl,Pt)lO) is 
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positive definite. To accomplish this, it is sufficient to show that 
(Ol{ai,aj}IO)c,cj > O  and Ci,,(O~{~,,pit}~O)c,cj > O  for every choice of the 
ci’s such that not all c, = 0. Call C j c j a j  10) = I A ), Cjc,aj  10) = 1 A ’ ) ,  
C,cjp7 10) = I B ) ,  and Cjcjpj 10) = 1 B’). As shown by Marine,*' a! 10) form 
a linearly independent set of (N- I)-electron wave functions and pilo) 
form a linearly independent set of ( N +  1)-electron wave functions. There- 
fore ( A  I A )  > 0 and (B’I B’) > 0 for any set of c,’s that do not all vanish. 
Since C , , ( 0 ~ ( a i , a ~ } ( O ) ~ , c j = ( A ~ A )  + ( A ’ I A ’ )  > ( A I A )  > O  and C,,, 
( o ~ ( ~ , , ~ ~ } ~ O ) c , c , = ( B ( B )  + ( B ’ I B ’ )  2(B’ IB’ )  >0, this completes the 
proof. 

A similar proof does not hold in the excitation energy case, since in this 
case the metric contains the commutator rather than the anticommutator. 
In fact, the above-described many-body basis for excitation energies need 
not be EOM complete, as the following simple example demonstrates. 

Consider a system with only two levels of a given symmetry; for exam- 
ple, the hydrogen atom with only two s orbitals in the orbital basis or the 
excitations of beryllium with a 2s Ip  basis in the frozen core (Is2) ap- 
proximation. In the first example, the ls+2s excitation operator and its 
adjoint are the only allowed basis operators, and in the second, the 2s2+ 
2pz(’S) double excitation and its adjoint are the only basis operators of this 
symmetry. The two basis configurations for the system are written as [ A )  
and I B )  . The normalized ground-state wave function (either exact within 
this basis or an approxmate one) is 

The two operators in our basis are defined by 

and 

In our beryllium example [ A )  can be 12s’) and IB)  is 12p2(’S)). Then 
0: is given by 
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and 01 is the adjoint of this. The overlap matrix is given by 

This matrix is singular when B=p/4. Otherwise, this basis is EOM com- 
plete. 

Although the many-body basis is not guaranteed to be complete in the 
excitation case, to our knowledge no difficulties with linear dependences 
have emerged in numerical calculations. 

Other possible operators have not yet been considered. There are opera- 
tors a l a ,  that transfer an electron between two orbitals that are occupied 
in the reference state Q0. The analogous operators atman shift an electron 
between two orbitals that are vacant in Q0. There are also products of these 
operators with themselves, with each other, and with the ordmary opera- 
tors of the many-body basis. Similar considerations apply to the IP-EA 
case. These unorthodox operators can improve the EOM calculations if they 
are added to an incomplete operator basis set and if the resulting basis 
yields a nonsingular metric. It is conceivable that in some cases the lower 
rank of these “moving” operators will make them more convenient to use 
than the higher excitations and de-excitations of the usual many-body ba- 
sis. The effect of adding these unorthodox basis,operators to an incomplete 
basis is investigated numerically in Section 1II.F. 

D. Approximations 

I .  The Ground-State Wave Function 

In general, the exact ground-state wave function 10) is unknown. It has 
been customary in EOM calculations and, in effect, for Green’s function 
methods, to approximate ( 0 )  by perturbation theory. As mentioned above, 
because the double commutators in the EOM equations are of lower oper- 
ator rank than simple products of operators, it has been widely believed that 
the EOM method (as well as the related Green’s function and propagator 
theories) should be fairly insensitive to small errors in the ground-state wave 
function.”’ 50-52 The ground-state wave function can be expressed as a lin- 
ear combination of some reference N, -electron state plus all possible single, 
double, . . . , N,-fold excitations out of this reference state. Usually in EOM 
work, the reference state is chosen to be a closed-shell SCF determinant, 
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IHF) . Restricting the discussion to this particular reference state results in 
some simplification in the evaluation of matrix elements. 

The use of a closed-shell reference ground-state wave function is not as 
great a restriction in the IP-EA theory as it might seem, since only one 
state, the neutral or the ion, need be closed shell. For instance, in Section 
1II.E we compute the EA of F as the lowest *P ionization potential of F - .  

Yeager and M c K o ~ ~ ~  have extended the EOM theory at  a low order 
(random phase approximation) to allow for the calculation of excitation 
energies of systems with one or two open shells. They have reported results 
for the lithium atom and the oxygen molecule. The complexities of an 
open-shell treatment have led Purvis and to propagator calculations 
for the 0, molecule that employ unrestricted SCF orbitals, and thus utilize 
a single-determinant, zeroth-order description of the ground-state wave 
function. Cederbaum and DomckeI6 have described the formal extension 
of the diagrammatic Green’s function theory to open shells, but to the best 
of our knowledge they have not presented any calculations. Recently, 
J~rrgensen and co-workersE9* have presented second-order propagator 
calculations for ionization from a doublet ground-state in Li, Na, and BeH 
and for doublet-to-doublet excitations in Li and BeH. 

When a closed-shell SCF determinant is employed as a reference state, 
the ground-state wave function can be written as 

m<n 

where No is the normalization constant. Generally, the correlation coeffi- 
cients CL, C;”, . . . , have been evaluated by the use of Rayleigh-Schrodinger 
perturbation theory (RSPT).”-”, 56, 66 

Yeager and Freed” considered the effect on calculated excitation en- 
ergies of evaluating the correlation coefficients by Epstein-Nesbet per- 
turbation theory ( ENPT).92 For N, they found a considerable difference 
between the two approaches, and this is symptomatic of the fact that the 
perturbation approach of (34) is not optimal in all cases. In Section 1II.C 
we compare EOM results for the IPS of N, when the ground state is ap- 
proximated using RSPT and ENPT. In Section 1II.F the use of a ground 
state based on a multiconfigurational reference state, augmented by gener- 
alized perturbation theory, is investigated in a simple Be( ‘S) excitation en- 
ergy calculation. Recently some EOM theory has been undertaken by 
Simon~’~. 79 (for excitation energies and IPS and EAs) and by Yeager and 
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J ~ r g e n s e n ~ ~  (for excitation energies) that employs a multiconfigurational 
reference state within an RPA-type approximation. 

2. Partitioning Theory and Approximating the Contribution 
of Q-Space 

Partitioning theory 93 is employed to reduce the apparent dimensionality 
of the EOM equations and subsequently to enable the introduction of use- 
ful numerical approximations. The EOM operator basis is separated into 
the operators that are considered to be the most important, called the 
primary ( P )  space, and the remaining operators, comprising the secondary 
or Q-space. The EOM equations (19) or (21) can be written in block matrix 
form, 

This is equivalent to the two matrix equations 

and 

The second equation can be solved formally for CQ in terms of C,. The re- 
sults are then substituted into the first equation (36) to produce the familiar 
equation93 

[ - ( A f Q  - W D f Q ) ( A Q Q  - W D Q Q ) - ' ( A Q f  - w D Q P  )Ic, = W D f f C P  

(37) 

Equation 37 is a pseudoeigenvalue problem of the form 

L(w )C = w DC (38) 

It can be solved iteratively for w and C: Equation 37 has the dimensional- 
ity of the P space. 

Computationally (37) is no improvement over (35) because it contains the 
large inverse matrix (AQQ - wDQQ)- ' .  Since the Q-space contains only 
basis operators that are assumed to be of secondary importance, it is rea- 
sonable to approximate the effect of the Q-space in (37). This is done by 
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separating (AQo -wDQQ) into a zeroth-order part M, and the remaining 
part, M,.  The inverse matrix can then be expanded in a Born expansion 

( M ~ + M , ) - ' = M , ' - M , ' M , M , ' +  . . .  (39) 

Equation 39 is inserted into (37), and the expansion is truncated in low 
orders. In Section 1II.C it is shown that inclusion of the second term in the 
Born expansion in (39) can have very significant results if proper care is not 
taken in the choice of the P-space of basis operators. 

Two divisions of A,, -wDQy have been employed in our treatment of 
the EOM equations. In both M, is chosen to be diagonal (not the only 
possibility, of course), since this results in a great simplification in invert- 
ing M ,. The first method, the unshifted w-dependent denominators method, 
chooses M, to be the zeroth-order parts of A,, -wDQQ in the electron- 
electron interaction. The other common method, called the shifted w- 
dependent denominators method, includes in M, the first-order parts (in 
electron-electron interaction) of the diagonal elements in addition to the 
zeroth-order matrix elements. For excitation energies, McKoy and co- 
w o r k e r ~ ~ ' - ~ ~  employed unshifted w-dependent denominators. Yeager and 
Freed" investigated the use of shifted denominators in N, excitation en- 
ergy calculations, finding that the shifted results differ substantially from 
the unshifted results for this system. Simons and c o - w o r k e r ~ ~ ~ ~ ~  obtained 
accurate results for IPS and EAs with shifted denominators. In Sections 
1II.C and 1II.E we compare ionization potentials calculated using both these 
methods. 

Because (37) is calculated through some prescribed order in the electron- 
electron interaction, the accuracy to which the different submatrices (i.e., 
A,,, A,,, etc.) need be evaluated is limited. This restriction, in turn, limits 
the order to which the various correlation coefficients in (34) are needed. 
Furthermore, (37) is simplified by orthogonalizing the operator basis set 
such that 

D,,=D,,=O 

In practice, the operator basis need be adjusted only so that (40) hold 
through certain finite orders in the electron-electron interaction, so that (37) 
is consistent. Orthogonalized basis operators are employed in most of the 
numerical calculations presented in Section 111. 
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E. Choice of the Primary Space for Ionization Potentials 
Most of the numerical work presented here employs the IP-EA variant 

of the theory. Since the changes in correlation and orbital relaxation are 
generally greater for ionization and electron attachment processes than for 
excitation processes, calculation of IPS and EAs might be expected to pro- 
vide a more severe test of the theory than the excitation energy form of the 
theory. 

On the other hand, in certain technical aspects the ionization potential- 
electron affinity form of the theory is easier to implement than the excita- 
tion energy EOM version. This is because the basis operators of the excita- 
tion energy EOM theory contain strings of two, four, . . . , second quantized 
operators, whereas the IP- EA theory basis operators have strings of one, 
three, . . . , creation and destruction operators. Thus if an ionization poten- 
tial calculation employs an operator basis that is truncated to include only 
operators containing one or three second quantized operators (a common 
point of truncation), the operator basis is much smaller than in the excita- 
tion energy calculation (using the same set or orbitals) employing basis op- 
erators with two and four at 's and a, 's ( i  can be either hole or particle here). 
Furthermore, because of the fewer af 's and a,'s in the basis operators, the 
matrix elements are somewhat easier to evaluate in the IP-EA case. 

At this juncture, i t  is convenient to introduce some nomenclature and 
notation. The basis operators, which correspond to simple electron re- 
moval, ap and a,, are referred to as I-block operators, and the operators, 
which are products of three, five, . . . , creation and destruction operators, 
are called the 3-block, the 5-block, . . . , operators, respectively. This 
nomenclature is also used when spin- and/or space-symmetry-adapted lin- 
ear combinations of these operators are employed as the operator basis or 
when the basis operators are orthogonalized to each other. The or- 
thogonalization of the operator basis mixes the primitive nonorthogonal 
operators, which have different numbers of creation and destruction opera- 
tors. However, in all cases considered, this mixing is slight, and the orthog- 
onalized set of basis operators retains predominately the character of the 
1-block or 3-block and so on. 

It is also convenient to divide the EOM equation into block form, 

where A$)')=(O1{Oi, H,O]}lO) when 0: and O] are both in the 1-block. 
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For A!:.'), O,+ is in the 3-block and 0; is in the 1-block, and so on; 
D!!, I ) ,  D:;, '), . . . , are defined analogously. 

Prior to the present work, the universal choice of the EOM P-space for 
ionization potentialss646 was just the simple electron removal operators a, 
and a,, the 1-block. This is effectively also the customary choice in the 
propagator and diagrammatic Green's function methods. 

S i m ~ n s ~ ~  and Yeager,66 working separately, developed the IP-EA variant 
of the EOM method based on this limited choice of the P-space. These the- 
ories included some third-order terms but neglected others. S i m o n ~ ~ ~ " ~  has 
reported IPS of many small diatomic molecules using this approach which, 
apart from a few notable exceptions, are highly accurate. 

Both Simonss6 and Yeager& employ the 3-block basis operators as the 
secondary operator space, retaining only portions of the diagonal matrix 
elements thereof. When the correlation coefficients are calculated by RSFI 
and the 5-block operators (i.e., a p a ~ a v a ~ a h  and a,,,a~a,,a~a,) are Schmidt 
orthogonalized to the simple electron removal operators (the I-block), the 
A(',') matrix vanishes through first order.70 Therefore, the 5-block basis op- 
erators do not contribute until fourth order [since (37) is bilinear in A".5)]. 
Differences between the approaches of Yeager and Simons are described 
more fully and tested numerically in Section 1II.A. 

Section 1II.C presents evidence that suggests that the foregoing choice of 
the P-space can lead to severe difficulties. The problems arising when this 
simple choice is employed are overcome by enlarging the P-space to in- 
clude some operators from the 3-block. 

The 3-block basis operators that are to be transferred to the P-space are 
chosen in most of our calculations by a numerical selection criterion, simi- 
lar to the configuration selection  procedure^^^-^^ that have proved very 
useful in CI work. The lowest order perturbation correction of a basis op- 
erator 0; to the diagonal EOM matrix element A,, due to an operator in 
the P-space, O:, is given by A;, A,, /( A,, - Ai,). Therefore, the quantity 

I J  

is employed as an estimate of the magnitude of a contribution of the vari- 
ous shake-up basis operators (i.e., the 3-block) to the P-space in the 
numerical work.68 The summation in (41) is over some prescribed (by the 
user) list of P-space operators that are most important for the IP of inter- 
est. All shake-up operators with a contribution greater than some tolerance 
are added to the P-space. Various tolerances are used to test convergence 
on a number of systems in Section 1II.E. 
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Diagrammatic Green’s function theory attempts to evaluate a perturba- 
tion expansion for 

where the 1-block of operators comprises the P-space for the one-electron 
Green’s function C , ( w ) .  The matrix ApQ(uIOp - AQQ) -‘AQp corresponds 
to the o-dependent part of the self-energy. Since (42) is essentially the in- 
verse of the partitioned EOM equation (37), the poles of G , ( o )  lie at  the 
eigenvalues of (37), which are the ionization potentials and electron affini- 
ties of the system. 

Inclusion of basis operators from the 3-block into the primary operator 
space would entail, in Green’s function language, the summation of certain 
classes of diagrams through all orders in perturbation theory. This would 
represent a rather tedious task of diagram summation, and the repartition- 
ing approach accomplishes this in a conceptually simple and numerically 
automatic fashion. The relationship of the EOM theory, with an expanded 
P-space, to the diagrammatic one-electron Green’s function approach is 
discussed more fully in Section 1I.F. 

When some shake-up operators are introduced into the P-space, the 5- 
block basis operators now make second-order contributions to (37), since 
there are nonvanishing first-order A(395) matrix elements. In Section III.E, 
we investigate the effect of these terms as well as other second-order con- 
tributions to A,, that arise from the second-order parts of matrix ele- 
ments for the 0: and Oi in the P-space. An estimate of the contribution of 
the 5-block operators to the P space can be obtained in similar fashion to 
(41),” and 5-block operators can be included in the P space based on their 
estimated contributions to APp. Section 1II.E reports results of EOM 
calculations in which the P-space includes operators from the I-,  3-, and 
5-blocks to provide tests of the convergence of the EOM method. 

In related propagator work,40, 41 it has been conjectured that because of 
orbital relaxation effects, the 5-block basis operators make important con- 
tributions. While adhering to the traditional choice of the P-space, (i.e., a, 
and u,,,), Ohm and co-workers”’, 41 explicitly include the 5-block in calcu- 
lations on Ne and N,, respectively, via a continued fraction formalism. 
Their numerical calculations confirm our findings of the importance of 
these terms. 

Cederbaum and c o - ~ o r k e r s ’ ~ - ~ ~  do not explicitly evaluate diagrams that 
include effects of the 5-block of basis operators in their diagrammatic 
Green’s function approach. Cederbaum” has, however, employed a self- 
consistent procedure that iteratively replaces unperturbed Green’s func- 
tion, Go, lines with perturbed ones, G ,  in self-energy diagrams. This results 
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in the replacement of orbital energies in the denominators of the perturba- 
tion series for the self-energy of the one-electron Green’s function, with an 
improved estimate of the corresponding ionization potential provided by the 
previous iteration. This method implicitly calculates some diagrams con- 
taining effects of the 5-, 7-, . . . , blocks of operators. However, many other 
diagrams resulting from 5- and higher blocks are not incorporated by this 
procedure.” Numerical evidence indicates that this self-consistent ap- 
proach causes only slight shifts in the calculated ionization potentials and 
electron affinities.” In contrast, results presented in Section 1II.E em- 
phasize the significance of the more complete treatment of the 5-block in 
the .EOM theory. 

Wendin3’ also implicitly includes part of the effect of the 5- and higher 
blocks by replacing hole orbital energies in the denominators of self-energy 
diagrams with ASCF values for the ionization potentials for the removal of 
an electron from the orbitals in question. Orbital relaxation is treated in this 
fashion. This approach is likely to be reasonable for holes in core levels, 
the situation with which Wendin is concerned, since relaxation effects tend 
to be greater than changes in correlation for ionization from these levels. 

F. Relationship of the EOM Method with an Expanded P-Space to 
Diagrammatic Green’s Function Theory 

The one-electron Green’s function G , ( E )  is the resolvent of the Liouville 
operator within the 1-block of basis operators. A comparison of G , ( E )  and 
the EOM method with its expanded P-space can be accomplished by fold- 
ing the partitioned EOM equation, which has the dimensionality of the 
P-space, into the 1-1 subblock. The P-space repartitioned EOM pseudo- 
eigenvalue equation (38) is written in block matrix form 

with an orthogonal operator basis assumed in (43). Equation 43 explictly 
displays the o dependence of the L ( w )  matrix that arises from the 
-AfQ(AqQ - W I ~ ~ ) - ~ A ~ , ,  term in (37), and (AQQ -wIQP)-I is approxi- 
mated by its diagonal elements (through first order) in the present formula- 
tion of the theory. Applying partitioning theory to (43) and suppressing the 
w dependence of L to simplify the notation, the EOM equation becomes 

(44) [ ~ ( 1 . 1 )  - ~ ( 1 . 3 ) ( ~ ( 3 . 3 )  - w p 3 )  1 (3 ,1)  c(I) =wc(l) ) - L  3 
Diagonalizing (43) directly (the current EOM theory) corresponds to the 
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exact inversion of (L(3*3) - u I ( ~ ~ ~ ) )  in (44) or, in other terminology, to sum- 
ming all self-energy diagrams generated by the Born expansion of this in- 
verse matrix to infinite order. The algebraic expression for the general term 
in this Born series is 

where k , ,  k , ,  . . . , k ,  label shake-up operators, Ek, is the zeroth-order contri- 
bution to Lf;;: (a linear combination of three orbital energies), and L‘373) 
is L(’v3) minus its zeroth-order part. Hence the present formalism is equiva- 
lent to a summation through all orders of series of self-energy diagrams 
containing the zeroth-order shake-up poles corresponding to the 3-block 
operators in the P-space. The situation is actually very complicated, since 
L!2,3), L(3*3) and Lf;:) matrix elements already contain extensive summa- 
tion of first- and second-order terms. These include first-order electron- 
electron interaction matrix elements ( y,&,), second-order terms that are 
products of electron-electron interaction matrix elements and first-order 
ground-state correlation coefficients (these add w-independent denomina- 
tors to the diagrams), and second-order AfQ(AQQ -wIQQ)-’AQp terms. The 
latter type of term contains w-dependent denominators that have the 
zeroth-order poles corresponding to 5-block operators. Suffice it to say that 
it is conceptually much clearer and numerically much more efficient to ac- 
curately account for important shake-up basis operators by simply and au- 
tomatically including them in the primary operator space, as is done in the 
present EOM theory, rather than attempting extensive diagrammatic sum- 
m a t i o n ~ . ~ ~  

Wendid5 attempts to diagrammatically account for some of the collec- 
tive excitation effects that have prompted the use of a generalized P-space 
in the present theory. Wendin utilizes a renormalized electron-electron in- 
teraction that includes the summation of a prescribed, limited set of ring 
diagrams. In this manner, he includes some of the interaction of certain 
quasi-particle shake-up processes. He also employs a potential in the 
calculation of virtual orbitals (i.e., the virtual orbitals are generated by an 
SCF description of the motion of electrons in the field of a system in which 
two electrons have been removed). This presumably provides a better set 
of virtual orbitals for the description of shake-up process, whch has one 
ejected electron and one electron excited. The excited electron “sees” only 
the N - 2  remaining electrons, where N is the number of electrons in the 
neutral atom or molecule. We have also suggested that the use of 
virtual orbitals might be helpful rn the evaluation of shake-up spectra69 but 
have not performed any calculations in this way. One possible problem 

k h ,  ’ 
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arises insofar as the virtual orbitals from a I"-' of I"-' potential have, 
in general, lower orbital energies than the virtuals derived from the full P" 
SCF potential. Since all the denominators in the EOM- Green's function 
theories contain differences between occupied and virtual orbital energies, 
it is possible that the use of V"-' virtual orbitals could cause convergence 
problems for the perturbation series.69 Yeager et al. have observed similar 
problems in EOM excitation energy calculations where they used I"-' 
potential virtual orbitals.94 

Cederbaum and co-workers16 also employ a renormalized interaction in 
their calculations, obtained by approximating certain sets of diagrams as 
geometric series and summing the series to all orders. Cederbaum et a1.I6 
note, however, that this approximation is expected to be accurate only when 
there is adequate separation of the valence ionization potentials and the 
shake-up energies. Cederbaum and c ~ - w o r k e r s ~ ~ - ~ ~  obtain more accurate 
estimates of shake-up energies from the diagonalization of the large CI 
matrices, (HFJa,ta,,,afHa,a,t~,JHF) and (HFJa, , ,a~a ,Ha~a,a~JHF)  
when they are interested in the shake-up portion of the spectrum. The 
eigenvalues and eigenvectors of these matrices are then employed in the 
second-order Dyson equation, which couples the primitive shake-up and 
simple ionization processes. Thus the first-order couplings between differ- 
ent shake-up states are included in the evaluation of inner valence ioniza- 
tion potentials and shake-up energies, yet the second-order couplings, which 
arise from correlation effects in the ground-state wave function, are ignored. 
Numerical results described in Section I11 demonstrate that the diagonali- 
zation of the entire CI shake-up matrices is not necessary; rather, only a 
relatively small number of configurationally selected shake-up operators 
need be directly diagonalized. 

111. NUMERICAL STUDIES 

In this section we describe numerical investigations concerning the accu- 
racy of various approximate solutions of the EOM equations. The work 
centers mainly on the ionization potentials-electron affinity variant of the 
equations of motion theory. 

A. Differences Between Simons' and Yeager's EOM Calculations 
The simplest EOM method for ,EAs and IPS has been developed 

independently by Simons and c o - ~ o r k e r s ~ ~  and by Yeager.66 This ap- 
proximation uses a P-space consisting of the simple electron removal basis 
operators a,, and a,,,. Only the 3-block of basis operators is retained in the 
Q-space. Simons approximates the ground-state wave function by first- 
order RSPT as a linear combination of the SCF determinant IHF) , plus all 
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double excitations with respect to IHF). Only the diagonal matrix ele- 
ments of the inverse matrix in the partitioned EOM equation, (37), are re- 
tained through first order (in the electron-electron interaction). The matrix 
A('. I )  is approximately calculated through third order, and through 
second order. However, third-order terms in A('*') and second-order terms 
in A(39 I )  involving single excitation correlation coefficients are neglected in 
Simons' 9s (The single excitations do not enter into the 
ground-state wave function until second order.) Fourth-order terms in (37) 
that are bilinear in the second-order parts of and A(3.') are discarded. 
The result is a 2;-order theory. The neglected third-order terms, which 
either involve single excitation correlation coefficients or the off-diagonal 
parts of A(3p3) through the second term in the Born expansion of (AQQ - 
dQa)-', are studied in detail in Section 1II.C. First, however, we consider 
the implications of the two differences between the formulation of Simons 
and that of Yeager. 

The first difference concerns the manner in which the EOM matrix is 
symmetrized. Simonss6 uses the unsymmetrized form of the EOM equa- 
tion, (7), whereas the present ~ o r k , ~ ~ - ~ '  as well as Yeager's,M employs the 
symmetrized form, (21). However, the unsymmetrized A =  (01 {O,[ H ,  Ot]) 
lo), is, in general, non-Hermitian when an approximate ground-state wave 
function is employed. (If an nth-order approximation to (0) is utilized, the 
unsymmetrized A is Hermitian, at least through order n.39)  Simonss6 ap- 
parently symmetrizes his A matrix by replacing the upper right triangular 
block with the adjoint of the lower left triangular block. This method is 
called 2;-order EOM method I, below. When the symmetrized EOM equa- 
tion (21) is employed, it is termed 2i-order EOM method 11. These two 
methods differ by third-order contributions to the partitioned EOM equa- 
tions. 

The second difference between Simons's work and Yeager's develop- 
ment of the theory arises from the use of spin-symmetry-adapted shake-up 
basis operators in Yeager's methodM and unsymmetrized ones in Simons's 
method.56 The present calculations, 2f-order EOM methods I and 11, fol- 
low Yeager in utilizing spin-symmetry-adapted 3-block operators.67 The 
primitive operators a , a ~ a ,  and a,a;a,, are related to the spin-adapted 
forms by a unitary transformation. The EOM matrix is blocked by symme- 
try when symmetry-adapted operators are employed. The EOM equation 
(21) and the partitioned EOM equation (37) are invariant to unitary trans- 
formations within the operator basis. However, when the inverse matrix in 
(37) is approximated by a truncated form of the Born expansion, (39), this 
invariance to unitary transformations is lost.68 Of course, the use of 
symmetry-adapted operators reduces the dimensionality of the secondary 

48, 
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operator space. This reduction is accomplished. at the expense of more 
complicated expressions for the A(',3), A(33 I ) ,  and A(3*3) matrix elements. 

Table I presents the results of EOM calculations of the three lowest IPS 
of nitrogen. Comparison of the first two columns of Table I demonstrates 
that there is a difference of 0.2 to 0.3 eV in the IPS when the EOM A 
matrix is symmetrized as by Simons, 2;-order method I, and when the sym- 
metrized form of the EOM equations, (21), 2;-order method 11, is em- 
ployed. The lack of symmetry in (Ol{O,[H,Ot])JO) in a 2;-order calcula- 
tion arises from the inclusion of certain second-order A(3.') and A('*3) terms, 
which contain the products of electron-electron interaction matrix ele- 
ments with first-order double excitation correlation coefficients, and the 
neglect of other second-order A(3,') and terms, which involve second- 
order single excitation correlation coefficients multiplied by linear combi- 
nations of orbital energies. The discrepancies between the EOM 2;-order 
methods I and I1 are a measure of the importance of the terms due to single 
excitations in the ground-state wave function. In Section III.C, we consider 
the third-order terms not included in this primitive 2;-order EOM theory. 
The calculations imply although these terms are small, they are certainly not 
negligible .68 

By comparing the calculations of the 2;-order EOM method I with 
Simons' N, results5' (using the same orbital basis set), columns one and 
three of Table I, respectively, the effect of spin-symmetry adapting the op- 
erators basis can be assessed, since this is the only difference between the 
calculations. The results exhibit a shift in the IPS of 0.30 to 0.44 V when 
the symmetry-adapted operators are employed. This quite large shift is re- 
ally a reflection of the restricted accuracy of the diagonal approximation 

TABLE I 
Comparison of Primitive EOM Results' for N, Using Simons' Basis57 

Ionization potential (ev) 

2:-Order EOM 2:-Order EOM Simons' 
Ion state method I method I I b   result^^^^^ Experiment% 

X2C,+ 16.01 15.74 15.69 15.60 
A * n ,  18.33 18.09 18 .0397 16.98 
B2C,+ 19.22 19.00 18.63 18.78 

aAll results neglect singly excited configurations in the ground-state wave func- 
tion. 

spin-symmetry-adapted basis operators. 
Uses non-spin-symmetry-adapted basis operators. 
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for the (AQQ -uIQQ) matrix. This is the first indication of another prob- 
lem that dictates the course of much of the subsequent work presented be- 
low. 

In all the IP- EA calculations below, we follow YeagerM and employ the 
symmetrized EOM equation (2 1) and symmetrized shake-up operators. 

B. Basis Set Dependence of Calculated Ionization Potentials for N, 
The logic presented i n  Section 1I.A demonstrates that withm the same 

finite orbital basis, an exact EOM and a full CI calculation yield the same 
energy difference (i.e., when the only approximation is due to the choice of 
a finite orbital basis). Evidence from CI studies has shown that rather ex- 
tensive orbital basis sets are needed to provide reliable results in molecular 
calculations. On the other hand, the early EOM computations of Simons 
and c o - w o r k e r ~ ~ ’ ~ ~  had been restricted to rather small basis sets because 
of computer limitations. Nevertheless, these investigators obtained very 
good agreement with experimental values for the IPS and EAs of di- 
atomics, involving the atoms H through F. An accuracy of 0.1 to 0.2 eV 
was frequently claimed, although the basis sets (Slater-type orbitals) are 
generally double zeta quality without polarization functions. This high de- 
gree of accuracy certainly would not be expected of CI calculations with 
such primitive sets of orbitals. 

Griffing and Simonsm vary the exponents of those basis functions with 
large expansion coefficients in the highest occupied orbital in the SCF de- 
terminant, to maximize the ionization potential in C N -  and BO-,  claim- 
ing that this simple variation procedure leads to orbital basis sets that yield 
accurate IPS and EAs. Liu9* has criticized this method of basis set “optimi- 
zation,” presenting results for CN showing that the major effect of this 
variation is an increase (worsening) of the SCF energy of CN, while the SCF 
energy of CN - remains relatively unchanged. Liu contends that this pro- 
cedure improves the calculated EA by actually providing a poorer basis set 
for the calculation of the energy levels of the neutral. Since this method is 
not guided by any variational bounds, its application seems rather dubi- 

In this section we compare EOM results for the three lowest IPS of N, 
using four different orbital basis sets, attempting to clarify in the most di- 
rect fashion the basis set dependence of the EOM method. The basis sets 
used are the double zeta (no polarization functions) Slater basis set of 
Sirnon~,~’ the same basis set augmented with a set of do and d?r polariza- 
tion functions, the partially optimized Slater basis set due to Nesbet,w and 
the modest Gaussian basis employed by Yeager and Freed” for their N, 
excitation energy calculations. This Gaussian basis set consists of a [ 3 s 2 p ]  
Dunning contraction of a (9s5p)  set of basis orbitals with two diffusepz and 
two sets of diffuse d r  functions placed at the center of the N-N bond. 

ous. 
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The nitrogen molecule N, is an interesting and very difficult system for 
the calculation of ionization potentials. Both Koopmans’ theorems5 and the 
ASCF method predict the wrong ordering of the IPS when accurate basis 
sets are employed. This is the case for the extensive SCF calculations of 
Cade, et a1.lW on the N, molecule and the N; ion. These calculations are 
believed to be near the Hartree-Fock limit. Cade’s ground-state energy for 
N, at R=2.068 au is - 108.9928 au. The four basis sets employed in this 
study yield SCF ground-state N, energies of - 108.8644, - 108.9350, 
- 108.9714, and - 108.87855 au, respectively, which are 3.49, 1.57, 0.58, and 
3.11 eV from Cade’s value. These absolute errors are very large for all the 
basis sets except Nesbet’s. Even for this basis set it is still 0.58 eV. How- 
ever, since we are investigating energy differences, the final results ought to 
be less sensitive to errors in the orbital basis set employed. 

Table I1 shows that Simons’ basis set (set I) reproduces the experimental 
values rather accurately for the ’2; and ’2;  ionization potentials, the er- 
rors being 0.14 and 0.22 eV, respectively. These results represent vast im- 
provements over the Koopmans’ theorem values of 17.58 and 21.75 eV. 
However, the ’IT, state is grossly in error, being 1.1 1 eV different from ex- 
periment. (Simons, at first, mistakenly97 reported his value to be 1 eV lower 
than this, leading him to conclude, erroneously, that the EOM method gave 
accurate IPS for all three states with this basis set.57) Adding the polariza- 
tion functions to Simons’ basis set (giving basis set 11) lowers the calcula- 
tion of the troublesome ’ITu IP by 0.36 eV and leaves the other states 
relatively unaffected. The EOM results with Nesbet’s basis (set 111) are 
much better still: all the IPS are within 0.34 eV of experiment. The calcula- 
tions employing basis set IV indicate that the EOM Gaussian basis set 
calculations are of comparable accuracy to the double zeta Slater basis sets 
with polarization functions.67 

Cederbaum and co-workers”, 23 have also performed basis set studies on 
a number of species. Their conclusions are similar to those arrived at  from 
the calculations presented above. In choosing the basis set for EOM IP-EA 

TABLE I1 
Ionization Potentials (eV) of N, 

Basis set I Basis set I1 Basis set 111 Basis set IV 

Ionstate KT’ EOM KT” EOM KTa EOM KT’ EOM Experiment% 

X2Z: 17.58 15.74 17.34 15.78 17.49 15.94 17.49 15.09 15.60 
A * n ,  17.77 18.09 17.54 17.73 16.94 17.20 17.47 17.30 16.98 
B2Z: 21.75 19.00 21.54 19.09 21.38 19.01 21.03 18.71 18.78 

a Koopmans’ theorem prediction of ionization potential. 
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calculations, a compromise must be made between basis sets optimized for 
the neutral and ionic states. Basis set errors are propagated through the 
EOM-Green's function treatments just as they are in SCF and CI calcula- 
tions. It appears that, to consistently yield accurate ionization potentials for 
molecules, the basis sets must be, at the very least, of double zeta accuracy 
with polarization functions. 

C. Third-Order Results and the Breakdown of the Perturbation 
Expansion 

The EOM ionization potential calculations discussed in Sections 1II.A 
and 1II.B include some numerically important third-order terms while ne- 
glecting other third-order terms whose importance is suggested by means 
of the various comparisons. In this section we investigate these remaining 
third-order contributions in EOM IP calculations. 

Three types of third-order contribution are omitted in the calculations in 
Sections 1II.A and 1II.B. Two of these arise because of single excitations 
from the SCF determinant in the ground-state wave function 10). These 
singly excited configurations (SEC) in 10) produce third-order terms in A(',') 
and second-order ones in - O D . ( ' * ~ ~ '  

Both these provide third-order contributions to the partitioned EOM 
equation given the restricted definition of the P-space as the set of all sim- 
ple electron removal operators, a{, and a,. These terms are neglected in the 
calculations of Simons and of Sections 1II.A and 1II.B because singly ex- 
cited configurations contribute to 10) only in second order, and only a first 
-order 10) is considered in these works for ~ impl i c i ty .~~  Analysis of the 
A('93) and A(',') matrix elements shows that the other second-order per- 
turbation terms in the ground-state wave function, involving doubly, triply, 
and quadruply excited configurations with respect to the SCF determinant, 
IHF) , cannot contribute to the partitioned EOM equation through third 
order for the present definition of the EOM P-space. (This represents yet 
another simplification over EOM excitation energy calculations where the 
second-order double excitation correlation coefficients do enter into the 
third-order theory with the traditional partitioning.") The final third-order 
contribution to EOM ionization potentials involves the second term in the 
Born expansion (39) of the inverse matrix (AQQ - w I Q Q ) - '  that is present 
in the partitioned EOM equation, (37).68. 95 

Table 111 demonstrates the effect on the ionization potentials of includ- 
ing single excitations from IHF) in the ground-state wave function for N,. 
Simons' basis set is employed in these calculations. Table 111 exhibits the 
small, but nonnegligible, effect of retaining third-order terms involving 
singly excited configurations in 10) ; in the partitioned EOM equation i t  
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TABLE I11 
Effect of Including Singly Excited Configurations (SEC) in the Ground 

State Using Simons' Basis on EOM Ionization 
Potentials (ev) of N, 

Normal EOM" 15.74 18.09 19.00 
Including effects of SECs 

in normal EOM" 15.58 17.96 18.87 
Including effects of SECs 

in A(',') only' 15.29 17.72 18.64 
Including effects of SECs 

in (A('.') -wD(3.1)) only' 16.02 18.33 19.24 
Including effects of SECs 

using orthogonalized 
operator basis 15.57 17.96 18.86 

'Calculation employs nonorthogonal basis operators. 

produces shifts of 0.16, 0.13, and 0.13 eV for the * E l ,  'TI,, and '2: sym- 
metries, respectively. These contributions to the EOM ionization potentials 
are of comparable magnitude to the claimed accuracy of many early EOM 
calculations. Decomposing these contributions further and considering the 
extra third-order terms in A('* I )  and second-order terms in - w D('v3) 
separately reveals that each of these individual contributions is much larger, 
as large as 0.45 eV. However, these two types of term partially cancel each 
other. 

The D('7') terms are present because an orthogonalized operator basis set 
is not employed in these calculations. The last row of Table 111 presents re- 
sults for calculations that include both the third-order contributions to the 
partitioned EOM equation due to single excited configurations and use an 
operator basis in which the 3-block operators are Schmidt-orthogonalized 
to the 1-block (therefore, D(1,3) =0) through second order. These results 
differ from the results using the nonorthogonal operator basis by only 0.0 
to 0.01 eV for each symmetry. 

The only remaining third-order contribution to the partitioned EOM 
equation (37) arises from the second term in the Born expansion of 
(AQQ -wDQQ)-', (39). This term has the form A , q M ~ l M I M , l A , , ,  where 
A,,(A ) is the first-order part of APQ(AQP). When shifted w-dependent 

q? denominators are employed, M I  contains the first-order off-dagonal ma- 
trix elements of AQQ. On the other hand, when unshifted w-dependent de- 
nominators are employed, M I  includes the first-order diagonal elements as 
well. In any event, the evaluation of this term involves a double summation 
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over all the operators in the Q-space (i.e., the 3-block here). There is a con- 
tribution of this type to each element of the partitioned EOM matrix (which 
has the dimensionality of the P-space). Thus inclusion of these terms con- 
stitutes a substantial increase in the labor involved in solving the EOM 
equation, and this is, prehaps, the motivation for its neglect in the 2;-order 
theories. The results, presented in Table IV using both shifted and un- 
shifted w-dependent denominators, are startling when the tradtional parti- 
tioning of the operator basis is used. The shift upon inclusion of the second 
Born term is large for the 2rIu IP and enormous for the (shifted) '2: 
calculation. The shifted 'Z: calculation oscillates wildly and does not even 
converge. These results strongly imply that the expansion of (AQQ - 
wIQQ)-'  is failing for this system. The large differences in the shifted versus 
unshifted w-dependent denominators, which occurs for both the zeroth- and 
first-order Born expansions, is a further indication of a complete break- 
down of the perturbative expansions of the inverse matrix. 

This breakdown can be qualitatively explained by a simple molecular 
orbital picture of N,. A partial orbital energy level diagram for Simons's 
and for Nesbet's bases is provided in Fig. 1. The 1rg orbitals are very tight, 

TABLE IV 
Effect of Different EOM Partitioning Schemes on the Stability of the Expansion for 

(AQp - wIQQ) - ' Using Simons' Basis for Ionization Potentials of N, 

Traditional Unshif ted Zeroth 
partitioning Shifted Zeroth 

Unshifted First 
Shifted First 

Repartitioning Unshifted Zeroth 
scheme I Shifted Zeroth 

Unshifted First 
Shifted First 

Repartitioning Unshifted Zeroth 
scheme I1 Shifted Zeroth 

Unshifted First 
Shifted First 

Diagonalization of unpartitioned EOM matrix' 

16.21 
15.74' 
16.41 
17.75 
15.99 
15.86 
15.82 
15.81 
16.00 
15.85 
15.79 
15.81 
15.61 

18.00 
18.09' 
17.71 
17.51 
17.98 
18.1 1 
17.70 
17.51 
17.82 
17.70 
17.76 
17.76 
17.56 

19.96 
19.00" 
20.36 

19.33 
19.18 
19.20 
19.30 
19.33 
19.17 
19.19 
19.16 
18.97 

b - 

' "Standard EOM." 
'Calculation does not converge. 
'Includes effects of single excitation correlation in the ground state. 
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Fig. I .  Partial orbital energy diagram for 
N2. 

low-lying virtual orbitals, reflecting the almost bound nature of N;, as 
witnessed experimentally by the shape resonance in low-energy N, - 
electron-scattering profiles.'" Thus the presence of this low-lying, tight vg 
orbital is not dependent on a peculiar choice of orbital basis. Some primi- 
tive shake-up ionization operators, involving removal of one electron form 
a valence orbital (2uu,3ug, IT, , )  and excitation of a second valence electron 
to 1rg, mix strongly with the simple ionization process of removing a single 
electron from a valence orbital. These shake-up basis operators have been 
relegated to the Q-space, supposedly of minor importance. Numerically, this 
mixing of valence ionization and shake-up processes is reflected in rela- 
tively small diagonal (AQQ -uIQP)-'  matrix elements and in large A(1,3) 
coupling elements. A check of the corresponding matrix elements, indeed, 
confirms the molecular orbital picture. Furthermore, many of the off- 
diagonal A:;,') couplings between these important shake-up basis operators 
are large and comparable in magnitude to the splittings between their diag- 
onal elements, , 4 1 1 7 ' )  -A$.'). Hence the criterion for convergence of the 
Born series, an expansion in powers of A!>')/( A!:,') -a), is violated in this 
case. 

This example provides strong evidence that the traditional many-body 
choice of the single electron operators, a ,  and a,, as the primary space 
cannot be justified in general. 
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A comparison of different partitionings of the EOM operator basis is 
given in Table IV. Included in the P-space in repartitioning scheme I are 
shake-up operators, corresponding to removal of an electron from a 2uU, 
IT,,, or 3ug orbital and excitation of a second electron from one of these 
orbitals to the 1~~ orbitals. The expansion of the inverse matrix is then well 
behaved for the 'C; and '2 :  states, in contrast to the situation when the 
traditional definition of the P-space is employed. The 211u IP still changes 
as much as 0.6 eV when the first-order Born term is added for the shifted 
w-dependent denominators case. This instability in the Born expansion for 
the 'nu symmetry is removed when the P-space is expanded further to in- 
clude all 3-block basis operators involvingjust 2ug, 2uU, l ~ , , ,  3ug, and Irg 
orbitals (repartitioning scheme 11). This partitioning of the EOM P-space 
includes some particle removal and de-excitation operators, and these op- 
erators are, in fact, important for an accurate description of the 211,, 
ionization. This illustrates the need for a more general means of choosing 
the EOM P-space, such as the one based on an operator selection criterion 
described in Section ILE, since the de-excitation basis operators would not 
necessarily have been anticipated to belong in the P-space a priori. 

Because of the smallness of Simons' basis, it is possible to completely di- 
agonalize the unpartitioned EOM matrix. The calculations also appear in 
Table IV. They agree with the IPS from repartitioning scheme I1  to about 
0.2 eV, indicating the validity of our approach of adding 3-block basis op- 
erators to the EOM P-space. Furthermore, the IPS calculated by direct di- 
agonalization of the (unpartitioned) EOM matrix include the effect of the 
singly excited configurations in 10) in A('#') and A,''*3) whereas the calcula- 
tions using repartitioning scheme I1 do not. The inclusion of singly excited 
configurations in the ground state is expected to lower the partitioned EOM 
results by 0.1 to 0.2 eV, based on the results of Table I11 discussed above. 
This lowering of the results of repartitioning scheme I1 would bring them 
into even closer agreement with the unpartitioned solutions within the 1- 
and 3-blocks for the basis set. 

By analogy with the shifted and unshifted w-dependent denominator 
methods, there are the corresponding approaches for the perturbation 
calculation of the ground-state wave function. Above, unshifted w-  
independent denominators, that is, Rayleigh-Schrodinger perturbation the- 
ory (RSPT), have been used in all calculations. The alternate, shifted w- 
independent denominators method, that is Epstein- Nesbet perturbation 
theory (ENPT),92 treats the complete (through first order in the electron- 
electron interaction) diagonal Hamiltonian (CI) matrix as the zeroth-order 
Hamiltonian. The off-diagonal elements, which arise in the configuration 
mixing, give the perturbation. RSPT includes only the lowest (zeroth) order 
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diagonal elements of H in the zeroth-order Hamiltonian. The situation is 
exactly analogous to the expansion of the inverse matrix in the partitioned 
EOM equation. The unshifted method just has sums and lfferences of 
orbital energies in the denominators, whereas the shifted method has elec- 
tron-electron interaction terms added to this. 

The typical situation in EOM calculations for ionization potentials has 
been to employ shifted w-dependent and unshifted w-independent ( R S W  
denominators. This practice seems somewhat inconsistent. Table V com- 
pares results of N, calculations that employed unshifted w-dependent and 
w-independent denominators with corresponding calculations using only 
shifted denominators. There are - 0.13, - 0.99, and 0.30 eV differences for 
the 'ZJ, *-nu, and '2: symmetries, respectively. Comparison of these 
shifted results with calculations employing shifted w-dependent denomina- 
tors, but calculating (0) by RSPT shows that the mode of calculating lo} 
yields an 0.99 eV difference in the 'nu IP and about 0.2 eV differences for 
the '2: and '2: IPS. These large changes can again be explained by con- 
sidering a simple molecular orbital picture of N,. Configurations involving 
the 1rg orbitals provides important correlation corrections to the SCF con- 
figuration. The weighting coefficients of these configurations are as large 
as 0.1 in magnitude for Simons' basis when RSPT is used. The weights of 
these configurations nearly double in size when ENPT is employed,68 indi- 
cating deficiencies in the assumption of a ground-state wave function for 
N, based on a single configuration zeroth-order approximation. A more 
general approach is to use a multiconfigurational zeroth-order ground state, 
although the technical problems in developing an efficient EOM method 
based on a multiconfigurational zeroth-order ground state are large. We 
return to this point again in Sections 1II.F and IV. 

TABLE V 
Shifted Versus Unshifted Denominators in EOM Ionization Potential 

Calculations for N, Using Simons' Basisa 

Ionization potentials (ev) w-dependen t w-independent 
denominators denominators X2Z; A2n,  B2Z; 

~ 

Unshifted Unshifted 15.60 17.51 19.06 
Shifted Shifted 15.47 16.52 19.36 
Shifted Unshifted 15.65 17.36 19.17 

aRepartitioning scheme I is employed with a first-order Born expansion of 
the inverse matrix. Third-order terms arising from singly excited configura- 
tions in the ground-state wave function are included. 
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D. Calculation of the Shake-up X-Ray Photoelectron Spectroscopy 
Spectrum of N, 

A notable feature of X-ray photoelectron spectroscopy (XpS)'02* '03 and 
ultraviolet photoelectron spectroscopy (UPS)% is the presence of satellite 
lines that appear along with the lines attributable mainly to simple ioniza- 
tion from a given molecular orbital. N, provides a good example of this type 
of spectrum. Electron spectroscopy for chemical analysis (ESCA) yields the 
XPS spectrum of N, due to Siegbahn et al."* reproduced in Fig. 2. The 
three peaks in the 15-20 eV range arise mainly from ionization from the 
3ug, l q , ,  and 2uu orbitals (in order of increasing energy). The remaining 
peaks are primarily due to "two-electron processes" involving the ioniza- 
tion of one valence electron and the excitation of a second. Hence the 
shake-up lines give additional information about electronic correlations. An 
understanding of the assignment of these shake-up transitions may be of 
additional value in the use of photoelectron spectroscopy as an analytical 
tool. 

Section 1II.C describes how the inclusion of some of the basis operators 
from the 3-block in the EOM P-space is important for the calculation of 
the main peaks in the N, spectrum. Once this is done, the increased dimen- 
sionality of the partitioned EOM matrix leads to the appearance of addi- 
tional roots of the EOM pseudoeigenvalue problem. If the 3-block basis 
operators, which are moved to the P-space, correspond to the major com- 
ponents of the ionization operators for the shake-up lines, the new roots of 
the EOM matrix give the positions of these shake-up peaks. Thus the 
shake-up energies are naturally produced by the EOM method given our 
generalized definition of the EOM P space 

t 
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Experimental X-ray photoelectron spectrum of N, measured by Siegbahn et aI.'O2 In- Fig. 2. 
cident photons have an energy of 1254 eV (MgK,). 
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For the sake of comparison with the ESCA spectrum of N,, and to pro- 
vide a more critical test of the EOM method, we calculate the peak intensi- 
ties as well as the peak positions. The details of the intensity calculations 
are left to the Appendix. The dipole approximation is invoked, as the 
calculation is based on Fermi’s golden rule.’04 A plane wave approxima- 
tion is employed for the outgoing electron. The cross section for the ejected 
electron is averaged over all possible molecular orientations and polari- 
zations of the incident photon as described by Ellison.’o5 

The final expression for the total cross section for Xth ionization peak is 
given by 69 

In (45) +/ is the Ith molecular orbital (I and I‘ are summed over all basis 
orbitals) and Ik) is the plane wave representing the outgoing electron. The 
magnitude of the wave vector k is determined by energy conservation; e and 
p are the charge and mass of the electron, c is the speed of light, and L3 is 
the volume of the “box” in which the experiment is enclosed. The L3 fac- 
tor, which arises from the plane wave density of states, cancels a factor of 
L - 3  from the box normalization of the plane wave, J k ) .  The bar over 

Ik) *(+,. Ik) denotes an average over all molecular orientations, and 
B,(h)  is given by 

B, ( A  ) = (01 40: 10) (46) 

where 0: is the EOM ionization operator; 01 is approximated by its P-  
space projection in the numerical calculations presented below. 

The term + ( A )  contains the overlap between the orbital of the outgoing 
electron Ik) and the molecular orbitals +/. Since a plane wave approxima- 
tion for Ik) fails to accurately follow the oscillations of the true continuum 
orbital for the ejected electron in the region near the molecule, the use of 
the plane wave for Ik) is expected to introduce some errors into the calcu- 
lations. A Coulomb orbital, which has the correct long-range behavior, 
would likewise be inaccurate in the vicinity of the molecule. [Equation 45 
shows that it is the short-range behavior of (k )  that is relevant for the 
evaluation of aT(A) ,  since Ik) appears only through the overlap integrals 
($ Ik) .] Clearly, the plane wave approximation is more accurate at  higher 
photon energies ( h v =  1254 eV in the present example), since the effect of 
the field of the remaining molecular ion is diminished as compared to the 
kinetic energy of the outgoing electron (roughly speaking, the momentum 
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of the electron is more nearly constant). More accurate work requires the 
development of a feasible procedure for obtaining continuum orbitals with 
the correct short-range behavior for molecules. 

Substitution of the perturbation expansion for 10) into (46) leads to a 
perturbation expansion for B,(A) .  This, in turn, gives an expansion for 
+ ( A ) .  The zeroth-order terms for aT(A) have the form (see Appendix) 

where IHF) is the zeroth-order (SCF) ground state; p and Y are occupied 
orbitals in IHF) and C;” is the coefficient in the operator expansion of 01 
for simple electron removal a, from the orbital p (01 can apply to simple 
ionizations or shake-up processes). A single term of this sort is expected to 
dominate the cross section for simple ionization, since one C: generally 
dominates the operator expansion. For shake-up processes, these terms 
represent “intensity borrowing” from the main ionization peaks of the same 
symmetry. 

The correlation part of the wave function makes first-order contri- 
butions to the total photoionization intensities. This is in contrast to the 
situation for the peak positions, where ground-state correlation does not 
contribute until second order in electron correlation. If rJrnP, represents a 
3-block basis operator that removes an electron from orbital p and excites 
a second electron from p‘ to rn and C;,,,,,. is the corresponding expansion 
coefficient in the operator expansion of 01, then one first-order term is 
given by 

where (01 a! 10) is simply a linear combination of first-order ground- 
state correlation  coefficient^.^^ For shake-up peaks, a few C;,,. dominate 
the expansion of 01, and terms of the form given in (48) can be expected 
to make significant contributions to +(A).  

If there are no main peaks of a given symmetry, the zeroth-order B,(A) 
terms, (HF(a:a,IHF), are absent because there are no occupied orbital p 
in JHF) of this symmetry (or else there would be a corresponding main 
peak). The lowest order contribution to a,(A) is then of second order for 
any shake-up peak of that symmetry, since all B,(A) then begin in first 
order. Thus low intensities are expected for shake-up peaks of a symmetry 
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different from the nearby main peaks. This is, in fact, exhibited in our 
calculations for the II, symmetry of N2.69 

The calculated photoionization spectrum of N, is presented in Figs. 3 and 
4. Nesbet's basis setw is employed in both calculations. In Fig. 3 the EOM 
P-space is as in repartitioning scheme I described previously. Figure 4 dis- 
plays the predicted spectrum obtained with a more extensive P-space. The 
configuration selection criterion, as described in Section II.E, is used to 
identify the shake-up basis operators that mix strongly with the more limited 
P-space (i.e., the P-space used in the calculation of Fig. 3). Each peak is 
fitted with a Gaussian whose total area is given by the calculated cross sec- 
tion. The widths are adjusted arbitrarily. Alternatively, the widths could be 
chosen from a simple estimate of the Franck-Condon overlaps for the 
vibrational fine structure, as is done by Cederbaum and Domcke.'6. 31* 32 

The calculated results agree qualitatively with experiment for both peak 
positions and relative intensities. However, the higher energy peaks in the 
spectrum appear at too high energy. The other salient feature is that the 
peak at about 40.0 eV is actually made up of two peaks of nearly equal in- 
tensity. The 2ug electron removal operator makes strong contributions to 
these peaks and also to the '2 ;  peak at 29.44 eV. This contribution of the 
2ug ionization to a number of lines is in agreement with the Green's func- 
tion results of Schirmer et al.24 

' . O t  

0 I I 
- 50 - 40 -30 - 20 - I O ( e V )  

I o n i z a t i o n  Potent ia l  

2 t  1" 4 n 

Fig. 3. Calculated N, X-ray photoelectron spectrum for incident photons with energy of 
1254 eV. The primary operator space for the calculations contains only a minimal number of 
shake-upbasis operators (repartitioning scheme I). 
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Fig. 4. Calculated N, X-ray photoelectron spectrum for incident photons with energy of 
1254 eV. The primary operator space is chosen by perturbation theory. 

Nearly all the peaks in the calculated N, spectrum have a number of ba- 
sis operators that contribute significantly. This indicates that the simple 
molecular orbital picture of the shake-up process is in~uff ic ient .~~’  69 The 
results emphasize the need for some selection technique, such as the per- 
turbation theory approach employed here, in the choice of the primary op- 
erator space. The addition of several extra shake-up basis operators by the 
perturbation selection criterion lowers the peak from 17.12 to 16.79 eV. 
The most important of these extra operators involves removal of a 1rg elec- 
tron and de-excitation of a second l rg  electron to the l r u  level. The impor- 
tance of this operator, which acts only on the correlation part of 10 > , is 
not obvious by pure chemical intuition. 

Cederbaum and his c o - ~ o r k e r s ~ ~  have also calculated the N, shake-up 
spectrum using the diagrammatic Green’s function approach. As men- 
tioned in Section II.E, the approximate poles of the self-energy (corre- 
sponding to shake-up energies) are obtained by diagonalization of the ion 
CI matrices ( H F ~ u ~ u , u ~ H u , u ~ u , ~ H F )  and ( H F I ~ , u ~ u , H u ~ u , u ~ , I H F ) .  
This approach includes the important couplings between shake-up states, 
but at the expense of the diagonalization of these large-ion CI matrices. 
After obtaining the eigenvalues and eigenvectors of these matrices, 
Cederbaum and c o - ~ o r k e r s ~ ~  then include the couplings of these eigenvec- 
tors to the simple electron removal operators, a,, and a,, by solving a sec- 
ond-order Dyson equation for the one-particle Green’s function. 
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Purvis and Ohm3* have reported calculations of the N, shake-up spec- 
trum using the propagator approach. They diagonalize small blocks of ma- 
trix elements between different shake-up operators, to obtain spin- and 
space-symmetry-adapted operators. In this manner they include what ap- 
pears to be the most important couplings between the shake-up operators 
that are degenerate in lowest order. However, these operators are retained 
in the @space, and the couplings between important nondegenerate shake- 
up configurations are apparently ignored. 

Iwata and co-workers'06 have performed extensive configuration interac- 
tion calculations of the shake-up energies of N,. These results also show a 
large mixing of basis configurations in the shake-up states, and the lower 
shake-up states correspond nicely to our EOM results. The higher shake-up 
states are 2 to 4 eV below our EOM calculations, giving better agreement 
with experiment. 

A number of steps can be taken to improve the EOM calculations. The 
coupling between shake-up operators is only evaluated through first order 
in the calculations displayed in Figs. 3 and 4. Ground-state correlation 
effects contribute to these couplings in second order. There are also second 
-order contributions to the partitioned EOM equations because of the 5- 
block basis operators, which are not included in these calculations. These 
contributions are described in Section 1I.E. Preliminary calculations of the 
shake-up positions including these terms have been attempted and the re- 
sults are presented in Table VI. While the calculations did run into numeri- 
cal difficulties, they indicate significant reductions can be expected in the 
calculated positions of the higher energy shake-up peaks. The numerical 
difficulties are similar to those encountered in Section 1II.C concerning the 
solution of the partitioned EOM equation for the simple ionizations of N, 
when the standard many-body partitioning scheme is employed. These dif- 
ficulties suggest that many of the 5-block operators should be moved into 
the P-space to account for the greater orbital reorganization that accompa- 
nies the shake-up process as compared with the primary ionizations. Some 
shake-up basis operators cause instabilities in the calculation of the main 
IPS unless they are placed in the P-space, and the situation is expected to 
become more severe in the case of shake-up states. 

Iwata and co-workers'06 found that configurations obtained from the 
SCF determinant by removal of a valence electron together with a double 
excitation to the 1 7 ~ ~  orbitals provide very important contributions to the 
higher shake-up states of N,. These significant CI configurations are pre- 
sent in our EOM calculations, since the EOM basis operators act on every 
determinant in an approximately correlated ground-state wave function. 
However, the coefficients of these important CI configurations are not 
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TABLE VI 
Calculated Ionization Potentials for N; Using Nesbet's Basis 

Ionization potentials (ev) 

No 5-block or second- Includes 5-block and second- 
Symmetry order A0v3)b order A(3*3)c'd 

2"; 15.98 15.71 (15.77) 
29.40 27.12 (29.94) 
38.57 32.61 (36.27) 
39.96 41.27 (39.65) 

2k 16.79 16.76 (16.84) 
29.05 27.66 (30.20) 
36.31 29.22 (33.59) 

2°C 19.10 18.68 (18.98) 
25.43 24.66 (26.36) 
36.24 30.66 (34.04) 

- 

- 

aPartitioned using perturbation criterion, P-space as for Fig. 4. 
bShifted w-dependent denominators. 
'Shifted w-dependent denominators (unshlfted o-dependent denominators in 

parentheses). 
Underlined digits not converged. 

independent in the EOM calculation, but rather they are fixed in the "EOM 
configurations" 0: (0) , by the perturbation expansion for the ground-state 
wave function, 10). Hence it seems that the accurate incorporation of the 
5-block basis operators into the EOM calculations (i.e., in the P-space) is 
necessary if quantitative results are to be obtained for the higher shake-up 
states of N,. 

It is likely that in a more accurate calculation the two '"8' peaks, which 
now make up the highest energy peak (-40 ev) in Figs. 3 and 4, will split 
noticeably. This is indicated by the results in Table VI. Thus it seems pos- 
sible that the second highest energy peak in the experimental spectrum 
could be a superposition of a 'Z: peak and a ' E l  peak. In fact, more re- 
cent XPS e~perirnents"~ resolve the 30-35 eV region of the spectrum into 
two peaks rather than one, as displayed in Fig. 2. 

There are a number of problems that weigh against the further enlarging 
the P-space to include the important 5-block operators in an attempt to 
obtain a more accurate calculated spectrum. There can be as many as ten 
5-block operators that are degenerate in zeroth order, that is, involve the 
same spatial orbitals but have different arrangements of spin. Thus the di- 
mensionality of the P-space grows very quickly when 5-block operators are 
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added to it. This makes the EOM calculations much more cumbersome. 
Furthermore, the 7-block has first-order couplings to the 5-block, and these 
may be required in lowest order to obtain truly accurate shake-up calcula- 
tions. Most important, as explained in Section III.C, it is unlikely that highly 
accurate results can be obtained for N, when a single configuration zeroth- 
order approximation is employed for 10). The same feature that produces 
a strong shake-up spectrum (a low-lying Irg level) also makes N, a particu- 
larly difficult example. 

The present calculations indicate that the approximate EOM method can 
provide qualitative agreement with XPS data for both the peak positions 
and intensity. The calculations are reasonably simple and inexpensive, and 
they are capable of giving insight into the interpretation of the experimen- 
tal results. 

E. Extended EOM Calculations and Comparison with Configuration 
Interaction Results 

The preceding sections consider cases in which the EOM operator basis 
consists of only the 1-block and 3-block basis operators. These ionization 
potential calculations indicate that the traditional division of the operator 
space into the 1-block P-space and the 3-block Q-space is generally not 
sufficient. The theory section, however, describes a more general division 
of the operator basis, which introduces additional second-order contribu- 
tions to the partitioned EOM equation. These are the second-order 
matrix elements that are now in A,, and contributions from including the 
5-block in the Q space. In this section we report EOM calculations for a 
number of atomic and molecular systems. The effects of these additional 
second-order terms are specifically studied and compared with accurate 
configuration interaction studies. By comparison of the EOM IPS and EAs 
to highly converged CI results, rather than to experimental numbers, basis 
set errors can be eliminated. (Recall that full EOM and CI calculations yield 
identical results for a given orbital basis.) This focuses on the validity of 
various approximations introduced in solving the EOM equations. 

The lowest ionization potentials of BH, HF, and Ne, and the largest 
electron affinities of OH and F are investigated.” Moderate-sized Slater 
basis sets are employed: 6s4p2d/3slp for BH, 6s5pld/3slp for HF and 
OH, and 6s5p for Ne and F. The 6 orbitals are removed in the diatomic 
calculations. By economizing slightly on the basis sets (these basis sets are 
actually larger than those employed in most EOM calculations), it is possi- 
ble to carry the EOM and CI expansions further and thus perform a truly 
definitive comparison. The internuclear separations for the BH, HF, and 
OH calculations are 1.7328, 1.8342 and 2.336 au, respectively. 



50 M. F .  HERMAN, K .  F .  FREED, AND D .  L .  YEAGER 

E O M  Tolerance ( 0  u I Fig. 5 .  EOM and CI vertical ionization potentials for 
-' 0.01 0.005 O.UW5 BH: solid line, relaxed C1; long and short dashes, unre- 

laxed CI, using SCF orbitals of BH: dashed curve, exten- 
sive EOM; dotted curve, primitive repartitioned EOM. The 
EOM results are plotted against the tolerance for retaining 
shake-up-basis operators in the primary operator space, and 
the dimension of the primary operator space is given in 
parentheses for each tolerance. The CI values are pre- 
sented at the one configuration level (IC), for single and 
double excitations C1 (SD), and for single, double, and tri- 
ple excitations CI (SDT). EOM calculations are not per- 
formed at tolerance of 0.01 au because this tolerance does 
not result in an appreciable increase in the dimensionality 
of the P-space. Experimental value is 9.77 eV. Asterisk: 

S D  SDT EOM primary operator space restricted to simple ioniza- 

1151 1161 1221 1301 

,$ . ..;.,, 

- 8.8 

8.4 L - 1  
Level of C I  tion operators. 

Two types of CI calculation are presented, The relaxed CI calculations 
employ the neutral SCF orbitals in the calculation of the ground-state en- 
ergy of the neutral, and the ion SCF orbitals are used for the ion ground- 
state energy. The unrelaxed CI calculations use a common set of orbitals 
for both the neutral and ion calculations. The orbitals are taken from a 
ground-state SCF calculation for whichever of the two is the closed-shell 
system. The unrelaxed CI calculations are similar in this respect to the EOM 
calculations, which utilize only one set of closed-shell SCF orbitals 
throughout. Comparison of the relaxed and unrelaxed CI calculations also 
affords a check of the CI convergence. A number of different relaxed and 
unrelaxed CI calculations are made for each system. The simplest involves 

L O M  Toleronce l o  u 1 
-* 0.01 0.005 0.0025 0.00125 , 7.7 

5 16.11 i'---L_ , --. I 
a 

15.'t Fig. 6. EOM and C1 vertical ionization potentials for 
HF: solid curve, relaxed CI; long and short dashes, unre- 
laxed CI, using SCF orbitals of HF; dashed curve, exten- 
sive EOM; dotted curve, primitive repartitioned EOM. 
Meaning of the x-axis is the same as in Fig. 5 .  Experi- 
mental value is 16.01 eV. Asterisk EOM primary opera- 
tor space restricted to simple ionization operators. 
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Fig. 7. EOM and CI values for the vertical electron 

dashes, unrelaxed CI, using SCF orbitals of OH - ; dashed 
curve, extensive EOM; dotted curve, primitive reparti- 

\< .--._ 
\ -  

- 

a single configuration calculation (1C); one with all single and double exci- 
tations out of IHF) (SD) is also performed; and finally one with the singly, 
doubly, and triply excited configurations (SDT) is performed. Natural 
orbitals' are utilized, and to make the calculation tractable, the list of triple 
excitations is truncated". lo' for H F  and OH. 

The results for the first 'E+ IP of BH are displayed in Fig. 5 ,  the HF 
calculations are given in Fig. 6, the EA of OH is shown in Fig. 7, the IP of 
Ne in Fig. 8, and the EAs of F in Fig. 9. In all cases the CI treatment ap- 
pears to be very well converged. The relaxed and unrelaxed cases differ by 
no more than 0.03 eV in all the SDT cases. Furthermore, the effect of the 
triple excitations is never more than 0.07 eV for the relaxed calculations. 
Estimates'@' of the effect of quadruple excitations suggest that 0.1 to 0.2 eV 

-* 0.01 0.005 0.0025 0.00125 

I 
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Fig. 8. EOM and C1 values for the vertical ioniza- 
tion potential of Ne: solid curve, relaxed CI; long and 
short dashes, unrelaxed C1, using SCF orbitals of Ne; 
dashed curve, extensive EOM; dotted curve; primitive 
repartitioned EOM. Meaning of the x-axis is the same 
as in Fig. 5 .  Experimental value is 21.56 eV. Asterisk: 
EOM primary operator space restricted to simple ioni- 

- 

20.0~ 
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Fig. 7. EOM and CI values for the vertical electron 
affinity of OH: solid curve, relaxed CI; long and short 
dashes, unrelaxed CI, using SCF orbitals of OH - ; dashed 
curve, extensive EOM; dotted curve, primitive reparti- 
tioned EOM. Meaning of the x-axis is the same as in Fig. 
5 .  Experimental value is 1.83 eV. Asterisk: EOM primary 
operator space restricted to simple ionization operators. 
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EOM Toleionce l o  u I 
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Fig. 9. EOM and CI vertical electron affinities for 
F: solid curve, relaxed CI; long and short dashes, unre- 
laxed CI, using SCF orbitals for F - ; dashed curve, ex- 
tensive EOM; dotted curve, primitive repartitioned 
EOM. Meaning of the x-axis is the same as in Fig. 5. 
EOM calculations not performed at a tolerance of 0.05 
au because this tolerance does not result in an appre- 
ciable increase in the dimensionahty of the P-space. 

1.3 I C  50 SOT Experimental value is 3.339 eV. Asterisk: EOM primary 
operator space restricted to simple ionization operators. 
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shifts in the CI results might be expected because of the quadruples. Thus 
0.1 to 0.2 eV is about the magnitude of the “error bars” on our best CI 
calculations.” 

I .  Ionization Potential of BH 
The EOM results for BH are well converged even when the primary 

operator space is restricted to simple ionization basis operators (the dimen- 
sion of A,, is 15), yielding an IP that is 0.2 eV above the best CI case (SDT, 
relaxed). Since there are no shake-up basis operators in the P-space, this 
calculation does not contain any effects due to the 5-block basis opeators 
or any off-diagonal A(3p3) couplings. (Only the diagonal terms in A,, 
through first order are retained.) 

As shake-up operators are added to the EOM P-space, the agreement 
with the CI calculation improves further. With a selection criterion toler- 
ance of 0.0025 au, corresponding to 15 shake-up basis operators in the P- 
space, the discrepancy between the EOM and CI results is only 0.05 eV. 
The inclusion of the 5-block opeators in the Q space and the second-order 

terms within A,, has very little effect on the EOM result. The dif- 
ference between what we call the extensive EOM method, whch includes 
these terms, and the primitive repartitioned EOM method, whch neglects 
these terms, is on the order of 0.01 eV for each EOM tolerance. 

It is interesting to note that the Koopmans’s theorem prediction for BH 
(i.e., the lC, unrelaxed CI result) is also very accurate for this basis set. This 
indicates that the effects of orbital relaxation and the changes in correla- 
tion approximately cancel for this example. This cancellation may be at 
least partially responsible for the excellent accuracy of the EOM ionization 
potential for BH for all systematic approximation schemes. 
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2. Ionization Potential of H F  and Electron Affiniw of OH 

The calculations of the EA of OH and the IP of HF  bear strong similari- 
ties to each other. This is not surprising, since electron removal from H F  
and OH - are isoelectronic processes. When the EOM P-space for HF  is 
restricted to the 1-block, the IP is about 0.8 eV above the best CI results. If 
the P-space is enlarged, the tendency of the primitive repartitioned EOM 
(without the 5-block and second-order 3-3 couplings) is to further increase 
the IP somewhat, and the EOM calculation appears to be converging to a 
number about 1 eV above the CI value. The difference between the EOM 
and converged CI IPS for OH - is even larger, being about 1.5 eV when the 
1 -block comprises the P-space. The inclusion of the additional second-order 
terms due to the 5-block operators and the A(3,3) elements in A,, produces 
a dramatic improvement in the EOM results for both HF and OH. At the 
lowest tolerance utilized, 0.00125 au, the EOM IP for HF  differs from the 
CI value by only 0.21 eV. The best EOM and CI electron affinities of OH 
differ by 0.27 eV. If the extensive EOM results are extrapolated to a toler- 
ance of 0.0 au (corresponding to a P space of all I-block and 3-block oper- 
ators, and a Q space of all 5-block basis operators), the EOM results agree 
with the best CI values to about 0.08 eV for the IP of HF  and 0.15 eV for 
the EA of OH.” This is certainly within the accuracy of the CI calcula- 
tions, indicating that these EOM calculations are highly converged for this 
type of approximation. If the contributions of each of the additional terms 
are considered separately, it is found that the second-order elements 
lower the IP of H F  by 0.20 eV and the EA of OH by 0.26 eV. The inclu- 
sion of the 5-block in the Q space accounts for the remaining improvement 
in the EOM results (0.55 eV for HF and 1.07 eV for OH). 

3. Ionization Potential of Ne and Electron Affinity of F 
The situation for the IP of Ne and the EA of F is somewhat different, 

however. It appears that the extensive EOM, though a definite improve- 
ment over the primitive repartitioned EOM, is not converging to the same 
limit as the CI calculations. At the lowest selection tolerance of 0.00125 au, 
the extensive EOM results are 0.43 eV above our best CI calculation for the 
ionization potential of Ne and 0.79 eV above the SDT relaxed CI EA for 
F. These extensive EOM treatments produce a 0.33 eV lowering of the IP 
of Ne and a 0.91 eV lowering of the EA of F over the primitive reparti- 
tioned EOM values at the same tolerances. In both cases, this lowering is 
due almost entirely to the inclusion of the 5-block basis operators in the Q- 
space. The inclusion of the second-order A(393) elements in A,, results in 
only about a 0.01 eV shift in both cases. 
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4. Analysis of Calculatiom 

Why is the agreement between the EOM and CI results worse for the 
atomic processes of the ionization of Ne and the electron attachment to F 
than for the related processes in the diatomics, HF and OH, respectively? 
One case is just the united atom limit of the other. The atomic systems, of 
course, differ from the isoelectronic diatomics by their higher symmetry and 
a concomitant increased local electron density. In HF (OH), an electron is 
being removed from (added to) a doubly degenerate n orbital. In Ne (F), 
the electron is being removed from (added to) the triply degenerate p 
orbitals. In BH, with its singly degenerate u orbital, the 5-block of basis 
operators has very little effect. The results are apparently converged on in- 
clusion of the 1-block (simple ionization) and the 3-block (shake-up) basis 
operators. In HF and OH with their n systems, the 5-block of basis opera- 
tors has a significant effect, and when these operators are included in the 
space of basis operators, the EOM method yields results in good agreement 
with the CI method. It may be that the 7-block is necessary to describe the 
high degree of intrashell reorganization and to obtain accurate IPS and EAs 
involving triply degenerate p orbitals. Among the other higher order matrix 
elements that are ignored in the present calculations are second-order A(5* I ) ,  

A(5,3), and A(595) matrix elements. Since the lowest order effects of the 5- 
block do play a significant role in these systems, these higher order con- 
tributions from the 5-block basis operators may also be important. How- 
ever, there seems to be no obvious reason, apart from their role in describ- 
ing a higher degree of intrashell reorganization, for these terms to make 
important contributions to the atomic systems but not to the related di- 
atomic systems. (Notice that the effects due to the first-order A(’.’) and di- 
agonal A(535) matrix elements are actually greater in the HF and OH sys- 
tems than in Ne and F.) 

An alternative interpretation of the data is that the discrepancy in the Ne 
calculations between the best CI and best EOM values is not all that bad, 
0.43 eV, and the quadruple excitations may have some nonnegligible effect 
on the C1 values. Adopting this viewpoint, the agreement between CI and 
EOM is poor only for F, and F is generally admitted to be a difficult sys- 
tem on which to obtain reliable calculations (although in this case we have 
the advantage that errors due to an incomplete orbital basis set are not a 
factor). 

Shifted o-dependent denominators are employed in all the foregoing 
EOM calculations. This has been the common choice in EOM IP-EA 
calculations. Comparison between the shifted and unshifted o-dependent 
denominator EOM methods for the largest P-space employed in each ex- 
ample shows that the unshifted calculations provide IPS that are 0.19, 0.18, 
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and 0.10 eV lower for BH, HF, and Ne, respectively. The corresponding 
reductions in the EOM EAs of OH and F are somewhat larger (0.46 and 
0.36 eV, respectively). In every case except BH, the unshifted results pro- 
vide closer agreement with the CI results. However, when operators from 
the 5-block are added to the- P-space in F, the shifted results stay almost 
constant. The unshifted results monotonically increase as 5-block opera- 
tors are included in the P-space until the difference between the shifted and 
unshifted results is 0.09 eV when eighteen 5-block operators are included 
in the P-space.” These calcultions indicate that the shifted w-dependent 
denominators method provides a better approximation for the expansion of 
the inverse matrix in the partitioned EOM equation for IPS and EAs. Com- 
parison of shifted and unshifted w-dependent denominator calculations as 
a function of the number of shake-up basis operators in the P-space for 
these five systems also indicates the general superiority of the shifted 
method.” 

5. Comparisons with Experiment 

The experimental values for the ionization potentials of BH, HF, and Ne 
are 9.77, 16.01, and 21.56 eV, respectively. The experimental electron affin- 
ities of OH and F are 1.83 and 3.339 eV, respectively. For each system, the 
agreement between the most converged EOM results and experiment is 
closer than the agreement between the CI and experiment. However, this 
comparison with experiment is partially misleading. In the cases of HF  and 
OH, for example, as the EOM results are systematically improved (by re- 
ducing the tolerance for the operator selection criterion), they tend toward 
the CI values and away from the experimental ones. This illustrates the 
well-known fallacy in estimating the accuracy of theoretical method 
through comparison with experiment of approximate results obtained with 
a particular finite orbital basis set. This also demonstrates the need for 
studies such as this one to provide a reliable understanding of the accuracy 
of the EOM-Green’s function methods. 

F. Consideration of a Number of Lingering Difficulties 
Notwithstanding the preceding description of converged EOM calcula- 

tions that agree, as required, with CI ones, a number of questions concern- 
ing the EOM method remain to be resolved. Problems involving the 
addition of still more basis operators or different types of ground-state 
wavefunctions, become very expensive and require extensive additional 
computer programming when they are attacked within the framework of the 
large calculations in Section 1II.E. I t  is, therefore, useful to study these 
questions with rather small basis set problems, where the exact solutions 
within the basis is obtainable. Hence. we now consider calculations of the 
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lowest 'S excitation energy of He and Be within very small orbital basis sets 
(3s for He and 2slp for Be), where complete EOM and CI calculations can 
be easily performed. Approximate calculations can then be utilized to al- 
low identification of the ramifications of a given approximation for the 
simple example studied. It is hoped that these conclusions can be extrapo- 
lated to larger scale calculations for larger systems. 

1. Unorthodox Basis Operators 
The first of the three topics discussed in this section concerns the role of 

operators that are not present in the standard EOM operator basis. These 
are operators that involve moving an electron from one hole orbital to 
another, a:a, (p#v), or from one particle orbital to another, aka,, (m#n). 
As discussed in Section II.C, the standard EOM basis can be shown to be 
complete for the calculation of IPS and EAs. Although it is not necessarily 
complete in the excitation energy variant of the theory, it has the correct 
number of operators for a complete operator basis for any finite set of 
orbitals. However, the choice of a complete operator basis is not unique, 
and the calculated excitation operator can depend on the choice. The only 
requirement is that the basis have the correct number of operators and the 
overlap matrix D in the EOM equation be nonsingular (see Section 1I.B). 
Thus it may be possible to improve a truncated operator basis by including 
in it these hole-hole moving or particle-particle electron-shifting operators. 
It might even be simpler in some cases to add these unorthodox operators 
to the basis than to include the higher excitation and de-excitation opera- 
tors of the standard basis, because the hole-particle rank of the unorthodox 
operators is lower and the resultant matrix elements are simpler. 

Various operator basis sets used in the calculations are described in Ta- 
ble VII. Table VIII shows that very accurate results emerge for He when 
the complete standard EOM basis is employed and when first-order per- 
turbation theory, based on a one-configuration reference (zeroth-order) 
state, is used to calculate an approximate ground-state wave function. The 
calculations differ by only 0.06 eV from the exact EOM values. The over- 
lap between the approximate ground state, 16), and the exact one within 
this orbital basis, lo), differs from unity by only 0.002%. Second-order per- 
turbation theory for 16) produces almost exact agreement with the exact 
EOM calculation. Operator basis set I1 is obtained by removing the double 
excitation operators from the complete standard EOM basis. The calcu- 
lated excitation energy is in error by 0.82 eV for basis set 11. Clearly this 
basis set of single excitation and single de-excitation operators is unable to 
provide an accurate description of the excitation under consideration, even 
though that excitation is basically a one-electron ls2+1s2s transition (a 1s 
+2s excitation). Adding the particle+particle operator for the 2 ~ 4 3 s  
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TABLE VII 
Basis Operators Used for EOM Calculations on Be and Heasb 

aThe operators are space- and spin-symmetry adapted. 
bThe operators represented in this table as Ol+B are operators 

that “move” electrons from the orbitals A to the orbitals 9. For ex- 
ample, Ot32+2s2 =uf3uuf,Salsaulso. where a and fi  are spin in- 
dices. 

T h e  complete set of standard EOM operators. 

transition and its adjoint to basis 11 (giving basis set HI), reduces the error 
in the excitation energy substantially, to 0.33 eV. However, the addition of 
the standard 1s2+2s2 double excitation operator and its adjoint to basis 
set I1 (giving basis set Iv) is still more effective in reducing the error. The 
error due to basis set IV is only 0.05 eV, which is just about as good as that 
obtained using the larger set (set V) formed by the union of sets I11 and IV 

TABLE VIII 
Results of EOM Calculations on IS He 

Order of 
Number of perturbation Lowest ‘S 
configurations expansion for excitation 
in zeroth-order ground-state Operator energy 
ground state wave function (010) basis (eV) 

- 

0 
1 
2 
1 
1 
I 
1 

1 .o Set I 
0.99115 Set I 
0.99998 Set I 
1.0-(1.5X10-7) Set I 
0.99998 Set I1 
0.99998 Set 111 
0.99998 Set IV 
0.99998 Set V 

38.6280 
37.8319 
38.5683 
38.6223 
39.4486 
38.9628 
38.6131 
38.5886 
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(error of 0.04 eV). Thus, in this simple example, the addition of the particle 
-particle operators to the incomplete basis produces a sizable improvement 
in the calculated excitation energy. However, this improvement is not as 
great as that obtained when equal numbers of standard double excitation 
and double de-excitation operators are added. 

2. Employing a Multiconfigurational Zeroth-Order Ground State 

The second problem centers about the use of an approximate ground- 
state wave function that eminates from a multiconfigurational zeroth-order 
approximation. The N, calculations in Section 1II.C suggest that the re- 
striction to a single configuration zeroth-order ground state imposes a 
fundamental limitation on the quality of the calculated EOM ionization 
potentials for that system. 

The Be data in Table IX clearly demonstrate the need for an accurate 
ground-state wave function in the EOM equation. A ground-state wave 
function, based on a single configuration reference state, does not appear 
to be accurate enough to give a good excitation energy for this example. 
Even with a second-order ground state, the excitation energy is in error by 
0.38 eV. However, when a two-configuration reference state is employed, 
the error is reduced to less than 0.002 eV because of the strong mixing of 
the ls22p2 ( ' S )  configuration into the ground state. This reduced error is 
one reason for choosing the Be system for study, and it reinforces the con- 
clusions indicated by the earlier N, calculations with respect to the de- 

TABLE IX 
Effect of Solving for New Ground-State Wave Function 

System 

Be 
Be 
Be 
Be 
Be 
He 
He 
He 

IC, first order 
IC, second order 
2C, zeroth order 
2C, first order 

IC, first order 
IC, second order 

b - 

b - 

@lo> 

0.999 12 
0.999 13 
1 .o- 10 - 
1 .O-(4 x 10 -') 
I .o 
0.999916 
1.0-(1.5X 
1 .o 

Lowest's 
excitation 

(ev) 
( O l 6  

Iterated 

1 1.4227 
1 1.4189 
1 I .0355 
I 1.0395 
11.0312 
38.5683 
38.6223 
38.6280 

0.3351 
0.3355 
0.3468 
0.3468 
0.3465 
0.0082 
0.0140 
0.0144 

0.99911 
0.99978 
1 .O-(2.5 X 10 - 7 )  

I . O - ( 4 ~ 1 0 - ~ ) ~  
1 .o 
0.999984 
1.9- 
1 .o 

"nC, ith-order means that 16) is calculated by ith-order perturbation theory begin- 

bExact EOM calculation within finite one-particle orbital basis. 
cCalculation showed slight improvement in 10). 

ning with an n-configuration zeroth-order approximation. 
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ficiency of using a single configuration reference wave function in EOM 
calculations on systems with near degeneracies that should be described by 
multiconfigurational zeroth-order reference ground-state wave functions. 

Yeager and Js’rgen~en,~~ using a two-configuration Be MCSCF ground- 
state, wave function have reported EOM-like calculations. Their approach, 
which is called the multiconfigurational time-dependent Hartree-Fock 
(MCTDHF) method or the multiconfigurational random phase approxi- 
mation (MCRPA), uses an expansion for 0: that involves all one-body 
excitation operations for which (Ol[O,, O,f]lO) ZO. In addition, the other 
multiconfigurational states orthogonal to the multiconfigurational refer- 
ence state are included in the basis set they employ for the expansion for 
01. Using an orbital basis of 48 Slater functions, they calculate the lowest 
16 excitation energies, generating results that deviate from experiment by a 
maximum of 0.31 eV, with an average deviation of 0.18 eV. 

3. Iterative Procedure to Improve an Approximate Ground State 

We now consider the feasibility of employing the condition (13), 0, lO) 
= lo), where = (01 01 lo), along with 0: from the EOM equation 
to determine an improved ground state lo), and then, in turn, to solve the 
EOM equation for a new 01, and so on, iteratively. 

Table IX contains the overlaps between the exact ground-state wave 
function (within this orbital basis) and an iterated ground-state wave func- 
tion obtained using the condition, (13), 0,lO) = lo), for the Be and He 
calculations. Table IX shows that although in every case the iterated ground 
state is an improvement over the initial one, the improvement is variable. 
Only for one case, Be with a two-configuration reference state, does the 
improvement exceed an order in magnitude (and in this case the initial ap- 
proximate ground-state wave function is very good). Another Be calcula- 
tion shows negligible improvement in the ground state. 

An indication of the cause of this rather slow convergence can be ob- 
tained by considering the simple two-level system. This system has the ad- 
vantage that the normalized ground-state wave function depends on only 
one patameter. If we express the ground state as 10) = cos B I i) + sin8 @), 
where 11) and (2) are two independent basis configurations, then B can be 
taken as this parameter. Arbitrarily choosing the Hamiltonian matrix within 
this configuration basis to be 

yields an exact excitation energy of 0.82462 and an exact 0 of -0.12249. 
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Using a trial ground-state wave function calculated by first-order perturba- 
tion theory (6= - 0. I2435), the results presented in Table X show that 6-  8 
improves by only about a factor of 2 on each iteration, when the simple 
iteration scheme, employed in the Be and He examples above, is utilized. 

Since O{ is calculated from the EOM equation, it is a complicated func- 
tion of 8, that is, the approximate ground state Id) employed in the solu- 
tion of the EOM equation. When 0,Id) Id) is solved to produce a 
new Id), this dependence of 0: on B is not accounted for in the foregoing 
iteration scheme. The situation can be improved as  follow^.'^ For a two- 
level system, a complete set of basis operators consists of 2( N -  l)=2(2- 
1)=2 operators (see Sections 1I.A and 1I.B). Call these 0: and 0;; then 
0: = c l o t  +c20$. The 0 dependence of c ,  and c2 can be treated in a linear 
approximation as 

with A8=8-8,; 8, and c,? are the values of 8 and ci for the present iter- 
ation, and dc /d8  can be approximated as the ratio of the changes of c, and 
8 on the previous iteration (dc/dO is set equal to zero on the initial iter- 
ation). In this manner, the 8 dependence of 0: is crudely accounted for 

TABLE X 
Results of Different Methods for Iteratively Improving the 
Ground-State Wave Function for the Two-Level System. 

Method Ab Method BE 

1 teration 6' A E  6' A E  

Od 
1 
2 
3 
4 
5 
6 
7 

-0.12435 
-- 0.12342 
- 0. I2295 
-0.12272 
- 0.12260 
- 0.12255 
-0.12252 
-0.12250 

0.82500 -0.12435 0.82500 
0.82481 -0.12342 0.82481 
0.82472 - 0.12250 0.82462 
0.82467 
0.82464 
0.82463 
0.82463 
0.82462 

'Exact value of 6' is -0.12249 and exact value of excitation energy A E 

blterative method ignores the dependence of 01 on 16). 
'Iterative method USFS estimate of dOl/dO to account for approximate 

dlnitial value of 6' chosen by perturbation theory. 

is 0.82462. 

dependence of 01 0-n 10). 
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when the equation OilO) =ao,olO) is solved for A9 (i.e., a new 9 and 10)). 
When dc/d9 is set to zero, the previous scheme, which ignores any-9 de- 
pendence of O:, is recovered. When the EOM equation and the condition 
on OA16) are iterated in this fashion, the results are converged in the sec- 
ond iteration, which is the first iteration for which an estimate of dci/dO is 
available (see Table X). Unfortunately, extension of this procedure to full- 
scale calculations is very difficult, since the ground state is a function of a 
large number of parameters. To make this iterative approach tractable, 
therefore, requires an efficient means of estimating the matrix whose ele- 
ments are dc,/dq., where the ci are the expansion coefficient of 01 and 
are the parameters on which 16) depends. 

IV. CONCLUSIONS 

Most of the numerical data presented in Section I11 involve the single 
determinant SCF approximation for the lowest order description of the 
ground-state wave function. However, analysis of the EOM ionization 
potentials computed for N, provides evidence that a single determinant, 
zeroth-order ground state may not be sufficient for accurate EOM calcula- 
tions. This is the result of the pseudo-open shell nature of the ground state 
due to the low-lying 17rg orbital. A ground-state wave function, based on a 
multiconfigurational zeroth-order approximation that is then perturba- 
tively corrected, should provide a much more reliable and flexible theory. 
If the zeroth-order wave function contains all dominant configurations, first 
order perturbation theory will likely provide an accurate treatment. Excita- 
tion energy calculations on Be support this outlook. 

Work in this general direction by Yeager and Js’rgen~en~~ has been pre- 
sented recently for excitation energies. Their present work is limited to an 
RPA level with a multiconfigurational ground state. Simons and co- 
w o r k e r ~ ~ ~ .  79 have described a propagator theory that employes a multicon- 
figurational SCF ground-state wave function. However, Simons’s work is 
based on an unusual and untested definition of orders of perturbation the- 
ory. 

Our formal and numerical analysis of the EOM-Green’s function meth- 
ods has indicated a number of generalizations of these methods that are 
necessary for an accurate description of the electronic processes that 
accompany excitation, ionization, and electron attachment. Although the 
bulk of the numerical work has centered on the IP-EA variant of the EOM 
theory, similar behavior should be expected in the excitation energy ver- 
sion of the theory. These generalizations necessarily introduce complica- 
tions in the implementation of the EOM approach. 
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The accurate description of the electronic structure of atoms and mole- 
cules is a fundamentally difficult problem, and it is not surprising that there 
are no “quick and dirty” means of obtaining accurate answers. In our dis- 
cussion we have attempted to relate these many-body methods to the tradi- 
tional wave function techniques of bound-state quantum mechanics. We 
have indicated some similarities between these approaches, and at the same 
time have demonstrated how the EOM- Green’s function theories have 
features not found in the conventional methods, leading to new and useful 
insights. 

We have demonstrated that within a finite orbital basis, the EOM- 
Green’s function and conventional wave function theories yield the same 
values for ionization potentials, electron affinities, and excitation energies. 
This important theorem enables the careful study of approximations to the 
complete solution of the EOM equations through comparison with accu- 
rate results obtained via the more fully understood wave function tech- 
niques. 

The EOM- Green’s function theories differ fundamentally from conven- 
tional methods in that they are based op a Liouville operator formalism, 
whereas the wave function theories deal with the Hamiltonian operator. We 
have discussed in detail what constitutes a complete basis set for these 
many-body methods and have proved that they do not suffer from the N 2  
problem encountered by more naive Liouville operator formalisms. 

These many-body theories utilize an altogether different operator basis, 
the many-body basis. These basis operators account for correlation in an 
approximate way, since they act on the correlation part of the ground state 
as well as the SCF term. Hence, the many-body basis operators have inter- 
esting physical interpretations as primitive ionization or excitation opera- 
tors. In addition to the excitation operators, the complete many-body basis 
set for excitation energies includes primitive de-excitation operators, which 
have no analogs in traditional configuration interaction theory. The many- 
body basis for ionization processes includes operators that remove 
electrons from particle orbitals. These operators are also without simple 
counterparts in CI theory. The various terms in the expression for photo- 
ionization cross sections have been analyzed in light of the physical con- 
tent of the many-body basis set. 

Based on the present formal and numerical investigations, it is possible 
to draw some conclusions about what is necessary for a systematic, accu- 
rate, and reliable EOM theory. The ground-state wave function should 
contain in zeroth order all configurations that are necessary to account for 
near-degeneracy effects, as well as any other physically important valence 
configurations. This zeroth-order wave function can then be perturbatively 
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corrected. Our numerical data indicate that a flexible procedure for the 
selection of the primary operator space has important advantages over a 
strictly perturbative approach based on some fixed choice of the P-space. 
This primary operator space must at least contain operators from the 1- and 
3-blocks of basis operators for ionization potentials. It seems likely that a 
P-space containing parts of the 2- and Cblocks will be required for exci- 
tation energy calculations. It  is necessary to treat all couplings between im- 
portant operators accurately, and all operators that couple directly to the 
primary operator space in low orders must be included in the secondary 
space. The formal and programming difficulties to implement such a the- 
ory are great, but the recent multiconfigurational approaches of Yeager and 
J@rgensen7’ and of Simons and co-workers’*~ 79 represent a beginning. 

The relative calculational efficiency of EOM-Green’s function methods 
and conventional configuration interaction methods is a difficult matter to 
assess, since it is intimately bound to the question of optimization of com- 
puter codes. Our major emphasis has been on determining the require- 
ments for an accurate and reliable EOM theory. Of necessity, the program 
optimization has to an extent taken a back seat to the constant changes in- 
troduced in the theory in the course of this work. However, the demon- 
strated ability to obtain accurate results for the simple ionization potentials 
of small molecules with very small primary operator spaces bodes well for 
the EOM method. 

Hence a clear and theoretically sound picture of the EOM-Green’s 
function methods is emerging. More numerical work is still needed to re- 
solve some remaining questions, but our increased understanding of these 
theories should render them useful and important complements to the 
traditional wave function approaches. 

APPENDIX 

Here we describe briefly the evaluation of the peak intensities for the 
calculated X-ray photoelectron spectra presented in Section 1II.D. Details 
of the calculations can be found in Ref. 69. The state of the outgoing elec- 
tron is approximated by. a plane wave, Ik,?), which is orthogonalized to 
the SCF molecular orbitals, 

where atot is the second quantized creation operator associate with Ik,?), 
I - )  is the vacuum state, Ik?) is the pure plane wave L-3/2exp{ - ik . r }  
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multiplied by the spin function 17). Box normalization is employed with 
box length L ,  and the summation in (A. 1) is over all SCF molecular orbitals. 
The magnitude of the wave vector k is fixed by energy conservation for a 
given incident photon energy hw. Within this plane wave approximation, 
the final electronic state of the ionized molecule plus ejected electron is de- 
scribed by 

In (A.2), 10) is the ground-state wave function of the molecule prior to 
ionization, and 0: is the ionization operator obtained from the EOM 
calculation using (37); Of is approximated by the part of its expansion in 
the primary operator space. 

Fermi's golden rule for the differential ionization cross section'" states: 

where Q is the unit polarization vector for the incident photon, p and e are 
the electronic mass and charge, respectively, and c is the speed of light; 
p( E )  is the density of continuum states for the ejected electron. In the plane 
wave approximation we have 

pkL3 
p(  E )  = -- 

2T2h 

In (A.3) the velocity form of the dipole approximation is used. The factor 
of L3 in p ( E )  cancels with the normalization for the plane wave, thus pro- 
viding the correct continuum limit (L-oo). If it is assumed that 10) is a 
closed-shell state, the two terms on the right-hand side of (A.2) yield iden- 
tical results in (A.3). Therefore, we simplify the notation by combining the 
two terms and suppress the spin designations. The electronic momentum 
operator for our system, expressed in second quantized notation, is given 
by 

where $ includes a summation over all the SCF molecular orbitals and over 
all orthogonalized plane wave states (or integration over all Ik) in the con- 
tinuum limit). Using the anticommutation relationship for the second 
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quantized operators and the property that (Olal, =0, the vector POh = 
(OIC,p,, I A )  is obtained69 as: 

Equation A.6 results because only the terms in (A.5) that survive when (A.5) 
is substituted into (OlC,p,lA) are those for which j ' = k o  and j = f  (where f 
designates any SCF molecular orbital). Substituting for Jk,) from (A.1) 
yields 

Since (+/ IV(k) = - ik(+, Jk), the first term in (A.7) is expected to dominate 
for large k."' Because the present calculations are of X-ray photoelectron 
spectra, we retain only the first summation on the right-hand side of (A.7). 
There (A.3) gives 

where the amplitudes Bl( A )  are 

The factors lu. k12(Gr I k >* (+m Ik) can be averaged over all possible molec- 
ular orientations and over all polarizations of the incident photon,Io5 to 
yield (45) for the averaged total cross section. The term 0: is approximated 
by 

(A.10) 
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and 10) by (34). Since only the basis operators from the P-space are in- 
cluded in the intensity calculations, it is reasonable to treat all the expan- 
sion coefficients in (A.lO) (Le., C:, C,", Cim,, and C , " , )  as zeroth order. 
Because (34) is a perturbation expansion for lo), inserting (34) and (A.lO) 
into (A.9) yields a perturbation expansion for (45). 

In the actual calculations, spin-symmetry-adapted operators&, 67 :imp and 
i lkp,, are employed in (A.10), rather than the simple operators apamap and 
a,a~a,, respectively. The exact form of the various terms in B , ( X )  is dis- 
cussed in detail in Ref. 69. 
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I. INTRODUCTION 

When a chemical reaction takes place in the condensed phase, the solvent 
must clearly play some role in determining the outcome of a reactive event. 
A complete microscopic theory for such reactions would necessarily re- 
quire a description of the coupling between the dynamics of the reactive 
event, involving the solute molecules, and the dynamics of the solvent 
molecules-a very ambitious and difficult task. Some of this difficulty can 
be bypassed by adopting a more modest description. It is customary to as- 
sume that the approach of the solute molecules is governed by a diffusion 
equation and that the reactive event can be described by a boundary con- 
dition. In this way a treatment of the solvent dynamics is avoided; solvent 
properties enter only through the diffusion coefficient. A number of objec- 
tions to this type of treatment can be raised. For example, how can a diffu- 
sion equation possibly be valid for the small internuclear separations be- 
tween solute molecules that reaction entails? Here the molecular nature of 
the solvent must be especially evident to the solute molecules, since they 
may, for instance, have to displace a solvent molecule before they can re- 
act. Also, can we really expect a diffusion equation to be valid on the very 
short time scales that characterize the reactive event? 

There is another, often easier, route to take. Transition state theory pro- 
vides us with a method for calculating the reaction rate coefficient. Here, 
the dynamic problem is avoided and replaced by an equilibrium “one-way 
flux” calculation. Solvent effects enter through the free energy at the tran- 
sition state. This theory is, of course, not generally valid. The reactive 
molecules are constantly buffeted by the solvent, and so a “molecule” that 
has just crossed the reaction surface may be forced because of solvent col- 
lisions to recross it rather than to form stable products. The actual rate will 
then be lower than the transition state theory prediction. 

Nonetheless, these theories and others llke them are applicable in certain 
circumstances, and their usefulness in correlating large amounts of experi- 
mental data cannot be overlooked. A theory of condensed-phase reactions 
must help us to understand why these theories work when they do and pro- 
vide alternate descriptions when they do not. I t  is probably no surprise to 
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find that a diffusion equation description of the coagulation of large col- 
loidal particles in solution is adequate,' but should such an approach be at  
all applicable to the study of iodine recombination in carbon tetrachloride 
on picosecond time scales? I t  is difficult to imagine that the iodine atoms 
think they are moving in a continuum solvent in this case. 

This chapter is intended to serve as a framework for the discussion of 
some of these questions. Thus we construct a kinetic theory that treats both 
the solute and solvent dynamics. We need to adopt such a detailed point of 
view if we are to attempt an answer to the questions posed above. Only the 
beginnings of a theory are presented, but we hope to provide some insight 
into how condensed-phase reactions might be described by a microscopic 
theory. 

11. CHEMICAL RATE LAWS AND RATE COEFFICIENTS 

Since a portion of this chapter is devoted to the derivation of rate laws 
and various microscopic expressions for the rate coefficients of condensed- 
phase chemical reactions, i t  is useful to first write down the phenomeno- 
logical rate law we expect to obtain, to define the various rate coefficients 
and relaxation times, and to present the different points of view that we 
shall adopt in describing the system. 

We confine our attention almost exclusively to the description of reac- 
tions among dilute solute species in a dense inert solvent. As an example, 
consider the bimolecular reaction 

taking place in a solvent S. The irreversible version of this reaction scheme 
might, for instance, represent a fluorescence quenching reaction, where A 
is de-excited to C upon collision with quencher B, while the reversible case 
could represent an isomerization induced by collision with B or an excita- 
tion-de-excitation process, with A and C the two states of the molecule. 

The macroscopic rate law describes the time evolution of the average 
densities of the reactive species. We let n,(r ,  I )  be the average density of 
species (Y at point r in the solution at  time t .  We initially consider reacting 
systems that are only slightly disturbed from complete equilibrium. The de- 
viation of the average density from its equilibrium value n$ is 

The overbar does not refer to an equilibrium average; rather, i t  implies an 
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average over spatial regions containing many molecules and times long 
compared to microscopic relaxation times. On a more formal level, we can 
consider it to be a nonequilibrium average where the density fields are con- 
strained to have fixed values. The linearized macroscopic law then de- 
scribes the evolution of these average fields. Taking into account the two 
possible mechanisms for their change, diffusion and reaction, the rate law 
is 

(2.3) =( DAV2 --k,n:q)dnA(r, f )+k ,n~qSn, ( r ,  1 )  
danA(r, I )  

dt 

Here, DA is the diffusion coefficient for the A species and we have dropped 
cross-diffusion effects. Similar equations can be written for the other 
species. 

If we consider a spatially homogeneous closed system, the more familiar 
chemical rate law for the deviation of the average number of A molecules 
from its equilibrium value 

is 

The integration in (2.4) is over the volume of the system, V.  The forward 
and reverse rate coefficients are related by the detailed balance condition, 

- = K ,  kf 
k ,  

where Keq is the equilibrium constant. The rate coefficients are not ob- 
tained from one-way fluxes; rather, each coefficient contains information 
about microscopic forward and reverse processes.*+ 

Introducing the progress variable 5( t ) by 

[ ( t )  = SNA( t ) = - 6Nc( t ) 

we find that (2.5) takes the form 

-- d 6 ( t )  - - ( k ,  +k , )n ,B, t ( r )  
dt 

- = - 7 , i ; ! t ( t )  

which also serves to define the chemical relaxation 

(2.7) 

time, 
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A basic assumption, which is made when writing such equations, is that 
the chemical relaxation time is much longer than other characteristic times 
in the system, such as internal (vibrational, rotational) or translational re- 
laxation times.3 One might inquire about the generalization of the rate law 
when such a time-scale separation is not satisfied. From a theoretical point 
of view, a convenient generalization of (2.8) iss9 

where the memory kernel 

(2.10) 

takes into account the finite response times of the internal or other degrees 
of freedom. A description of this type is also appropriate if the chemical 
relaxation time is determined by measuring the frequency response of the 
system, as, for example, in light-scattering experiments.’ We shall call the 
time- (or frequency-) dependent quantities k,(f) and k,( f) rate kernels. 
Their precise relation to the usually measured rate coefficient will depend 
on the type of experiment. Some examples illustrate this point. If the rate 
coefficient is determined by examining the response for small frequencies, 
then 

k, =irndzk,(t) (2.1 1) 

This relation will also hold more generally, provided the time-scale sep- 
aration holds.s* We discuss this point more fully when we describe the 
microscopic basis of these rate laws. As a second example, consider the flu- 
orescence quenching reaction mentioned earlier. In this case, the quench- 
ing process is conveniently described by introducing’ a time-dependent rate 
coefficient kq( i ) ,  

k , ( l )  
A+ B -+ products 

The rate law is 

and k,(t) is related to the rate kernel by 

(2.12) 

(2.13) 

kq(r)=/‘dz’k,(t’) 
0 

(2.14) 
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Thus the rate kernel plays a central role in the description of relaxation 
processes in the chemically reacting system, and a good deal of our atten- 
tion is devoted to this quantity in the sequel. 

It is often convenient to adopt a somewhat different view of the system. 
Before, we imagined that a system in equilibrium was disturbed in some way 
and watched the decay back to equilibrium. However, even in an equilib- 
rium system there are fluctuations and, according to the regression hy- 
pothesis,' the decay of these fluctuations is given by the macroscopic laws 
for long enough times and on large enough distance scales. 

The time development of these fluctuations is conveniently described in 
terms of correlation functions of the form 

where Sn,(r, t )  is the microscopic expression for the number of molecules of 
species a at point r in the solution at  time t ;  it depends in general on the 
phase point of the system at time t. The angular brackets denote a system 
equilibrium average in some convenient ensemble. The second line of (2.15) 
makes explicit the unique dependence of these correlation functions on the 
difference between the two spatial points in the solution; that is, they do 
not depend on the origin. This follows from translational symmetry." Since 
the decay of these correlation functions, for sufficiently long times and dis- 
tance scales, is given by macroscopic laws, for example, 

(2.16) 

we may alternatively use this description to obtain expressions for the rate 
coefficients and rate kernels. This type of formulation is especially con- 
venient for the development of microscopic theories. We shall in fact show 
later that (2.16) follows from the microscopic equations of motion when 
certain conditions apply, thus verifying the statements above. We should, 
however, point out that although this approach is convenient for the analy- 
sis of the validity of the macroscopic laws and the study of rate coefficients 
and rate kernels, it cannot describe the decay from arbitrary initial states 
required for the analysis of certain types of experiment, for example, atom 
recombination that follows a photodissociation event. We describe 
processes of these types in Sections XI and XII. 

The previous considerations, of course, apply equally well to the more 
general bimolecular reaction 

kf 

k ,  
A + B e C + D  (2.17) 
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The linearized rate law is 

D 

where, for example, k,, =n&k,, k,, =n:k,, kAc = -nD “I‘ k , and kA,  = 
-n,c,k,, with similar definitions for the other k,,’s. In terms of correlation 
funciions, (2.18) can 

We next consider 
troduced here. 

111. 

be written as 

the theoretical description of the rate coefficients in- 

CONVENTIONAL APPROACHES 

The most widely used descriptions of reactions in liquids are formulated 
in terms of configuration space equations for the dynamics of the reacting 
molecules. Approaches of this type have a long history in the condensed- 
phase reaction rate literature, dating back to M. von Smoluchowski’s classic 
studies of colloid coagulation.’ More modern applications still frequently 
employ such descriptions, often with considerable success and justi- 
fication.*’ I ’  Nevertheless, these theories must fail on short distance and time 
scales-just the domains in which modem experimental techniques are ca- 
pable of providing new information on reaction dynamics. Among the goals 
of the microscopic theories described below are to delineate the range of 
validity of these conventional approaches and to provide suitable exten- 
sions. Therefore we now briefly summarize the results of the diffusion 
equation approaches and describe how Fokker-Planck and Langevin equa- 
tions may be used to approximately account for velocity relaxation effects 
on the reaction. 

A. Simple Diffusion Equation 

As a first example of the diffusion equation approach, we consider a very 
simple problem: the absorption of small (point) particles A, which are di- 
lutely dispersed in a viscous continuum, by a collection of large stationary 
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particles (“sinks”) B (Fig. 3.1). The sinks are assumed to be sufficiently large 
that changes in their radii may be neglected during the course of the reac- 
tion, and sufficiently dilute that they act independently and competition 
effects are small. This corresponds to a primitive model for the growth of 
droplets in aerosols or the growth of crystal nuclei from solution.12’ ’’ 

The density field of the A species at point r in the fluid, nA(r), is mea- 
sured relative to the center of a sink and is assumed to obey a simple diffu- 
sion equation: 

=DAV2nA(r,  t )  1 )  
at 

The absorption of molecules at the surface of each sink is taken into account 
by a boundary condition. Perhaps one of the most useful boundary condi- 
tions is the “radiation” boundary condition introduced by Collins and 
Kimball,I4 

4mDAR2i-VnA(r, t ) l r - R  = k i n A ( i R ,  t )  (3 4 
where R is the radius of the sink and ki  is some intrinsic rate constant for 
the absorption process (cf. Fig. 3.1). This boundary condition allows for the 
possibility of reflection as well as absorption on the sink’s surface and is 
similar to radiation boundary conditions in heat transport pr0b1ems.l~ If 
ki  > k ,  =4mDAR, the boundary condition reduces to the complete absorp- 
tion boundary condition used by Smoluchowski,’ 

nA(iR, t ) = O  (3.3) 

When describing transient effects in these systems, it often proves con- 
venient to deal with the Fourier transform of the local density field, 

W 

n A ( r , o ) = J  citeiW‘nA(r, t )  
- w  

Fig. 3.1. An illustration of some features of the ab- 
sorption of A molecules by the “sink” B. The density 
field of the A species, nA(r, r ) ,  is referred to a coordi- 
nate frame centered on 8. The dashed circle about B 
signifies a region about the particle where the diffusion 
equation no longer applies (a diffusion boundary layer). 
In the application of the radiation boundary condition, 
the presence of this boundary layer is approximately 
taken into account by the effective rate coefficient k ,  
[(3.2)], and its spatial extent is neglected. 

nA (r, t) 

I 
\ 

‘.-, 
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which satisfies 
- . iwnA(r ,  a) = DAV2n,(r, w )  (3 *4) 

The half-sided Fourier transform of the rate kernel for the absorption of A, 

can be obtained by explicitly solving the diffusion equation with the radia- 
tion boundary condition, then calculating the flux across the surface of the 
sink, 

@(a) =kDRi.VnA(r,  w) l  r - R  

kik,( 1 + a R )  - - ni( w )  =k,( w ) n i (  0) ki + k,( 1 +aR) (3.5) 

where a =  ( -iw/DA)'/'  and n i ( u )  is the density field far from the sink, and 
is assumed to be uniform in space. Thus the rate kernel is given byI5 

k,, ( w ) - I = k ;  I + k ,( w ) - I (3.6) 

where k,(w)=k,(l +aR) .  

kernel 
The rate coefficient then follows by taking the w = O  limit of the rate 

k,( o=O)-' =k; '  +k , l  (3.7) 

The rate coefficient may also be written in an equivalent form as the dif- 
ference of the intrinsic rate constant ki and a relaxing part 

The t-space expression for the rate kernel then follows after inversion of 
the half-sided Fourier transform 

k , ( t ) = 2 k $ ( t ) -  2 '2 { ( - DA ) ' I2- (  1 + -  t ; ) D A  - 
k ,  r t R 2  R 2  

(1 + k j / k , ) ' t D A  
R2 
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Note that the rate kernel has a long time tail that decays as t -3 /2 ,  

and a singular contribution at  t = O .  
We shall discuss the results above for k , ( t )  and k, in the course of the 

derivation of such results from a microscopic point of view. 
Simple diffusion equations of this type have also been applied to much 

wider classes of reaction, for example, to cases of “sinks” and particles being 
absorbed that are both moving and similar in size (e.g., colloid coagulation 
and small molecule reactions). The physical background for such applica- 
tions is widely discussed in the literature.” When the sink density is not 
small, competition effects come into play and it is no longer sufficient to 
consider reaction at  a single sink.”. 16* These competition effects lead to 
a nonanalytic dependence of the rate coefficient on the sink density.”, l9 

Such effects are not discussed here. 
In contrast to the foregoing approach, which utilizes equations for the 

density field of the reacting particles, it is often convenient to focus on the 
dynamics of a pair of particles. For dilute solutions the descriptions are 
equivalent. We shall make use of both types of descriptions. As an example 
of this pair formulation, we outline the Smoluchowski equation description 
for reactive pair dynamics. 

B. Smoluchowski Equation 
We now adopt a somewhat different point of view: suppose we have an 

ensemble of isolated pairs of potentially reactive A and B molecules and 
wish to describe the time evolution of the probability that a given pair at 
relative separation r remains unreacted at time t ,  P(r, t ) .  In contrast to the 
simple diffusion equation, we now also allow for the possibility that forces 
act between the molecules in the pair. It is customary to assume that the 
dynamics for this situation may be modeled by a Smoluchowski equation’ 

-- I - V *D [ V - p F] P(r, t ) 
at 

(3.10) 

where D is a relative diffusion tensor, which may be r-dependent, and F =  
- V W is the mean force acting between the particles in the pair, with W 
the corresponding mean potential. When the particles approach to within a 
distance u, reaction is possible and is again accounted for by a “radiation” 
boundary condition, now of the following form.20 

4aR2i*D*[ V -pF] P(r, t ) l r - a  = k i P ( f u ,  t )  (3.1 1) 
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The problem may also be formulated in an alternate but equivalent way 
using a Smoluchowski equation with sink terms.” 

-- aw, t )  -V*D-[V-pF]P(r,t)-  %G(r-o)P(r,t) (3.12) 
at  4 7ra 

This equation may be formally solved to yield an expression for the rate 
kernel with the general form of (3.7), (cf. Northrup and Hynes’’. ”), 

k,( 0- I = / ? , ” - I  +k , (  0)- I (3.13) 

Here, k,” is the equilibrium one-way flux rate coefficient 

kp = g ( a ) k j  (3.14) 

with g ( a ) = e - P w ( n )  the pair distribution function at contact and p= 
( k B T ) - l .  The contribution k , ( w )  is given by the average over the reaction 
surface of the propagator for the pair motion in the absence of reaction but 
influenced by the forces 

drdr’iS(r-a)S(rJr‘; o)iS(r’-a) (3.15) I-’ 
with S(r; a) formally given by 

The derivation of this result is sketched in Appendix A. 
In the limit of no forces other than simple excluded volume effects ( g ( r )  

= O(r- a)), (3.15) reduces to the simple diffusion equation result in Section 
1II.A. In the o = O  limit, k ,  may be written in the form22-24 

(3.17) 

where we have taken D(r)=D(r)l for simplicity. This result clearly dis- 
plays the effects of the forces and nonlocality of D on the diffusive rate 
coefficient. 

The method we have just outlined is certainly well suited to describe the 
system to which i t  was first applied, the coagulation of large colloidal par- 
ticles in solution. Here, the assumption of a continuum solvent is likely to 
be a very good approximation, and a configuration space description will 
be appropriate for the dynamics of the large, massive colloidal particles. For 
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the reactions of small molecules in solution, these conditions no longer 
apply and the validity of the method must be tested. 

C. Fokker-Planck and Langevin Equations 
Velocity relaxation effects can be accounted for in an approximate fash- 

ion by going to a phase-space description in terms of Fokker-Planck or 
Langevin  equation^.^' Perhaps the best known study of this type is due to 
Kramers, who studied the escape of particles over potential barriers as a 
model for certain types of isomerization or dissociation reaction. 

Suppose the “particle” moves in the one-dimensional potential shown 
schematically in Fig. 3.2. Kramers assumes that the time evolution of the 
phase-space distribution function F(4, u; t )  is given by the Fokker-Planck 
equation 

(3.18) 

Fig. 3.2. The double minimum potential W as a function of the reaction coordinate q. The 
stable A and B species are separated by a barrier located at C(q,) with height Q. 
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where { is the friction coefficient. Several situations are treated by Kramers: 
in the high friction limit, the Fokker-Planck equation can be reduced to a 
Smoluchowski equation and then solved to obtain the rate coefficient for 
irreversible passage across the barrier. By assuming that the potential near 
the barrier top C has the form 

(3.19) W=Q--mw'2(q-q, )  1 2 

2 

where Q is the barrier height, and is harmonic near A, 

1 
2 

w = - m o ; q 2  

Kramers finds the following: 

(3.20) 

(3.21) 

In the intermediate to high friction limit, the steady-state Fokker-Planck 
equation can be solved with the potential in (3.19) to obtain the following 
more general result; 

(3.22) 

For high friction, { /m>>2w',  the equation reduces to (3.2 I), whereas for in- 
termediate friction, {/m<<2w', (3.22) reduces to the transition state theory 
(TST) result.27 

The transition state theory result assumes an equilibrium distribution at the 
barrier top; then the equilibrium one-way flux across the barrier is calcu- 
lated to obtain the rate. In the high friction limit, collisions with the solvent 
will cause frequent recrossings of the barrier, hence leading to the reduc- 
tion in the rate coefficient given in (3.21). Neither of these results will apply 
in the extreme low friction limit. In this case there will be an insufficient 
number of collisions to maintain equilibrium throughout the well, espe- 
cially near the barrier top, and collisional activation will be rate-controlling 
step. Kramers solved the problem in this limit by converting the Fokker- 
Planck equation to an equation in energy space and solving for the flux 



84 R. KAPRAL 

across the barrier to obtain: 

(3.24) 

Since Kramers’s paper there have been a large number of studies devoted 
to the problem of passage over a barrier, focusing especially on the transi- 
tion between the low and high friction regimes. We discuss some of the more 
recent developments later (cf. Section XII). 

The problem can also be approached by considering the Langevin equa- 
tion rather than the Fokker-Planck equation.25 In the Langevin descrip- 
tion, the motion of the particle is given by the stochastic equations 

q ( t ) = t ? ( t )  

mtj( t )= - { u ( t ) + F ( t ) + f ( t )  (3.25) 

where F= -dW/aq is the force on the “particle” and the random forcef(t) 
is assumed to be a Gaussian random process. The correlations of f ( t )  are 
related to the friction by the fluctuation-dissipation theorem 

(3.26) 

The results obtained by averaging over the stochastic trajectories com- 
puted according to (3.25) are equivalent to those obtained via the solution 
of the corresponding Fokker-Planck equation. In many cases it is more 
convenient to work with the Langevin equation. We discuss a specific 
example in detail in Section XII. 

These are the theoretical approaches that have been customarily used to 
describe the rates of chemical reactions in liquids. In the sections that fol- 
low, we examine the microscopic basis of these approaches from a kinetic 
theory point of view, to appreciate their range of validity and to see how 
they might be extended to describe the reactions of small molecules in 
solution on short time scales. 

IV. MICROSCOPIC SPECIFICATION OF SPECIES IN A 
REACTING SYSTEM 

Any microscopic theory of chemical reactions must, at some stage, de- 
fine what characterizes a particular chemical species and prescribe the in- 
terconversion of the species. A general specification of functions or opera- 
tors that characterize species is difficult, since it depends on the type of 
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chemical reaction under consideration.28. 29 In quantum mechanical formu- 
lations, a representation in terms of number operators is often a conveni- 
ent way of formulating the 31 This kind of description does not 
really simplify the species specification problem; instead, it shifts the prob- 
lem to the construction of a suitable Hamiltonian, which describes how the 
chemical reaction takes place. T h s  section focuses on a classical theory of 
chemical reactions. A formal description is given first; then specific exam- 
ples are discussed. 

In a formal way, we may introduce functions (operators in species space) 
0; that characterize the species a of a given molecule i. In general, the @,a 

will be a function of whatever coordinates are needed to specify molecule 
i. These operators should be constructed to have the following properties: 

that is, molecule i cannot be of species types a and p at the same time; also, 

20;=1 
a 

molecule i must be some species type. 

operators as 
We may then write the number of molecules of species a in terms of these 

N 
Nu= x0: 

i =  I 
(4.3) 

where N is total number of molecules in the system. 

by averaging Na over an equilibrium ensemble, 
The average number of molecules of species a at equilibrium is obtained 

Local density fields can also be introduced easily. The number of mole- 
cules of species a at point r in the fluid is given by 

N 

n,(r )= 2 S(r-R,)@; (4.5) 
i =  1 
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Similarly, the number of molecules at  the phase point (r,v) is given by 

N 

n.(r,v)= 6(r-Ri)S(v-V,)Op (4.6) 
; - I  

In these equations Ri and V, are the position and velocity, respectively, 
of the center of mass of the i th molecule. The corresponding average val- 
ues of these fields are 

(4.7) 

and 

where I/ is the volume and +J u )  is the Maxwell distribution function. Al- 
though these results formally specify how species are introduced in the de- 
scription, specific expressions for the 0; must be given before they can be 
implemented. To illustrate their use, we now consider a few examples. 

Perhaps the simplest example is provided by the case of an isomerization 
reaction A p B ,  which is modeled by the motion of the molecule in the one- 
dimensional double minimum potential of Fig. 3.2. If the reaction coordi- 
nate for this motion of molecule i is qi ,  the usual way of specifying species 
is to say that the molecule is species A if qi <0, and is species B if qi >O. 
Thus 

and 

0; = e( q i )  (4.9) 

where B ( x )  is the Heaviside function [e(x)= 1 for x > O  and zero otherwise]. 
Several examples in the recent literature employ this type of microscopic 
species identifi~ation.~~, 33 

Another example is provided by the case of atom recombination in 
liquids. As the atoms approach and enter the reaction region, they experi- 
ence a strong attractive force. This should be contrasted with the isomeri- 
zation reaction just described, where a chemical bamer several k,T high 
must be surmounted before reaction can occur. In a liquid the force be- 
tween the atoms will be modified because of the presence of the solvent. 
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The potential of mean force thus has maxima and minima, which reflect 
the solvent structural correlations. For example, the first maximum is due 
to the extra energy the atoms need to push beyond the solvent cage or, al- 
ternatively, the energy needed to squeeze out an intervening solvent mole- 
cule. Figure 4.1 is a schematic diagram of this situation. Since the atoms 
encounter only a small solvent barrier 8 ( k , T ) ,  one might anticipate that 
the dynamics and theoretical treatment of such reactions would be rather 
different from those with high chemical barriers. 

For atomic recombination reactions in the gas phase, a surface separat- 
ing molecules from unbound atoms is most conveniently drawn in energy 
space. For instance, one might adopt the convention that configurations 
with energies less than the dissociation energy Ed correspond to molecules, 
and those with energies above Ed are unbound atoms. Several examples of 
dividing surfaces for atomic recombination-dissociation reactions are given 
by K e ~ k . ~ ~  In a dense liquid, where energy dissipation is large, a criterion 
based on a configuration space prescription will probably be useful. Con- 
sider, for example, the distance ro denoted by the broken line in Fig. 4.1, 
which corresponds to the position of the first maximum in the potential of 

Fig. 4.1. General structure of the potential of mean force for an atomic recombination re- 
action. The second minimum occurs at a distance corresponding to a separation of the atoms 
by one solvent molecule. To illustrate the effects of solvent structure, the effective hard-sphere 
representations (cf. Section VI) of the solute and solvent atoms are also shown. 
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mean force. Configurations with internuclear separations larger than ro will 
correspond to solvent-separated pairs atoms. Since there is a shallow well 
in the mean potential, such solvent-separated pairs may actually have an 
energy less than Ed at a given time. Molecule formation takes place inside 
the solvent cage for separations less than r,,. At short internuclear separa- 
tions the strong attractive forces will lead to rapid, stable molecule forma- 
tion. We might then write for the number of AB molecules as follows: 

(4.10) 

However, in the vicinity of the very small solvent barrier, there will be fre- 
quent recrossings of the r,, surface; thus the recombination rate will differ 
considerably from the one-way flux across this surface. Alternatively, one 
might select an ro at shorter separations, which correspond to stable mole- 
cule formation (cf. Section XII). 

Another more complex example is given by St i l l inge~-~~ for the ionization 
of water. 

There is one final case, which we describe very briefly here and in more 
detail later. The classical description can be written in a form that is quite 
similar to the number operator representation in quantum mechanics. An 
operator OP is assigned to molecule i, which is one if i is of type a and zero 
otherwise. Now, however, these operators do not themselves depend on the 
positions and momenta; they follow a dynamics that is specified by the 
classical Liouville operator of the system. In particular, the Liouville oper- 
ator determines the conditions under which species interconversion is pos- 
sible. Hence, just as in the quantum mechanical case, the problem of the 
specification of the precise conditions for reaction is deferred to the Liou- 
ville operator. Section VI describes how such Liouville operators can be 
constructed. 

In summary then, the mode of species identification is largely dictated 
by the particular reaction being studied and the experimental conditions. 
This chapter illustrates how the formal considerations above can be imple- 
mented in a theory of reactions in liquids. 

V. CORRELATION FUNCTION EXPRESSIONS FOR RATE 
COEFFICIENTS 

Before presenting a full kinetic theory description of a reacting fluid, we 
give a more formal microscopic treatment of reactions via linear response 
theory. This discussion will serve to make the conditions under which we 
expect the macroscopic rate law to hold more precise, and will also provide 
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formal expressions for the rate kernels and rate coefficients, whose detailed 
structure we shall examine by kinetic theory. 

The discussion presented below is most conveniently given in terms 
Fourier-Laplace transforms of the density fields 

In this space, the rate law given in (2.19) takes the form 

D 

( Z + k 2 0 , ) C a p ( k ;  I)+ k,,CPp(k; . )=Cap@) (5 .2 )  
p = A  

We shall examine the conditions necessary to obtain this result from the 
microscopic theory. 

The microscopic basis of the phenomenological rate law can be investi- 
gated by making use of projection operator  method^.^" 37 The time evoiu- 
tion of the microscopic density fields, discussed in Section IV, is given by 
the Liouville equation 

(5.3) 

where C is the Liouville operator for the system. Using projection operator 
techniques, the time correlation function of the solute density fields can be 
shown to satisfy the exact equation of motion3': 

D 

(5.4) 
dCmp(k; t )  

dt 
= - c lo(dtr+,p(k, t ')Cpp(k; t - t ' )  

P - A  

We make frequent use of these now standard projection operator methods. 
Although no details are given, the various results are easily derived by ap- 
plication of the operator identity [ z - A] - ' = [ z - QA] - I  + [ z - A] - 'qA 
[ z - Q A] - I .  

The damping matrix or memory kernel +,p is defined by 
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with Q =  1-4 ,  where 9 projects onto the density fields 

TA(k) = 2 (A(k)Sn,( - k))( N:)-'Gn,(k) (5.7) 
U 

We have used time reversal symmetry to write 

(Sti,(k)Sn,( - k))  = O  ( 5 - 8 )  

in these equations. Also, for solute species dilute in the solvent, we used the 
following relation: 

Cup(k) = (Sn,(k)Gnp( - k))  =SupN4 (5.9) 

To make connection with the macroscopic law, we must analyze the 
structure of the damping matrix. The local density fields can change by both 
motion of the center of mass of the molecules and by reactive events that 
change the number of molecules of a given species. Thus we have 

N N 

Sha(k) = - i k .  2 ye Ola M + 2 e - J ~ . R ,  0; - 
i- I I *  I 

= - ik*j,(k) + R, (k )  (5.10) 

A result with the same structure as the macroscopic law follows when terms 
to order k * are retained, cross-diffusion and cross-diffusion-reaction terms 
are neglected, and a Markov approximation C#u,,(f)=2C#a,,(z = O ) S ( t ) ,  is 
made. When these approximations are introduced, we may write36 

C#,,(k ; z ) = k *DUSa,,. + k up (5.1 1) 

where we have defined the diffusion coefficient for species a as 

Du = lim lim k^.(j,(k, z)ju( - k)) .k^( N:)-' 
r+O k+O 

=(3NP,)-1Jmdtlim ( [  ~ l V i @ ~ ] . e Q " f [  N YO,? 

J -  I 0 k+O 

and 

(5.12) ) 

(5.13) E lim kap( z )  
2-0 
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The results given above are the correlation function expressions for the rate 
coefficient, which we wished to obtain. The last line also serves to define 
the quantity k,,,(z), the rate kernel. As noted earlier, this quantity is central 
to discussion of reaction rate theory. Here and in the sections that follow, 
we attempt to elucidate its structure. 

A few comments will help to clarify the nature of these approximations. 
Because of the presence of reactive terms, the expression for 0, differs 
somewhat from the usual autocorrelation function expression for the self- 
diffusion coefficient of species a. To examine this situation a bit more 
closely, consider the case of a nonreactive fluid. Then aria&)= -ik-j,&) 
and, using the operator identity (A + B)- I = A-' - A-'B(A+ B)-', one 
may show36 that 

+ 8 (k) (5.14) eQil?r = e i l l t  

Thus in the k+O limit, we find the expected result3'* 

0, = 1 Lmdi(Vp-Vp( t ) )  
(5.15) 

where we have used the fact that a is dilute in the solvent. When reactive 
terms are present, the projected evolution operator cannot be reduced to 
usual evolution operator by taking only the k+O limit; the nonconserved 
pieces remain. 

The procedure above has not in any sense derived the macroscopic re- 
laxation equations; only some formal conditions have been stated under 
which the structures of the microscopic and macroscopic equations be- 
come the same. One crucial point, which certainly deserves further com- 
ment, is the physical basis of the Markov approximation. This approxima- 
tion removes the memory effects from (5.5) so that the structures of the mi- 
croscopic and macroscopic equations become similar. For this approxima- 
tion to be useful, the memory kernel must decay much more rapidly 
than the density fields. The projected time evolution will guarantee that this 
is the case, provided these fields decay much more slowly than other varia- 
bles in the system. 

In the case of a nonreacting fluid, where one is usually interested in 
macroscopic equations for conserved (in the limit k-0) variables, the origin 
and region of validity of this approximation is clear. In the small k limit 
the conserved fields do decay much more slowly than other variables in the 
system, and the limit z+O, k-0 has the effect of extracting the decay on 
this slow time scale. (Mode coupling contributions spoil some of these 
arguments, but it is now known how to account for these  effect^.^' We dis- 
cuss this aspect of the problem in Section VII.) 
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In a chemically reacting fluid, where the number of molecules of a given 
species is no longer conserved, the small k limit is not sufficient to guaran- 
tee this time-scale separation. For the Markov approximation to be useful, 
we must also require that the chemical reaction be slow. We can make t h s  
discussion more precise by using the same methods that have been applied 
in the past to justify this point in other contexts.6 We consider, for simplic- 
ity, the case of a spatially homogeneous system and take the k-0 limit of 
(5.4) at the outset to obtain 

(5.16) 

where 

Cap(t)= lim Cap(k, t)=(i3Na(t)i3N') (5.17) 
k-0 

and A , ( r )  is the k+O limit of the damping matrix given earlier. In this limit 
we also have 

N 
8Na= x 6 , . I = R a = y K a  (5.18) 

i =  I 

where we have introduced the parameter y to keep track of the manner in 
which the reactive terms enter. I t  is a dimensionless parameter, which is 
c"( ro /rchem), where ro is a relaxation time characteristic of internal, transla- 
tional, or other relaxation processes in the system. Thus y gauges how fast 
the chemical reaction proceeds relative to other relaxation processes. The 
Markov approximation can be shown to be valid in the limit of a slow 
chemical reaction by standard weak coupling  technique^.^^ To implement 
these techniques, we write 

Gap( t )  = y2( R,eQ"'iyJ( N&)-  ' (5.19) 

and let r = y 2 t  and Cap(t)=eap(r). We may then write (5.16) as 

The slow-time-scale r variation can then be extracted by taking the limit 
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y2+0 at fixed r .  We find 

(5.21) 

Notice that by keeping track of the y dependence, one can show that 

e Q i C t  = e i C t  +a( y )  (5.22) 

by using the operator identity given earlier. Thus this procedure leads to 
the expression 

k, ,  = lim lirn lim @,,(k, z )  
2-0 y-bo k+O 

(5.23) 

where a double limiting procedure in k and y ,  in addition to the 2-0 limit, 
is required if the usual macroscopic law is to apply. Although the formal 
limiting process y+O is well defined, y is not a parameter that is under our 
control. In any given physical situation, y may be small but not zero; 
otherwise reaction would not be possible. Equation 5.23 simply states that 
if the reaction is slow enough, the rate coefficient may be calculated from 
the autocorrelation function of the reactive flux, with time evolution 
calculated via the nonreactive part of the Liouville operator. A discussion 
of this point in the context of a Boltzmann equation description of reac- 
tions is given in Ref. 42. For a slow reaction, the results in (5.23) and (5.13) 
are equivalent, since, using (5.22), they differ only by terms 8 ( y ) .  For a fast 
chemical reaction, the rate kernel kap( z )  is well defined and is an interest- 
ing quantity to study; however, the macroscopic rate law no longer applies, 
and memory effects, due to the competition between the reaction and other 
relaxation processes, will occur. 

There is another variant of the correlation function expression for k 
Y that is useful and worth noting. Thus far the analysis has stressed that if 

the macroscopic law is to apply, the time scale for the relaxation of 
C,,(t),rchem, must be well separated from that of 9 ( t ) ,  say T ~ .  If this is 
the case, we may then introduce a time t* that satisfies the inequality ro<< 
t*<<TChem. Then we may write43 

a, 

I *  
k, ,  =/ d t ( R , e ' " R , ) ( N & ) - '  (5.24) 

0 
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For a slow reaction, k,, will be independent of the particular value of I* ,  
provided the inequality is satisfied. This form is often useful in numerical 
calculations. Using the fact that eie'Ra =SP?,( t) ,  (5.24) can also be written4' 
as 

k,,  = (Sk,[ 6N,( 1 * )  -SN,])(  (5.25) 

If, for instance, species (Y corresponds to a diatomic molecule defined by 

then 

This represents the average flux across the surface R i ,  =ro ,  given that the 
molecule AB is formed at time t*.43 

VI.  MICROSCOPIC MODEL OF A REACTING LIQUID 

The microscopic description of a chemically reacting fluid depends to a 
considerable extent on the specific chemical reaction under consideration. 
To present the kinetic theory results in a manner that is not purely formal, 
we focus primarily on a particular class of models that should be ap- 
propriate for several types of reaction. We provide some physical back- 
ground for these models and then turn to their mathematical description. 

A. Examples 
First consider the general bimolecular reaction in (2.17) and suppose that 

the energy change during a reactive collision event is given schematically 
by Fig. 6.1. As the A and B molecules approach, they experience a strong 
short-range repulsion because of the chemical activation barrier, which is 
assumed to be of order several k,T. If the molecules do not have sufficient 
relative translational energy to surmount the barrier, reaction will not take 
place and the A and B molecules will elastically or inelastically (nonreac- 
tively) scatter. 

A simple model that corresponds to a reaction with these foregoing char- 
acteristics can be constructed along the following lines. We suppose that the 
internal states of reactant and product molecules can be treated in a aver- 
age way by assigning effective one-level internal energies to them. Then, for 
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energies below the reaction threshold, only elastic scattering occurs, whereas 
for higher energies the one-level reactant states convert to one-level prod- 
uct states. This type of model has been widely used in the gas-phase kinet- 
ics literature.44* 45 It provides only a schematic treatment of the reactive 
event, since the mechanism by which reactants convert to products 
depends crucially on the internal constitution of the molecular species. 
Nevertheless, this model is useful for studying certain aspects of condensed- 
phase chemical reactions. An elucidation of the precise nature of the ap- 
proach of the reactive molecules through the solvent is one of the most im- 
portant features of liquid-state reactions. Thus although this type of reac- 
tive model does not treat the reactive event in full generality, it does permit 
a detailed study of molecular motion in the dense solvent and its coupling 
to reaction. 

This type of model is not especially appropriate in all situations, how- 
ever-for example, the atom recombination process. The relevant poten- 
tial energy surface for this process was shown in Fig. 4.1. We noted in Sec- 
tion IV that there are no large chemical barriers for the recombination, and 
the details of the strongly attractive forces play an essential role in the re- 
action dynamics of this system. A theoretical treatment of this reaction must 
therefore include this direct chemical force, since it will play an essential 
role in governing the dynamics of the approach of the atoms through the 
solvent. We shall defer a thorough discussion of this case to Section XII, 
where the atom recombination problem is discussed in more detail, but the 
lunetic theory is formulated in a way that permits this case also to be 
studied. 

Any fully microscopic theory of condensed-phase reactions must also 
specify the nature of the solute-solvent and solvent-solvent forces. Once 

Fig. 6.1. Schematic representation of 
the energy changes for a bimolecular re- 
action with a localized high barrier to re- 
action. 
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again, these will depend on the system under investigation. For instance, 
solute-solvent attractive forces may be essential in the reaction mechanism, 
as in the case of gas-phase atom recombination (see Section MI), or may 
influence the reaction dynamics in a liquid in certain cases. In many in- 
stances, however, only the strongly repulsive forces are important in de- 
scribing solvent effects on condensed-phase reactions. We shall attempt to 
justify this approximation for certain reactions later. Here we simply re- 
strict our considerations to this case. 

We also adopt a similar description for the solvent. This type of model 
requires some comment, even when applied to the simple solvents such, as 
dense liquid argon or other noble gases. Although the static structural 
properties of such fluids are represented quite well by taking into account 
only the strongly repulsive parts of the potential,& the weak attractive forces 
do have noticeable effects on dynamic properties such as the velocity auto- 
correlation f~nct ion .~’  However, a model that includes only the repulsive 
forces is not unreasonable for a description of the solvent dynamics in dense 
liquids, and this expedient is adopted. We focus on general features that are 
not expected to be especially sensitive to this approximation. 

In summary, we are primarily concerned with two classes of reactions: 
(I  ) bimolecular reactions with a steep chemical barrier or possibly a steric 
constraint to reaction, and (2)  recombination reactions in which motion of 
the atoms in the strongly attractive well must be treated. In both instances 
we assume that only the strongly repulsive solute-solvent and solvent- 
solvent forces need to be taken into account. We present a type of lunetic 
theory that is capable of handling more general cases, but the two reaction 
classes suffice to illustrate the use of the theory without overly elaborate 
calculations. Our goal is a detailed treatment of the effects of solvent dy- 
namics on the reaction. 

B. Mathematical Description 
The time evolution in the N body reacting fluid is, in general, given by 

the Liouville operator introduced earlier. If, however, we make the addi- 
tional assumption that the strongly repulsive solute-solvent and solvent- 
solvent forces can be approximated by effective hard-sphere interactions, 
the theory can be formulated in a way that greatly simplifies the calcula- 
tion. This can be accomplished by the use of the pseudo-Liouville repre- 
sentation for the dynamics in a hard-sphere system.48* 49 In a hard-sphere 
system, the time evolution of a dynamic variable is given by the pseudo- 
Liouville equation 
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where A(XN) is any function of the phase point X N = ( X , , X 2 ,  ..., XN) with 
Xi =(V;,R,), and e+(e-) is the pseudo-Liouville operator for t > O  ( t < O ) ,  

13 ~ = c, ?13'* (6.2) 

The free-streaming operator C, is 

and the collisional part C'% is given in terms of the binary collision opera- 
tors ~ * , p ( i j )  as 

T:P(ij)=lVjj*RijlO( ? y . j * R i j ) S ( R i j  - u a p ) ( b i j -  1)O~Of (6.5) 

Here uap is the mean diameter of the a and p species and the operator bi, 
changes the velocities of particles i a n d j  to their postcollision values and 
Jy, 

~ , ,A(x , )=A(x  ,,..., V; , R  ,,..., v,*,R /,..., x,) (6.6) 

where the postcollision velocities are given by 

and 

2 P i j  V,* =V, + - ( V j j * R I j ) R , ,  
m j  

To write the sums over particles in a convenient way, following the latter 
part of the discussion on species identification in Section IV, we have in- 
troduced the 0; operators simply as follows: 

if molecule i is of species a 
otherwise 

We have thus far not considered a reactive system. An important point 
should be noticed at this stage, namely, the pseudo-Liouville equation is not 
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time reversible. This feature enters the description of hard-sphere systems 
because of the need to distinguish forward streaming, where particles are 
going to collide, from backward streaming, where they have collided. As we 
shall see, this lack of time reversal symmetry has important and convenient 
implications for the description of reactive systems. 

The pseudo-Liouville operator for hard-sphere interactions can be writ- 
ten directly in terms of the binary collision operator TUs, and this leads to 
considerable simplifications in the formalism. It is not difficult to treat more 
general interactions, but a considerable number of manipulations must be 
carried out to express the results in terms of generalized binary collision 
operators. To avoid these difficulties, we make use of hard-sphere interac- 
tions whenever no violence is done to the qualitative features of the effects 
we are studying. 

In some of the models described above, soft attractive chemical forces 
are an important ingredient and we must allow for their presence. This is 
easily done by appending a soft force contribution to the pseudo-Liouville 
operator written above. Thus, for this more general case,48 

C,=Co*C’,+r, 
where 

with v s ( R j j )  the soft potential. 
The prescription above is suitable for the description of the time evolu- 

tion in a nonreactive system. We next consider how reactions might be de- 
scribed in the context of this formalism. 

For atomic recombination, the formulation above is complete. In this 
case a strong chemical force, described by C,, is assumed to act among the 
solute atoms, while the hard-sphere solute-solvent and solvent-solvent col- 
lisions are described by 7’;s for these pairs. The description of the reactive 
event then hinges on the specification of a bound molecular species as de- 
scribed in Section IV. Here, however, we turn to the situation described in 
the latter part of Section IV and construct a dynamic model for the general 
bimolecular reaction described earlier, where more complex molecular 
species are described in some average sense as one-level species. It is then 
up to us to give a prescription for the interconversion of these molecular 
species. This can be done by introducing collision operators corresponding 
to reactive  collision^.^^-^^ 

As an illustration of the construction of these reactive collision opera- 
tors, we first consider the simplest case. Suppose that when an AB pair col- 
lides there is a probability aR that reaction to form CD will take place. For 
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a reaction with a barrier, aR 4 ( e  -pE; ) ,  whereas for a steric constraint aR 
might be related to the probability that the molecules have proper orienta- 
tion for reaction to occur. Correspondingly, there is a probability (1 -aR) 
that the pair will elastically scatter. The collision operator for this process 
can be written (by analogy with the purely elastic scattering case above) as 

T:’( ij) = ( 1 - aR )Tgf (ij) + Qf ( i j )  (6.10) 

where aP=AB or CD. Although the operator T,“: is the same as T;’ in 
(6.5), we have introduced the subscript E to stress that for an AB or CD 
collision, both elastic and reactive events are possible. If only elastic colli- 
sions can occur for the pair, we suppress the E notation. In ths  simple ex- 
ample, the reactive operator has the form 

where qAC changes the species label of molecule i from A to C if it was of 
type species A. After this labeling change the C and D molecules are given 
postcollision velocities as if they had elastically scattered. Thus, this is in- 
deed a simple dynamic model for the reaction, and amounts to a “coloring” 
process with probability aR. For this model K,, = 1. One cautionary 
remark should be made: we exclude from consideration cases of the diam- 
eters of the species changing upon reaction. If this were allowed, the possi- 
bility of overlapping hard-sphere configurations would have to be taken into 
account, leading to a more complex theory. 

It is also convenient to write the collision operator in (6.10) as a sum of 
two terms, one which is independent of aR and one proportional to aR, 

T?’( ij) = T,“f (ij) + T,f ( i j )  (6.12) 

where 

As another example, we consider the slightly more complex (and realis- 
tic) case of molecules that must have their relative translational energy 
along the line of centers at contact greater than the activation energy 
before reaction can occur. Taking into account the possibility that the re- 
action may be exothermic or endothermic (see Fig. 6. l), we may now intro- 
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duce a b j j ( A E )  operator that acts as in (6.6), although nows2 

and 

where 

is the relative kinetic energy along the line of centers. The reactive collision 
operator for this case can again be written in the form of (6.12), with T,"f" 
given by 

AB .. 
TR k ( I /  = IV,, *Rl, I Q( T v , , * R ~ , ) ~ (  EAB - E,* )a( R , ,  ) 

x [ b l , ( A E ) 9 ~ C $ $ B D  - b  I , ]  0 P 0 -J" (6.16) 

The activation energy is not precisely specified in this model, and may 
contain solvent effects. 

Most of the results using this formalism will not depend on the specific 
nature of the reactive collision operators, but only on their general struc- 
ture and properties. For this reason, we shall not attempt to construct more 
elaborate models. 

There is one other notational change that will prove useful in the calcu- 
lations that follow. We may split the reactive collision operators into two 
parts: a part that changes species, 
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A similar decomposition applies for any model of the reactive T operator. 
In summary, the major feature of the dynamic model just described is 

the approximation that solute-solvent and solvent-solvent collisions can be 
described by hard-sphere interactions. This greatly simplifies the calcula- 
tions; the formal calculations are not difficult to carry out in the more gen- 
eral case, but the algebra is tedious. We want to describe the effects of 
solute and solvent dynamics on the reactive process as simply as possible, 
and the model is ideal for this purpose. Specific reactive events among the 
solute molecules are governed by the interaction potentials that operate 
among these species. The particular reactive model described here allows 
us to examine certain features of the coupling between reaction and diffu- 
sion dynamics without recourse to heavy calculations. More realistic treat- 
ments must of course be handled via the introduction of species operators 
for the system under consideration. 

C. Structure of the Rate Kernel 
The formal linear response analysis of rate coefficient expressions that 

was carried out in Section V can also be applied to this model of the react- 
ing liquid. Now, however, the starting point of the analysis is the pseudo- 
Liouville equation (6. I).  The lack of time reversal symmetry has important 
implications, which we shall now discuss. 

In the course of the calculation in Section V, we used the fact that 
(&iu(k)8n, , ( -k))  =0 ,  which follows because ahu and an, have opposite 
parity under time reversal. As a consequence of the different evolution op- 
erators for t > 0 and t < 0, the foregoing result is no longer true. Therefore 
we briefly sketch the modification in the results of Section V. 

Starting from the pseudo-Liouville equation for the solute density fields 

(6.20) 

we may rewrite this equation by using the projection operator in (5.7) to 
find the exact equation 

D 

- 2 &‘dZ’@$(k; t ’ )C, , (k , t - t ’ )  (6.21) 
p = A  

The lack of time reversal symmetry manifests itself by the appearance of a 
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singular contribution to the memory kernel, the +-matrix, with elements 

+&(W = - <[ C+Sn,(k)] an,( - k)>( N&) -' (6.22) 

The dynamic contribution to the damping matrix is also slightly modified 
because cpS now appears. We have 

where 

The rate kernel is again most conveniently obtained by taking the Laplace 
transform of (6.2 I ) ,  

D x {.SUP + [ +:,(k)++&(k; z,]}C,p(k, z)=C,p(k) (6.25) 
P - A  

The rate kernel can therefore be written as the sum of a z-independent part 

and a z-dependent part 

m 
lim+$(k, z)zAka,,(z)= lim d r e ~ z f ( ~ t ( k = O ) e Q e + ~ u ( k = O ) ) ( N ~ ) ~ '  

(6.28) 
k-0 k-rO 0 

Thus, 

ku,( z 1 = kX, + A k &  1 (6.29) 

This result implies that k,,(t) is the sum of a singular part and a relaxing 
part, 
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Some insight into this expression can be gained by examining the struc- 
ture of k& for the reaction models described above. Consider the calcula- 
tion of k L .  We have 

(6.31) 

where, consistent with the condition that the solute species are dilute in the 
solvent, terms lowest order in the solute densities have been kept. This is 
just the equilibrium average one-way flux of A and B molecules with suffi- 
cient energy along the line of centers to surmount the barrier across the 
reaction surface located at R i ,  =uAB, that is, the transition state theory ex- 
pression for the rate coeffi~ient.~'. 54* 55 Di rect calculation of (6.31) leads to 
the usual transition state result 

(6.32) 

where the free energy at the barrier, Q, is given by 

where W, is the hard-sphere potential of mean force, 

W,( r )  = - k ,T  In gH( r )  (6.34) 

Solvent effects enter through the potential of mean force and the activation 
energy; they may cancel or nearly cancel in the expression for k; (cf. 
Northrup and Hynes15). The collision frequency per unit density of B, 
a ~ , ( 8 ~ k , T / p ~ , ) ' / ~ ,  in the expression for k; for a bimolecular reaction, 
takes the place of the frequency oo in (3.23) for an isomerization reac- 
tion.2',"'' This analysis shows that the transition state expression for the rate 
coefficient appears in this theory as a singular contribution to the rate kernel 
for the hard-sphere model of the reaction. 
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Thus this formulation of the reaction problem provides a convenient and 
natural separation of the rate kernel into a direct collisional, one-way flux 
contribution of the transition state theory form k:,, and a relaxing part 
A k a , ( t ) .  The relaxing part contains the effects of solute and solvent dy- 
namics on the rate process and provides corrections to k:, arising from a 
nonequilibrium in configuration and velocity spaces generated by the reac- 
tion. In the simple diffusion equation theory described in Section III.A, the 
relaxing contribution is explicitly given by the second term in (3.9) and 
arises solely from a nonequilibrium in configuration space. This rate kernel 
is displayed in Fig. 6.2. We expect that more realistic treatments will yield 
a rate kernel expression with some of these features, for example, a singu- 
lar, “one-way flux” part and a relaxing part that varies as t -3/2 for long 
times. The short time behavior of Akap( t )  is of course not accurately given 
by the diffusion equation theory. Section X analyzes the kinetic theory 
expression for the rate kernel and shows what approximations to this more 
general theory lead to the diffusion equation result. 

If the reaction can not be modeled by an impulsive collision event, as for 
atomic recombination or some isomerization reactions, then rp& is zero by 
time reversal symmetry as discussed earlier. Nevertheless, the structure of 
the rate kernel has the same qualitative structure as described above.32 To 

0 1.0 2.0 3.0 4.0 
t 

Fig. 6.2. Rate kernel in units of 
kfD,/k,R2 as a function of time 
(IDA/R2) for simple diffusion equation 
dynamics. The ratio k i / k D  = 1.0 for this 
graph. The heavy vertical axis indicates 
the singular contribution to the rate 
kernel. For diffusion equation dynamics, 
Ak,(r) also diverges at I = O  (cf. (3.9)). 
This will not be true in general. The 
breakdown of the simple diffusion model 
comes as no surprise. Apart from this, the 
gross features of this diagram illustrate the 
general situation: a singular part fol- 
lowed by a negative relaxing part, which 
decays as I - 3 / 2  for long times. 



KINETIC THEORY OF CHEMICAL REACTIONS IN LIQUIDS 105 

see this, one need only calculate the rate coefficient in (5.24) for a small 
positive time F, which is taken to zero at the end of the calculation, 

= (Shi,SNa( E ) ) (  N&) - ’ (6.35) 

For the isomerization reaction described in Section IV, this reduces to 

(6.36) 

the usual transition state theory result.32 A similar result holds for other 
types of reactions. Thus, once again the rate kernel consists of a singular 
“one-way flux” part and a relaxing contribution. 

VII. KINETIC EQUATIONS 

The previous sections have attempted to provide some insight into the 
form of the microscopic expressions for the rate kernels and rate co- 
efficients that characterize condensed-phase reactions. Although the “equi- 
librium” one-way flux rate coefficient k; is relatively easy to calculate and 
under certain circumstances may yield an adequate description of the rate, 
a variety of important dynamic effects are contained in the relaxing part of 
the rate kernel, A k a p ( r ) .  In this section, we describe a kinetic theory that 
provides a means of examining the collision events that enter in A k J t ) .  

We present the formal structure of the theory and motivate its develop- 
ment, and then give some examples. 

A. Background 

The kinetic theory of condensed-phase chemical reactions is a direct out- 
growth of kinetic theory and mode coupling descriptions of dense, simple 
fluids, which have been developed primarily in the past 10 years. This work 
in turn relies on an older body of literature, but we shall, when possible, 
draw parallels with the more recent interpretations of liquid-state dynam- 
ics. At present there are a variety of techniques available for constructing 
kinetic equations that are useful for describing dense, simple, nonreacting 
liquids. These range from approaches based on the dynamic h ~ e r a r c h y ~ ~ - ~ ~  
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to renormalized kinetic theory6063 and generalized Langevin equation 
methods.64. 65 These methods are ultimately equivalent and occasionally 
differ in their predictions as a result of the introduction of approximations 
that are required to make the theories tractable. Although we have used all 
these methods to study condensed-phase reactions, to present a coherent 
discussion, we focus solely on the formulation based on the generalized 
Langevin equation.&, 6’ This approach has the added advantage of being a 
natural extension of the linear response theory description in the earlier 
sections. 

Before presenting the mathematical formulation of the theory, it is use- 
ful to describe the types of dynamic event that are likely to be important 
for the description of liquid-state reactions; this discussion shows why cur- 
rent theories of the dynamics of simple liquids are relevant for this prob- 
lem. 

One of the primary features distinguishing liquid-state reactions from 
those that occur in dilute gases is the enhanced probability of reaction, 
which arises from the presence of solvent molecules in high concentration. 
Such solvent effects in condensed-phase chemical kinetics are often re- 
ferred to as “cage” effects.68 The schematic diagram in Fig. 7.1 shows a 
configuration that may occur in the course of a bimolecular reaction in a 
liquid. The solvent molecules trap (cage) the solute pair, and thus the rate 
coefficient will be different from the gas-phase case. There are both static 
and dynamic aspects to this cage effect. On the static level, we expect that 
the solvent will affect the interaction potential between the reactive pair of 
molecules. Thus the “bare” (gas-phase) intermolecular potential will be re- 
placed by the potential of mean force, which accounts for the solvent 

Fig. 7.1. A caged solute pair in a high-density solvent. 
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structure. This was discussed previously (especially Section IV). Dynamic 
features also enter in the description of the cage effect. 

The presence of a high density of solvent molecules leads to recollisions 
between the potentially reactive pair of molecules. Some examples of such 
recollision events are shown schematically in Fig. 7.2. In Fig. 7 . 2 ~  the sol- 
ute molecules A and B collide elastically, and after collision of A with a 
solvent molecule S, the A molecule recollides with B and reacts. An event 
of this type is extremely unlikely in a dilute gas. The description of colli- 
sion sequences of this type is outside of the scope of a Boltzmann equation, 
which accounts only for uncorreluted binary collision events. Collision se- 
quences of this kind are expected to play an increasingly important role as 
the solvent density increases, and as we shall see, they are often the domi- 
nant contribution to the dynamics. A similar sequence of reactive events is 
shown in Fig. 7.2b. 

These ring collision events are now a familiar part of the kinetic theory 
description of dynamic processes in simple dense A brief compari- 
son of the theory for the velocity autocorrelation function with that for the 
chemically reacting fluid will help motivate our description. Recent devel- 
opments in the theory of the velocity autocorrelation function have arisen 
out of an attempt to understand the slow t - 3 / 2  power law decay observed 
by Alder and Wainwright in a computer simulation of a dense hard-sphere 

This work also showed that the translational motion of a small hard 
sphere in a fluid of similar hard spheres has a significant collective (hydro- 
dynamic) component. On the theoretical side,70 this type of behavior was 
discussed from the kinetic theory point of view in terms of the ring colli- 
sion events7’ described above and provided a microscopic basis for the 
introduction of collective  effect^.'^ In addition, it was shown that mode 

( b i  Fig. 7.2. Examples of correlated collision 
events. ( a )  Solute molecules A and B first collide 

collide to produce C and D. ( b )  Molecules A and 
B initially collide to produce C and D; after C col- 

a elastically; after collision of A with S, A and B re- 

lides with S, C and D collide to produce A and B. 

/’ ’ 
H 
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coupling theories provided another route for the inclusion of these collec- 
tive 74 The most recent work has focused on the detailed calcula- 
tion of the velocity correlation function and corresponding self-diffusion 
~ o e f f i c i e n t ~ ~ * ~ ~ - ~ ~  as well as the microscopic basis of Stokes’ law from kinetic 
theory.78 

There is a close parallel between this development and the microscopic 
theory of condensed-phase chemical reactions. First, the questions one asks 
are very nearly the same. In Section 111 we summarized several configura- 
tion space approaches to this problem. These methods assume the validity 
of a diffusion or Smoluchowski equation, which is based on a continuum 
description of the solvent. Such theories will surely fail at the close encoun- 
ter distance required for reaction to take place. In most situations of chem- 
ical interest, the solute and solvent molecules are comparable in size and 
the continuum description no longer applies. Yet we know that these sim- 
ple approaches are often quite successful, even when applied to the small 
molecule case. Thus we again have a microscopic relaxation process ex- 
hibiting a strong hydrodynamic component. This hydrodynamic compo- 
nent again gives rise to a power law decay (tC3I2) in the rate kernel79 (cf. 
Section 111). In addition, there is a strong parallel between the microscopic 
basis of Stokes’ law (S=cmqR, where 5 is the friction coefficient, 7 the 
viscosity, R the radius, and c a constant that depends on boundary condi- 
tions) for small molecule motion, and the Smoluchowski value of the rate 
coefficient, k ,  =47rDR (cf. Section 111). 

In many respects, at a superficial level, the theory for the chemical reac- 
tion problem is much simpler than for the velocity autocorrelation func- 
tion. The simplifications arise because we are now dealing with a scalar 
transport phenomenon, and it is the diffusive modes of the solute mole- 
cules that are coupled. In the case of the velocity autocorrelation function, 
the coupling of the test particle motion to the collective fluid fields 
(e.g., the viscous mode) must be taken into account. At a deeper level, of 
course, the same effects must enter into the description of the reaction 
problem, and one is faced with the problem of the microscopic treatment 
of the correlated motion of a pair of molecules that may react. In the fol- 
lowing sections, we attempt to clarify and expand on these parallels. 

B. GeneralTheory 
We now consider the construction of kinetic equations suitable for the 

description of the dynamics in a reacting liquid. Let Fa(],  t )  be the distri- 
bution function for species a, and 1 = x1 = (r,,vI) the field point in the fluid. 
The distribution function may be regarded as the nonequilibrium average 
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of the phase-space density 

N 
n,(x,)= c S(X, - x i ) @ ;  

i =  1 

Thus c ( 1 ,  t ) = n , ( x , ,  t ) .  An exact equation of motion for the distribution 
function can be written in terms of a hierarchy that relates the lower order 
distribution functions to higher order ones. The first member of the 
hierarchy is well known and for hard-sphere interactions may be written in 
the following form@ (cf. also Appendix B). 

The first term on the right-hand side gives the change in F, due to the free 
streaming in the external force Fex; the second term contains the effects of 
collisions. [The relation between the T operator and the previously intro- 
duced T operator is given in (B.9).] 

If we factor the two-particle distribution function, 

the nonlinear Boltzmann-Enskog equation results; 

This equation accounts only for dynamically uncorrelated collisions, and 
thus misses many of the important classes of correlated collision events 
discussed earlier. We need a new kinetic equation that does not suffer from 
this limitation. 

If we wish to examine only the structure of the rate kernel, we know that 
it is sufficient to study the decay of fluctuations about equilibrium. If we 
let 

6F,(1, t ) =F,(1 9 t )  - n:%,(ul) 
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and linearize about complete equilibrium, we obtain the linearized form of 
the Boltzmann-Enskog equation. The linearized collision operator is 

The second line defines the linearized Boltzmann-Enskog collision opera- 
tor. The bar over a variable signifies that that variable is integrated over. 

The form of the Boltzmann-Enskog collision operator is thus specified; 
out task is to find its generalization. We denote the general collision opera- 
tor by K a B ( l , i ' ;  t ') ,  where we have allowed for the possibility that it may 
be nonlocal in time as well as space. The general kinetic equation may then 
be written as 

Using an operator notation for K,,, and taking the Laplace transform, we 
may also write 

F e x  z+v,*V, + - *VuI -K,,(  I ;  t) 
m, 

In the spirit of the discussion of Section 11, we may consider the time 
evolution of the correlation functions of 6 n , ( x , )  rather than its non- 
equilibrium average. These correlation functions will satisfy the same 
kinetic equations as the SF,( 1, t) .  This is the approach we take here. We now 
outline a method for explicitly constructing KU8(1; 2). 

The procedure for constructing kinetic equations using the generalized 
Langevin equation is well known-. one uses as variables in this descrip- 
tion the phase-space density fields. We could of course simply use the 
solute phase-space fields, (7.1), and follow the methods of Section V to ob- 
tain a formal lunetic equation for their time evolution. This procedure 
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would not, however, lead to a useful result, since the kernel in the lunetic 
equation would be a complex memory function whose structure would be 
difficult to compute. What is needed is a systematic method for extracting 
from the memory kernel the dynamic processes that are important for the 
description of the rate kernel in a liquid. We argued above that the new 
feature, which must be taken into account for this case, is the (diffusive) 
approach of the potentially reactive molecules and the corresponding re- 
collision events, which occur because of the presence of a high concentra- 
tion of solvent molecules. Thus, in the spirit of mode coupling methods, one 
might expect such effects to be contained in higher order (e.g., pair density 
fields), which describe the correlated motion of the solute and solvent 
molecules. The introduction of these fields explicitly into the formulation 
will then lead to a theory that clearly shows how such correlated motions 
enter into the description of the rate coefficient. 

There are also compelling reasons for the introduction of these fields from 
more formal considerations. The usefulness of the linear response formula- 
tion in Section V hinges on the assumption that the linear density fields vary 
more slowly than other variables in the system. It is known that this is not 
the case even for fields that are conserved in the zero wave vector limit.41 
Consider, for instance, the solute density field n,(k) for a nonreacting fluid. 
As discussed in Section V, for small k this field will decay slowly in time. 
But so will the product field n,(q)np(k- q), provided both k and q are small, 
since 

These are, of course, just the standard arguments used to motivate the mode 
coupling theories, which have proved useful in the description of critical 
phenomena4' and the asymptotic decay of correlation  function^.^' 

With this background in mind, we may proceed to construct a formal 
lunetic theory for a condensed-phase, chemically reacting system along the 
following lines.** 67 We shall be interested primarily in the time develop- 
ment of the solute phase-space densities n, (x , ) ,  (7.1). Recall that n , ( x , )  is 
a function of the phase point X,  =(R,,V,) and depends parametrically on 
x,  = ( r I ,v I ) ,  thefieldpoint in the fluid. Following the arguments given above, 
the dynamics of these singlet fields is best exposed by considering the cou- 
pling to higher order phase-space density fields, for example, the doublet 
field 

N 
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Higher order fields may be introduced in a completely analogous fashion 
bv defining 

N 

n a , a , , , , , J X , .  * .  x n ) =  x S(x, -xi l ) . .  * q x ,  - x i  )0,4’0i“,‘* * * 0;- 
i , , i 2  ,..., : , = I  

(7.5) 

These fields may be written in a more compact way by defining a= 
{a,, a2, .  . . } and x -  (xl,x2,. . . }. The general phase-space density field is 
then given by n,(x). In the course of carrying out calculations using such 
fields, it is convenient to work with a set of orthogonal fields. In addition, 
in the spirit of the discussion in Section 11, we shall focus on the decay of 
fluctuations from equilibrium, thus considering the deviation of the above- 
mentioned fields from their equilibrium values. We shall denote such 
orthogonal fields whose equilibrium averages vanish by Snu(x). The phase- 
space density correlation functions are defined by 

c P , u # ( x , x ’ ;  t ) = ( 8 n a ( x ,  t )bn , , (x ’ ) )  (7.6) 

The kinetic equations for these correlation functions then follow by appli- 
cation of standard projection operator techniques.36* 37 We first introduce a 
projection operator onto these fields by 

and use this projection operator to write the pseudo-Liouville equation 

in the alternate form 

- i ‘ d t ‘ x  Sdx ’+&. (x ,x ’ ;  1’)6nu,(x’ ,  t - t ’ )+f , (x ,  1 )  
P’ 

(7.9) 

The static and dynamic memory kernel matrix elements +:, uI and +:, dl have 
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definitions similar to those in Section VI, 

113 

+ z , u , . ( x , ~ ‘ ) =  - Jdx”([  e + S n , ( ~ ) ]  S~,,(X”)>C~,JX”,X’) (7.10) 

and 

+ i , u . ( ~ , ~ ’ ;  t ) =  ] d x ” ( [  e Q ~ + ~ u ( x ) ] f u ~ ( ~ ~ ~ ) ) C ~ , ~ . ( ~ ” , ~ ’ )  (7.11) 

with 

f U ( x )  = ( 1 - 9) C, Sn ,(x) QC + S~,(X) (7.12) 

and 

f,+(x)= - Q ~ - S ~ , ( X )  (7.13) 

In view of the definition off,(x) in (7.12), it is clear that (fu(x)6nut(x’)) =O; 
thus the correlation function Cu, ,.(x,x”; z )  satisfies the equation 

z cu , (x , x” ; z ) + 2 Jdx’ [ +; , u . ( x  3 Xl) + +:, (x , x’ ; z ) ] C,!, (x’ , x” ; 2 ) 
U‘ 

The low-order phase-space density correlation functions are the quanti- 
ties of primary interest to us. For example, the singlet correlation function 
C,,,(x,, x’,; z )  = C,,,( 1, l ’ ;  z )  yields information about the configuration 
space correlation functions, discussed in connection with the phenomeno- 
logical rate laws in Section 11, when integrations over field point velocities 
are carried out [cf. (2.15)], 

(7.15) C a , J r , , r ; ;  z ) =  dv,dv;C,,,,(I, 1’; z )  s 
Also [cf. (5.17)], 

c,, ,.( z )  = JdX,  dx\C,* ,?( I ,  1 ’ ;  z )  (7.16) 

Thus, once the kinetic equation for Ca, ,.( 1 , l ‘ ;  z )  is known, the validity and 
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microscopic basis of the phenomenological rate law can be investigated. 
Equation 7.14 is such a kinetic equation. Before providing explicit exam- 
ples of this formalism, we discuss a few properties of the structure of these 
equations. 

In  Appendix B we show that the action of the pseudo-Liouville operator 
on the singlet field generates a coupling to the doublet field, and so on. One 
may show that if the phase-space density fields are defined as in (7.9, if 
density fields up to the nth order are included explicitly in the description, 
the random “forces” corresponding to all fields lower than the n th are zero. 
Hence only the damping matrix corresponding to this nth-order field is 
nonzero. As an example, consider the case of singlet and doublet fields that 
are explicitly treated. In this case, (7.14) reduces to two coupled equations 
of the form 

and 

In these equations, as noted earlier, a bar over an argument signifies that 
that variable is to be integrated over. These two coupled equations may now 
be formally solved for C(1,l’; z )  (we introduce a matrix notation), 

with 
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+’( 1,1‘2’) and +’( 1 “2“, 1’) couple the linear and nonlinear fields, and the in- 
verse operator in (7.20) gives the evolution of the nonlinear field. If higher 
order nonlinear fields are included explicitly, the structure of @( 12, 1’2’; z )  
is elaborated and has a form very similar to that of R itself, but involving 
the propagation of these higher order fields. A phenomenological version 
of a mode-coupling theory of reactions has been given by Jhon and 
Dahler.” 

To show that the formal theory leads to useful results, we now consider 
some specific examples. These examples show that +’( 1,l’) contains free- 
streaming and uncorrelated collision effects, while correlated collision terms 
reside in R(1,l’; z ) .  Thus an explicit expression for the collision kernel K,, 
in (7.2) can be obtained by this method. 

In summary, the strategy of these calculations is to explicitly consider 
products of phase-space density fields in the theory. These product fields 
describe the correlated motion of the solute and solvent molecules. An ex- 
amination of the coupling of these higher order fields to the solute fields 
should then lead to a precise description of the effects on single-particle 
dynamics of correlated motion of many particles. 

C. Singlet Field Equation 
As a first example, we consider the reaction A + B e C  + B. The phenom- 

enological description was given in Section 11. We now derive the kinetic 
equation appropriate for this case and restrict our considerations to ex- 
plicit inclusion of up to doublet phase-space fields. In Section VI1.D we 
consider the effects of the higher order fields. The appropriate fields can be 
selected using the following considerations: We are interested in the time 
development of the singlet solute densities 6n, (a=A,B,C).  The action of 
the C, operator on these densities leads to a coupling to the doublet fields 
anuS (a=A,B,C),  anAB and an,, (cf. Appendix B) for this dilute reacting 
system. A straightforward calculation of the matrix elements in (7.19) then 
yields the desired kinetic equation. We give these details in Appendix C and 
simply present and discuss the resulting kinetic equation here. 

To present the results in the clearest possible fashion, we give only the 
kinetic equation for the irreversible reaction 

Our description of reactions in terms of fluctuations about equilibrium is 
consistent with this irreversible case under some conditions. We consider a 
small fluctuation from complete equilibrium. In the subsequent decay of 
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this fluctuation back to equilibrium we neglect reverse rate processes. By 
the regression hypothesis, the equations governing the decay of these 
fluctuations should have the same form as the macroscopic equations, with 
the same neglect of reverse rate processes. This will be a useful description 
of the chemical relaxation, provided the equilibrium constant is very large. 
(Modifications of the results when the reverse reaction is included are given 
in Ref. 51.) 

The equations in this form are especially suitable for comparison with 
diffusion equation approaches, which are most often applied to the irre- 
versible reaction case. The reaction scheme we have selected is also 
convenient because B clearly plays the role of the “sink” in the diffusion 
equation approaches, and a rather direct comparison with these methods is 
possible. 

The kinetic equation for the A species phase-space correlation function 
is 

{z+v,.V, -KAA(l;Z)}CAA(l, l’ ;z 

where the collision operator is given by 

~ ~ ~ ( 1 ;  Z)=~A-s(~)-~A,B/-(i)+~AS(i 

We also write (7.21a) as 

= C,( 1,l’) (7.2 1 a) 

z )+RAB( l ;  z )  (7.21b) 

The contributions to the collision operator Ku( 1 ; z )  describe the follow- 
ing types of dynamic event: the A operators are Enskog collision operators 
and describe uncorrelated binary collision events; A!’ describes uncorre- 
lated elastic collisions of A with solvent molecules 

and A$?- describes the reactive collisions of A with B. 

Enskog level theories for reactions have also been constructed by Xystris 
and Dahler” and Bose and O r t o l e ~ a . ~ ~  

The R operators are repeated ring operators and account for the corre- 
lated collision events discussed above. The RAs( 1; z )  operator describes se- 
quences of correlated elastic collisions of the solute molecule A with the 
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solvent. This operator appears in the kinetic theory for the self-diffusion 
coefficient and has been discussed elsewhere.63. 'O Since it does not enter in 
the rate coefficient expressions with which we are concerned, its structure 
is not studied in detail. To put the subsequent discussion into perspective, 
however, we briefly review its physical content. For this purpose we con- 
sider the simplified form in (C.14), then 

RAS( 1 ; z ) = n Z q / d x 2  TtS( 12) { Cis( 12; z ) -  ' - TbS( 12)) - IT_"'( 12)&( v 2 )  

(7.24) 

with GiS(l2; z )  the Enskog propagator for a pair of independent A and S 
molecules 

Cis( 12; z )- ' = { z + g f S (  12) - A!( I )  - ASS (2)) 

where C c s (  12) = !2(( 1) + ei(2). 
The end vertices 7'_"'(12) and F?(12) specify the solute-solvent mole- 

cule collisions that initiate and terminate the sequence of correlated events. 
The propagator 

describes the motion between these collisions. Expanding this propagator 
in powers of T_"' in (7.24) leads to a series for RAS in terms of a sequence 
of correlated collisions with independent propagation in between these col- 
lisions. The nth term in the series has the form 

where 

Gi(1; t)=exp{ -(C,"(l)-A!(l))t} 

with a similar definition for G,0(2; t). 
If we represent each FAs vertex by a dot and each G o  propagator by a 

line, the series can be represented diagramatically and is shown in Fig. 7.3. 
We have written the series in t-space, since the G:s propagators factor. In 
the diagrams, t increases from right to left. This sequence of collision events 
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Fig. 7.3. Diagrammatic representation 
the collision process contributing to the re- 
peated ring operator R'. Each vertex repre- 
sents an elastic collision between A and S; the 

S s s  propagation between these correlating cob- 
sions is given by sequences of uncorrelated 
collisions of A with S and S with S. 

R A S ( I ;  t )  = 6 + & + . .. 

provides the route for the coupling of the test particle motion to the fluid 
collective fields. It contains a variety of important effects, such as the origin 
of the asymptotic power law ( t - 3 / 2 )  decay of the velocity autocorrelation 
function and provides the basis for a microscopic analysis of Stokes' law. 

The repeated ring operator RAB in (7.21b) is a new operator that appears 
in the theory on account of the reactive collision events. It has a form anal- 
ogous to that of RAS,  

with the vertices defined (here, we present a more detailed form than that 
given for R A S )  by 

VA*J 12) = P( 12) + P( 12) (7.26) 

and 

where 

(7.28) 

The explicit expression for the GAB(12; z )  propagator is 

- P"( 12) - C""( 12) - P( 12)) - I 
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Here, c&(12; z )  is the Enskog propagator for the independent motion of 
the A and B molecules. Its explicit form is given in (C.22). 

Thus RAB is also a repeated ring-type operator, and its interpretation is 
similar to that of RAS described above. However, there are some new fea- 
tures, including two contributions to the vertex: 

1. There is a contribution from a direct collision between the solute A and 
B molecules. Since 

(7.30) 

this collision may be either elastic or reactive. 
The correlated collisions may be between a solute A (or B) molecule 
and a solvent molecule, while A and B are statically correlated. The 
scattering processes that contribute to the vertices are shown schemati- 
cally in Fig. 7.4. Once again, expansion of the propagator in (7.29) in 
powers of TAB yields a repeated ring series, but now one with a richer 
structure due to the variety of collisional processes that enter into each 
vertex. We explore the structure of this operator in more detail in con- 
nection with the rate coefficient. 

Thus the principal feature distinguishing this kinetic theory of chemical 
reactions from earlier theories is the inclusion of the correlated collision 
events contained in the R collision operators. These terms are crucial for a 
description of the dynamics in the condensed phase. 

2. 

x ( a  1 

B k 

Fig. 7.4. Schematic representation of collision events contributing to VM. ( u )  Elastic 
scattering of A and B. ( b )  Forward reactive collision. (c )  Elastic collision of A(B) with S while 
A(B) is statically correlated to B(A). 
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D. Pair Kinetic Equation 
We previously noted that many aspects of chemical reactions are often 

conveniently discussed in terms of the dynamics of a pair of reactive mole- 
cules. An example was provided earlier in the discussion of the application 
of the Smoluchowski equation for the pair probability given in Section 1II.B. 
To study these pair approaches from a microscopic point of view, 
we present a kinetic equation for the solute pair phase-space correlation 
function.53 Again, by the regression hypotheses, we expect, for sufficiently 
long times and small spatial variations, that the equation of motion for this 
correlation function will have the same form as the macroscopic law. Al- 
though the singlet kinetic equation is useful for discussing the macro- 
scopic chemical rate law and rate coefficients, the pair kinetic equation is 
especially convenient for studying the microscopic basis of the sink 
Smoluchowski equation and also the rate kernel. 

We consider the description of the general bimolecular reaction A + B e  
C+ D. The primary variables of interest are now the reactive pair phase- 
space densities SnAB(x1x2) and Snc,(x,x2). These two fields are coupled by 
the reaction, but because of the diluteness of the solute species they are not 
coupled to other pair fields by the action of the pseudo-Liouville operator. 
In the present formulation singlet fields are not included in the description. 
Thus the pair fields do not have to be orthogonalized to the singlet fields 
and are simply given by, for example, 

N 

nAB(xlx2)= 2 6(x, -xi)S(x,  -x,)@A@,” (7.31) 
i ,  j -  1 

and 

The reactive pair phase-space correlation functions can be constructed from 
these fields as 

The pseudo-Liouville operator does couple these doublet fields to triplet 
fields such as 6nABs and ancDs involving the solvent molecules. Thus one 
of the simplest forms for the pair kinetic equation can be obtained by ex- 
plicitly including doublet and triplet fields in the generalized Langevin 
equation. This procedure yields a treatment of the effects of solvent dy- 
namics on the motion of the reactive pair that is much more sophisticated 
than that given in the singlet kinetic equation discussed in the preceding 
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section. To achieve a similar level of description, triplet phase-space fields 
must also be incorporated there.67 

The results given here will also allow for the possibility of soft forces 
among the solute molecules. Hence, if we shut off the hard elastic and reac- 
tive terms among these species, our kinetic equation can describe the 
motion of a pair of particles in an arbitrary potential, thus providing a pos- 
sible model for atom recombination studies. 

Since the derivation of the pair equation exactly parallels that for the 
singlet kinetic equation, the details are sketched in Appendix D and not 
given here. It is quite easy to derive a kinetic equation for the general re- 
versible reaction case; the calculations need only be carried out in matrix 
form.53 To avoid this more complex notation and to present the results in 
simple form, however, we again give only the results for the irreversible de- 
cay of the AB pair field. 

The pair kinetic equation is 

where FH is the hard-sphere mean force, 

The soft-force part of the Liouville operator is [cf. (6.9)], now in field 
point space. If only a soft force acts between the A and B solute molecules, 
then 

where y H ( r l z ) ,  the radial distribution function for a pair of cavities in a 
hard-sphere fluid, is related to the cavity potential W, by 

The collision operator is given by 

KAB,AB(12; z)=AfS(I)+AB?(2)+ TtB(12) 

+ CAS( 12) + CBS(21) + RABS( 12 ; z) (7.33) 
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In the kinetic equation, one might have expected the streaming term to 
contain 

with F, the mean force on molecule i. Because the solute molecules un- 
dergo hard-sphere elastic collisions with the solvent (and also with each 
other), however, the contributions to the streaming term from the hard col- 
lisions and soft forces have a different structure, as indicated in (7.32). A 
more explicit discussion of how the mean force enters into the kinetic 
equation is given in Appendix D. 

The new feature in the collision operator is the repeated ring operator 
RABS, which describes sequences of correlated collisions of A and B with 
each other and the solvent molecules. 

RABS(12; z)=?!'~( 123)GABs(123; z )~!~~(123)4(5)  (7.34) 

(Some comments on the origin of this term are given in Appendix D.) Here 
the correlated sequence of events is initiated by a collision between A and 
S or B and S, 

After this initial collision, the molecules propagate via 

GABS( 1 23 ; Z ) = { z + e:Bs( 123) - V ~ S (  123)) - I 

={ GiBS( 123 ; z )- I - V,,( 123)) - I (7.36) 

where GiBs(123; z )  is the propagator for the independent motion of the A, 
B, and S species 

GiBS ( 1 23 ; z ) = { t + etBS( 1 23) - AAWs( 1 ) - A"_"( 2) - ASS (3)) - I (7.37) 

and the vertex TAB,( 123) couples this motion through soft-force interac- 
tions and hard collisions between the A and B molecules and elastic colli- 
sions of A with S and B with S. 

TABS( 123) =gABS(r,r,r, )e,( 12) +g AB( uAB)7;AB( 12) 

+gAS(oAs)~!S(13)+gBs(uBs)~~S(23) (7.38) 
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Finally, the sequence of correlated events is terminated by a collision of A 
with S or B with S. 

7ABS( 1 23) = g AS( uAs ) FAs( 13) + g Bs( u Bs) F!'( 23) (7.39) 

The structure of this repeated ring operator is much richer than that of 
the repeated ring operators discussed earlier. The various classes of colli- 
sion events can be examined by expanding the GABS propagator in powers 
of V,,,. Consider, for instance, the one-ring term 

which yields four contributions. The two diagonal contributions have ex- 
actly the structure of the first terms of RAS discussed earlier and serve to 
"renormalize" the independent single-particle motion. The off-diagonal 
terms lead to a coupling of the motion of the A and B molecules via colli- 
sions with the solvent. We shall defer a more detailed discussion of these 
contributions until the rate coefficient expressions are derived from the 
kinetic equation. 

The specific approximations to the static structural correlations that were 
made to obtain the result for RABS are described in detail in Ref. 53. We 
have presented the results in a form that describes the binary collision 
events at the Enskog level of approximation. 

E. The BGK Equation 
The kinetic equations (7.21) and (7.32) provide a microscopic description 

of the coupled motions of the solute and solvent molecules and the effects 
of this coupling on the time evolution of the solute molecule distribution 
functions or correlation functions. As such, they give a much more explicit 
treatment of the collision dynamics than other more phenomenological 
kinetic theories. One of the most useful of these phenomenological equa- 
tions is the Bhatnagar, Gross, and Krook (BGK) equation,82 and it is 
interesting to compare the results of the last two sections with the corre- 
sponding BGK kinetic equations. 

Consider first the kinetic equation for the singlet field in a nonreactive 
system. It has the general form given in (7.2a), which now reduces (sup- 
pressing species labels) to 

(7.40) 
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If memory effects in the collision kernel are neglected, 

K (  1,l ' ;  t ')=2 K (  1, l ' ;  z = O)S( t') 

then 

The BGK model corresponding to this kinetic equation may be con- 
structed as follows. The collision term may, in general, be written as a dif- 
ference of gain and loss terms, 

J d x; K ( 1 , 1 ; z = 0) F( 1 ' ; 1 ) = J d x; W( 1 I ,  1 ) F( 1 I ,  t ) 

- Jdx', W( 1 , 1') F( 1, t ) (7.42) 

where W(1,l')dx; is the transition probability per unit time for the transi- 
tion from xI  to x;. A BGK model for the transition probability is 

W l ' ,  l)=ac+(u,)S(rl  -r',) (7.43) 

Thus the transition probability is taken to be local in space and is char- 
acterized by a mean collision frequency ac. It follows that the BGK kinetic 
equation is 

with 

r 1 

(7.45) 

This is certainly an idealized model for the true collision dynamics; it as- 
sumes that the velocity is randomized at each collision. All characteristics 
of the solvent and solute molecule properties, including the effects of the 
uncorrelated and correlated collision events described earlier, are implicitly 
contained in the collision frequency parameter. Nevertheless, the virtue of 
this model lies in its simplicity; the full collision operator is rather complex 
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[cf. (7.21)]. Even the Boltzmann-Enskog collision operator is not especially 
simple. When it is written explicitly in the form of (7.42), W( 1’, 1) is seen to 
be a complicated function of the collision parameters and the masses of the 
solute and solvent m ~ l e c u l e s . ~ ~  

Applications of this kinetic equation for isomerization dynamics have 
been carried out by considering the motion of a “particle” in the external 
force corresponding to the double minimum potential in Fig. 3.2. Since this 
model treats the free streaming in the potential correctly and specifies a not 
unreasonable model for the collisions, which provide the energy dissipa- 
tion, interesting results for the dynamics of the reaction can be obtain- 
ed.33. Other more complex collision models, which contain solute and 
solvent molecule mass effects explicitly, have also been studied.” We dis- 
cuss some of these results in Section XII. 

Analogous BGK models can be constructed at the pair kinetic equation 
level. The simplest model of this type would approximate the collision op- 
erator in (7.32) as 

K(12; z)=KBGK(l) +KBGK(2) (7.46) 

This assumes that the two particles undergo independent BGK collisions 
with the solvent; all dynamic correlations are neglected except those that 
are crudely accounted for in the collision frequency parameters. More 
elaborate models may be constructed. 

VIII. KINETIC THEORY EXPRESSION FOR THE RATE 
KERNEL 

An equation with the form of the macroscopic law in (2.16) can be ob- 
tained from the singlet field kinetic equation by projecting out the velocity 
dependence of the phase-space correlation functions. A comparison of the 
resulting equation with this macroscopic law can then yield a microscopic 
correlation function expression for the rate kernel. 

We begin with (7.22), 

{z--LR(l ;  z)}CAA(l,I’; z)=CAA(l,l’) 

and define a projection operator TA by 

where A(v,) is any function of the velocity, and let QA be the complement 
of YA. Since the operator L, does not act on the primed variables, we may 
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integrate this equation over the primed velocities directly. We then have 

where we have used (2.15). An equation for CM(rl -r',; z)  then follows di- 
rectly after the usual projection operator algebra, 

Using the explicit form of L,  which follows from (7.21), and number con- 
servation in elastic collisions, it follows that 

In the analysis of the other term in (8.3), we recall that for small solute 
densities we only need the solute-density-independent rate kernel. Thus, 
using number conservation again, we may write 

Q A LR( 1 ; z )+A( ui 1 = VI *V I - QA( At?- ( 1) - R AB( 1 ; z ))+A( 1 ) 

Since the second term is O(n,B,) we have, to lowest order in solute densities 
with neglect of cross-diffusion-reaction terms as in (5.1 l ) ,  

Here DA(rl; z) is a diffusion operator defined by 

where L( 1 ; z) is the LR( 1; z )  operator with reactive terms, which are O( n:), 
neglected. For small spatial gradients and long times, DA(rI; t) reduces to 
the usual self-diffusion coefficient, DAl. Using these results, we may now 
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write (8.3), to second order in spatial gradients, as 

with kAA(z) given by 

This expression should be compared with the more formal result in Section 
VI. Using the explicit form of RAB in (7.25), the rate kernel may now be 
written in the form 

k,(z)=kr" - V - ' J d r , d r , ( ~ ~ ~ ( 1 2 ) G A B ( 1 2 ;  z)TRqB_((12))0gA"(r12) 

(8.9) 

The angular brackets denote an equilibrium velocity average in two-particle 
space, 

The Iunetic theory result for the rate kernel given above provides a much 
more explicit and tractable description of the dynamic processes that con- 
tribute to the rate coefficient in a dense fluid. We analyze these processes 
in Section X. 

M. CONFIGURATION SPACE EQUATIONS 

The pair kinetic theory equation given in Section VI1.D can be used to 
extend the Smoluchowski results outlined earlier. In this section, we pre- 
sent the microscopic derivation of the Smoluchlowski equation from the 
kinetic theory and also obtain expressions for the space and time nonlocal 
diffusion and friction tensors, which appear in this theory. 

A. Projection onto Pair Configuration Space 

The general pair phase-space Iunetic equation is given in (7.32). Letting 

LR( 12 ; z ) = - C,A "( 12) + Ats( 1) + AB_S(2) + PB( 12) + F!"( 12) 

+ CBS(21) +Es( 12) + R A y  12; z )  (9.1) 
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the pair equation can be written compactly as 

An equation with the form of the sink Smoluchowski equation may now be 
derived by introducing an operator that projects out the velocities of the 
solute molecules.86 This is just the pair version of the derivation presented 
in the previous section. 

We introduce a projection operator ‘YAB by 

where again A(12) is any function of the phase points of the two solute 
molecules. The complement of TAB is QAB. We note that 

where the position space correlation function PAB,AB(rIr2,r;r;; t )  is the cor- 
relation between the number of AB pairs initially at  (r’,r;) with the number 
of AB pairs at (rIr2) at time t.  We expect that PAB,AB will satisfy an equa- 
tion with the same form as the Smoluchowski equation for the pair proba- 
bility because for low solute concentrations, the dynamics of the individual 
pairs are independent. To simplify the notation, we henceforth drop the AB 
subscripts on PAB,AB and QAB. 

An equation for P follows directly upon integration of (9.2) over primed 
velocities and application. of projection operator techniques. We find 

{ Z- ( LR( 12; Z ) ) o  - ( L R (  12; Z ) [  Z - QLR( 12; z ) ]  -‘QL=( 12; Z))O} 

x P(r, r2, r’,G; z )  = P(rlr2, r;r;) (9.5) 

This equation may be reduced further. First, explicitly evaluating 
( LR( 12; z ) ) ~ ,  we find 
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where k;q is the equilibrium forward reactive collision frequency defined by 

Using the simple model for 7‘,&%(12) in (6.18), k/” is given by 

PAB 

The second term in the brackets in (9.5) may also be reduced further. Using 
number conservation in elastic collisions, one may show that 

for any A(12). 
Here W is the potential of mean force. Also, 

2 

(LR(12; z)A(12)),= - ( (  T,A/B_(12)+ x V,v, 
i =  I 

Using these results in (9.5), we find 

= P(rlr2,r’,ri) (9.1 1) 

The quantity SS(12) is the deviation of TRA/B_(12) from its velocity averaged 
value, 

6s(12)=T,A/B(12)-s(r12) (9.12) 

This equation is considerably more complex than the Smoluchowski 
equation discussed in Section 1II.B. Several approximations need to be 
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made before the reduction is complete. We analyze (9.1 1) with reactive 
terms dropped, and then return to the case with reactive contributions. 

B. Smoluchowski Equation and Diffusion Tensor 
We have mentioned several times that, when describing certain types of 

chemical reaction in liquids, it is often more convenient to consider the 
motion of the particles in some potential and then introduce species opera- 
tors that divide up the phase space. As described in detail in Section IV, 
this is a useful way of treating isomerization and atomic recombination re- 
actions. Our pair description is especially appropriate for the latter case. 

If we set the reactive terms in (9.11) to zero, the resulting equation 

2 

{I- I ,  2 J ' I  v1*DIJ(r1r2; 'I*[ v J + ( ~ v J W ( r ~ 2 ) ) ] ] p ( r ~ r 2 , r ~ r ~ ;  ') 

= P(rlr2, r{ri) (9.13) 

describes the motion of the pair of particles in the potential W. This has 
the form of a Smoluchowski equation with a generalized diffusion tensor 
Dij(rl,r2; 2). From (9.11), we see that this operator has the microscopic 
definition 

Dij(rl,r2; z)=(vi[ z-QL(12; z)]-'vj), (9.14) 

where L(12; z)  is equal to L,(12; z )  [cf. (9.1)] with reactive terms dropped. 
This result for D has the expected form of a velocity correlation function. 
The kinetic theory result for L allows the possibility of examining in detail 
the effects of solvent coupling on the pair diffusive motion. 

A derivation of this result for the case when all interactions are soft is 
given in Ref. 87. In general, the relative and center of mass motions of the 
pair are coupled. If we neglect such coupling, a Smoluchowski equation for 
the relative motion of the pair is easily written. In this circumstance 

P(r, r, , r;r; ; t ) = P( r,,, r',, ; t ) P(R - R ; t ) (9.15) 

where rI2 and R are the relative and ceqter of mass positions, respectively. 
With this assumption and (9.13), we have, in t-space, 

x p ( ~ , ~ , r ' , ~ ;  t - t ' )  (9.16) 
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m 
with D(rI2, z)=  1 d f e  -“D(c ,~ ;  f ) ,  given by 

0 

The expression for D is rather complex because i t  is an operator in con- 
figuration space. This feature can be exposed by writing 

L(12; z)=L3(12)+L,(12; z )  (9.18) 

where the streaming operator L, is 

L,(12)= -e(yy12)+eS(12)=- 

and the collision operator Lc( 12; z) is 

L,( 1 2 ; z ) = A t s  ( 1) + ABT( 2) + FA ’( I 2) + cBs (2 1 ) + R A Bs( 1 2 ; z ) 
(9.20) 

The propagator in (9.17) may then be expanded in powers of L,. The anal- 
ysis is similar to that used in the reduction of the Fokker-Planck equation 
to a generalized Smoluchowski equation.**. 89 We obtain 

where 

Gc(12; t )=[z-QLc(12;  .)I-’ (9.22) 

Expressions of this form for D have also been derived earlier by Skmner 
and WolynesW for BGK and Fokker-Planck models of chemically reacting 
systems. In those circumstances, one could use the knowledge of the eigen- 
functions of these simple collision operators to reduce the result for D fur- 
ther. This is not possible for the more complex collision operator L,( 12; z), 
and one must resort to more approximate methods. We may, for example, 
evaluate the D‘“’ by inserting a complete set of velocity states, which we 
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denote by H i ( (  p/?)1/2v12), where" 

(9 .23)  

Then 

This expression can be brought into a more tractable form if we make the 
approximation that only the diagonal matrix elements Cyi E (HiGcH j ) o  are 
kept, and use the fact that QLs couples only nearest-neighbor velocity states, 
for example, 

and 

with similar expressions for the higher order terms. The operator character 
of D makes an investigation 0 1  nonlocal effects on pair diffusive motion a 
difficult task, which will require a good deal more study. 

We may also examine the content of (9.14) for Di, in more detail by 
writing it in terms of a generalized friction coefficient and examining the 
structure of this quantity.86 The expression for Di, may be written in a more 
compact form by introducing a matrix notation; we let v be the column 
vector v = ( v , , v ~ ) ~  and v T  a row vector. Then, 

~ J d v ,  dv,vh( 12;  z )  (9 .26)  
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The second equality defines h, which, by construction, satisfies the equa- 
tion 

For simplicity, in what follows, we consider the case of A and B identical. 
We may then introduce a projection operator 9" by 

where m l  is the mass of A. The complement of 9" is Q,. The action of 9, 
on h then yields 

(9.29) m ,  
k,T 

9, h( 12 ; z ) = vTqA( uI)GA( u ) - D(rl rz ; z ) 

Thus we may apply 9" to (9.27) to write 

where the generalized friction tensor { is defined 

(9.30) 

-(vQL(12; z ) [  z-Q,QL(12; z ) ] - ~ Q , Q L ( ~ ~ ;  z)vT)O 

(9.31) 

Although a full analysis of this result would be quite involved and has not 
yet been carried out, its physical content is easily appreciated. The form of 
the L(12; z )  operator given above allows for the possibility of hard elastic 
collisions between the solute molecules. We omit these contributions be- 
low, although no new difficulties appear when they are included. Our con- 
siderations then apply to the case of solute molecules that interact with each 
other via soft forces and with the solvent via hard-sphere interactions. 
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Consider the first term in (9.31). We may write 

kB* 
-{(I)(r1,r2; z ) =  - (vL ,v~)  = 
m: 

The uncorrelated collision contributions are easily calculated to give 

(9.33) 

where JE is the Enskog value of the single-particle friction coefficient 

J E  = f(2TkBTP) 8 I P n s  cq a 2  ASgAS(‘AS) 

Although this term arises only from dynamically uncorrelated collisions 
between the solute molecules and the solvent, we see that static structural 
correlations couple the motions of the two solute molecules. Thls contribu- 
tion to the friction coefficient is not difficult to calculate if expressions for 
g MS(rl r2 r3) are available. The results display oscillation arising from the 
static structural correlations at distances greater than 2a (we assume that 
solute and solvent diameters are equal.) At distances less than 20, where a 
solvent molecule can no longer intervene, the friction falls. This is a 
“shadowing” effect insofar as one solute molecule screens the other from 
collisions with the solvent. At shorter separations ( -a)  the friction must 
diverge because the solute molecules are impenetrable. A detailed discus- 
sion of these results can be found in Ref. 92. 

The correlated collision term contains several effects, which are exposed 
by using the definition of RMS [cf. (7.34)], 

( V i R A A S (  12; Z)Vj), = ( Vj[ +( 13) + +(2S)] 

X ( GiAS( 123; z ) - ’  -gAAS( 125)eS(12) - 
+ ?( 15) + +(25)) - I  

x [ F( 1I) + T!S(25)] wo(3)vj)o (9.34) 
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Here, we let 

Expansion of the propagator about G;,, leads to a variety of collision 
events. The series of terms with the form 

give rise to a modification of the single-particle friction due to correlated 
collision events. These have been discussed earlier and lead to a Stokes's 
law expression for the single-particle friction when the solute molecules are 
large compared to the solvent molecules. There are also cross terms that 
lead to a dynamic coupling between the motions of the solute molecules. 
The simplest of these is 

- 
( v,Fts( 15)GzAs( 125; Z ) ~ B ~ ( ~ ~ ) ~ ~ ( ~ ) V ~ ) ~  

which corresponds to an event in which the correlation is initiated by a col- 
lision between solute molecule 2 and a solvent molecule 3. After indepen- 
dent propagation described by GAOAS, the solvent molecule 3, or one with 
which it has collided, collides with the solute molecule 1 to terminate the 
correlation (see Fig. 9.1). Events of this type lead to the usual Oseen inter- 
action between the solute molecules at large separations933 94. In addition, 
(9.34) contains the effects of the soft force on these types of events, as well 
as the generalization of the hydrodynamic Oseen interaction effects to short 
distance scales. 

In the terms discussed above, the soft force between the solute molecule 
enters only in an indirect fashion. It does not enter at all in (9.33), and only 
through the propagator in (9.34). The second contribution to the friction 
tensor {(2) contains this force in a direct and explicit manner. Hence, when 
a strong direct chemical force operates between the molecules, one might 
expect this term to play an important role. If we evaluate the action of the 

Fig. 9.1. A sequence of cohsions that gives rise 
to solvent coupling of the motions oi the A and B 
solute molecules. 
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L operators on both ends of the expression for {(2), we find 

where we defined 

Hij=vi7 -(ml/3)-'8;,1 (9.36) 

The terms involving Lrv, are contributions that arise from fluctuations about 
the average of this term given by S(I). If we neglect such fluctuations, then 

S,'f'- v k - ( H , , [  z -  Q,QL] -'H,/),,*(V/ - P F / )  (9.37) 
2 

k ,  /= I 

As anticipated from the discussion of D given earlier, the operator char- 
acter of the two-particle friction assumes an important role in the descrip- 
tion of nonlocal effects in the strong force region. 

We see that the question of the nature of the nonlocality of the friction 
tensor is indeed a complex one. Spatial nonlocality can arise from a variety 
of effects such as static solvent structural correlations, dynamic solvent ef- 
fects that give rise to Oseen interactions at  large distance, and contribu- 
tions from the direct forces between the molecules. 

C. Sink Smoluchowski Equation 
In Section 111, we described how the Smoluchowski equation could be 

used in conjunction with boundary conditions or sink terms to describe 
chemical reactions. We now return to (9.1 1) and consider its relation to sink 
Smoluchowski equation. 

It is clear that if all reactive contributions to the third term in the brack- 
ets of (9.1 1) are neglected, then 

2 

z + S ( r I 2 ) -  2 Vl*Dl,(r,,r2; z)*[V, -PF , ]  
1 ,  J== I 

=Z'(rlr2,r{r;) (9.38) 

This equation has the form of the sink Smoluchowski equation discussed 
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earlier, apart from the nonlocal diffusion tensor. We now need to examine 
a bit more closely the circumstances under which such a result is likely to 
be useful. We expect that the Smoluchowski equation description will be 
valid, provided velocity relaxation effects can be neglected. To see what 
such a statement entails, we consider the structure of the neglected terms. 

First, there are terms of the form (SS(12)[z- QLR(12; Z ) ] - ~ S S ( ~ ~ ) ) ~ .  
From its definition in (9.12), we see that SS(12) is the deviation of the reac- 
tive operator from its velocity average. The correlation function above 
characterizes the time evolution (Laplace transformed) of these fluctua- 
tions. If the chemical reaction is slow, we expect that perturbations of the 
velocity distribution induced by the reaction will be small; hence such con- 
tributions may be safely neglected in this limit. This argument may be made 
more formal using limiting procedures analogous to those described in Sec- 
tion V. In principle, one may also use this term to introduce a modification 
to kJq in S ( r i 2 )  due to velocity relaxation effects. This will lead to some ef- 
fective reactive collision frequency in place of k;". 

Second, there are cross terms (SS(12)[z - QLR( 12; z)] - ' v , ) ~ .  These cor- 
respond to a coupling between reaction and diffusion, which arises from the 
perturbation in velocity space induced by the reaction (or the reverse pro- 
cess). To examine this term in more detail, we consider the simple model 
for TtF- in (6.18), and neglect the reactive terms in the propagator. Then 

The contribution of this term to (9.1 1) is then 

where, in the second line, we neglected coupling of the center of mass and 
relative motion, and introduced the relative diffusion coefficient D by 

D1=Dll  -D12 -DZI + D 2 2  (9.41) 
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For the barrier reactions for which this simple model is suitable, the proba- 
bility of reaction upon collision aR is B(exp( - Ej’ )), with Ej’ barrier height. 
Slow reactions therefore have small a R .  The order of magnitude of 8(r12 - 
u A B ) i , , ~ D [ V 1 2  - P F ] P  can be estimated from the arguments in Section 111 
as k/”4(477~2~) - ‘8(rI2 - uAB)P. Thus this cross-diffusion-reaction term is 
down by a factor of exp(-PE,*) from the S(rI2) term. I t  will be a small 
contribution for a slow reaction. A different analysis with similar content 
has been given by Northrup and Hynes.” 

In summary then, we expect the usual sink Smoluchowski description to 
be valid for a slow (on the order of the diffusion rate) reaction. The usual 
description also entails neglect of the operator character of Dl, (high fric- 
tion limit) and assumes that velocity correlations relax rapidly so that the 
z = O  limit of D can be taken. The coupling between the center of mass 
and relative motion is also neglected in the usual formulations. These latter 
conditions reduce (9.38) to (now in t-space) 

l! 

Thus the configuration space correlation function P(rl,, r’,,; t )  satisfies the 
“sink” Smoluchowski equation under the conditions discussed above. 

D. Rate Kernel via Pair Theory 
Before concluding this section on the implications of the pair kinetic the- 

ory for configuration space descriptions, we show that the kinetic equation 
may also be used to obtain the kinetic theory result for the rate kernel. This 
can be accomplished by projecting out the position and velocity depen- 
dence of the pair phase-space correlation function CAB,AB(12, 1’2’; t )  to ob- 
tain an equation for 

the correlation function for the number of AB pairs at time t with the ini- 
tial number of AB pairs. We first integrate (9.2) over (1’2’), and apply pro- 
jection operator methods using 
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to find 
{ z + v ~ ‘k ,  ( 2 ) } P( 2 )  = P (9.45) 

where k,(z) is the rate kernel, which, in the large volume limit, is given by 

kr( 2 )  = k,” - v - ‘Jdr, dr,(T,A/B_ ( 12) [ z - L,( 12; 2 )  3 - 1 T,,- A B  (12) ) , ,g(r12) 

(9.46) 

This result is the same as that in (8.9) except that the propagator involving 
L ,  is somewhat more elaborate than GAB(12; t )  because the effects of the 
triple fields have been explicitly included. To avoid proliferation of nota- 
tion, we also let GAB( 12; z )  denote this more general propagator. 

X. ANALYSIS OF THE RATE KERNEL 

The dynamic process that enter into the rate kernal expression [(9.46) or 
(8.9)] are, of course, those that have been included in the kinetic equation, 
as discussed briefly in Section VII. We discuss now the specific processes, 
which are relevant for the rate kernel, in more detail. The kinetic theory 
expression contains all the collision events that one might anticipate would 
be important for liquid state reactions. The analysis of the rate kernel in 
the limit where velocity relaxation effects are neglected bears a strong simi- 
larity to the derivation of Stokes’ law from kinetic theory, and we also ex- 
plore this relationship. 

A. Dynamic Processes Contributing to the Rate Kernel 
The rate kernel can be analyzed in a variety of ways depending on how 

the propagator [ z - LR] - I is represented. In the present discussion, we 
consider the simple reactive collision model of Section VI and drop the 
soft-force terms. We write L,(12; z) of (9.1) in the form 

L,(12; z ) =  -CtB(12)+AAS(1)+ABS(2)+RABS (12; Z)+VAB(l2) 
(10.1) 

where VAB(12) is the vertex defined in (7.29). 
We may then write the propagator in a form analogous to (7.29), 

[ z - LR( 12 ; z ) ] - I = GAB( 12; z ) = { 6:B( 12 ; z )  - I  - TAB( 12)) - I  ( 10.2) 

where now 
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This propagator differs from G i B  introduced in (7.29) in that RABS(12; 2) is 
now present; hence the correlated collision terms described in Section VI1.D 
are included. In the general case, RABS(12; z) contains reactive terms via 
the T!B(12) operator in the cVABs(123) vertex [cf. (7.38)]. For the purposes 
of the present analysis, we drop these terms so that 6iB( 12; z) describes the 
correlated motion of an AB pair of nonreactive solute molecules. Given this 
type of representation of the dynamics, we may then expand (9.46), the ex- 
pression for the rate kernel, in a series in YAB(12), 

a3 

=k?+  A k Y ) ( z )  
i =  1 

(10.4) 

The terms in this expansion correspond to a fairly sophisticated representa- 
tion of the dynamics: Each vertex TAB describes the collision events 
schematically depicted in Fig. 7.4, while the propagation between these col- 
lisions contains effects of the correlated motion of the two solute molecules 
in the solvent. To see this more clearly, consider Ak$’) (z ) ,  

(10.5) 

We discussed the structure of the repeated ring operator RABS in Section 
VI1.D and pointed out that it contains a variety of dynamic events such as 
a series of correlated collisions identical to those that appear in the singlet 
theory via the operators RAS and RBs. These operators represent the corre- 
lated collisions of a single solute molecule with the solvent and serve to 
“renormalize” the single-particle motion. Other events in RABS represent the 
coupling of the motion of the two solute molecules. In view of this, it is 
convenient to introduce the propagator for independent motion of the pair 

GA B( 1 2 ; z ) = { z + f?: ’ ( 1 2) - Ats  ( 1 ) - R A ’( 1 ; z ) - AB?( 2) - R Bs( 2 ; z ) } - I 

E { Z  - L,(12; z ) }  - I  (10.6) 
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In terms of this propagator, we may write C?:B as 

6:~(12; Z ) = { G i ~ ( 1 2 ;  Z)-'-Rc(12; Z ) } - '  (10.7) 

R,(12; z)=RABs(12; Z)-RAS(l;  z)-RBS(2; Z) (10.8) 

and thus represents all the collision events that correlate the motions of the 
pair (one such event was shown in Fig. 9. I ) .  The expression for Akj')( z )  may 
then be written as a series of terms involving the independent propagation 
of the pair, 

Here, 

A /cjl)( z ) = - v - Jd r , dr2( T::- ( 1 2) 

X { GiB(  12; z)+GLB( 12; z)R,( 12; z)GLB( 12; z ) + .  . . } 

(10.9) 

To better appreciate the types of collision event that are involved, we ex- 
amine the first two terms. The first term Akj '>' ) ( z )  is simple, 

~ k j l * ~ ) ( z ) =  - [ ~g(u)]- 'Jdr,dr,  

x i m d f  e -zt(  f:,! ( 12)G~(  I ; f ) G B ( ~ ;  f ) f tp (  12))o 

(10.10) 

This represents, reading from right to left, a reactive collision followed by 
independent propagation of A and B. A reactive event terminates the cor- 
relation. The next term, Akj '92) ,  explicitly displays the solvent coupling of 
the diffusive motion. With a one-ring approximation for R,, we may write 
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Fig. 10. I .  Diagrammatic representa- 
tion of a contribution to the rate kernel 
arising from the solvent coupling of the 

In the first term above, a reactive collision again initiates the correlation. 
The A and B molecules then propagate independently of each other, until 
at time t ,  the B molecule collides with a solvent molecule. After this colli- 
sion the B and S molecules continue to undergo independent propagation. 
At time t , ,  molecule A, which was originally correlated to B, undergoes a 
collision with the solvent molecule S with which B had collided, or any other 
solvent molecule that is collisionally correlated to S. Molecule A then con- 
tinues its independent propagation until it collides reactively with B, 
terminating the correlation. 

This sequence of collision events clearly shows how collisions of the sol- 
ute molecules with the solvent can lead to a coupling between the motions 
of the solute molecules. This notion of solvent coupling of solute motion in 
the liquid is reminiscent of the hydrodynamic interaction effect on the fric- 
tion coefficient of a pair of molecules, briefly discussed in the preceding 
section. In fact, the terms explicitly written in (10.1 1) simply represent, from 
a microscopic collisional point of view, the effects of such “hydrodynamic” 
interactions on the rate kernel. 

These events are represented diagrammatically in Fig. 10.1, where each 
“vertex” is represented by a dot and assigned a time, and the independent 
propagators are designated by lines and connect times indicated by their 
arguments. Time increases from right to left in each diagram, and an 
integration over positions, velocities, and intermediate times is implied. 
These diagrams are very similar to the vertex corrections, which arise in 
mode-coupling theories of critical phenomena4’* 95 and are much more 
complex than the simple ring operators introduced earlier. In this lan- 
guage, another way of representing the series is to introduce a “renormal- 
ized” vertex (denoted by a heavy dot), which has the following diagram- 
matic representation: 

(10.12) 

and then rewrite the series in terms of this new “vertex.” The two displayed 
terms may then be written as follows: 

(10.13) 
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Although the analysis in terms of the propagators for independent mo- 
tion G i B  is convenient for displaying the content of the kinetic theory ex- 
pression for the rate kernel, calculations based on (10.4), which contains the 
propagator for the correlated motion of the AB pair, are probably more 
convenient to carry out. In kinetic theory, such rate kernel expressions are 
usually evaluated by projections onto basis functions in velocity space. (We 
carry out such a calculation in Section X.B). Hence the problem reduces to 
calculation of matrix elements of 6:B (coupled A B  motion in a nonreactive 
system) and subsequent summation of the series. This emphasizes the point 
that a knowledge of the correlated motion of a pair of molecules for short 
distance and time scales is crucial for an understanding of the dynamic 
processes that contribute to the rate kernel. 

We have based our discussion of the rate kernel on the simple “hard- 
sphere” reaction model. This model, which is applicable to high-barrier or 
sterically constrained reactions, when combined with the fact that the 
solute-solvent and solvent-solvent collisions are described by hard-sphere 
interaction, leads to an especially simple picture for the dynamics, since the 
collision events are well defined and localized even in the dense liquid. 

The analysis of the rate kernel may have to be modified if other reaction 
types are considered. For example, for barrierless reactions, such as atom 
recombination, the reactive events are best described by partitioning the 
phase space into reactant and product regions, and then following the dy- 
namics on a potential surface that connects these regions. When the solute- 
solute interaction is strongly attractive, as it is for these radical reactions, a 
description in terms of ‘‘encounters”s3 96 is perhaps useful. Noyes defines 
an encounter as an approach to a distance corresponding to being in the 
strong force caging region. In this picture, the reaction is described in terms 
of roughly diffusive motion leading to “encounters,” and the complex, def- 
initely nondiffusive motion within the solvent cage.8, 96, 97 Th us, although 
the kinetic theory contains the dynamic events that are relevant for reac- 
tions in the condensed phase, the most convenient mode of representation 
depends on the type of reaction under consideration. 

This discussion was intended to provide some insight into the dynamic 
events that are incorporated into the kinetic theory expression for the rate 
kernel. These include all the events that are normally associated with 
qualitative ideas concerning caging effects on reaction dynamics. We next 
indicate how such kinetic theory results might be analyzed further, and how 
they are related to the diffusion equation results discussed earlier. 

B. Projection onto Diffusion Modes 
The foregoing discussion of the dynamic processes contributing to the 

rate kernel was given in terms of phase-space propagators for the A and B 
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motion in the solvent. These propagators describe short- and long-time 
behaviors on all relevant distance scales. One might expect that if these 
propagators were projected onto the hydrodynamic diffusion modes, a de- 
scription similar to that of the configuration space theories might emerge.66 
Here we show that this is indeed the case. 

In Section X.A we described the structure of the propagator 
[z-LR(12; z ) ] - '  and pointed out that it could be written in terms of the 
propagator for the correlated motion of the pair 6:JAOB and a coupling term 
TAB. The simplest versions of the configuration space diffusion and 
Smoluchowski theories do not take into account such correlated motion. To 
make connection with these simpler theories, we therefore write 

[ z-L,( 12; z ) ]  - I = {  GLB(12; z) - ' -TAB(12)}  - '  
and analyze the approximate rate kernel expression [cf. (9.46)], 

~ k , "  + A k , ( z )  (10.14) 

The analysis can be carried out more easily if an abstract notation is first 
in t r~duced .~ '  We write an arbitrary operator A(12) in the form 

(v;v;IA(rlr2)lv1v2) =A(12)6(vl -v;)6(v2 -vi) (10.15) 

We also introduce abstract basis functions, I I ), whose v-space matrix ele- 
ments are related to Hermite polynomials H,(v) 

We also let 1 I )  I J )  = I I J ) .  In this notation, the relaxing part of the rate 
kernel may be written as 
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(we sometimes drop the r arguments when confusion is unlikely to arise.) 
We now calculate Ak,  by projecting onto the eigenstates of the indepen- 

dent diffusive motion of the AB pair. These eigenfunctions are constructed 
so that 

(DIGLB(rlr2; z ) l D )  = ( z - D V : 2 ) - I E ~ o ( r ,  -r2; z )  (10.18) 

or less formally, 

The diffusion eigenfunction ID) is given, to first order in gradients, as 

10) =loo) -DA(mAP)I''VI '110) -DB(m,P)1/2V2'IOl) (10.19) 

The details of the construction of this eigenfunction are given in Appendix 
E. Using the projector ID) (D 1, we write A k ,  as 

Ak,( z ) -  - g (  u ) V  -'/dr, dr2(001 T',!(rlr2)1 0 )  ( DlCP(rlr2; z)lOO) 

(10.20) 

The second term has the same structure as the term neglected in the de- 
rivation of the sink Smoluchowski equation in Section 1X.C. Therefore, we 
make the same approximation here to make connection with the configura- 
tion space theories. In this approximation, Ak,  becomes 

~ k , ( z ) =  -kfO@,(r; z ) s  (10.22) 

- 
where CP, = (D I CP loo), . . . ' denotes an average over the surface r = a,,, 
and recall k," =kJqg(uAB). We now need an expression for @,. From its 
definition in (10.17), CP is seen to satisfy the equation 
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Projecting onto ID) we find 

where 

Thus 

(10.26) 

The operator on the left-hand side of (10.26) is exactly the operator that 
appears in the sink Smoluchowski equation (3.12). The problem is now 
identical to that considered in Section 111 and Appendix A, and the same 
results as the Smoluchowski equation are obtained. As an illustration, we 
give some details of the solution for the case g( r )  = O( r - uAB) in Appendix 
E. There we show that 

(10.27) 

and thus k f (  z )  - ' = k," -I + k,( z ) - ' as expected. 
This calculation is quite similar to that for the derivation of Stokes' law 

from kinetic theory," where one has an equation for the distribution func- 
tion similar to (10.23) for @. To obtain Stokes' law, one must project the 
kinetic equation onto the hydrodynamic eigenfunctions, and it is essential 
to retain terms to first order in the gradients if the proper numerical factor 
({=4aqR for specular reflection and {=67rqR for diffuse reflection) is to 
be obtained. In our calculation, it is also essential to retain the 8(V) terms 
in the ID) eigenfunction. If these B(V) terms are dropped, the result for 
the rate coefficient kf (z  = 0) still has the form of (3.7), k y  ' = k:-l+ k, I ,  but 
the z # O  result does not agree with (3.6) and (3.8). The gradient terms are 
essential if one is to obtain the simple z-dependence given by k,( z)  = k,( 1 
+cIuAB). How this comes about is clearly demonstrated by the calculation 
in Appendix E. 

The calculations presented here have simply served to show that a limit- 
ing form of the kinetic theory expression for the rate kernel can yield the 
results of configuration space approaches. However, the real promise of the 
kinetic theory method lies in the fact that it is not restricted to a descrip- 
tion in terms of diffusive propagators, and the consequent motion on these 
space and time scales. 
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C. Contributions from Nonhydrodynamic States 

We very briefly consider the effects of the terms that were neglected in 
the course of projecting onto the diffusion mode. Once again, the analysis 
closely parallels the derivation of Stokes' law. To explicitly consider the ef- 
fects of nonhydrodynamic (nondiffusion mode) states on the rate kernel, we 
use an analysis similar to that of van Beijeren and Dorfman'* and intro- 
duce a projection operator 

9D = I ) ( 1 9 (10.28) 

and its complement QI. We may then write the lunetic theory expression 
for the rate kernel, (1 0.17), as 

Akf( z ,  = -g (  ) - 'I dr, dr2{ (0°1 (r l  r2 )I )@D(rl rZ ; z ,  

+ (01 TR̂ /"- (r1r2 )QD@(ri rz ; z )lOO> } 
(10.29) 

Given the integral equation (10.23), we now apply projection operator 
techniques to obtain formal solutions for QD and Q,@. The equation for 
9D@100) = ID)@D is 

q ~ {  GL B( z ) - ' - B } q ~ @  100) - ~DYA B Q I @  100) = 9~ TR̂ ,"- 100) 
(10.30) 

while Q,@l00) can be obtained from 

Inserting this result into (10.30), we obtain 

{ z - D V 2  - VFB(r))QD(r; z)=S(r) (10.33) 

where VFB(r) is the diffusion mode matrix element of T2, 
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The quantity S(r) may also be written in terms of a modified collision op- 
erator 5 R ,  

The rate kernel expression then takes the form 

(10.38) 

and is thus expressed in terms of the modified vertex 5' and Q D ,  which is 
now obtained by solving (10.33). This equation, which incorporates the ef- 
fects of nonhydrodynamic states, is structurally similar to (10.24). All non- 
hydrodynamic effects are contained in the modified vertex. The diffusion 
mode propagator (D  1 GLB I D ) describes processes where the two solute 
molecules make long diffusive excursions into the fluid between the corre- 
lated recollision events. It is this sequence of events that the integral equa- 
tion method of Section X.B takes into account. In contrast to (D I GLB ID), 
QDciBQD describes processes where the particles travel only short dis- 
tances in the fluid. Hence the modified vertex describes the infinite 
sequence of such short excursions into the fluid, which occur between the 
recollision events. Using the language of fluid mechanics, these processes 
may be described as occurring in the microscopic boundary layer in the 
vicinity of the solute molecules' surfaces (cf. Fig. 3.1). The calculations in 
Section X.B, which only take into account diffusion mode propagation, can 
be formally viewed as an approximation that replaces v; by TAB, and 
therefore completely neglects the detailed structure of the boundary layer. 
In the simple diffusion equation approach, the boundary layer is roughly 
accounted for by the effective rate coefficient ki in the radiation boundary 
condition (cf. Section 1II.A). The structure of this boundary layer is, of 
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course, crucial for the description of the short-time behavior of the rate 
kernel. 

This reformulation in terms of diffusive propagation and microscopic 
dynamics in the boundary layer is reminiscent of Noyes’s encounter for- 
mulation that we briefly described earlier. Now each diffusive “encounter” 
is interrupted by sequences of collisions and very short excursions into the 
fluid. The analysis of nonhydrodynamic effects on the rate kernel can, 
therefore, be discussed naturally in terms of the encounter formalism. 

There are other ways of analyzing nonhydrodynamic contributions. Pro- 
jections onto finite sets of velocity states, in combination with kinetic mod- 
eling  technique^,^^ have proved useful in the analysis of the small molecule 
velocity autocorrelation function. These techniques can also be used to 
calculate the rate kernel.99 

Before closing this section, we should remark that although this analysis 
of velocity relaxation effects has focused on a simple collision model, we 
expect that the detailed structure of the rate kernel for short times will de- 
pend on the precise form of the chemical interactions in the system under 
consideration. I t  is clear, however, that a number of fundamental questions 
need to be answered before more specific calculations can be undertaken 
form the kinetic theory point of view. 

XI. INITIAL CONDITION EFFECTS 

Often it is not the rate kernel itself that is of interest, but rather the de- 
cay of the system from some initial nonequilibrium state. A case in point is 
the study of atom recombination following a photodissociation event. The 
initial state is presumed to correspond to a specific phase-space configura- 
tion of the pair of atomic radicals in an equilibrium solvent. The decay of 
this initial state is then monitored in the experiment. This is discussed in 
more detail in Section XII; here we simply show how the kinetic theory can 
be formulated to accommodate this situation. 

We consider the pair formulation because it is most suitable for this ap- 
plication. The kinetic equation for the doublet distribution function 

(11.1) 
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We have suppressed the species labels. If there are only soft forces operat- 
ing, vI2*PFH may be dropped, and the potential in e, replaced by the 
potential of mean force. 

An equation for P ( t ) ,  the number of unreacted AB pairs at time 1 ,  can 
be constructed using the projection operator 9' in (9.44), since 

(We use the same symbol as in Section IX.D, but this should not lead to 
confusion.) Now, however, since F( 12) = F( 12. t = 0) is arbitrary rather than 
an equilibrium distribution function, it is no longer true that QF( 12) =O. 
Thus using projection operator methods on the Laplace transform of (1  1. I ) ,  
we find 

{ z + P' - 'k,( Z )  } P( z ) = P - J d x  I d x  ,T:,!- ( 12) [ z - QLR( 12 ; z ) ] - 'QF( 12) 

(11.3) 

This equation may be compared with (9.49, it differs because the term de- 
pending on the nonequilibrium initial condition for F(12) is present. In the 
large-volume limit we have 

ZP(.)- P= --Jdx,dx,T,A,B_( 12)[ z-LLR(12; z ) ] - I F (  12) 

'= - I ( z )  (11.4) 

The initial condition term in turn differs from the relaxing part of the 
memory kernel in (9.46) in that the initial condition on  F replaces 
TRA/B_(12)+A( ~ ~ ) + ~ ( ~ ~ ) g ( r , , ) .  Thus the analysis of the memory kernel dis- 
cussed in Section X also applies to this initial condition term, except that 
now the correlation is initiated by the nonequilibrium value of F.'O0 

The same manipulations can be carried out using the Smoluchowski 
equation in place of the lunetic equation. Now the projection operator in 
(A.4) is used to effect the reduction, and a result with the form of (1 1.4) is 
obtained with I ( z ) ,  given". lo' b Y 

This equation can be solved numerically; 
dynamics analytical results can be obtainedI5. 

for simple diffusion equation 
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If the initial condition in the kinetic theory formulation [(11.4)] is as- 
sumed to have the form 

that is, an initial deviation in relative configuration space only, and l ( z )  is 
projected onto the diffusion eigenfunction, one might expect to obtain a 
result similar to I s ( z ) .  Since the outline of the calculation that follows, 
closely parallels that given in Section X.B, we can be brief. In terms of the 
abstract notation of Section X.B, we may write I ( z )  as 

If we ignore nonhydrodynamic contributions and project onto the diffu- 
sion eigenfunction [( 10.19)], we may write 

I (  z )  =k;qCD;(r; z)' (11.8) 

where now CD; = ( D  I CD'l00) . We have again neglected the second term in 
(10.21). The integral equation for CD' is 

Projecting onto I D )  and following (10.24) to (10.26), we find 

k;q 
z - D V * [ V - / 3 F ] +  7 S ( r - - u A B ) ] @ ; ( r ;  z ) = P ( r )  (11.10) 

T'A B 

or, formally, using the definition of PsM in (A.3), 

Insertion of (1 1.1 1) into (1 1.8) yields the Smoluchowski result, (1 1.5). 
As an illustration of the structure of I ( z )  [or I(t)], we examine the case 

where simple diffusion equation dynamics is used in place of C,,, that is, 

(1 1.12) 
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For this simple case, the Laplace inversion may be performed analytically 
to yield’”‘’ 

( 1  1.15) 

Here we defined ~ = r ~ / u , , ,  A = k ; / k , ,  and r = u i B t / D .  We may also 
calculate P( r )  directly and obtain 

These results illustrate the gross features we expect to obtain. The depen- 
dence of P(T) on the initial separation of the pairs is shown in Fig. 11.1, 
which also shows the slow O(r - ‘ I 2 )  decay of P ( r )  

1 +h)(K- I ) ]  
h 

P ( r )  -+ I - -  
Tiarge K ( I + X )  

( 1 1.17) 

The presence of forces and spatial dependence of D will, of course, mod- 
ify these results”’ (cf. Section XII). In addition, according to the argu- 
ments presented throughout this chapter, we expect these results to lose all 
validity in the short-time region. Here the nonhydrodynamic states, dis- 
cussed in Section X.C, will play a crucial role. 

If only soft forces act between the pair of particles, a calculation similar 
to that in Section V can be camed out. One now projects onto the dy- 
namic variable characterizing the bound (or unbound) species. 

This section was designed to make it clear that, with minor modifica- 
tions, the techniques and discussion given previously can be applied to the 
initial condition problem. 

XII. APPLICATIONS 

We have thus far been concerned primarily with general aspects of the 
microscopic theory of condensed-phase chemical reactions. Our use of 
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I I 

2 

Fig. 1 1 . 1 .  The unreacted pair proba- 
bility P(T) versus T for several values of 
the initial separation of the pairs. Simple 
diffusion equation dynamics is assumed 
and X = k y / k ,  =2.0. 

specific models was dictated by a desire to present the results in “simple” 
form. I t  is not difficult to give an even more general presentation that re- 
places the hard-sphere solute-solvent and solvent-solvent interactions by 
soft forces and makes less use of the simple impulsive reaction model. Our 
emphasis on general features precluded a discussion of actual calculations. 
Hence much of the previous discussion was rather formal. There is an even 
more compelling reason for the absence of reference to specific calcula- 
tions, namely, very few have been carried out. Only recently have tech- 
niques been developed that enable us to deal with chemical reactions in 
liquids on a microscopic level. 

Here, we consider several specific problems, to illustrate some of the 
complexities encountered when treating actual systems, and also to point 
out how the general ideas presented earlier apply to these cases. The exam- 
ples we pick either correspond to reactions that have been discussed in the 
course of formulating the kinetic theory, or else show how the theory can 
be implemented for the treatment of actual systems. We do not attempt to 
comment on the wide variety of reactions studied in the condensed phase, 
for which a microscopic theory would be desirable. Discussions of other 
systems can be found in recent reviews.”* 
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A. Atom Recombination 
The condensed-phase atomic recombination process has been exten- 

sively studied from both experimental and theoretical points of view. This 
apparently simple reaction is actually rather complex, and our knowledge 
of the process is still very far from being complete. We have already re- 
ferred to this type of reaction several times to illustrate certain features of 
the kinetic theory formulation. We now give a more detailed and coherent 
d i scu~s ion . '~~  

Consider the recombination process following a photodissociation event 
in a dense inert solvent. To make the discussion concrete, we examine iodine 
atom recombination. A schematic representation of the processes involved 
is shown in Fig. 12.1. The excitation to the bound excited electronic state is 
followed by a predissociation to a repulsive state, which leads to ground- 
state atoms. Curve crossing to the ground-state potential energy surface can 
occur at a variety of internuclear separations (indicated by the downward 
arrows in Fig. 12.1). The atoms produced in this way may either recombine 
(geminate recombination), or escape (eventually to recombine with other I 
atoms). We focus solely on this geminate recombination process. The ac- 
tual situation is considerably more complex than that shown in Fig. 12.1 
because many more electronic energy states may participate in the 
process.IM 

Since we are concerned with recombination in the liquid phase, the ap- 
propriate potential for the description of atom-atom interactions is the 
potential of mean force W ( r ) =  - k B T h  g ( r ) ,  schematically displayed in 
Fig. 4.1. If we adopt the model described in Section VI, in which the 
solvent-solvent and solute-solvent forces are approximated by hard-sphere 
interactions, then 

W( r )  = V( r ) + Wc( r )  (12.1) 

where 

where yHS is the radial distribution function for a pair of cavities in a hard- 
sphere fluid (see Section VII) and V ( r )  is the direct 1-1 interaction, which 
we can approximate by a Morse potential 

V( r ) = 0, [ exp( - 2 b( r - re))  - 2 exp( - b( r - re) )  ] (12.3) 

For I,, the equilibrium separation re = 2.6668 A, b = 1.8674 A-', and the 
dissociation energy 0, /k,T= 60.1487 at T=  300°K. We display this mean 
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Fig. 12.1. Representation of some of the principal features of the iodine recombination 
process following photodissociation. The upward arrow indicates excitation to a bound elec- 
tronic state. After predissociation to a repulsive excited state, transitions to the ground state 
may occur at a variety of internuclear separations. Other potential energy surfaces not ex- 
plicitly shown may also participate in the recombination process. 

potential for several iodine atom-to-solvent molecule ratios in Fig. 12.2, and 
compare it to the direct 1-1 Morse interaction. The effects of solvent struc- 
ture are modest, but they do, in fact, influence the reaction dynamics. A 
similar type of mean potential model has been used in the study of iso- 
merization by Chandler and Pratt.los Other methods for constructing mean 
potentials for reaction dynamics studies have also been devised.’& 

In view of these solvent structure effects, i t  is convenient to classify the 
recombination events into primary and secondary proces~es.’~’ Primary 
recombination processes are those in which the recombination takes place 
before the atoms separate to a distance roughly equal to the first maximum 
in the mean potential (i.e., recombination in the solvent “cage”). Secondary 
recombination involves the recombination of solvent- separated-atom pairs. 
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Fig. 12.2. Potential of mean force W for two different solute-solvent diameters. Rough 
estimates of the effective elastic collision diameters of iodine in inert solvents can be obtained 
from the known Lennard-Jones (I parameters. The mean force potential is also compared with 
the Morse potential, V .  

Part of the stimulus for research in this area comes from the possibility 
of probing the dynamics of such processes on short time scales by using 
picosecond lasers.'08 The standard pulse-and-probe experiments will mea- 
sure the entire time profile of the recombination and photodissociation 
processes. An interpretation of such results therefore requires a considera- 
tion of the dynamics on several potential energy surfaces for both the 
primary and secondary recombination processes. The very short time be- 
havior is often obscured by experimental problems (laser rise times etc.), but 
the secondary recombination process is more easily studied. 

Theoretical treatments often focus on either the primary or secondary 
processes. The traditional approaches that make use of a simple diffusion 
equation for the pair dynamics are necessarily restricted to a description of 
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the secondary recombination process, since this type of equation loses its 
validity in the solvent "cage," where the atom pair is not separated by 
solvent molecules and strong forces operate. Even a Smoluchowski equa- 
tion cannot describe the dynamics in the solvent cage. On the other hand, 
recent molecular dynamics simulations have been concerned with a de- 
scription of the primary recombination process,'0g-"' mainly for technical 
reasons. The simulations are time-consuming, and it is difficult to follow 
the trajectories for the long times (several hundreds of picoseconds) that 
characterize the secondary recombination process. It is also difficult to fol- 
low the dynamics of the large number of solvent molecules necessary to 
have solvent-separated pair conditions. In addition, these molecular dy- 
namics simulations have been largely restricted to a treatment of the dy- 
namics on the ground-state potential energy surface. 

Before a theory for such reactions can be constructed, it is necessary to 
look at the nature of the interactions a bit more closely. It is instructive to 
consider the gas-phase recombination mechanism first. It  is usually as- 
sumed that recombination occurs by a combination of two rnechanisms.lI2 
The radical complex mechanism (RCM), which is important at room tem- 
perature, assumes that recombination takes place by the reactions 

I+S,-IS 

IS+I+I2 + s (12.4) 

The existence of the IS bound pair is clearly dependent on the attractive 
part of the iodine-solvent interaction. At higher temperatures, the energy 
transfer mechanism (ET) becomes increasingly important. This mechanism 
involves stabilization of an unbound quasi-dimer I f  by collisions with S, 

I + I d ;  

I f  +S+12 +s  (12.5) 

These reaction schemes represent an attempt to describe the termolecular 
reaction in terms of binary collision events. Clearly, the model we pro- 
posed earlier for the interactions is not appropriate for the gas-phase reac- 
tion. In a dense liquid the situation is different. Solvent molecules are 
always present by virtue of their high density, and thus there is no need to 
invoke the presence of weak I-S attractive forces (as in the RCM) to pro- 
vide a route for energy dissipation. Solvent configurations capable of dis- 
sipating the energy of the recombining atoms will exist regardless of whether 
I-S attractive forces are present. In this light, the proposed model for the 
interactions appears reasonable. 
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N o  calculations yet have tackled this problem in all its complexity. Typi- 
cally, it is assumed that the photodissociation produces some initial dis- 
tribution of pairs, and then the subsequent time evolution of the unreacted 
pair probability is calculated. Even this more modest program has been 
carried out only at the diffusion103, ‘ I 3  and Langevin equatiodo3 levels. We 
briefly comment on these results, since they indicate the magnitude of the 
solvent and velocity relaxation effects. 

The quantity of interest is the unreacted pair probability, and the strategy 
of the calculation was outlined in Section XI. To explicitly carry out the 
calculation with a Langevin equation description of the dynamics, we use 
the following procedure. The Langevin equation (3.25) is now taken to de- 
scribe the motion of the relative velocity of the pair, 

dv 
dt p-( t ) =  - cv (  t ) +F(r( t ) )  + f (  t )  (12.6) 

where 5 is the relative friction coefficient, just half of the independent atom 
friction coefficient in this simple r-independent friction model. The inde- 
pendent pairs are assumed to have initial separation r, and an equilibrium 
distribution of velocities. This is equivalent to taking 

F( 12) = + I (  0 I ) + I  ( 0 2  )(4rr0’ v )  - ‘a( ‘0 - r12 ) (12.7) 

The Langevin equation is then integratedIo3* for each member of the en- 
semble of pairs until reaction (formation of stable 1 2 )  or escape occurs. The 
reaction distance, the relative separation at which irreversible formation of 
stable 1, is almost certain to occur, must be determined empirically. For the 
results in Ref. 103, 4 A was found to be appropriate for this system. The 
probability of reaction at time t ,  P R ( t ) ,  is just the number of pairs that have 
reacted up to time t divided by the total number of pairs in the ensemble. 
The unreacted pair probability is then P ( t ) =  1 - PR( t ) .  

Results that illustrate some features of the “cage” effect are given in Fig. 
12.3: P ( r )  is shown for two mean potentials and compared with results using 
only the direct Morse interaction potential. All calculations were carried out 
starting at r, =5.5 A. For the small solvent case, this corresponds to a sep- 
aration near the first maximum in the mean potential, and well within the 
solvent “cage” for the equal size solvent case. We expect the reaction prob- 
ability to be enhanced when the initial separation is small (inside the 
“cage”), and this is indeed the case. For the small solvent case, the reaction 
probability is decreased. Although this initial separation is just to the left 
of the barrier, some molecules move to the right and then experience diffi- 
culty in recombining because of the small solvent barrier. The effects are 
not large, approximately 10 to 30%. 
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We may also use such calculations to partially assess the validity of con- 
figuration space approaches. We expect that if the friction is high, the 
Langevin equation and Smoluchowski equation methods will give equiva- 
lent results. The Smoluchowski equation can be applied to this problem, as 
outlined previously. The “reaction” at  r = 4  A can be incorporated by using 
a radiation boundary condition at this separation, and the escape can be 
modeled by a complete absorption boundary condition at some large dis- 
tance (12 A in these calculations). For high friction, the good agreement 
between the Langeviri and Smoluchowski equation predictions is indeed 
found. If the friction is reduced, however, the Smoluchowski equation 
breaks down rather badly (see Fig. 12.4). 

Kinetic theory can be used to extend this simple description in several 
ways. First, even if the calculation is carried out at the Langevin equation 
level, the kinetic theory results for the friction coefficient can be used to go 
beyond the simple (and possibly inadequate) approximation of a constant 
friction. Second, a direct solution of the kinetic equation rather than the 
Langevin equation can be carried out. Both types of calculation should in- 
crease our understanding of the microscopic dynamics of these processes. 

B. Isomerization 
We would be remiss if we did not comment on isomerization dynamics 

in liquids, since they form a very important and widely studied class of re- 
actions. There have been many theoretical models for isomerization reac- 
tions in liquids. In Section 1II.C we briefly outlined Kramers’ approach to 
this problem. Since that time much more extensive studies of such bamer- 
crossing problems have been carried out. These studies have been con- 
cerned mainly with obtaining expressions for the rates in the transition 
region between the low- and high-friction cases, or with effects arising from 
the nonlocality of the diffusion coefficient in the context of Smoluchowski 
equation descriptions, applications to polymeric systems, and so 

A fully microscopic treatment of this problem is a very difficult task. It 
is usually the motion of some internal coordinate of a complex molecule 
that is important for the description of the isomerization reaction (cf. Sec- 
tions I11 and IV). A microscopic theory at the same level as that for the 
bimolecular processes described in the previous sections would entail a full 
description (or model) of the internal structure of the molecule and its in- 
teractions with the surrounding solvent. The collision dynamics for such a 
process are necessarily complex, but a theory at this detailed level is not out 
of the question for some models of small molecule isomerization reactions. 
However, it is probably premature to embark on such a program, since the 
implications of the kinetic theory for the reactions for which it is more easily 
formulated have not yet been fully explored. 
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Simpler BGK kinetic theory models have, however, been applied to the 
study of isomerization dynamics.33. 84, 85 The solutions to the kmetic equa- 
tion have been carried out either by expansions in eigenfunctions of the 
BGK collision operator33. 85 (these are similar in spirit to the discussion in 
Section 1X.B) or by stochastic simulation of the kinetic equation.84 The 
stochastic trajectory simulation of the BGK kinetic equation involves the 
calculation of the trajectories of an ensemble of particles as in the Brownian 
dynamics method described earlier. 

The time development is computed differently. The positions and veloci- 
ties are taken to evolve in time according to Hamilton’s equations of 
motion. However, at  random time intervals, which are sampled from an 
exponential distribution with decay constant equal to the collision 
frequency a, (cf. Section VII.E), the particles undergo collisions that 
randomize the velocity. (The new velocity is selected from a Boltzmann 
distribution of velocities.) This prescription is equivalent to the solution of 
the BGK kinetic equation (7.44).84 This provides a more reasonable de- 
scription of the dynamics when the friction (collision frequency) is small. 

Model kinetic equation approaches of these types should probably be 
more thoroughly investigated for such complex systems before more 
elaborate kinetic theories are constructed. Ultimately, however, difficult 
problems such as the nature of the friction coefficient or collision frequency 
associated with an internal coordinate must be solved. What, for instance, 
is the form of its space and time nonlocality? The solution of this problem 
will involve a more complex calculation than that outlined in Section 1X.B 
for the two-particle friction tensor. 

XIII. CONCLUSIONS 
We have presented a framework in which condensed-phase chemical re- 

actions can be described from a microscopic point of view. The problem is 
difficult for obvious reasons; one is faced with the full complexity of a re- 
active event, a problem that has taxed gas-phase reaction kineticists for 
many years, and the necessity to describe the correlated motion of several 
particles in a dense fluid on a microscopic level, a problem in nonequi- 
librium statistical mechanics that has not yet been completely solved. Ad- 
mittedly, there may be some simplifications. For example, in a dense fluid 
some of the finer details of the reactive event may not be as crucial to the 
outcome as they are in the gas phase because of the energy dissipation by 
the solvent. We have in fact used this feature to construct some of the reac- 
tion models that were presented. However, this simplifying feature is more 
than compensated for by the necessity to describe the precise nature of this 
energy dissipation by the solvent for very small separations between the 
potentially reactive solute molecules. 
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In spite of the inherent complexity of the problem, it is encouraging to 
see that it is possible to incorporate many of these relevant features into a 
kinetic theory that treats the solute and solvent molecules on the same 
footing. The existing more phenomenological diffusion equation theories 
follow in a natural way as limiting cases of the kinetic theory. Although all 
problems that arise in the course of attempting to construct a theory of re- 
actions in liquids are not solved, the kinetic theory, at  the least, allows one 
to state these problems precisely. For example, the discussion of the form 
of the two-particle friction, which is crucial for determining the energy dis- 
sipation as the molecules approach each other, is a well-posed calculational 
problem that in certain limiting situations has been solved (Section IX). In 
a similar vein, the problem of the nature of the breakdown of the diffusion 
equation description of the rate kernel on short distance and time scales can 
also be given a precise mathematical formulation (Section X). Further pro- 
gress in resolving some of these questions for model reacting systems should 
not be too difficult to achieve. 

There is still a gap between our models of liquid-state reactions and the 
often bewildering complexity of real chemical systems. Progress in shorten- 
ing the gap will probably come only from the application of a variety of 
methods to this problem. The full promise of picosecond spectroscopy 
techniques for studying the details of the dynamics of reactive events in 
liquids has yet to be realized. How deeply can these methods probe the dy- 
namics? Computer simulations, another source of “experimental” informa- 
tion in reacting systems, are only beginning to be The 
description by direct computer simulation of both primary and secondary 
recombination dynamics, for example, would yield a wealth of information 
that could be used to test theories. 

Although the development of a fully microscopic theory of chemical re- 
actions in liquids will remain a challenge for some time, future progress is 
expected. We have at  our disposal a variety of theoretical and experimental 
tools that should allow us to unravel this complex problem. 

APPENDIX A 

Smoluchowski Equation Result for the Rate Kernel 
The rate kernel expression in (3.13) can be obtained by using projection 

operator methods to derive an equation for the unreacted pair probability 
P(t), 

P(t)=Jdrp(r, V t )  (A.1) 

from the Smoluchowski equation. We write the Fourier transform of the 
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sink Smoluchowski equation (3.12) compactly as 

( - i w - e s M ) P ( r ;  w)=O 

where 

and apply projection operator methods using the projection operator 

By making use of the operator identity 

with Q =  1-9, we may write (A.2) as 

{ z + v - ‘A,( w ) } P (  w ) = O  

Here, 
s, S’ 

k,( w )  =A/” - ( k / ” ) 2 [  g (  a)] -‘gR(i-1rf; w )  

where formally 

I GR(r; w ) = ( - i w - e S M ) -  

and the surface average is defined by 

Using the definitions of 9 and gR in (3.16) and (A.7), respectively, we may 
write the formal integral equation, 
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Taking the double surface average of this equation immediately leads to the 
result 

(A.lO) 
s. S '  G(r1r'; w )  

S,S'  

Substitution into (A.6) and some rearrangement then yields the desired re- 
sult, (3.13). 

APPENDIX B 

Field Point Formulation and General Properties 
We first show how the pseudo-Liouville operator in phase space can be 

written in terms of an operator in field point space when it acts on the phase 
space densities. Consider 

i"+n,( 1) = (C, + e:, + CA+)n,( 1) 03.1) 

where we have written the collisional part of e+ as a sum of elastic and 
reactive parts. I t  is clear that 

C,n,(l)= -v l*vinA(l )  (B.2) 

The elastic collision term may be analyzed as follows, using the fact that 
the solute molecules are dilute. Let 

e:+n,(l)= 2 [ T,"S(ij)+T,A,R(ij)]S(XI -xi)@: 
i ,  j 

= I d x 2 [  z, T,AS(ij)8(XI -X;)S(X, -xi)@"; 

Consider the calculation of the first term on the right-hand side, 

x T,A(ij)G(X, -XI)@: 
l * J  

= J d x , x  @( - v , , * 8 , ) ~ v , , ~ f f , ~ ~ ~ ( ~ ~ ,  -uAS)@p@: 

I , J  

x [S(v, -V,*)S(v2 -v,*)-S(v, -V,)S(v, - y ) ] 6 ( r ,  -Rl)S(r2 -R,) 

03.4) 
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Using the hard-sphere collision dynamics [(6.7)] and the properties of the 
delta functions, one may show that 

A I 

V I J * R I J  = -V12.RlJ  03.5) 

=6126(v l  -v , )6(v2 -y)  (B.6) 

and 
b1,6(v, -v,)6(v2 - y ) = S ( v ,  -v,.)6(v2 -y) 

where 6,, is an operator like bIJ except it  acts on the field point velocities. 
Equation B.4 may now be written as 

Since ( v 1 2 * i l , ( 8 ( - v , , ~ i 1 2 ) =  -v ,2+12  + ( ~ ~ ~ * i ~ ~ ) B ( v , ~ + ~ ~ ) ,  we may also write 

F?( 12) = T!S( 12) + ( VI2 a i l *  ) S( r,2 - UAS ) (B.9) 

where T!'(12) is an operator with the same form as (6.5), but now in field 
point space. A similar calculation can be done for the AB elastic collision 
part. Thus, 

CL+n,(l)= p ( l Z ) n A s ( l Z ) +  T;!(1Z)nAB(12) (B.lO) 

The reactive contribution may be calculated in a similar way. Consider 
the reactive operator defined in (6.13), 
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Using techniques similar to those in the analysis of the elastic operator, we 
find 

Putting these results together, we have 

e+n,( 1) = - C,^( l)n,( 1) + P( IZ)n,,( I?) 

+ [ F,!( 12) + T,AB( IZ)]n,,( 12) (B.13) 

Thus we see that the action of the e+ operator on n,( l )  couples it to doublet 
phase-space fields. 

Calculations involving higher order fields may be done in the same way. 
For example, 

f? +nAB( 12) = [ - etB( 12) + TiB( 12) -k TiB( 12)] ~ A B (  12) 

+ [ T?( l j )  + T?(23)] nABS( 123) (B.14) 

As in (6.12), we henceforth denote 

T $ B (  12) = F;:( 12) + T,A,B( 12) (B.15) 

The general forms of (B.13) and (B.14) are easily deduced, 

C+n( l2 - . / )= [  -e , (12 . . . 1 )+T- (12 . . . I ) ] n (12 . . . / )  
I 

+ 2 T-(i!+)n(12..-N+1), (B.16) 
i =  I 

where we have defined F- ( 1  2. . y I )  as the sum of all binary collision 
operators that can be constructed from the n field points. Species labels have 
been suppressed for simplicity. 

It is now straightforward to show that if phase-space fields up to the Ith 
order are included in the generalized Langevin equation description, only 
the Ith-order random force will be nonzero. Consider a column vector made 

(;I 
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up of the I phase-space fields, 

n'"=(n(l),n(12), . . . ,n (12 . . . I ) )T  (B.17) 

Let C be the overlap matrix of these fields. If 9 projects onto d'), that is, if 

OA = (A(n('))T) C - Id') (B.18) 

the random "force" corresponding to n"), f y), is 
f ? ) = ( l - q ) F  + n(') 

We may write 
F + u'') = MU'') + Nn ( 12. * . I + 1) 

(B.19) 

(B.20) 

where M and N are defined by comparison with (B.16). The essential point 
is that N is a column vector with zeros in all positions but the lth. Insertion 
of (B.20) into (B.19) leads to 

Because of the form of N, we have 

f+ (1) = . . . =f+ ( 12. . . I - 1) = 0 (B .22) 

APPENDIX C 

Derivation of the Singlet Kinetic Equation 

The kinetic equation description of the reaction A + B e C + B  at the sing- 
let-doublet level involves the set of fields {&,( (Y = A, B,C), Sn,,, an,,( a = 
A,B,C)}. The doublet fields are generated by the action of C+ on Sn, (Ap- 
pendix B). If we restrict our calculations to forward reaction terms, we need 
to calculate only matrix elements involving the reduced set of fields 
{Sn,, an,, Sn,,, anAs, anBs}. The singlet A, B, and C fields are orthogonal 
if the solute density is small. The doublet fields anAB and an,, are orthog- 
onal to each other but must be orthogonalized to the singlet fields; the 
doublet fields an,, must be orthogonalized to the solute doublet fields and 
singlet fields. Thus 
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and the averages are to be calculated to lowest order in the solute densities. 
The calculation of a few typical matrix elements is outlined below. First 
consider the static memory function &,. This may be written as 

where the second line follows from the results in Appendix B, and the last 
line defines the Enskog collision operators AY and A$?-, 

and 

The static memory function that couples the Sn, and anAB fields is also 
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easily evaluated using the same method. We have 

where 

and the last line defines Ti,.,. The coupling matrix element +kAs is given 
by 

+;,As( I ,  1’2’) = - ([ e+6n,( I ) ]  SnAs(ilZ”))c~fAS(iRZI/, ~ 2 ~ )  

= -T^S(lZ)S(I - 1’)S(Z-2’) 

=cvA,As( 12’)6( 1 - 1’) (C.8) 

Using these results, the kinetic equation for the A singlet phase-space cor- 
relation function takes the form 

We have made an addition approximation in writing (C.9); the coupling 
between the singlet A and singlet B fields has been dropped. This coupling 
is due to elastic collisions between A and B molecules, and it gives rise to 
cross-diffusion coefficients, which can be neglected in a dilute system. Most 
elastic collisions are with solvent molecules. 
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To complete the kinetic equation description, equations for the correla- 
tion functions involving doublet fields must be constructed. Once again, we 
calculate some of the matrix elements as an illustration. Consider first the 
coupling matrix element +iB,A( 12,l') 

[ o,"( l ) ]  -la( 1 - 1') 

= - { TAB( 12) + CAS( 12)) a,""( 12) [ O,"( 1) ] - 'a( 1 - 1') 

a A B , A (  12)6( 1 - 1') (C. 10) 

Here, CAS(12) has the same form as FAs with FAs replaced by TAS. We 
next consider +iB,AB( 12,1'2'), which can be written as 

+iB,AB(129 -([ e+snA,(12)]6nAB(1'2'))[ W,"B(Ir2r)]-' 

= { e p (  12) - T Y (  12)) 6( 1 - 1')8(2 - 2') 

- [ P( 13) + p( 2 9 1  w , " y  123) [ O,"B( 12)] - ' 
6( 1 - 1')6(2 - 2') 

={ e,""( 12) -AA?( 1) - ABs(2) - ftB( 12) - FAs( 12) 

- P ( 2 1 ) } 6 ( 1 -  1')6(2-2') (C.11) 

With these results, the kinetic equation for CAB,A( 12,l'; z) can be written 
as 

In general, there is a coupling between the AB and AS fields due to elastic 
collisions between A and S in the presence of B. This coupling, which is 
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proportional to nt,, has been dropped. We have also not explicitly calcu- 
lated the dynamic memory function c$iB,,*. We examine its structure in 
Section VII.D, where coupling to triplet phase space fields is considered. 

The kinetic equation for CAS,,(12, 1’; z )  can be found using the same 
methods; the structure is somewhat more complex owing to the solvent 
static structure correlations. For instance, by a straightforward calculation, 
we find 

12,1’2’) = { e(y( 12)- P( 12)}6( 1 - 1’)6(2-2’) 

r 

1 @( 12) 

aim 6( 1 - 1’)6(3 - 2’) -~ 

- TY(23)( nASS ( 123) an,, (i2) )C,&IAS( i Z ,  1’2’) 

(C.13) 

where all correlation functions are to be evaluated in the low solute density 
limit. This operator looks complex. In the low solvent density limit it takes 
a more familiar form,50 

c$:s,A~( 12,1’2’) = { cy( 12) - Ats( I )  - Ass (2) - Tps( 12)) 6( 1 - 1’)6(2 - 2’) 

(C.14) 

where As?(2) is a solvent-solvent collision operator 

and P23 changes 2 to 3. Other more useful approximations to the solvent 
static structure are given in Section V1I.D. These results do, however, il- 
lustrate the general structure and physical content of the result. The vertex 
coupling anAs to an, is 

c$:s,A(12, l ’ ) =  -T_^s(12)c,,,As(lz,1‘2)[w,A(I~)]-~ 

=TAs,,( 12)6( 1 - 1’) (C.16) 
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Using these results, the approximate kinetic equation for Ca,A( 12.1’; z) 
can be written as 

GAB(12, 1’2’; z ) - ’  =z+~#$,~,~(12,  1’2’)+@iB,AB(12, 1’2; z )  (C.18) 

with a similar definition for GG’, and insert the formal solutions of (C.12) 
and (C.17) into (C.9), we find 

{ z + c:( 1) + A;:- ( I )  - A?( I ) - R AB( I ; .) - R a( I ; ) } cA, A( I ,  I ; .) 

=CA,A(l> l’) (C.19) 

where 

and RAS(l; z) has the same form. 
The simplest approximation to the repeated ring operator RAB is ob- 

tained by dropping the dynamic memory function r#~ :~ ,~~ .  Using (C.l I ) ,  
RAE in this approximation can be written in the operator form as 

where GAOB is the propagator for the independent motion of A and B in the 
solvent, 

GAOB(12; z ) - ’=z  +CkB( 12) -A”_”( 1) - AB!(2) (C.22) 

and 

VA,(12)= Tr- ‘B(12)+p(12)+cy12) (C.23) 

This approximate form for RAE treats the intermediate propagation in a 
rather primitive fashion, but it is sufficiently complex to illustrate many 
features of the condensed-phase reaction dynamics. A more complex ex- 
pression is presented in the context of the pair theory. 
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APPENDIX D 

Pair Kinetic Equation 

Since the derivation of the pair kinetic equation is similar to that given 
in Appendix C for the singlet kinetic equation, we only outline the calcula- 
tion. We again restrict the calculation to the irreversible reaction; the de- 
tails of the full reversible reaction case are given in Ref. 53. 

From (B.14), we see that when C ,  acts on the doublet field nAB(12), a 
contribution proportional to the triplet field nABS( 123) is obtained. Thus 
according to the general formulation set out in Section VII.B, we consider 
a description based on the two fields {6nAB,6nABs}. Since the only non- 
zero damping matrix occurs in the triplet field equation, we may im- 
mediately write the following two coupled equations for the phase-space 
correlation functions. For the doublet field. we have 

The static memory functions are easily calculated. After a straightforward 
calculation using the results in Appendix B, we have (see also Ref. 67) 

@;B,AB(12, 1’2’)= - [ -e,””12)+TAB(12)]6(1- 1’)6(2-2’) 
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‘2’ 

The pair kinetic equation in Section VI1.D follows directly from these 
results if the dynamic memory function +iBS,ABS is neglected, and the static 
structural correlations in (D.3) to (D.6) are approximated so that all binary 
collisions are calculated in the Enskog approximation. [This is the singly 
independent disconnected (SID) approximation, which is discussed in de- 
tail in Ref. 53.1 We have also used the static hierarchy to obtain the final 
form involving the mean force, given in (7.32). This latter reduction involv- 
ing the static hierarchy is carried out below in the context of a comparison 
of the singlet and doublet formulations. 

To examine the relation between the pair kinetic equation (7.32) and the 
corresponding propagator for the doublet field that enters into the singlet 
field equation derived in Appendix C, consider (C.12). The static memory 
kernel +i,,AB defined in (C.11) may be written in a form closely related to 
that in (7.32) by using the static hierarchy. For a hard-sphere system, the 
static hierarchy takes the formIi6 

Next, using the fact that 

T-( 12) = T _ (  12) +v,2*f12a(  r,2 - u )  
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This is the origin of the mean force term in (7.32). Using (D.8), we have 

The operator on this correlation function, involving the doublet field 
SnA,(12), may now be compared directly with the operator in the pair 
kinetic equation (7.32). There, of course, the possibility of soft forces be- 
tween the solute species was also taken into account. The ring operator in 
(7.33) and (7.34) takes the place of +iB,AB above. In the singlet lunetic 
equation that we used in Section VII.C, we ignored We now see that 
inclusion of the triplet phase space field an,,, leads to an explicit form for 
this dynamic memory function. 

Another way of stating the foregoing results is to consider the pair field 
Gn,,(x,x,). The equation of motion for the CAB,AB(12, 1’2’; z )  autocorrela- 
tion function can be immediately written as 

This follows directly from the projection operator algebra, where the pro- 
jections are carried out onto the anAB field only. The expression for c$&,,~ 
is the same as that in (D.9), and is an autocorrelation function in- 
volving the random “force” corresponding to Sn,,. A more useful form for 
+iB.AB can be obtained by explicitly including the triplet field as shown in 
the first part of this appendix. 

APPENDIX E 

Diffusion Eigenfunction and Integral Equation Solution 

Construction of Diffusion Eigenfunction 

The eigenfunction ID) is defined as the solution to the equation (cf. 
(10.6)), 
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- A  (MA p )  - 'I2V ( rn Bp) - ll2v2 

( mA /3 ) - l"V I 

( m B P )  - 1 / 2 v 2  0 ( ~ B P D B  1- I - X  

( rnAPDA ) - I - X 0 

We consider L, in the z = 0 limit here. The eigenvalue problem is solved by 
expanding I D )  in two-particle velocity states. To linear order in the 
momentum, these states are loo), [ lo) ,  and 101) which we denote by 11) 
( I =  1,2,3). Thus 

3 

ID> = 2 W a ,  (E 4 

2 [ < J l - L ( r l r 2 ) l I )  - X 4 J ] * a ,  =o (E.3) 

I =  I 
and 

I 

= O  (E.4) 

The diffusion eigenfunction is the root proportional to V2, 

x = = - ( D, + D ~ )  v2 = - D V ~  (E.5) 

The a, coefficients then follow directly from the solution to the homoge- 
neous equation (E.3) with A =  - DV2.  We find 

10) =loo> -DA(rnAP)'/*VI*(lO) -DB(mBP)'/2V2*101) (E.6) 

Since GLB = [ z - L , ]  - I ,  we have the desired result 

Solution of the QD Integral Equation 

If the details of the mean force are neglected, and only the particle ex- 
clusion effect is taken into account, we may write g ( r ) = O ( r - a ) .  In this 
case, the equation (10.26) for QD simplifies to 

Z - D v 2  + y 8 (  kr" r -uAB)  - D v  Or^&( r - u A B ) )  QD(r;  z )  
4naAB 

a ( r - 0 ~ ~ )  (E.8) = { z -  DV2 - VAB(r)}QD(r; z ) =  - k/" 
4muAB 
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which may be written as the integral equation, 

@,(r; z ) = @i(r ;  z ) + Jdr’ Go(r - r’ ; z ) VAB(r’)@,(r’; z) (E.9) 

where 

According to (10.22), we only need 6’ to calculate the rate kernel. The 
delta functions in the collision operators are to be interpreted in the limit 
as the sphere is approached from the outside,78 so we average (E.lO) over a 
surface at r=u,& to obtain 

S 
+ D  J dr’g,,(r-r’; z )  +V’*i ’6(r ’ -uA,)@.,(r ’ ;  z)  (E . l l )  

Using the fact’I7 that 

Go(uAB; z)(ar)-’s inhar  

Go(r; z)(auAB)-Isinhau~, 
g0(r-r’; z)  = 

in (E.l I ) ,  and integrating by parts, we find 

cP,(r; z)”=k/O(k/O +k,(z))-’ 

for r<uAB 

for r>u,, 
(E.12) 

(E.13) 
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I. INTRODUCTION 

The statistical mechanical theory of the dielectric constant E is in the 
midst of a period of rapid development. Our purpose here is to summarize 
the aspects of this progress with which we have been most directly con- 
cerned over the past few years. To keep this monograph manageable in size 
and scope, however, we have imposed strong limitations on our subject. 

First of all we restrict ourselves to Hamiltonian models that can be 
treated entirely within the framework of statistical mechanical techniques, 
without recourse to phenomenological or heuristic input. Thus we do not 
dwell on the enormous amount of work that has been done in the context 
of semimacroscopic “continuum” approximations, except where we are able 
to make statistical mechanical contact in certain limits or approximations 
with such approaches, as in Section 1I.D. Unfortunately this restriction also 
means that we are still limited in our quantitative treatment to a small set 
of models of artificial simplicity. 

Our second self-imposed restriction consists of taking the phrase “dielec- 
tric constant” in its narrowest sense, and confining ourselves to the relation 
between polarization and electric field in the strict zero-frequency, zero- 
field limit. Thus, for example, we do not consider index of refraction, di- 
electric saturation, or dielectric relaxation. 

Our third restriction is to a purely classical (nonquantal, nonrelativistic) 
description of our systems. 

This is not a review chapter in the usual sense. An appreciable amount 
of the material describes heretofore unpublished work of the authors. In 
particular, Sections 1I.E and 1V.E include previously unpublished work of 
H ~ y e  and Stell, and Section 1V.B includes new quantitative results of Patey 
and Stell. On the other hand, we have made no attempt to survey the open 
literature concerning our subject. (A splendid review of material that over- 
laps substantially with our own has recently been given by Wertheim.’) Our 
specific objectives have been as follows: 

1. To present a summary of the most important exact expressions giving E 

in terms of microscopic correlation functions. 
2. To show how certain new formalisms naturally lead to new classes of 

approximation schemes. 
3. To provide a do-it-yourself manual for the quantitative implementa- 

tion of these schemes, along with representative numerical results that 
have come out of them. 

4. To summarize some techniques and results of computer simulations 
that bear on the evaluation of E .  

In addition, we have endeavored to organize the chapter so that the sec- 
tions that pertain to quantitative results are as self-contained as possible, to 
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ensure that they will be intelligible and useful without obliging the reader 
to go through the quite abstract development of the theory that yields the 
final recipes. Finally, we have tried throughout to use notation and 
terminology that facilitates close contact with the primary literature per- 
taining to each of the items above. 

A serious notational dilemma arose because there is no standard nota- 
tion. In particular, each of the several key series of papers on which we lean 
very heavily, employs its own notation, Thus the goal of maintaining close 
contact with the primary literature is essentially inconsistent with the strict 
use of a single standard notation throughout. It is compatible with the goal 
of keeping the material self-contained, though, and we have adopted the 
following strategy. 

Section 11, which exploits the formalism of Haye and Stell as a unifying 
approach, uses (with minor variations in the interest of overall notational 
consistency) the notation of Hlaye and Stell, with keys provided to the no- 
tation of other workers (see Table I) where such keys illuminate conceptual 
correspondence. Section 111 focuses on implementation of theory, largely 
from the standpoint of the approach taken by Patey, Levesque, and Weis. 
I t  uses the notation of those workers. Section 111 is self-contained in the 
sense that all exact results used therein are first fully defined. 

The differences in notation between Sections I1 and I11 (and the primary 
references on which they are based) are not great, and for the most part 
they are not gratuitous, but follow from differences in substance and pur- 
pose. For example, all the expressions giving E in terms of two-point corre- 
lations discussed in Section I1 can be expressed in terms of the A and D 
components of correlation introduced there. To quantitatively evaluate 
these expressions, however, many other components of correlation must be 
taken into account (in terms of their effect on the A and D components), 
and more complete rotational-invariant subscript notation is introduced in 
Section I11 to accommodate such evaluation. 

The difference in notation also extends to the generalized Fourier trans- 
forms of the rotational invariants. A few differences in the Hqe-Stell and 
Patey-Levesque-Weis notation serve no such organic need but simply re- 
flect common notational variations in the literature. (Hnye and Stell often 
use m for permanent dipole magnitude and 5 for the associated unit vector; 
Patey et al. use p and f i . )  In Section IV, where polarizability is introduced 
and both theory and its implementation discussed, we have used m for total 
moment, p for induced moment, and p for permanent moment. Where we 
discuss Wertheim’s results in detail, we follow his notation as closely as 
possible (again subject to minor variations in the interest of overall nota- 
tional consistency). 
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There are various ways of defining the static dielectric constant E of a 
fluid. Perhaps the most fundamental is through the equation 

( E -  I)E=4nP 

where E is the macroscopic (Maxwell) field and P the polarization (mean 
dipole moment per unit volume). Direct use of this expression was made 
by Debye2 in 1912 to compute the response of a dilute gas of particles to 
the presence of an applied external field E,, using a transcription of an 
earlier computation by Langevin of the susceptibility of a paramagnetic 
system in a magnetic field. Although this method remains a standard 
textbook introduction to the microscopic theory of E, subsequent develop- 
ments in that theory have for the most part been mainly concerned with 
approaches that relate E to the properties of a system of particles in the ab- 
sence of an applied field. These approaches all hinge on the fact that each 
particle can be regarded as the source of an external field acting on the 
system consisting of all the other particles. The dielectric response of 
the other particles to this source can thus be used as a measure of E even in 
the absence of terms external to the whole system. 

Only recently has the theory of E for systems in the presence of applied 
fields reached a level at which one can compute E with satisfactory accu- 
racy for nontrivial Hamiltonian models at liquid-state densities by direct 
extension of the original Debye-Langevin method. We touch on this exten- 
sion in Section VI, but for the most part we treat only systems in the ab- 
sence of external fields. 

11. POLAR-NONPOLARIZABLE FLUIDS: THEORY IN THE 
CONTEXT OF THE H@Y E-STELL FORMULATION 

We start with a model of polar molecules in which the effects of polariz- 
ability are neglected. More precisely, we assume that in the absence of ex- 
ternal fields, the potential energy associated with N particles is a sum of pair 
potentials +(ij), each of which depends'on the positions ri and rj and orien- 
tations slj and sl, of particles i and j .  Thus the particles are regarded as rigid, 
with no internal coordinates, and we assume for simplicity that they are all 
identical. Extensions of the results of Section I1 to mixtures are for the most 
part straightforward, as discussed by H ~ y e  and Stel13 and in references they 
cite. Pertinent references to the mean spherical approximation generalized 
to mixtures are also given at an appropriate point in this chapter. 
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A. Exact Expressions for E for Rigid Polar Molecules in Terms of 
the Pair Correlation Function 

As mentioned above, in the absence of an external field, E can be ex- 
pressed in terms of the response of each particle to the field set up by the 
others. In the model under consideration that field is a sum of pair terms, 
so the key statistical mechanical quantity involved in the expression of E is 
the two-body correlation function. Its systematic use unavoidably entails a 
heavy dose of terminology and notation, which we now introduce in the 
language of Refs. 4 and 5 .  

For an infinite fluid of particles in the absence of an external field the 
probability density p ( i )  associated with a particle at position ri with orien- 
tation W, is just p Q 2 - l ,  where p is the number density and Q=jdW, .  [More 
generally we would have p = ( p ( i ) d W i  if the fluid were orientationally 
ordered and if a distinguished orientation were fixed, e.g., by an infinitesi- 
mal external field.] 

We let the joint probability density associated with a particle at rl ,  W l  and 
a particle (possibly the same one) at r2, W2 be ~ ~ ( 1 2 ) .  This is simply related 
to the joint probability density p(12) for distinct particles by an additive S- 
function term: 

where 6(12) is a delta function in both position and orientation: 6(12)= 
S(r,,r2)S(Wl, W2). Letting F,(12) and F(12) be the cluster or Ursell func- 
tions associated with ps( 12) and p( 12), respectively, 

F6( 12) = Ps( 12) - P ( 1 9 F( 12) = P(  12) - P (  1 )P(2) (2 4 
we follow Lebowitz, Stell, and Baer6 in introducing a “self-energy’’ func- 
tion 2(12), and the related W(12), 

Z( 12) = W( 12) + p (  1)S( 12) (2.3) 

These functions are defined in terms of a decomposition of the pair poten- 
tial (p( 12) into two parts, a reference term q( 12), and a perturbing term 
w( 121, 

cp( 1 2) = q( 12) + w(  12) (2.4) 

The formal relations developed in Ref. 6 are independent of how the de- 
composition is made. For convenience we introduce the function 

0(12)= -Pw(12) (2.5) 
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since w(12) always appears with the factor -p=  - ( k T ) - ’ .  We can most 
conveniently define Z( 12) in Fourier space. We denote the d-dimensional 
transform by a tilde. Thus, letting r=rI  -r2,  we hhve, for example, 

We use the notation 6(Q,Q2), %(QlQ2),  and so on, to mean the trans- 
forms &( 12). 5( 12), and so on, evaluated at  k = 0. Our definition of z( 12) 
is given by 

Our notation here essentially follows Refs. 4 and 5, which in turn closely 
followed that of Lebowitz, Stell, and Baer6 and of Stell, Lebowitz, Baer, and 
Theumann.’ There are minor differences from paper to paper, however. Our 
Z and Where are the O-’Z and O-’Wof Ref. 4. In Ref. 6 n2W is used to 
denote what we call W here, whereas in Ref. 7, W is used to denote our 2. 
The 412)  here is the of Refs. 6 and 7. Moreover, the “modified” two- 
particle functions we denote here with the subscript 6 are denoted in the 
papers above with a caret, and their Fourier transforms carry a bar. (we 
reserve the caret and bar here to denote certain spherically symmetric 
functions and Hankel transforms that play a fundamental role in the 
mathematics of polar fluids.) Finally, in Refs. 4 and 5, p( I ) ,  p(  12), and F( 12) 
were written as pl(l) ,  p2(12), and F2(12), respectively. The subscripts are re- 
dundant when one exhibits the arguments, so we drop them here. 

I t  is worth comparing (2.7) with a similar relation between &12) and the 
transform E(12) of the direct correlation function 412) defined by the 
Ornstein-Zernike (OZ) equation, which can be written as 

From (2.7) and (2.8) i t  follows that 

2( 12)= g S ( Q , Q 2 )  + [ E(  13)-6(13)]%(23j dQ3 (2.9a) 
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or 

2 
kP( 12) = ( 5 )  [ c'( 12) - 6( 12)] + [ c'( 13) - 6( 13)] kP(23) d a ,  

(2.9b) 

From (2.8) and (2.9) we see that Z( 12) stands to the function c( 12) -u( 12) 
precisely as the full F,(12) stands to 412) itself. Similarly W(12) stands to 
c(12)-0(12) as F(12) stands to 412) [where F,(12)=F(12)+8(12)p(l) from 
(2.2)]. Thus, although &( 12) and c( 12) are clearly independent of our choice 
of q(12) and w(12), the W(12) and X(12) are not; they are functionals of 
w( 12). 

The simplest choice of w(12) is that of an ideal dipole with a sharp cutoff, 

w(12)= -m2D(12)r-3 for r>d  

w(12)=0 for r < d  (2.10) 

where d is the cutoff diameter, m is the strength of the dipole moment, and 

D( 12) = 3(I, *i)(I,*i) - (I, *I,) (2.11) 

Here the I, and I, are unit vectors giving the orientations of the dipoles and 
i is the unit vector in the r,, direction. With this choice of w( 12), an expres- 
sion we derived for E in Ref. 4 can be summarized in compact form in terms 
of 2. We have 

E -  1 
E+2 - = z  

where 
47r 

Z = 9 PPCIY 

Here p = p ( i )  is the dipole vector mii and 

where 4 2 )  = dr, dQ2.  Thus, since p( i )  = p / Q ,  we can write 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 
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Substituting (2.3) into (2.12), we have the alternative expression 

Equations 2.12a and 2.12b, with 2.12d or 2.12e, represent a fundamental 
result for the model under consideration- an exact expression for E in terms 
of Z, or equivalently, W. The C and W can be regarded as the “short-ranged 
parts” of 4 and F, respectively, from which the long-range effects of u(12) 
have been subtracted out [upon the subtraction of u from c before forming 
the OZ equation (2.9)]. 

The result (2.12) can be reexpressed in several different ways that will 
prove useful. First of all, only the i,*i2 projection of W(12) will contribute 
to E in (2.12e), because of the p ( l )y (2 )  factor that multiplies W(12) in that 
expression. If we write the coefficient of that projection of J?(51,W2)Q2 as 
p B ,  then from (2.12b) and (2.12e) we have simply 

z=y( 1 + + B )  (2.13) 

where 

y =  4pm= 9 P P  (2.14) 

which was the expression first given for z in Ref. 4. Equation 2.12 with (2.9) 
also yields a perfectly general expression for z via (2.12b) in terms of the 
direct correlation function. In the case in which the reference-system 
potential shares the cylindrical symmetry of the ideal dipole (including the 
special case in which it is orientation independent) (2.12) and (2.9) can be 
further reduced to the expression 

-- E -  1 Y 
E+2 1 - ( p / 4 7 T ) I  

- 

where 

I= -Jdr,,dW,dW2c(12)1,*S, 1 
47T 

or 

I= - dW, dW2 C( W 1 5 1 2 ) i l  *i2 4 7  ‘ J  

(2.15a) 

(2.15b) 

(2.1%) 
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This is an expression originally derived by John Ramshaw’ under certain 
approximations that one cannot expect to be exactly satisfied. However, as 
shown in Ref. 4, these approximations need not be assumed in the case of 
a cylindrically symmetric reference system to obtain (2.15). In contrast to 
(2.12), on the other hand, (2.15) will not hold if the reference system has 
more general symmetry. An Appendix to Ref. 5 gave a general reduction 
of (2.12) that yields an expression for E in terms of 412) for all symmetries. 
Subsequently Ramshaw himself derived’ an equivalent general reduced 
form of (2.12) and (2.9) in somewhat different notation. 

In terms of cs( 12) = c( 12) - S( 12)/p( I) ,  we can write 

p,, dQ1 dQ2 cg( 12)9, ‘9, (2.15d) 

Prior to the Hoye-Stell work, Nienhuis and Deutch” (ND) also derived a 
very closely related expression that is of a form somewhat different from 
(2.12). It is in terms of their auxiliary function GA2) that they defined 
graphically. Except for notational differences, their graphical analysis ex- 
actly corresponds to that part of the graphical formalism of Lebowitz, Stell, 
and Baer that involves the LSB function n’W(12) [our W(12)]. For the 
reader’s convenience we have drawn up Table I ,  which allows one to go 
from one notation to the other, as well as to the notation we are using here. 
(In LSB, i = r i  rather than the full r i ,  Q,,  but the graphical manipulations are 
completely insensitive to this.) 

I t  can be seen from our Table I that our Wand the N D  GT) are identical 
objects graphically; yet the N D  expression for E in terms of Gi0) is clearly 
different from ours. Theirs is 

E - 1  4T -- - _Tj_PPP*PND 
3 

TABLE I 

Comparison of Terminology: Lebowitz, Stell, and Baer (LSB), 
Nienhuis and Deutch (ND), and Here 

LSB N D  Here 

(2.16a) 

(2.16b) 

F 2 ( W  G2( 12) F( 12) 
n2(  I)W( 12) Gjo’( 12) W( 12) 

F2( 12) - n2(1)W( 12) Gj”(12) F(12)-  W(12) 
n2(1)W(12)+t1(1)6(12) H40’(12) X(12) 
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This seems to be a paradox, since both ND and we use an ideal dipole term 
as the perturbing potential. The paradox is readily resolved by noting that 
the ND and Hoye-Stell (HS) choices of w( 12) are in fact different, with HS 
choosing a dipole with a sharp cutoff at small r ,  as in (2.10), and ND 
choosing the full ideal dipole for all r#O plus a singular term at r=O. Their 
handling of 4 1 2 )  at the origin can be considered in terms of the choice 

w(12)= - m 2 ~ ( 1 2 j r - 3  for r > y - '  

w(12)= +m2A(12)y3 for r < y - '  (2.17) 

where 

A( 12) = G I  4, (2.18) 

with D(12) given in (2.1 1). In the limit y-'+O (note that this is the opposite 
of the mean field limit y-0), i t  is clear that (2.17) is equivalent to the N D  
method of handling the dipole at r = O ,  since in this limit the Fourier 
transform E( 12) becomes 

4 r m 2  
3 G( 12) = - [ Dk( 12) + A (  12)] (2.19a) 

where D,(12) is just D(12) with i replaced by the unit vector k=k/(kl :  

~ , (12)=3(GI*k)(k .9 , ) -5 , .9 ,  (2.19b) 

The choice of w(12) given by (2.17) when y-'+O can alternatively be ex- 
pressed as 

w( 12) = - m2G, -T(r) 4, ( 2 . 1 9 ~ )  

where 

T(r) = V . V ( r  - I )  (2.19d) 

This representation of the dipole interaction is the one used by ND; it is 
easily verified that ( 2 . 1 9 ~ )  has the same Fourier transform as (2.17) does in 
the limit y-'+O. Ramshaw has also considered in detail'' the relation be- 
tween the use of (2.10) and (2.17). 

To make the connection between (2.12) and (2.16) more precise, as well 
as to relate (2.12) to other formally exact expressions for E of still different 
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form, we must set down a few results concerning the general decomposi- 
tion of an arbitrary two-point function in an expansion in terms of its rota- 
tional invariants as well as one fundamental result concerning the structure 
of F( 12) when so decomposed. For our purposes, we need only consider the 
rotational invariants 0(12), given by (2.1 I ) ,  plus A( 12), given by (2.18), and 
unity. For an arbitrary two-point function a( 12) we define the projections 

a( 12) dQ,  dQ' &)=J 92  

a,( r ) = 3J 
a( 12)A( 12) d Q ,  dQ2 

9' 
a( 12)0( 12) d o ,  dQ2 

a,(.)=( ;)J Q2 
(2.20) 

so we can write 

a( 12) =a,( r ) + UA( r )A( 12) + a,( r )D(  12) + . * . (2.21) 

Taking the Fourier transform of both sides, we find 

with 0,(12) given by (2.19b). The i A ( k )  is just the Fourier transform of 
aX r 1 

and a,( k )  is a Hankel transform 

Here j ,  is the spherical Bessel function of order 2, 

(2.23) 
3sinx 3cosx sinx 

j 2 ( x ) =  7 - - - - 
X 2  X 

The a, (r )  can be regarded as the Fourier transforms of certair. spherically 
symmetric functions ci,( r ) ,  which were introduced by Wertheim" in his 
analysis of the mean spherical approximation for dipolar spheres. If  a( r)+O 
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as r-0, let 

This inverts to give 

As shown by H ~ y e ,  Lebowitz, and Stell,13. l4 

a( k )  = i ( k )  

From (2.24b) we have the important conclusion 

as r-+w 3aD(0)  
Q D (  r ) +  - ~ 

4 a r 3  

195 

(2.24a) 

(2.24b) 

(2 .24~)  

(2.24d) 

In Section 111, we use a more general notation in which as(.)  is denoted 
as a W ( r ) ,  aA(r) is denoted as a"'(r), and a D ( r )  as a"' (r ) ,  while i i i jk(k)  
refers to a generalized Fourier transform that includes the Hankel trans- 
form introduced here. In treating simple dipolar models (in which higher 
ideal multipole terms may or may not be present, but are not explicitly dis- 
cussed) the more general notation is unnecessary and is not used in Section 
11. 

As H ~ y e  and Stell have shown in Refs. 4 and 5, it turns out that all the 
expressions for E that we shall be dealing with in our model can be ex- 
pressed in terms of the A-projection and D-projection of two-point correla- 
tion functions in Fourier space, evaluated as k=O. We have already seen 
examples of this in connection with our first key result; (2.13) can be re- 
written in the notation we have just introduced as 

and (2.15) can be reexpressed as 

(2.25a) 

(2.25b) 

There is yet another expression for z ,  hence for E through (2.12a), which 
has turned out to be one that is computationally the most useful and im- 
portant, along with its generalization to the case of polarizable and charged 
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particles. I t  was introduced by Wertheim” as part of his mean spherical 
approximation (MSA) for E ,  and subsequently reused by him (as an exact 
expression) in a form appropriate to nonpolar particles with constant 
polarizabi1ity.l’ Independently, HDye, Lebowitz, and StellI3 and Hoye and 
Stelli6 extended the MSA result for nonpolarizable polar particles to a class 
of generalized mean spherical results; their extension makes clear the for- 
mally exact status of the result in the dipolar case in terms of exact tA(0) 
and tD(0). One introduces the quantities 

(2 .25~)  

Following the development of Haye, Lebowitz, and Stell, (or equivalently 
of Ref. 15) one finds 

3y=4,  - 4 2 ,  
45- y= -ppm2 
9 

and 

41 -42 z“- 
41 +24, 

Using the last two equations with (2.12a) immediately yields 

41 
42 

& =  - 

(2.25d) 

(2.25e) 

(2.26) 

As we shall see in Sections 111 to V, it is (2.26)-along with (2.25b) to (2.25e) 
and their appropriate extensions to more general Hamiltonian models- 
that forms the basis of most currently available analytic calculations of E 

based on those models. 
We introduce now for convenience the correlation functions h,( 12), h( 12), 

g,(12), and g(12), related to the p, and F, of (2.2) and (2.3) as follows: 

Ps(12)=P(l)P(2)g,(12) 

P(  12) = P (  l)P(%( 12) 

F6( 12) = P(  l)P(2)h,( 12) 

F( 12) =P(l )P(2)h( 12) 
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In terms of h( 12) and c( 12), (2.8) takes the more familiar form 

(2.27) 
c( 13)h(23) d(3) 

where 

h(12)=g(12)- 1 (2.28) 

Decomposing h”(12), it is found in Eq. 50 of Ref. 4 that 

limd(12)=ADk(12)+( B-2zA)A(12)+(terms not contributing to E )  
k-0 

(2.29a) 

so 

ph,(O) = A  

P & ~ ( O )  = B - 2zA 

(2.29b) 

(2 .29~)  

where 

(2.29d) 
Z 2  

y( l+2z ) ( I - z )  
A = - 3  

and B we have already met in (2.13), 

B = 3 ( ;  - 1) (2.29e) 

Using (2.12a), (2.29) yields 

( &  - 1)(2& + I )  
- 1 1  

1 P M O  = 3 [ gEY 

- y & - I  
ph,(O)=-3- - 

e (  3Y )i 

(2.30a) 

(2.30b) 

Equation 2.30a can be rewritten in terms of a familiar”. “g-factor” 

( E -  1)(2&+ 1) 
=yg; 9E 

g =  1 + ELA(0) 
3 

(2.30~)  
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Onsager's well-known approximation" is recovered by setting JA(0) = 0, 

( E -  1)(2&+ 1) 
- =Y; g =  1 

9 E  
(2.3Od) 

From (2.24d), with a,(r) set equal to h,(r), we find that (2.30b) can be 
reexpressed in r space as 

r-m E 
(2.30e) 

Equation 2.30~ was derived decades ago by Kirkwood." Equation 2.3Oe was 
first obtained much more recently by Nienhuis and Deutch" on the basis 
of a plausible assumption that the analysis of Haye and Stell outlined here 
has shown to be fully justified. ND also obtained2' several important com- 
panion equations to (2.30e). One gives the asymptotic form of the correla- 
tion function hc,(12) between a single rigid impurity ion (e.g., a charged 
hard sphere) of charge q and a rigid dipolar impurity particle (or, equiva- 
lently, a rigid dipolar molecule of the fluid) 

lim hcD( 12) =: - 

where +cD is the ideal charge-dipole 

r-m 

interaction 

(2.3 la) 

+ c D ( ~ 2 ) = q m ~ * ~ r  -' (2.3 1 b) 

Another gives the ion-ion correlation function hcc(12) for two ions in the 
same rigid-dipole fluid 

(2.32a) P lim hcc( 12) = - -+cc( 12) 
r+ m E 

where c + ~ ~  is the ideal Coulomb interaction 

(Asymptotic expressions for correlations between quadrupolar impurity and 
charge impurity and between quadrupolar impurity and dipolar impurity 
were also obtained by ND.) 

These expressions as well as (2.30e) can be written equivalently in terms 
of the potentials of mean force W(12), where -PW(12) is defined as 
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In[ h( 12) + I].  Letting +DD( 12) be the ideal dipole-dipole potential, we have 

(2.33a) 

(2.33b) 

(2 .33~)  

Equation 2.33 answers an interesting question raised by the work of Jepsen 
and Friedman2’ some time ago. They pointed out that for a macroscopic 
charged-sphere impurity and a macroscopic dipolar-sphere impurity (both 
of dielectric constant 1) immersed in a continuum dipolar solvent, one has 
the expressions 

(2.34a) 

(2.34b) 

(2.34~) 

Jepsen and Friedman” found, however, that for microscopic impurities, 
(2.34a) and (2.34b)-in contrast to (2.34c)-no longer appeared to be 
satisfied beyond the lowest order in y in the low-density approximation they 
were considering, which left open the asymptotic form the microscopic re- 
sults would have. Equation 2.33 reveals that only if the Onsager approxi- 
mation (2.30d) were satisfied in the molecular solvent would (2.33) and 
(2.34) be the same. The reason for this will become clear in our discussion 
of the y-+O limit below, where we show that only in the Onsager continuum 
limit, in which (2.30d) becomes exact, is the dielectric response to each 
solvent dipole that of a vacuum in a macroscopic sphere surrounding the 
solvent dipole. Thus only in the Onsager continuum limit are the assump- 
tions satisfied under which one can identify each solvent particle as a mac- 
rosphere within which E =  1, and so assure the identity of the full set of ratios 
in (2.33) to (2.34). 

H0ye and Ste112’ have generalized (2.33) to the case of a nonzero con- 
centration of ionic particles in a dipolar fluid. They find that in the low X 
limit, where A is a characteristic inverse shielding length A’ =41rq~pP,/e, 
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with p, the ionic concentration, q the ionic charge, and E the solvent dielec- 
tric constant 

(2.35a) 

(2.3 5 b) 

We note that (2.35) can be elegantly reexpressed in terms of gradients of 
the shielded Coulomb interaction, if we use the effective dipole-moment 
vector &;ff = m L i ( ~ -  1)/3y introduced by Nienhuis and Deutch.". 2o Writ- 
ing e( r )  = e  -Xr /Er ,  we have 

wc, =q2e(r )  (2.36a) 

w,, =qm$'*V2e(r) (2.36b) 

w,, = m ~ ' . ~ , [  m;"*~,e( r ) ]  (2 .36~)  

All the results we have considered so far are for a system in which the 
thermodynamic limit has been taken before the correlation functions are 
assessed. Thus hA(0) = /AA( r )  dr, for example, refers to a volume integral 
taken over a volume that is allowed to become infinite after one takes the 
thermodynamic limit. If one has a finite spherical sample in a vacuum, on 
the other hand, the h(12) for that system will be missing its D(12) term for 
r larger than the sample diameter. This means that in (2.29a) the A will be 
zero; but if the sample is sufficiently large, the terms shown will be other- 
wise unchanged, so that p h , ( O )  = O  and p i A ( 0 )  = B. Thus (2.12a) with (2.25) 
can be rewritten as 

- E -  1 =y[  1 + ? i A ( O ) ]  P 
E+2 

(2.37) 

This is another classic result, implicit in Kirkwood's early work." We note 
the following points related to (2.37). 

1. If one is already in the thermodynamic limit but cuts off the D( 12) term 
of the pair potential w(12) given by (2.10) beyond some radius R,  one 
is again led to (2.37) for reasons similar to those in the finite-sample 
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case. (Wertheim's recent review ' provides an especially clear discus- 
sion of this in modern terminology.) 
Let us denote as 6 f ( k )  the k A ( k )  associated with a finite sample of 
radius R .  Then 

lim Iim /if(,~(k)+ lim 6f(0). (2.38) 

It is the right-hand side that is to be identified with (2.37) and the left- 
hand side with (2.30~). The latter equation can be thought of as the 
equation relevant to a sample of material of macroscopic radius R em- 
bedded in an infinite system of the same material (i.e., an infinite sys- 
tem of dielectric constant E ) .  Moreover, on the macroscale determined 
by the length unit R, the system external to the sphere can be regarded 
dielectrically simply as a continuum of dielectric constant E.  Thus (2.37) 
and (2.30~) are the relevant equations for the same macroscopic spheri- 
cal sample embedded in continua of dielectric constant 1 and E ,  respec- 
tively. These results can be generalized to a sample embedded in a 
continuum of arbitrary dielectric constant E',  as discussed by de Leeuw, 
Perram, and Smith,23 who use the generalization to illuminate the status 
of Ewald summation in systems with periodic boundary conditions. We 
review their work in Section 1II.C. 

2. 

k-0 R+m R-LX 

Our catalog of exact representations of E for the rigid-particle model 
would be incomplete without the expression for E in terms of site-site (i.e., 
atom-atom) correlation functions, defined in terms of h( 12) by 

(2.39) 

where rap is the distance between two sites (or atoms) (Y and p in molecules 
1 and 2, respectively. If  the dipolar moment of the molecule, m ,  is pre- 
scribed in terms of a set of point charges qy at the sites y, H ~ y e  and Ste1124* 
25 have shown that one can write 

Here p is molecular number density. 

B. Core-Parameter Extension of the Expression for E, and y 
Parameterization 

In the results summarized above we have not yet introduced a construc- 
tive scheme for quantitatively evaluating either the correlation functions 
already introduced or E itself. We shall do so by embedding our perturbing 
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potential w( 12) in a one-parameter family of potentials parameterized by an 
inverse range parameter y such that when y = d - '  we recover the w(12) 
corresponding to the pair potential +( 12) of actual interest in our model. In 
the limit y+O, exact results can be recovered and y then used as a parame- 
ter of smallness in approximating the desired results for y = d  -'. For a pre- 
scribed +(12), the choice of w(12) is itself open to considerable latitude, as 
our comparison between certain Haye-Stell and Nienhuis-Deutch results 
has already suggested. The formalism of Lebowitz, Stell, and Baer,6 (and 
the earlier work of Hemmer26) on which the Haye-Stell results rest, is in- 
dependent of how we choose to break up +(12) into 412)  and w(12) within 
wide limits, as discussed in Ref. 6. It is natural to require 

(2.41) 

which dictates, in a polar system, 

w( 12)+-m2D( 12)r - 3  as r -+m (2.42) 

For a potential in which a clearly defined measure of particle diameter d is 
available [i.e., a hard-core particle in which ~$412) = 00 for r < d ,  a 
Stockmayer potential in which the Lennard-Jones u is the measure of core 
size, etc.], it is also often convenient (although not necessary) to satisfy 
(2.41) by requiring 

w(12)= -m2D(12)V3 for r > d  (2.43) 

For a $412) with a hard-core diameter d, if q(12) is chosen to include the 
hard core, so that 4( 12) = co for r <d, then clearly w( 12) can be set equal to 
any finite function for r <  d-including functions that are dependent on 
thermodynamic state- without quantitatively effecting the value of any 
exact expressions for h(12), c(12), or E in which 4 1 2 )  appears. But in the 
approximate evaluation of such expressions, one must expect that some 
choices of w( 12) for r <  d will yield better approximations than others, and 
this turns out to be the case, as we shall see. Even for G(12) that do not 
have hard cores, it proves useful and natural to exploit our freedom of 
choice of w(12) for small r. [It  is just that without the core, different choices 
of w(12) now dictate corresponding differences in 4 ( r )  for a fixed +(12).] 

Because only the A and D projections of correlation functions appear in 
our various representations of E ,  only the choice of the A and D projections 
of w( 12) are of primary dielectric importance in our model. 
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Let us generalize (2.17) to 

W ( 12) = y 3  WA( y r )A(  12) -k y WD( y r ) D (  12) ( 2  .w 
where the initial value of y is d - ', but we shall take the limit y+O in Sec- 
tion 1I.D. For x > l ,  wA(x) must be zero and w D ( x )  must be - m 2 x - 3  if 
w(12) is to be the ideal dipole potential outside the hard core, but for x < 1, 
wA(x)  and wD(x)  can be arbitrary. Here x = y r .  

We introduce the parameter 0 given by 

= JwA( r )  d r  

The simplest choice of wA(x) is just a step function, 

w A ( x ) = m 2 @  for x <  1 

w A ( x ) = 0  for x > l  

(2 .45)  

and the simplest choice of w D ( x )  in the context of our work is 

wD( x)  = - m2x - 3  for x >  1 

w, (x )=O for x < l  (2.47) 

so that d -3GD(r /d )D(12)  is the cutoff dipole of (2.10). The Fourier trans- 
form of w(12) is just 

G( 12) = GD - Dk( 12) + GA( + ) A (  12) (9 
The GA(k) is the transform of w&(r); if (2.47) is used, we have 

(2.48) 

(2.49) 

Note that f(O)= 1. If (2.46) is also used then GA(k) can also be written in 
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terms of f ( k )  and we have 

(2.50a) 

Since w( 12) of (2.44) is of the form y3 times a function dependent on r only 
through yr, i t  lends itself to the y-ordering techniques. For 0 = 0  all results 
must reduce to those based on (2.10). For O =  1 and y+w, 3(12) becomes 
the Nienhuis-Deutch expression for 3, 

4xm2 
3 

G( 12)= - [ Dk(12)+A( 12)] (2.50b) 

The functions C(12) and W(12) turn out to depend on w(12) in such a 
way that for fixed y ,  C(S2,Q2) and W(S2,Q2) depend on w(12) only through 
0. From this it follows that the relation for E itself depends on w(12) only 
through 0 and we find, generalizing (2.12) to OfO, 

(2.5 la) 

for all y and 0 where 

For y = d - '  and 0 = 0  we recover (2.12) with peff(0)=p', and for y-+co, 
O =  1 we recover (2.16) with per f ( l )=pND.  For any y z d - ' ,  and O=1  we 
would in fact find peff(l)=pND. More generally for all y 2 d - '  and fixed 
0, per,(@) and E are independent of y ,  reflecting the fact that for a fixed 
reference potential q(12) with hard core of diameter d, the full potential 
q(I2) + w( 12) is independent of y as long as y 2 d - I .  Thus the actual physics 
of the problem must be likewise independent of y where yd> 1. 

In the remainder of this section we give various other key results that one 
obtains in generalizingS to nonzero 0. 

In the limit y+O the pair correlation function again is given by a simple 
dipole chain 

cc 
p l (  12) = (-  3y)"(  D, + @A)" (2.52) 

n =  I 
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This is easily computed by noting 

3(Dk  + O A ) = ( 2 + O ) J 1  - (1-@)J2 (2.53) 

where J I  =A+Dk and J2 = 2 A -  D,, which from (B.18) of Ref. 4 satisfy 
J I J l  =J1; J2J2 =J2;  J1J2 =O.  So we get 

m 

p6(12)= 2 [ ( - ( 2 + 0 ) y ) " J I  + ( ( 1 - 0 ) y ) " J 2 ]  
n =  I 

- ( 2  + O ) y  
1 + ( 2 + 0 ) y  

( 1  - 0 ) Y  
1 - (1 - O ) y  J l  + J2 

- - 

- - - 3Y [ D, +( 0- (1 - 0 ) ( 2 + O ) ) y A ]  
( 1  + ( 2 + 0 ) y ) ( l -  ( 1  - 0 ) y )  

(2.54) 

Equation 2.54 is to be compared to the general expression (2.29a). One 
finds that (2.54) and (2.29a) are equal if one puts 

Y z=- 
1 + 0 y  (2.55) 

So from (2.12a) the dielectric constant for this system in the limit y+O will 
be 

Y 
~ = z =  - E -  1 
E+2 1 + 0 y  

(2.56a) 

or 

(2.56b) 
E -  I 1 + ( 2 + 0 ) y  

( 1  - o ) E + ( 2 + 0 )  1 - ( l - O ) y  
= y ;  & =  

Expression 2.56b for z can also be seen more directly. According to the 
treatment in Ref. 4 ,  only the D term in (2.50) belongs to the dipole interac- 
tion, while the A term belongs to the reference system, and contributes to 
W(12) given by (2.3), (2.13), and (2.14). As y-0, W(12) obviously will be 
given by a " A  chain": 

m W 1 - ~ ( 1 2 ) = 3 (  5 - l ) A =  ( - 0 y ) " ( 3 A ) " =  ( - 0 y ) " 3 A  
P Y n =  I n =  I 

M ~. 

z = y  2 ( - 0 y ) " = -  Y 
n=O 1 + 0 y  (2.57) 
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References 4 and 5 introduced test dipoles that interact with a potential 
proportional to that given by Eq. (2.44). The limit of large R = l/y-+oo was 
considered such that pure electrostatics can be used. 

To summarize these results, we first compute the field set up by our new 
test dipole in a dielectric medium. It interacts primarily with a field K= 
- V#K where 

[ m2cos8 
for r > R  

r L  

for r < R  

The electric field F =  - V+ created is given by 

acos8 for r > R  

(2.58a) 

(2 S8b) 
br cos 8 for r < R  

where a and b are to be determined from the conditions at r =  R where the 
general conditions V x F = 0 and V D  = 0 have to be fulfilled, with electric 
displacement D = F + 4 r P ,  and polarization 4 7 r P = ( ~ -  l)(F+K). With this 
K we then must determine a and b from 

2 ~ a + 2 ( ~ -  l)m, = -&bR3 - ( & -  1)@m2 

a = b R 3  (2.59) 
Equation 2.59 leads to 

( 2 + @ ) ( & -  1 )  
m2 a = b R 3  = - 

3 E  

or 
(2+@)(&- 1) 

F =  - K for r > R  
3 E  

So the total electric field set up  by the dipole is for r > R :  

K 
(1 - O)E+ 2+ 0 

E = F + K =  
3 E  

C. Three Approximations on the Two-Particle Level 

(2.60) 

(2.61) 

Before further considering the y+O limit, we have some general remarks 
concerning three approximations that are defined by expressions that prove 
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to be exact in the y+O limit when different choices for w(12; y) are made. 
Let us assume that 412) has the form 

c ( 1 2 ) = c s ( r ) + c , ( r ) A ( 1 2 ) + c , ( r ) D ( 1 2 )  (2.62) 

where we recall that for an arbitrary function a( 12), 

Now if (2.62) holds, (2.27) implies that h(12) has the form 

h( 1 2 ) = h , ( r )  +ha( r ) A (  12)+c,( r ) D (  12) 

and also that 

(2.63) 

(2.64) 

From condition (2.64) it in turn immediately follows that the relation be- 
tween h ,  and c, via (2.27) decouples from the relation among h,, h,, c,, 
and c, imposed by that equation. In particular, this means that for any 
length d ,  if h, is prescribed for r < d and cs for r > d,  then (2.27) determines 
h ,  for r > d and cs for r < d.  Moreover, if h,  and h ,  are prescribed for r < I 
and c, and c, are prescribed for r > I ,  where 1 is any length, then h,  and h, 
are determined for r > I and c, and cD are determined for r < 1. More 
specifically, for particles with hard core of diameter d,  it follows from the 
definition of h(12) as a correlation function that h(12) must satisfy the core 
condition 

h s ( r ) = - l  for r < d  (2.65a) 

h, ( r )=h , ( r )=O for r < d  (2.65b) 

so that if c(12) is prescribed for r > d ,  then h, is determined for r > d  from 
(2.65a) and (2.27) alone, and h,  and h, can be determined for r > d  from 
(2.65b) and (2.27) alone. 

These remarks follow immediately from a straightforward generalization 
of the techniques of Wertheim,” who solved (2.27) subject to (2.65) and the 
conditions 

c s ( r ) = O  for r > d  (2.66a) 

ca(r )=O,  c , ( r )=prn2r- ’  for r > d  (2.66b) 
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From what we have just said, one can replace the approximation (2.66a) 
with any other, or can simply assume that 

cs( r )  is exactly given (2.67) 

without altering the determination of h,  and h ,  via (2.27). 
In the mean field limit, y-0, the relation 

c( 12) = cs( r ) - P w( 12) (2.68) 

becomes exact for a pair potential consisting of a spherically symmetric 
reference term plus an ideal dipole term w(12). Thus 

(2.69) 

is the appropriate mean field result for such a potential. For a hard-core 
potential of diameter d ,  however, our freedom to choose w(12) for r < d  re- 
flects itself in (2.68) as freedom to choose cA and c ,  for r < d.  The choice 
(2.10) yields 

cA=O. c,=O for r < d  (2.70) 

and the choice (2.44) gives more generally 

(2.7 1 a) 

(2.71b) 

where wA( x)  and w,( x) can remain undetermined for x < yd and still satisfy 
the requirement implied by (2.43) that when yd= 1, 

w,(x)=O for x > l  

w,(x) = - m2x - 3  for x>  1 

We now call attention to three closely related approximations. All three 
use the mean field result for cA and c ,  outside the core, given by (2.66b). 
The first also uses (2.70). With the use of (2.27) both h,  and h ,  can be 
determined for all r .  Both approximations violate the core condition (2.65b). 
The resulting E is easy to compute via (2.15) and yields the Clausius- 
Mossotti relation. The resulting approximation for h( 12) could be called the 
“two-particle Clausius-Mossotti approximation.” 

The second approximation uses (2.71) with wA and w, given by (2.46) and 
(2.47), where 0 = (1 - 0)(2 + 0 ) y  and x=  r / d  (i.e., y = d - I ) .  From (2.54) 
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one sees that this yields A,(O) = 0 and from (2.30) [or (2.56)] that it gives the 
Onsager approximation for E .  We shall therefore refer to it as the “two- 
particle Onsager approximation”. [In Ref. 5, the approximation with this 
designation was characterized in a somewhat different way that is not ob- 
viously solvable for h( 12). The more natural characterization given here has 
no such problem.] 

Finally, if (2.66b) is used along with the core condition (2.65b), then (2.27) 
yields the Wertheim approximation for c, and c, inside the core and h,  and 
h ,  outside it. Thus it yields the Wertheim E.  The generalization of the 
Wertheim approximation to mixtures has been discussed in a number If 

 reference^.^^ 

D. The y+O Limits 
We have just generalized the Clausius-Mossotti and Onsager approxima- 

tions for E to fully defined approximations on the pair-correlation level, 
using a conceptual framework that makes them directly comparable to the 
Wertheim approximation. We shall refer to these new approximations as the 
two-particle Clausius-Mossotti and Onsager approximations, respectively. 

We now seek a deeper understanding of the meaning and status of these 
approximations. We shall gain it by noting that each approximation can be 
associated with a precisely defined “continuum model” of matter, within 
which it becomes exact. Each of the continuum models can in turn be de- 
fined as the y+O limit of a molecular model, in which the pair potential is 
given by (2.4) and (249 ,  and in which (2.68) becomes exact. 

It is clear from (2.44) that if one lets y+O with a fixed reference system 
core diameter d ,  one is approaching the limit of completely penetrable par- 
ticles of macroscopic diameter 1 = y - ’. (They are completely penetrable in 
this limit because the hard-core reference diameter d shrinks to zero com- 
pared to 1. As a result, particles are free to fully permeate each other.) 

We note that one can view this continuum limit either as an observer 
scaled to a fixed d as y+O [the pd3 and /?m2/d3  are natural to hold fixed 
to assure a fixed y = (4 r /9 ) /?m2p]  or as an observer on a scale of 1 looking 
at molecules with cores of diameter d shrinking in the limit dy+O. (For the 
latter observer, the number of particles per unit volume becomes infinite, 
but the m 2  associated with each one becomes infinitesimal; i.e., the par- 
ticles have become elements of a dielectric “continuum.”) 

We saw in Ref. 4 that when w,(r) is set equal to zero in the pair poten- 
tial given by (2.44), we recover in the continuum limit the Clausius-Mossotti 
equation for E .  We can relate this directly to our discussion here by noting 
that as y+O, c(12) assumes the form given by (2.62) and (2.71) because 
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(2.68) becomes exact. The choice 

w,(x)=O for all x 

w D ( x )  given by (2.47) (2.72) 

defines one continuum model in the limit y+O, which we shall call the 
Clausius-Mossotti continuum. From (2.45) one sees that (2.72) implies 0 =O 
for all y ,  and in the limit y+O in which (2.71) holds, the resulting E is seen 
to be the Clausius-Mossotti result from the equations of Section 1I.B [e.g., 
from (2.56b)l. For y = d - ’ ,  (2.72) with (2.71) gives us our two-particle 
Clausius-Mossotti approximation, which completely defines h,  and h , via 
(2.27). 

We now define an Onsager continuum by again choosing 

for x >  1 
wA( x ) = 0 

wD( x)  = - m2x - 3  

but we take 

for x<  1 I wA(x)=m2@ 

WD( x )  =o 

(2.73a) 

(2.73b) 

@-(1-@)(2+@)y=O 

Equation 2.27, with (2.62), (2.7 l), and (2.73), determines h,( x) and h,( x)  
for all x associated with this choice in the y+O limit, in which (2.71) be- 
comes exact. 

To get more insight into the properties of the Onsager continuum, we 
consider first (2.30c), recalling that to recover Onsager’s result (2.30d) one 
has to put 

h-,(o) =o 

We now turn to our expression (2.54) for the limiting case y 4  and con- 
clude that for the A term of (2.54) to be zero in this limit, we have the addi- 
tional relation, which we have incorporated into (2.73). 

@-(1-@)(2+@)y=O (2.74) 

Accordingly we get Onsager’s result (2.30d) in the limit y+O if 0 is chosen 
such that (2.74) is fulfilled. This can also be shown directly by noting that 
(2.74) may be written 1 = (1 - @)[ 1 + (2 + @ ) y ]  or 2 = (2 + @)[ 1 - (1 - @ ) y ] .  
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So by use of (2.56b) 

2 + 0  2(&- 1) 
2(1-0)  2&+ 1 

& =  or 0=- (2.75) 

When expression (2.75) for 0 is put into (2.74) the result (2.3Od) again is 
recovered. 

We note that the two-particle Onsager approximation defined in Section 
1I.C is recovered from (2.62), (2.71), and (2.73) on setting yd= 1 rather than 
letting yd+O. 

Next we investigate the physical interpretation of the Onsager con- 
tinuum. We start by considering the discussion of the field set up by test 
dipoles in a dielectric medium given in Section 1I.B. We compute the 
polarization of the medium for r < R [with K given by (2.58a)l. From (2.60) 
and (2.58) we find ( r  < R )  

bR3 (2+0) (&-  1) F = - K =  - 
Om, 3 0 ~  

K 
- 2 ( 1 - 0 ) & + 2 + 0  

F + K =  
3 0 &  

(2.76) 

(2.77) 

Use of (2.75) then gives 

F + K = O  for r < R  (2.78) 

and accordingly from (10) in Ref. 4, the polarization of the medium for r < R 
is zero; that is, the medium for r <  R has no effect on the field set up by a 
dipole with 0 chosen such that (2.74) is fulfilled. Therefore for r < R the 
medium acts as a vacuum. And this is just the physical assumption under 
which Onsager’s result is derived.’’ Onsager considered a fluid consisting 
of hard spheres with dipoles embedded at the center. He then assumed that 
the hard spheres could be treated as a vacuum and the surroundng medium 
as a continuum with the sought dielectric constant E .  One finds by direct 
calculation that the electric field set up outside such a sphere is reduced by 
a factor 3 / ( 2 ~ +  1) compared to a surrounding vacuum. One sees that our 
result also agrees with this if (2.75) for 0 is put into (2.61). 

Naturally Onsager’s derivation cannot be exact for a molecular fluid, 
since on a microscopic scale the surrounding medium cannot be treated as 
a continuum. On the other hand we have recovered the same expression as 
an exact result in the limit y+O. This is done by choosing a dipole interac- 
tion as given by (2.44), where 0 fulfills (2.74). As we have just shown, this 
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dipole interaction has the same effect as a hard sphere of diameter R= l / y  
with respect to the electric field set up in the surrounding medium; but in 
contrast to the hard sphere, this interaction does not remove the medium 
for r <  R .  Therefore we can increase R(-+oo) without lowering the particle 
density. Thus we get a continuum limit (y+O) in which Onsager’s result is 
recovered as an exact result. [Note that from (2.74) 0 will vary with y and 
accordingly with temperature and density. So 0 cannot be kept fixed to 
yield Onsager’s result.] 

We come finally to the Wertheim continuum, defined by (2.73a) along with 
the choice 

wA(x)  and w , ( x )  for x <  1 

such that hA(x)=h,(x)=O for x <  1 (2.79a) 

I t  follows from Wertheim’s own work,I2 and our extension of it given in Ref. 
13, that (2.45) yields 

(2.79b) 

and from (2.56b) is given by the Wertheim expression 

4 2 5 )  
4 - 6 1  

& =  - 

where 

and (letting f = y - ’ )  

[=( ; ) K ~ P  

(2 .79~)  

(2.79d) 

(2.79e) 

Here 

3K=lWh,( r ) r - ’dr  (2.79f) 

For any yd  one recovers the same E and 0. For y d =  1, one recovers the 
Wertheim approximation rather than the Wertheim continuum. [When we 
speak of Wertheim’s approximation, we mean a suitably generalized form 
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in which the reference potential need not be a hard-sphere potential and c, 
need not be given by (2.66a).] In the Wertheim continuum, one finds g( 12) 
= 1 for all r in a macrosphere (i.e., for all r <  I )  because of (2.65), since 
h,(r)+O for all r <  / (neglecting r-d<<l). Thus in the Wertheim continuum 
there is no correlation between elements of the continuum that are within a 
macrodiameter I =  y 

has pointed out that in the y+O limit, one can regard the core 
parameter 0 as a geometric parameter describing the degree of ellipticity 
of a spheroidal cavity used in defining a local field in a phenomenological 
mean field treatment. Such a treatment, described by Ramshaw, is the ana- 
log of the Debye-Huckel treatment of a simple ionic fluid. 

from one another. 
Ramshaw 

E. Higher Order Approximations Based on y Ordering 
We have shown in the preceding section how certain results that become 

exact as y+O define useful approximations for y=d - I  as well. In this sec- 
tion we derive some further approximations based on the use of y ordering 
that are even more accurate for y = d - I .  One of these turns out to be iden- 
tical to the single superchain (SSC) approximation first suggested by 
Wertheim15* z9 and to the “reference” version of the linearized hypernetted- 
chain (LHNC) approximation developed by  pate^.^' We shall also con- 
sider several closely related approximations, including the Verlet-Weis3’ 
“linear” (LIN) and the m e - S t e l l  analytic direct correlation (ADC) ap- 
proximat ion~,~~ which have the advantage of being expressible in simple 
analytic form. 

It will be useful to define the “anisotropic piece” of a function 412)  by 
subtracting its orientational average over Q l  and Qz from it. We have been 
writing the latter simply as a s ( r )  or as,  but we shall have to deal with 
functions bearing a variety of other subscripts and superscripts in the latter 
part of this section. To accommodate these, we shall sometimes use brac- 
ket notation, 

(2.80) 

although we use the simpler as and aA wherever it seems more appropriate. 
The average over a single orientation will also be important here, and we 
shall use the notation 

(2.82) 
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We note that if 412)  is such that 

(2.84) 

If the pair potential +( 12) is the sum of a spherically symmetric part 4( r )  
plus a linear combination of ideal multipole (IM) terms, 

then for a(l2)=+( 12), (2.83) and (2.84) hold with 

[ +( 12) 1 s= (I( r )  

II +(12)1" = x Ai+fM(12) 

(2.86) 

(2.87) 

For clarity of presentation we restrict our attention here to potentials of the 
form (2.85). As discussed earlier in connection with (2.44), if a potential is 
given as a sum of a reference term q(12) plus a perturbing term w(12), where 
412)  has a hard core of diameter d, then [+(l2)lA is only well defined for 
r > d .  This means that our perturbing potential w(12) need only be identi- 
fied with the Z,Ai+fM of (2.85) for r > d .  In the following discussion we al- 
ways assume that w( 12) is chosen (for r < d  as well as r >d)  such that 

which holds in particular if w(12) is simply taken to be ZiA,+fM for all r .  
The w(12) is further assumed to be embedded in a y-parameterized family 
of potentials w(12; y )  with w(12; d-')=w(l2),  where d is a characteristic 
particle size and w(12; y )  is of the form 

with wi( y r )  orientation independent and Gi dependent only on orientation. 
In the Lebowitz, Stell, and Baer scheme6 the decomposition of +(12) into 

its short-ranged (SR) part, which we here identify with [+(l2)ls, and long- 
ranged (LR) part, which we identify as [+(l2)lA, induces a corresponding 
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decomposition of the functions Fa( 12), h(12), and c( 12): 

F,( 12) = F,Sy 12) + FpR( 12) 

h( 12) = h S R (  12) + h L R (  12) 

c( 12) = c y  I2)+cLR( 12) 

(2.90) 

(2.91) 

(2.92) 

Here Fa(12)= ( ~ / Q ) ~ h ( 1 2 )  + (p/Q))6(12), FHjR(12)= ( ~ / Q ) ~ h ’ ~ ( 1 2 ) +  
(p/Q))6(12), and FkR(12) = ( ~ / Q ) ~ h ~ ~ ( 1 2 ) .  In the limit y+O, 

h S R (  12) = h( 12), 

CSR(  12) = c( 1 2), 

(2.93) 

(2.94) 

where the subscript “0” refers to a reference system quantity describing the 
system at a given temperature and density when we have set w(12)=0 or, 
equivalently, when we have taken the limit y+O. In this limit cLR ap- 
proaches the function 

CLR( 12) = u (  12) (2.95) 

where 

u(l2)= -Pw(12; y )  (2.96) 

and ( ~ / Q ) ~ h ~ ~ ( 1 2 )  approaches a sum of all distinct terms that can be 
thought of as chains of alternating &,, and u functions, with Fa,o at each 
end : 

lim ~ k ~ ( 1 2 )  = lim ( fi ) 2 h ~ ~ ( 1 2 )  
Y -0 Y -0 

= /F813),~(34)F6(42)0 4 3 )  4 4 )  

where F,(12), = (p/Q)2h(12), + (p/Q))6(12). When (2.88) is fulfilled, the 
F,(o), on the right-hand side of (2.97) may be replaced by ( p / Q ) a ( o ) ,  since 
the integrations over h ( i j ) ,  yield zero, to give 
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We denote the chain sum of (2.97) as ( ~ / n ) ~ C ? ( l 2 ;  & , o )  so that 

lim hLR( 12) =C?( 12; & , o )  
7-0 

(2.98) 

When q ( r )  is a hard-sphere potential of diameter d ,  use of the OZ equa- 
tion (2.27) plus (2.94) and (2.95), with u(12) adjusted inside the core region 
r < d  to give g(12)=0 for r < d ,  defines an approximation that we call the 
lowest-order y-ordered approximation (LOGA). The further approxima- 
tion that co( 12) is equal to zero for r > d  then yields the MSA. As one of us 
has discussed in detail elsewhere, the LOGA also results from using the 
same v in (2.97) along with (2.93) and (2.90).33-35 

For the simple potential given by (2.85), one can identify at this level of 
approximation the long-range parts of the correlations with their aniso- 
tropic parts and the short-range parts with their symmetric parts, and fur- 
ther identify the latter with pure reference system functions. Thus we have 

CLR - 
- C A  

hLR = h ,  
CSR - - c s = c o  

h S R = h S = h O  

(2.99) 

(2.100) 

at this level of approximation. 
We note that in the y+O limit cLR and hLR are approaching functions 

that are of first order in y3 (for fixed y r )  while cSR and hSR are approach- 
ing functions of zeroth order in y3 (for fixed r). Thus for arbitrary y ,  (2.95) 
and (2.98) define approximations that are exact through first order in y3 for 
fixed y r ,  whereas (2.93) and (2.94) are only exact through zeroth order for 
fixed r. To next-higher order we find, for potentials that satisfy (2.88), 

cSR = c o  +hohLR (2.10 1 a) 

and 

hSR =ho + h o h L R  (2.10 1 b) 

These results are exact through O(y3) for fixed r. Thus, if we use (2.101) 
instead of (2.100) with (2.95) and (2.98), we might anticipate an improved 
approximation. Let us investigate this. Adding cLR to both sides of (2.101a) 
and hLR to both sides of (2.101b), we find [using (2.95)] 

c = v + c o  + h o h L R  (2.102a) 
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and 
h = hLR + h , + h , h LR 

= h ,  +g ,h  LR (2.102b) 

If we stop here and use the LOGA expression for hLR(12) in (2.102b), the 
result coincides with the LIN approximation, first suggested by Verlet and 
Weis on somewhat different  ground^.^' It is a useful approximation, to 
which we shall return. If we instead use the LOGA expression for hLR(12) 
in (2.102a), we have a closely related approximation, used by H m e  and 
Ste11,32 which we call the analytic direct correlation (ADC) approximation. 
Since the LOGA hLR can be thought of as being associated with the partic- 
ular choice of ti in (2.97) being given by 

the ADC approximation can be written as 

[It is worth pointing out that if one puts the ADC result (2.103b) into the 
OZ equation (2.27), one will not recover the LINh. The resulting h will have 
an LR part coinciding with the LIN hLR through 0(y3) for fixed y r  an SR 
part coinciding with the LIN hSR through O(y3)  for fixed r ,  but it will have 
higher order terms in y3 that do not coincide with those found in the LIN 

Instead of stopping with the LIN and ADC results, we shall exploit 
(2.102) by eliminating hLR from our equations to get a relation among c,, 
h, ,  ti. and h, .  To do this we begin by noting from (2.95) that 

h .I 

[cLR],=0 or [cLR],=cLR (2.104a) 

It follows similarly from (2.97) that for potentials that satisfy (2.88), 

[ h L R ] , = O  or [ hLR],=hLR 

[ h,hLR],=O or [ h,hLR],=h,hLR (2.104b) 

In fact for such potentials, we have the stronger results 

( C y 2  =o 
( h L R ) 2  = O  

(2.105a) 

(2.105b) 
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for the expressions satisfying (2.95) and (2.97). Operating on (2.102) with 
[ 

cs =co (2.106a) 

h, = h,  (2.106b) 

1, and using (2.104), we find immediately 

For c, we find from (2.102a) [using either (2.104b) or (2.106a)l that 

cA = o + h o h L R  (2.107a) 

and for h,  we have the corresponding result from (2.102b) [and either 
(2.104b) or (2.106b)l 

h,  =hLR +hohLR 

h,  =gohLR (2.107b) 

If one uses the LOGA hLR and u in (2.107a) and (2.107b), one has cA in the 
ADC approximation and h, in the LIN approximation, respectively. In- 
stead we can subtract (2.107a) from (2.107b) to get 

hLR = o + h ,  -cA (2.108) 

Reinserting this into (2.107a) gives 

c, =u+ho[ U + h A  - C A I  (2.109a) 

which can be rewritten as 

or 

(2.109~) 

or 

CA = + ( 1 - g o  ’ ) h, (2.109d) 

Along with (2.106) and the 02 equation (2.27), (2.109) yields a closed set 
of equations for c, and h,. Equation 2.109 is identical to Wertheim’s SSC 
approximation for the Hamiltonian under consideration and is also identi- 
cal to the “reference” form of Patey’s LHNC approximation. [Strictly 
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speaking, the LHNC requires that one use the hypernetted chain (HNC) 
approximation for h ,  in (2.109), but Patey instead uses the best available 
h ,  values.] The SSC approximation has also been rederived on the basis of 
a graphical resummation procedure by Henderson and Gray,% who call it 
the generalized mean field (GMF) approximation. 

We note that to our level of approximation, (2.109) can just as well be 
written, from (2.106), as 

c, = u + h , [  u + h ,  - C A I  (2.1 10) 

From (2.107a), (2.97), and (2.88) we find that 

(c,)2 =o (2.111) 

For c( 12) satisfying (2.11 l), we can decouple the OZ equation (2.27) into 
two separate OZ equations 

The approximation h,  = h ,  is known to lack high precision for some sys- 
tems, such as liquids of strongly polar particles, but (2.1 10) with (2.1 12b) 
may prove useful in such cases if the h ,  used in (2.1 10) has been accurately 
assessed by some independent method. Similarly, (2.107a) and (2.107b) used 
with the LOGA hLR may well represent better approximations to cA and h,  
than (2.102a) and (2.102b) represent for the full c and h. We shall call (2.1 10) 
with (2.1 12b) the renormalized simple superchain (RSSC) approximation. 

There is a powerful argument that dictates the use of (2.1 10) rather than 
(2.109)-and the replacement of h,hLR by AshLR in (2.101) through 
(2.103)- when h,  is appreciably different from h,  (and incidentally pro- 
vides an example of one important effect of their difference). The isother- 
mal compressibility depends on h only through h ,  and is wholly insensitive 
to h,, since 

Thus for dipolar spheres the very existence of a critical point hinges on the 
difference between h ,  and h,  (or, equivalently, c, and c,), whereas for ref- 
erence systems that already have a critical point (such as a Lennard-Jones 
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system), the shift in critical parameters as one adds w( 12) is entirely due to 
the difference between h ,  and h,  (or, equivalently, c, and cs). Now for the 
latter systems, if (2.109) were used in (2.15) to determine E ,  then ae/aT has 
a specific heat anomaly at the reference system critical point rather than its 
true critical point, but if (2.1 10) is used, the resulting ae/aT has a specific 
heat anomaly at the true critical point, as expected on the grounds of ther- 
modynamic scaling theories. The superiority of (2.1 10) over (2.109) when 
h ,  and h ,  differ appreciably suggests that in such cases, (2.101) through 
(2.103) can also be improved as approximations through replacement of 
h,hLR by AshLR, since (2.110) rather than (2.109) follows from our deriva- 
tion without the use of (2.106) if and only if this replacement is made. The 
replacement of the remaining c, and h ,  in (2.101) by c, and h,,  respec- 
tively, on the other hand, does nothing to the form of (2.1 lo), which is in 
fact insensitive to the replacement of these quantities by any functions that 
depend on the arguments 1 and 2 only through r I 2 .  

We can improve our approximations still further by going one order 
higher in our y-ordered result for cLR and hLR. But to do the bookkeeping 
involved, we must introduce a bit more notation than has so far been nec- 
essary. We shall use subscript 1 to refer to first-order results for LR func- 
tions in y 3  (for fixed yr)  and first-order results for SR functions in y 3  (for 
fixed r ) .  For the corresponding second-order results we shall use a sub- 
script 2. In this notation, for cLR exact through O(y6) for fixed yr we have 
[when condition (2.88) holds] 

c g  =o+ f [ h k 7 l 2  (2.1 13) 

where hky is given by (2.97), that is, 

h,L,p ==C(12; F8,,) (2.1 14) 

For hLR exact through O(y6) for fixed yr ,  we have 

h312)=6?(12 ;  F ; , " l , ) + ; h s o * ( h ~ ) z * h s ,  (2.1 15) 

where 

Here e(12; 4s;)) denotes the same chain sum (2.97) that defines C(12; F8,,) 
except with &,,(ij) everywhere replaced by F;;,(ij) = ( p / G ) ' h S R ( i j ) ( , ,  + 
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( p / Q ) S ( i j ) ,  with h S R ( i j ) , , ,  given by 

h:: = h ,  +h,h$; 

The c;; corresponding to (2.1 16) is 

c;; =co +h0hhY 

c = cf,Y + cc"zp 

The c given by 

is thus, from (2.113) and (2.1 17), equal to 

(2.1 16) 

(2.1 17) 

(2.1 18) 

c = o + f ( h h Y ) 2 + c o + h o h ~  (2.1 19) 

To find the corresponding cs we operate on (2.119) with [ Is, using 

[ hoht;Y J s = 0 (2.120) 

to get 

cs = co + ; [ ( ht;': )'I 

' A  = ' + [ ( h h y ) 2 ]  A + [ oh%] A 

(2.121) 

The corresponding cA is given by 

(2.122) 

(2.123) 

we have 

A (2.124) 

The LOGA expressions for h K  and t) can be used in (2.1 19) to (2.124). 
In (2.1 19) they yield 
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For h given by 

h=hsc + h g  

we have, from (2.1 16), 

h = h g  +ho +hoht;‘: 

(2.126) 

(2.127) 

The corresponding h ,  is given by 

because 

and the corresponding h ,  is thus given by 

h, =e( 12; F::,) + [ hs,O* (hh:)’* A,,,] , +hob$ (2.130) 

These expressions for h ,  h,, and h, are not as readily evaluated with the 
aid of the LOGA results as the corresponding expressions involving c. 
However, we can take a somewhat different tack and derive a higher order 
approximation analogous to (2.1 10) that does not require explicit use of h E  
given by (2.1 15), just as (2.1 10) did not require use of (2.97). We shall drop 
the subscripts I and 2; the method will treat hLR in second order wherever 
it appears linearly and in first order wherever it appears quadratically. We 
use our first-order results (2.101) to relate cSR and hSR to hLR.  

To (2.101) we add the second-order result 

(2.131) CLR - - u +  $(hLR)* 

The first-order result that we shall use in assessing hLR comes from (2.107b). 
I t  is 

(2.132) 

Equations 2.101, 2.131, and 2.132, along with the general relation 

c == CSR + C L R  
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give 

(2.133) 

Here we note, as we did in connection with (2.109) and (2.110), that to 
our level of approximation (2.133) can just as well be written 

This yields, on application of [ ] A  and [ Is, 

(2.134) 

(2.135a) 

(2.135b) 

When all components in the rotational-invariant expansions of h,  and h i  
are neglected except those already in that of the MSA h,,  (2.135) coincides 
with the relation for c, given in the QHNC (quadratic hypernetted chain) 
approximation3* developed by Patey. The relation for cs in the QHNC is a 
bit different from our equation (2.135b). It reduces to the HNC result rather 
than the exact result when the anisotropic perturbing term w(12) in the 
potential goes to zero, just as the LHNC result for cs does. Because of ap- 
preciable inaccuracy of the HNC reference system result, Patey actually 
works with an improved “reference version” of the QHNC, in which cs is 
given by an expression that correctly reduces to the exact co when w( 12) = 0; 
it is (in our notation) 

c,=c,+(h,-ho)-In (2.136) 

where B ( r )  represents the contribution to f[h;], that comes from retain- 
ing only the terms in the rotational-invariant expansion of h, that already 
are in the MSA h,. 

F. Other Extensions of the Lowest-Order y-Ordered Results 
In the preceding section a pair of approximations were given-the LIN 

and ADC approximations- that can be expressed directly in terms of the 
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LOGA or MSA results for c( 12) and h(12). In this section we discuss several 
other approximation schemes that also directly build on the MSA expres- 
sions, but involve features that go beyond the use of y ordering. 

Before proceeding further it is worthwhile pointing out the precise dif- 
ference in form between the LOGA and MSA results. As noted in Section 
II.E, the difference arises in the assumption concerning the hard-sphere 
reference system direct correlation function cg( r )  outside the diameter d .  
The LOGA is defined by (2.27) with 

h(12)=-l  for r < d  (2.137) 

c(12)=co(r)+u(12) for r > d  (2.138) 

while in the MSA, the c o ( r )  is itself taken to be zero for r > d  so that (2.138) 
is replaced by the simpler 

c(12)=0(12) for r > d  (2.1 39) 

The LOGA is identical to the optimized random phase approximation 
(ORPA) of Andersen and Chandler.39 The "optimized" u they consider is 
defined by using (2.138) for r < d as well as r > d .  

Following the notation of (2.98), we can write the LOGA h( 12) as the sum 
of two terms 

P G A (  12) = h o( r ) + e ( 12) (2.140) 

For perturbing potentials satisfying (2.88), the MSA h(12) is given in terms 
of the identical function C?(12), and differs only in that e ( l2)  is added to 
the MSA approximation to ho(r )  rather than the exact h o ( r ) :  

12) = h ,""A( r ) + e ( 12) (2.141) 

The h r S A (  r )  [which is identical to the Percus-Yevick h,( r ) ]  is a sufficiently 
good approximation for the differen e in structure predicted by (2.140) and 
(2.141) in the fluid region to be negligible at all but the highest liquid den- 
sities. Moreover, E computed from h( 12) by means of any one of the several 
paths we have discussed in earlier sections is totally insensitive to dif- 
ferences in ho(r ) ;  that is, the E~~~ and the E~~~ are identical. 

As usually formulated, both the LOGA and the MSA are defined only 
for systems with hard-sphere reference potentials. They can be im- 
mediately extended, however, by using one of several perturbationrn, 4 '  or 
variational schemes4' available to relate soft-core reference potentials q( r )  
to hard-core potentials with state-dependent core diameters. [Of these the 
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prescription by Weeks, Chandler, and Andersen (WCA)41 is the one that 
appears to have the greatest overall utility.] Alternatively, one can simply 
replace (2.137) by 

h(12)=h0(r) for r < d  (2.142) 

where the d in  (2.142), (2.138), and (2.139) is to be regarded as small-r cutoff 
distance below which the perturbing u( 12) is given by 412)  -co( r )  rather 
than the actual - p w (  12). It turns out that LOGA-MSA approximation for 
E is strictly independent of this d. The LOGA and MSA h(12) do depend 
on d, which can be chosen, for example, according to the WCA prescrip- 
tion4' for an effective hard-sphere diameter. 

One way of developing approximations that go beyond LOGA or MSA 
is to make use of a cluster expansion of 412)  in terms of p, ho(r) ,  and e( l2)  
that was derived by one of us34* 43 and independently by Andersen and 
Chandler.44 The expansion can be systematically ordered (nodally ordered) 
according to the number of arguments appearing in the cluster integrals. 
Through terms with three arguments (nodal order 3), one has 

In - = '2 ( 12) + pJd(3) S( 13)S(23) [ 2;; ] 
+2p/d(3) s(13)X(23) (2.143a) 

where 

Verlet and Weis argued3' that one could expect to develop a satisfactory 
approximation scheme by retaining in the rotationally-invariant expansion 
of h(12) only the terms that appear on a certain minimal basis, which con- 
sists of the terms that enter the MSA. [For a w(12) of ideal dipole form, 
these are just the S,  A, and D terms of (2.62), defined by (2.20)]. The lin- 
earization of (2.143) that will ensure the retention of these terms and intro- 
duce no others is given by 

g(12)=g0(r) 1 +e(12)+pJd(3)5(13)5(23) [ 
(2.144a) 
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S( 12)=C?( 12)h0(r) (2.144b) 

X( 12)=h0( r )  +e( 12) (2.144c) 

Retention of only the two-node terms yields the “linear” (LIN) ap- 
proximation 

g(12)=go(r)[ 1 + e ( W l  (2.145) 

which Verlet and Weis3’ found to be significantly better for dipolar spheres 
than the full two-node “exponential” (EXP) approximation4 

g( 12) = g , ( r )  exp e( 12) (2.146) 

Although the approximation corresponding to (2.144) on the free-energy 
level was found by Verlet and Weis to be quite accurate for dipolar spheres, 
(2.144) itself was found to exaggerate the structure of h(12) at the second- 
nearest-neighbor di~tance,~’ as discussed in Section 111. 

A quite different way of improving the MSA result follows from the ob- 
servation that the function c( 12) - u( 12) is a short-ranged and relatively 
structureless function outside of the repulsive core region of interparticle 
interaction. Ha’ye, Lebowitz, and Stell13 noted that this suggests a gen- 
eralized mean spherical approximation (GMSA) procedure, which exploits 
the fact that (2.27) can be solved analytically for a certain class of short- 
ranged 412). Hsfie and Stell have further considered this idea for dipolar 
spheres, developing a self-consistent Ornstein-Zernike approximation 
(SCOZA), a version of the GMSA in which thermodynamic self-consistency 
is incorporated into the determination of c(12).I6 In their SCOZA for di- 
polar spheres one has (setting d= 1 without loss of generality) 

h,(r)= - 1, h, (v )=h , ( r )=O for r <  1 (2.147a) 

For r > 1, one has 

Se-“‘ cs(r)=- 
r 

A l e  A,e 
ca(r)= ~ - ~ 

r r 

cD(r)  = pm2 +2A,b,( r )  +A,b,( r )  
r3 

(2.147b) 

(2.147~) 

(2.147d) 
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with 

where the six parameters S, K ,  A , ,  A , ,  A , ,  and A, are determined uniquely 
as follows. Prescribing a dielectric constant E ,  contact values hA( 1 + ), h ,  
(1 +), and configurational internal energy per particle, 

dQ,dQ, 
u= ”[ h(12)+l]u(12)dr1, 

2 Q 2  

determines A , ,  A , ,  A , ,  and A,. This in turn fully determines, via the OZ 
equation (2.27), hA(r )  and h, ( r )  for all r .  

Further prescribing that both the inverse compressibility a,, 

a,= 1 -p l c s (r )dr  (2.148) 

and the pressure P via the virial theorem [which involves h,( 1 +)] must yield 
thermodynamic results consistent with u = u ( p ,  p )  further fixes S and K .  

This in turn fully determines h , ( r )  for all r .  Strictly spealung, the SCOZA 
is silent in regard to the value of any component h,Q(12) in h(12) orthogo- 
nal to the I ,  A ,  or D [i.e., such that JQ(12)P(12)dQ2,dQ2 = O  for P(12)=Z, 
A(12), or D(12)]. However, for convenience, it is simply assumed that all 
such components are zero until there is some good evidence that they can- 
not be reasonably neglected, and h( 12) is approximated by 

h( 12) = hs( r )  + h,( r )A( 12) +A,( r )D( 12) (2.149) 

We turn now to a general diagrammatic representation that applies& to 
nearly all the approximations we have considered in Sections 1I.E and 1I.F. 
We write 

where 

rn(12)= [ f ( r ) +  lId(12) (2.151) 

and 

(2.152) 
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while f ( r )  and d(12) vary from approximation to approximation. For the 
MSA 

wheref,(r) is the “Mayer f-function” of the reference potential-that is [exp 
- & ( I - ) ]  - 1, where q ( r )  is the hard-sphere reference potential. In the SSC 
- LHNC-GMF approximation, 

f (  r ) = h,( r ), d( 12) = u( 12) 

For the RSSC approximation of Section II.E, defined by (2.1 
(2.1 12b), 

f (  r )  = h,  ( r  ), d( 12) = u( 12) 

For the approximation defined by (2.135a), 

(2.154) 

0) and 

(2.155) 

f( r )  =As(‘), d( 12) =u(  12)+ ~ f[hf41, (2.156) 
gs2 

and for the SCOZA, 

f (  r ) =fo( r ) , d(  1 2) = u ( 1 2) + s( 1 2) (2.157) 

where s(12) is given by the sum of the right-hand-sides of (2.147~) and 
(2.147d). 

The OZ equation for c, and h ,  can be written as 

where the asterisk stands for convolution. Equations 2.150 and 2.158 can 
be combined to readM 

qA = p [  m*m+m* f q A  +fq,*m+m*q, 

+f% * 17 +f17.4 * fv, 1 (2.159) 

It immediately follows upon repeated iteration of (2.159) that we have the 
following diagrammatic descriptions: 

h ,  = a line representing m( 12) plus all distinct planar graphs such 
that each is obtainable by the following prescription. Take a 
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convex polygon, and label a pair of contiguous vertices 1 and 
2, respectively. Then delete or do not delete the line between 1 
and 2 and add some or no nonintersecting straight lines be- 
tween any vertices. Each line of the polygon is an rn-bond ex- 
cept the undeleted line between 1 and 2, which is anj-bond, as 
are all added lines. (2.160) 

cA = the line representing m(12) plus the sum of all graphs in (2.160) 
in which the line between 1 and 2 is retained (2.161) 

In the case of (2.154), these prescriptions are essentially the ones used by 
Henderson and Gray to characterize their GMF.36 

111. POLAR-NONPOLARIZABLE FLUIDS: ALTERNATIVE 
FORMULATIONS, QUANTITATIVE RESULTS, AND 

COMPUTER SIMULATIONS 

Section I1 was mainly concerned with the derivation and statement of 
formal results, with emphasis on exact expressions for the dielectric con- 
stant and the motivation for several approximate theories from a more or 
less unified point of view. Section I11 describes these and other theories in 
more detail, giving alternative derivations as well as numerical results for 
model systems. We also discuss the computer simulation of polar fluids and 
compare the various theoretical approximations. There have been a consid- 
erable number of computer studies of simple polar 3'* 47-54 using 
both Monte Carlo (MC) and molecular dynamics (MD) techniques. How- 
ever, such calculations are problematic and the computer simulation of di- 
polar systems has been the subject of recent debate." The problems stem 
from the long-range nature of the dipolar interactions and the great diffi- 
culty of obtaining estimates of E. We review some of this work and briefly 
discuss the problems involved. 

Both the theoretical and computer results are presented in a logical rather 
than historical order, and we do not attempt an exhaustive review of all the 
data that have been compiled. Instead we attempt to evaluate as far as is 
possible the accuracy of the different approximations and focus on the 
physical insights that can be gained from current theory. The numerical 
examples presented are chosen from this perspective. 

A. Models and Formal Relationships 
We consider simple models defined by a pair potential of the form 

u( 12) = uoo"( r )  +u,,( 12) +UDQ(12) + UQQ( 12) + * . . (3.1) 



230 G . STELL, G . N .  PATEY AND J . S . HQYE 

where uW(r) is a spherically symmetric short-range potential and uDD( 12), 
uw( 12), and uw( 12) represent the dipole-dipole (DD), dipole-quadrupole 
(DQ), and quadrupole-quadrupole (QQ) terms of the multipole expansion 
for electrostatic interactions. Restricting ourselves to linear or axially sym- 
metric quadrupoles, the multipolar interactions can be conveniently writ- 
ten as 

UDD( 12)=uIl2( r)@12( 12) (3.2a) 

uDp( 12)=u123( r)Q,123( 12)+u2I3( r)Q213( 12) (3.2b) 

and 

where 

(3.2d) 

(3.2e) 

(3.2f) 

Here* p and Q are the dipole and quadrupole moments, respectively, and r 
is the distance between particles 1 and 2. The rotational invariants Qrm“’(12), 
exploited by B l ~ m ~ ~  in connection with OZ theory, can be written in the 
general form for axially symmetric molecules 

n 
Y 

(3.3a) 

where Q, and Q, represent the orientational coordinates of particles 1 and 
2, D,, describes the orientation of the vector rI2 =r2 - r l ,  and the Wigner 
matrix element D;,(Q) and the 3 --j symbol are defined in Edm~nds.~’  The 
f me’ can be any arbitrary nonzero constant, and the functions we consider 
correspond to choosing3* f 220 = -2\ /5  and f 224 = 8 m  ; all other 

‘Q is the zz component of the quadruple moment tensor given by Q -  tZiei(3r; -$), 
where zi is the I component of the vector r, describing the position of the charge e, relative to 
the center of mass. 
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coefficients are given by 

(3.3b) 

In Appendix B the Qmn'( 12) referred to in this chapter are written in a more 
explicit and familiar manner. We remark that in Section I1 only dipolar in- 
teractions were considered and a simpler notation was used. However, when 
higher multipole moments are included, a more systematic approach is 
necessary, and rotational invariants56 are particularly convenient and theo- 
retically useful, In the present notation the D(12) and A(12) functions of 
Section I1 are @ ' I 2 (  12) and @ ' l o (  12), respectively. 

The spherically symmetric short-range part of the potential um(r) is 
often taken to be either the hard-sphere interaction 

00 for r < d  
UHs(r)' 0 for r > d  

or the Lennard-Jones (LJ) potential 

where d is the hard-sphere diameter and E and u are parameters char- 
acterizing the LJ potential. Two purely dipolar fluids ( Q  = 0) have been ex- 
tensively studied and will occupy a large part of our discussion. These are 
the dipolar hard-sphere and Stockmayer fluids that correspond to choosing 
um(r)=uHs(r) and uU(r),  respectively. There have also been a number 
of calculations for fluids of hard spheres with dipoles and quadrupoles, but 
the influence of higher multipole moments on the dielectric constant has not 
yet been considered. 

It is convenient12* 30- 38* 56* 58* 59 to expand the pair correlation function 
h(12) in a basis set of rotational invariants. One obtains 

where 

/A( 12)@.""'( 12)df2,dQ2 
h""'( r )  = 

J[ @mn'(12)]2dS21dP2 

(3.6a) 

(3.6b) 
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For purely dipolar systems this gives the terms of the WertheimI2 expan- 
sion (2.21) used in Section 11, with the projections h,(r) and h,(r) becom- 
ing h1I2(r) and hl"(r) in the present notation. 

For an infinite system, the dielectric constant E is given by the Kirkwood 
relationship4. '9 lo* 

( E -  1)(2&+ 1) 
=Yg 9E (3.7a) 

where 
( M 2 >  N- I g = ~ = 1 + - ( ( P I * p 2 )  

N Y  Y2 

= 1 + - h"O(  r )  d r  (3.7b) p J  3 

y=477pp2p/9 ( p =  l/kT), N is the number of particles and M the total di- 
pole moment of the system. The dielectric constant can also be obtained 
through the limiting expression4* 5. lo 

( E -  1)2 
h1I2( r)+ as r+m 

4nepyr3 

These equations relating E and h( 12) were derived in Section I1 and provide 
useful routes to E.  If h(12) is exact, both (3.7) and (3.8) must yield the same 
dielectric constant. In fact, however, self-consistency holds under much 
weaker  condition^,^^ which are satisfied by several approximate theories. 

B. Integral Equation Theories 

I .  The Mean Spherical Approximation 
The mean spherical approximation (MSA) is defined by three equations 

relating the pair correlation function h( 12) and the direct correlation func- 
tion c( 12). These are'2. 56 

h(12)-c(12)= ?{~(12)h(32)d(3) 47T (3.9a) 

g(12)=0 for r < d  (3.9b) 
and 

c( 12) = - pu( 12) for r >d  (3.9c) 

where g(  12) = h( 12) + I ,  p is the number density, and d(3) indicates that the 
integration is to be taken over the position and angular coordinates of par- 
ticle 3. Equation 3.9a is the Ornstein-Zernike (OZ) relation, (3.9b) is an 



DIELECTRIC CONSTANTS OF FLUID MODELS 233 

exact result for hard particles, simply stating that such particles cannot 
overlap, and (3.9~)  is the closure relation characterizing the MSA. The MSA 
was first applied to polar fluids by Wertheim,12 who obtained a completely 
analytical solution for dipolar hard spheres. Formal solutions to the MSA 
for arbitrary multipolar potentials have been obtained by B l ~ m . ~ ~  In gen- 
eral, however, it is very difficult to find analytic expressions for 412)  and 
E ,  and one must resort to numerical methods.30* 38, 58, 59 Although the MSA 
is a rather inaccurate theory, many of the techniques pioneered by 
Wertheim12 have proved to be very useful in the solution of more accurate 
approximations. We shall write in detail the formal MSA results for the 
general dipole-quadrupole system and indicate how the equations simplify 
when either Q or p vanishes. 

The exact solution of the MSA for the potential defined by (3.1) has the 
fom56, 59 

h(12)=hOyr) + h ” “ r ) @ y 1 2 )  +h”’(r)@.”2(12) + h ” ’ ( r ) @ y l 2 )  

+ ~ 3 ( ~ ) @ 1 2 3 (  12) + h 2 y  r)cp2y12) + ~ 2 1 3 ( ~ ) ~ ~ 1 3 (  12) 

+h220(r)@220(  12)+h222(r)@222( 12)+h224(r)@224(12) (3.10a) 

where 
ho”( r )  = - I ( h (  12)dQ, dQ2 

(477)2 - 
h I10 ( r ) = -  J h (  12)@”0( 12) dQ,  d o 2  

(47712 

(3. lob) 

(3 .10~)  

(3.10d) 

(3.10e) 

(3.10f) 

h 222 ( r ) = -  25 J h ( 1 2) 12) dQ I dQ2 (3.10h) 
1 4 ( 4 ~ ) ~  

h224( r )  = 45 ~ h ( 1 2 ) ~ 4 (  12) d ~ ,  d a 2  (3.101) 
2 2 4 ( 4 ~ ) ~  
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and dS2 = sin 8 dBd+ Expressions for h2"( r ) and h2I3( r )  are not given, since 
they are identical to (3.10e) and (3. IOf), respectively. The direct correlation 
function c(12) is given by an analogous set of equations, and for a single- 

- h2", c121 = - c 2 I 1 ,  and c123 = -c213. The rotational invariants included in 
(3.10a) form a closed set under the generalized convolution of the OZ 
equation (3.9a). This means that when the angular integrations are per- 
formed, this particular set of W'"''( 12) will generate only themselves and one 
another. The MSA closure (3 .9~)  contains only invariants belonging to this 
set, hence (3.10a) constitutes an exact solution. Fourier transforming (3.9a) 
and carrying out the angular integrations, it can be shown56. 59 that the pro- 
jections l?"(k) and Emn'(k) must satisfy the equations 

component system one has the symmetry relations, = - h 2 l 3  = 
9 

1 
~ q o 0 O ~ ~ o 0 O ~ o 0 O  (3.1 la) 
P 

(3.11b) 1 - fI10 = 
P 3 3 6 

P 3 3 3 60 5 

l i l l O ~ I l 0  + Z i l l 2 ~ l l 2  + $l2l;I2l + 4 i l 2 3 5 2 1 3  

-i112 1 = ~ ~ l 1 0 E 1 1 2  + L ~ l 1 2 E l 1 0  + 1 ~ l 1 2 E l l Z  + L ~ 1 2 1 E 2 1 1  + 3i1215213 

+ 2 4 1 2 3 ~ 2 1 1  + 8 i l 2 3 5 2 1 3  (3.1 lc) 
5 5 

1 = - 1 ~ l l 0 ~ 1 2 1  + L p 2 E 1 2 1  + 12i121F123 - 2 7 2 1 5 2 2 0  

P 3 15 5 5 

(3.1 Id) + 1 61212222 + 12 i l235222 + 32 61235224 
25 25 5 

P 3 10 15 50 
-$23 1 = $10~123 + L i l 1 2 ~ l 2 1  + 4 4 1 1 2 5 1 2 3  + l 6 l 2 1 5 2 2 2  

-I2' 224 (3.11e) + 4 6 1 2 1 5 2 2 4  - 2 6 1 2 3 5 2 2 0  + -61235222 8 + -h 5 
15 15 25 15 

+211 1 = ~ ~ 2 1 1 E 1 1 0  + L ~ 2 1 1 E 1 1 2  + E ~ 2 1 3 5 1 1 2  - 2,2O52Il 

P 3 15 5 5 

+ 1 4 2 2 2 5 2 1 1  25 + G 6 2 2 2 ~ 2 1 3  25 + 3262245213  5 (3.11f) 

-6213 1 = ~ & 2 1 1 ~ 1 2 2  + ~ ~ 2 1 3 ~ 1 1 0  + 462135112 - 262205213  + 1 6 2 2 2 ~ 2 1 1  

P 10 3 5 5 50 

(3.1 Ig) + 8 6 2 2 2 5 2 1 3  + 5 i 2 2 4 ~ 2 I l  + L L 2 2 4 ~ 2 1 3  
25 15 15 
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l2 -224 224 --h 2 
45 

(3.1 lh) 

-3222 1 = ~ ~ 2 l l ~ I 2 l  + 1 6 2 1 1 ~ 1 2 3  + 1 i 2 1 3 2 1 2 l  + 1 6 6 2 1 3 ~ 1 2 3  
P 12 7 7 7 

- 2 62202222 - 2 62222220 - 1 62222222 + 5 62225224 
5 5 35 35 

35 63 
+ 16 4 2 2 4 ~ 2 2 2  ; 160 62242224 (3.11i) 

9 i2222222 + - 2 6 2 2 2 ~ 2 2 4  - 2 62242220 + 2 6 2 2 4 ~ 2 2 0  ; 175 7 5 7 

l2  -224 224 +-h 2 
35 

(3.1 lj) 

where .,,mnl- - h m n l -  ern"', and the tilde denotes the Hankel transform 

imn'( k )  =4ni']r2j/(  kr)hmn'(  r )  dr (3.11k) 

j , ( k r )  being the spherical Bessel function. 
Comparing (3. I ) ,  (3.2), and (3.9) immediately yields the closure relations 

and 

The MSA is now reduced to solving (3.11) and (3.12). Equations 3.11a, 
3.12a, and 3 . 1 2 ~  [with (mnf)=(000)]  completely decouple from the rest and 
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in fact define the Percus-Yevick (PY) approximation for a hard-sphere fluid 
at density p. Thus in the MSA the angle-averaged or radial distribution 
function does not depend on the multipolar interactions. The PY ap- 
proximation for hard spheres was solved by Wertheimm some time ago. 

For purely dipolar systems the problem is greatly simplified. The expan- 
sions for the correlation functions reduce'' to 

h ( 12) = hm( r ) + h' lo( r )@' lO(  12) + r)@'"( 12) 

412) = c m ( r )  + ~ ' ' ~ ( r ) @ ' ' ~ ( 1 2 )  +c"'(r)@"'( 12) 

(3.13a) 

(3.13b) 

and only three equations are obtained in Fourier space. These are (3.1 la) 
and the following pair: 

~ p o E ' l o  + ~ p 2 E 1 1 2  (3.14a) 

(3.14b) 

Wertheim'' has shown that for dipolar hard spheres (3.14), (3.12b), and 
(3.12d) can be transformed to yield equations formally analogous to those 
occurring in the PY approximation for hard spheres. This allows us to ob- 
tain analytic expressions for h( 12), c( 12), the various thermodynamic prop- 
erties, and the dielectric constant.12' 61 The dielectric constant of dipolar 
hard spheres is given by the equations 

- 1 #I0 = 

+I12 1 = ~ , - l l o z l 1 2  + l ~ l 1 2 c - 1 1 0  + I&l12E112 

P 3 3 

P 3 3 3 

where 
1 +2x2 

4(x)= ~ 

(1-x)4 

(3.15a) 

(3.15b) 

(3.15~) 

and as before, y =47$p2p/9. We note that the MSA is self-consistent in that 
both (3.7a) and (3.8) yield the same result of E .  In fact this is true for all 
approximations that simultaneously satisfy the OZ equation and the 
asymptotic limit c( 12)+&~~@"~(  12)/r3 as r goes to infinity. Expanding the 
MSA result for smally yields" 

E -  1 15 
E+2 
- =y-  16y3 + . . . (3.16) 

which in the p+O limit is correct6*' to ordery3. The MSA, however, has 
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one physically unrealistic feature. It is obvious from (3.15) that the MSA E 

is determined by the single parameter y ,  whereas physically we would ex- 
pect the dipolar hard-sphere result to depend on two parameters, p~~ 
and p.  

For purely quadrupolar and dipole-quadrupole systems, (3.1 1) and (3.12) 
must be solved numerically. This is briefly discussed in Section III.B.3. We 
note that for purely quadrupolar fluids (p=O),  only the four projections 
(OOO), (220), (222), and (224) occur in the MSA solution.38 MSA results for 
dipole,31, 47, 49 q~adrupole ,~ '  and d ipole-q~adrupole~~ fluids have been 
compared with MC calculations, and in general the agreement is very poor. 
Several examples of this are given in Section 1II.D. 

2. Beyond the MSA: Cluster Series Expansion and Generalized Mean 
Spherical Approximations 

Two further approximations that build on the MSA solution are derived 
in Section 11. These are the so-called LIN and L3 approximations, which 
have been investigated by Stell and W e i ~ ~ ~  for dipolar hard spheres. Both 
theories substantially improve upon the MSA. 

The LIN approximation was first obtained by Verlet and W e i ~ , ~ '  who 
linearized the EXP approximation of Andersen, Chandler, and Weeksa 
This leads to the following approximation for the pair correlation function, 

h(12)= hHS(r )+gHS(r)e(12) (3.17a) 

where 

e( 12) = h M S , 4 (  12) - h E A ( r )  

=A:\,( r)@"O( 12)+ hFsA( r)@"*( 12) (3.17b) 

and the subscripts HS are used to denote "exact" hard-sphere results. The 
LIN approximation for the projections h1Io(r) and h"'(r) is in much 
better agreement with MC c a l c u l a t i ~ n s ~ ~  than the MSA. However, (3.7a) 
and (3.8) do not yield identical results for e. The asymptotic behavior of 
h1I2(r) is unaltered by (3.17a), hence (3.8) merely gives the MSA result for 
E. Equation 3.7a does give a different approximation and for dipolar hard 
spheres, and E is a function of two variables, p and Pp2 ,  rather than just the 
single parameter y .  This is an obvious improvement on the MSA. 

The L3 or "linearized three-node'' approximation consists of the equa- 
tions 

g( 12) =g,,( r ) 1 + e( 12) + P I S (  13)5(23) 4 3 )  

1 +2pJS(13)%(23) d(3) 

I 
(3.18a) 



238 

where 

G . STELL, G . N . PATEY AND J . S.  HQYE 

s ( 12) = h H ~ (  r ) e( 12) (3.1 8b) 

and 

The L3 E is considerably larger than the LIN value, and numerical results 
for both approximations are given in Section 1II.D. 

Stell and W e i ~ ~ ~  also consider two other theories for h( 12). These are the 
self-consistent Ornstein-Zernike approximationi6 (SCOZA) and the closely 
related Pade producing appr~x ima t ion~~  (PPA) of H m e  and Stell. The 
SCOZA is an application of the generalized mean spherical approximation 
(GMSA) of Hp'ye, Lebowitz, and Stell.13 The SCOZA and the PPA are not 
self-contained theories, and they require that several parameters be speci- 
fied as input. For dipolar hard spheres these include the contact values of 
the projections hm(r), hiIo(r), and hiL2(r), as well as the internal energy 
and E .  In the PPA, as its name suggests, the internal energy is supplied by 
the accurate Pade approximant of Rushbrooke, Stell, and Hfie.61 Stell and 
W e i ~ ~ ~  apply the SCOZA by using MC resuJts for the necessary contact 
values and internal energy. They then adjust E until the hm(r), hiIo(r), and 
h"*(r) obtained are in good agreement with Monte Carlo results. Thus by 
essentially "fitting" MC data, the SCOZA provides an indirect estimate of 
E.  Care must be taken, however, to fit only the short-range part of hi"(r) 
and hIi2( r ) ,  since the long-range part is seriously influenced by the MC 
boundary  condition^.^^ This problem is discussed in Section 1II.D. 1. 

3. The Linearized and Quadratic Hypernetted-Chain Approximations 
The linearized and quadratic hypernetted-chain approximations (LHNC 

and QHNC, respectively) consist of the OZ equation (3.9a) coupled with 
closure relations that can be easily obtained3'* 38 by expanding the well- 
known hypernetted-chain (HNC) approximation.66 Alternative derivations 
of the LHNC and QHNC results were given in Section 11, and it was noted 
that the LHNC is essentially equivalent to the single superchain (SSC) ap- 
proximation of Wertheim29 and the generalized mean field (GMF) theory 
of Henderson and Gray.36 Here we describe the HNC approach and write 
the explicit equations for dipole-quadrupole systems.59 

The HNC approximation is defined by the equation 

c( 12) = h( 12) - In g( 12) - pu( 12) (3.19) 

where g(12)=h(12)+ 1. Inserting the h(12) expansion (3.6a) into (3.19) and 
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rearranging, we obtain 

where 

h( 12)-hW(r) 

sooO(r> 
X (  12) = (3.20b) 

and gm( r )  = hm( r )  + 1. The LHNC closure is found3', 3' b y expanding 
ln[l +X(12)] and retaining only the term that is linear in X(12). The solu- 
tion to this approximation is of the same general form as the MSA, with 
only the projections occurring in (3.10a) contributing to h(12) and 412). 
The QHNC approximation is obtained3' by retaining terms to order X'(12) 
in the logarithmic expansion, coupled with the additional assumption that 
we can ignore all terms in the h( 12) and c( 12) expansions except those that 
occur in the MSA solution (3.10a). Equation 3.10a obviously contains the 
minimum subset of projections necessary to treat the pu(12) part of (3.19) 
correctly. The assumption that all other terms in (3.6a) [and the analogous 
expansion for c( 12)] can be neglected is very arbitrary, and the QHNC ap- 
proximation is inconsistent in some  respect^.^'^ 59 Ne vertheless, the terms 
included in (3.10a) are sufficient to totally determine the thermodynamic 
properties and the dielectric constant. In addition, the QHNC has proved 
to be a very good approximation, particularly for purely dipolar5' and 
purely quadrupolar 38 fluids. 

The solution of the LHNC and QHNC approximations proceeds much 
as in the case of the MSA. One must solve (3.11) subject to appropriate 
closure relations linking the c m n ' ( r )  and h m n ' ( r )  projections. These are 
found by substituting the expanded HNC equation into the expression 
(3.10b) through (3. lOi) [with h m n ' ( r )  replaced by cmn'(r)] defining the 
cmn'( r ) .  The QHNC approximation for dipole-quadrupole fluids yields59 

cm( r )  = exp qm( r )  - pum( r ) + ~ B m ( r )  ] -qm(r ) -  1 (3.21a) I gm(r)z 
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when (mn/)=(112), (123), (213), or (224), and 

for all remaining projections. The Bmn'( r )  for dipole-quadrupole systems59 
are given in Appendix C. For purely dipolar fluids, B"'(r )  = B"O( r )  = 0 and 
Bm(r ) /gm(r ) '  can be written in the relatively simple form 

For hard particles [i.e., u m ( r ) = u H s ( r ) ]  (3.21) are applied for r > d ,  and for 
r < d  the closure relations are given by (3.12a) and (3.12b). For systems 
without hard cores such as the generalized Stockmayer fluid [i.e., u m ( r )  = 
uu( r ) ]  (3.2 1) completely define the closure. The LHNC closure relations 
can be obtaineds9 by setting all the Bmn'(r )  to zero in (3.21). This gives a 
set of equations considerably simpler than the QHNC results. 

Equations 3.1 1, 3.12, and 3.21 are complete and could be solved as they 
stand. However, at high densities the results would contain some inaccu- 
racy because of the HNC treatment of the spherical part of the interaction 
potential. This can be avoided to some extent by means of a perturbation 
treatment first proposed by  lad^.^' The application of Lado's technique to 
the present problem is ~traightforward~~.  s8* 59 and results in replacing (3.2 la) 
with the relationship 

c"( r ) = g , (  r)exp Aqooo( r )  + ___ -q"( r ) - 1 (3.23) 
gooo(r)2  1 

where A#""( r )  = qooo( r )  - q,( r )  and the subscript S is used to denote "ex- 
act" results for the fluid defined by the spherically symmetric pair poten- 
tial uooo(r). The radial distribution function g s ( r )  is specified as input, and 
(3.23) ensures that the correct result gm( r ) -+g , (  r )  is obtained in the limit 
of vanishing multipole moments. In practice, all  calculation^^^^ ", s9 have 
been done using the more accurate closure (3.23) rather than (3.21a). 
Equations 3.21 b, 3.2 lc, and 3.23 are sometimes called the "reference" or 
"corrected" QHNC [or LHNC, if Bmn' ( r )  = 01 approximation, but since no 
ambiguity exists here, we simply refer to the QHNC (or LHNC) approxi- 
mation, with the use of (3.23) being understood. For hard-core potentials 
g s ( r ) = g H s ( r )  and is often taken3', 389 '*. s9 to be Verlet-Weis68 f i t  to MC 
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data. For generalized Stockmayer fluids g s ( r ) = g w ( r ) ,  and MC or M D  re- 
sults are used.5E 

Two important comments can now be made. First, it is clear on inspec- 
tion of the equations that the LHNC approximation for g m ( r )  does not 
depend on the anisotropic part of u(12) but only on the spherically sym- 
metric term u m ( r ) .  This is similar to the MSA situation except that now 
instead of the PY approximation for the spherically symmetric fluid, one 
obtains the HNC approximation from (3.21a), or the “exact” result if (3.23) 
is used. The QHNC approximation is physically more realistic with hm(r)  
being coupled to the other projections through the B m ( r ) / g m ( r ) 2  term 
in (3.21a) and (3.23). This means that the QHNC g m ( r )  does depend on 
the multipolar interactions. This attractive feature of the QHNC theory is 
very important at low density.58 

Our second comment concerns a problem arising from the arbitrary na- 
ture of the QHNC definition. As stated above, the QHNC correlation 
functions are defined to include only the terms occurring in the MSA solu- 
tion. This means that for purely dipolar fluids h( 12) is given by (3.13a) and 
by (3.10a) for dipole-quadrupole systems. Now in the MSA and LHNC ap- 
proximation no ambiguity exists, since in the Q-0 limit all but three terms 
in (3.10a) vanish and the dipolar solution (3.13a) is recovered. However, this 
is not true for the QHNC theory. In this case the (220), (222), and (224) 
projections do not vanish at Q = 0, and the QHNC result (as defined above) 
for purely dipolar fluids is not recovered. Instead, a different approxima- 
tion is obtained that includes the projections (220), (222), and (224) in ad- 
dition to the (OOO), (1 lo), and (1 12) terms present in the QHNC. This new 
approximation gives results very similar to the QHNC for small p ,  but no 
solution appears to exist for large dipole moments.59 This problem is also 
encountered in attempting to solve the QHNC for systems characterized by 
very small quadrupole moments coupled with relatively large dipole mo- 
m e n t ~ . ~ ~  Thus in general the QHNC is net as satisfactory for dipole- 
quadrupole systems59 as it is for purely dipolar58 or purely q ~ a d r u p o l a r ~ ~  
fluids. We note that taking the p+O limit does give the QHNC approxima- 
tion for a purely quadrupolar system. 

The LHNC and QHNC approximations have not been solved analyti- 
cally, but numerical solutions can be obtained by iteration. This is also true 
of the MSA except for the previously discussed dipolar hard-sphere system 
solved by Wertheim.12 The details of the numerical solution are described 
in Refs. 30, 38, 58, and 59. Essentially, (3.1 1) and the appropriate closure 
relations are written in terms of cmn‘ and f ‘” ‘ and iterated until a solution 
is obtained. This means that all equations defining a particular approxima- 
tion are simultaneously satisfied. The present problem is very similar to that 
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encountered in the familiar integral equation theories for simple fluids,66 but 
there is one significant difference. Equations 3.1 1 require the calculation of 
higher order Hankel transforms, whereas in the simple fluid case only 
zeroth-order Hankel or Fourier transforms are necessary. 

Numerically, the Hankel transforms are best obtained by first calculat- 
ing integral transforms, which we denote by C^mn'(r)[or ;Imn'( r )  or l?""'( r ) ] .  
The E l l 2 (  r ) was introduced by Wertheim,12 and generalized results have 
been obtained by B l ~ m . ~ ~  Blum shows that the calculation of c"""'(k) [de- 
fined by (3.1 Ik)] reduces to taking the zeroth-order Hankel (Fourier) trans- 
form of ?""'(r) if / is even, or the first-order Hankel transform if I is odd. 
Thus one has 

m 
P I ' (  k ) = 4 77 J r 2jo( kr ) C^mn'( I' ) dr (3.24a) 

0 

(3.24b) 

if I is even and 

(3.25b) 

if I is odd. The integral transforms and their inverses depend on / and are 
defined as follows: 

C ^ m n l ( r ) = c m n l ( r )  (3.27) 

J r  S 
(3.28a) 

(3.29a) 

(3.29b) 
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and 

35 m P"4(S) 
2 r  s3 

ds--r'J - dr (3.30a) 15 /r-m C""';(S) iW4( r )  = F 4 (  r )  + 2 

15 35 
2 2  S, 2rS o 

P 4 ( r )  = P"4( r )  + - S22m"4(S) A- - JrS4P"4(s) dr 

(3.30b) 

Although we have written these transformations for cm'"( r )  only, an analo- 
gous set applies to hmn' ( r )  and $'""'(r). Calculating the Hankel transforms 
in this manner has two distinct advantages. First, it allows the long-range 
part of certain projections such as the term proportional to l / r3  in c1I2(r)  
to be treated exactly, and this is of crucial importance3' in the calculation 
of E. Second, both the Fourier and first-order Hankel transforms can be 
calculated using fast Fourier transform techniques, and this is enormously 
advantageous from a computational viewpoint. 

The LHNC or QHNC E can be obtained from either (3.7a) or (3.Q since 
both routes must give E c~nsistently.~' Dipolar hard spheres have been 
studied extensively using both the LHNC3'* 58 and QHNCS8 theories, and 
before discussing the results it is convenient to introduce the reduced vari- 
ables p* =pd3 and p* = (pp2/d3) ' / ' ,  which are sufficient to characterize 
this system. It is founds8 that for a limited range of density (p*=0.2-0.8) 
and dipole moment ( p * 2  =0.5-2.75) the LHNC results are fitted to within 
1% by 

& -  1 I ~ 3y [ 1 + ( l - u , ) y + u 2 y ~ + u 3 y ~ ]  
1 -a,y 

(3.31) 

where a,  = 0 . 4 3 4 1 ~ * ~ ,  u2 = - (0.05 + 0.75pf3) ,  and u 3  = -0,026p*' + 
0.173~*~.  The QHNC approximation for dipolar hard spheres has also been 
solveds8. for a range of density and dipole moments, but the results have 
not been fitted to a simple formula. It is interesting to note that for dipolar 
hard spheres QHNC solutions cannot be found near the liquid-vapor 
coexistence region.69 A number of LHNC and QHNC calculations have 
also been done for Stockmayer fluidss8 and for hard spheres with both di- 
poles and quadr~poles.'~ A detailed description of these and other results 
is given in Section 1II.D. 

An interesting graph theoretical analysis of the LHNC approximation for 
dipolar systems has been given by Ru~hbrooke .~~  He concludes that in the 
limit p*+O the LHNC E reduces to the MSA result for all values of y .  This 
prediction has been confirmed numerically.s8 
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4. A Perturbation Expansion of the HNC Equation 

Agrofonov, Martinov, and Sarkisov7' have recently proposed another 
theory for dipolar hard spheres based on the HNC approximation. Their 
approach is similar in spirit to that followed in the usual thermodynamic 
perturbation theory (TPT) of dipolar  fluid^.^',^^ It is assumed that h( 12) can 
be expanded in the power series 

00 

h(12)= A'h"'(12) 
i -n  

(3.32) 

where A = pp2/d = p*2 . Substituting this expansion together with an anal- 
ogous one for ~ ( 1 2 )  into the HNC equations and equating terms of equal 
order in A leads to a set of coupled integral equations for h(i)(12) and 
-rfi)( 12). Agrofonov et aL7' succeed in solving the approximation obtained 
by considering terms to order A'. This yields the pair correlation function 

h( 12) =A(')( r )  +Ah(')( 12) + A2h(')( 12) + . . . (3.33a) 

where 
3 

A(')( 12) =g(o)( r )( 4 )  a' 12( 12) (3.33b) 

h(2)( 12) =g(o) ( r )  [ A ( r  ) + B ( r  >(cos2 el + cos2 0,) + c( r ) cos el cos 0, 

d 6  
r 

+ D ( r )  sin 8, sin e2 cos(+, - + f ( - (@112( 12))2] 

(3.33c) 

g(')( r ) = h(')( r )  + 1 is the HNC approximation for the hard-sphere radial 
distribution function, and 0 and + are the polar and azimuthal angles de- 
scribing the dipolar orientations with respect to the vector rI2 joining their 
centers; A ( r ) ,  B ( r ) ,  C ( r ) ,  and D ( r )  are density-dependent functions that 
must be found n~merically.~' The A expansions for the projections hm(r) ,  
h"'(r), and h"'(r) can be found by inserting (3.33a) into (3.10b) through 
(3.10d). One obtains7' 

hrm(r)=h(')(r)+A2g(')(r)[  A ( r ) +  + B ( r ) + - ! (  3 r  d r ]  + - a .  (3.34a) 

(3.34b) 
R h'"( r ) = T g ( ' ) (  r ) [ 2 D( r ) + C( r ) 3 + * . . 
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and 

(3.34c) 1 
The similarity of (3.33a) to the TPT expansion7’ is obvious. To order A, 

(3.33a) gives 

(3.35) 

which is identical to the first-order TPT result except for the trivial dif- 
ference that in TPT the HNC approximation g“) ( r )  is replaced by the “ex- 
act” hard-sphere result. The problem with the TPT expansions truncated 
after terms of order A’ is well known.47* 489 61 At least for the thermody- 
namic properties, the series does not converge except for values of A<< 1, and 
indeed the internal energy data given by Agrofonov et al.” indicate that the 
convergence of the present expansion is no better. 

Nevertheless, Agrofonov et al.” calculate the dielectric constant using 
(3.7a) and (3.34b) and compare with previous theories. Somewhat surpris- 
ingly, they find that at p* = 0.8 their values lie quite close to the LHNC re- 
sults for X=p*’ < 1.5. This suggests that perhaps the h expansion for E is 
more rapidly convergent than the thermodynamic results would imply. 
Agrofonov et al.70 correctly point out that some of the difference between 
their results and the LHNC theory may well be due to their use of the HNC 
approximation for the hard-sphere radial distribution function, whereas 
“exact” hard-sphere results are used in the LHNC calculations. This should 
be investigated further. Also it would be interesting to compare the A ex- 
pansions for h l I o ( r )  and h ” ’ ( r )  with LHNC or QHNC results. Some work 
in this direction is already found in Gray and Gubbins (on E )  and Murad 
et al. (on h224).63 

C. Computer Simulations 

The computer simulation of dipolar fluids and in particular the calcula- 
tion of accurate dielectric constants has proved to be a very difficult prob- 
lem for which a completely satisfactory solution has yet to be found.5s There 
has, nevertheless, been a good deal of recent progress and the fundamental 
nature of the problems involved is now recognized and better understood. 
The difficulties all stem from the long-range nature of the dipolar forces. It 
is never possible to simulate a truly infinite system, but for fluids with 
short-range potentials there are approximate methods73 that give essen- 
tially exact results. However, for dipolar fluids this is not the case, and the 
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pair correlation function obtained in a computer simulation will depend on 
exactly how the long-range dipolar interactions are treated. There have been 
a number of MC and M D   calculation^^^^ 3’9 47-54 for simple dipolar fluids, 
with the dipolar interactions being, handled in different ways, but it is now 
clear23’52 that none of these methods gives the pair correlation function for 
the truly infinite system described by approximate theories. This means that 
one must be very careful when attempting to evaluate approximate theo- 
ries by comparing with computer simulations, and this problem is dis- 
cussed at  length in Section 1II.D. 

There are two basic problems associated with the MC or MD calcula- 
tion of the dielectric constant. First, the relationship between E and the 
mean square moment obtained in the computer calculation will depend on 
exactly how the dipolar interactions are handled. For example, the 
Kirkwood formula (3.7a) only holds if h”’(r) is that of an infinite sample, 
and hence does not apply in most computer situations. To find the correct 
relationship for a given simulation method is not a trivial problem, but for 
several commonly applied procedures the appropriate formulas are now 
known.23, 52, 55 The second, and perhaps more fundamental question, con- 
cerns whether the dielectric constant given by a particular simulation is 
really the true infinite-system value, or whether it is it seriously influenced 
by the approximate methods used in the calculation. In the absence of ex- 
act results, this question is obviously difficult to answer fully, but a de- 
tailed and, we hope, useful examination of the problem appears in Section 
III.D.2. 

1.  Periodic Boundaty Conditions 

In most computer simulations of fluids periodic boundary conditions are 
a~pl ied.’~ This means that N particles are placed inside a basic cell of length 
L ,  and the configuration so obtained is imagined to be repeated periodi- 
cally in space to form an infinite array. This procedure succeeds in remov- 
ing surface effects, but it introduces a periodicity that for fluids is quite 
a r t i f i ~ i a l . ~ ~  The configurational energy of this periodic system can be 
calculated in different ways, and these methods are often referred to as 
different “boundary conditions,” with the underlying periodicity being un- 
derstood. For dipolar fluids the pair correlation function as well as the re- 
lationship between E and ( M 2 )  will depend on how the configurational 
energy is calculated. The following methods have been applied to dipolar 
systems. 

The Spherical Cutoff and Minimum Image Methods. Two commonly 
used and easily implemented approximations are the so-called spherical 
cutoff (SC) and minimum image (MI) methods.73 Both involve a simple 
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truncation of the interaction potential, and no attempt is made to take 
long-range interactions into account. In the SC case each particle interacts 
only with neighbors lying within a sphere of radius R, ,  centered on the 
particle. The MI method is similar, but each particle is considered to be at  
the center of a cube of length L and to interact with all neighbors lying 
within the cube. Both the SC and MI methods have been applied to di- 
polar f l ~ i d s , ~ ' .  4749. 52 and h( 12) is foundS2 to depend strongly on the cutoff 
radius in the SC calculations and the system size in the MI case. SC and 
MI results for dipolar hard spheres are shown in Figs. 1 and 2.  It is obvi- 
ous that h"'(r) is particularly sensitive to boundary conditions. I t  has been 
shown52 that in SC calculations h"'( r )  is not only determined by R ,  but is 
also influenced by the underlying periodicity of the system. An interesting 
analysis of the results shown in Figs. 1 and 2 has recently been given by 
Neumann and S t e i n h a ~ s e r . ~ ~  These authors show that the behavior of 
h " ' ( r )  and Iz" ' ( r )  under SC and MI boundary conditions is consistent with 
what one would expect from an examination of continuum models. 

Despite the obvious problems with SC and MI methods, such calcula- 
tions serve to give a first, if somewhat crude, evaluation of approximate 
theories.", 4749, s2 For example, the radial distribution function gooo( r ) ,  the 
thermodynamic properties, and to a lesser extent the short-range part of 
h I I o ( r )  and h 1 I 2 ( r )  are not seriously influenced by the cutoff radius or sys- 
tem size.s2 In addition, SC calculations can provide a relatively unambigu- 
ous, if rather indirect, test of some approximate theories. Although it is not 

25 40 
r / < l  

Fig. 1. Values of h"O(r) for dipolar hard spheres at p * = O . 8  and p*=2.75:  long dashes, 
h $ p ,  N- 108, R ,  =2 .5d;  dots and dashes, h i p ,  N=256,  R, = 3 . 4 d ;  solid curve, h&', N=864, 
R ,  - 5 . l d ;  short dashes, h i ! ,  N=256;  the dotted curve IS the LHNC result for an infinite 
system. (Results from Ref. 52.) 
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Fig. 2. Values of h ” * ( r )  for dipolar hard spheres at p+ -0.8 and p+2 12.75. The curves 
are for the calculations described in Fig. 1. (Results from Ref. 52.) 

possible to simulate an infinite system, one can sometimes adopt a reverse 
strategy and solve the approximate theory for a system with spherically 
truncated dipolar  interaction^.^' Results so obtained can then be directly 
compared with SC calculations. The LHNC and QHNC approximations 
have been compared with MC calculations30~ s2* s89 s9 in ’ this way, and the 
results are described in Section III.D.1. 

For SC and MI calculations, E and ( M 2 )  are thought to be related by 
the formula 

& -  1 -- - 
& + 2  -yg 

(3.36) 

where g= ( M 2 )  / N p 2 ,  M being the total dipole moment of the central cube. 
This relationship was first used in the context of computer calculations by 
Rahman and Stillinger 92 in their M D  simulation of “waterlike” particles, 
and it has since been applied in MC calculations for simple dipolar sys- 
t e m ~ . ~ ~ .  48, 52, s9 Equation 3.36 is of a form usually associated with spherical 
samples, and this has led to some discussion47* 48, 7s-77 of whether, and if so 
how, it should be applied in the computer situation. For example, it has 
been s ~ g g e s t e d ~ ~ - ~ ~  that the appropriate mean square moment to use in 
(3.36) is that of the cutoff sphere rather than that of the total sample. Al- 
though (3.36) is not generally correct for cubic geometry, it can be argued48 
that it is valid for an isotropic fluid under SC or MI boundary conditions, 
and empirically this appears to be true.47* 48v s2 Also empirically it is foundS2 
that the mean square moment of the truncation sphere depends on R ,  and 
clearly violates the upper boundyg- 1 a s y - m .  The mean square moment 
of the cube, on the other hand, always satisfies this condition.47* 52 
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Some insight into (3.36) and its application to the computer situation can 
be obtained by considering a closely related situation mentioned in Section 
1I.A. This is an infinite system, but one in which the dipolar interactions 
are spherically truncated. For such a system, (3.36) is an exact result.4v 5-  30 

The computer simulations employ periodic boundary conditions as well as 
a spherical cutoff, hence do not exactly correspond to the system just 
described. Nevertheless, the situations are very similar, and we would not 
expect the periodicity to influence the formal results. It is clear4- 59 30 that 
for the infinite system with a truncated potential ( M 2 )  is the mean square 
moment of the entire sample, or 

(3.37) 

where the subscripts SC denote the spherical cutoff result, and the integra- 
tion is over all space. For the periodic system constructed in the computer 
simulation calculating ( M 2 )  / N p 2  for the central cell is obviously equiva- 
lent to integrating over all space and thus is the appropriate quantity to use 
in (3.36). 

Unfortunately, the discussion above proves to be rather academic, since 
(3.36) has a serious practical pr~blem.~’.  52 The relationship between E and 
g is such that for ES 10 ( p * 2  2 1 for dipolar hard spheres), small uncertain- 
ties in g lead to very large errors in E .  Thus except for systems with rela- 
tively small dielectric constants, (3.36) is not very useful. 

Truly Periodic Boundary Conditions. It is possible to calculate the con- 
figurational energy of a periodic system taking into account all the images 
of every parti~le.’~ We refer to this method as truly periodic boundary con- 
ditions (TPBC) to distinguish it from other methods such as SC or MI, 
which employ periodic boundary conditions but calculate the energy in an 
approximate manner. From our viewpoint, two basic problems must be 
considered before TPBC can be applied to dipolar systems. The first is 
fundamental and concerns exactly how, and indeed if, the lattice sums can 
be done. Second, for a given summation the formula relating the dielectric 
constant and mean square moment of the periodic system must be found. 
These questions have been recently considered in important papers by De 
Leeuw, Perram, and Smith23, ’’ and the following is a brief outline of their 
results. 

If we consider N particles interacting with an arbitrary pair potential 
u(r,2, a,, Q2), under TPBC the total configurational energy U is given by 

u=+Xf  X 2 u ( r I J + L n , a , , Q J )  (3.38) 
N N  

l = l  / = I  
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where the pair interactions are to be calculated in the MI c ~ n v e n t i o n , ~ ~  the 
sum on n is over all simple cubic lattice points with integer coordinates, and 
the prime indicates that if i=j the n=O terms must be omitted. The sums 
in (3.38) are absolutely convergent only if for large r the bare potential 
satisfies the inequality 

I u(r, a, ,  &)I I A ~  - 3 - ~  (3.39) 

where r=Irl and A and y are both greater than zero. The dipole-dipole 
potential (3.2a) is proportional to l/r3, which obviously does not satisfy 
(3.39). This means that for dipolar systems the sums in (3.38) are only con- 
ditionally convergent, hence must be treated very carefully. In fact, the 
answer obtained depends on precisely how the sums are done.” This prob- 
lem does not appear to have been recognized in earlier work.51v 77 

De Leeuw et al? show that a result can be found by adding the sums in 
a sequence of spherical shells. This corresponds to packing together repli- 
cations of the central cell to form an infinite sphere. The bare potential u( 12) 
is then replaced by the effective interaction GTPBC( 12) and the configura- 
tional energy is calculated by the usual MI procedure. De Leeuw et al.23 
show that for their particular summation, GTPBc( 12) is given by 

(3.40) 

where V is the gradient operator and +(rl2/L) is defined in Ref. 23. The 
first term in (3.40) is the effective potential defining what are usually 
called51s 53, 54, 77 E wald or Ewald-Kornfield boundary conditions. Several 
authors have applied boundary conditions of this type to simple polar 

53v 54 and following tradition we shall refer to these as Ewald 
calculations. 

To obtain appropriate expressions relating the dielectric constant to the 
mean square moment, De Leeuw et al.23 consider the periodic sphere 
formed by replicating the central cell to be embedded in an infinite con- 
tinuum of dielectric constant e’. This is reminiscent of techniques first ap- 
plied by Kirkwood,17 and the infinite limits must be taken properly. One 
then finds23 that the effective pair interaction for this system, +(e’; 12), can 
be written as 

(3.41) 

where qTPBC( 12) is defined by (3.40) and the second term represents the in- 
teraction of the embedded periodic sphere with the dielectric continuum. 
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The dielectric constant of the periodic sphere, E ,  is given by 

( & -  1)(2&’+ 1) 
=yg(t‘) 3( E + 2 ~ ’ )  

(3.42) 

where g(d)=(M2)/Np2,  M being the total moment of the central cube. 
We note that in (3.42) g is a function of E‘ ,  and this suggests that E might 
also depend on the value that is chosen for d. However, De Leeuw et al.233 
’’ show that this is not the case. All choices of E’ will give the same value of 
E ,  provided the correct effective interaction + ( E ’ ;  12) is used. It is obvious 
from (3.42) that the formula relating E and g(d) varies with d, and the fol- 
lowing examples are of particular importance in computer simulations. 

For E ’ =  1, $ ( I ;  12)=GTpBC(12), and (3.42) becomes 

E -  1 
& + 2  - =yg(l) (3.43) 

which, as we might expect, is the formula for a sphere in vacuum. Equation 
3.43 is analogous to (3.36) and suffers from all the practical problems dis- 
cussed above. De Leeuw et al.23 show that the method proposed by Ladd” 
for calculating the configurational energy is in fact equivalent to using the 
effective interaction GTPBC( 12). Thus for Ladd’s calculations we would ex- 
pect (3.43) to be the appropriate formula for E ,  rather than (3.7a), which 
Ladd assumed to be valid. In fact, the IOrkwood formula (3.7a) is obtained 
by setting E’=  E ,  which again is an expected result. 

From the point of view of recent work, the most interesting choice is E ‘ =  

00. Then from (3.41) and (3.42) one obtains 

and 

E -  1=3yg(m) (3.45) 

The +(m; 12) is just the first term in (3.40), or the effective potential used 
in Ewald calculations. Thus (3.45) is the formula relating E and g for Ewald 
boundary conditions. A different derivation of (3.45) has recently been 
given by Felderh~f.’~ 

It should be emphasized that although E is independent of the choice of 
E ‘ ,  the pair correlation function is not. De Leeuw et al.’* show that for two 
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different values, E‘ and E “ ,  the projections hm, h”’, and h112 are approxi- 
mately related by the equations 

h W ( , ” ;  r ) = h m ( E ’ ;  r ) +  
3N( 1 - Xg( ~ ’ ) /3 )  

(3.46a) 

(3.46b) 

and 

where 

X=6y [ 2E”+ I 2E‘+ 1 

(3 .46~)  

(3.46d) 

I t  can be seen from (3.46b) that even for large r there remains a constant 
finite difference between h’lo(~’’; r )  and ~ “ O ( E ’ ;  r ) .  

Ewald boundary conditions were first applied to dipolar fluids by 
Jansoone,” and Adams and McDonald77 have studied dipolar lattices. Re- 
cently Ewald methods have been applied in M D  calculations for 
Stockmayer fluids by Pollock and Alder54 and in MC calculations for di- 
polar hard spheres by ad am^^^ and by De Leeuw et al.23 De Leeuw et al.23 
also report results for the effective potential +( l ;  12), which is just 
GTPBC( 12). The details of these recent results are described in Section 1II.D. 
but there are two important points worth noting here. 

First, it is clear from the discussion above that the Ewald pair correla- 
tion function [especially the h ” O (  r )  projection] must differ in some respect 
from that of the infinite system considered in theoretical treatments. If we 
ignore the periodicity; the system described by the effective potential 
+ ( E ;  12) or E ‘ = E  is comparable with the theoretical situation, but such 
calculations have not yet been done. Alternatively, perhaps h ( ~ ;  12) could 
be obtained from the Ewald result h ( m ;  12) by means of the approximate 
formulas (3.46), but again this has not been attempted. 

Second, we remark that since E does not depend on E‘ ,  there is no reason 
in principle for not comparing Ewald and theoretical estimates of E .  How- 
ever, such comparisons must be interpreted with caution, since it is not 
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known to what extent the Ewald results are influenced by the periodic 
boundary conditions. The LHNC and QHNC theories suggest” that for 
dense dipolar hard-sphere systems, E can be sensitive to correlations much 
longer in range than even the largest value of L/2 yet used in an Ewald 
simulation. If this is true, the Ewald calculations are llkely to seriously un- 
derestimate E for all but small values of P * ~ .  This possibility is examined in 
detail in Section III.D.2. 

The Mean Reaction Field Method. Another method that attempts to 
take the long-range dipolar interactions into account is the mean reaction 
field (MRF) method suggested by Barker8’ and applied by Barker and 
Watts75 in their MC calculations on liquid “water.” The MRF method is 
very similar to the SC approach described above, but it seeks to account 
for the long-range dipolar interactions by surrounding the truncation sphere 
with a polarizable dielectric continuum. The central particle then interacts 
directly with all particles within the truncation sphere and with the reac- 
tion field R. The R arises from the polarization of the continuum by all the 
dipoles within the truncation sphere and is given by Onsager’s expression” 

2(E- 1) 
R= Ms  (2.5 + 1)R: 

(3.47) 

where M, is the total dipole moment of the truncation sphere, and the di- 
electric constant of the continuum is taken to be that of the sample, E. The 
E is also assumed to obey (3.7a), with g given by 

(3.48) 

In principle E could be obtained by iterating until (3.7a) and (3.48) are 
simultaneously satisfied. For large E ,  however, R is nearly independent of E, 
so usually the iteration is never carried 77 

2. Nonperiodic Boundaty Conditions 

Two other methods, both of which explicitly avoid the use of periodic 
boundary conditions, have been proposed for the simulation of dipolar sys- 
tems. Friedman82 has proposed that a sample of N particles be enclosed in 
a spherical cavity within a dielectric continuum and has shown how the en- 
ergy of such a system can be obtained. This method, however, has been ap- 
plied in MC calculations by Valleau and Minnss3 and does not appear to 
work well in practice. 

Another approach has been suggested by B o ~ s i s ~ ~  and applied by Bossis, 
Quentrec, and B r ~ t ~ ~  to two-dimensional systems. These authors simply 
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simulate a finite isolated disk of two-dimensional Stockmayer particles and 
find that apparently reliable estimates of the dielectric constant can be ob- 
tained." An adaptation of methods first proposed by Berendse# for finite 
spheres is used to determine E .  This approach appears to be very encourag- 
ing, but since this chapter is primarily concerned with three-dimensional 
fluids, we give no further details here. To exploit these two-dimensional 
calculations more fully, it would now be useful to apply some of the theo- 
ries discussed in Section 1II.B to two-dimensional systems. Although in 
principle finite, isolated three-dimensional systems could be studied, such 
computations would likely prove difficult in practice, since large numbers 
of particles would be required to construct spherical samples of sufficient 
size. 

D. Quantitative Results 
In this section the results given by the various theories are described and 

compared, insofar as is possible, with MD or MC calculations. Also a 
qualitative comparison with experimental data for real liquids is made. The 
computer simulations do not provide as clear an evaluation of the different 
approximate theories as one would like, since for the reasons discussed in 
Section III.C, totally convincing estimates of E have not been obtained. 
Therefore, to get some idea of the accuracy of the different approximations 
and to illustrate several of the points made in Section III.C, it is useful to 
begin by examining the pair correlation function. 

The systems we consider are characterized by the reduced density p* = 
pa3, the reduced dipole moment p* = (&'/a3)' / ' ,  and the reduced 
quadrupole moment Q* = (PQ * / a 5 ) ' / *  where a = d for hard particles and 
a = u for generalized Stockmayer fluids. In addition, for generalized 
Stockmayer systems the parameter T* = k T / t  must be specified. 

1. The Pair Correlation Function 

Dipolar Hard Spheres and Stockmayer Particles. As described at length 
in Section III.C, computer simulations of dipolar systems do not give the 
pair correlation function of an infinite system, and in general the computer 
results should not be compared directly with approximate theories. In much 
of the earlier work3', 4749 the severity of the problem was not fully recog- 
nized, and theoretical and simulation results were often compared without 
taking the influence of boundary conditions into account. These compari- 
sons do give at least a rough idea of the accuracy of the various approxi- 
mations. For example, it is clear that the MSA is very p ~ ~ r ~ ~ * ~ ~ ~ ~ ~  and that 
better results can be expected from the LIN and L3  approximation^.^'^^^ It 
is possible, however, to obtain a much better evaluation of a particular ap- 
proximation by solving the theory for an infinite system with a spherically 
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Fig. 3.  Values of h"'(r) for &polar hard spheres at p* =0.8 and p** 12.57: dashed curve, 
LHNC for an infinite system with the potential truncated at R ,  -3 .4d ;  crosses, MC results 
for N=256, Rc==3 .4d;  triangles, MC results for N=864, R C = 3 . 4 d ;  solid curve, LHNC for 
an infiite system with the potential truncated at R ,  = 5.ld; big dots, MC results for N- 864, 
R ,  = 5.ld; dotted curve, LHNC for an infinite system with an untruncated potential. (Results 
from Ref. 52.) 

truncated potential and comparing with SC  result^.^" 52s 58* 59 Th' is proce- 
dure is not entirely free of ambiguity, since the SC results are to some ex- 
tent influenced by the underlying periodicity not taken into account by the 
the01-y.~~ Also of course we are testing the theory for the spherically trun- 
cated potential, not the full potential. Nevertheless, this method provides a 
useful test of the pair correlation function. 

The LHNC and QHNC approximations have been compared with Monte 
Carlo SC calculations,30~ 52, 5 8 3  59 and typical results for dipolar hard spheres 

LL ~~- 
20 4 0  

r/d 

Fig. 4. Values of h'I2(r )  for dipolar hard spheres at p* -0.8 and p*' -2.75. The symbols 
have the same meaning as in Fig. 3. (Results from Ref. 52.) 
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r/d - 
Fig. 5. Values of h’lo(r)  for dipolar hard spheres at p* -0.4 and p*2 -2.75. The big dots 

are MC results for N = 256, R -4.2d. The solid and dashed curves are the QHNC and LHNC 
approximations, respectively, for a spherically truncated potential. The dotted curve is the 
QHNC result for an infinite system with an untruncated potential. (Results from Ref. 58.) 

at high and low density are shown in Figs. 3 to 6. I t  is found” that al- 
though the LHNC and QHNC theories are roughly similar in accuracy at 
high density, the QHNC becomes clearly superior as the density is 
decreased (Figs. 5 and 6). This is easily understood, since the LHNC ap- 
proximation g m ( r ) = g H S ( r )  is good for dense fluids but poor at low den- 
sities, where the dipolar forces exert a greater influence on the spatial 
structure. The LHNC and QHNC theories have also been applied” to dense 
Stockmayer fluids ( p* = 0.8, T* -. 1.39, and comparable accuracy is ob- 
tained. The infinite system results also included in Figs. 3 to 6 serve to em- 
phasize the dramatic effect of the spherical cutoff. 

The other approximations described in Section 1II.C have not been solved 
for a spherically truncated potential, but an estimate of their accuracy can 
be obtained” by comparing with the LHNC or QHNC theories for an in- 
finite system. We are of course assuming that the LHNC and QHNC ap- 
proximations remain accurate for the full (untruncated) dipolar interaction 
and lie close to the true infinite system result. The MSA, LIN, L3, and 
LHNC theories for a dense dipolar hard-sphere system are compared in 
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Fig. 6. Values of h"'(r) for dipolar hard spheres at p*=0.4 and p'' =2.75. The symbols 

have the same meaning as in Fig. 5. (Results from Ref. 58.) 

O i  
I 1 
10 2 0  3 0  

r /d  

Fig. 7. Comparison of different approximations for h"'(r) for dipolar hard spheres at pL 
e0.8 and p'' =2.75: dotted curves, MSA; dashed curves, LIN; dots and dashes, L3; solid 
curves, LHNC. (Results from Ref. 87.) 
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10 2 0  3 0  
r /d  

Fig. 8. Comparison of different approximations for h’I2(r )  for dipolar hard spheres at p* 
-0.8 and p*’ -2.75. The curves represent the same theories as in Fig. 7. (Results from Ref. 
87.) 

Figs. 7 and 8. The LIN and L3 approximations considerably improve on 
the MSA near contact, but the second neighbor peak appears to be under- 
estimated by LIN and overestimated by L3. 

MRF results for dipolar hard spheres at 6 =0.8 have been reported by 
Adamss3 and by Levesque, et aLs2 Adams has carried out a 500-particle 
( R ,  = 3.85d) MRF calculation at po2 =2.75 assuming that E =  50 in the re- 
action-field expression (3.47). The MRF results (Figs. 9 and 10) lie below 
the LHNC and QHNC results for an infinite system, but well above the SC 

i 04 

OI- 

10 2 0  3 0  40 50 
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-0 2 

Fig. 9. Values of h”O( r )  for dipolar hard spheres at p* -0.8 and p*’ = 2.75. The solid curve 
is the QHNC theory for an infinite system; the dotted and dashed curves are, respectively, the 
Ewald (N=500) and MRF (N=500, Rc=3.85d)  results of Adam.” 
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r / d  

Fig. 10. Values of h ' 1 2 ( r )  for dipolar hard spheres at p * = 0 . 8  and p * 2  -2.75. The curves 
represent the same calculations as in Fig. 9. (Results from Ref. 53.) 

results for large r .  The MRF results reported by Levesque, et al.52a show 
only a slight improvement upon the SC situation. However, it has very re- 
cently been learned52b that the MRF results reported in ref. [52a] are in er- 
ror and the corrected results are in qualitative agreement with those of 
Adams. Further investigations of the MRF method using both MC and in- 
tegral equation calculations are currently being carried 

QHNC and Ewald results for Stockmayer fluids have been compared by 
Pollock and Alders4 (Figs. 11 and 12), and ad am^^^ has made similar com- 
parisons for dipolar hard spheres (Figs. 9 and 10). We know from the work 

I I I I I I I 

Fig. 1 1 .  Values of h"'(r) for a Stock- 
mayer fluid at p* =0.8, T* = 1.35, and 
p*2 =2.269. The solid curve is the QHNC 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 theory and the circles are the Ewald ( N =  
r /u 256) results of Pollock and Alder." 
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Fig. 12. Values of h I i 2 ( r )  fo r  a 

and p*2 =2.269. The solid curve is the 
QHNC theory and the circles are the 
Ewald ( N =  256) results of Pollock and 

Stockmayer fluid at p*=O.8 ,  T * -  1.35, 
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Fig. 13. Values of h"'(r) for hard spheres with dipoles and quadrupoles at p*=O.8  and 
p* = Q* = 1.0. The dots are MC results ( N =  256, R, =3.4d j, and the solid, dashed, and dash- 
dot curves represent the QHNC, LHNC, and MSA, respectively, for a spherically truncated 
potential. (Results from Ref. 59.) 
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of De Leeuw et al.239 78 that the Ewald and QHNC pair correlation func- 
tions must be expected to differ in some way. This is especially true of the 
A"'( r )  projection. Nevertheless, Pollock and Alder54 find that for 
Stockmayer systems the Ewald and QHNC results lie very close together 
(cf. Figs. 11  and 12), at least for the range of separations possible in the 
computer calculation. ad am^,^^ on the other hand, finds rather large dis- 
crepancies between the Ewald and QHNC results for dipolar hard spheres 
(Figs. 9 and 10). This is interesting and a little surprising since we would 
have expected58 both models to give similar results. For both dipolar hard 
spheres and Stockmayer particles, however, the Ewald method appears to 
give the closest approximation to a truly infinite system yet obtained in a 
computer simulation. 

Hard Spheres with Dipoles and Quadruples. The LHNC, QHNC, and 
mean spherical approximations have been solved59 for fluids of hard spheres 
with both dipole and quadrupole moments. Theoretical results for spheri- 
cally truncated potentials have been compared with Monte Carlo (SC) 

r /d 

Fig. 14. Values of h ' I 2 ( r )  for hard spheres with dipoles and quadruples at p * - 0 . 8  and 
p* = Q* = 1 .  The symbols have the same meaning as in Fig. 13. (Results from Ref. 59.) 
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calculations as described above. The accuracy of the LHNC and QHNC 
approximations is found59 to vary with the state parameters and with the 
particular projection considered, but in general the agreement with MC re- 
sults is not as good as that obtained for purely dipolar systems. Examples 
of h * ” ( r )  and h1I2( r )  for a dipole-quadrupole system are shown in Figs. 13 
and 14. All three theories as well as the MC calculations indicate the strong 
dependence on the quadrupole moment of h’ lo(r ) ,  hence E. For fluids hav- 
ing significant quadrupole moments, h”O( r )  is found59 to be nearly 
structureless and everywhere reduced in magnitude with respect to the 
purely dipolar or Q=O result. This is extremely important leading to a 
greatly reduced dielectric constants9 (cf. Section III.D.2). From the point 
of view of computer calculations, it is worth noting that even relatively small 
quadrupole moments tend to dominate the dipolar correlations, and 
spherically truncating the potential has little effect on h( 12) for r < R,. This 
is of importance in the simulation of realistic liquids ( e g ,  HCl or NH,) 
where substantial quadrupole moments are usually found. 

2. The Dielectric Constant 

Dipolar Hard Spheres and Stockmayer Particles. A number of theoreti- 
cal results showing the p*2 dependence for E for a dense dipolar hard-sphere 
system are compared in Fig. 15 and in Table 11. In addition to the MSA, 
LIN, L3, LHNC, and QHNC theories discussed in Section III.B, the older 
approximations of Debye’ and Onsager,” as well as a very recent theory 
of Berkowitz and Adelman,s8 are also included. Berkowitz and Adelman*’ 
argue that the principal source of error in Onsager’s theory is the neglect of 
a “two-cavity effect” purely electrostatic in origin. Estimating this effect 
they obtain the approximate formula 

( E -  1)(2&+ I )  
2 3y2 -- 

9E (3.49) 

which gives values of P much larger than those obtained from Onsager’s 
theory. However, there appears to be a serious problem with this result. If 
we consider the expansion 

E -  1 
E+2 - = a , y + a 2 y 2  +a,y3 + . . . (3.50) 

the Berkowitz-Adelman (BA) theory gives a, =0, a2 =3, and a3 =O. These 
are to be compared with the exact62* 63 (at p* = 0 in the case of a 3 )  coeffi- 
cients a ,  = 1, a2 =0, and a, = - 15/ 16. It is obvious that the limiting be- 
havior given by the BA theory is incorrect. Equation 3.49 is completely 
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P*2 
Fig. 15. Comparison of the different approximations for the dielectric constant of dipolar 

hard spheres at p*=0.8. See text and Table I1 for references. 

TABLE I1 
Dielectric Constant Results for Dipolar Hard Spheres at p* =0.8 

Theory Monte Carlo 

Berkowitz 
and 

p+* Onsager MSA LIN L3 LHNC QHNC Adelman SC' Ewald 

0.5 3.17 3.59 3.84 3.76 3.75 3.75 4.81 3.73k0.1 
1.0 5.62 7.80 9.27 9.66 9.62 9.62 17.4 9.020.5 7.3b 
2.0 10.60 20.00 27.06 37.93 50.0 51.7 67.9 22.7' 
2.75 14.36 31.86 45.62 79.17 250.0 444.9 127.9 902 lob 

'From Ref. 52a. 
bFrom Ref. 53. 
'From Ref. 23. 

263 
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missing the terms in y and y 3 ,  giving instead a term proportional to y 2  that 
does not occur in the exact result. It is interesting to note that the Onsager 
approximation gives a ,  = 1, a, =0, and a3 = -2 and thus, in t h s  respect at 
least, is clearly superior to the BA theory. Berkowitz and Adelman” state 
that their results are in satisfactory agreement with the LHNC theory. 
However, it is obvious from Fig. 15 and Table I1 that this is true only in- 
sofar as both approximations predict that E rises very rapidly with p*,. From 
Table I1 it can be seen that the quantitative agreement is in fact very poor. 
For example at p*2 = 1 the BA result is nearly twice as large as the LHNC 
value. 

For dipolar hard spheres the LHNC and QHNC theories have been in- 
vestigated”* ’* for a wide range of density and dipole moments, and the 
following observations are of interest. Although for the range of shown 
in Fig. 15 the LHNC and QHNC results lie very close together, this is not 
true for larger values of p*2.  For example at p* -0.8 and ,u*~ =2.75 (cf. Ta- 
ble 11) the QHNC value is larger by nearly a factor of two! The bulk of 
this discrepancy can be traced5’ to relatively small differences in the “tail” 
of h”’( r ) .  Indeed, for dipolar fluids at high density the LHNC and QHNC 
theories suggest that E is extremely sensitive to rather long-range dipolar 
 correlation^.^^' 55 The correlation range important in the LHNC approxi- 
mation is illustrated in Fig. 16. Here we plot the ratio g, /g,  where 

(3.51) 

and g=g,  is the Kirkwood g factor occurring in (3.7a). To obtain the 
LHNC E from (3.7a), it is obvious that the integration must be continued 
until g, = g  or g, /g=  1. Thus Fig. 16 shows how the range of correlations 
contributing to E becomes larger as p*2 is increased. At large values of p*2 
E is very sensitive to small changes in the long-range (i.e. r > 8 d )  part of 
h”’( r ) ,  and this sensitivity gives rise to the large discrepancy between the 
LHNC and QHNC approximations for dense fluids. We remark that al- 
though only the LHNC results for g, /g  are given, the QHNC theory is 
qualitatively similar. Also, if E is obtained from (3.8) rather than (3.7a), cor- 
relations of roughly comparable range must be con~idered,~’ or in other 
words h ” * ( r )  does not reach its asymptotic limit before g,/g=l. At lower 
densities ( p * 5 0 . 6 )  the significant correlation range is shorter, and both the 
LHNC and QHNC approximations give very similar results for all values 
of p*2  con~idered.~’ For example, at  p* = 0.6, p*2 = 3.0 the LHNC and 
QHNC theories give E =  37.1 and 40.0, respectively. We shall see below that 
to properly interpret simulation results, it is important to know the range 
of correlations making a significant contribution to E .  
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R / d  

Fig. 16. Values of g, /g  for dipolar hard spheres at p*=0.8 .  The vertical h e s  are drawn 
at L / 2  for N =  108,256,500, and 864. From top to bottom, the curves are for p** = 1, 1.5,2.0, 
2.25, 2.5, and 2.75. 

The LHNC and QHNC approximations have also been applied" to 
dense Stockmayer fluids, and results for p* = 0.8, T* = 1.35 are shown in Fig. 
17. It is found58 that for ~ * ~ 5 2 . 0  the dielectric constant of a Stockmayer 
fluid lies very close to the dipolar hard-sphere result, provided the thermo- 
dynamic states considered are chosen in accordance with simple thermody- 
namic perturbation theory. For larger dipole moments, however, the 
dielectric constant of the Stockmayer fluid is considerably lower than that 
of the corresponding dipolar hard-sphere system. Also, for Stockmayer 
particles the LHNC and QHNC theories are in better agreement at large 
p*2 and the QHNC now gives the smaller rather than the larger value. 

As discussed in Section III.C, computer simulations of dipolar systems 
provide something less than a definitive test of the approximate theories. 
Nevertheless, it is possible to get some idea of the accuracy of the various 
approximations. Several conclusions can be immediately reached by ex- 
amining the pair correlation functions discussed in Section III.D.1. For ex- 
ample, it is clear that for dipolar systems the Onsager'' formula 

( E -  1)(2&+ 1) 
=Y 9 E  

(3.52) 

must underestimate E ,  since it merely sets g =  1 in (3.7a), completely ignor- 
ing the term that is dependent on h"'(r).  It is also obvious that the MSA is 
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/ !.;* / *  

Fig. 17. The dielectric constant of Stockmayer fluids at p *  =0.8 and T* = 1.35. The solid 
and dashed curves are the QHNC and LHNC approximations, respectively. The dots are the 
Ewald ( N  = 256) results of Pollock and Alder.54 

very poor and again in all likelihood underestimates E. I t  is a little more 
difficult to evaluate the remaining approximations. For a limited range of 
separations ( r 5 5 d ) ,  SC calculations have shown52s 58 that the QHNC 
theory gives a good approximation to A”’( r )  for spherically truncated 
potentials. For dense fluids this is also true of the LHNC theory. Thus if 
equivalent accuracy is obtained for the full dipolar interaction, we would 
expect these theories to be good at least for systems where E is determined 
by correlations lying within the range r 5 5 d .  Figure 17 indicates that for 
dipolar hard spheres at p* =0.8 this is the case if p*2 52.0.  For larger val- 
ues of P * ~ ,  E is influenced by correlations lying outside the range tested in 
the SC calculations. 

The most extensive and numerically reliable estimates of E itself are pro- 
vided by the MD (Ewald) calculations of Pollock and Alder54 for, 
Stockmayer fluids at p* =0.8 and T* = 1.35. These estimates are compared 
with the LHNC and QHNC approximations in Fig. 17. The agreement 
between the theoretical and MD results is very good for relatively small 
values of p*2 but becomes poor at the larger values, with the computer 
estimates lying well below the QHNC results. Pollock and Alder54 con- 
clude that the theory is in serious error at the larger values of How- 
ever, in view of Fig. 16 and the discussion given above concerning the range 
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of the correlations determining E ,  this conclusion is perhaps premature. In 
an Ewald (or indeed any) simulation using periodic boundary conditions, 
correlations greater in range than L / 2  are not properly taken into account. 
Thus if for larger dipole moments E is very sensitive to correlations much 
greater in range than L / 2 ,  as the theories suggest, care must be taken in 
interpreting computer results for "small" periodic systems. It is not at all 
obvious that the dielectric constant so obtained will be close to that of the 
nonperiodic infinite system described by the approximate theories. In fact, 
for Stockmayer systems at p* = 0.8, T* = 1.35, the significant correlation 
range is roughly similar to that shown in Fig. 16, and the contribution to E 

from correlations lying outside the central cube could explain much of the 
discrepancy between the QHNC and Ewald results.89 Pollock and Alder 54 

do report that their calculations show no significant number dependence, 
which suggests that the neglect of long-range correlations is not the origin 
of the discrepancy between the QHNC and Ewald results. However, this 
argument is less than convincing, since for large p*2 varying N from 108 to 
500 covers only a relatively small part of the significant correlation range 
(cf. Fig. 16), and examining the N dependence for systems of this size may 
not be a very sensitive test. Thus at least for larger values of p** the status 
of the Ewald results for E is not clear, and further investigation is neces- 
sary. 

Pollock and Alder54 also consider polarization fluctuations of finite 
wavelength and calculate the function 

where V is the sample volume. For an infinite nonperiodic system, (3.53) 
simply becomes 

g ( k ) = l + - h  P -110 ( k )  
3 

(3.54) 

where I?"(k) is defined by (3.1 lk) and g(0) is just the Grkwood g factor 
occurring in (3.7a). For finite k ,  Ewald and theoretical calculations of g ( k )  
may be compared directly. However, the Ewald results are discontinuous 
at k=O, and it is apparent from (3.45) and (3.7a) that the Ewald g(0) is not 
the Kirkwood g given by the infinite system theories. Thus Ewald estimates 
of the Kirkwood g-factor must be obtained by eliminating E from (3.45) and 
(3.7a). 

The results of Pollock and Alder54 for Stockmayer fluids are compared 
with the QHNC theory in Figs. 18 and 19. I t  can be seen that at p*' =0.741 
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Fig. 18. Values of g (k )  for a Stockmayer fluid at p*==O.8, T*= 1.35, and ps2 -0.741. The 
curve is the QHNC theory, and the solid and open circles are the Ewald results of Pollock 
and Alder '' for N 256 and 500, respectively. The open square is the Ewald (N 500) result 
for the Kirkwood g-factor. 

excellent agreement is obtained for all k. At p*' =2.269 the agreement is 
good for k 2 27r/L (which is the smallest finite wavelength allowed in the 
simulation), but there is a large discrepancy at k = 0. This discrepancy is of 
course apparent in the dielectric constant data, and its possible origin is 
discussed above and in Ref. 55. 

Some Monte Carlo estimates of E for dipolar hard spheres at p* =0.8 are 
given in Table 11. At p*' =0.5 and 1.0, the SC results allow at least a rough 
evaluation of the different approximations. Taking into account the rather 
large statistical errors and the possible influence of boundary conditions, 
the LIN, L3, LHNC, and QHNC theories are all more or less in agreement 
with the MC calculations. The Onsager and MSA resnlts appear to be too 
low, whereas the BA values are much too large. At p*' =2.0  and 2.75 it is 
not possible to reach any firm conclusions, but several remarks concerning 
the reported MC results are in order. 

Fig. 19. Values of g ( k )  for a Stockmayer 
fluid at p* -0.8, r = 1.35, and ps2 = 2.269. The 

Kirkwood g-factor. 
and the square is the Ewald result for the 

0 
I 4~ lo 

G"3 
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At p*2 =2.0 De Leeuw et al.” report two values for E .  These are 22.7 and 
14.9, obtained with the effective potentials +(co; 12) (Ewald) and + ( I ;  12) 
= +TPBC( 12), respectively. In principle, both effective potentials should yield 
the same dielectric constant (cf. Section III.C.I), and De Leeuw et al.23 
claim that their estimates of E are consistent within statistical error. The 
discrepancy between these numbers and the QHNC result, E = 5 1.7, is much 
too large to be completely explained by the contribution from correlations 
lying outside the central cube. (In the QHNC theory the contribution to E 

from correlations greater in range than L/253.4d is about 2 m . )  Thus if 
these MC estimates23 are to be taken seriously, De Leeuw et al. suggest that 
LHNC and QHNC theories break down even for values of p*2 as low as 
2.0. There are, however, two problems with this conclusion. 

First of all, essentially the entire range of correlations contributing to E 

at p*2 =2.0 has been tested using SC calculations as described in Section 
III.D.1, and there is no evidence for such a breakdown. Thus the results of 
De Leeuw et al.23 imply that the theories fail drastically for the full dipolar 
interaction but at the same time remain highly accurate for the spherically 
truncated case. This result is possible, but i t  would be very surprising. Sec- 
ond, there appears to be a discrepancy between the result of De Leeuw et 
al.23 and that of Pollock and Alder,54 who find a considerably larger 
dielectric constant ( E = 29.0) for the “equivalent” Stockmayer fluid. It is 
unlikely that this is due to the different short-range potentials, and some 
explanation should be found. In fact, as noted above, the theories predict 
that the Stockmayer fluid will have a dielectric constant lower than that of 
the corresponding dipolar hard-sphere system.58 

The Ewald calculations of Adams” also bear comment. The estimate E 

=90? 10 given in Table I1 was not obtained from (3.45) but rather by ex- 
trapolating results obtained with an applied electric field. Using (3.43, 
Adams reports estimates of E ranging from 23.5 to 54.5, depending on N 
and the numerical accuracy to which the Ewald sums are calculated. Again 
these results are not very conclusive, and in all likelihood both the theoreti- 
cal and the MC results are in error. 

LHNC and MSA results59 
for fluids of hard spheres with dipoles and quadrupoles are shown in Fig. 
20. In both approximations E decreases with increasing quadrupole mo- 
ment. The LHNC results are particularly dramatic, since the &polar hard- 
sphere or Q* = 0 value is very large to begin with. As discussed in Section 
III.B.3, the QHNC approximation is not very satisfactory for dipole- 
quadrupole systems, since solutions are not found59 for some values of p* 
and Q*. When solutions can be obtained, however, the QHNC E also de- 
creases sharply with quadrupole moment. 

Hard Spheres with Dipoles and Quadruples. 
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0*- 
Fig. 20. The variation of e with Q* for fluids of hard spheres with dipoles and quadru- 

poles at p . s O . 8 .  kj f :  LHNC results; right: MSA results. From top to bottom, the curves are 
for p* = 1.6, 1.5, and 1.0. (Results from Ref. 59.) 

The MSA, LHNC, and QHNC theories have been compareds9 with 
Monte Carlo (SC) estimates of E.  The results (Table 111) are most usefully 
viewed in the following manner. For dipolar hard spheres at p*=O.8 and 
p* = 1.5, the LHNC E is 78.5 and the QHNC value is larger. Thus although 
the different theoretical and MC estimates included in Table 111 are not 
everywhere in particularly good agreement, it is clear that the discrepancies 
are in fact rather small compared with the difference between the large Q* 
and Q* = O  values. Therefore, it appears safe to conclude that E drops very 

TABLE 111 

Dielectric Constant Resultsa for Fluids of Hard Spheres with Dipoles and 
Quadrupoles at p*=O.8 

Monte Carlo Theory 

C* Q* MSA LHNC QHNC (SC) 

I .o 1 .o 6.27 5.67 4.6 1 6.8 t 0.3 
1.5 0.5 20.7 29.9 - 15.62 1.1 
1.5 1 .o 16.29 12.68 10.33 10.2 t 0.8 

b 

'All results are taken from Ref. 59. 
bA QHNC solution is not obtained59 at p*=  1.5, Q* =0.5. 
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Fig. 21. The variation of E with p** for fluids of hard spheres with dipoles and quadru- 
poles at p* -0.8. From top to bottom the solid curves represent the LHNC results at Q*-0, 
0.25,0.5, 1.0, and 1.5. The dashed curve is the Onsager approximation. (Results from Ref. 59.) 

sharply with increasing Q*. In fact, the MC calculations suggest that the 
LHNC underestimates both the magnitude and the abruptness of the de- 
crease in E.  

In Fig. 21 E is plotted as a function of p * 2  for several values of Q*.  It can 
be seen that the dependence of E on p*’ varies rather drastically with 
quadrupole moment and at the larger values of Q* the p*’ dependence is 
well approximated by the Onsager formula (3.52) for simple dipolar sys- 
tems. Physically, this can be understood if we recall that the Onsager ap- 
proximation can be obtained by setting g =  1 or ( p , - p z )  = O  in (3.7b). 
Quadrupolar interactions increase the probability of finding particles 
roughly qriented in T-like configurations for which p, * p 2  = 0. Conse- 
quently we would expect ( p , - p 2 )  to become smaller as Q* is increased. 
The effectiveness of quadrupoles in disrupting dipolar orientations is evi- 
dent in the thermodynamic properties as 59 which were first studied 
by Stell et aL6’, who found great sensitivity to changes in Q*. 

Real Liquids. Real molecules usually have both dipole and quadrupole 
moments. Thus the results described above strongly suggest that witho\t the 
inclusion of higher multipole moments, simple dipolar models will be hope- 
lessly inadequate for most real liquids. This is illustrated qualitatively in Fig. 
22, which compares experimental results for a number of common liquidsg0 
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with the LHNC theory for dipolar hard spheres at the typical liquid den- 
sity, p* = 0.8. QHNC results for Stockmayer fluids at p* = 0.8 and T* = 1.35 
are also shown. If the integral equation theories are even roughly correct, it 
is obvious from Fig. 22 that the simple dipolar models give dielectric con- 
stants that are much larger than those usually observed experimentally. This 
is particularly striking when we note that polarization effects that would 
make E larger still (cf. Section IV) are not taken into account by the present 
models. 

The Onsager'' approximation for polarizable molecules can be writteng0 
in the form 

(3.55) ( E -  + Em ) 
=Y 

E (  E ,  + 2 y  

where E, is the high-frequency dielectric constant. We note that if E, = 1, 

*O 1 I;' LHNC 

I 
I0 

0 2 4 6 
Y 

Fig. 22. Comparison with the dielectric constant of real liquids: LHNC results for dipolar 
hard spheres at p+-O.8 (solid curve), Stockmayer fluids at p* =0.8, 'P = 1.35 (dashed curve); 
ONS-Onsager. The dots are the experimental resultsg0 for the following liquids: ( 1 )  CH31, 
(2) CH3C1, (3) NH3, (4) CH3- C-CH,, (5) CH3F, (6) CH3-C-H, (7) C,H,NO,, (8) 

II 
0 

II 
0 

CH,NO,, (9) C,H,CN, (10) CH,CN, ( 1 1 )  H,O. 
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(3.55) reduces to (3.52) for nonpolarizable particles. Results for E ,  = 1 and 
for a typical liquid value, E, = 2,  are included in Fig. 22. It can be seen that 
the Onsager theory, particularly if polarizability is included, is quite a good 
approximation for real liquids. This of course has been known for many 
years and is very likely attributable to the quadrupolar interactions, which 
in real liquids effectively kill the contribution to g that is ignored by the 
Onsager theory. It is also possible that other forces, such as anisotropic 
short-range interactions, contribute to the destruction of ( p l  *p2  ) in 
molecular fluids. Thus although the Onsager theory is in all likelihood very 
inaccurate for simple dipolar models, it is nevertheless a good approxima- 
tion for real liquids. This is a fortunate example of approximations made 
in the theoretical treatment acting to largely cancel the inadequacies of the 
model. 

Finally we observe that the dielectric constant of water lies well above 
that of the other liquids shown in Fig. 22. This is often attributed to hydro- 
gen bonding effects, but in view of the present discussion it is worth noting 
that water does not have an axially symmetric quadrupole and, more im- 
portant, the component of the quadrupole moment tensor along the dipole 
(Q, , )  is practically zero for the water m~lecule .~ '  Thus the axially symmet- 
ric models we consider do not even approximately apply to water, and it is 
interesting to speculate that perhaps the water quadrupole is less effective 
at  destroying the dipolar correlations. This would lead to a larger dielectric 
constant, and the possibility constitutes one of the important problems re- 
maining to be investigated. 

IV. POLAR-POLARIZABLE FLUIDS 

A. Models and Formally Exact Expressions 

Almost all the formalism and the approximation schemes of Sections I1 
and 111 have a natural extension to systems of polarizable dipolar particles, 
but the precise details of the extension depend on the way polarizability is 
introduced into the Hamiltonian. We refer to the two quite distinct Hamil- 
tonian models that have been most thoroughly developed in t h s  context as 
the constant-polarizability model and the fluctuating-polarizability model. 
The dielectric behavior of the former was first systematically investigated 
from a statistical mechanical viewpoint by K i r k ~ o o d ~ ~  and by Y ~ o n , ~ ~  who 
considered the model almost exclusively in the absence of permanent di- 
pole moments. (Kirkwood17 subsequently pioneered an exact formulation 
of the statistical mechanics of polar molecules, but largely as a separate en- 
terprise that did not attempt to treat the polarizability exactly.) The general 
case of polar-polarizable particles remained only very partially developed95 
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until the recent fundamental work of Wertheim.29. 96-99 A s ystematic statis- 
tical mechanical investigation of the fluctuating-polarizability model was 
initiated by van VlecklW and extended somewhat by W. F. Brown,'" but it 
enjoyed little further development until the very recent work of Hoye and 
Stell,Io2 who treat the general polar-polarizable case, and Pratt,lo3 who con- 
siders the nonpolar case. Pratt's work is the outgrowth of an approach de- 
veloped by ChandlerIW and by Chandler and Prattlo5 on the atom-atom 
correlation function formalism, in terms of which Chandler'" had earlier 
generalized the Hoye-Stell equation (2.40) to the case of polarizable polar 
molecules. We rederive Chandler's generalization of that equation directly 
in terms of the Hoye-Stell formalism below. As indicated there, the un- 
derlying model is one of fluctuating polarizability rather than constant 
polarizability (although the derivations do not address themselves to the 
details of the model). The result provides an as-yet-unexploited link be- 
tween E and molecular parameters. 

In the constant-polarizability model, each particle is assumed to carry an 
induced polarization p that is instantaneously proportional to the local 
electric field E, that acts on it, with a fixed tensor constant of proportional- 
ity, so that 

p=a*E,  (4. la)  

where a is the polarizability. For particles that each carry a permanent mo- 
ment p as well, the total dipole moment m of a particle is given in this model 

m = p + p  (4.1 b) 
by 

For simplicity, we treat here only a system of identical particles. 

permanent dipole, then we shall consider here a of the form 
If we define a molecular coordinate system by taking the z-axis along the 

Thus azz is the polarizability in the direction of the permanent dipole. The 
local field (E,); acting on the ith particle in a system of particles is a 
fluctuating quantity, given at any instant by 

(E,);= - 2 Tj,*mj 
j #  I 

where T;, is the dipole tensor. 

(4.3) 
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In the fluctuating-polarizability model, the polarization carried by a 
particle is regarded as the amplitude of a quantity that oscillates (i.e., an 
internal motion of the molecule representing the relative displacement of 
positive and negative charge), even in the presence of fixed E,. In the purely 
classical version of the model, the fluctuation of internal coordinates is 
purely thermal, the internal degrees of freedom of an isolated particle 
fluctuating when it is in a heat bath according to the dictates of classical 
statistical mechanics. Since the polarization per particle represents a poten- 
tial energy-call i t  +@)-even when E, =0, the probability of an isolated 
particle in a heat bath having induced polarization p is proportional to 
exp[-P@(p)] when E, = O .  More generally, it is proportional to  
exp[ - P+ I@. m)l, where 

+dP. m) = +(P) - m.E, (4.4) 

The instantaneous polarization is still given by m=p+p, but a more im- 
portant quantity is now the mean polarization 

where 

When +,@) is a harmonic potential, 

then there is a linear relation between (m) - p  and E, for E, of arbitrary 
strength : 

(m) =p+a-E,  (4.8a) 

with a given by (4.2), where 

(4.8b) 

In the fluctuating-polarizability model with harmonic +@), the a of (4.8) 
is identified as the polarizability of an isolated particle. With terms of higher 
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order in the components of p added to the right-hand side of (4.7), (m) - p  
will no longer be linear in E, except in the limit of E,+O, and the field- 
independent polarizability of isolated particle is defined by (4.8a) only in 
that limit. More generally, one has higher-order terms in E,, 

1 1 
2 6 (m) =p+c”E, + - p :  E,E, + -yiE,E,E, + .  . . (4.9) 

A few words concerning terminology are in order here. In the absence of 
permanent moments, the constant-polarizability model is sometimes re- 
ferred to as the dipole- induced-dipole (DID) model, but the phrase “DID 
result” sometimes seems to refer to the use of the model along with certain 
approximations that have become standard in its connection-primarily, 
those that involve dropping all but the leading terms in polarizability in the 
virial coefficients of the Clausius-Mossotti function and related quantities. 
The term “instantaneous approximation” is used by Brown’” to refer to the 
constant-polarizability model. [The fluctuating-polarizability model might 
alternatively be called the fluctuating-polarization model, since the primary 
variable of interest that is fluctuating is m, the mean and variance of which 
we typically consider. However, except when the i th particle is an isolated 
one, its m, and p, will be fluctuating even in the constant-polarizability 
model, simply because (E,), is. This manifestation of fluctuation is 
sometimes93 referred to as “translational fluctuation,” to distinguish it from 
the fluctuation associated with internal coordinates.] 

1. Constant-Polaritability Results 

Wertheim has extended many of the exact results of Section I1 to the case 
of dipolar molecules with constant polarizability. (Higher permanent mul- 
tipoles are assumed to be absent.) For example, the direct extensions of 
(2.30a) and (2.30b) were obtained by him96 in terms of the function 

(4.10) 

which takes over the role played by h,(12) in Section 11. The In Z[ E,] is 
the grand partition function of the system in the presence of applied field 
Eo(r). (In this subsection, 1V.A. 1, we follow Wertheim’s notation except 
where otherwise noted.) 

In the thermodynamic limit, x(rl,r2)-+xm(r12), a function of rl and r2 
only through r I 2 .  Any second-rank tensor function a(r12) must have the 
form 
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where I is the unit tensor and r -3T0(r12) is the dipole tensor 

For such tensors the special role of the A and D components of the orien- 
tationally dependent correlation functions discussed in Section I1 is taken 
over by the analogous I and T components here. The Fourier transform of 
a(r12) given by (4.1 1) is 

ii( k )  =Z,( k )I +a,( k)To(k) (4.13) 

where c?,( k )  and a,( k )  are the Fourier and Hankel transforms of a l ( r )  and 
uT( r )  given by (2.22b) and (2.22c), respectively. [Wertheim denotes a,(/?) 
as G,(k) . ]  Letting 

Wertheim finds,29 as extensions of (2.30a) and (2.30b), respectively, 

= 4 n  A,(r )dr  s ( e -  1)(2&+ 1) 
3e 

Here G, the generalization of our z ,  is given by 

(4.15) 

(4.16) 

(4.17) 

where G,(O) is the I component of the function 6@), related to A",(k), the 
transform of xm(r12),  by the OZ-type relation 

4 7  
A",(k)= 6(k)  - ( j)6(k).T0(k)*A",(k) (4.18) 

Thus 6 , ( k )  is playing the role played by z a ( k )  in (2.25a). Equation 4.15 
can also be written in a form that directly generalizes (2.15) or (2.26) 
through the introduction of the functional inverse of A,( r ) :  
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As shown in Ref. 96, 

(4.20) 

Thus Y(r) takes over the role played in (2.15d) by cs(12), the functional in- 
verse of p(l)p(2)h8(12). A generalization of (2.37) can also be derived as 
outlined briefly in Ref. 29 and considered in detail in Ref. 98. For a finite 
spherical sample of macroscopic volume V in a vacuum, one obtains 

I 
3 ( ~ - 1 )  

4 a ( ~ + 2 )  
(4.21) 

In addition to the direct analogs of the nonpolarizable-particle expres- 
sions considered above, Wertheim has also derived a family of expressions 
involving E, as well as E ,  where E ,  is the high-frequency dielectric constant 
that corresponds to E computed in a static system in which molecular re- 
orientation is suppressed. In the model under consideration, the relevant 
aspect of such reorientation is reorientation of the permanent dipole vec- 
tor, so the computation of E, effectively reduces to the computation of E in 
the absence of the permanent dipole moment; the expressions involving E, 

then follow trivially from the expressions above by subtraction. For exam- 
ple, corresponding to (4.2 l), there is the expression 

(4.22) 

hence 

(4.23) 

Equation 4.23 is in some ways a more natural expression than (4.21) be- 
cause for a spherical sample of macroscopic volume, it can be shown98 that 

(4.24) 

where M v  is the total dipole moment of the sample.IM Similarly, for a 
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macroscopic spherical region of volume V in a uniform infinite system, one 
again has (4.24), along with (4.15) used for both E and E,,  to give98 

]I (4.25) 1) ( E m  - 1)(2E, + 1) 
3% 

- 

This is to be distinguished from an earlier expression of Frohli~h,’~ 

v (E--Em)(2E+ 1)2 
I 

3 4 2 ~  + e r n )  
( M : )  = (4.26) 

which refers instead to a macroscopic spherical sample embedded in a pas- 
sive dielectric continuum, for which E and E ,  are equal [and equal to the E 

of the sample exhibited in (4.26)J. Felderhof rederives (4.25) and (4.26) from 
a macroscopic viewpoint and discuss the relation between them and re- 
lated expressions in great detail in Ref. 107. 

2. Fluctuating-Polarizability Model 

The work by Hsye and Stell on the fluctuating-polarizability model’02 
regards molecules with different m and p as being molecules of different 
species. The route to E that has been exploited by Hsye and Stell in this 
connection involves (2.26) and the appropriate generalizations of (2.25~) to 
(2.25e). When fluctuating polarizability is added, we have the probability 
density pp,p that gives the probable distribution of particles with permanent 
moment p and instantaneous induced moment p. This gives a distribution 
for fixed m of 

(4.27) 

The p,,, is independent of orientation of m and thus corresponds to a den- 
sity p, of polar molecules of moment magnitude m. This corresponds in turn 
to the continuum limit of a mixture of dipolar particles, all of which have 
the same intermolecular potential except for dipolar moment magnitudes. 
Thus in (2.25d) pp2 is replaced by 

p(m2)  =Jp,, ,m2dpdp= s p,m2dm (4.28) 

The ( m ’ )  can thus be thought of as the square of the moment me of an 
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equivalent single-component nonpolarizable polar system, and we can write 

- 42 

in place of (2.25d), retaining the expression (2.26) 

(4.29) 

(4.30) 

Thus in the H0ye-Stell formalism, the central problem reduces to the com- 
putation of the pp,p or its equivalent, corresponding in Wertheim’s for- 
malism to the computation of Xmirlz) or its equivalent. 

The generalization of (2.40) to molecules with fluctuating polarizability 
can be best understood in terms of an Ornstein-Zernike equation, which can 
be written in Fourier space as 

L( k ) = i j ( k ) E ( k ) [  1 -pG(k)E(k)] - ‘ i j ( k )  (4.3 1) 

where the L(k) ,  G ( k ) ,  and E(k )  are matrices, the elements of which are the 
Fourier transforms, &,,(k), Gi j (  k ) ,  and E,,(k) of the site-site correlation 
functions h j , ( r ) ,  c , , ( r ) ,  and o i j ( r )  that refer to the interaction of pairs of 
atoms of species i a n d j .  The p is the molecular density. The i i j ( k )  and 
h , ( r )  refer to the pair correlation between atoms in different molecules, and 
Gij(  k )  and w i j ( r )  refer to the pair correlation between atoms within the 
same molecule (as well as including the delta-function “self-correlation” 
term that always arises when one considers the probability of simulta- 
neously finding one particle centered at ri and one particle-possibly the 
same one-centered at r i ) .  Thus the relation among G, k, and the usual 
particle-particle correlation function for the atoms, viewed as particles in a 
mixture, is given by 

or, in matrix notation, 

I + p f i = i j  + p k  (4.32 b) 

where I is the unit matnx and we are using H I ,  to denote the usual pair 
correlation function between particles of species i a n d j  in a mixture. [We 
would normally use h, ,  for this quantity, but in this subsection we must 
work with both the HI,  and h, ,  in (4.32a).] Now the usual OZ equation for 
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a mixture can be written, in matrix notation as 

( I + p i ) ( Z - p C ) = I  (4.33) 

where C is the direct correlation matrix in Fourier space, with elements 
?;,(k).  [We would normally use S,,(k) to denote this quantity.] We now 
note that (4.31 ) and (4 .33 )  are the same equation, when we define F in terms 
of by the equation 

I -pC=G-I  - p S  (4.34) 

This follows immediately from some elementary algebra, when (4.33) is re- 
written in terms of ij, i, and S. Chandler and his colleagues'M* '05 refer to 
(4.31) as an "Ornstein-Zernike-like" equation; we see in fact that if (4.34) 
is used to define S, (4.3 I )  is nothing but the usual OZ equation for the mix- 
ture of atoms that make up the molecules. The ;-' is the contribution to ? 
from the inlramolecular correlations, whereas c" is the contribution from 
correlations between atoms in different molecules, that is, direct inter- 
molecular correlations. 

In the case of rigid molecules, for a distance between atom i and a t o m j  
of d,,, one has 

ij,, ( k ) =jo( kd, ) ; W ;  ( r ) = S( r - d;, ) /4 ~ d i .  (4.35) 

so that expanding ij , ,(k) about k=O, 

one finds 

In this case, if atoms i and j carry charges q, and q,, respectively, we have 

m2 
3 i. j 

since 

(4.38) 

(4.39) 

In the more general case of q , ( k )  associated with nonrigid molecules, one 
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has instead of (4.38) 

(4.40) 

which follows from the usual definitionsiw of molecular dipole moment, the 
magnitude of which we have denoted m', and molecular polarizability, the 
trace of which we have denoted 3a'. We note that for nonrigid molecules, 
i j , , (k )  is state dependent (i.e., p and p dependent), and thus m' and a' are 
too. The m' is just I(m(1)) I, the magnitude of the mean polarization of the 
molecule (measured in the coordinate system of that molecule), and 3a' is 
just /3[(m2) - I(m(1)) 1 '  1. One has, in terms of the me of (4.29), 

(4.41) 
3n' m,2 = ( m ' ) 2 +  - s 

The generalization of (4.38) to (4.40) is the sole change necessary in the 
discussions given in Refs. 24 and 25 of (2.40), which can be written in the 
form [see (7) of Ref. 251 

(4.42) 
m2 1 -- 

i .  i 

E -  1 x p q , q J i , j ( k ) + 3 k 2  
E k+O 3 

which thus generalizes to 

Expanding iij about k = 0, 

we can rewrite these expressions as 

(4.45) 
E -  1 477 
- =47rpp22 qiqjh$) + -pprn2 

3 
I .  j E 

and 

(4.46) 
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respectively. Equation 4.45 is the form of (4.42) originally given as (35) in 
Ref. 24 except for minor notational differences. Equation 4.46 is the form 
given by Chandler.’@’ We note that the site-site intermolecular correlation 
function h , , ( r )  whose transform appears in (4.43) is defined in a way that 
automatically embodies averaging over all intramolecular site-site charge 
displacements (i,e., over all internal molecular states). 

B. Implementation of Wertheirn’s SSCA for Polar-Polarizable 
Fluids with Constant Polarizability 

Wertheim’s formulation of his SSC approximation, which we have al- 
ready discussed in the context of nonpolarizable fluids in Sections I1 and 
111, applies to the more general case of polar-polarizable fluids. In describ- 
ing this case we use his notation. For polarizable dipolar hard spheres, the 
approximation is defined by the integral equations29 

subject to the closure relations 

H , ( r ) = H , ( r ) = O  for r < d  (4.47c) 

W, ( r ) = g Hs( r ) 9 I ( r ) - !X, ( r ) for r > d (4.47d) 

(4.47e) 

where, with a‘ = Tra’ 

(4.47f) 

?!XLr = HT - W,, ‘XI = H I  - W,. The functions H,, H I ,  W,, and W, are de- 
fined by Wertheim,29 and the caret denotes an integral transform of the type 
defined in (3.28a). The m’ and a’ are the renormalized dipole moment and 
polarizability of We~- the i rn .~~ We discuss their physical significance below. 
In Wertheim’s “first renormalization” or I-R approximation m’ and a’ are 
related to the permanent dipole moment, p ,  and polarizability a by the 
equations29 

a f = a + 8 r K H P - ‘ B a ‘ * a  (4.48a) 
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m’ = p + 8nK,/3 - ‘ B a ’ y  (4.48b) 

(4.48~) 

(Wertheim9’ has also introduced a “second renormalization” or 2-R ap- 
proximation, but this development does not directly enter the computation 
of E ,  although i t  is relevant to E,. Wertheimw has shown that for key ther- 
modynamic properties, the 2-R results differ only slightly from those given 
by the 1-R theory.) 

Equations 4.47 can be written in a more familiar formio8 if we introduce 
the dimensionless functions 

hT(  r ) = P - ’ b H , ( r )  (4.49a) 

h , ( r ) = p - ’ b H , ( r )  (4.49b) 

(4.49c) wT ( r ) = p - ’ b W ,  ( r ) 

w, ( r ) = /3 - ‘b  W, ( r ) (4.49d) 

where 

Writing (4.47a) and (4.47b) in t e r m  of these new functions and taking the 
Fourier transform, we obtain 

and 

where f( k I l )  denotes the Hankel transform 
00 

f( k I l )  = 477i’S r *j,( kr )f( r ) dr 
0 

(4 .50~)  
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The closure relations (4.47~) to (4.47e) become 

and 

where qr = h ,  - wT and 7, = h ,  - w,. The I-R equations (4.48a) and (4.48b) 
reduce to 

and 

(4.5 1 b) 
877 

m ' = p +  - K , p a ' y  
3 

where 

(4.51c) 

It is now obvious that (4.50a) to (4.50f) are exactly analogous to (3.14a), 
(3.14b), (3.12b), (3.21b), and (3.21~) [with B m n ' ( r )  set to zero in (3.21b) and 
(3.2 Ic)] defining the SSC or LHNC (reference version) approximation for 
nonpolarizable dipolar hard spheres. The effective dipole moment me is 
given by 

pm: =b=pm"+3a '  (4.52) 

In the limit a=O, h T ( r ) ,  h , ( r ) ,  w T ( r ) ,  and w,(r) become h I L 2 ( r ) ,  h1Io(r),  
c ' I 2 ( r ) ,  and c 1 l 0 ( r )  respectively. Equations 4.50 and 4.51 can be readily 
solved by iteration."* The situation is very similar to that described in Sec- 
tion III.B.3 for nonpolarizable systems except that in addition to the usual 
integral equations, the relationships (4.5 la) and (4.51b) must also be satis- 
fied. 

Physically, the quantities m', m:, and a' can be identified". 97 as follows: 

m'=(m) =(p+p) 

m3 = ( m 2 >  

(4.53a) 

(4.53 b) 
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and 

a’= - ( ( < m 2 )  P -l(m>l2) (4.53c) 3 

where m is the total and p the induced dipole moment. Thus m’ is the aver- 
age dipole moment (as measured in the molecular coordinate system) of a 
particle, mf,  is the mean square dipole moment, and a’ is related to the 
fluctuation in the mean moment. 

Wertheim29 shows that the dielectric constant of the polar-polarizable 
fluid is given by 

41 
42 

& =  - (4 S4a) 

where 

and 

It is also easy to show that for the present approximation the formulas 

4 I - 42 = - PG~(012) = 3Ye (4.55a) 

( E -  1)(2E+ 1) =Ye[ 1 + 3 1 P m ) ]  
9E 

and 

- ( & -  
i,(012) = 

3&YeP 

(4.55 b) 

(4.5%) 

where ye = 47$rn;p/9 must hold. Equations 4.55b and 4 . 5 5 ~  are essentially 
analogous to (2.30~) and (2.30b) giving the dielectric constant for non- 
polarizable polar systems with the role of h, and h ,  now being played by 
h, and h,, respectively. Thus in the present approximation the dielectric 
constant of the polar-polarizable system is just that of a rigid dipolar fluid 
characterized by the dipole moment, me.  
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Wertheim29 shows that if one makes the approximation 

(4.56) 

then (4.50a) to (4.50f) become just the MSA for dipolar hard spheres hav- 
ing the dipole moment me.  Thus E can be found analytically’2 and is given 
by the equationsl2- 29 

and 
m ’ = p +  16Ed-3a’*p 

(4.57a) 

(4.57b) 

(4.57c) 

(4 S7d) 

where q ( x )  is defined by (3.15~)  and we have used the relationship 
8aKhpd3 = 166. 

0 002 004 006 008 01 

a*- 
Fig. 23. SSCA results for the dielectric constant of polarizable dipolar hard spheres at p* -0.8 

and p*2  = I ;  8=azz /axx .  
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Some results obtainedlo8 by solving the SSC (1-R) approximation [(4.50) 
and (4.5 l)] for polarizable dipolar hard spheres at p * 2  = 1 and p* = 0.8 are 
shown in Fig. 23. The I' is plotted as a function of the averaged reduced 
polarizability a* = f Tr a* where a* =cu/d3. For all curves axx =ayy  and the 
degree of anisotropy S = a Z z / a l , ,  where azz is the component of the 
polarizability tensor along the dipole vector. I t  can be seen that for S 2 1, E 

rises very rapidly with increasing a*. Furthermore, E is very sensitive to the 
anisotropy of a increasing with 6 for fixed a*. We note that for larger val- 
ues of p * 2  the E is found108 to increase even more sharply with a*. In all 
likelihood the very large dielectric constants obtained are an artifact of the 
polarizable dipolar hard-sphere model. We would expect the inclusion of a 
linear quadrupole moment to greatly reduce E ,  just as it does for non- 
polarizable polar systems. 

C. Implementation of the H,@e-Stell Results for Polar-Polarizable 
Fluids with Fluctuating Polarizability 

When +(p) is harmonic, as in (4.7)- the model of strictly field- 
independent &-it has been shown by Hp'ye and Stell"* that the probabil- 
ity density pp,p is of Gaussian form for a certain important class of 
approximations that include the MSA, the LIN, the ADCA, and the SSCA 
-LHNCA. Within this class of approximations, E as a function of a and m 
for a polar-polarizable fluid with harmonic +(p) can be obtained by rela- 
tively simple transcription from E as a function of m in the nonpolarizable 
case. One must replace m by me (the m of a dielectrically equivalent non- 
polarizable system), where 

as given by (4.41). Moreover, H@e and Stell have shown that in the con- 
text of each one of this class of approximations, the relation among m, 
a [ = f T r a ] ,  m', and a' is precisely the same as it is for the constant- 
polarizability model. One immediate result of this is that all the MSA and 
SSCA results for E discussed in Section 1V.B are also the MSA and SSCA 
results in the fluctuating-polarizability model with harmonic +(p). The LIN 
and ADC results for E are equally easy to describe in this model. Using 
(2.30~) to find the LIN F ,  we get 

( E -  1)(2&+ 1) 
=Yeg L"( P 9 ye)  9 E  

4.rrpm:p 
Ye = 9 

(4.58a) 

(4.58b) 

(4 .58~)  



DIELECTRIC CONSTANTS OF FLUID MODELS 289 

Here gL”(p, y e )  is the same function of p and ye that gL”(p, y )  is of p and 
y in the nonpolarizable case. This is easy to compute. From (2.145) and 
(2.30~) 

(4.58d) 

(4.58e) 

1 
g L ” ( p ? y ) = l +  T p l g O ( r ) e A ( r ) d r  

gL”(P? Y )=gMSA(p9 Y ) + A B ( P ,  Y )  

A g ( p , y ) =  q J h o ( r ) e A ( r ) d r =  __ Jho( k)EA( k )  d k  (4.58f) 
3 ( 2 ~ ) ~  

where e A ( r )  is the A component of the chain function e ( r )  of (2.141). The 
GA(k) is a closed-form function of k ,  as is i o ( k )  in the Percus-Yevick ap- 
proximation for hard spheres. In (4.58), m‘ and a’ (hence me and y e )  are 
evaluated for given m and a according to the same approximation that 
yields the polar-polarizable MSA results; hence the use of the MSA label 
in that equation. 

The E in the ADCA is no harder to compute; it involves exactly the same 
ingredients. Because the ADCA (2.107a) involves 412) in a simpler way 
than it involves h( 12), the extension of (2.15) to the polarizable case is the 
most natural route to E in its connection. Using it we obtain 

Here pEA(0)MSA is a function only of ye; it is the same function of ye that 
the nonpolarizable is of y .  It can be related to the core parame- 
ter 0 of Section I1 according to the equation 

(4.59b) 
1 

- - 3 Pq~)MSA , y @ M S A  ( Y )  

The O M S A ( y )  is given by (2.79b). We can rewrite (4.59b) as 

In the ADCA, ye is again given by (4.58~). For the general case of polariz- 
able-polar particles, the LIN approximation for E has not yet been quanti- 
tatively examined. Preliminary results of ours’o* for the ADCA indicate that 
it is highly successful for nonpolar particles but rapidly becomes inaccu- 
rate as m is increased to values of interest for polar particles, yielding far 
too large an E .  
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D. The Case of Nonpolar Polarizable Fluids 
All the results given in Section 1V.A to 1V.C hold for the special case of 

zero permanent dipole moment. This case is special quantitatively as well 
as qualitatively in the sense that for values of a/a3 (o=molecular diame- 
ter) typical of real nonpolar particles such as the noble-gas particles, the 
Hee-Stell parameter ye ,  equivalent to Wertheim's B of our (4.47f), is very 
much smaller than for values of pm2/a3 and a / a 3  typical of real polar 
molecules of interest. In fact, far typical a / a 3  in the nonpolar case, the 
Clausius-Mossotti equation 

E - 1  4 7  
E + 2  9 
-- - - p  Tra (4.60) 

is already a quite accurate approximation in the case of both the models 
we have been considering, just as it has long been known to be for most 
real nonpolar molecules. For many decades, in fact, the key theoretical 
question with regard to E for nonpolar fluids was not how to improve (4.60), 
but why it is such a satisfactory approximation as it stands, since its origi- 
nal derivationslW involved assumptions that are clearly not satisfied even 
in the noble-gas fluids. The work of K i r k ~ o o d , ~ ~  Yvon," Brown,"' and the 
Dutch school of dielectric theoreticians"' went a long way toward clarify- 
ing this point. The Dutch workers first reexpressedllla the Kirkwood-Yvon 
results slightly (in a form that lends itself especially well to correcting the 
Clausius-Mossotti result in powers of p or a) and then generalized"" those 
results from the classical constant-polarizability case to the case of 
fluctuating polarizability associated with a quantum mechanical rather than 
classical description of internal states. These studies revealed that in both 
the constant-polarizability and quantum fluctuating-polarizability models 
(4.60) represents the exact ( E -- 1)/( E + 2) through second order in a 
[ = f Tr a]. Writing 

E-1 47rp 
- ==--a[ 1 +s] E+2 3 (4.61) 

one finds that S is of order a'. The studies that incorporated quantum 
averaging in a fundamental way further revealed that formidable technical 
difficulties stand in the way of making accurate quantitative estimates of 
the deviation from the Clausius-Mossotti result for even the simplest real 
molecules by means of a first-principles study."", ' I 2  

The parameter a/a3 is so small for most nonpolar particles ( a/a3 ~ 0 . 0 4  
for argon and x0.06 for xenon) that the approximation 

S=S, (4.62) 
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can be expected to be a very good one at typical a / a 3  values, where S, is 
defined by 

S, = a21im a+o( s / a 2 )  (4.63a) 

Thus S, can be regarded as the lowest-order term in a formal expansion 
in a 

(4.63b) 

except that there is no good evidence, to our knowledge, that S is analytic 
in a about a = 0, so that one should perhaps be just as prepared to find (at 
the critical point, at least) 

S = S ,  ++3ina) (4.63~) 

as a simple power series. Nevertheless a is clearly an appropriate parame- 
ter of smallness in considering S.  

For simplicity we now focus on  the constant-polarizability model for 
orientation-independent potentials and scalar a. Here one has [with Ti, = 
T(ri,) given by (4.12)] 

where 8 is the angle between rl and rI2 and P2 is the second Legendre poly- 
nomial. If  one expands the S, function in this model in p instead of a,  one 
finds 
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a result that essentially goes back to Si1ber~tein.I'~ It has been rigorously 
proved in the constant-scalar-polarizability case that 

s20 (4.65) 

and also that 

s, 2 0  (4.66) 

The first case follows from any one of several  argument^"^; the latter is 
trivial, since115 

Generalizations of such inequalities to the polar-polarizable case can be 
found in an elegant study by Wertheim.98 

Computer simulation results for S, are somewhat sparse and involve the 
usual uncertainties involved in extrapolating results for a truncated T(r) 
used in a periodic box to untruncated T(r) in an infinite system.116 Nev- 
ertheless for polarizable hard-sphere and Lennard-Jones particles, i t  is 
probably safe to say that the estimates currently available from the com- 
bined use of analytic and simulation input are enough to provide a reliable 
guide to the p and /3 dependence of S2 over the full fluid range of those 
variables. The most comprehensive studies of S2 have been made by Stell 
and Ru~hbrooke"~ and by Graben, Rushbrooke, and Stell,'" for the hard- 
sphere and Lennard-Jones cases, respectively. Both these works utilize the 
simulation results of Alder, Weis, and Strauss,'16 as well as exact density- 
expansion results, and numerical results of the Kirkwood superposition ap- 
proximation 

The use of (4.67) in (4.64) appears to yield accurate S, up to densities of 
around pa3=; at typical liquid temperatures. As p increases beyond this, 
S, rapidly begins to be overestimated by the use of (4.67), as shown in Fig. 
24 for a hard-sphere fluid. (As seen in the figure, however, for realistic val- 
ues of a / a 3 ,  S, is extremely small in the first place.) An approximation that 
is far better at typical liquid densities (and nearly as good at lower densi- 
ties) is one introduced by Stell and kb'ye1'8 in their study of the critical be- 
havior of S,: 

h,(O,r,, rz ) & = O  (4.68) 
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Fig. 24. Values of & / a 2 ,  where a=4Ta/3  for a system of polarizable hard spheres, gven 

by the SSCA (dotted curve), the ADCA (dashed curve), and the best estimate of the exact value 
(solid curve). The best estimate is based on the results of computer simulations"6 as well as 
analytic estimates. 

Here h3(0,rl,r2)8 is the three-particle analog of h s ( r ) = h ( r ) + 8 ( r ) / p .  It is 
the "modified" correlation function that occurs naturally in fluctuation 
theory, 

h3(03 r l  9 '2 )8'p-3(Ap(0)Ap(r, )) (4.69) 

For a lattice gas on its critical isochore, (4.68) is exact, and it  is for this rea- 
son that Stell and Hlajie chose to use it in their study of the critical behav- 
ior of S,, which we summarize in the next section. 

In the original treatment of de Boer et al.llla and of Mazur and 
Jansen,"IbS was expressed in terms of g,  g 3 ,  and so on [as in (4.64)]. 
Bedeaux and Mazur'" subsequently reexpressed S (and its frequency- 
dependent generalization) in an elegant representation involving 

h n ,  6 =P~"(AP(O)AP(~ I  ) . ' Ap(rnP 1 ) )  (4.70) 

Their choice of T(r) (and its frequency-dependen t generalization) was given 
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by (4.12) (but with d identified as a hard-core diameter that remains finite). 
Felderhof then derived and discussed a result equivalent to the 
Bedeaux-Mazur representation from a somewhat different point of view. As 
m e  and Stell pointed out in the context of problems involving a perma- 
nent dipole, one can introduce a core parameter 0 in treating T(r) for r < d ,  
as discussed in detail in Section 11. Sullivan and Deutchl” generalized the 
use of 0 to the case of polarizable nonpolar particles, showing that de- 
pending on one’s choice of 0, one will get as a lowest-order result at zero 
frequency the Clausius-Mossotti approximation, the Onsager approxima- 
tion, or the polarizable analog of the MSA developed by Wertheim (labeled 
the PMSA by him) in close correspondence to the three y+O results con- 
sidered here in Sections 1I.C and 1I.D. Finally H m e  and Bedeauxi2’ 
extended to all orders the use of the core parameter that yields the PMSA 
result as a lowest-order result, and explicitly evaluated E in next highest 
order. The PMSA is given by (4.57), and the next-order H@ye-Bedeaux re- 
sult is essentially the constant-polarizability version of the ADCA result 
given by (4.59~). 

In the PMSA, S, (hence S) is very poorly approximated, with g ( r )  and 
g3(0,r l ,  r , )  both replaced by their zero-density limits in (4.64). In the SSCA, 
S, (hence S) is improved greatly, with S, given by (4.64) in which (4.67) is 
used. In the ADCA, S, (hence S) is still better, with S, given by (4.64) in 
which g,  is expressed in terms of g ( r )  by means of (4.68) and g ( r )  is given 
its a=O value. [In the constant-polarizability case, g ( r )  and g ,  are rigor- 
ously independent of a, but in the classical fluctuating-polarizability model 
they are only so independent in the context of the particular class of ap- 
proximations discussed in Section II.C.1 The ADCA form of S2 so obtained 
is extremely simple. I t  is given by 

S2 = a2p2J [ h( r )  + - O,( r )  dr  
P 1 

87rpa2 
=f f2p2!h(r)O2(r)dr+ - 

3d3 
(4.71a) 

where 

I 0 for r > 2 d  

This is also the S2 associated with the lowest-order correction to the 
Clausius-Mossotti result that comes out of the original Bedeaux-Mazur ex- 
pansion. (This lowest-order Bedeaux-Mazur correction yields a result 
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somewhat different from the ADCA for arbitrary a, however.) If one writes 
the SSCA and ADCA approximations for S as 

S = S 2  + A S  (4.72) 

one finds that A S  is indeed completely negligible compared to S, for 
a / a 3  50.1 in both approximations. For a hard-sphere system, S, in the 
ADCA and SSCA is shown in Fig. 24 compared to the best available 
estimate of S,. 

How do these model results compare with the S defined by (4.61) for real 
molecules? They are very different! The S for noble-gas fluids does not 
satisfy (4.65). For example, for helium S seems to be always negative,’233 124 

whereas for argon it is positive for lower densities but becomes negative at 
liquid den~ities.”~ Thus although the polarizability of real nonpolar mole- 
cules is related to E much as it  is in the constant-polarizability model in an 
overall way [i.e., in both cases, (4.60) holds to good approximation], correc- 
tions to (4.60) are quite different in the two cases. The difference is best 
understood not in terms of the polarizability a associated with an isolated 
particle defined by (4.8) or (4.9), but by the polarizability a(ij) associated 
with an isolated pair of particles, a( i jk)  associated with an isolated triplet 
of particles, and so on. The dependence of a(ij) on small ri, (i.e., in the 
neighborhood of a )  appears to differ strikingly in the models we have been 
considering here from the dependence found in real monatomic molecules 
(and presumably, most other molecules as well). This difference [and pre- 
sumably corresponding differences in a( ijk )] appears to be the primary 
reason for the difference in the behavior of S in the models we have con- 
sidered compared to the experimental S.’26 

One can estimate a(ij) for atoms such as helium and argon with rea- 
sonable accuracy through a combination of experimental and theoretical 
input12’ and also approximate (with much less assurance) a ( i j k )  for such 
atoms in terms of a( i j )  using superposition-type approximations. Using 
such results, one can then generalize our S, to yield approximate expres- 
sions of greater relevance to real particles. The greater the degree of experi- 
mental input in quantitatively parameterizing the pair polarizabilities that 
go into such expressions, the more accurate such expressions can be made; 
but they do not yet provide an independent means of predicting E.  

E. Critical Properties of E 

1. The Nonpolar Case 

The specific heat of a fluid at critical density p, is believed to behave, as 
the critical temperature T, is approached, according to the relation 

c , = A ~ - ~ + B  (4.73) 
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where 1 = IT- T, I and a= i. [There is a notational dilemma associated with 
(4.73) for us, since the a there represents standard notation for a critical 
exponent that has nothing to do  with the a that stands for iTrcu, also in 
standard notation. Stell and H@e,"* in discussing critical behavior of E ,  

used 8 to stand for fTra,  and we do likewise in this subsection, IV.E, but 
on& here.] 

Here c, = (auToT /aT) ,  where uTOT is total internal energy per particle, 
which is the sum of a nonsingular kinetic contribution uKIN plus a config- 
uration contribution u, which can be written in a simple fluid as 

u= s g (  12)+( 12) d r , ,  2 
(4.74) 

with g(12) the pair distribution function and +(12) the pair potential. 
Equation 4.73 is also believed to hold for the lattice gas, as does (4.74), with 
the integral appropriately interpreted as a lattice sum. 

We recall now that at  p=p,, (4.68) is exact for a lattice gas; hence, on 
the basis of widely held notions of universality, p can also be assumed in a 
continuum-fluid computation without doing violence to the structure of the 
dominant singularities that emerge at  the fluid critical point as r+O, p =  p,. 
Since (4.7 1) follows without further assumptions from (4.64) and (4.68), 
(4.71) appears to be an appropriate expression for the study of critical be- 
havior of S, in the constant-polarizability model. It is especially useful if 
we note that there is gross similarity between the function 0, in (4.71) and 
the attractive part of a typical pair potential. To exploit this, consider the 
potential 

co for r < d  
$ ( r ) =  { GoO2(r) for r > d  

(4.75) 

which approximates the overall form of the noble-gas potentials reasonably 
well if we make judicious choices of d and Go. For such a model we can 
make two strong statements: 

1. First, the quantity 

(4.76) 

and u are literally proportional to each other as functions of r at p,. They 
thus share the same r ' - "  singularity, and aS,/af and c, share the same 
f --(I singularity. Moreover, the coefficients of the as, / a t  and c, singu- 
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larity must be proportional, with proportionality constant given by 

(4.77) 

2. Second, in the context of (4.62), this means that aE/aT and c, similarly 
share their singularity with proportionality constant 

(4.78) 

where E, is the critical value of E .  For typical values of 8pc, (4.62) in- 
deed offers an appropriate context, since Op, _< 0.02 for nonpolar fluids 
of interest, and the terms omitted in (4.78) are O ( ~ P , ) ~ .  The same 
order-of-magnitude estimate illuminates why critical anomalies in 
ae/aT are so hard to detect experimentally-they come with a coeffi- 
cient of order ( 8 ~ ~ ) ~ .  

From the observations above, we can see that if real molecules had con- 
stant polarizability, we should expect to have great difficulty experimen- 
tally observing a critical anomaly in &/aT because of its small magnitude, 
but no great difficulty in making theoretical predictions concerning its form 
or its order of magnitude relative to that of c,. 

Since nonpolar molecules do not have constant polarizability, what can 
we say about their dielectric anomaly? The difference in the pair and 
triplet polarizabilities in real noble-gas molecules and our model molecules 
can be summarized in terms of S, by saying that we would expect a similar 
sort of integral to provide a reasonable approximation to S, at p,, but with 
an 0 2 ( r )  quite different from that given by (4.71b). In the case of helium, 
for example, where the linearityIz4 of S, in p suggests that three-body ef- 
fects are of less importance than in argon, S, might be reasonably ap- 
proximated at p, by the expression 

(4.79) 

where a ( r )  is the variation in the trace of the pair polarizability tensor, 
which becomes strongly enough negative for small r to give rise to a nega- 
tive S, and for large r has the functional form 

const 8 
r 6  

a ( r ) =  (4.80) 
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(In the constant-polarizability model, const =4.) Su6h an S, will also share 
the singularity of u as would an S, of the more general form 

as long as A ( r )  is of short enough range for the integral to exist. There seems 
little doubt, therefore, that as, /aT for real molecules shares the specific- 
heat singularity. What seems less easy to estimate in general is its magni- 
tude. To see why [and to confirni that (4.81) will yield as, /aT-t - a ] ,  we 
note that for (4.73) to be satisfied via (4.74) for the variety of $412) for which 
it is expected to hold- the lattice gas nearest-neighbor (or few-neighbor) 
interaction, the hard-sphere plus square-well potential, the Lennard-Jones 
potential, etc.-one expects g ( r 1 2 )  to have in all such cases the form, for 
fixed rI2  and t+O, p=p,, T 2  T,, 

g(r,,)=g,(r,,)+t'-ag,--a(~12)+~~,(r12)+ * * .  (4.82) 

for rI2 >a, [with g x ( r 1 2 ) ~ 0  for rI2 <a, all x.] When inserted into (4.74), 
(4.82) will yield (4.73). When (4.82) is inserted into (4.81) we find similarly 

(4.83) 

hence 

Thus the t - a  singularity persists, but in general, we must know something 
about both A( r )  and g ,  -a( r )  to directly estimate the magnitude of the t - a  

singularity, or compare it with the magnitude of the c, singularity. In this 
more general case, we see that we still expect equations of the form given 
in (4.77) and (4.78), with +I,-, now emerging as a useful measure of the ratio 
of integrated magnitude of +(12) and A ( r )  weighted by g, -a ( r ) ,  since we 
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recover (4.77) from (4.82), using (4.84) and (4.74), with Go defined by 

The definition of $o given by (4.75) is a special case of (4.85) applying to 
$(r)-const 02(r) with A(r) given by 0 2 ( r ) .  Here $o <O. For helium, if 
(4.79) were used, we would have 

which might well be very large in magnitude (andpositioe) because of the 
small-r negativity of a ( r )  that could contribute a bit more to the de- 
nominator of (4.86) than the positive tail of ( ~ ( r ) .  The ae/aT anomaly of 
helium might therefore be expected to be unmeasurably small (and anoma- 
lous in sign, with @o >0) as a result of this, taken together with the ex- 
tremely small @, for helium. 

Can we estimate g I - J r )  in the small-r region, where the $(12) and A ( r )  
will make their biggest contribution to u and S,, respectively? There are 
various ways of getting an order-of-magnitude estimate. For example, for a 
hard-core potential of core diameter d, the virial theorem gives 

271 
3 

p p = p +  -p2d3g(d+)- 

If 

03 for r < d  
'(.)=( $ l r - 6  for r > d  

the last term can be easily written in terms of the internal energy 

271 
3 pp = p + - p2d 'g( d + ) + 2pp u 

Since we expect ap/at-tl-* with u - t l - a ,  the t l -a  contribution 

(4.87a) 

(4.87b) 

u to give 

(4.87~)  

from the 
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g(d+)  term in (4.87) must exactly cancel that of the u term, so 

(4.88a) 

or [from (4.74) and (4.82)] 

2n 
3 - -pd3tWa(l - a ) g , - , ( d + ) ~ 2 ~ , c U  as t-0 (4.88b) 

This gives us precise knowledge of g,-.(d+). If we were to assume that 
g ,  - J r )  is essentially constant throughout the small-r region over which 
A(r) makes its dominant contribution, (4.88b) with (4.74) would yield the 
order-of-magnitude estimate 

2PcqJI “d6 (4.89) 

for a potential given by (4.87b). For such a potential one expects &pi to be 
perhaps two or three times as large as this, suggesting that g, - a ( r )  decays 
fairly rapidly from its contact value g, Jd+)  as r increases from d, which 
is reasonable. This information can be used with (4.84) and (4.88b) to make 
order-of-magnitude estimates relating as, /at, cu, and j,,o,4(r) dr .  

Arguments based on quite different scaling theory assumptions yield 
much the same order-of-magnitude estimates. For r , ,  -00 and fixed x =  
KrI2, where K is an inverse correlation length, Kat’, we can use (4.82) with 

(4.90) 

according to scaling assumptions, where G I  -a is a constant and q a critical 
exponent (~“0.06). This is an asymptotic limit different from the fixed-r, 
K-O limit most obviously relevant to u and S,. However, if we assume a 
strong form of matching of asymptotic regimes, we are led to use (4.90) for 
all r > a  in (4.84) and (4.74), which gives as T+T,, 

hence 
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Because of the strong matching assumption, however, (4.9 1) is perhaps a less 
reliable result than the estimates based on (4.87). 

At the time of writing, the experimental status of the anomaly in & / a t  is 
ambiguous. I t  had been thought that the anomaly had been observed in 
several  fluid^,'^'-'^^ but subsequent experiments"'. 13* have raised a possi- 
bility that the detection reported earlier might have been only apparent. 
(The newer  experiment^'^'. 1 3 *  also appear to put reliable upper bounds on 
the anomaly for 3He, Ne, and SF,.) 

Among the approximations we have considered, the MSA will have no 
anomaly, but the LIN and ADC approximations will give the t -a anomaly 
for a e / a T .  This is clear from the form of A g  given by (4.58f). The 
j h 0 ( r ) e A ( r ) d r  there is an integral of the type / h ( r ) A ( r ) d r  we have been 
considering here. In fact, the S, of the ADCA given by (4.71) is the form 
that we have taken as our starting point in Section 1V.E. 

2. The Dipolar Case 

The general expressions for E in terms of h(12) do not seem to lend 
themselves as directly in the case of dipolar particles to the sort of analysis 
that we have just given for the nonpolar case. We shall therefore content 
ourselves to making a few observations concerning approximations that can 
be expected to exhibit the correct critical exponent of E in the dipolar case. 
The arguments of Ref. 37 suggest that this behavior should be the same in 
the polar and nonpolar cases. In agreement with our own statistical mech- 
anical nonpolar result, they further suggest 8elaT-t -a. 

A key ingredient in our understanding of the critical behavior of dipolar 
systems lies in st ell'^'^^ observation that one can establish a correspon- 
dence in structure between 

l h (  12)dQ,dQ2, 

Q 2  
h s W =  

for such systems and h ( r )  for simple nonpolar (e.g., monatomic) polariz- 
able systems. The correspondence implies that the liquid-gas critical point 
of dipolar systems will lie in the same universality class as that of the 
noble-gas fluids, despite the enormous difference in range and symmetry of 
the dipolar and nonpolar potentials. I t  also asserts that h , ( r )  will have the 
same sort of f and p dependence in the critical region as the noble-gas h( r ) ,  
hence as the h ( r )  described by (4.82). [This correspondence between polar 
and nonpolar h s ( r )  hinges on arguments very similar to the one that en- 
ables H@ye and Stell"'. 134 to use the same formalism to describe correla- 
tions in polar- and nonpolar-polarizable systems.] 
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Perhaps the most useful approximation for our purposes here is a re- 
normalized ADCA 

c A ( r ) = C ~ ” ( r ) + h s ( r ) h , M S A ( r )  (4.92) 

which is the ADC result for cA(r), “renormalized” by the use of h , ( r )  in- 
stead of h , ( r )  in (2.103b), in keeping with the discussion between (2.1 12) 
and (2.1 13). Alternatively we can use the similarly “renormalized” LIN re- 
sult, 

hA( r ) = h,MS”( r ) +A,( r )  (4.93) 

Using (2.25b) with (4.92) or (2.30~) with (4.93), we shall obtain an E that 
has a critical anomaly, with ae/dT-t -a. 

For dipolar molecules in which the quantity ppz is appreciably greater 
than 3a, the whole problem concerning the sensitivity of the anomaly mag- 
nitude on the precise forms of c u ( i j )  and a( i jk)  is absent, since the anomaly 
magnitude will depend entirely on the dipole moment magnitude in the ab- 
sence of polarizability. Let us take the special case of nonpolarizable di- 
polar spheres for simplicity. Then the virial theorem yields 

p p  = p + p2d3gs( d+  ) + ppu (4.94) 

Since we expect ap/aT-t’-* with the t I p a  contribution from 
the g , ( d + )  term must exactly cancel that of the u term, so 

as t+O (4.95) 

a result analogous to (4.88). 
Let us consider the implications of assuming that the value of dg,(r)/at 

at r = d +  is representative of its value in the small-r range over which the 
short-range function hySA( r ) makes its greatest contribution to the integral 

A - f! Jh, (  r )hYsA(  r )  dr  (4.96) ,- 3 

This is the integral that determines the singular behavior of E in the re- 
normalized ADC and LIN approximations. It is the same function as the 
Ag appearing in (4.58) and (4.59), with h,( r )  there replaced by h,( r ) .  We 
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have then the order-of-magnitude estimate 

(4.97) 

The absolute magnitude of this estimate will bound the true absolute mag- 
nitude if a h s ( r ) / a t  decays smoothly with increasing r ,  as is reasonable. In 
the renormalized ADCA 

(4.98) 

and in the renormalized LIN 

( E - 1 ) ( 2 & + 1 )  [ ( & - I ) ( 2 & + l ) ] M " *  (4.99) 
+YAS - - 

9E 9E 

The critical anomaly of at /& appears to have been recently observed'35 
in carbon monoxide, a weakly polar substance. 

V. ELECTROLYTE SOLUTIONS: THE 
SOLUTE- DEPENDENT DIELECTRIC CONSTANT 

The frequency-dependent dielectric constant of a conducting medium 
&(a), diverges as w approaches zero. Ionic solutions conduct, hence the 
static dielectric constant E(O), at least as it is usually defined, becomes in- 
finite. Thus if we refer to the static dielectric constant of an ionic system, it 
is necessary to define that term precisely. An excellent discussion of this 
question has been recently given by Hubbard, Colonomos, and W ~ l y n e s . ' ~ ~  

For ionic sclutions it is possible to define'36 an apparent dielectric con- 
stant, 

where u is the static conductivity. The eSOL is the part of &(a) remaining 
finite as 0+0, and it can be measured e~perimental ly . '~~.  13' Ho wever, eSOL 
is not a true equilibrium property, since it  contains dynamic as well as 
equilibrium  contribution^.'^^. 1 3 *  On e can write 

&SOL = E E  + E D  ( 5  4 
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where E~ represents the equilibrium part and eD the various dynamic ef- 
fects. We are concerned here only with the equilibrium contribution, E ~ .  

Interesting discussions of the dynamic contributions are given in Refs. 136 
and 138. 

The E~ is essentially analogous to the static dielectric constant of non- 
conducting fluids discussed in Sections I to IV. It can be written in terms 
of the equilibrium correlation functions, and in recent  paper^'^^-'^^ on the 
equilibrium theory of ionic solutions i t  is often referred to as the "solute- 
dependent dielectric constant." I t  is important to note, however, that E~ 

constitutes only a part of the experimentally measured quantity, 
In the remainder of Section V we discuss simple models for ionic solu- 

tions and give formal expressions, approximate theories, and quantitative 
results for E ~ .  

A. Simple Models for Ionic Systems 

Consider a mixture in which all species carry both a point charge and a 
permanent point dipole moment. We are interested only in uncharged 
solvents and ions that are not dipolar, but it is convenient to write the 
equations for the general case and then obtain the desired ionic solution 
results by setting appropriate charges and dipole moments to zero. Thus 
species a is characterized by a charge 4a, a dipole moment pa ,  and a num- 
ber density pa. The system must be electrically neutral, so 

x P A ,  = 0 
a 

(5.3) 

where the sum on a is over all species. 

by a distance r ,  can be written in the form 
The pair potential uaa( 12), for two particles of species a and p separated 

(5.4a) 
where 

4arl/3 
u $ ' ( r ) = u f , ( r ) +  - 

r (5.4b) 

(5.4c) 

(5.4d) 

(5.4e) 
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The u$( r )  can be any spherically symmetric short-range gotential, and the 
rotational invariants, am"'( 12) are defined by (3.3a) and given in Appendix 
B. The charge-charge, charge-dipole, and dipole-dipole interactions are 
easily recognized in (5.4a). 

Quantitative results have been obtained'43q 14' for charged hard spheres 
in dipolar hard-sphere solvents. For this model u,",(r) is the hard-sphere 
interaction 

co for r<dap  
0 for r>dap  

HS uap(r)= (5 .5 )  

where d,, =(d, +dp)/2, d ,  being the diameter of species a. 

B. Integral Equation Theories 

1. The Mean Spherical Approximution 

The MSA for a mixture is defined by the equations 

and 

cap(12)= -PuaP(l2) for r>dap  (5 .6~)  

where gap( 12) = hala( 12) + 1. This definition is exactly analogous to the MSA 
for a single-component system. Equation 5.6a is the OZ relation for a mix- 
ture, and hap( 12) and cap( 12) are, respectively, the total and direct correla- 
tion functions for species a and P. For an m-component system (5.6a) yields 
a set of rn2 equations that are conveniently written in the matrix notation 

1 
h( 12) - c( 12) = 4 7 ~  1 h( 13)pc( 32) d( 3) (5.7a) 

where 

P =  

0 . . .  PI 0 
0 pz . . .  0 

Pm 0 0 . . .  

(5.7b) 
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and the remaining matrices are of the form 

(5.7c) 

The MSA for charge-dipole systems has been solved by Blums6* and 
also by Adelman and D e ~ t c h . ' ~ ~  The formal solution is 

h( 12)=h000(r)+d01(r)@10'( 1 2 ) + h o ~ ~ ( r ) ~ o ~ 1 ( 1 2 ) + h ~ ~ o ( r ) @ i ~ o (  12) 

+ h'I2( r)@'I2( 12) 

where 

P n ' (  r )  = 7 Jh( 12)Qrn"'( 12) dO, d O ,  
(4m 1 

(5.8a) 

(5.8b) 

if (mnl)=(lOl) or (Ol l ) ,  with h1I0(r) and d12(r) defined by (3.10~) and 
(3.10d), respectively. The direct correlation function c(12) is given by a 
similar set of relationships. Equation 5.7a can be Fourier transformed and 
combined with the h(12) and c(12) expansions to yields6. 1433 14, 147 

ioll  =how -011 + ~ ~ o l ~ E l l o +  21;0"p2 (5.9b) pc 3 3 

+ l p 1 2 p e l 1 2  (5.9d) GI 10 = - 1 h l O l p E 0 l  I + - 1 -  h' 1Op41 10 

3 3 3 

+ l p o p e 1 1 2  + _I Q 12pE1 10 + l p 2 p E l 1 2  (5.9e) 
I2 = - 1 i ; l O l p ~ 0 l  I 

3 3 3 3 

where 71mnl , h m n l  - p n l  , and the tildes denote the Hankel transforms de- 
fined by (3.1 Ik). Comparing (5.4), (5.6b), (5.6c), and (5.8a), one obtains the 
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MSA closure relations 

All equations written from (5.6) are valid in the MSA in the case of all 
species having both a charge and a dipole moment. The MSA equations 
describing an m-component electrolyte consisting of a single solvent and 
m -  1 ionic species are obtained by setting p l  = p 2  = .  1 .P,,,-~ =0, p,,, = p ,  
and qm = 0. Then the pair correlation functions for the different species are 
of the form 

hIJ(r)=hY(r) (5.1 la) 

/I,~( 12)=h~( r )+h :~ ' ( r )@O' ' (  12) (5.1 lb) 

bpi( 12)=hPq"(r)+h~'(r)@101( 12) (5.1 Ic) 

and 

hPP(12)=h~(r)+h~~(r)@"0(12)+h~~(r)@112(12) (5.1 Id) 

where the subscripts i and j indicate ionic species and p denotes the dipolar 
solvent. Again of course there is a corresponding set of equations for the 
cus(12). For the ionic solutions the matrix equations (5.9) reduce143 to 

i j ;  = c. p, i ; ,E ,  + pPiycJy - f p* i:; 'c,; I (5.12a) 
n 

(5.12b) 

(5 .12~)  

n 



308 G .  STELL, G .  N.  PATEY AND J .  S .  H0YE 

and 

(5.12f) - I  -I p El 
9 P P - 3 p P  PP PP 

where the sum on n is over all ionic species. We have used the symmetry 
relations h,, = h,,, hy = hp, and hp:' = - h:', and have introduced the 
combinations 

where f represents h ,  c, or 77. We note that if there are m - 1 ionic species, 
(5.12a) results in m ( m -  1)/2 equations, and (5.12b) and (5.12d) give m- 1 
each, for a total of i ( m -  l)(m+4)+3. Equations 5.12 together with the 
closure relations (5.10) constitute the MSA for an ionic solution. The equa- 
tions determining h y ( r )  and h F ( r )  completely decouple, and one ob- 
tains PY results for hard-sphere mixtures. The remaining equations can be 
solved numerically. 143 

2. The LHNC and QHNC Approximations 

The LHNC and QHNC closures are defined and discussed in Section 
III.B.3. For charge-dipole systems one 

if (mnl)=(Oll), ( I O I ) ,  or (112), and 

where 

For hard particles, (5.13a) to (5.13d) are applied for r>daD,  and (5.10a) and 
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(5.10b) constitute the closure for r <d,,]. As described in Section III.B.3, 
errors arising from the HNC treatment of u z (  r ) are partially removed by 
applying Lado's technique," which replaces (5.13a) with an expression 
analogous to (3.23). Here again of course the LHNC and QHNC theories 
must be solved nurner i~a l ly . '~~  

C. The Solute-Dependent Dielectric Constant 

1. Formal  Relationships 

The OZ equation (5.6a), together with the plausible assumption 

is sufficient to determine formal expressions relating eE and the various 
correlation functions. Such expressions have been obtained by A d e l m a r ~ , ' ~ ~  
by Chan et aI.,I4' and recently by Levesque et al.i43 The following is a 
derivation and discussion of these results in a unified notation. 

ad el ma^^'^^ has shown that (5.6a), the OZ equation for mixtures, can be 
transformed into an effective OZ equation that can be written in the form 

h",, ( k ) - .I":'( k ) = 2 p, &( k )FEY( k ) 
n 

(5.15) 

where the summation is over solute species only and the tildes denote 
Fourier transforms. Thus (5.15) explicitly involves only the solute species, 
with all solvent effects being by definition exactly included in the effective 
direct correlation function c,?( r ) .  If we introduce an effective solute-solute 
pair potential w , y ( r ) ,  then c : y ( r )  is related to w , y ( r )  in exactly the same 
way that 412) is related to the usual pair ~ o t e n t i a 1 . l ~ ~  For ionic solutions 
one finds'39. '43 that 

c,:'( r ) +  - 

which essentially defines the solute-dependent dielectric constant eE. I t  is 
obvious that eE plays a role very similar to that of the usual dielectric con- 
stant of a nonconducting fluid. In the limit of infinite ion dilution, wcff(r )  
becomes the usual ion-ion potential of mean force, and eE is just the dielec- 
tric constant of the solvent, E .  

Equation 5.16 is obtained'39, 143 by considering the asymptotic behavior 
of c,e/ff(r) as r goes to infinity, or, equivalently, the form of F,":'(k) as k goes 
to zero. Equations 5.12 and 5.14 are sufficient for this purpose. Eliminating 
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6p and 6;;' from (5.12a) through the use of (5.12b) and (5.12d), and com- 
paring with (5.15) yields143 

Equations 5.4 and 5.14 imply that as r goes to infinity, 

-Pq;qj c. .(.)-+- 

P4iP 
I (  r )+ - 

r 2  

r ' J  

and 

which in turn give'". 143 

and 

(5.17) 

(5.18a) 

(5.1 8b) 

(5. I8c) 

(5.19a) 

(5.19b) 

(5 .19~)  

as k goes to zero. Combining (5.17) and (5.19), one obtains that 

where 

(5.20b) 

(5 .20~)  

(5.20d) 
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EqO) = EiP(  k = 0) and CiT) = ciP( k =0) (for notation see Appendix D). Equa- 
tion 5.20b relating eE and the direct correlation function was given by 
Adelman.'39 Although for finite k ,  c":y(k) will depend on the components 
neglected in the expansion (5.8a), the k=O result does not. Thus at least for 
the present model equation (5.20b) is formally exact. Furthermore, (5.20b) 
is easily identified as (2.26), which is thus generally valid for rigid particles 
of cylindrical symmetry, as already discussed in Sec. I1 for uncharged par- 
ticles. 

It is possible'43 to relate eE and the dipole-dipole correlation function 
hPP( 12). If we first consider the infinite dilution case (pI  =p2 = * .  * p,- I = O ) ,  
it follows immediately from (5.12e) and (5.12f) that 

?P 

ao( 1 + fppi;;)) = 1 

and 

(5.21a) 

(5.21b) 

where i::) = h",D,( k = 0) and k;:) = iLP( k = 0). Combining (5.20) to (5.2 1 b) 
gives 

where we have used the relationship 

(5.22a) 

(5.22b) 

Equation 5.22a is just the Kirkwood expression (3.7a), and thus it is obvi- 
ous that at infinite dilution E~ = E ,  the dielectric constant of the pure solvent. 
For ion-dipole mixtures, (5.21b) remains valid; but it is shown in Appendix 
D that at finite ion concentration (5.21a) is replaced by 

o0( 1 + ;pPi:;)'> = 1 +3y( 1 + +pPi7$" )  (5.23) 

Also for ion-dipole mixtures i t  is found'43 (Appendix D) that when pi > O  

&I 12(0) =&I 12( k = 0)  = o  (5.24) 

This differs from the dipolar fluid case [k;f(O)= - (e -  1)'/3yep,, (cf. Sec- 
tion II.A)] and results from the Debye screening of the dipole-dipole inter- 
actions. Combining (5.20b), (5.21b), (5.23), and (5.24), we obtain, when 
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E E  - 1 = 3y( 1 + ;pph;?') = 3yg (5.25) 

where as before, g = ( M 2  ) / N p 2 .  This is the fluctuation formula valid for 
ion-dipole mixtures. Equation 5.25 is similar in form to the "tin-foil theo- 
rem" first a t t r i b ~ t e d ' ~ ~  to Onsager. In the context of this formula has 
been given by F ~ l t o n ' ~ *  and suggested as a conjecture by Hubbard et al.136 
The derivation outlined above is essentially that of Levesque et al.'43 

The E~ can also be related'4'' 143 to the ion-ion correlation functions h , , ( r ) .  
One  obtain^'^'. '43 (Appendix D) 

where 

(5.26a) 

(5.26b) 

This result was obtained by Chan et al.14' and is similar to the second mo- 
ment condition first derived by Stillinger and L0~et t . I~ '  However, it should 
be noted that Stillinger and L ~ v e t t ' ~ ~  consider only primitive model elec- 
trolytes, and the dielectric constant occurring in their formula is that of the 
pure solvent. For the mean spherical, LHNC, and QHNC approximations, 
all three formulas [(5.20b), (5.25), and (5.26)] must give eE consistently. 

2. Quantitative Results 

The LHNC and QHNC approximations have been solved143 for three- 
component mixtures consisting of charged hard spheres in  dipolar hard- 
sphere solvents. Only 1 : 1 electrolytes with ions of equal diameter have been 
considered. Thus denoting the positive and negative ionic species with the 
obvious subscripts, + and - , one has q+ = - 4 -  =q, d ,. =d- , and the 
system is characterized by the reduced variables p: = p+d:, p,* = p,,d:, 
p e 2  =&'Id:, and 4*' = f l q 2 / d + .  In addition, the solvent-ion diameter 
ratio, dp / d +  , must be specified. For some values of these parameters, con- 
vergence problems are encountered in the QHNC theory, and these diffi- 
culties are discussed in Ref. 143. However, for many ionic solutions 
numerical results can be obtained. 

The dependence of eE and g on ionic concentration is shown in Fig. 25. 
Results for several solutions are included. I t  is useful to note that if d+-4  
A, then p: =0.0019 and 0.038 correspond to 0.05 and 1M (M=moles/liter) 
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1 I I I 

0 2 0  4 0  ) 2 0  4 0  

Fig. 25. The solute-dependent dielectric constant and associated g-values. From top to 
bottom the curves are for the following parameters: p * 2  = 2.25, p; = 0.8, q*’ = 86, and 
d,/d+ =0.68; p * 2  =2.5. p,’ =0.6, q*’ =a, andd,,/d+ = 1; p * 2  =2.5, p,’ =0.6, q*2 = 136, and 
dp/d+ =0.68. The dots are the g-values for the pure dipolar solvent. The discontinuity in g at 
p+ = O  can be clearly seen. (Results from Ref. 143.) 

solutions, respectively. It follows from (5.22a) and (5.25) that if cE is con- 
tinuous, g must be discontinuous at p +  =O. The discontinuity in g is obvi- 
ous in Fig. 25. 

At the solvent density, p,* =0.6, we see that cE decreases continuously 
with increasing p: . This behavior is qualitatively consistent with experi- 
mental results for aqueous solutions,’37 but the present model is much too 
simple to permit meaningful quantitative comparison. Also it is important 
to recall the cE is but one of the contributions to the apparent dielectric 
constant cSOL, measured experimentally. The behavior of E~ at p: =0.8 is 
somewhat different. Initially, E~ decreases as before, but it now passes 
through a minimum and increases again at  the higher concentrations. This 
is not observed experimentally, for a very simple reason.’43 In the theoreti- 
cal calculations the ions are added at constant volume rather than at con- 
stant pressure. Thus as ions are added, pp remains constant but the total 
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number density, p = p+ + p- + p,,, increases. At high density E~ is very sensi- 
tive to small changes in p ,  and it is the increase in p that causes E~ to 
increase with p+ at the higher concentrations. This is not a surprising ob- 
servation, since it is known5* that at high density (p*-0.8) the QHNC di- 
electric constant of dipolar spheres varies rapidly with density. Also, since 
p,, is held fixed and there is no loss of dielectric material, the decrease in E~ 

at the lower concentrations must be totally due to the influence of the ions 
on the dipolar correlations. The experiments are carried out at constant 
pressure where p ,  p,,, and p+ are related in a nontrivial manner that de- 
pends on the equation of state. This relationship is not known for the pre- 
sent model. Perhaps holding p, rather than p,,, fixed as p+ is increased would 
better approximate the experimental situation, but this has not been in- 
vestigated. At p,* = 0.6, E~ is not very sensitive to small changes in p and no 
minimum occurs in the range of p+ examined. 

Perez-Hernandez and BlumlU have recently obtained essentially analytic 
expressions for E~ in the MSA, and quantitative results are given by Veri- 
cat et al.14' The MSA results are found'45 to be qualitatively similar to those 
described above, with cE decreasing as the ionic concentration is increased. 
Vericat et al.'45 also compare the MSA results for E~ with experimental val- 
ues of for aqueous solutions. They show that if one is willing to treat 
the dipole moment of water as an adjustable parameter, rough agreement 
can be obtained.'45 However, in view of the simplicity of the model, the 
likely inaccuracy of the MSA (cf. Section IILD), and the failure to account 
for the dynamic contributions to it is difficult to reach any conclu- 
sions from such comparisons. 

Another theory for E~ has been proposed by Adelman and Chen.'" Their 
approach differs from the theories described above in that they do not rely 
completely on statistical mechanical methods, but attempt to solve gener- 
alized Poisson-Boltzmann equations for ion-solvent mixtures. The ap- 
proximation obtained'@ predicts that E~ increases with p +  for all con- 
centrations. This is obviously in serious disagreement with the integral- 
equation theories, and it probably means that the approximation of Adel- 
man and Chen'@ is rather poor. However, this has not been proved and 
further investigation is necessary. 

VI. THINGS TO COME 

The sensitivity of E to the magnitude of the quadrupole moment for 
"linear" quadrupoles in dipolar-fluid model calculations was discussed in 
Section 111. This property points the way to two questions that must be ex- 
plored in future work. 
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1. 

2. 

How quantitatively sensitive is E to other forms of anisotropy that 
characterize the pair potential in real polar molecules? 
What are the full generalizations of the formally exact expressions for E 

we have exhibited in terms of correlation functions when one gener- 
alizes the models we have been considering to simultaneously include 
quadrupoles and higher multipoles, as well as short-range anisotropy of 
arbitrary symmetry along with a dipolar term and polarizability? 

The first question has hardly been touched. One of the few preliminary 
results available, an exploratory calculation of Martina and Stell''' on a di- 
polar system with hard diatomic core, uses approximations of untested ac- 
curacy. Much more work is needed in regard to core anisotropy as well as 
the effect of quadrupole terms of general symmetry. 

Quite probably the answer to the second question will look not too much 
different from the expressions for the models that have been thoroughly 
analyzed here, but the establishment of this result may turn out to be tedi- 
ous. We have seen in Section I1 how to handle rigid nonpolarizable par- 
ticles of arbitrary symmetry using the formalism of H ~ y e  and Stell. The 
addition of fluctuating polarizability has been considered by those authors 
only for molecules of cylindrical symmetry, but its extension to molecules 
of arbitrary symmetry is unlikely to raise fundamental problems. On the 
other hand, particles lacking cylindrical symmetry even in the nonpolariz- 
able case are substantially more awkward to deal with than cylindrically 
symmetric particles. In treating the constant-polarizability case, Wertheim 
excludes all permanent multipoles beyond the dipole; clearly the quadru- 
pole at least must also be included to provide a realistic model for many 
real fluids of interest. 

Significant progress in the nonpolar case will be, if anything, more dif- 
ficult than in the polar case, because in the former case small deviations 
from the Clausius-Mossotti equation represent the whole story of interest, 
and they are crucially sensitive to the form of the pair-polarizability a( 12) 
[and presumably the triplet term a(123) as well]. Neither the constant- 
polarizability model or the classical harmonically fluctuating polarizability 
model considered in Section IV gives rise to an a( 12) that looks like that of 
real molecules. There are a number of challenging problems to be met in 
this regard. Can one find a classical non-harmonically fluctuating polariza- 
bility model that yields realistic a(12) [and a(123)]? Or can one efficiently 
use the H~ye-Stell formalism in a semiclassical way simply by inserting the 
true quantum mechanical functions for isolated molecules in place of the 
g(m) of (4.6)? (This seems promising.) Can we ultimately do good enough 
first-principle calculations to get a( 12) and a( 123) without working 
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backward from experimental input? (This is a hard problem in quantum 
chemistry rather than one of statistical mechanics.) And once we have rea- 
sonable 412)  and a(123), by hook or by crook, will there be any analyti- 
cally tractable approximation of high accuracy that will emerge for the S 
of (4.61) as a functional of these quantities? 

A quite different sort of extension of the work considered here is 
already well under way and promises to yield new and fundamentally im- 
portant results, namely, work on a fluid in the presence of a nonzero elec- 
tric field. Nienhuis and Deutch considered certain aspects of such a system 
in one of their papers,” showing one way of formally characterizing the 
polarizability of such a system as a function of full Maxwell field E rather 
than applied field E,. More recently, H ~ y e  and Stell,’34 Martina and 
Stell,’” Rasaiah and Ste11,15’ and rams ha^'^^ have been investigating this 
area. H ~ y e  and Stell were able to recover the thermodynamic relations that 
describe such a system (as given, e.g., by Landau and Lifshitz’”) from the 
statistical mechanics of a Hamiltonian model of molecular interaction. 
Martina and Stell have found a systematic cluster expansion method for 
directly implementing (1.1) to obtain E ,  and they consider dielectric satura- 
tion and other nonlinear effects. Rasaiah and Stell have used an integral 
equation approach to study such effects, especially electrostriction. 
Ramshaw has obtained a very interesting closed-form functional represen- 
tation of the one-particle distribution function p(1) in the presence of an 
external field of arbitrary strength. 

We do not go into any of the above mentioned work here, except to show 
that the E that comes out of (1.1) for a system in a nonzero field E is indeed 
the same E that we have been considering in Sections I to V in terms of 
correlations in systems free of external fields. To see this, we use the stan- 
dard equation for P in terms of the one-particle density in the presence of 
a field p( 52, E) 

We can compute p(52,E) by starting with p(12) for a system with a tagged 
dipolar particle I in a sea of its fellow particles and letting particle I grow 
bigger and bigger (with appropriately scaled bigger and bigger dipole 
moment as well as diameter) until it becomes a macrosphere or wall (or in- 
finite radius on the scale set by the microscopic radii) through which an ex- 
ternal field Eo is passing.’55 We then back far enough from the wall for the 
resulting p( 12) to be independent of distance from the wall (on the micro- 
scale). We now have p( 52, E), which- to linear order in E-proves to be of 
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the form'55 

where 8 is the angle between E, and the p of a fluid particle, and q,  and 
q 2 .  which characterize the dielectric properties of the fluid, are given by 
(2.25). The Eo is related to the Maxwell field E at the point of interest by 
the simple equation 

3 
2&+ 1 EO E =  - 

Putting (6.2) and (6.3) into (6 .1)  and putting that result in turn into (1.1) 
yields 

41 

42 
E =  - 

which is exactly (2.26). I t  should be a reassuring result for those who may 
have felt some unease over whether the vast formal scaffolding we have had 
to erect has gone up on the right plot-the E we have been talking about is, 
after all, the same conceptual object that Clausius, Mossotti, and Debye 
were talking about. 

APPENDIX A 

Use of Test Charges 

Another way to obtain (2 .55)  and (2.56) is to compute the effective inter- 
action between two test charges. This is easily done by use of (21)  of ref. 4 
with a and b taken as the coefficients of the D, and A terms, respectively, 
in (2.54). We get 

1 - ( 1 - O)y 
1 + ( 2 + 0 ) y  

= 1 - 3y - y a ( 2 +  @)( I - (  1 - 0 ) y )  = (A.1) 

which immediately leads to the results (2.55) and (2.56) for E and z.  
We also can make the corresponding computation using our test charge 

and dipole or two test dipoles defined in Section I1 of Ref. 4. Putting K =  
k . S ,  we have by convolution (integration over 6) KD, = K ;  K A =  K .  In 
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addition, we have the convolution rules [Ref. 4, (B.8)]. For our test charge 
and dipole we then get [using (17) from Ref. 41: 

- K =  - & + 2  K = K [  1 -3yDk(1 +d, + b A ) ]  3E I +2z 

= [ 1 - 2y( 1 + ;ay + f by)] K 

= [ 1 -2y-  fuy(2+0)(1-(  1 - 0 ) y ) I  K 

- l + O y  - 
1 + ( 2 + 0 ) y  

For our two test dipoles we similarly get [using (18) from Ref. 4 for E ] ,  

(F)2-![ D,-2zA]= [Dk-2tA]  
( 1  + 2z)( 1 -2) 

= D, [ 1 - 3yD,( I + uD, + bA ) ] 
=Dk[  l-3y((l++a+!,b)Dk +;ah)]  

= [ 1 -y( 1 + a +  f b ) ]  D, + [ -2y( 1 + ;u+ fb)] A 

D, -2- 1 +oy 
- (1+Oy)2 - 

( I  + ( 2 + 0 ) y ) ( l  - ( I  - 0 ) y )  

One sees that (A.2) and (A.3) both immediately lead to result (2.55) for z 
and by that to result (2.56) for E .  

APPENDIX B 

Explicit Expressions for the Rotational Invariants 
The @""'(12) used in this chapter can be conveniently written in the form 

@W(12)= 1 
@Ol( 12) = TI 
@0"(12)=T2 
@'10(12)=TlT2 +T3 
@112(12)=2TlT2 - T3 
@I2I(12)= f[Tl(3T; - 1)+3T2T3] 
@"'(12)=f[?(3T,2 - 1)+3TlT3] 
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@lZ3(l2)=3Tl(3T22 - 1)-6T2T, (B.8) 
@'I3(12)=3T2(3T: - 1)-6TlT3 (B .9) 
@,"(12)= 1 -3T,ZT,Z -3T: -6TIT2T3 
ip222(12)=2-3T,Z -3T: +6T,ZTt -3T: +3T,T2T3 

@224(12)= 1 -5T; -5T: + 17T:T,'+2T: - 16T,T,T3 

(B.lO) 
(B.11) 

(B.12) 

TI =fi,*i,, =cos8, (B.13) 
T, =fi,.i,, =case, (B.14) 
T3 =f i  I a f i ,  - ( f i  I o i l ,  )( f i ,  o f , , )  = sin 8, sin 6, cos( + I - G2) (B. 15) 

and 

where 

and f i ,  and f i ,  are unit vectors directed along dipoles 1 and 2, i,, =rI2/1rl21, 
and 6 and + are, respectively, polar and azimuthal angles defined with re- 
spect to the vector rI2 =r2  - r l .  

APPENDIX C 

The Bmn'(r) for Dipole-Quadruple Systems 

The functions B m n ' ( r )  occurring in the QHNC equations (3.21) for di- 
pole-quadrupole systems are defined as follows: 

2 1 
3 6 1 ( I lo),+ - ( 1 12), + - ( 12 I), + 4( 123)2 

1 4 
6 5 

+ -(211),+4(213),+ -(220), 

224 45 1 14 
25 

+ - (222), + - (224), 

8 28 1 
2 15 45 B y r )  = 2 [ - - (1  10)(220) + %( 112)(222) + -( 121)(211) 

B ' y  r ) = 3 [ 2 ( 1 10)(222) - - ( 1 12)(220) - 75 (1 12)(222) 

(C-2) 
+ j(121)(213)] 16 

4 75 75 

+ -( 112)(224) 

8 8 

64 
25 
46 4 
225 25 + -(121)(21l)+ -(121)(213) 

1 4 64 
25 25 + -(123)(211)+ -(123)(213) 
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46 [ 65 225 
4 2 
25 15 

75 
92 64 
175 105 

r )  = 3  -( 110)(21 I ) +  -( 112)(211) 

+ -(l12)(213)- -(121)(220) 

- _  (121)(222) 

+ - (123)(222) + -( 123)(224) 

4 64 
8 5  25 25 B y r )  = 1 [ ‘6 ( I  10)(213) + -( I12)(211) + - ( I  12)(213) 

92 
175 
64 32 
105 35 
128 256 
175 35 

+ - (12 1)(222) 

+ -( 121)(224)- -( 123)(220) 

(C 5 )  

2 46 4 
B2”( r ) = 3  -( I  lo)( 121) + -( 112)( 121) + -( 112)( 123) - -(211)(220) [ 65 225 25 15 

1 - -( 123)(222)+ -(123)(224) 

2 92 64 
75 175 105 

- -(211)(222)+ -(213)(222)+ -(213)(224) 

4 64 
25 25 

1 lo)( 123)+ -(112)( 121)+ -( 112)(123) 

92 
+ =(211)(222) 

64 32 
105 35 
128 256 
175 35 

+ -(211)(224)- -(213)(220) 

(C.7) 

16 2 -(123) 35 

1 

256 1 

- -(213)(222)+ -(213)(224) 

1 16 
15 35 
16 12 
35 175 

- -(211)2- -(213)2 

- - (220)2 + - (222)2 - - (224)’ (C.8) 315 
2 64 

75 175 75 
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64 
175 
164 256 28 92 

1225 441 75 175 
92 24 1088 
175 175 1225 

- -(213)2 

+ -(222)2- -(224)2+ -(110)(112)+ -(121)(123) 

+ -(211)(213)+ -(220)(222)+ -(222)(224)] (C.9) 

128 128 544 
35 35 1225 -(123)2+-(213)2+-(222)2 

1024 
245 
64 64 5 12 
105 105 315 

441 

+ -(224)2 

+ - (12 1)( 123) + - (21 1)(213) - - (220)(224) 

(C.10) - - 5 12 (222)(224)] 

where ( rnnf )  denotes hmn'( r). 

APPENDIX D 

The Derivation of (5.23), (5.24), and (5.25) 

In the vicinity of k=O the correlation functions can be expanded in the 

' I J  - -E'-Z'k - I j  - 2  +p) ' J  + . . . (D.la) 

c'P -011= _ j ( E  ' P  o l l c - l ~ ~ - ' + ~ O l l ( l ~ ~ +  ' P  . . .  ) (D.lb) 

(D.lc) 

form14L 143 

JJ = p' IJ  + p k  IJ 2 + . . . 

and 

where it is assumed that the pair correlation functions are finite at k=O, or 
that the charge-charge and charge-dipole interactions are screened at long 
range.22* 25 Then from (5.19a) and (5.19b) it is obvious that 

and 

(D.2a) 

(D.2b) 
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Inserting (D.la) to (D.ld) into (5.12a) and comparing terms of equal 
order in k yields two results. The k - 2  term gives the local charge neutrality 
condition 

and collecting terms of order k o ,  one obtains'43 

Multiplying (D.4) by pjqi and summing over i yields 

where we have used (D.3) and the total charge neutrality condition, 

The coefficients of k - l  in (5.12d) give 

and collecting the terms of order k o  in (5.12e), we obtain 

(D.8a) 

(D.8b) 

where (D.8b) follows from the use of (D.7), (5.12g), (5.12h), and (5.19). 
Equation 5.23 is easily obtained by rearranging (D.8a). Also (5.12f) allows 
(D.8b) to be rewritten in the form 



DIELECTRIC CONSTANTS OF FLUID MODELS 323 

and from (D.8c), (5.12g), and (5.12h), i t  is immediately apparent that 

This is the relationship (5.24). 
Finally, combining (D.5), (D.7), (D.9), and (5.25), we obtain 

where 

(D. lob) 

These are the formulas (5.26). 
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I. INTRODUCTION 

Everyone is familiar with soap films: those thin, liquid structures that 
form soap bubbles and foam. I t  is much less widely known, however, that 
soap films can serve as model systems for the study of long-range colloidal 
interaction forces between suspended particles. Some of the characteristics 
of soap films can be observed easily when films are formed in a looped wire 
frame, which is dipped into and withdrawn from an aqueous solution con- 
taining some soap or detergent (Fig. 1.1). After a short time beautiful inter- 
ference colors appear in reflected light, showing that the thickness of the 
film is comparable to the wavelength of visible light. When the frame is held 
vertical, colored horizontal bands are observed, slowly descending, which 
gradually become broader and brighter.’ This implies that in the vertical 
direction the films at first have large gradients in thickness, which become 
smaller when drainage of the film liquid due to gravity causes the film as a 
whole to thin progressively. In time one may observe “black spots,” mostly 
in the upper parts of the film bordering the supporting frame. The “black 
spots” are extremely thin film patches with thickness in the order of 10 nm. 
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GLASS 
FRAME n 

Fig. 1.1. Preparation of a soap film by raising a glass frame from an aqueous soap solution. 

At about this stage, but sometimes much earlier, the film ruptures if it is 
not protected against evaporation. 

These phenomena can be studied in a controlled way when the disturb- 
ing effect of air currents and evaporation are minimized by placing both 
film and solution in a closed vessel. The film thinning appears to proceed 
more gradually and regularly, especially near the end of the drainage period. 
At the top of the frame the colored bands make room for a band with a 
silvery appearance, corresponding to a film thickness of around 120 nm 
(-onequarter of the wavelength of light). Then, slowly, the whole film be- 
comes more and more gray and finally black, starting from the top. The 
black film has a thickness of a few tens of nanometers or less. If ap- 
propriate precautions are taken, these black films can remain stable for 
several months or longer. 

A. Interaction Forces 
The phenomena described above have been known for a long time; in- 

deed, Newton’ reported on the “black spots’’ in soap films. In the past 25 
years, however, these thin, liquid structures have become a subject of in- 
tensive scientific ~ t u d i e s . ~  One of the main reasons is that the interaction 
forces between colloidal particles suspended in a liquid are of the same na- 
ture as those operating in soap films. Because the film geometry is well de- 
fined (i.e., a thin, flat liquid sheet, macroscopic in lateral extension), it is an 
attractive experimental subject for studying these forces, in particular with 
optical means. 

The presence of attractive “colloidal” forces becomes apparent in the 
black spots4 The black film appears to be in a sort of metastable equi- 
librium state with a finite thickness in the colloidal size range. What are 
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these colloidal forces? Clearly they must have a range much larger than 
atomic dimensions. Relevant for us are two main types: long-range van der 
Waals- London forces and long-range electrostatic forces. 

I .  Van der Waals-London Forces 

The van der Waals-London forces find their origin in (quantum) 
fluctuations in the electric polarizability of matter. In first approximation 
they may be calculated by a simple summation of the attractive van der 
Waals- London forces between atoms. The distance on which these forces 
are felt may be up to several hundreds of nanometers. 

2. Electrostatic Forces 

The electrostatic forces are caused by soap ions adsorbed at  the two op- 
posing air-water interfaces that sandwich the aqueous core. The core con- 
tains water, a few nonadsorbed soap ions, and other ions for example, Na+ 
and C1- from added sodium chloride (common salt) or from other impuri- 
ties present in the solution from which the film was made. Except for the 
thinnest films, the percentage of water is overwhelming. For instance, a film 
with a core thickness of 50 nm contains a weight-percentage of, say, 97% 
water, 2.5% adsorbed soap, and 0.5% NaCl. The repulsive Coulomb forces 
between the opposing film surfaces are screened by a diffuse “charge cloud” 
built up by ions in the core. The range of the screened forces, or the 
“thickness” of the charge cloud (called the electrical double layer in colloid 
science), is given by the Debye parameter 1 / ~ ,  which is proportional to the 
electrolyte concentration to the power - f .  This parameter is defined by 
(2.6). One calculates, for instance, that I/K ranges from 3 to 30 nm for 
aqueous NaCl solutions at 25°C containing l o p 2  to mol/dm3 (1 
mol/dm3 NaCl solution contains 58 g of NaCl and water added to a volume 
of 1 dm3). Since both van der Waals-London and electrostatic forces are 
long-range with respect to atomic dimensions, they can be described 
without taking into account the detailed atomic structure of the film liquid. 

B. Thin Films as They Occur in Nature or Practice 
Thin, liquid films as such are not only systems of interest, they also oc- 

cur frequently in nature and in laboratory practice, for example, in foams. 
In emulsions, to name another case, thin water films between “0i1” (instead 
of “air”) phases are present in a concentrated emulsion of small oil drop- 
lets dispersed in water. The properties of the thin water film determine the 
interaction forces between the oil droplets and will determine, for example, 
whether the emulsion in stable. Also the reverse case, oil films in water, oc- 
curs. Extremely thin (-5 nm) “oil-in-water” films are prototypes of lipid 
bilayers occurring in biological membranes. Thin liquid films on a solid 
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support’ are present in all kinds of surface wetting phenomena6 and are 
important in lubrication and in transport processes in chemical engineer- 
ing. 

Also in these cases colloidal forces play a role in the behavior of the films. 
In practice, however, films occur often in rather complex situations that are 
difficult to disentangle. Fundamental studies on certain prototypes of films 
may help in the understanding of these phenomena. 

C. Experimental Methods 
Several experimental methods exist to study the interaction forces in 

films. Five such approaches are described next. 

1. 

2. 

3. 

4. 

pi 

The thickness of equilibrium films is measured as a function of electro- 
lyte c~ncent ra t ion .~  The attractive van der Waals- London forces, 
which tend to thin the film, are balanced by repulsive electrostatic 
forces, which tend to thicken the film. Adding electrolyte has its main 
influence on the electrostatic forces, which become more effectively 
screened, so that the films thickness becomes smaller. The film thick- 
ness is calculated from the optical reflection coefficient. 
Small, circular films, a few millimeters in diameter, can be made in a 
circular glass ring3* ‘-lo (Fig. 1.2). The film thickness can be changed 
by applying a small variable hydrostatic suction at the film edge. Larger 
suctions, up to 1 atm, can be reached when the film is made in a hole 
drilled in a porous glass plate.” This method has the advantage that the 
equilibrium of forces mentioned in item 1 can be changed by superim- 
posing a known (suction) force, without changing the electrolyte con- 
centration. 
A (less satisfactory) variant of method 2 is to study the kinetics of the 
film thinning process.’. ’’ To extract information on the interaction 
forces, the dynamics of film thinning must be known. Formation of 
“dimples” complicates the situation. 
At the place where the film contacts the bulk liquid, a curved surface 
profile (sometimes called a Plateau border) is present. For a plane 
vertical film this is sketched in Fig. 1.3. In a thick film this profile is 
smooth, but in a thin film, where the interaction forces become percep- 
tible, a discontinuity emerges that can be measured as a so-called con- 
tact angleI3-l6 (e.g., from a Fresnel diffraction pattern’” ’’ of visible 
light). A similar phenomenon can be observed in small circular 

\ 

Fig. 1.2. Formation of a soap film in a clrcular glass u r- nng havlng a diameter of a few rmllimeters. 
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A 0 

Fig. 1.3. Vertical soap film in contact with soap solution: A ,  film without contact angle; 
B,  film with contact angle 0. 

films.”* 2o Contact angles 8 range from, say, 10 minutes to 20 degrees, 
depending on the contribution of the interaction forces to the force 
balance governing the surface profile. 

5 .  One of us proposed to study the scattering of light by the film surfaces.2’ 
The surface of a liquid is not perfectly flat but always contains small 
ripples or corrugations because of the thermal motion of the molecules. 
Surface ripples having a wavelength comparable to the wavelength of 
light give a measurable scattering (diffuse reflection) if they are il- 
luminated by visible light. According to Einstein,22 these large-scale 
fluctuations may be calculated with the law of equipartition of energy. 
For the surface of a bulk liquid, this leads to an inverse proportionality 
of the scattering intensity and the surface tension. 

In thin, liquid films two additional phenomena must be considered. 

1. The total scattering from both film surfaces is modified, compared with 
the scattering from the two single surfaces, by interference from the 
light in the film. 

2. Not only the surface tension but also the long-range interaction forces 
in the film will determine the scattering of the light. This makes it pos- 
sible to determine these forces from the intensity of the scattered light. 

More recently we have found23 that fluctuations in the scattered light in- 
tensity around its mean value give information about dynamics of the rip- 
ple motions in the film (intensity fluctuation spectroscopy). The rest of this 
chapter treats the light-scattering method in more detail. 

and review papers 
in the field of soap  film^.^'"^ 

For the interested reader, we suggest some 

11. THIN LIQUID FILMS 

This section provides more detail about thin films and the governing in- 
teraction forces. 
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A 

AIR 

0 0 0 0 %  
0 0  
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Fig. 2.1. Cross section of a soap fllm in air: 
A is the tail of a soap ion. The surfaces con- 
tain adsorbed soap ions, and the aqueous core 
contains electrolyte. The film is electrically 
neutral . 

A. Soap Film Structure 

In Section I we introduced the reader to some notions about liquid soap 
films that can be observed in everyday life. Such films are what we callfree 
liquidfilm, the term “free” meaning that the film is supported only at its 
periphery, with both film surfaces in contact with gas (or liquid). Figure 2.1 
is a schematic picture of a cross section of such a film. At both air-water 
surfaces, surface active molecules (A) are adsorbed. Molecule A is a soap 
molecule,* but it could be another molecule that is “surface active.” 

Surface active molecules (surfactants) invariably contain two parts: one 
(hydrophilic) part that prefers to be surrounded by water (the positive 
charged head of molecule A), and another (hydrophobic) part that prefers 
to be surrounded by air (or any nonpolar liquid immiscible with water) and 
shown as a wavy line, called tail. This constitution of the molecule makes it 
surface active because, clearly, it prefers to be situated at the interface. An 
example is hexadecyl trimethylammonium bromide (HDTAB); see Fig. 2.2. 
Not all the soap molecules are adsorbed at the film surfaces; a few are pre- 
sent in the core of the film, this number being smaller, the larger the surface 
“activity” of the molecule is. The surface activity increases with the length 
of the tail. The adsorbed soap molecules form a monolayer behaving as a 
kind of two-dimensional fluid with a certain “surface pressure.” The (posi- 
tive) surface pressure is equal to the surface tension of the solution without 
surfactant minus the surface tension of the solution with surfactant. Be- 
tween the two surfaces one has the aqueous core containing ions from the 
added electrolyte (here, K + ,  Br -) and from the soap. 

One could ask whether the presence of an adsorbed surfactant is really 
necessary. The answer is yes. The soap layer, although only a monolayer 
thick, has a profound influence on the flow properties of the film liquid be- 

*For convenience, we adhere to the term “soap,” although the substance may not be a soap 
in chemical terms. 
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CH, -CH,-[CH, J,,-CH,-CH,-N-CH, 
01 

to i l  head 

Fig. 2.2. Chemical formula of a hexadecyl trimethylammonium bromide (HDTAB) mole- 
cule. 

cause it sensitively affects the flow boundary conditions. During its forma- 
tion, the film goes through stages of turbulent flow. The surface of a pure 
liquid (with a constant surface tension) would stretch indefinitely under the 
action of a surface stress, and a film of pure liquid would rupture im- 
mediately. Liquid surfaces covered with a monolayer, however, have a 
variable surface tension that depends on the surface density of the surfac- 
tant. Local stretching of a surface element diminishes the surface pressure 
and thus increases the surface tension, which tends to contract the surface 
again. This “healing effect” is known as the Marangoni effect. It prevents 
the film of becoming dangerously thin upon stretching. 

B. Electric Double Layer Repulsion Forces 
The ionized soap molecules adsorbed at the film surfaces give them a 

positive charge. The average density is given by 

u =  N:ve (2.1) 

Here N: is the surface number density of the soap ions, e is the elementary 
charge, and Y the number of elementary charges per ion (for HDTAB, Y = 1). 
The surface charge is compensated by an equal amount of opposite charge 
present on ions in the aqueous film core to make the system electroneutral. 
The positive ions in the core will be repelled and the negative ions will be 
attracted to the surfaces. Both effects, however, are counteracted by the 
thermal motion of the ions, which results in a “diffuse” cloud of ions that 
screens the effect of the surface charges. Treating the surface charge as 
continuous and the ions in the core as point charges, distributed according 
to Boltzmann’s law in a continuous dielectric (e--80), one has: 
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where n + ( z )  is the average number density of positive ions in the core with 
valence Y (the same for positive, negative, and soap ions), as a function of 
the position z along an axis perpendicular to the surface. Furthermore, $(t)  
is the average electrostatic potential at t ,  and k , ,  T,  and E are Boltzmann's 
constant, the absolute temperature, and the dielectric constant of the 
solvent. The terms n i ( z )  and +(t) are related by Poisson's law through the 
charge density p ( z )  

( 2 . 3 )  

where p ( t )  is given by 

p( t ) = n  +Ye- n -ye (2 *4) 

Combining (2 .2)  through (2.4) results in the so-called Poisson-Boltmann 
equation34 

where K is the reciprocal Debye length, mentioned in Section I, defined by 

Because of electroneutrality, n: =n? = n o  is the bulk ion density. Further- 
more, (I is found to be 

Here lc/o is the potential at the surface and q,,, the potential in the middle of 
the film. For e+/k ,T= 1, 4-25 mV at 25°C. Equation 2.5, subject to the 
boundary condition (2.7), can be solved for a flat film geometry in the rep- 
resentation of elliptic functions.34 

Now the double layer repulsion force per unit surface area (the double 
layer pressure) II , , (h)  is found to be: 
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where h is the thickness of the aqueous core. If h is large with respect to the 
Debye length ( ~ h > >  l), the following approximate solution is found: 

n DL( h )rr64nokB rp2e  - K h  

where 

velt0 p=tanh- 
4 k B T  

(2.10) 

From the double layer pressure another useful quantity can be found: 

(2.11) 

I t  is a (potential) free energy of interaction, being the work (at constant 7’) 
of bringing the surfaces from h = 00 to h = h ,  letting the aqueous solution in 
the core leak to a reservoir with electrolyte concentration no at atmo- 
spheric pressure. 

Many attempts have been made to improve the classical Poisson- 
Boltzmann equation to include discrete charge effects, finite ion size, and 
so on (see, e.g., Refs. 35-37). At present some fundamental progress is being 
made on the basis of certain models in modern fluid-state theory, in which 
the hard-core repulsions of the ions are incorporated in a consistent 
way.384’ The Poisson-Boltzmann equation was found to be a limiting case 
of the hypernetted chain approximation at low densities.42 Also a com- 
puter simulation was reported.43 

One aim of our experiments is to check the applicability of (2.9). 

C. Long-Range van der Waals-London Forces 

1. Van der Waals Forces Between Molecules 

In his thesis van der Waals expressed his desire to determine “a quantity 
that plays a peculiar role in Laplace’s theory of capillarity.””s 4s He was 
referring to a molecular pressure, “a measure for the cohesion of matter.” 
He was-in the Newtonian tradition-looking for a way of grasping inter- 
molecular forces, the forces that would appear in his own equation of state. 

Attractive forces between neutral molecules may be partially explained 
with electric dipole interactions. KeesomU explained attractive forces be- 
tween permanent dipoles in thermal motion, and Debye4’ investigated per- 
manent and induced dipoles. The induced-induced dipole interaction could 
be understood adequately only after the advent of quantum theory. The 
general character of these forces was explained by London48 as a perturba- 
tion of zero-point energies. He also made a connection with the dispersion 
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of electric oscillators. Therefore these forces are also called “dispersion 
forces.” All contributions give the following form for the attractive poten- 
tial: 

h 
V w ( r ) =  - 2 

r6 
(2.12) 

For permanent dipole-permanent dipole interaction, A, -pz /k,T; for 
permanent dipole-induced-dipole interaction, h -api, and for induced- 
dipole-induced-dipole interaction, h -a2hw, where p p  is the permanent 
dipole moment, a the polarizability, h Planck’s constant, and w the excita- 
tion frequency of the molecules. 

2. Van der Waals-London Forces Between Macroscopic Particles 

In 1932 Kallmann and W i l l ~ t a t t e r ~ ~  and also Bradley5’ recognized that 
attractive forces between colloidal particles would emerge from a pairwise 
summation of dispersion forces between atoms. This was further investi- 
gated theoretically by Hamaker5’ and de Boer.52 For a flat geometry, two 
half-spaces separated by a gap of thickness h, this leads to the form 

A H  V w ( h ) =  -- 
12nh2 

(2.13) 

where AH = r 2 X w p 2  is the so-called Hamaker constant, with p the number 
density of the atoms. Expression 2.13 shows clearly the long-range char- 
acter of these forces. This can be extended to half-spaces in a medium. 

It may seem somewhat puzzling that in the case of a slab of material 
surrounded by vacuum-a model for a soap film-the film “feels” a tend- 
ency to become thinner. This can be explained by the notion that a mole- 
cule in the film is surrounded by fewer other molecules than a molecule in 
the bulk. It, therefore, has a higher potential energy in the film than in the 
bulk and tends to move from the film to the bulk liquid. 

Equation 2.13 is valid only for small values of h. For larger distances the 
propagation speed of the electromagnetic field has to be taken into account 
(so-called retardation effect), which gives weaker attractive forces. We avoid 
these complications here, also because the (approximate) summation pro- 
cedures described in this section are now superseded by a macroscopic the- 
ory of dispersion forces in which these effects are treated in a natural way. 

3. Macroscopic Theory of Dispersion Forces 

An early approach to calculating interaction forces between conducting 
plates from the change in the zero-point energy of the electromagnetic field 
modes is due to C a ~ i m i r . ~ ~  L i f ~ h i t z ~ ~  and Dzyaloshinskii et al.” derived 
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equations for dispersion forces in the more general case of dielectric slabs 
with quantum field theory. The equations are very complicated. As an 
illustration, for the simplest case- two half-spaces separated by a vacuum 
of thickness h in the nonretarded limit-the following equation is given; 

E (  i t )  + 1 
E (  i t)  - 1 

V,( h )  = - ~ x 2  dx[  ( r e x  - 1 1  - '  (2.14) 327r2h2 A r " d 5 i "  o 

with i=  . Here E ( W )  is the frequency-dependent dielectric "constant" 
of the material needed only on the imaginary axis: w = i &  where E is real. 
Note that the dependence on h is the same as with pairwise summation 
(2.13). For further details and other cases we refer to books in this 
field.56. 57 

In most cases E ( W )  is not known over the whole electromagnetic spec- 
trum. Fairly accurate interpolation formulas can be used for several sys- 
t e m ~ . ~ ~  Numerical calculations have been made for soap films by Ninham 
and Par~egian.~' Their formula for E ( W )  was used to calculate the disper- 
sion forces for our type of film." Results are given in Section V1. It is 
noteworthy that V,(h) is found to be not simply proportional to h - 2 ,  so 
that retardation effects cannot be neglected in our soap films. 

In analogy to the double layer pressure, one can introduce a van der 
Waals-London pressure: Il, = - a V , , / a h .  

D. Combination of Electrical Double Layer and van der 
Waals-London Forces 

The total interaction free energy of a film follows from a combination of 
electrical double layer and van der Waals- London interactions. 

[However, V,( h)  also contains contributions from E ( W )  at zero frequency 
that are due to motion of the charged ions. This may give a small interde- 
pendency of V,, and V,, which will be neglected.@-'] 

To show the general behavior of V(h),  let us use (2.9) and (2.11) with 
(2.13) and write 

(2.16) 
D 
h2 

V ( h ) = B K e - K h - -  

with B = (8/~)&[(k~T/e)tanh(~elCb/4k,T)1~ and D = A H /  127r. 
Expression 2.16 has a maximum and a minimum (Fig. 2.3). This situa- 

tion occurs in a stable film. The minimum describes the situation of an 
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h Fig. 2.3. Scheme of the interaction free en- 
ergy of a soap film as a function of thtckness 
h .  The thickness h = h ,  (equilibrium). Influence 
of gravity is not shown. 

equilibrium film in which the electrical double layer and the van der 
Waals-London forces equilibrate. We will see later that dZV/dhz can be 
obtained from light scattering for h>>h (equilibrium). For larger values of K 
and ( D / B )  (i.e. with larger electrolyte concentration, larger van der Waals- 
London forces and/or smaller double layer forces), the extrema disap- 
pear and no stable film is predicted (see Section IV.D.3 on stability). This 
general picture is not changed when more accurate expressions are used for 

We further note that (2.15) has to be supplemented with a hydrostatic 
pressure term. For a vertical film in the field of gravity, it is equal to p,,,hgH, 
where p,,, is the mass density difference between liquid and air, H is the 
height in the film above the surface of the solution, and g is the gravitation 
constant. 

The total interaction between the interfaces is also denoted by the so- 
called disjoining pressure6' 

Vw(h).  

(2.17) 

In the equilibrium situation we therefore have II =p,gH. 
Finally we mention that the colloidal interactions have also been mea- 

sured directly as a force between solid plates (see, e.g., Refs. 35 and 56). 
Recently, forces between mica plates in an electrolyte solution have been 
measured.6z 

111. LIGHT SCATITRING FROM LIQUID SURFACES 

That liquid surfaces scatter light was first predicted by von Smoluchow- 
slu63 in 1908. He expected the phenomenon to be visible near the critical 
point where the surface tension of the liquid is small. A quantitative theory 
was developed by Mandelstamm,64 who described the thermal roughness of 
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the surface as a spectrum of surface waves. The average square amplitude 
of each mode he obtained by invoking the equipartition theorem as ap- 
plied by Einstein" to density fluctuations, to calculate the light scattering 
of (bulk) liquids. The theory was extended by Andronov and Leontovicz6' 
and by Gans,66 who also considered the scattering outside the plane of 
incidence and the states of polarization. 

Raman and R a m d a ~ , ~ ~  using the sun as a light source, reported a great 
number of measurements of some 60 liquids on the intensity (measured by 
photographic photometry) and the state of polarization. Care was taken to 
measure on clean surfaces obtained in a closed bulb of a distillation ap- 
paratus in which the liquid was distilled back and forth several times. For 
the common liquids where the scattering intensity is small, the surface ten- 
sion could be calculated only within a factor of 2. It is noteworthy that they 
could measure the surface tension of carbon dioxide near the critical point 
and found it to vary from 0.050 to 0.0015 mN/m for temperatures ranging 
from 30.00 to 3 1.10"C within an accuracy of -3w0. With a mercury surface 
they found a much smaller angular dependency of the scattering than with 
other liquids, a result that deserves further consideration. I t  is interesting to 
note that they already did some investigations on surface layers of oleic acid 
and some fluorescent dyes on water. The dye methyl violet produced a faint 
yellowish-orange surface opalescence like the surface of the dry crystals. 

Further papers are scarce. The state of the art until about 1967 is given 
in a review.68 In this paper also the very complicated equations6'* 66 for the 
nonsymmetrical geometries are transformed into a more tractable form with 
the help of Fresnel coefficients. 

A. Description of Surface Corrugations 
We now outline Mandelstamm's theory for the surface of a pure liquid. 

The average position of the horizontal surface is taken in the XY-plane at 
z = 0, and the vertical elevation of the surface from its average position (in 
the positive Z-direction) at a certain instant is given by { = { ( x , y ) .  The 
thickness of the surface layer is assumed small with respect to the wave- 
length of light used, and the liquid is assumed to be incompressible. Both 
approximations are good for liquids removed from the critical point. The 
function S(x,  y )  is expanded in Fourier componentsa, in a square with a 
side length a. 

+ m  + m  

{= x x t,exp[ ? ( p x + o y ) ]  = x l S I L e i ~ *  (3.1) 
p = - m  a = - m  K 

where s=(  x ,  y ) ;  K =  (27r/a)( p ,  u ) ;  (KI = K =  (27r/a)( p2 + ~ ~ ) " ~ = 2 7 r / A  
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with K and A the wave number and wavelength of the surface wave with 
wave-vector K, and with rK ={TK, when {* is the complex conjugate of 5. 
Because only surface wavelengths A in the order of the wavelength of light 
or larger are of importance here, the system can be treated on a quasi- 
macroscopic scale. Furthermore, I{ I <<A, which implies that the surface 
fluctuations can be linearized, resulting in uncoupled Fourier components. 

The work (at constant T) to create a surface fluctuation can be written 
as follows; 

A F =  A F, + A  F2 (3 4 
where A F, = y A 0  is due to an increase in surface area A 0  with surface ten- 
sion y. For small { one has 

The contribution AF, is due to gravity and can be written as 

On substituting (3.1) into (3.3) and (3.4), it is found that A F consists of a 
sum Z,,,.hF,, of squares, with 

(3.5) 

T h e  probability of finding a value l { p , , l  is proportional to 
exp( - A F , , / k B T ) ;  that is, the modes fluctuate independently with a 
Gaussian probability distribution. Application of the equipartition theorem 
then yields 

Because only waves, say, in the range A=4-3OX can be detected, the grav- 
ity contribution is often negligible, except when y is very small. For normal 
liquids the root-mean-square value of the surface elevations is in the order 
of 0.5 nm. 

It may be of interest to note that Mandelstamm’s analysis forms the ba- 
sis of the capillary wave theory of surface tension.69’ ’O 
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It is also possible to calculate the spatial correlations between surface 
elevations, a distance s apart, 

which shows that the surface elevations have a very long correlation length, 
given by what is called in surface science the capillary constant [ ~ / ( p , , , g ) ] ' / ~  
and having a value in the order of 1 mm. 

The surface elevations bear a (formal) resemblance to (bulk) density 
fluctuations of a fluid near the critical point, which also have a large range 
correlation, and for which Ornstein and Zernike" found the same form as 
(3.6). 

For more recent statistical mechanical theories on interfaces, see, for 
example, Refs. 72 to 75. 

B. Surface Light Scattering 

Consider a plane light wave with wave vector k, which falls on the 
liquid-air surface containing thermal ripples with a small amplitude. 
Rayleigh" found that if the illuminated surface area is much larger than A2 
and S<<A, each component ( p ,  a) gives a first-order diffracted light wave 
k,; the direction of which is given by the polar and azimuthal angles B and 
+, as follows: 

(3.7) 

This applies to light waves (of wavelength A,) scattered (or dffracted) in 
the reflection half-space. A similar eq~ation'~.  ", '* applies to scattering in 
the transmission half-space. 

Relations 3.7 may be visualized as follows. Consider a large sphere with 
radius unity, centered around the illuminated spot in the liquid surface 
(XY-plane) (Fig. 3.1). The intersection with the XY-plane is a circle with 
unit radius. The incident, reflected, and scattering directions are defined by 
the points A,  B, and C on the surface of the sphere. The projections on the 
XY-plane are given by A', B', and C'. The incident and reflected wave 
vectors are in the XZ-plane. The reflected wave vector k, makes an angle 
B, with the positive Z-axis. The scattered (diffracted) wave vector k, makes 
an angle 0 with the positive Z-axis and an azimuthal angle 9 (in the XY- 
plane) with the positive X-axis. 
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Fig. 3.1. “Ewald circle” showing the relation of the angles between the directions of inci- 
dent, reflected, and scattered light to the reciprocal lattice parameters p and u. 

Relations 3.7 express the conservation of momentum in the surface, and 
k - k ,  expresses the conservation of energy. 

For each pair of integral values ( p ,  a), the direction of the diffracted wave 
can be read from Fig. 3.1. When h / a  is small, the points are narrowly 
spread. Each (real) surface wave component gives two diffracted waves (in 
the reflected half-space), one direction given by the point C‘ and a comple- 
mentary one given by the point C “ ,  the mirrored point of C‘ with respect 

For an incident light wave with unit amplitude and with the electrical 
vector perpendicular to the plane of incidence (XZ), the amplitude of the 
diffracted waves can be written as follows: 

to B‘; [ (p ,a)+(-p ,  -a)]. 

( n ’ -  I)tst0,cos+ WPO A,, = - 
2 cos e 

Here n = n , / n ,  is the ratio of the refractive indices of liquid ( n 2 )  and air 
( n , ) .  The 8’ is defined by Snell’s law: sinO/sinf?’=n; to, and 1, are Fresnel 
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transmission coefficients, and i =  . Results for other states of polari- 
zation can be found elsewhere.68 

The intensity of the scattered light is proportional to IAp,,12 times the 
number of diffracted waves ApAu falling into a solid angle dQ. This num- 
ber can be found easily from Fig. 3.1. On the surface of the unit sphere dQ 
corresponds to a surface area dQ around C and in the XY-plane with a 
surface area cosBdQ around C’. 

Thus Ap Au = ( a / h ,  )2 cos 8 dQ. The average (light) energy flow falling 
within dQ per unit of illuminated surface area and for unit incident inten- 
sity is then, using (3.6) and (3.9): 

$(k,T/X:)(nZ - 1)2tft;,Cos2+ 
s(e; +; e,)= (3.10) 

y(sin’8, +sin2~-2sinBosinBcos+) 

Note that the length a of (3.6) just drops out as it should, and that (see Fig. 
3.1) 

K = k:(sin2 6, + sin2 8-2sinBosin Bcos r)~) (3.1 1) 

As an illustration of the order of magnitude of surface light scattering, 
one calculates for n =  1.36; 0, =60”; B=45”; y=30 mN/m; A=546 nm; 

The predicted angular dependence of the scattered intensity is very pro- 
nounced, It strongly increases on approaching the reflected beam (+=O;  
B e B o ) .  This also applies for the scattering in the transmission half-space on 
approaching the transmitted beam. It may be of interest to note that a sim- 
ilar situation occurs in bulk fluids near a critical point, where large density 
fluctuations (with large spatial gradients) create a kind of “internal surface” 
giving rise to pronounced scattering in the forward direction. 

The Mandelstamm theory takes only surface elevations into account. 
Recently a more fundamental treatment by Bouchiat and Langevin” gives 
the same result found by Mandelstamm, Andronov and Leontovicz, and 
Gans, but in addition allows the calculation of contributions to the surface 
polarization caused by surface density and orientation fluctuations of 
adsorbed layers. These contributions, however, are small except near two- 
dimensional critical points. 

s = 7 . 5 ~ 1 0 - ~ .  

IV. LIGHT SCATTERING FROM THIN LIQUID FILMS 

For thin liquid (soap) films one has to deal with three complications 
compared with single interfaces.*’* 78 
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1. Interference of the light waves reflected and refracted by both film 
surfaces. 

2. The necessary presence of a monolayer of soap molecules. 
3. Long-range interaction forces across the film. 

Let us start with the optical problem, 1. 

A. Interference of Light Waves in the Film 
First we will confine ourselves to an (optically) homogeneous film with 

refractive index n and an (average) thickness h. Instead of corrugations on 
one surface, one has to deal with corrugations on two film surfaces 

l I I ( x ? Y ) =  Z I I l , K e i K g  
K 

The diffraction of light waves in such a film can be treated in the same 
way7* used by R a ~ l e i g h , ~ ~  that is, applying (macroscopic) Maxwell equa- 
tions with the appropriate boundary conditions at both surfaces. After- 
ward7* it was found that the same answers are obtained when the 
interference of the reflected, refracted, and diffracted waves are treated in 
an elementary fashion by adding the diffraction of the single surfaces with 
appropriate phase factors. 

First, consider the interference of the reflected and the refracted (or 
transmitted) waves. We treat only the case + = O  and the electrical vector 
perpendicular to the plane of incidence. In the diagram of Fig. 4.1, 1 and 3 
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Fig. 4.1. Interference after multiple reflection and refraction of the incident beam. (From 
Ref. 78, courtesy of Academic Press Inc., New York.) 
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are air and 2 the film. The incident light wave with amplitude \ko = 1 
undergoes multiple reflection and refraction at  the upper and the lower 
surfaces, thus giving the following four amplitudes: 

where 

with A, the wavelength of light in the film, and 

0; =angle of refraction, given by Snell's law 

u 0 -  -[l-r2e-2ifi]-' (4.8) 

(4.10) 

ro = to  - 1 = 1 - th (4.1 I )  

Now the incident light will give rise to diffraction at  the boundary (1-2); 
qC at (2--1), and ,ke at (2-3). The waves that diffract into the film also 
undergo multiple reflection and refraction; multiple diffraction is neglected 
because the amplitudes would be of higher order in {/A. 

The amplitudes of the diffracted waves (including interference) are ob- 
tained as follows. The wave \ko gives rise to one wave diffracted into 
medium 1 and another one diffracted into medium 2 (Fig. 4.2, dashed lines). 
The amplitudes are 

P A ;  (4.12) 

where A ;  is given by (3.8). 



LIGHT SCATTERING FROM THIN LIQUID FILMS 349 

sumo/  \ ~ 

Fig. 4.2. Interference after multiple reflection and refraction of the Mfracted light beam. 
(From Ref. 78, courtesy of Academic Press Inc., New York.) 

The wave diffracted into medium 2 gives after interference a wave in 
medium 1, 

where 

(4.14) 

~ = [ 1 - r 2 e - 2 ' " ] - '  (4.15) 

and t ,  t ' ,  and r defined by (4.9) to (4.1 l), with 0, and 86 replaced by 0 and 
8'. A relation similar to (4.13) can be found for a wave diffracted into 
medium 3. The total amplitude, E?, of the wave diffracted into medium 1, 
produced by \ko, is the sum of (4.12) and (4.13). 

In a similar way the diffracted amplitudes produced by \kB and 9' fol- 
low 
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The f low p a t t e r n s  of the  dynamic  modes 

squeezing mode bending mode 

Fig. 4.3. Schemes of squeezing and bending modes. 

(4.19) 

(4.20) 

(4.21) 

The total amplitude diffracted into medium 1 (the reflection half-space) is 
the sum of (4.16), (4.17), and (4.18) and can be written as follows: 

= M S I , K  +N{II,K (4.22) 

A K = + ( M + N ) ( s I , K  + ~ , , , K ) + ~ ( M - N ) ( S ~ , . - {  I1.K (4*23) 

or 

with 

iw( n2 - ] ) t o t  i k , ( n 2  - I )  
L =  up; P= A,cosfl 2 cos e 

(4.24) 

(4.25) 

(4.26) 

Equation 4.23 is written because it is more natural to consider ({I,K + ( , I , K )  

and - { I I , K )  as new, separate, uncoupled modes, which we call bend- 
ing and squeezing mode, respectively (see Fig. 4.3). 

B. Scattered Intensity for Films without Long-Range Interaction 
Forces: Bending and Squeezing Modes 

The scattered intensity follows from the squared amplitudes as explained 
in Section 111. 

S R = ( 8 ;  + = O ;  80)=~HGoG3+~H(2G~G,  -GoG3)=HGoG, (4.27) 
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where 

(4.28) 

G I  = R (  r ,  a )  R(  ro, p )  + t’2th2 

G, = GI - 2 t ’ 2 t h 2 ~ ~ ~  a cos p + 2tt’t,thsin asin p 
R( r , a )  = 1 + r 2  - 2rcos 2a 

R ( r Z , a ) =  l+r4-2r2cos2a 

R ( r 0 , P ) =  1 +ro’ -2r0c0s2p (4.29) 

R ( r ~ , p ) = l + r ~ - 2 r ~ c o ~ 2 ~  

The contributions of the bending and squeezing modes are given by COG, 
and (2G0G, - COG,), respectively. The superscript R in S R  indicates 

0 500 1000 1500 2 0 0 0  2500 -- h ( i )  

Fig. 4.4. Intensity (reflection side) of the light scattered from fluctuations ( I ,  + E l l ) :  COG, 
(bending mode) and from fluctuations (t1 -III): 2C0CI -COG, (squeezing mode), where 8-  
8, =60”, n= 1.36, and A, =546 nm. (From Ref. 68, courtesy of Elsevier Scientific Publishing 
Company, Amsterdam.) 
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scattering on the reflection side. An equation similar to (4.27) applies to 
scattering on the transmission side, ST. 

Examples are shown in Fig. 4.4. Note that the light-scattering curves of 
the bending and squeezing modes are very different functions of the (aver- 
age) film thickness h.  The curve for the bending mode has a shape (i.e., a 
minimum at h-0 and a maximum around h= 120 nm) similar to that of 
the reflected intensity, just opposite to that of the squeezing mode. The curve 
of their sum still shows an opposite trend with the reflected intensity. This 
effect was indeed found in some of our experiments7* and was studied in 
more detail by Mann et al.79 

C. Influence on the Scattering of a Monolayer of Soap Molecules 
and of the Bulk of the Film 

Let us now turn our attention to the effect of a thin monolayer of soap 
molecules present on both film surfaces. In the first place it was found (see 
Section 1II.B) by Bouchiat and L a n g e ~ i n ~ ~  that density and orientation 
fluctuations of the soap molecules (in the case of a single interface) make 
only a negligible contribution to the scattering process, except possibly at  a 
(two-dimensional) critical point of the monolayer, or by addition of a few 
fluorescent soap molecules. Thus we are left with the optical effect of the 
monolayers on the interference of the light waves. It turns out (see Section 
VI) that this interference effect can be taken into account by redefining the 
(optical) film thickness. 

Let us now consider the effect of the scattering of the bulk of the film 
due to density and concentration fluctuations of dissolved components. 

Although this contribution often cannot be neglected when the scatter- 
ing of a single surface of a bulk liquid is measured, it is negligible for our 
type of thin film. To be more precise, the scattering of 1 cm3 of a 10% solu- 
tion of the soap sodium dodecyl sulfate is 25X cm-' (for pure water 
it is 7.5 x lo-' cm-'). For 1 cm2 soap film, 300 nm thick, this is less than 
1% of the surface scattering. 

D. Influence of Long-Range Interaction Forces on the Surface 
Scattering in Thin Films 

1. Surface Fluctuations in Thin Liquid Film 

The work to create a surface fluctuation in a film involves the same 
components as that for a single interface, that is, contributions from surface 
tension and gravity: AF=AF, +AF2 [see (3.2)]. The gravity contribution 
AF2 will be omitted hereafter because it is always small in comparison to 
AF, and because we work in vertical films where AF, is absent anyway. 
When the film is thick enough, the corrugations {I and 11, are independent, 
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so we are left with 

(4.30) 
and which leads to (4.27) given above. 

When, however, the film thickness is small enough (say, h = 5 to 100 nm) 
to make the long-range interaction forces perceptible, this is no longer true 
because the work to create a surface fluctuation will explicitly depend on 
A h = { ,  -111 through V(h) .  Thus one has to take into account a third con- 
tribution 

(4.31) 

where V ( h )  is given by (2.15). The first integral is zero, the second one is 
positive. For equilibrium films (see Fig. 2.3) d2V/dh2 is positive. The form 
of (4.31) makes apparent the advantage of the mode separation in (4.23). 

It is only the squeezing mode in our representation of A F that contains a 
contribution of the interaction free energy V ( h ) .  Thus we write, instead, 

A F = A F , + A F ,  
with 

(4.32) 

where we have abbreviated d2V/dh2 by V". Analogously as before, this 
leads to 

(4.35) 

(4.36) 
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Then the scattering intensity becomes 

) (4.37) 
1‘0 - ‘0‘3 

yK2 y K 2 + 2 V ”  

The first term is due to the bending mode and the second one to the 
squeezing mode. 

2. Some Earb Experimental Observations 

Recalling the contribution of the bending and squeezing modes to the 
scattering power, we note from Fig. 4.4 that in the thinner regions, say h < 50 
nm, the contribution from the squeezing mode (11 -111) given by (2G0G, - 
COG3) is much larger than that of the bending mode (11 + 111) given by COG3. 
Thus a change in the denominator y K 2  + 2V” in (4.37) because of increas- 
ing interaction forces in the thinner films, should be observable indeed. The 
following early experiment” clearly shows the expected behavior. 

A film was drawn from an aqueous solution containing a nonionic soap 
and some ionic soap (to give charge stabilization), and glycerol to slow 
down the drainage speed. The film was observed for one week during which 
it thinned from 53 to 13 nm. The intensity SR was measured at angles B 
between 20” and 44” and the incident angle was 13, =60°. In Fig. 4.5, SR is 
plotted as a function of @=(sinBo -s in8)-2=(k, /K)2 =(A/Al)2 .  The 
film thickness was obtained from the reflected intensity R with the equa- 
tion 

(4.38) 

with f i  given by (4.7). 
Starting with the thickest film (h  = 530 A = 53 nm), one notes that S R  is 

proportional to 0 or K - 2 ,  which implies that V” is negligible. This is also 
the case for h =470 and 320 A, although the slope of the plot has increased, 
implying that COG3 + (2G1G, - GoG3) =2G,Go increases with decreasing h,  
just as predicted. From h = 2 6 0  to 130 A, the plots show an increasing, 
downward curvature, which can be explained by an increase of V” with 
decreasing h ,  also as expected. The values of y obtained were 32+  5 mN/m, 
whereas the surface tension of the solution was 33 mN/m. The values of 
V ” ( h )  thus found were of the expected order of magnitude, although the 
(approximately exponential) decrease with h was much steeper than 
expected from theory. More recent experiments are discussed in Section VI. 
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Fig. 4.5. Light scattering of a soap film as a function of @-(sinOo =(A/X,)*.  
(From Ref. 68, courtesy of Elsevier Scientific Publishing Company, Amsterdam.) 

3. Instability Regions in Films 

Until now it has been (implicitly) assumed that V” is (always) positive. 
A positive, increasing V” gives a decrease in the amplitude of (11 -ll,); see 
(4.36). When V” is negative, however, AE turns from positive to negative 
for some K ,  that is, at 

(4.39) 

For K >  K ,  the fluctuations (11 -11,) will die out. For K <  K,, however, 
these fluctuations will tend to grow! Figure 2.3 for V ( h )  indeed shows a 
thickness range with V” < 0 [i.e., at the right-hand side of the minimum in 
V(h) ,  where V” turns from positive to negative]. We think that this may 
indeed occur in practice, perhaps sometimes leading to instabilities that 
cause rupturing of the film. This is discussed further in Section V. A mech- 
anism for film rupture based on this idea was first proposed by Scheludko,’* 
who derived an equation similar to (4.39). One of us proposed a more com- 
plete theory,”. 82 which shows the equivalence of this process with what is 
called “spinodal decomposition.” 83 For further discussion and refinements, 
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see, for example, Refs. 80 and 84. Also amenable to t h s  explanation is the 
sudden appearance of (stable) black holes that sometimes is observed in 
much thicker, draining films. See also Section VI. 

V. DYNAMICS OF FILM FLUCTUATIONS 

A. Introduction 

Interest in the dynamics of film fluctuations was prompted by the search 
for a theory of film stability.” At that time (1966) no experiments on ther- 
mal excited surfaces waves had been performed. 

From the theory of waves on single surfaces (for a review, see Ref. 85) it 
was known that for small values of surface wavelength A (i.e., large values 
of K ), the relaxation of the waves was dominated by the action of surface 
tension. In the case of thin films, also, the effect of interaction forces was 
expected to influence the relaxation of the film to its mean thickness. Espe- 
cially, the squeezing mode relaxation, where local thickness fluctuations 
appear, should show up the influence of colloidal interactions. 

The first theory for film fluctuations resembles Cahn’s theoryg3 of 
“spinodal decomposition” of unstable bulk systems. A very simple mecha- 
nism was adopted for the liquid flow. It was assumed that because of the 
presence of the soap monolayers, the film surfaces were stagnant (see Sec- 
tion 11) and that the film liquid was pumped back and forth through a slab 
with thickness h according to Reynolds’s law: 

Q=--- h3 d A P  
129 dx 

when Q is the volume flow rate and A P the variation in pressure along the 
film, which is given by 

1 d 2 h  
2 dx  

A P =  - - y T  + V “ A h .  

By assuming the existence of squeezing modes, it was found from the con- 
servation of film volume that the amplitude of the mode with wavenumber 
K relaxes according to 

with 
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A similar equation was found by deGennes.86 For V” > 0,r  is positive, giv- 
ing rise to an overdamped relaxation. For I”’ < 0 and K <  ( - 2V”/y ) ’ / ’ ,  r 
becomes negative, and the squeezing mode will grow in accordance with 
(4.34), potentially producing film rupture. The maximum value of r is found 
at K, =(- V”/y)’/* with 7 - l  =7,-’ = - (h3y/24q)Ki .  

Next we review the more refined theories. The connection between the 
hydrodynamics of film motion and the light scattering experiments from 
thermal fluctuations is based on Onsager’s regression hypothe~is,’~ namely, 
the relaxations of the surface elevations derived from macroscopic theories 
also pertain to the relaxation of thermally excited fluctuations. 

B. Hydrodynamics of Free Films 
There are two trends in the existing hydrodynamic theories of free films, 

which differ in the way the (colloidal) interaction forces are taken into 
account. We mention first the method of Felderhof,” who developed a 
systematic and consistent electrohydrodynamic theory for a nonviscous 
liquid. His theory was extended to include viscous behavior by Sche and 
F i j n a ~ t . ’ ~  In these theories the interaction forces are included in the 
momentum equations. The other theoretical considers hydro- 
dynamic equations without the interaction forces. The influence of these 
interactions are considered only in the normal stress boundary conditions. 

Although the Felderhof approach seems to be the more fundamental one, 
we describe the film hydrodynamics on the basis of the second method 
mentioned, since the dynamics are more surveyable and the method can 
more easily be extended to include different types of surface motion. How- 
ever, the final equations found from the different approaches are com- 
pared in Section V.B.5. 

1. Hydrodynamic Equations 

As before, the film is considered to consist of a volume part, containing 
an electrolytic solution, bounded by surface layers in which ions may be 
adsorbed. The surface layers are idealized as Gibbs dividing (mathemati- 
cal) surfacesg5 having a surface charge density, a surface tension, and a 
surface elasticity. The liquid satisfies the hydrodynamic equations of mo- 
tion supplemented with boundary conditions at the surfaces. In writing 
down the equations, the following assumptions are made: the liquid is as- 
sumed to be incompressible; the amplitude of the surface waves is small 
compared with the wavelength and the thickness of the film, so that the 
Navier-Stokes equation can be linearizedg6; and we consider capillary 
waves, which means that the only waves considered are of such small 
wavelength that the effects of gravity can be neglected% (see, however, 
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Section 1II.A). The relevant equations are the continuity condtion 

v * v = o  

and the linearized Navier-Stokes equations 

a v  
at  

p- = V * u  

where v = v(r, t )  is the flow velocity, p the mass density, and IT the mechani- 
cal stress tensor defined by 

u= - P l + q V v  (5-7) 

where P is the hydrostatic pressure, I the unit tensor, and q the shear 
viscosity of the film liquid. 

The procedure for solving (5.5) and (5.6) consists of the introduction of a 
so-called stream function \k and a potential function @ in such a way that: 

a@ a* 
= -ax -at 

where for simplicity only x and z components of the liquid flow are consid- 
ered. In the case of a nonviscous liquid, the stream function is identically 
zero, which means that the flow is irrotational. Substitution of (5.8) into 
(5.5) and (5.6) and integration of the result from the substitution of (5.8) 
into (5.6) gives: 

A@=O (5.9) 

a 9  
at 
a@ 
at 

- p -  + q A \ k = ~ ,  

-p-  + P = c ,  

(5.10) 

(5.11) 

The integrating constants cI  and c2 can be foundg0 from the conditions at 
zero flow. The constant cI  is evidently zero because both the temporal and 
the space derivatives of \k vanish at zero flow. The constant c2 can be 
defined from the continuity of pressure in a flat film at the interface. The 
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difference between the surrounding pressure Po and the hydrostatic pres- 
sure at z = 2 h / 2  for an equilibrium flat film is given simply by the disjoin- 
ing pressure I I (h )  (see Section II.D), where h is the film thickness: 

(5.12) 

Inserting this expression in (5.1 1) gives: 

c 1 = P o - I I ( h )  (5.13) 

Since we are finally interested in the Fourier components of the surface 
displacement, we insert solutions for @ and 'k, consisting of plane waves in 
the x-direction with a z-dependent amplitude, into (5.9) and (5.10). This re- 
sults in the following expressionsw for CP and 'k inside the film: 

@ = ( A  cosh Kz + Bsinh Kz)exp[ i( Kx -ot )]  (5.14) 

\k=(Ccoshmz+Dsinhmz)exp[ i(&-ot)] (5.15) 

where m is defined by 

(5.16) 

The constants A to D have to be found from the boundary conditions. As 
before, K is the wave number and o is the complex frequency. The relation 
between 9, 'k, and the surface element displacement l (in the z-direction) 
and 6 (in the x-direction) is found through the velocity v. Under the previ- 
ously mentioned condition of surface wave amplitudes small compared to 
the wavelength of the wave, we have: 

at 
at 0, x - 

a l  
at 

v, x - 

(5.17) 

(5.18) 

By inspection of (5.8),  (5.14), (5.15), (5.17), and (5.18) it is clear that the 
surface displacements show the same wave character as @ and \k. This 
means that as far as the dynamics of the surface waves are concerned, we 
are interested only in the dependence of o on the system variables, since o 
completely determines the time dependence of the surface ripples. 
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2. Boundary Conditions 

To evaluate the boundary conditions, we consider the influence of the 
interaction forces and the properties of the adsorbed monolayers of soap 
molecules at both air-liquid interfaces. First we discuss the Occurrence of 
the interaction forces in the boundary conditions. From (5.12) it is seen that 
the equilibrium condition for a flat, free film can be formulated in terms of 
the disjoining pressure. This way of describing the influence of interaction 
forces is followed in the continuity of the normal stress across the liquid 
interfaces.%* 94 

a2S1 h 
-azz + y ~  +n(h+SI -SII)=Po at z =  - 2 +Sr (5.19) ax 

and 

a2SlI - h  
-u,, -Y- +n(h+SI -SII)=Po at z =  - 2 +Srl (5.20) ax 

where and SI1 are the elevations of upper and lower interfaces, respec- 
tively. In (5.19) and (5.20) the viscosity of the surrounding air has been put 
zero, as also will be done in the tangential stress boundary conditions, which 

106, 107 

h 
2 

at z =  - +S1 a251 
-Uzx +&,- =o 

ax 

and 

- h  
a,, + e S Z  =O at z =  - +Srl ax 2 

(5.21) 

(5.22) 

The properties of the adsorbed monolayers are reflected in the surface 
tension y and the surface dilatational modulus E,. The surface concentra- 
tion r of the soap molecules in subjected to changes through the changes 
in surface area by the surface dynamics. This means that the surface ten- 
sion also may vary as function of r (see also Section 1I.A); this now results 
in a surface stress (ay/ar)VI'.  By the introduction of the dilatational mod- 
ulus 

&,=-r- a Y  (5.23) ar 
the tangential stress boundary conditions become as in (5.21) and (5.22), 



LIGHT SCATTERING FROM THIN LIQUID FILMS 36 1 

under the assumption that the adsorbed monolayer is insoluble, and thus 
no bulk-surface diffusion processes occur among surface active molecules. 
The second terms in (5.19) and (5.20) are expressions for the Laplace pres- 
sure caused by surface curvature in the limit of values of and SII small 
compared with A (the ripple wavelength). 

3. Dispersion Relations 

The boundary conditions (5.19) to (5.22) give us four equations in which 
the expressions for Q, and \k are inserted through the relations (5.7), (5.Q 
(5.1 l), (5.17), and (5.18). The resulting four equations have nontrivial solu- 
tions for A to D ,  if the determinant of coefficients of A to D is zero. In the 
case considered here, a film surrounded at both sides by the same medium, 
it appearsg0 that zero equating the determinant gives two relations between 
o, K ,  and the system variables: the so-called dispersion relation94: 

tanh-coth- 
2 

2 iqK’o  E,mK mh 4 q 2 K 3 m  Kh 
2 

coth- - 
2 P2 

( w 2  + --)’.’{ P o: + p 

+ -( m c o t h y  mh - 
P 

coth- tanh- 
2 

E,mK2 mh 4 q 2 K 3 m  Kh 
2 

tanh- - 2iqK’o 

2 P’ 

Kh 
P -Ktanh-)=0 2 (5.25) 

where 

and 

K 3  Kh 
w: = L c o t h -  

P 2 

(5.26) 

(5.27) 

The dispersion relations (5.24) and (5.25) are too complicated to show sim- 
ply what the explicit solution for w is. Therefore we will consider some 
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limiting, experimentally relevant, situations. First, however, we consider the 
conditions under which (5.24) and (5.25) are obtained. One can observe that 
the relation (5.24), found from the equations for A to D, corresponds to the 
situation ( B , C ) = O  and (A,  D)#O.  Inserting (5.14) and (5.15) into (5.8) 
shows that the situation (B, C)=O and (A,  D)#O corresponds to U J X ,  z) 
= WJX, - z ) ,  which means that (5.24) is the dispersion relation for the 
squeezing mode. Alternatively it appears that (5.25) is the chspersion re- 
lation for the bending mode. 

The results (5.24) and (5.25) can easily be transformed into the disper- 
sion equation for single interfaces,32* 97- 98, ‘08 just . by taking the limit h-oo 
and bearing in mind that V ” = O  in this case. The result is: 

+ E, K ’w;( m - K ) = 0 
E,mK2 4q2K3m 

P2 

(5.28) 

with 

(5.29) uf = lim 0: = lim w2 2 = - Y K 3  
h- m h-+m P 

The result (5.28) cannot be solved in an explicit expression for w.  That can 
be done only n~merically.”~ 

4. The Long- Wavelength Limit 

In the experiments we always deal with film having thickness much less 
than the wavelength of the observable surface waves (see Section 1II.A). 
This means that in the experiments the long-wavelength limit (lwl) is ob- 
served. Since the lwl corresponds with the conditions Kh<< 1 and I mh 1 << 1 
(this condition should be checked afterward), the lwl of squeezing and 
bending mode can be found from (5.24) and (5.25) by series expansion of 
the hyperbolic functions. The result for the squeezing mode is9’: 

2 5  K 2  ie, K h 0: 
0 3  +i( ?)J -(a; + --+ 6q = O  (5.30) 

with 

h ( y K 4  + 2 K 2 V ” )  
0 ; ~  lim 0:- 

Kh< 1 2P 
(5.31) 
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Expansion of the hyperbolic terms of (5.25) gives for the lwl of the bend- 
ing mode: 

E,K2h E, K 4 h  E,K2h 
~ + i (  ~ ) w 2 - ( a ~ + ~ ) w - i ~  w i = O  (5.32) 

with 

(5.33) 

The above-described dispersion relations for the squeezing and bending 
modes are found under the conditions of zero density and viscosity of the 
medium surrounding the film. The influence of the air’s viscosity and den- 
sity changes the coefficients in the dispersion relations (5.30) and (5.32). In 
the case of the squeezing mode, the corrected results are given in the paper 
by Vrij and others,” but for light-scattering experiments on free films, the 
influence of the surrounding air on liquid motion can be neglected in the 
experimentally accessible range of surface waves. In the case of the bend- 
ing mode the air’s viscosity and density cannot be neglected.w 

Both dispersion relations (5.30) and (5.32) permit three solutions for w ,  
which means that each mode might be composed of three components. One 
component is purely imaginary, the two others are complex conjugate. The 
complex roots correspond to propagating damped or growing waves, 
whereas the purely imaginary root corresponds to an overdamped wave. 
The spectrum of the solutions of the dispersion relations is therefore very 
similar to the spectrum of light scattered from a pure liquid, where a central 
Rayleigh line is surrounded by two Brillouin peaks. 

It is interesting to consider two limiting cases for the dispersion relation 
by considering the limits eS+w and E,+O. The limit E , - P ~  corresponds 
with complete rigidity of the adsorbed layer and consequently with the 
condition of no slip at the surfaces. 

The dispersion relations become now: 

( y K z  + 2 V ” )  . h 3 K z  
-1- 

24T 

for the squeezing mode, and 

(5.34) 

(5.35) 
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for the bending mode. Equation 5.34 corresponds to (5.4). From (5.34) we 
see that the squeezing mode will be aperiodically damped, as long as 
y K 2  > -2V”,  and that the mode will grow if y K 2  < -2V” (also, see Sec- 
tion V.A.). 

The bending mode shows behavior a bit more complex depending on the 
sign of the expression between brackets in (5.35). If this expression is posi- 
tive (as is the case in liquid film experiments reported thus far) the bend- 
ing mode is a periodically damped wave with frequency K ( 2 y l p h -  
K2q2 /4p2) ’ I2  and with damping constant K 2 q / 2 p .  In the other cases, 
critical damping, aperiodic damping, and even growth of the mode may be 
expected. 

Precise inspection of (5.30) and (5.32) reveals that the limit E,-WX in 
practice is obtained when, say E, > 10 mN/m for the usual experimental 
conditions.” Direct measurements of E, on surfaces, performed by Pnns et 
al.,’@’ revealed that E, =80 mN/m for adsorbed layers. This means that the 
limit E,+OO is a good approximation in the theory. From (5.34) and (5.35) 
it follows that dynamic experiments on surface waves will give information 
about V ” ,  y ,  and q.  

5. Comparison with Other Theories 

is based on (5.5) and a modified momentum equation: 
The theoretical approach of Felderhof,88 Sche and F i j n a ~ t , ~ ~  and Sche’” 

p -  a v  = V . ( a + T ) - p V W  (5 .36)  
at  

where the Maxwell stress tensor T contains the local electric fields and the 
van der Waals potential W reflects the local result of the van der Waals 
two-body attraction forces between the film molecules. Now the interac- 
tion forces are included in the basic equations. The film is considered to 
consist of a volume part, containing an electrolytic solution, bounded by 
surface layers having a surface charge density. In addition to the assump- 
tion made in Section V.B. 1, the ion distribution is considered to be at each 
instant in thermal equilibrium. This means that the theory is limited to 
surface waves of frequencies below about lo7 Hz. The electric potential in 
the film satisfies the Poisson-Boltzmann equation (see also Section 1I.B) as 
a result of the governing quasi-static Maxwell equations for the electric 
field. The boundary conditions in the Felderhof theory do not contain the 
disjoining pressure [see (5.19) and (5.20)], but the appropriate element of the 
Maxwell stress tensor. However, the tangential boundary conditions now 
also contain the influence of electrical interaction forces. Apart from the 
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stress boundary conditions, the Felderhof approach also contains boundary 
conditions for the electric field and the electric potential. The van der Waals 
potential now is a function not only of the thickness, but also of the curva- 
ture of the surface. 

In his theory, Felderhof also considers the effect of surface charge den- 
sity fluctuations.”’ He takes into account fluctuations from the change in 
electrostatic potential in the surface and fluctuations due to the change in 
surface area. He considers two regimes in the surface motion: the fast reg- 
ime shows only charge density fluctuations that are due to surface area 
variations, whereas in the slow regime only surface potential fluctuations 
remain. The charge density fluctuations due to the change in surface area 
are in the slow regime, compensated by completion of the adsorbed surface 
molecules from the film bulk. The more extensive (and more fundamental) 
basic equations, together with the refinement of the behavior of (surface) 
charges and the diffusion of surface molecules, makes the theory much more 
laborious. Comparison of the dispersion relations with the results of the 
theory in the foregoing sections can easily be done only in the lwl with 
condition E,+OO. In that case the surface tension occurring in the (5.34) and 
(5.35) must be corrected by terms arising from the interaction forces and 
the electric field. The numerical value of these  correction^^^^ lo’ are of order 
of 1 mN/m or less, and they must be compared with usual surface ten- 
sions of about 30 mN/m. This means that in this case the simplified hy- 
drodynamic theory is a useful approximation. 

6. Discussion 

We have confined ourselves to a description of the dynamics of surface 
roughness and the influence of the interaction forces on these dynamics. In 
reality, however, there are many more dynamic processes in the film and 
especially in the adsorbed monolayers that should be considered to de- 
scribe in full detail the film dynamics. Apart from dynamics of the film 
surfaces parallel to the normal of the interfaces, motions of the adsorbed 
surface molecules in the interface must be considered. According to Lucas- 
sen-Reynders and Luca~sen,~’ the actual stresses in an interface are 
described by four rheological coefficients, reflecting the viscoelastic prop- 
erties of the interface. Two of these, the surface dilatational elasticity and 
the surface dilatational viscosity, measure the surface’s resistance against 
changes in area. The dilatational module E,,  considered before, expresses the 
dilatational elasticity. In our description of the film system, we neglected 
the viscous behavior of the interface, which implies that no diffusion of 
surface active molecules between bulk and interface was considered. If, 
however, surface-to-bulk diffusion is taken into account, the expression 
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(5.23) for E ,  becomes more c~mplicated '~~:  

-r- dY 
d r  

i p D  dc, ph 1 + - -tanh- 
w d r  2 

E, = (5.37) 

where D is the bulk diffusion coefficient of the surface active molecules, and 
p is defined by 

(5.38) 

and c, is the surfactant bulk concentration just below the interfaces. Under 
the condition ph<< 1, which seems realistic, since w=103 sec-', h=5 x lo-* 
m, D-u 10 - 9  m2/sec, and K= 106/m, (5.37) becomes: 

dY 
(5.39) -% 

E, = 

Since in practice the term ( d c , / d r ) h / 2  for high surface active mole- 
cules is very small with respect to 1, we expect to be able to neglect bulk 
diffusion. The case of surface diffusion is treated in the case of films in the 
same way as in the case of single interfaces. One now finds for E,: 

dY -r- d r  
iK2D, 

1+- 

E, = (5.40) 

It has been showniw, however, that for values of - T ( d y / d r )  larger than 
about +20 mN/m, no effect of the surface diffusion coefficient D, can be 
observed in the dispersion relation. 

The two other rheological coefficients, the surface shear elasticity and the 
surface shear viscosity, describe the resistance against changes in shape of 
a surface element. The usually made assumption is that the shear coeffi- 
cients are negligible compared to the dilatational  coefficient^.'^ Up to now 
it appeared to be impossible to derive information about the rheological 
behavior of the interface from light scattering from liquid films. Single- 
interface light scattering experiments have yielded some results of viscoe- 
lastic behavior of adsorbed mono layer^.'^^ 
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The combination of the laws of reflection and refraction by surface waves 
with the hydrodynamics of these surface deformations, facilitates the 
calculation of the (dynamic) light scattering from the squeezing and bend- 
ing modes. However, the shear and dilatational motions in the adsorbed 
monolayers, which in fact are due to surface density fluctuations, require 
another method for calculating the scattered intensity.77 From those calcu- 
lations, it appears that the contribution to the light scattering from the 
surface modes is negligible compared to the contribution from the surface 
deformation (squeezing and bending) modes. Moreover, the theory of Ref. 
77 applied to deformation modes gives the same light-scattering results as 
found from the combination of refraction of light with hydrodynamics. 

The hydrodynamics described in the preceding sections can also be ap- 
plied to the description of the dynamics of liquids films on a substrate. The 
procedure is simple but rather involved. 

VI. TIME-AVERAGED LIGHT-SCA'ITERING 
EXPERIMENTS ON LIQUID FILMS 

A. Introduction 

Time-averaged light-scattering intensities of liquid interfaces are rather 
difficult to measure. The scattered intensity is weak and strongly angle de- 
pendent. Therefore, great care must be taken to avoid unwanted stray light. 
The absolute calibration of the (average) intensity is laborious, and not 
much has been reported on single interfaces. We mention here experiments 
on superfluid helium films.lW Above all in soap films, a careful condition- 
ing of the film itself is essential to obtain reproducible results from differ- 
ent film samples. 

The first experiments performed by one of us with a hgh-pressure 
mercury lamp as a light source clearly showed the influence of the col- 
loidal interaction forces on the intensity.78 The film conditioning was poor, 
however. Further experiments were reported by Mann and c o - ~ o r k e r s . ~ ~ ,  ' l o  

This section describes the recent measurements of Donners and  
R?jnbout."'* 'I2 

1 .  Apparatus 

The experiments were performed in a vessel designed by kjnbout.  Spe- 
cial care was taken to obtain a well-defined optical geometry with a 
minimum of unwanted stray light and  good temperature control 
( 2  0.002"C). The vessel was placed in a cage with air thermostat ( +- 0.2"C) 
and the temperature of the room varied only within ? 1 "C. The light source 
was a He-Ne laser. The film could be set to fixed positions such that 13, = 
30", 60", and 75", whereas the scattering angle B could be varied continu- 
ously in the plane of incidence. The films were drawn in a circular brass 
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frame (hole diameter 2 cm) heavily plated with silver and were in perma- 
nent contact with the solution from which the film was drawn. For a fur- 
ther description of the apparatus and the data collection, we refer to the 
original papers."', ' I 2  An analogous light-scattering vessel is described in 
more detail in Section VII. 

2. Materials 

Films were drawn from solutions containing 8.2X lop4 mol/dm3 of 
purified hexadecyl trimethylammonium bromide (HDTAB) and 8.4 wt% 
glycerol (added to gain better control of the water vapor pressure 
equilibrium) in twice-destilled water. The refractive index of the solution 
was taken ( n  = 1.337); the surface tension was y = 39 mN/m (= 39 
dynes/cm), and the dielectric constant E was 76.2. All measurements were 
carried out at 25°C. To avoid irregular drainage of the film upon refresh- 
ment of the surface inside the vessel, the temperature of the stock solution 
(see Section V1I.B. 1) was carefully controlled. 

3. Measurement of the Film Thickness 

Film thicknesses were obtained from the reflected intensity, using (4.38) 
for a homogeneous film with a refractive index equal to that of the surfac- 
tant solution. The value thus obtained is the so-called equivalent water layer 
thickness h,, which is also used in the light-scattering interference for- 
mulas [see (4.29)]. 

In the equation for the interaction forces, the thickness of the aqueous 
core h is needed. To obtain h from h,, slightly different procedures and 
equations exist.". 113-115 Rijnbout's equation is 

where n and n, ,  are the refractice indices of the soap solution and the soap 
layers, respectively, and R,, is the molar refraction of the surfactant. In this 
study the investigators used R,, = 1.08 X m3/mol, which is the value 
for dodecyl trimethylammonium bromide corrected for the presence of four 
extra CH, groups; r=3.26X mol/m2, and n h E =  1.435 (the value of 
bulk hexadecane). Then one obtains h = h ,  - 3.6 nm. 

4. Scattering Measurement 

The light-scattering intensity S R  or ST was obtained from the photocur- 
rent i= fS .  The factor f was obtained within a few percent from absolute 
calibration"' and was checked frequently by a relative calibration on 
thicker films (where interaction forces are still negligible). Takmg for y the 
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surface tension of the solution, it was found that the optical thickness de- 
pendence and the angular dependence of the scattering were internally 
consistent within the accuracy (-2%) of the measurement, which proves the 
correctness of the scattering equations. 

B. Electrical Double Layer Forces 
This section gives results obtained for films with a low electrolyte con- 

centration, which give information about electrical double layer forces; the 
contribution of van der Waals-London forces is very small in this case. 
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Fig. 6.1. Plot of &, and S versus thickness of the film. The dashed curve gives So, scatter- 
ing without interaction between the film surfaces. The solid curve gives S, scattering calcu- 
lated from (6.2) using the results of Fig. 6.3. Circles indicate experimental results; O,, =60", 
0% 54". (From Ref. 1 1  1 ,  courtesy of Academic Press Inc., New York.) 
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Two series of measurements were performed: on draining films at con- 
stant scattering angle 8, and on (nearly) stationary films at varying 8. The 
angle of reflection 8, = 60". The results of a draining film are shown in Fig. 
6.1, where the scattering intensity S at 8=54" is plotted for film thick- 
nesses h ,  between 60 and 150 nm. The dashed curve gives So, the scattered 
intensity calculated assuming absence of interaction forces. The curves were 
analyzed with (4.37) rewritten in the following form: 

So l + V  
S l + x Y  

2 d2V q-=-- 
K 2 y  dh2 

_ -  -- 

and 

(6.4) 
GO 

2G, 
x = - , scattering on reflection side 

Some curves of x versus 8 (at 8, =60°) are given in Fig. 6.2 for three film 
thicknesses. The curves at the left are for the scattering on the reflection 

- 8  

Dependence of x on the scattering anglc 8 for three film thicknesses; 8o -a", 
n = 1.337, A- 632.8 nm. The discontinuity in the curves at 8- 90" is caused by the differences 
in the scattering formulas for the reflection and transmission sides of the film. (From Ref. I 1  1, 
courtesy of Academic Press Inc., New York.) 

Fig. 6.2. 
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side. They show that in the thickness range where VZO, x varies between 
0.1 and 0.3 The curves on the right-hand side are for scattering on the 
transmission side. 

Values of d 2 V / d h 2  as a function of h calculated from the scattering 
equation are shown in Fig. 6.3. Because the van der Waals-London contri- 
bution as calculated from (6.6) (see below) was always smaller than 2%, this 
contribution was neglected here. The linear plot in Fig. 6.3 was used to 
calculate Go and K from the differentiated form of the left-hand side of 

which, indeed, predicts linearity. The slope gives ~ = 9 . 6 8  X lo7 m-'. A large 
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Fig. 6.3. Plot of In(d2V/dh2) obtained from light-scattering measurements versus the film 
thickness. The solid curve shows the least-squares fit of the experimental points; 6, -60". 6-  
54". From slope and intercept one finds, respectively, ~ = 9 . 6 8 X  lo7 m-' and In B K ~  -29.81. 
(From Ref. 11 1, courtesy of Academic Press Inc., New York.) 
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10 m2 - A2 ( 1 - X ) x l O  

Fig. 6.4. Angle dependence of the light scattering: &/S is plotted versus Az(I - x ) .  The 
solid curve shows S, /S calculated from (6.2) using the results of Fig. 6.3; 0, -60". (From Ref. 
11 1, courtesy of Academic Press Inc., New York.) 

number of measurements from different films treated in this way gives Val- 
ues of K between 9.0 and 1O.OX lo7 m-', in very good agreement with the 
value calculated from (2.6), which is 9.5 X lo7 m- I .  The Jlo's calculated from 
the intercept scatter more but are mostly between 80 and 100 mV. These 
numbers for K and I,$, were used to calculate the solid curve in Fig. 6.1. I t  
gives a good fit with the measured points. 

After the film had been draining to a stationary thickness of 60.022.5 
nm, the scattering angle 8 was varied from 54" to 26". In this range S de- 
creased from 5.02 x l o w 6  to 0.27 x 10 -6  and So from 13.7 x to 0.27 x 
10 -6.  The ratio So / S  is plotted as a function of A2(1 - x) in Fig. 6.4, where 
A = 2 a / K  is the wavelength of the observed scattering mode and is con- 
nected with the scattering angle through (3.1 1). The curve was calculated 
from the known values of K and t+bo. This again shows that the experiments 
are wholly consistent with the theoretical equations. The Jlo's calculated 
from the equilibrium thicknesses of the films were in the range of 60-90 
mV. 
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C. Van der Waals-London Interactions 

I .  Measurements 

The measurements on van der Waals- London forces are less straightfor- 
ward than those on the electrical double layer forces. First, the double layer 
forces must be suppressed: this was achieved by adding so much electro- 
lyte (0.1 M KBr) that 1 / ~ - 1  nm. Then, however, the films do not drain 
regularly to the new equilibrium thickness but spontaneously form black 
spots at h= 100 nm, which makes it impossible to perform light-scattering 
measurements on these (inhomogeneous) films. 

The black spot formation was discussed in Section IV.D.3. It can be 
shiftedIw to smaller thicknesses by a faster drainage. By using a narrow 
rectangular frame (2 X 1 cm), however, the investigators speeded up the 
draining by a factor of 5; the black spot formation occurred around -80 
nm, however, which is still too large. To obtain even faster thinning, a more 
forceful method had to be chosen. It was found that by blowing dry air into 
the vessel, thinning by evaporation also occurs. This speeded up the thin- 
ning of the film by another factor of 5 (see Fig. 6.5) and reduced the thick- 
ness of black spot formation to -50 nm, sufficiently low to make van der 
Waals force measurements feasible. 

The evaporation may have several disturbing effects on the film. First, it 
serves to increase the concentration of electrolyte, soap, and glycerol (say, 

I I I I 

20 LO 60 80 - t (s) 
Fig. 6.5. Experimentally determined tbckness of the aqueous core of the film versus time 

for an evaporatkg film (solid curve) and a normally draining film (dashed curve). (From Ref. 
112, courtesy of Academic Press, Inc., New York.) 
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by a factor of 2). The increased electrolyte concentration compresses the 
already thin double layer even more, which should have no effect. The in- 
creased soap concentration decreases the surface tension, but because the 
original soap concentration is already close to the critical mice1 concentra- 
tion of the soap solution, this effect should be small. The increase in glycerol 
concentration may change the refractive index of the aqueous core by a few 
parts per thousand, which is negligible. The evaporation may also lead to 
some cooling of the film, with a concomittant change in y. It can be shown, 
however, that the heat supply from the surroundings is sufficiently fast to 
make the effect on y negligibly small. 

Also some changes in the measurement procedure were made to increase 
the response of the interaction forces on S. The measurements were per- 
formed in the transmission regime (Fig. 6.2) and very close to the trans- 
mitted beam, 8-3", where the optical factor x is negligible. This increases 
the amount of stray light from the diaphragm edges for which, however, a 
special correction and calibration procedure was developed (for details, see 
Ref. 112.) Furthermore, a photocounting technique with pulse height dis- 
crimination was used to measure the photocurrent, which brought the mea- 
suring time of the intensity down below one second, as is necessary for 
fast-draining films. The outputs of the scattering and thickness measure- 
ments were fed into a paper-tape punch. 

2. Results and Discussion 
Scattering intensities of some hundred films, drawn on the same day, were 

superimposed and averaged in groups of small h ranges, and processed as 
indicated above. The results are shown in Fig. 6.6. The measured values 
were compared with calculations of van der Waals- London forces (see 
Section II.C.2). The calculations were done for an aqueous film sand- 
wiched by two hexadecane layers using the bulk properties of the hydro- 
carbon and were cast into the following interpolation formulas9: 

-=-( d2Vw 1 b+ch 
dh2 h4 1 +dh+eh2 

The numerical values of 6 ,  c, d, e ,  and q are given elsewhere. The constant 
q represents the contribution of the zero-frequency term in Dzyaloshinskii's 
formula, which according to Mitchell and Richmond"6 must be taken equal 
to zero for films with large values of ~ h .  The values of d2Vw/dh2 thus ob- 
tained were used to calculate S as shown in Fig. 6.6 for q = 0 (dashed curve) 
and q = - 5.4 x 10 -22 (solid curve). They show a reasonable agreement be- 
tween theory and experiment within the accuracy of the measurements. 
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- h(nrn1 

Fig. 6.6. Experimental results for S / &  versus h .  For comparison, two theoretical curves 
are shown, based on (6.6): q = O  (dashed), and q =  -5.4X lo-" (solid). (From Ref. 112, 
courtesy of Academic Press Inc., New York.) 

Here we are measuring attractive forces that tend to induce growing 
fluctuations of wavelength surpassing a certain limit, as discussed in Sec- 
tion V.A, and some points connected with this circumstance remain to be 
discussed. From (5.4), here written in a slightly different form, 

1 h3Y 4 - = - K  (1 +V) 
T 2 4 ~ ~  

i t  follows that growing fluctuations (with T < 0) can occur when ?r< - 1 or 
K 2  < -2V" /y .  The most rapidly growing mode exists for ?/= -2. In the 
experimental situation ( 6 =  117") values down to ?r= -0.3 could be mea- 
sured. This implies that ripples with 'V= -2  will scatter light at an angle of 
about 1.1" from the transmitted beam, which is outside the range of the 
detector. It is further of interest to compare T ~ ,  the relaxation time of the 
ripples observed by the detector, with T,,,, the time constant of the most 
rapidly growing ripple. From (6.7) one finds the formula 

which is depicted in Fig. 6.7 for V< - 1. For V= - 0.3, this ratio is about 
0.03. Thus the observed ripples can still fully relax before the growing mode 
gains appreciably in amplitude. 
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Fig. 6.7. Ratio of T,,, the relaxation time of the detected mode, and T ~ ,  the growing 
time of the most rapidly growing mode, versus - Y  [cf. (6.8)]. (From Ref. 112, 
courtesy of Academic Press lnc., New York.) 

VII. DYNAMIC LIGHT-SCAlTERING EXPERIMENTS 
FROM FREE FILMS 

A. Introduction 
The light-scattering experiments described in Section VI used the mean 

intensity, scattered by a thin film, to find the mean square amplitude of the 
ripples. Now we summarize light-scattering experiments that deal with the 
dynamics of the ripples. 

Because of relaxation of surface elevations, the scattered light has a 
broadened spectral distribution compared with the incident light. The 
broadening is too small to be analyzed by the conventional Fabry-Perot in- 
terferometry,”’ however, so the more recent technique of light beat- 
ing”’. must be We call this technique intensity fluctuation 
spectroscopy (IFS). 

Basically, in IFS experiments, one can distinguish between two limiting 
configurations.12’ First, the so-called heterodyne detection scheme, in which 
the scattered light is “mixed” with a coherent local oscillator signal on the 
cathode of the photoelectric detector. The local oscillator is often a part of 
the incident laser light, but this is not necessary. In this configuration the 
output of the detector contains an exact replica of the optical spectrum 
(spectrum of the EM field). Second, the so-called homodyne or self-beat 
detection scheme, in which only the scattered light is detected. In this con- 
figuration the detector output contains the spectrum of the scattered in- 
tensity. 
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For comprehensive reviews of this light-scattering technique, together 
with a number of applications in different fields, see the monographs of 
C ~ U ' ~ ~  and of Berne and Pecora,'" and the already cited review article of 
Cummins and Swinney.'" For further details, see also Refs. 126 and 127. 

The homodyne scheme is the most frequently utilized form of light- 
beating spectroscopy. In the field of interfaces, however, the heterodyne 
detection scheme is most often applied. To give some examples of studies 
on interfaces that have been carried out during the last 15 years, we men- 
tion some papers that we believe to be representative. 

After the pioneering work of Katyl and Ingardli7* I2O and Bouchiat et 
the study on surfaces of pure liquids was continued and extended 

by Langevin128 and H&rd et al.'29 These studies suggest that after careful 
deconvolution of the spectra, the light-scattering results can be interpreted 
in terms of the bulk values for the surface tension and shear viscosity. No 
high-viscosity surface region was found, as was claimed by McQueen and 
L ~ n d s t r o m . ' ~ ~  There is only one exception, in the experiments of Bird and 
Hills'3' on mercury. A large discrepancy between the viscosity from the 
light-scattering experiments and the literature value is reported. It is 
worthwhile to mention also the IFS work on liquid-vapor interfaces near 
the critical ~ o i n t , ' ~ ~ - ' ~ ~  the work on liquid interfaces covered by mono- 
 layer^,'^'^ 130, 13' and the experiments on the surfaces of liquid crystals137 in 
search of viscoelastic behavior. 

Intensity fluctuation spectroscopy was used in our laboratory to study the 
dynamic behavior of surface ripples on thin liquid films. Both squeez- 
ing23* 13* and bending'39, modes were examined. To our knowledge one 
other group14' of researchers has obtained dynamic light-scattering data 
from thin soap films; but as far as we know, nothing has been published in 
the official literature. Also some experiments were reported on lipid bi- 
layers in water.'43 

In the next section we give a brief summary of the relevant formulas. 

1. Correlation Functions and Power Spectra 

In Section V.B dispersion relations were given for the squeezing and 
bending modes, assuming a plane wave solution for the amplitude [ ( K ,  t )  
of both modes: 

a1.122, 123 

{ ( K ,  t ) = f e x p [ i ( ~ x - w t ) ]  (7.1) 

The dispersion relation can be checked experimentally by IFS experiments. 
The optical geometry determines a certain K, whereas the relaxation of the 
mode is given by w .  

It will be clear that for thermal ripples, only statistical properties for the 
amplitude f can be derived. For that purpose we define an autocorrelation 
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function +J K ,  7) for the squeezing mode and a similar function +b( K ,  7) 
for the bending mode. These correlation functions are for stationary 
processes given by 

and 

where [,( K ,  1 )  = 11( K ,  t )  - l,,( K ,  t )  for the squeezing mode, lb( K ,  I )  = 
11( K ,  1 )  + 111( K, I )  for the bending mode, the asterisk means the complex 
conjugate quantity, and the angular brackets denote an ensemble average, 
as before. 

These correlation functions can be calculated by using the Onsager re- 
gression hypothesis, together with the hydrodynamics as presented in Sec- 
tion V.B. Using (5.34) and (535), derived for the long-wavelength limit and 
the no-slip condition at the interfaces, we have for the squeezing mode: 

and for the bending mode: 

where 

K2h3  r,= -Im(o)= - ( y K 2 + 2 V ” ( h ) ) ,  
247) (7.5) 

From (7.3) and (7.4) one sees that the squeezing mode is purely diffusive, 
whereas the bending mode is propagating. 

The correlation functions for the amplitude fluctuations can now be 
connected with the autocorrelation function for the scattered field A (see 
Section 1V.A). This function g“)( K ,  7) is defined as: 

g‘”( K ,  7) = ( A * (  K,O)A( K ,  7)) (7 .7)  

The time-dependent part of the scattered field A( K ,  7 )  is proportional to 
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the actual amplitudes of the squeezing mode and bending mode, as given 
by (4.23). Using +, and +b as given by (7.3) and (7.4), and given the inde- 
pendence of the modes, one derives for the intermediate scattering func- 
tion g")  from (7.7) 

where (I,} and ( I b )  are the mean scattered intensities as calculated in 
Section IV. The correlation function in the heterodyne detection scheme is 
proportional to g(')( K ,  7). 

To calculate the autocorrelation function g(2)(  K ,  T) of the scattered in- 
tensity, one must assume that the scattering process obeys Gaussian statis- 
tics. If this assumption holds, one has12' 

where a depends on the optical detection configuration. If  only the 
fluctuating component AZ of the scattered intensity is measured (as in our 
case), only the time-dependent part of g(') is of interest, and this is given 
by 

X coswbr + ( r b ( t ) ) 2  exp[ -2rb7](1 +cos2wbr) 2 

As was shown in Section IV, the scattered intensities of the squeezing and 
bending modes are of the same order of magnitude in the reflection region 
and thickness range of interest. This means, as (7.10) indicates, that also in 
the homodyne scheme the frequency wb can be measured. That is, the 
squeezing mode acts as a local oscillator for the bending mode in this case. 
As the experimental section (Section V1I.B) shows, the detection of the 
bending mode is performed in the frequency domain, that is, by measuring 
the power spectrum of the photomultiplier voltage fluctuations instead of 
time-autocorrelation function. 

According to the Wiener-Khinchine theorem, the power spectrum of a 
fluctuating quantity is given by the (time) Fourier transform of the auto- 
correlation function. So for the bending mode one derives from (7.4), for 
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the power spectral density Pb( K, w ) :  

B. Experiments 

I .  Experimental Setup 

The apparatus used for the dynamic scattering experiments is an im- 
proved version of the Rijnbout apparatus, mentioned in Section V1.A. 1. The 
main parts of the apparatus appear in Fig. 7.1, and it is described in detail 
in Ref. 138. The apparatus depicted in Fig. 7.1 is really isolated from the 
surroundings, whereas the Rijnbout apparatus has an open connection with 
the surroundings. The way of isolating the system, and the mechanism for 

Fig. 7.1. Schematic view of the light-scattering apparatus: 1, stainless steel vessel; 2, inlet 
for thermostatting fluid; 3, windows to illuminate the film; 4, film; 5 ,  ground glass frame; 6, 
glass vessel with “soap” solution; 7, mechanism to move vessel up and down; 8, turnable part 
of the cover; 9, tube; 10, photomultiplier; 1 I ,  prism; 12, concentric grooves filled with high- 
viscosity paraffinic oil; 13, concentric rims. (From Ref. 138, courtesy of American Institute of 
Physics.) 
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moving the reservoir with the soap solution up and down without dis- 
turbing the pressure inside the apparatus, are the main differences between 
the apparatus described here and the one mentioned in Section VI.A.l. In 
general, for thin film studies it is very important that the system be vapor 
tight. 

For the thermostatting of the light-scattering apparatus, see Section 
V1.A. 1. The resulting long-term temperature stability inside the apparatus 
is ?0.002"C. 

In Fig. 7.2 the optical and detection part of the experimental setup is 
schematically drawn. The film is illuminated by an argon-ion laser about 
10 mm above the surface of the soap solution in the reservoir. The laser 
operates in the TEM, mode (multimode) at 514.5 or 488 nm, at a power 
between 100 and 300 mW. The light is polarized perpendicular to the plane 
of incidence. The lens L,, with a focal distance of 60 cm, is placed about 
40 cm from the film so that the incident beam is slightly focused on the 
film. The diaphragm system D,, which is positioned after the incohing 
window (see Fig. 7.1), is used to remove unwanted stray light. The specu- 
larly reflected light is measured by means of a photodiode, which can be 
set at fixed positions such that 0, =45", 60°, or 75". 

L A S E R  

SCATTERED ' 
REFLECTED BEAM 

PHOTODIODE 

m h n h  
SPECTRUM ANALYSER 

Fig. 7.2. Optical and detection part of the experimental setup: L,, lens (f-600 mm); D,, 
diaphragm system; D,, pinhole (+= 1.5 mm); L,, lens (f=48 mm); D,, pinhole (cp-0.2 mm); 
A, preamplifier; A X ,  analogue-to-digital converter (200 kHz); PMT, photomultiplier tube. 



382 A .  VRIJ, J .  G .  H .  JOOSTEN, AND €1. M. FUNAUT 

The scattered light is detected by a photomultipler tube (PMT). The area 
that is “seen” by the PMT encloses the spot of the laser beam on the film. 
The PMT signal is fed either to a correlator or to a spectrum analyzer. The 
correlator consists of a fast analogue-to-digital converter and a minicom- 
puter, programmed to calculate the time autocorrelation function of the 
signal. The correlation function, calculated in this way, is proportional to 
the time autocorrelation function of the fluctuations in the scattered inten- 
sity. 

The output of the spectrum analyzer is proportional to the power spec- 
trum of the fluctuations in the scattered intensity. Although the power 
spectrum of the fluctuations contains the same information as the time au- 
tocorrelation function, each has its own merits, making it necessary to use 
them both to cover a broad spectral range (see Section VII.C.4). 

To conclude this section, we remark that the whole optical system, in- 
cluding the laser and light-scattering apparatus, is placed on a vibration 
isolation system to eliminate exterior vibrations. 

2. Materials and Methob 

The solutions used contain as standard components hexadecyl trimethyl- 
ammonium bromide (9.5 x mol/dm3) plus glycerol (8.4 wt%). TO 
increase the ionic strength, KBr was added. The refractive index of the 
solution appeared to be n =  1.345. The surface tension yo of the solutions 
was measured with a stalagmometer (drop weight method), and the shear 
viscosity qo by an Ubelohde viscosimeter at the same temperature that was 
used for the light-scattering experiments. The results are given in Table 1. 

TABLE 1 
Bulk Solution Properties and Equilibrium Thicknesses ( h 2 )  and Results of Dynamic 

Light-Scattering Experiments for the Two Systems Described in Text 

1 (m/sec) Y (mN/m) 
1 

Equilib Bendink Ionic Strength” T Yo 10 h2 
(LO-’ mol/dm3) (OK) (mN/m) (mPa-sec) (nm) Bulk Drainage rium mode 

- 

4.8 297.6 33.8 1.12 35.1 30.2k0.2 30-c2b 2021’ - 

1.9 300.0 35.7 1.07 44.4 33.3 30.8 -c I .2d 20-c IC 32 

aConcentration of HDTAB plus the concentration of KBr. 
bAverage value of 10 different films. 
‘Average value of 14 experiments. 
dAverage value of four different films. 
‘Average value of five experiments. 
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The scattering apparatus is made dustfree by blowing through dustfree 
air. Then the vapor equilibrium inside the apparatus is established by wait- 
ing at least 12 hr. Because of the need to have a dustfree system plus a 
well-defined vapor equilibrium, the system should be tightly closed. Just 
before a film is drawn, the surface of the solution in the reservoir is re- 
freshed by supplying a few milliliters of stock solution. Once a film is made, 
the drainage process starts and continues until the equilibrium thickness is 
reached. This takes about 12 hr. During the drainage process the reflected 
intensity is recorded, to find the equivalent water thickness h,. 

The spectral distribution of the scattered light was measured during the 
drainage of the film at constant angles 8 and 0, at thicknesses below about 
110 nm. Once the film has reached a constant thickness, so that h is con- 
stant, the scattering angle 8 is varied. 

C. Experimental Results 
A calculation of the relaxation times rs-' and r;' and the frequency wb,  

from (7.5) and (7.6), and realistic values for the different parameters, shows 
that the squeezing mode exhibits its relevant features in the millisecond re- 
gion, whereas for the bending mode this display occurs in the microsecond 
region. This very fact makes it possible to study the squeezing and bending 
modes separately. The properties of the squeezing mode can be measured 
either at the transmission side or at the reflection side of the film (see Sec- 
tion VI). The bending mode scattering, however, only has enough intensity 
in the reflection region. 

The experimental results for the squeezing mode are mainly taken from 
Ref. 138. 

1. Squeezing Mode 

The squeezing mode experiments were carried out using the homodyne 
detection scheme with scattering angles within ? 20" of either the reflected 
beam (8, =60") or the transmitted beam. A small region of 5 4 "  around 
either the transmitted or reflected beam was excluded because here a grad- 
ual, but not exactly reproducible, transition from homodyne to heterodyne 
detection is observed. 

In the plane of incidence the wave number K of a Fourier component is 
given, according to (3.1 l), by 

(7.12) 

The observed correlation functions were analyzed according to a single 
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I r l  . A U  

1 . m ~  
Fig. 7.3. Measured autocorrelation function (+) of the photocurrent fluctuations. Wave- 

length of the thickness fluctuation (squeezing mode) A-4.90 prn. The curve indicates non- 
linear least-squares fit to the experimental data according to (7.13). Film was drawn from 
solution with an ionic strength of 1.9 X rnol/dm'. 

exponential plus background by minimizing the function 

(7.13) 

where n = 2 5  or 50, 7i = i r ,  r is the sample interval time, and GA,(ri) is the 
(measured) correlation function at 7. A typical correlation function, with 
its computer fit, is found in Fig. 7.3. According to (7.10) T~ in (7.13) must 
be interpreted by 

(7.14) 

The other three terms on the right-hand side of (7.10) can be neglected in 
the analysis of the relaxation of the squeezing mode because rb >> r, (r, is 
typically 100 to 5000 sec-', whereas rb is in the order of sec-'; see 
Section VII.C.4). 

2. Squeezing Mode: Drainage Experiments 

As already has been pointed out, it takes about 12 hr for a film to reach 
its equilibrium thickness. At first, the thinning process goes very fast, but 
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I A  I I 1 1 I 1 

below a thickness of about 120 nm the drainage process is slow enough to 
permit measuring correlation functions under “constant” thickness condi- 
tions. Typically, the relative thickness changes, during the measurement of 
one correlation function, were 1oo/o at h e 1 0 0  nm and 1% near the equi- 
librium thickness. 

In the thickness region where y K 2  >> - 2 V ” ,  the quantity ( 2 ~ ~ ) - ’ / ~  
should, according to (7.14), behave as a linear function of h at constant K .  
In Fig. 7.4 some results are depicted for three different scattering angles, 
showing that the measured data can be fitted to a straight line above a 
thickness of about 55 nm. According to (7.14) the slope of the lines should 
be equal to [ Y K ~ / ( ~ ~ T J ) ] ’ / ~  when y K 2 > > - 2 V ” .  Thus knowing K ,  a value 
for the observed ratio y / q  can be calculated. The resulting value of y / q  
obtained from different films, and the value of this ratio for the bulk solu- 
tion, are given in Table I .  Below about 55 nm the relation between (27 , ) - ’13  
and h is no longer linear, as can be seen in Fig. 7.4 especially for the 
smallest K .  This implies that the value of 2V” can no more be neglected 
with respect to yK 2: the influence of the interactions shows up. Since the 
curve increases with decreasing h ,  the value of V ”  must be positive. We also 
describe here a series of experiments carried out on films drawn from a 
solution of hexadecyl trimethylammonium bromide with an ionic strength 

12 

8 -  

L -  

- 

Fig. 7.4. The cube root of the reciprocal relaxation time of the squeezing mode for drain- 
ing soap films as a function of their thickness h ,  at three different wavelengths: circles, A -  
4.14 pm; triangles, A=8.22 pm; squares, A-  11.18 pm. Solid curves are the least-squares fits 
through the measured data above a thickness of 55 nm. Film was drawn from solution with 
an ionic strength of 4.8 x 10 -’ mol/dm’. 
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of 1.9 x mol/dm3. Both squeezing and bending mode experiments 
have been performed on these films. The results of the drainage experi- 
ments and the bulk properties of this solution are also given in Table I. 

3. Squeezing Mode: Equilibrium Experiments 

If the film has reached a constant thickness, the wave number depen- 
dence’of the relaxation time can be studied. From a rearrangement of (7.14), 
one finds that if the (experimental) value of 12/(7,h3K2) is plotted against 
K2,  a straight line is expected. The slope of this line equals y/v and the 
intercept with the K 2  = O  axis is 2V”/v. Figure 7.5 gives a typical example 
of such an experiment at constant thickness. For h,  the thickness h ,  of the 
aqueous core is taken. The correction term amounts 3.5 nm (i.e., h,  = h ,  - 
3.5 nm). The averaged value of y/v, obtained from five measurements on 
three different films is also given in Table I. As one sees, the ratio is lower 
than for the bulk quantities. I t  is important, however, to know the quanti- 
ties y and -q separately because otherwise no reliable data concerning the 
interaction term V” can be extracted from the experiments at constant 
thickness. 

I I 

0 1 2 
- 2  - ~ ~ / ~ ~ 1 ?  , m 

Fig. 7.5. Values of 12(7,h;K2)-’ versus K 2  for a film at constant thickness; h ,  -46.0 
nm; circles and crosses denote experimental data measured at angles O>O, and O< O,,, respec- 
tively. The solid curve is a least-squares fit through all data points. Film was drawn from solu- 
tion with an ionic strength of 1.9X 10 mol/dm3. 
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As the next section indicates, the bending mode experiments provide us 
with a value for y. In Section VI1.D a combination of squeezing and bend- 
ing mode results on the same films is discussed to obtain values for V".  

4. Bending Mode 

Recently we succeeded in detecting the bending mode by means of 
IFS.139. The properties of the bending mode have been studed by mea- 
suring the power spectrum of the PMT voltage fluctuations. There are 
several reasons for working in the frequency domain instead of in the time 
domain. First, as a calculation of the oscillation frequency ob/2.rr shows, 
we have to deal with rather high frequencies. Most commercially available 
correlators, however, do not have a high enough resolution. Second, the 
determination of a peak in the power spectrum is more accurate than the 
determination of a period of a cosine in the time autocorrelation function. 

The frequency shift with respect to o=O in the power spectrum is ap- 
proximately* given by jb( K )  = wb( K ) / 2 a ,  whereas the full linewidth at 
half-maximum is given by K2q/277p, when the no-slip condition and the 
long-wavelength limit applies [see (7.6)j. Using bulk values for y ,  77, and p 
(Table I), one expects shifts in the megahertz region and linewidths in the 
kilohertz region for the K and h values under study. 

Though the scattered intensity of the bending mode at least at the reflec- 
tion side is comparable to the intensity scattered by the squeezing mode, 
the signal-to-noise ratio becomes poor for large scattering angles because 
of the high-frequencies involved. The range of scattering angles is confined 
about 2" to about 6" at both sides of the specularly reflected beam. This 
means that we gradually move over from the heterodyne to the homodyne 
detection scheme. Very close to the reflected beam, the scattered light is 
mixed with part of the specularly reflected light that acts as the local oscil- 
lator. Figure 7.6 shows an example of a heterodyne spectrum. As already 
has been remarked, the frequency shift (actually a Doppler shift) of the 
bending mode can be measured using the homodyne scheme, also. Figure 
7.7 shows an example of such a spectrum. 

Similar spectra have been measured at different scattering angles in the 
range 2" 5 lO-O,,l 5 6", corresponding to wavelengths 30.4 p m  5 A 5 10.3 

*In fact the frequency shift is 

but in the experimental situation we always have u;>K4q2/4p2. 
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Fig. 7.6. Measured power spectrum of the photocurrent fluctuations (heterodyne scheme): 
wavelength of the surface wave (bending mode) A -30.9 pm, and thickness of the film ( h 2  + 
2hl)==47.5 nm. The composition of the solution is the same as in Fig. 7.5. (From Ref. 139, 
courtesy of North Holland Publishing Company, Amsterdam.) 
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Fig. 7.7. Measured power spectrum of the photocurrent fluctuations (homodyne scheme): 
wavelength of the surface wave (bending mode) A =  11.1 pm, and the thickness of the film 
( h 2  + 2 h l ) = 4 7 . 5  nm. The composition of the solution is the same as in Figs. 7.5 and 7.6.  
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pm when O,, =60°. In Fig. 7.8 the resulting frequency shifts, j,( K ) ,  mea- 
sured on two films with the same equilibrium thickness, are plotted as a 
function of the wave number K ( = 2 a / A ) .  It is clear that a linear relation- 
ship between j b ( K )  and K exists in the range of K values investigated. 
According to 

(7.15) 

the slope of the line in Fig. 7.8 should be equal to [ y / ( 2 ~ r ' p h ) ] ' / ~ .  A linear 
least-squares fit through the measured data yields a slope of 5.8 m/sec. 
Taking for p a value of 1018 kg/m3 (a 1M glycerol solution) and for h a 
mean value of 47.5 nm ( = h 2  + 2 h , ;  h ,  is the thickness of the monolayer), 
one finds y=32  mN/m. 

No attempt was made to compare the widths of the peaks (which are in 
the order of 100 kHz) with the theory. The reason for this was twofold. First, 
since one is dealing with a propagating mode, so-called instrumental 
broadening effects are important.I2' The divergence of the laser beam, the 
uncertainty of the incident k , ,  and the finite solid angle of observation lead 
to the detection of many modes, with different K 's, that all have different 

Fig. 7.8. Measured values of fre- 
quency shifts fb against K for two differ- 
ent films drawn from a solution with the 
same composition as in Figs. 7.5, 7.6, and 
7.7. The mean film thickness h ,  + 2 h ,  = 
47.5 nm. The solid line is a least-squares 
fit through all data points. (From Ref. 
139, courtesy of North Holland hblish- 
ing Company, Amsterdam.) 
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frequency shifts. To extract reliable information from the widths of the 
peaks requires a very tedious and difficult deconvolution procedure. Sec- 
ond, as a future paperw will demonstrate, the widths of the peaks mainly 
result from the properties of the vapor phase surrounding the films. Al- 
though the frequency shifts are also affected by this effect, it is nearly 
negligible for films with thicknesses 2 5 0  nm and wave numbers K as de- 
scribed here. 

D. Discussion 
As far as the drainage experiments on the squeezing mode are con- 

cerned, we may conclude that the ration y / ~  obtained in the light-scattering 
experiments shows, within the experimental error, a reasonable agreement 
with the value of this ratio found from the bulk quantities y and 9 (see Table 
I). The application of a three-parameter fit [see (7.13)] instead of a two- 
parameter fit'3s revealed that the correlation function could be analyzed 
more precisely. It appeared that a small, but systematic background was 
present in the measured correlation functions. The effect of this back- 
ground turned out to be more pronounced at shorter interval times when 
the two-parameter fit was used. Thus the difference of y/q for larger K 's 
compared to smaller K ' s  is no longer obvious. We may also conclude that 
although a net flow of liquid out of the film occurs during the drainage 
process, this flow seems to have no influence on the relaxation of the surface 
ripples. 

The value for y/q obtained in the squeezing mode experiments at con- 
stant thickness, however, shows a significant discrepancy with the bulk 
value of y/q (see Table I). As we have seen in the preceding section, the 
bending mode experiments yield a value for the surface tension of the film. 
Although it is not obvious that a film tension measured in megahertz 
frequency range (bending mode) equals the value of this quantity obtained 
in the kilohertz frequency region (squeezing mode), it could give us at least 
an estimate for the value to be used in the interpretation of the squeezing 
mode results. Using the value for y and the bulk value for q, one finds y/q 
= 30 m/sec, so we have just a partial explanation for the difference found 
in the experiments at constan't tluckness. 

There are a number of possible reasons for the observed differences. The 
theory used to interpret the experimental results may have been incom- 
plete, or perhaps the assumptions made in the derivations were not met in 
the experimental situation. As remarked in Section V.B, the more general 
and systematic electrohydrodynamic theory89 gives about the same expres- 
sion for the relaxation time rR as (7.9, in the long-wavelength limit (lwl) 
and for no-slip conditions. Moreover, as can be seen clearly from Fig. 7.5, 
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the K-dependence of the experimental data shows the behavior as predic- 
ted by (7.5), which is in favor of the use of this equation. 

A theoretical explanation for the increase of the viscosity TJ could be 
found in the so-called electroviscous effect. I t  is well known that an elec- 
trolyte solution streaming between two charged walls shows an increase of 
the apparent shear viscosity. Assuming that the results obtained for plane 
parallel channels in a steady state by Levine et al.I4, may be used for the 
film situation, it was found that a maximum increase of about 20% can be 
expected for the viscosity of the solution inside the film compared to the 
bulk value. This electroviscous effect is expected to be important only in 
equilibrium films where an overlap of the electrical double layers occurs; 
but nevertheless this phenomenon cannot explain the full discrepancy be- 
tween theory and experiment. 

Concerning experimental problems, we may conclude that there is no 
good reason to believe that an unexpected mixing occurs between reflected 
light or unwanted stray light and the scattered light.I3* So the experiments, 
carried out in the K region described here, are really free of homodyne- 
heterodyne problems. Another possible source for the discrepancy between 
theory and experiment may be the use of the aqueous core thckness h ,  in 
the interpretation of the equilibrium experiments. Whether this is per- 
mitted is not clear at the moment. 

Now we discuss briefly the results obtained from the relaxation of the 
bending mode. As a comparison with the bulk value for the surface indi- 
cates (Table I), there is a discrepancy between this surface tension and the 
surface tension obtained from the bending mode experiments. It should be 
realized, however, that the film tension value is obtained from experiments 
on a time scale totally different from the time scale encountered in obtain- 
ing the bulk value. This implies the possibility of processes that influence 
both values in a completely different way, like adsorption and desorption 
phenomena of surface active materials at the interface. 

A trivial explanation can be found in the presence of contamination. It 
is very well known in the field of surface and interface research that traces 
of highly active components, other than the added surfactant, can cause 
serious problems. It is very hard to rule them out fully, especially when one 
uses quite aged interfaces. The films described here were always older than 
12 hr; thus the results could be obscured by aging effects. Whether this is 
the case is now under investigation. 

To conclude, we present the results for the interaction term V” as a 
function of h .  Taking for the y the value as found in the bending mode 
experiments, we can calculate from the slope of the squeezing mode experi- 
ments at constant thickness a value for the shear viscosity q. Now we are 



392 

3.0- 

26-  

1 1: 
1 L  

A .  VRIJ, J .  G. H. JOOSTEN, AND H. M. FUNAUT 

\ o  
b\ 

\ 
\ 
\ 

\o 
\ 
\ 

o \  

. o  
. \ 

\ 
\ 
. \ 

able to find a numerical value for V” from the intercept that equals 2 V ” / q  
[see (7.5)]. In Fig. 7.9 the resulting values for V” are plotted as a function 
of h, ,  the thickness of the aqueous core. Also the theoretical curve for V” 
is given in Fig. 7.8 as calculated from (6.5) and (6.6) for the electrical dou- 
ble layer and the van der Waals-London contribution to V ” ,  respectively. 
As one can see, a value of +o =83 mV yields a reasonable agreement be- 
tween theory and experiment. 
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Abstract 
This chapter reviews recent applications of computer simulation techniques, in particular the 
method of molecular dynamics (MD) by us and others to supercooled liquids, glass transition 
phenomena, and amorphous solids. 
We examine a variety of results for simple models to determine the features of glass for- 
mation that are quite general and those that are specifically dependent on the form of the 
interaction potential. We further consider the requirements in the pair potential for glass for- 
mation vis a vis homogeneous crystal nucleation, and for behavior reminiscent of more com- 
plex laboratory glasses. 
The ultrafast effective cooling rate to which the liquid is subjected in computer simulation leads 
to a “glass transformation range,” which is so broad that the usual methods of characterizing 
glass transitions in the laboratory are barely applicable. Nevertheless, the consequences of 
“freezing” the structure in amorphous phase space can be observed, and results for different 
potentials then lead to assignment of the pronounced change in heat capacity at the glass 
transition temperature, common to laboratory glasses, to the attractive part of the potential, 
while the loss of diffusivity and the resultant jamming of the structure is attributed to the 
repulsive part of the potential. 
Provided care is exercised in the choice of models and questions asked, computer “experi- 
ments” will prove to be an increasingly valuable aid to the elucidation of glass transition phe- 
nomena and the study of amorphous structures, when carefully applied in conjunction with 
real experimental and theoretical studies. 

I. INTRODUCTION 

It is assumed at the outset that the reader is familiar with the basic Monte 
Carlo (MC) and molecular dynamics (MD) methods of computer simula- 
tion of liquids. This area is now the subject of a large body of literature, as 
well as review articles’-3 and lecture ~ e r i e s . ~  In recent years, a number of 
authors have taken advantage of the ability of the simulation methods to 
obtain detailed information on the properties of supercooled simple liquids 
in internal equilibrium. This is possible because the “measurements” are 
made on a time scale that is short with respect to the time scale on which 
the crystallization event occurs. These time-scale differences lead directly 
to the existence of the type of study on which this chapter focuses. 

For many simple liquids, extensions of such studies to lower tempera- 
tures using simply programmed cooling schedules (which in fact corre- 
spond to enormous and experimentally inaccessible quenching rates) have 
resulted in the complete bypassing of crystallization and the consequent 
trapping of the system in a nondiffusing, configurationally arrested (i.e,, 
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glassy) state. This process, with its attendant characteristic thermodynamic 
manifestations, was first deliberately investigated for the case of a simple 
ionic liquid,’ following earlier observations of “jammed” amorphous states 
for hard-sphere systems.6 Since the initial work, several, mainly structural, 
studies of the simpler Lennard- J o n e ~ , ~ - ’ ~  hard- and soft-sphere,’6-20 
and repellent Gaussian “glasses”2’ have been reported, and attention 
has also been given to “real” glass-forming systems such as BeF, 22-24 

and SiOz23 and mixed oxides.25 With the rapid growth of interest in 
quenched metallic glassy systems, applications of this initially academic use 
of computer “experiments” may be expected to grow rapidly. 

In the above-referenced applications of molecular dynamics, a clear 
division of interests has emerged, which we summarize in the following 
paragraphs, together with the brief comments on the special utility of the 
simulation method. 

The least emphasized interest, but the one that must be adequately 
explored before the full significance of the more popular (structural) appli- 
cations can be properly assessed, concerns the investigation by molecular 
dynamics of the kinetically determined, hence history-dependent, nature of 
the glass transition itself. It is through this irreversible process that the con- 
figurationally frozen material- to which the word “glass” pertains-is ob- 
tained, and in laboratory studies it is well known that the structure and 
properties of the material obtained depend on the precise manner in which 
it was formed. Two questions need to be answered here before the useful- 
ness of computer simulation methods to the study of the glassy state of 
common experience is properly established. 

1. How does the behavior of a simple computer model system, in a highly 
irreversible quench, differ from that which would be observed, were it 
possible both to bypass crystallization and to examine the system on a 
laboratory time scale? 
How does the behavior of each of these simple model systems, which 
are not obtainable as glasses in the laboratory, differ from that of the 
simplest type of laboratory glass-forming material, particularly in the 
description of transport behavior in the vicinity of the glass transition? 

To answer the second question decisively, it may be necessary first 
to carry out a comparison of simulation and experiment for a known la- 
boratory glass-forming liquid- for example, the simple four-atom chain 
molecule S2CI in the temperature-pressure range of the simulation glass 
transition. (Any simple laboratory liquid that can in practice be main- 
tained liquid into this region would be acceptable: it would not need to be 
“glass forming” in the normal sense.) 

2. 
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A related but somewhat more fundamental question concerns the un- 
derlying thermodynamic basis of the transition. Specifically, we need to 
know whether it is sufficient to understand the behavior of simplest atomic 
models to explain the thermodynamic aspects of the phenomenon (as is the 
case, e.g., for the equilibrium melting and freezing transitions.26 If so, it 
would be possible for computer simulation experiments of sufficient accu- 
racy to provide the basis for a molecular level statistical mechanical account 
of all aspects of the glass transition. 

An alternative and distinct application of computer simulation methods 
to glass science problems lies in the examination of the equilibrium and 
dynamic structural properties of the amorphous solid phase. Such studies, 
which have been the focus of much of the simulation effort to date, yield 
“experimental” results with much greater information content, and also for 
more fundamental systems, than is at present possible by the common 
experimental techniques, X-ray and neutron scattering. They thereby per- 
mit the evaluation of the relative influence of the different components of 
the interaction potential. However, because the structures under study are 
produced by subjecting the liquid to a quenching process some orders of 
magnitude in cooling rate beyond the nearest experimental equivalent, the 
structures obtained are likely to be atypical and need to be evaluated in the 
light of considerations of relaxation time versus structure; that is, an un- 
derstanding of the effects described in the preceding paragraphs is a pre- 
requisite to the structure-oriented studies. 

Despite the serious limitations imposed by the economic restriction to fast 
irreversible quenches for small systems, there is, in each of the objectives 
cited above, the distinct compensatory advantage that virtually no restric- 
tions are placed on the choice of the intermolecular potential (except that 
for economic reasons only it must a t  present be pairwise additive). Thus 
computer simulation can be used to assess the requirements in the pair 
potential for particular modes of behavior in glass formation in: 

1. 

2. The underlying equilibrium thermodynamics. 
3. The structure-determining characteristics. 

The irreversible thermodynamics and dependence of transport coeffi- 
cients. 

In simple liquids studied by computer simulation the problem of glass 
formation through structural arrest cannot be dissociated from the prob- 
lem of nonequilibrium crystallization (homogeneous nucleation), since un- 
der many conditions the time scales for the two processes are comparable. 
A broad review emphasizing phase changes has recently been given by 
Frenkel and M~Tague ,~’  to which we refer the interested reader for a more 
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comprehensive reference list of this and related fields to December 1979. 
The primary purpose of this chapter is to assess the progress, or lack of it, 
toward a more comprehensive understanding of glass formation thanks to 
the molecular level output of computer simulations. In fulfilling this pur- 
pose, we find it necessary to deal at length with some of the limitations of 
computer experiments, not least by comparing results for a number of sys- 
tems studied to date with the behavior of more complex laboratory glass- 
forming systems. 

11. CONDITIONS FOR, AND LIMITATIONS ON, 
METASTABLE-STATE SIMULATIONS 

It will be helpful to review first the conditions under which we can carry 
out metastable-state simulations for simple systems. 

Although it is possible artificially to devise pair potentials that will en- 
ergetically favor disordered over ordered states, in all the model systems 
studied to date the fluid state is actually metastable with respect to one or 
more ordered states under the conditions in which the structural arrest 
(glass formation) is observed. We should therefore discuss briefly the limi- 
tations on such metastable-state studies. 

The focus of interest here must be the relation between the time for a 
metastable fluid system to evolve, following a thermodynamic perturbation 
(e.g., temperature decrease) toward a new state on the metastable liquid 
free energy surface on the one hand, and toward a state on the stable, crystal 
free energy surface on the other hand. Given sufficient time, the latter 
evolution must of course always be chosen; but if the configurational bar- 
riers along this path are large relative to those along the path to metastable 
equilibrium, the properties of the metastable state can always be observed. 
Operationally it is reasonable to require that there be at least an order of 
magnitude difference in these time scales for a discussion of metastable state 
properties to be meaningful: otherwise the system must always be consid- 
ered as evolving continuously toward the crystal, and distinguishable 
physical properties for the metastable liquid cannot be determined. 

For any liquid these two time scales exhibit quite different temperature 
dependences (Fig. la ) .  Thus a metastable liquid branch may be investiga- 
ble according to the criterion above in one temperature range (e.g., near the 
melting point) but not in another (e.g., at greater supercooling). Homoge- 
neous nucleation theory *'-'' considers the independent influences of the 
height of the configurational barrier to crystal nucleation, and the growth 
rate of the fluctuations that permit passage over the barrier. In this theory 
there are two characteristic time scales: T ~ ~ ~ .  the inverse of the nucleation 
rate, which characterizes the escape time from the metastable state, and T ~ ~ ,  
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the characteristic relaxation time along the free energy surface. According 
to the theory, T,,~ exhibits a minimum, or the probability of nucleation a 
maximum, as a function of tempreature (Fig. la), as is consistent with MD 
observations on the Gaussian core model.*’ This implies that the ratio 
T , , , / T ~ ” ~  also has a maximum value (Fig. lb), hence that a metastable free- 
energy surface may also be investigable at a temperature fa r  below the 
melting point- for example, near but above the “ordinary” glass transition 
temperature, where the relaxation time along the liquid free energy surface 
is of the order of minutes, even if it is not investigable at intermediate tem- 
peratures. On the other hand, if at any temperature the two time scales 
become the same, then the system has, at that temperature, a mechanical 
instability or spinodal point and, given only the time for diffusion to occur, 
a phase change must occur. In view of the comparatively more specific re- 
arrangement of particles required to generate a crystalline configuration, it 
is not clear that such an instability must exist, although it seems certain that 
in some systems it is closely approached. 

Spontaneous nucleation of the type just described has been observed re- 
cently in computer simulation studies,12* 21s 30-36 and details of the nucleat- 
ing structures have been r e p ~ r t e d , ~ ~ - ~ ~  but the dependence of T~~~ on T has 
not been studied (indeed this would be prohibitively costly at  the moment). 
The nucleation rates in  the simulation experiments can be approximately 
evaluated and are enormous, as is appropriate for argon and liquid metals. 
For instance, the observation of one nucleus forming in a sample of 500 
atoms of a substance of atomic volume 40 cm3/mol in a run of 100 psec 
implies a nucleation rate28 of I~’~/crn~sec .  

I .c 

T/Tf 

10-l~ I O - ~  I I( 
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10-3 I O - ~  10-I I 
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Tin ’Tout 
Fig. I .  ( a )  Variations with temperature (relative to fusion temperature, T f )  of the relax- 

ation times within the amorphous phase, T,, and out of the amorphous phase into the crystal- 
line phase (nucleation time), T,,,,. ( b )  Variations with temperature of the relaxation time ratio 
7, /Tout. 
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For a system in which T,, is always less than unity, a glassy state can 
be realized if the thermal energy can be removed on a time scale small with 
respect to T,,,~ at all temperatures. The structural arrest known as the glass 
transition will then occur (at a temperature denoted q)  when T, becomes 
too long for the structure to follow (equilibrate with respect to) the temper- 
ature. For normal laboratory cooling this occurs when T,, = 1-100 sec, de- 
pending on how the glass transition temperature is defined from the 
rather sudden but still continuous changes in derivative thermodynamic 
properties (typically, the heat capacity C,) that accompany the structural 
arrest. (These thermodynamic manifestations and their relation to details of 
the pair potential are discussed in Section IV.) Naturally, this arrest occurs 
at higher temperatures, the faster the cooling rate. Much higher cooling 
rates are accessible in computer experiments than in laboratory experi- 
ments; hence simpler systems can be vitrified, and structures characteristic 
of very high temperature configurational states are frozen in, as indicated 
by TJsim) at T,, = lo-’’ sec in Fig. la. On the other hand, as we show in 
more detail in the next section, vitrification in computer simulations occurs 
under conditions in which the usually sharp “glass transition” is smeared 
out almost beyond recognition. 

Before considering this issue, it is interesting and important to ask what 
factors predispose a system to rapid crystallization, and thereby to the ex- 
clusion of glass formation. A general but vague answer is, of course, the 
factors that tend to minimize the distinction between solidlike and liquid- 
like regions of phase space. A more quantitative guide is obtained from the 
magnitude of the changes of thermodynamic variables on fusion. Single- 
component atomic systems that exhibit large changes in volume (e.g., hard 
spheres) have large regions of low probability between solid and liquid re- 
gions of phase space and supercool readily, whereas systems with very weak 
first-order transitions behave conversely.” In more specific terms, the 
“strength” of the first-order transition for simple systems decreases as the 
hardness of the pair repulsion interaction decreases, basically because at a 
given thermal energy, particles in the amorphous state experience less diffi- 
culty in moving past one another (unjamming) to explore additional, other- 
wise excluded, configurations. 

The latter comments are broadly consistent with experiment. Thus, one 
observes, in simulations of the one component plasma (a system with r - ’  
repulsive interactions) a frequent fluctuation in and out of the ordered 
state,37 although in a 500-particle system, a supercooling to 0.95 T, has 
recently been obtained.38 Conversely, in the opposite extreme of the hard- 
sphere system, spontaneous ordering is not seen a t  all [in very small (32- 
particle) systems, the periodic boundaries seem to induce some artificial 
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ordering at high effective pressures6]. NOTE ADDED IN PROOF: Crys- 
tallization of a 512 particle hard sphere system has now been observed after 
a total of - 4 ~  lo6 collisions in the metastable state during runs at pro- 
gressively increasing densities. The nucleation event occurred suddenly 
during the run at pa3 = 1.08, -0.5 X lo6 collisions after an increase of den- 
sity from 1.07 (L.V. Woodcock, Ann. N.Y .  Acad. Sci., to be published). 

Progressive tendencies to crystallize with softening of repulsion parame- 
ters are discernible in the tabulated results for soft-sphere fluids defined by 

where E is the potential at particle separation u, for which the systems n=4, 
6, 9, and 12 have been studied.’*-*’ In the laboratory, the influence of the 
repulsive potentials is seen in the general absence of the metals among easily 
vitrified liquids, and the prevalence of transition metals, that are best de- 
scribed as experiencing hard (-r -Iz) repulsions, among the metal alloy 
systems that have been vitrified by splat q~enching.~’. The alkali metals 
for which the accepted pseudopotentials approximate very soft ( -r  -6) re- 
pulsions have never been vitrified. 

We may represent these ideas by the extension of Fig. 1 shown in Fig. 2, 
which takes note of the observation (referred to at the end of the next sec- 
tion) that relaxation times may show some system size dependence, and 
accordingly may have marked the horizontal axis to indicate relaxation 
times at constant k, where the k-value of interest is the inverse of the criti- 
cal nucleus diameter. The lines represent the behavior of systems of differ- 
ent repulsive parameters for spherically symmetric pair potentials, (1). For 
small n, the lines approach arbitrarily close to the T *  = 1.0 line. The hori- 
zontal lines again represent temperatures at which the internal liquid 
(amorphous) state relaxation time reaches values of -1 sec (which is the 
average relaxation time characteristic of laboratory systems when they en- 
ter the glass transition on cooling) and 100 psec (at which economic 
restrictions will impede most simulationists from pursuit of equilibrium 
properties, and therefore will serve as an indicator of T, determined by 
computer studies). The spacing of these lines relative to T, (at whch T ~ ~ %  

lo-’’ sec) is a reminder that the relaxation time becomes a very strong 
function of temperature at low T/T,, a property that is emphasized in the 
next section. 

Figure 2 may be given a second and conceptually useful interpretation: 
as n increases, so does the space between the temperature-time ratio curve 
and the dotted area to the right of the T~” /T , ,~ ,  = 1 line. This gap may be 
regarded as a measure of the “gap” in phase space between regions of high 
probability for liquidlike states and those of high probability for crystallike 
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T/ 

Fig. 2. Conjectured relation between the 
relaxation time ratio T~~ /T~”,  and temper- 
ature (relative to the fusion temperature, 
T,) for different repulsive interactions. 
Dashed lines represent temperatures at 
which the fluids have the internal relaxa- 
tion times lo-’’ sec characteristic of the 
system near the usual MD or MC glass 
transition, and 1 sec where departure from 
equilibrium becomes noticeable during 
normal cooling of laboratory glass- 
forming liquids. 

states. The diagram then emphasizes that for systems with soft repulsions, 
the distinction between solidlike and liquidlike regions of phase space is re- 
duced, and transitions between the two states are quite probable even at 
small supercoolings. 

111. LOSS OF EQUILIBRIUM AND THE GLASS 
TRANSITION 

A. General Considerations 
A perfect crystal equilibrates very rapidly, following a perturbation from 

equilibrium, by a collisional energy exchange mechanism requiring of the 
order of 10 - I 3  sec. Liquids and defective crystals, on the other hand, equi- 
librate slowly because of the need for the overall structure to change (to a 
new distribution of coordination numbers, and a new concentration of de- 
fects, respectively). At least at the lower temperatures, the latter processes 
require the system to explore phase space through an “activated” diffusion 
process (see below) for which the time requirements are >>10-I3 sec and 
are also strong functions of temperature. 

To understand properly the relationship between the “glass transition” 
phenomenon observed in computer-simulated systems and that observed in 
laboratory systems, it is necessary to be familiar with the temperature de- 
pendence of the relaxation time. The point to be made is that the “transi- 
tion,” which is the thermodynamic manifestation of a failure to maintain 
equilibrium during cooling, occurs sharply in laboratory systems but dif- 
fusely in simulated systems, primarily because of a great dfference in 
relaxation time temperature (or volume) dependence in the time-scale re- 
gimes in which the processes are observed in the two cases. 

The essential diffuseness of the simulation transition is not and cannot 
be at all obvious from the plots of diffusion coefficient versus temperature. 
The latter have been the natural and frequently used criterion, D 2 0, for 
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deciding whether a system is in fluid or rigid (“configurationally arrested”) 
state. The behavior of D versus T has led on several occasions to specu- 
lations that the glass transition observed in simple systems by simulation 
might be a singular point for the system. Because this is such an important 
matter, and because it has long been argued whether a thermodynamic 
basis for the laboratory glass transition indeed exists, we devote consider- 
able attention to what may happen in a simulation in the region where D 
approaches zero, in the hope of clarifying an aspect of the liquid-glass 
transition that is consistently a source of interest and also, occasionally, of 
confusion. 

We consider first the behavior of the diffusion coefficient (which is sim- 
ply obtained in simulations, if not in the laboratory) in relation to tempera- 
ture and density, and then look at what is implied for the behavior of the 
thermodynamic properties as D goes to zero in simulation “experiments”. 
Comparisons with experimental observations are important in this connec- 
tion. 

B. Temperature and Density Dependence of Transport Properties 
Before comparing the glass transition observed in simulations with that 

observed in the laboratory, it is necessary to review briefly the temperature 
and density dependence of transport properties. In some of the model sys- 
tems studied (specifically, hard and soft spheres) there is only one system 
variable, and temperature- or density-dependent representations of the 
properties are a matter of choice only. With other systems and of course 
with all laboratory systems, the two types of plot display independent 
aspects of the system’s behavior. 

It has been common to display the results of computer simulation studies 
of systems approaching the glassy state as simple linear plots of D versus 
T, usually in dimensionless reduced units natural to the simulation: For 
example, for soft potentials, 

where D is the normal diffusivity in units of square centimeters per second, 
m is the particle mass, u the particle diameter determined, for attractive 
systems, either at CJ(r)=O or at the potential minimum, and E is the poten- 
tial at r = u ,  or the depth of the potential well for attractive systems. To 
permit some comparison with typical experimental results, we have, where 
necessary, converted the quoted simulation results to normal cm2/sec dif- 
fusion coefficients for argonlike particles by introducing u= 3.4 A and m = 
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6 . 6 ~  g and E/k= 120 into expressions (2). These data are plotted 
against absolute temperature in Fig. 3, along with data for some of the sim- 
pler laboratory liquids for which data are a ~ a i l a b l e . ~ ’ ~  The latter are fre- 
quently represented in the high-D range by Arrhenius functions, 

where E is the “activation energy.” However, in liquids of all varieties, sys- 
tematic deviations from (3) are found when D falls much below lop5 
~ m * / s e c . ~ ’ ~ ~  The deviation is such that the activation energy increases ex- 
ponentially with decreasing temperature. A comparable deviation has been 
described for the case of Lennard-Jones (LJ) argon,’* though there are 

Fig. 3. Variation with temperature of the dffusion coefficients for various simulated fluids 
and actual laboratory fluids. Sources of data are, from left to right: U argon, simulated Refs. 
7 (DC) and 12 (C) laboratory, Ref. 41; hard spheres (for which temperature axis corresponds 
to p V / N k T x 5 0 ) ,  Ref. 82; soft spheres, Ref. 20; xenon, Ref. 41; toluene, Ref. 42; methyl 
cyclohexane, Ref. 43; carbon tetrachloride, Ref. 44; o-terphenyl, Ref. 45; molten KCI, simu- 
lated using Tosi-Fumi (TF) potential parameters, Ref. 5;  repellent Gaussian core particles, Ref. 
21 (F. H. Stillinger kindly deduced the values his simulation results would infer for argonlike 
particles in familiar units); Na + ions diffusing in molten 6KN03.4CaQ’J03), solvent medium, 
Ref. 46. The dashed extension of lower temperature in the case of xenon is based on the 
Arrhenius parameters quoted for the data.4’ 
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considerable uncertainties in the lowest temperature points. It is important 
to note that the laboratory liquids may be observed in internally equi- 
librated, diffusing states to temperatures well below that of the lowest dif- 
fusivity recorded in Fig. 3, and data can in principle be obtained down to 
(and even somewhat below) the points marked T, (to denote the laboratory 
glass transition temperature, see below) in each case. At the laboratory T,, 
diffusivities have decreased to values of -lo-’* cm2/sec, which are al- 
most immeasurably small (although the closely related viscosities, - 10” P, 
may be determined quite easily). 

The simple atomic liquids studied by simulation methods seem to be ap- 
proaching zero diffusivity more abruptly than the neighboring laboratory 
liquids, though it is not clear from Fig. 3 that this is more than a matter of 
temperature scaling. A difficulty in furthering the comparison in the inter- 
esting, even vital, region of vanishing diffusivity is raised by the economic 
problem of calculating reliable diffusion coefficients in a temperature re- 
gion where the attainment of equilibrium liquid states requires inordinately 
long computation runs. This problem and its origin are considered in detail 
below. Suffice it to say here that any simulation value of D less than 0.5 X 

cm*/sec is to be suspected of being an overestimate for the tempera- 
ture in question, unless the absence of continuing relaxation during the de- 
termination is specifically documented. 

The possibility of inherent difficulties in the accurate M D  simulation of 
slowly diffusing systems is also to be borne in mind following the finding 
of discrepancies between experiment and simulation observed in the non- 
liquid but still very relevant case of the crystalline “superionic” conductor 
CaF,.49 In this system, Rahman” has reported M D  diffusivities of F -  that 
approach zero, on linear D scale plots of the Fig. 3 type, more rapidly than 
expected from the observed Arrhenius behavior of the measured diffusivi- 
ties. (Rahman compared his results with extrapolations of D,- data mea- 
sured below the weak lambda transition at 120O0C, but the electrical data49 
have validated the extrapolation to the accuracy of the comparison.) Rah- 
man’s high-temperature data have been accurately reproduced in one of the 
authors’ laboratories using a rather different form of pair p~ten t ia l .~’  

In Fig. 4, we plot the volume dependences of the diffusivities of various 
model systems, all calculated for argonlike particles, and for the laboratory 
system methyl cyclohexane, which seems to be representative. Data for the 
latter are available for two temperatures from the accurate nuclear mag- 
netic resonance (NMR) spin-echo measurements of Jonas et al.43 To group 
the data for different systems for better comparison of their behavior, we 
have obtained a reducing parameter for each liquid by talung advantage of 
the observations of Batchinski” and Hildebrands3-56 that fluidities +, and 
diffusivities D of highly fluid molecular liquids vary linearly with volume. 
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Fig. 4. Variation of diffusion coefficient with volume, reduced by Batchinski-Hildebrand 
V, in each case, for various simulated and actual fluids. (a)  Extended diffusivity range (MD 

. . .. - - . .  . . .  . . .  systems only). ( b )  Lower LJ range, (expanded scale), showng nollltnear volume dependence 
characteristic of glass-forming molecular liquids. 
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Hildebrand devoted much effort to establishing the general validity and 
utility of a modified form of Batchinski’s original equation, namely, 

(p= - 1 a D = A (  T) v- vo 
77 

(4) 

where A is a constant. We have accordingly presented the MD data and 
the methyl cylohexane data in Fig. 4 as a function of V,, where V ,  = V /  
and VzH is chosen for each liquid by extrapolation of the linear part of the 
data to D=O. 

Reduced in this manner, the various liquids considered show much simi- 
larity, though variations in slope are expected from Batchinski’s and 
Hildebrand’s findings. Again, the laboratory case shows a marked devia- 
tion from linearity at low diffusivity, which Hildebrand attributed, in the 
few cases of such deviations he considered, to entanglement or “cog-wheel” 
effects.55 For the laboratory cases, it is possible to determine a 5, at which 
the structural relaxation time reaches value of the order 1 - 100 sec and a 
glassy state forms during continuous compression. Like Tg, this V, will fall 
far below the volume at which D in Fig. 4 tends to zero. Values of D below 
0.5 X 10 - 5  cm2/sec for LJ argon and soft spheres, which are represented by 
different symbols in Fig. 4, are maximum values because of incomplete 
equilibrations of the system, and at present the similarity in behavior to the 
(equilibrated) laboratory liquid should be treated as a coincidence, pending 
more accurate measurements. 

To go from the behavior of the diffusion coefficient to the phenomenon 
of the glass transition and the relation between simulated and real systems, 
we need to consider ( 1 )  the observed diffusivity-temperature relation over 
the full temperature range, and (2)  the relation between diffusivity and re- 
laxation time, and between real and apparent thermodynamic properties. 
The first of these we consider now; the second is taken up in the Section 
1II.C. 

As mentioned above, all molecular liquids that have been studied at 
viscosities above - I  CP (D& 1 X 10 - 5  cm*/sec) have been found to depart 
the behavior described by (3) in a way that requires the “activation energy” 
to increase continuously and in an accelerating manner as the temperature 
decreases. Over much of the range, the behavior is described by a simple 
empirical modification of the Arrhenius relation,47 often called the VTF or 
F ~ l c h e r ~ ~  equation 

D=A’exp( - E  ) =A’exp( 2) 
R ( T -  To) T -  To ( 5 )  
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Here T, is a new nonzero “vanishing mobility” temperature that is char- 
acteristic of each liquid and lies far below the temperature at  which each 
diffusivity plot in Fig. 3 tends to zero on the linear scale. The claim of To 
to physical significance is that it falls below the observed “normal” 5, such 
that qwl.1 to 1.3 To and is usually coincident with the temperature at 
which the supercooled liquid entropy, measured below the fusion tempera- 
ture, extrapolates to the same value as for the crystal (though the free en- 
ergy of the latter remains 59) .  Equation 5 implies an apparent 
activation energy that varies with temperature according to 

With B=500 K ,  (6) implies that at  T=2T0 (where D x ~ O - ~  cm’/sec) E =  
16.6 kJ/mol, but rises to 149 kJ/mol at T=1.2To as at the experimental 
glass transition. This change is very important in understanding the origin 
of the “glass transition” as normally observed. We consider this matter next. 

C. Relaxation Times and the Loss of Equilibrium During Cooling 
In the laboratory process of glass formation, an imposed temperature 

gradient causes heat to flow from the interior of the initially liquid system, 
and the liquid vitrifies- that is, loses its equilibrium properties-first at the 
outer surface (frequently producing a pipe in the center, where contraction 
at liquidlike rates continues). In the computer simulation of vitrification, it 
is simpler to cool the system uniformly by rescaling all the particle veloci- 
ties at the same moment. This may be done either by rescaling the veloci- 
ties at each time step to produce a continuous cooling7* 23 or by a 
succession of step processes5* ’*, *O in which a larger change in temperature 
is imposed instantaneously followed by a constant-temperature “anneal” 
during which the system may or may not reestablish an equilibrium state 
(depending on the annealing time and the internal relaxation time). 

Each suddenly imposed temperature change represents a perturbation 
of the equilibrium state from which the system attempts to recover by re- 
laxation-an exploration of the phase space accessible under the new 
conditions. The relaxation process has a characteristic time, which is tem- 
perature dependent and about which something is known from various ex- 
perimental studies. 

As always, the relaxation kinetics depend on the nature of the perturba- 
tion being relaxed but, in dense single-component systems of symmetric 
molecules, the responses to different perturbations that involve rearrange- 
ment of molecules tend to occur with remarkably similar time constants. 
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For instance, dielectric relaxation times T~ usually are close to, and scale 
simply with, the shear and bulk viscosity relaxation times, T~ and 7u. Since 
the Stokes-Einstein equation connecting diffusivity with shear viscosity is 
generally valid,4 this implies that the structural relaxation time for a system 
could be estimated if the diffusivity were known. Indeed for a number of 
simple polar molecules the product 7D D seems experimentally to be roughly 
constant at -2X 10-l6 cm2, implying that perturbations of a liquid of dif- 
fusivity 1 x cm2/sec would require of the order 10 psec to be relaxed 
to l /eth of their initial value. 

For atomic liquids, however, this time appears to be much shorter, pre- 
sumably reflecting more modest requirements in the configuration space 
exploration needed to equilibrate. Although the relevant structural relaxa- 
tion time can be measured only crudely (by neutron-scattering measure- 
ments of the decay of nonpropagating density fluctuations, T~ ~ 0 . 2  x 10 - I 2  

seem for argon at q), it can be determined satisfactorily from analysis of 
MD results for LJ argon.62. 63 Desai and Yip6’ find that their 7,, (for an as- 
sumed “single relaxation time” process), which should closely approximate 
7,,, is 0.22 x 10 - I 2  sec at  T,. This accords well with the result obtaineda from 
combining measured bulk viscosity q,, data with calculated bulk elastic 
modulus K ,  calculations using the relation T,, = K,/71u.65 For argon, then, 
the product T,, D is much smaller than for molecular liquids. The root-mean 
-square center of mass displacement during the time 7,( I= (6 0 ~ ) ” ~ )  is only 
0.5 A, compared with -3.4 A for a molecular system (calculated using T ~ ) .  

This is entirely reasonable, since configurational relaxation in a molecular 
liquid involves rotational as well as translational molecular motion. 

Full relaxation requires the passage of some 107; thus internal equi- 
librium in a simulation of argon should be established in some 2 psec at 
the triple point, where D =  1.7 X lo-’ cm2/sec.123 4’, 62 The time necessary 
will increase rapidly with decreasing temperature, but structural equi- 
librium should be computationally accessible down to temperatures where 
D =  1 X lop6 cm2/sec. It is probably reasonable to assign similar relaxation 
times to other atomic systems. 

With these ideas in mind, let us clarify the process of glass formation in 
computer simulations by considering a series of idealized M D  simulations 
of a simple monatomic system conducted for fixed time periods at succes- 
sively lower temperatures, such that at some point in the series the time 
allowed for equilibration becomes much less than the configurational re- 
laxation time. Figure 5 displays as a function of time the behavior expected 
for a dynamic quantity, the mean squared particle displacement, and for a 
thermodynamic quantity, the enthalpy. Each successively lower tempera- 
ture run is assumed to commence using the final configuration of the 
previous run, with an instantaneous decrease in volume and decrease of 



Fig. 5 .  Variations with time and temperature of dynamic (mean square displacement) (a ) ,  
(b), and thermodynamic (enthalpy) (c), (d)  properties of simple dense fluids evaluated by MD 
runs of limited time duration, showing partial failure to equilibrate at T4, and “frozen” or 
glassy-state behavior at  T, and G. Note the change in heat capacity from liquidlike to solid- 
like values implied by the change of slope of H versus T in (d). 

T,  for this “experiment” would be located at T4. The arrows indicate the values of H the 
system would reach if allowed sufficient time to reach complete structural equilibrium at 
and Ts. 
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temperature by appropriate scaling of the velocities, such that the final 
pressure is constant for the series. In practice it is common to reach the fi- 
nal temperature in a series of velocity rescalings to correct for the upward 
temperature drift, which results from decrease with time of the system’s 
potential energy toward the value characteristic of the “new” temperature 
(see below). 

The highest temperature TI in Fig. 5, corresponds to a condition where 
D =  cm2/sec. Temperature T3 corresponds to a temperature where D 
has a “normal” liquid value of 2 x  cm2/sec, and T4 is a temperature 
at which D (for the equilibrated liquid) is only 2 X  cm2/sec. The re- 
laxation time is -10 psec, and the time needed to reach equilibrium is 
therefore rather longer than the run time. Temperature T,  shows a run un- 
der conditions where D at equilibrium would have a value lo-* cm2/sec or 
less. In this case 7e2000 psec, and only a loss in vibrational energy can oc- 
cur; the configuration remains fixed. Clearly, for the purposes of the simu- 
lation experiment, the system at T,  is in a “glassy” state, even though, in 
the laboratory, a liquid with diffusion coefficient of lo-’ cm2/sec is de- 
scribed as a “viscous liquid,” not a glass. The distinction is simply one of 
experiment time scale, the latter description being apt for “normal time 
scale” observations in which the response of the system to some perturba- 
tion (e.g., a shear stress) is judged after a time lapse of the order of sec- 
onds, compared with the 10-psec time scale of the above-described com- 
puter experiment. 

Note that in all cases, two sources of energy loss exist, a “fast” loss of 
vibrational energy, and a “slow” loss of configurational, or potential, en- 
ergy. At the highest temperature the two cannot be distinguished. The 
lowest temperature, T6, is included to show how the glass heat capacity re- 
lates to that of the supercooled liquid. 

Of the six temperatures, shown in Fig. 5, T4 is perhaps the most interest- 
ing, because here the system is being observed in what glass scientists call 
the “transformation range,” the usually narrow* range of temperature (rel- 
ative to absolute temperature at midrange) in which the liquid properties 
are found to be time dependent on the time scale of the experiment. A 
laboratory example based on data from Ref. 66 and showing variations in 
the extensive property H and the corresponding intensive property C, for 
experiments conducted at  different heating and cooling rates, q= dT/dt ,  is 
given in Fig. 6. Inset 1 to Fig. 6a shows how cooling at a constant rate cor- 
responds to a series of measurements of constant time scale At  in which the 
relaxation time T is changed progressively (with each AT). The transforma- 
tion range is the change in T necessary to change the average relaxation 
time by at least 2 orders of magnitude, as can be understood by consider- 

*For laboratory experiments. 
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!20 240 260 
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Fig. 6. ‘ a )  Experimental enthalpy and (b )  heat capacity changes during sequential 
[(1),(2),(3)] cooling and heating of a sample of a polyphenyl ether (5P4E) at different rates 
(rates marked in degrees per minute) to demonstrate characteristics of laboratory glass transi- 
tion phenomena. The shapes of these plots are well understood.66 The solid dotted Cp curve is 
a crude representation of the function expected for the same sample being cooled at  the enor- 
mous effective cooling rates of the computer simulations MC and MD “experiments.” (See 
also Fig. 1 in G. S. Grest and M. H. Cohen, Phys. Rev. B ,  20, 1077 (1980).) 

Relations between the continuous cooling at rate q -  - 5  deg/min of the 
laboratory experiment, and the equivalent quench-hold sequence used in M D  experiments for 
evaluating supercooled liquid properties and illustrated in Fig. 5.  For the equivalent computer 
simulation experiment, each minute time interval would represent 10 psec. Inset (a.2). Rela- 
tion between percentage of instantaneous perturbation relaxed and number of relaxation times 
elapsed, at  constant T (isothermal relaxation). 

Inset (u.1). 

ing the range of t / T  values at constant temperature (hence constant I-) 
needed to pass from a 2%relaxed to 98%relaxed condition along a simple 
exponential decay curve (see Fig. 6a,  inset 2).  In practice, the range of times 
is usually increased by the existence of a “distribution” of relaxation times 
(i.e., the decay function is n~nexponential~’), which considerably lowers the 
base temperature needed to completely freeze the equilibrium. The temper- 
ature range is small, nevertheless, because of the large activation energy 
characteristic of glass-forming liquids near T,  (see below). 
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The time scale for a laboratory observation is normally of the order of 
minutes, corresponding to diffusion coefficients of 10 - I 8  cm2/sec, but for 
the computer experiment it is shifted enormously to smaller times-in fact, 
into a range accessible only to dielectric relaxation and inelastic neutron- 
scattering experiments. The shift to the short time-scale range also means a 
shift to the small activation energy range, as forewarned earlier. This has 
the important consequence that the temperature range in whch the time- 
dependent behavior is observed inevitably is greatly extended, since the 
temperature interval that must be traversed to change the relaxation time 
by 2 orders of magnitude is greatly increased. We see this immediately by 
writing, for the range under consideration, the approximation 

from which 

Rearranging, for 
temperature range, 

the case where 7, / r 2  = 100, (8) yields, for the necessary 

or, on further manipulation, 

4.606 R Tf 
E + 4.606RT, 

AT= 

where AT= TI - T2. For laboratory liquids, E typically has a value of -200 
RTg,48 thus for T, =250"K, Ex400  kJ/mol. In this case we can neglect the 
second term in the denominator and, taking TI =250"K, AT for a 100-fold 
change in relaxation time is -6" K (somewhat narrower, as expected, than 
the - 1 1  "K observed in Fig. 6). However, if E is only - 12 kJ/mol, as it is 
for simple molecular liquids at room temperature ( D-10-5 cm2 sec), then 
AT is of the order 100°K if TI is set at  250°K. Such a "transition" would 
have the form of the solid dotted line in Fig. 6, and would be almost un- 
recognizable. 

For a substance like argon,41 with TI set at 50°K and E only 3.0 kJ/mol, 
AT= 19"K, which is essentially in agreement with the computer simulation 
results of Clarke." A laboratory glass transition centered at  50°K would 
have ATm2"K. Some of the argon data are reproduced in Fig. 7, which 
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Fig. 7. (a)  Comparison of the temperature dependence of the density for MD simulated 

U argon and laboratory-measured methyl cyclohexane (MCH), using temperatures reduced 
by the temperature Ti at which diffusivity data in Fig. 3 extrapolate to zero, and densities 
reduced by the equilibrium density at  the temperature Ti.  The reduced glass transformation 
range for U argon is much broader than for MCH, determined by a differential thermal anal- 
ysis (DTA) e ~ p e r i m e n t , ~ ~  because of the much higher quenching rate of the computer experi- 
ment. (b)  The derivative property from which T, is normally defined (see Fig. 6); this plot 
better demonstrates the smeared-out transition. Note that the reduced melting point for MCH 
is far below that of argon. 

shows the results of a series of densities (evaluated by a quench-compress- 
wait procedure, such that each point represents an approximately equal 
period of equilibration, like the sequence of Fig. 5), using reduced temper- 
ature and reduced density scales to permit a comparison with the labora- 
tory results for methyl c y l ~ h e x a n e . ~ ~ ,  The basis for reduction is similar to 
that used for Fig. 4. Specifically, we reduce each temperature by the tem- 
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perature T:H at which D = 0 according to extrapolation of data in the re- 
gion D =  1 X lop5 to 2X lo-’ cm2/sec for the substance in question. Like- 
wise, p is reduced by its equilibrium value at the reference temperature 
above (since LJ argon is already falling out of equilibrium at this tempera- 
ture, the reference density is obtained by short extrapolation of higher tem- 
perature data). The precise choice of reference temperature is not of great 
consequence provided it bears a straightforward relation to the diffusivity- 
temperature relation. 

Given the empirical observation that simple liquids exhibit linear density 
versus temperature relations, and that methyl cyclohexane, in the lab- 
oratory studies, remains in internal equilibrium down to -90”K,69 the 
comparison in Fig. 7 implies that simulated LJ argon enters its “glass 
transformation” range at  about 55°K (where D 4  x cm2/sec) and 
only emerges from it, fully arrested with crystallike expansivity, at 35°K-a 
span of 20°K compared with -7°K for methyl cyclohexane (which, how- 
ever, decreases to x 2 ” K  if scaled to the lower argon temperature range). 
The “smearing out” of the transition is best shown by the derivative prop- 
erty a, the thermal expansivity, which is compared with the methyl 
cyclohexane property in Fig. 7b. The systematic spreading out with de- 
creasing experiment time scale can be seen at  an intermediate stage in the 
behavior of the adiabatic compressibility of Arachlor, determined at several 
frequencies in the megahertz region by ultrasonic dispersion studies.’’ 

Clearly the density of the structure frozen in will depend on the experi- 
ment time scale-that is, the cooling rate-as was noticed in the early MD 
study of Damgaard-Kristensen on LJ argon.’ Figure 7 implies that the dif- 
ference in density between the MD glass and the same glass formed by 
laboratory-time-scale cooling amounts to some 7% when the comparison is 
made at the same temperature, T <  T,  (lab). This difference needs to be 
borne in mind when comparing theoretical predictions based on computer 
simulation results with laboratory results. In systems with intrinsically low 
liquid-state expansion coefficients (e.g., liquid metals), the problem will be 
less acute. 

The blurring of the transition in the region of the regime that is accessi- 
ble to computer simulation raises the problem of definition of T, for these 
cases. In laboratory studies it is most common to use the definition G, in 
Fig. 6 obtained from reheating data. The latter have yet to be performed in 
simulation studies. The choice for M D  systems corresponding most closely 
with the 5 of the sharper laboratory transitions is the temperature given 
by the intersection of the linear glass and liquid density plots shown in Fig. 
7, and referred to as q.16b This corresponds to 43°K for argon, which is 
also the temperature at  which the diffusivities of the incompletely relaxed 
system became immeasurably small’* (see Fig. 3). The observation that 
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some relaxation takes place at lower as well as higher temperatures leads to 
the definition of lower and upper glass transition temperatures as points 
where, for the chosen experiment schedule (e.g., Fig. 5) ,  all detectable relaxa- 
tion ceases ( T i )  and the first departure from equilibrium is observed ( T i ) .  
These points were earlier designated and T:, respectively.’’ It is very 
important that the reheating experiment be simulated since the volume 
hysteresis and the expansivity (or heat capacity) “overshoots” during re- 
heating, which are the trademarks of the glass transition, have yet to be seen 
for the simulated glasses. In fact some simulation s t u d i e ~ , ( ~ . ’ ~ ’ ~ ~ )  though not 

have suggested the absence of history-dependent phenomena. 
At any temperature within the transformation range, the thermodynamic 

properties, and probably also the mass transport properties, will be time 
dependent. Surprisingly, until the recent study by one of us on LJ argon,’* 
the time dependence of properties of simulated liquids in the transforma- 
tion range had not been specifically reported, but instead was either moni- 
tored and discarded in “equilibration” periods, or avoided by dropping the 
temperature to values so low that the system became “frozen” after a “fast” 
initial relaxation. Most data would, in any case, be unreliable because of 
the small system sizes involved. Some recent results illustrating these ef- 
fects are shown in Fig. 8, where the total pressure in an 864-particle LJ sys- 
tem is plotted as a function of time following a succession of instantaneous 
quenches starting from near the normal melting temperature to a point on 
the zero-pressure isobar in the glass transformation region, k T / &  = 0.33, 
p/03 = 0.97, corresponding to T= 36”K, T /  TA = 0.654, p, = 1.054 in Fig. 7). 
During these quenches the particle velocities were scaled every 50 time steps 
(0.5 psec) to correspond to the new temperature. This scaling is essential to 
simulate the temperature decrease and to control the annealing of the sam- 
ple as potential energy is converted into kinetic energy. 

We might expect these relaxation experiments to be highly nonlinear, 
such that no single relaxation time could be assigned to a given observa- 
tion. It is well known in laboratory studies of the glass transformation re- 
gion that the relaxation time depends not only on the temperature but also 
on the displacement from equilibrium (i.e., on the actual structure that is 
relaxing).M. ” If equilibrium is being approached from a higher tempera- 
ture, characterized by a more open structure, the relaxation time increases 
as the more compact equilibrium structure is approached because the 
fundamental diffusion process itself slows down, as indeed Fig. 4 implies. 
In some systems the dependence on (instantaneous) “structure” is much 
more important than dependence on “pure” temperature, in which case 
nonequilibrium structures can continue to relax at  quite low temperatures. 
This type of nonlinearity seems intuitively reasonable in cooperative sys- 
tems, and it is of interest to determine whether there is direct evidence for 
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Fig. 8. Relaxation of the temperature, pressure, and structure for a sample of 864 W par- 
ticles quenched from near the triple point (T* -0.75) to a density ( p o 3  -0.97) and tempera- 
ture ( P - 0 . 3 3 ,  T-39°K) in the glass transition region, see Fig. 7 (Ref. 12). To simulate the 
quench, which is seen to take place over 3 to 4 psec, particle velocities are scaled to the required 
temperature every 50 time steps (0.5 psec). Configurational relaxation-reflected in the pres- 
sure decay-takes more than 100 psec. (From J. H. R. Clarke, to be published.) 

it in the structurally loose, short relaxation time, condition of the computer 
simulations. 

We have assumed the existence of the foregoing type of nonlinearity in 
Fig. 5a for T4, where the slope of the plot of l2 in the initial 5 psec at T4 is 
drawn larger than that in the latter 5 psec, for which the structure is closer 
to that of the equilibrium state. This implies that the glass transformation 
in the simulated systems should be associated with a finding of diffusion 
coefficients that are anomalously higher than anticipated from higher tem- 
perature measurements, as indeed has been the case.’, 12* 2o The clearest evi- 
dence to date that “structure,” as distinct from temperature, plays an im- 
portant role in the behavior of these simple systems, is the recent observa- 
tion by Cape and Woodcock2’ that a large (4000-particle) soft-sphere sys- 
tem quenched from high temperatures to a temperature below even the 
“ideal glass transition temperature” for equilibrated structures [at which 
S(liquid)(,,trapolate~~ = S(~rys t a l )~*~  59 - see Section V] continues to relax 
slowly toward the smaller volumes required by the equilibrated fluid at 
somewhat higher temperatures. The changes in the structure itself that 
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accompany such a relaxation are illustrated for the W case in the insets to 
Fig. 8, which are discussed further in Section IV. A. 

At the moment the “noise” in the mean squared displacement versus time 
curves does not permit easy observation of this type of time-dependent 
behavior, and it remains a matter for future investigation. Also of interest 
is the question of whether, under the highly diffusive conditions of com- 
puter simulations, the systems very near equilibrium relax exponentially 
(“single relaxation time”) or otherwise, as for laboratory glasses.66. 67* 71* 72* 

Much could be learned by comparing the approach to equilibrium after 
perturbations from both above and below the final temperature of equi- 
l ib ra t i~n .~’  

Finally, one other factor that may affect the approach to equilibrium for 
simulated systems should be mentioned. There are indications from a re- 
cent study of the LJ system” that supercooled samples approach constant 
energy much more rapidly when the sample size is small. Since macro- 
scopic systems have a fixed (average) relaxation time for a given tempera- 
ture and pressure, such a result is a matter of some concern. Extensive 
studies will be necessary to verify such effects, however, because statistical 
fluctuations obscure the relaxation of configurational properties close to 
equilibrium. 

Since structural relaxation arises from the decay of density fluctuations, 
one might expect, from simple  hydrodynamic^,^^ that the relaxation time at 
a given self-diffusion coefficient, would show a k -’ dependence where k is 
the smallest wave vector allowed by the primary box dimension. A system 
size dependence for the relaxation time also is predicted by generalized hy- 
drodynamics in which the transport coefficients are dependent on both k 
and w.74 

IV. THE ROLE OF THE PAIR POTENTIAL 

A. General Considerations 

The relaxation phenomenology described above should apply rather 
generally to supercooling or supercompressing liquids irrespective of the 
interaction potential; but the changes in thermodynamic properties and the 
variations in structure that accompany the relaxation might be expected to 

‘Note Added In Proof: This question has now been answered. Stress relaxation functions 
for LJ argon obtained in recent simulations (S. M. Reason, D. M. Heyes, C. J. Montrose 
and T. A. Litovitz, J .  Non-Cryst. Solids 38-39, 403 (1980); D. M. Heyes, J. J. Kim, C. J. 
Montrose and T. A. Litovitz, J .  Chem. Phys. 73(8), 3987 (1980)) show that for argon also the 
approach to equilibrium is non-exponential. Remarkably enough, the decay function proves 
to be almost indistinguishable in form from that measured in the laboratory for SiO, glass. 
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show some specific dependence on potential. We now examine such depen- 
dences as have been found for the various pair potentials so far examined 
in computer simulations of supercooling liquids. The possible effects of 
many-body interactions on supercooling have not been investigated and are 
not considered here. 

It is, of course, one of the major advantages of the simulation method 
that virtually no restrictions are placed on the choice of the intermolecular 
potential that defines the system. In the search for understanding of the 
changes of thermodynamic properties that define the glass-transition phe- 
nomenon, this advantage largely offsets the disadvantages, discussed above, 
of being restricted to observing a very “smeared-out’’ version of the trans- 
formation. 

Let us first consider briefly the relationship between some of the simpler 
potentials currently being utilized in metastable-state simulations. 

The simplest but also the least physical is the hard-sphere model first 
simulated by Alder and Wainwright.6 The limiting (Tho ,  or P+m) struc- 
ture of the “glassy state” of this model, now evaluated from larger systems’6 
than the original 32-particle case,6 is essentially the same as that obtained 
from the classical steel ball packing experiments of Bernal and F i n n e ~ ’ ~ ~  76 

(see Section IV. A). A step closer to real systems are the “soft-sphere’’ 
models studied now by several The soft-sphere model, ( I ) ,  
stands at the limit for high temperatures or pressures, of realistic models 
involving attractive forces, of which the Lennard-Jones 6- 12 potential, (2), 
is the classic case 

More work has been done on the properties of argonlike LJ than on any 
other fluid. 

Systematic variations in pair potential between these extremes hold 
promise of revealing (via the glass transition-no matter how smeared out) 
how the features that distinguish between completely equilibrated and 
completely frozen states are related to the different parts of the pair poten- 
tial. For instance, the finding that both hard-sphere and soft-sphere sys- 
tems “jam” into amorphous nondiffusing structures at high densities 
associates the onset of shear rigidity, or “glassiness,” with the repulsive 
potential. On the other hand, the absence of the typical C, discontinuity at 
the “transition” from these cases, but its presence in the case of LJ argon, 
associates this phenomenon, most characteristic of laboratory glasses, with 
the attractive part of the potential. 
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These second-order-like characteristics of the transition in systems with 
realistic potentials might therefore be expected to weaken and vanish at very 
high temperatures and pressures, where the attractive part of the pair 
potential becomes ineffective, yielding soft-sphere behavior. The latter sys- 
tems, defined by ( I ) ,  exhibit scaling properties (due to the particular simple 
form for the partition function77), which lead to correspondences between 
the temperature and density dependences of all the thermodynamic and 
transport properties.'* It has been found7* that many condensed-phase 
properties of real atomic substances, such as the transport coefficients of 
diffusion and viscosity, structure factors, and melting points, closely obey 
the exact scaling laws of the soft-sphere model with n approximately 12. The 
reason for such simplicity of behavior is that all these properties depend 
primarily on the repulsive part of the pair potential, and the attractive tail 
is only a small perturbation. The soft-sphere model can be shown, for ex- 
ample, to obey the Lindemann law of melting exactly, and to follow the 
empirical Simon equation for the melting line.26 Thus we might expect that 
studies of the glass-forming properties of soft-sphere models might lead to 
valuable generalizations, besides forming a bridge between the idealized 
hard-sphere model and the more realistic (at low temperatures) models with 
attractive potentials. 

In the sections that follow we compare the thermodynamic, transport, 
and structural properties obtained from the above-mentioned studies of 
hard and soft spheres and Lennard-Jones atoms in an attempt to assess the 
present level of our understanding of the effects of the pair potential on 
these aspects of glass formation. 

B. Thermodynamic Properties 
The foremost thermodynamic property associated with any phase 

boundary is the location of its surface in the p-V-T phase diagram. Most 
laboratory experiments of glass formation are carried out in a particular V- 
T plane, usually for atmospheric pressure, and the temperature dependence 
of volume through the transition is determined. If the glass transition is in- 
deed dictated by the repulsive part of the potential, we expect, at least for 
simple steeply repulsive systems, that it will occur at  the same molecular- 
reduced volume for many real and model systems and that this will be 
largely insensitive to the strength of the attractive component of the pair 
potential relative to kT. 

Thus, if we take the packing fraction of the glass transition in the hard- 
sphere model as a reference, a straightforward prediction of the glass tran- 
sition volume in real systems based on a complete neglect of temperature 
effects can be regarded as a perturbation treatment of zeroth order. This 
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question has been examined by AndersenI3 and Abraham14 for the glass 
transition in amorphous metals using the hard-sphere reference, with 
favorable comparisons; they conclude that provided the effective hard- 
sphere diameter is carefully defined, the hard-sphere model offers an excel- 
lent reference state for the location of the glass transition in thep-V-Tplane. 
With the available data for soft-sphere and Lennard-Jones models, we can 
now examine these postulates in more detail, bearing in mind the difficul- 
ties due to the diffuseness of the transition in simulation and the insuffi- 
cient accuracy of the present data. 

The existing p-V-T data on the glass transition for hard spheres, soft 
spheres, and Lennard-Jones molecules are summarized in Fig. 9. Here we 
have followed a common practice among glass scientists in relating glass 
properties to those of the corresponding crystalline phases, and reducing the 
temperature relative to that of the equilibrium freezing transition. A more 
fathomable set of curves is obtained if one reduces the volume by the crystal 
volume at 0°K (or at NkT/pu' =0) instead of at T,, as shown elsewhere." 
Both these comparisons can be misleading, however, and they should be 
viewed with caution, since the variations are almost certainly due to a sen- 
sitive dependence of both the freezing transition and the properties of the 
crystalline phase on the details of the pair potential, rather than a reflec- 
tion of any aspects of the behavior of the amorphous phases in the su- 
percooled liquid and glassy states. The excess volumes are of the same order 
as most experimental molecular glasses, and the glass transitions range from 

I 

0 2  04 06  08  10 
T/Tf 

Fig. 9. Volumes of the supercooled fluid and vitreous phases of hard spheres, soft spheres, 
and Lennard-Jones molecules (atp-0) relative to their respective crystalline phases as a func- 
tion of temperature reduced according to the equilibrium freezing temperatures. 
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around 0.3 q for the Lennard-Jones model and 0.4 r/ for the soft-sphere 
model, to 0.8 7 for hard spheres, as defined by the extrapolation of diffu- 
sion data. It is interesting to note that the density of the amorphous close- 
packed, hard-sphere MD glass is the same as that found for steel balls.76. 79 

Hudson and Ander~en’~  have argued that the glass transition should oc- 
cur at approximately the same “effective” hard-sphere paclung fraction, 
based on the Weeks, Chandler, and Andersen (WCA) expansion,” in 
several different simple systems and that this is close to the packing frac- 
tion found for the hard-sphere glass transition. AbrahamI4 showed that this 
criterion applied irrespective of whether an LJ glass was formed by cool- 
ing, pressurizing, or a combination of both. Although this is, or could be, a 
useful generalization, which emphasizes the dominant role of the re- 
pulsive part of the potential in glass formation, there are, a t  present, diffi- 
culties in testing the postulate accurately. The first arises in the definition 
of the glass transition point in computer experiments, discussed in Section 
111. C, and the second difficulty rests in the definition of the effective hard- 
sphere diameter for realistic potentials. Thus in the zeroth order of per- 
turbation it is always possible to vary this parameter to fit the data for a 
single system. What we seek is a universal criterion that is approximately 
applicable for many systems. 

Clarke,’* for example, reports a value of the effective packing fraction for 
the low-temperature, Lennard-Jones system of 0.6, somewhat higher than 
the value 0.516 obtained by Hudson and Andersen using the MD data of 
Rahman et a1.* The latter value is close to the packing fraction at the hard- 
sphere glass transition. In this case the discrepancy is due not to differing 
definitions of the effective packing fraction but to the definitions of the glass 
transition point. If the same criterion is applied to both sets of data for T,, 
the same result is obtained. We are at present at liberty to choose these 
definitions to reproduce a variety of effective packings in the hgh-density 
range; much more accurate data are required. 

For the soft-sphere model the same WCA criterion for defining the ef- 
fective hard-sphere diameter gives totally unrealistic values for the glass 
transition packing fraction. This illustrates the limitations of the zeroth- 
order perturbation treatment and suggests that agreement with the hard- 
sphere model is being forced by the single adjustable parameter in the 
low-temperature range. An alternative procedure is to f i x  the effective di- 
ameter by the density of the hard-sphere system when the height of the first 
peaks in the static structure factor are the same. This criterion gives then a 
value of the packing fraction for soft spheres at the glass transition of 0.52, 
in excellent agreement with the hard-sphere model.*’ 

Turning again to Fig. 9, then, we see that neither the degree of under- 
cooling, nor the excess volume relative to the crystal, is a determining 



426 C .  A .  ANGELL, J .  H .  R .  CLARKE, AND L.  V .  WOODCOCK 

feature in glass formation. These are largely manifestations of crystal prop- 
erties. The important criterion is the volume of the system, expressed in 
molecular units, in excess of that for a system of hard spheres having the 
same effective diameter at the onset of glass formation. An interesting 
property of the soft-sphere model is that as a consequence of its scaling 
properties, the pressure dependence of T, is fixed. It follows the relation 

Tg* =Cp* ,  thatis, E 

where the constant C has been determined” to be 0.0421. It will be inter- 
esting to see to what extent this law describes real systems, and also the 
Lennard-Jones model at low temperatures, when more accurate data have 
been obtained. Deviations from this law would be a reflection of the effect 
of the attractive part of the pair potential, which is expected to be small for 
the reasons discussed above. 

Having established that the glass transition in simple liquids occurs in a 
narrow density range and is only weakly temperature dependent, it is 
instructive to proceed to compare the behavior of second-order thermody- 
namic properties, in particular, the isobaric heat capacity through the tran- 
sition as a function of density. A pronounced discontinuity in this property 
is the most general manifestation of the laboratory glass experimental tran- 
sition. Unfortunately, there is still a dearth of reliable simulation data for 
derived properties of these simple models; the meagre results to date for 
hard-sphere, soft-sphere, and Lennard-Jones molecules are collected in Fig. 
10. These data, however, serve to emphasize some important points in our 
understanding of computer glasses in relation to laboratory glasses. 

Figure 10 compares the isobaric heat capacity as a function of density, 
scanning the entire amorphous range from the ideal gas to the high-density 
glass. To simplify the comparison, we choose the Lennard-Jones effective 
hard-sphere diameter to be the potential minimum; th s  is somewhat higher 
than given by the WCA criterion. The soft-sphere density is then the ap- 
propriate high-temperature limit, and it is seen that when E =  kTin the soft- 
sphere model, the density at the glass transition, 1.47, is more or less the 
same as that of the Lennard-Jones model at approximately zero pressure. 
This shows that the soft-sphere model (with E = ~ T )  is a better zeroth-order 
perturbation representation of the LJ glass transition than the hard-sphere 
model with a=r,,(LJ), which occurs at a slightly lower density. 

It is interesting to observe in Fig. 10 the manner in which the change in 
C, on glass formation develops on going from the hard-sphere model to the 
soft-sphere model and then down the temperature scale to the zero pres- 
sure LJ model. In the hard-sphere model the only contribution to C, arises 
from density fluctuations (i.e., the p V derivative with respect to T ) ,  and 
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Fig. 10. Isobaric heat capacities of the amorphous phases of hard spheres,I6 soft spheres,M 
and Lennard-Jones'2 molecules as a function of density. 

these can be regarded, above the glass transition, as being of vibrational and 
diffusional contributions. When the density is increased through the transi- 
tion, only the vibrational modes remain; thus there is a discontinuity in the 
derivative of Cp but no pronounced discontinuity in C, itself. Therefore the 
absence of potential energy fluctuations in the hard-sphere system leads to 
a glass transition without the usual pronounced second-order-ldce discon- 
tinuity. In the soft-sphere system the potential energy fluctuations, which 
can only be repulsive in character, are weak, and the C, discontinuity is thus 
weak also. 

In the case of the Lennard-Jones system, on the other hand, there is a 
large contribution from the attractive interactions to potential fluctuations 
that determine the C, component of Cp, which is absent in hard spheres. 
On traversing the glass transformation range, a single configuration be- 
comes frozen in (assuming no crystallization) and associated with this, C, 
decreases by about 40% (though not as abruptly as in laboratory experi- 
ments for the reasons discussed previously). This percentage ACp is typical 
of laboratory observations (see, e.g., Fig. 6). 

Since the soft-sphere system represents the high-pressure, high- 
temperature limit of the LJ system, it is predicted from the data above that 
the thermal manifestation of the laboratory glass transition will weaken with 
increasing pressure as it is displaced to higher temperatures. Indeed, in- 
creasing difficulties in T,  detection have been noted in high-pressure 
studies.*' 
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C. Transport Properties 

Owing to the difficulties arising from the limitations in relaxation times 
in computer experiments, the existing data cannot say very much about the 
form of the mass transport coefficient behavior in the low-dlffusivity re- 
gion approaching the glass transition, apart from the obvious and neces- 
sary statement that the diffusion and fluidity coefficients are approaching 
zero (Figs. 3 and 4). For hard and soft spheres, the diffusion coefficient and 
the fluidity appear to be linear functions of volume and to extrapolate to 
zero at or around the densities at which the breaks in C, were observed in 
Fig. 10. 

In Fig. I 1  we have plotted the fluidity of the hard-sphere fluid (from 
Alder, et aLE2), together with some very recent data of MichelsE3 on the 
fluidity of the square-well liquid. The square-well model has a uniform at- 
tractive potential between u and 1 . 5 ~  of depth E.  When we extrapolate lin- 
early the fluidity of the square-well system, an interesting result is obtained 
that vindicates the inferences of the preceding section. 

/ 
c/ kT 
0 

Fig. I I .  Fluidity of the square-well fluid (width 1.50) as a function of volume over a wide 
temperature range. These data were supplied prior to publication by Dr. J. Michels of the 
Van der Waals laboratory, University of Amsterdam. 
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From Fig. 1 1  we see that in the high-temperature limit the hard-sphere 
model has a glass transition volume predicted by this linear extrapolation 
to occur at N u 3 / V =  1, that is, at just the same density as the break in the 
derivative of C, shown in Fig. 10. Yet more interesting is the effect of the 
attractive well as the temperature ( k T / & )  is lowered. Figure 11 shows that 
although the reduced fluidity at  constant T and V is affected by the attrac- 
tive well at large V ,  the glass transition density seems as though it will be 
entirely determined by the hard core. Thus, in the simple square-well model, 
we expect the zeroth-order perturbation prediction for the glass transition 
density to be almost exact, the thermal effects associated with the attrac- 
tive well having negligible effect. Figure 1 1  bears a striking resemblance to 
Hildebrand's collection of liquid metal fluidity data.55 

We return now to the important question introduced in Section 111. B 
dealing withp, V ,  and T dependence of transport properties in the vicinity 
of the glass transition. The most accurate data so far seem to be those ob- 
tained for the soft-sphere model. These have in part been seen already in 
Fig. 4 in normal units based on argonlike soft spheres. I t  is more natural, 
for internal comparisons, to use reduced soft-sphere ( n  = 12), self-diffusion 
coefficients defined by (2). Fig. 12 plots results for several  author^'^^ 20* 84 

against the reduced volume, which is defined as follows: 

V * = - ( ; )  V kT 'I4 

Nu 

The data are accurately described by the Batchinski-Hildebrand form of 

Fig. 12. Values of the reduced diffusion coefficient for the soft-sphere model as a func- 
tion of the reduced volume from molecular dynamics simulations: circles, from Cape and 
Woodcockz0; squares, from Hiwatari et aI.l9; triangles, from Ross and Schofield." The scale 
at the right shows the equivalent diffusivities for argon-like soft-spheres. 
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reduced volume dependence 

for reduced diffusivities greater than D* = 6.5 X 10 - 3  (corresponding to 
argonlike normal diffusivities of >0.6X cm2/sec). It is in the same 
fluidity-diffusivity range that the Batchinski-Hildebrand relation was 
established as an experimental law. The limiting reduced density implied by 
this relation is 1.43, which is in the middle of the glass transition range of 
the heat capacity decrease seen in Fig. 10. This is quite consistent with a 
“break” (however diffuse) in thermodynamic properties being associated 
with the “freezing in” of a single configuration. 

Much interest remains, however, in the question of the long time limiting 
density because Fig. 4 indicated that the deviation from the Batchinski 
equation seen in all laboratory studies at low D becomes greater than the 
uncertainty in the simulation diffusion coefficients (only) at D < 5 X 10 -6  

cm2 sec. At this diffusivity, relations discussed in Section 11. B imply that 
the time needed for full structural equilibration would exceed 10 psec. The 
dependence of D on the degree of equilibration is not known at this time, 
but it seems probable that a major computing effort will be needed to de- 
termine whether the volume dependence of the dense atomic liquid diffu- 
sivity is as simple and significant as (13) implies or is more complex, as for 
the known behavior of low-diffusivity laboratory liquids (Fig. 4). 

In this region the laboratory liquids follow a three-parameter exponen- 
tial relation first suggested by Doolittles5: 

+TaD=Aexp-  

The point of interest is to decide whether this behavior, and the denser 
ultimate packing it implies, reflects the asymmetry of the molecules,55 which 
seems to be a prerequisite for experimental accessibility to this diffusivity 
region, or reflects some more fundamental aspect of the relation between 
motion and packing of particles, which could embrace simple atomic liquids 
as well, as has been theorized.86* 87 It is probable that (well-funded) MD 
experiments will be able to decide this issue in the near future, unless the 
increasing probability of nucleation in the same temperature region should 
frustrate the inquiry. 

NOTE ADDED IN PROOF: This issue has now been resolved. A sys- 
tem of 500 hard spheres has been studied at successively decreasing volumes 
between 1.08 and 0.94 on the reduced scale of Fig. 4 (equivalent to a re- 
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duction from 150% to 13 1% of the close-packed volume) allowing up to lo6 
collisions to establish a linear I *  vs t plot at each density. Before the se- 
quence was finally terminated by crystallization at the highest density, a 
distinct departure from the linear volume dependence of diffusivity was 
observed, closely following the behavior of the laboratory fluids. This is 
discussed elsewhere (L. V. Woodcock and C. A. Angell, Phys. Rev. Lett., to 
be published; L. V. Woodcock, Ann. N.Y. Acad. Sci., to be published). 

D. Structural Effects 
All the time-dependent phenomena discussed in the foregoing sections 

are consequences of increasingly retarded structural relaxation in the su- 
percooled state as the number densities approach conditions of amorphous 
close packing. It is of some interest to consider structural effects in these 
systems and to examine any dependence on the form of the interaction 
potential. 

Structure in liquids and amorphous solids often has been discussed in 
terms of the radial (pair) distribution function g ( r ) .  Although this function 
is important as an experimentally accessible quantity and therefore is a 
convenient starting point in simulation studies, the attention it has received 
is out of all proportion to its value in revealing fine details of structure. That 
the glass transition is seen more clearly in second-order thermodynamic 
properties suggests that an examination of structural fluctuations might lead 
to more insight into its structural origin, but we postpone further discus- 
sion on this point. 

1. Structural Characterization of the Glass Transition 

Since the process of glass formation is a central interest of this chapter, 
we consider first some results of dynamic simulation experiments similar to 
those referred to schematically in Fig. 5. As the density of a system of 
spherical particles is increased from the fusion points, three significant, 
continuous, effects occur in g ( r )  as shown in Figs. 14 and 16 (Section 
IV.D.2) for LJ particles and soft spheres. First, the peaks become narrower 
and more sharply defined as a result of restricted particle displacements. 
Second, discernible structure begins to extend to larger distances. Third, the 
second-nearest-neighbor peak begins to split into two components. 

In regard to the nearest-neighbor geometry, the narrowing of the first 
peak in g(r) is partly due to decreased amplitudes of vibration, but also it 
is indicative of a narrower range of coordination numbers. This is demon- 
strated in Fig. 13 for the LJ system, where the distribution of coordination 
numbers, defined here as the number of particle neighbors within a dis- 
tance corresponding to the first minimum in g ( r ) ,  is shown at a range of 
densities through the zero pressure glass-transformation region.'* There is 
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nothing unpredictable about these data. The most probable coordination 
number is 13 in each case and, as should be expected, there is no distinc- 
tion between the metastable liquid and the glass. An empirical criterion for 
the glass transition using g ( r )  has been suggested by Wendt and Abraham,7' 
who, following Raveche et al.93 measured the ratio of the first minimum to 
the first maximum for the supercooled LJ liquid. They found that the ratio 
showed a characteristic break in the glass transformation region, similar to 
that observed for the den~ity.~.  12* I4 Since the height of the first maximum 
must reflect the bulk density, such a result may not be unexpected. How- 
ever, the gradual increase in the ratio above the transition" may be partly 
associated with the onset of diffusive motions,94 which necessarily increase 
the height of the first minimum. 

The doublet structure of the second peak in g ( r )  has been discussed at 
length in connection with the geometry of amorphous close paclung of 

The splitting is not universal in dense systems, however. It is 
not observable in cases of very soft interaction potentials, as has been not- 
ed in static simulations88 and also in a recent MD study of the Gaussian 
core model.21 It should be noted, however, that contrary to occasional 
suggestions, the splitting can in no way be said to distinguish between the 
glassy and metastable liquid states. If it occurs at all, the feature appears 
gradually as a liquid is cooled and/or compressed. It is often discernible 
for liquids close to the normal freezing temperatures. The longer of the two 
preferred lengths corresponds to collinear arrangements of atom triplets, 
whereas the shorter one corresponds to the distance of closest approach of 
a second-nearest neighbor across an intervening pair of atoms in the 
nearest-neighbor shell. Even in the case of the liquid KCl model, where the 
second-nearest neighbors are like ions, the doublet structure is clearly visi- 
ble at high densities.23 This is perhaps remarkable because close packing is 
constrained by the strong tendency for charge ordering in this system. 

Since the glass transition is characterized by discontinuous changes in 
second- (and higher) order thermodynamic properties, it would seem rele- 
vant to give some attention to what might be termed "second-order'' 
structural properties. Just as n(r) ,  from which g ( r )  is derived, is the aver- 
age number of particles within a sphere of radius r around a reference par- 
ticle, so we can define moments about this mean distribution. Here we focus 
on the second moment, termed the radial fluctuation function W ( r ) ,  and 
defined as follows: 

One significance of W ( r )  is that its limiting value gives the isothermal 
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Fig. 13. Probabhty dlstnbutions r )  of nearest-neighbor “coordination number” ( n )  for 
a sample of 216 LJ particles quenched to various states on the zero-pressure lsobar from near 
the triple pomt. In each case the data were obtamed after allowing 20 psec for “equilibration.” 
Nearest neighbors are defined (arbitrarily) by separations up to the first minimum in g ( r )  as 
indicated; T* = kT/e. 

compressibility, K ,  

V 
Nk T 

=W(r+w)-  

A small discontinuous change in K ,  at the isobaric glass transition has 
been observedI2 for the LJ liquid; thus it is perhaps appropriate to examine 
the behavior of W( r )  in this system, although of course only the short-range 
behavior can be determined. Figure 14 displays W ( r )  for the U liquid and 
glass at various densities along the P=O isobar. The form of this function 
follows very closely the form of g ( r ) ,  indicating quite sensibly that the 
fluctuations are largest where the local density of particles is largest. The 
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Fig. 14. Radial fluctuation functions W ( r )  
(solid curves) and radial distribution functions 
g ( r )  (dashed curves) for the U states dis- 
cussed in Fig. 15. Note the behavior of the 
outer of the second-nearest-neighbor peaks in 
W( r )  through the transition. 

significant narrowing of the first peak with increasing density is again in- 
dicative of a consequent decrease in the distribution of coordination num- 
bers, but there is no apparent discontinuity through the glass transition. As 
for g( r ) ,  a doublet structure appears in the peak corresponding to second- 
nearest-neighbor distances as the density is increased. One interesting point 
to note, however, is the change in relative intensities of these two compo- 
nents between the metastable liquid and the glass. The small r component 
in fact changes little, but the larger r component decreases significantly in 
height. Fluctuations at distances corresponding to this peak appear to be 
suppressed in the glass. 

One can distinguish two contributions to W( r )  in a dense liquid. The first 
arises from purely vibrational motions and would be observed even for a 
finite temperature crystal. A second contribution, however, can be en- 
visaged as arising from motions giving rise to diffusion. The latter may not 
of course be simple translation motions but may represent highly anhar- 
monic vibrations of particles between neighboring potential energy wells. 
In any case, any description in terms of single-particle motions is likely to 
be inadequate. Since a glass is characterized by the absence of diffusion on 
the experimental time scale, W ( r )  here will be dominated by purely vibra- 
tional effects. Perhaps the intensity increase in the large r component of the 
second peak can therefore be associated with the onset of diffusional mo- 
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tions. The “local compressibility” for spheres defined by this radial dis- 
tance (which depends on the available distribution of configurations) 
increases in going from the glass to liquid. This has more to do with the 
dynamics of second-nearest-neighbor paclung than nearest-neighbor ef- 
fects, emphasizing the cooperative nature of any particle motions at high 
densities. 

An advantage of dynamic simulations experiments is that they permit 
evaluation of the time dependence of structural relaxation for a particular 
system. The importance of such studies in the present context is dem- 
onstrated in Fig. 8, which shows some radial distribution functions for the 
metastable LJ liquid at p a 3  =0.97 and kT/c=0.33,  which is in the glass 
transformation region. The only difference between the functions is the 
allowed relaxation time for structural rearrangement. As this time is in- 
creased, the shorter distance component of the doublet grows at  the ex- 
pense of the other. The second-nearest-neighbor distribution achieves a 
more compact arrangement, which generates a low pressure at the same 
density (or a higher density state at constant pressure). It is not now known 
whether a similar effect can occur in the hard-sphere fluid. The effect of 
this densification on macroscopic properties such as energy or density is 
apparently rather small (amounting to 1% or so at most) and has been dif- 
ficult to detect within the limits of statistical Nevertheless the re- 
sult described emphasizes the entirely operational definition of the glass 
transition. Some account must clearly be taken of any differences in cool- 
ing and/or compression schedules when comparing structural features in 
different glasses. 

2. Structural Characterization of the Glass 

Considerable effort has been expended in characterizing the instanta- 
neous structures of close-packed static amorphous assemblies of spherical 
particles, and this work has been extensively re~iewed.’~. ” Hi gh-density, 
simple model liquids also have been e ~ a m i n e d . ~ - ’ ~  Some attention has been 
directed toward dynamic structural properties,’ an area of great potential 
interest. 

First, it is of interest to compare (Fig. 15) the radial distribution func- 
tions for an amorphous close-packed assembly of macroscopic (steel) 
spheres76* 78 and for the amorphous hard-sphere solid obtained by gradual 
densification by MD of a 500-sphere system with the usual periodic 
boundary conditions. l o  Although there are some minor differences for the 
third peak in g ( r ) ,  there is little doubt that the mechanical shalung, and the 
more thermodynamic shaking in the MD experiment, are leading the sys- 
tem toward the same structure. The mechanical shaking experiment can give 
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Fig. 15. Comparison of radial distribution functions for an MD-generated amorphous 

hard-sphere solid at a density (pa’ = 1.2) very slightly less than the amorphous close-packed 
density (circles), and a random closed-packed assembly of macroscopic spheres at pa’ - 1.22 
@Istogram). From Refs. 10 and 78. 

information on the structural changes occurring as the close-packed limit is 
approached only by stopping the process after different periods of time. 
This is roughly equivalent to the MD experiments carried out recently to 
determine the zero-temperature packing density using different quenching 
ratesL6 Although the results of both types of experiment suggest that the 
system jams at lower densities in the “faster” experiments, neither has been 
analyzed to provide the g( r ) needed to make comparisons. 

I t  is interesting to note that it has so far apparently proved impossible to 
grow the high-density, amorphous close-packed structures characterized in 
Fig. 15 by successive attachment of single hard spheres to an amorphous 
heap,90 although the reverse process of dismantling such an assembly must 
clearly be possible. This emphasizes that the densification process involves 
increasingly narrow pathways in phase space, with cooperative reorganiza- 
tion possibly being an essential ingredient. This “annealing” process can 
result from the phase-space exploration implicit in computer simulation or 
from the shaking operations on macroscopic assemblies. 

Turning to the results of dynamic simulation experiments, Fig. 16 com- 
pares radial distribution functions for hard-sphere, soft-sphere, and LJ 
glasses, all in comparable states. The compression rates ( p -  ‘ d p / d T )  for the 
preparation of the soft-sphere sample,” the LJ sample,I2 and the hard- 
sphere caseI6 were 0.024,0.010, and 0.003 psec-’, respectively, all on a time 
scale appropriate for LJ argon. Also the densities are all comparable as 
judged by the reference scales discussed in Section 1V.C. If one uses the 
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Fig. 16. 
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(SS, Ref. 91), 5 0 0  hard spheres (HS, Ref. lo), and 216 U particles (Rkf. 12) in the glass'trans- 
formation region. Three soft-sphere states have been chosen to show structural changes on 
"cooling" from above the freezing temperature (0.57 at PO' = 1.0) to below the glass transition 
temperature (0.24 at pa' = 1.0). The hard-sphere glass is at puAs - 1.20; on the basis of per- 
turbation theory this is a reference state for the U liquid at T. -0.13, pus = 1.0 (see Ref. 12). 
Using (1) and (1 I) ,  u is as defined by the W or SS potentials. For the hard spheres, an effec- 
riw value is used with u=0.940Hs. Vertical scales are not identical. 

perturbation theory criterion (e.g., Ref. 12), the LJ glass should have a 
structurally equivalent hard-sphere reference state with a density pa3  = 1.2. 
It is seen from Fig. 16 that the relative intensities of the doublet compo- 
nents of the second-nearest-neighbor peak appear to vary according to the 
interaction potential. In particular, there is a striking reversal of the rela- 
tive intensities in going from the hard spheres to the soft systems. 
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A similar effect was noted previously for experiments on static assem- 
blies in which the structure is allowed to relax along a potential energy 
surface by substituting a soft LJ potential for a hard-sphere inter- 
action.95* % The comparison for the hard- and soft-sphere glasses is par- 
ticularly convincing because the latter sample was produced at a higher 
compression rate and for a much larger sample. Both these effects should 
decrease the extent of structural relaxation, but a much more compact lo- 
cal structure is nevertheless achieved by the soft spheres. “Softness” of the 
interaction potential appears to have an important influence on relaxa- 
tional behavior in the glass transition region. Densification relative to hard 
spheres is to be expected, and this can be largely associated with structural 
relaxation involving second-nearest neighbors. 

Very striking effects of the pair potential parameters can be observed if 
we admit for consideration the glasses of single-component ionic sub- 
stances for which a simple and successful23 form of effective pair potential 
is the simplified Born-Meyer-Huggins p~tential .~’ 

e 2  
r 

Ll(r)o=ziz j -  + A  exp (17) 

In these cases the packing problem must be solved subject to the constraint 
of local electroneutrality, under which conditions the change of a single ion 
size parameter by a few percent can completely alter the preferred coordi- 
nation scheme. 

I t  is in the simulation of ionic systems that some of the closest contact 
with experiment has been made. Almost quantitative agreement, for in- 
stance, has been found between simulated and X-ray diffraction scattering 
patterns for vitreous BeF, .22 The agreement of simulated and X-ray-based 
pair distribution functions for the classical oxide glass SiO, has also proved 
to be surprisingly In each of these cases it has been therefore shown 
that the celebrated anion-bridged tetrahedral network structure can origi- 
nate from simple spherically symmetric interactions alone. 

I t  is not computationally expensive to explore the geometric conse- 
quences of changes in pair potential parameter in these cases. Figure 17 il- 
lustrates the time step requirements to establish the basic coordination 
groupings following a change in the cation repulsion parameter, u, of (17), 
of an initial BeF, simulation to a value more appropriate to Ba2+.Io1 The 
figure shows the radial displacement of F - neighbors around a randomly 
chosen doubly charged cation as a function of time. What were initially only 
anharmonic oscillations characteristic of the network glass or viscous liquid 
become violent flights on the instantaneous change of cation size. How- 
ever, in a little more than 200 time steps (< l psec), the essential geometry 
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Fig. 17. Demonstration of effect of cation repulsion parameter oz+ [see (In] on structure 
of MX, ionic systems. ((I) Radial distribution pair functions for BeF, at  the simulation glass 
transition temperature ( D =  I X Radial distribution pair functions for 
MF, (M%Ba2+) near simulation glass transition temperature: cation coordination number 
(right-hand ordinate) has increased to -8 from 4.0 characteristic of BeF,. Inset illustrates 
rapidity with which the structural change occurs after instantaneous change of uz+ at time step 
zero. (Data from ref. 101.) 

cm"/Ssec). ( 6 )  
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of the new state is established. Of course, subtle changes will continue for 
several relaxation times, but generally these are not the changes of major 
interest. 

An interesting polymeric structure, based on octahedrally coordinated 
cations corner-linked to each other by shared anions, results from a similar 
increase of cation size in an initially molecular MX, liquid.”’ Such struc- 
tures, and their more cross-linked relatives with still higher coordination 
numbers consequent on smaller anion-cation radius ratios, are no doubt 
fundamental to the new class of fluoride glasses based on ZrF, and HfF,, 
which are currently a focus of attention in laser and infrared transmission 
line te~hnology.’~. 99 

Finally, particular and very practical advantages accrue from the simula- 
tion of multicomponent ionic glasses for which individual pair distribution 
functions of great physical importance in understanding- for example, 

Fig. 18. Stereoscopic projections of ( a )  SiO, tetrahedral network structure at 300°K and 
(6) Na,0.3Si02 “glass” at 1500°K. System is below the simulation glass transition temper- 
ature, since there is no Si4+ or 0’- diffusion occurring, though Na + diffuses rapidly through 
the disrupted network. Note breaking of Si-0-Si bridges to give nonbridgmg oxygens where 
N a +  ions tend to cluster. (Data from ref. 51.) 
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electrical conductivities-can be obtained while they are currently inacces- 
sible to laboratory determination. The basic structures of alkali-silicate, al- 
kali-borate, and borosilicate glasses have recently been explored with new 
insight in the light of MD studies.25. loo Figure 18 shows stereoscopic pro- 
jections of the structures of the SiO, tetrahedral network and the clustered 
alkali ion structure of the Na2O.3Si0, melt.’5. 5 1  Again these structures are 
high “fictive” temperature structures, though they relate closely to what is 
known of the room-temperature structures of these systems. For another 
example, detailed information on the coordination, hence spectroscopic 
characteristics, of rare earth ions in BeF, glass (including relation to differ- 
ent “cooling” schedules) has recently been obtained by MC calculations.”* 
Carried out with an awareness of the likely effects of dealing with ultra- 
high “fictive” (i.e., freezing-in) temperatures, such studies can be very in- 
formative and will doubtless receive much attention in the future. Most re- 
cently, Brawer has observed ions which are locally mobile below Tg and 
which are associated with network defects. The concentration of these is a 
function of cooling rate. He suggests these may be the origin of the ultra-low 
temperature anomalies (two-level systems) which have been the focus of 
much attention in recent years. 

3. Characterization of Crystal Nucleation 

It is of interest to inquire further into the structure of the metastable state, 
and particularly its relationship with the stable crystal into which it will 
eventually transform. I t  has been suggested that the temporary stability of 
supercooled states of spherical particles is related to the predominance of 
structures with fivefold symmetry, such as the i c o ~ o h e d r o n . ~ ~  Such struc- 
tures cannot fill space uniformly; nevertheless, quite large units of this kind 
(Fig. 19) have been identified in recent computer simulation experirnent~?~.~’  

The spectrum of structural fluctuations within a sample contains both 
those characteristic of the liquid and those leading to homogeneous nuclea- 
tion. As mentioned in Section 11, the relative time scales and magnitudes of 
the respective fluctuations determine the lifetime of the metastable state. 
The study of such fluctuations constitutes one area in the investigation of 
supercooled liquids to which the MD method can make a unique contribu- 
tion because of its ability to capture all nuances of the structural changes 
in time and space for tiny particle groupings beyond the range of observa- 
tion by laboratory methods. Spontaneous crystallization via such fluctua- 
tions has now been observed in several prolonged simulation experiments 
on metastable liquids.’’. 30-36 For small systems (-100 particles) the 
situation is rather confused, since crystallization appears to be promoted (if 
not initiated) by the periodic boundary conditions. For larger samples these 

19* 
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Fig. 19. An “amorphon”-a cluster with fivefold symmetry containing 61 atoms from a 
configuration of 4OOO soft spheres compressed to a density p / a 3  = 1.0 at kT/e=O.l3.  The 
central icosohedral atoms are shaded. (From Ref. 91). 

spurious effects are probably absent, so that homogeneous nucleation is 
observed. I t  is interesting to note that there was apparently no sign of crystal 
nucleation in a recent extensive MC study of metastable LJ states using only 
108 particles in an ( N ,  P, T )  ensemble with up to 24X lo5 moves at each 
point.I4 Under comparable conditions, crystal nucleation would certainly 
have been expected in an ( N ,  V,  E )  MD ensemble.I2 It remains a possibil- 
ity that the relevant structural fluctuations have different characteristics in 
the two cases. 

One of the first indications of nucleation of ordered structure within a 
metastable liquid is the appearance and growth of a shoulder on the sec- 
ond-nearest-neighbor peak in g ( r )  at about 1.54 ro, which is a characteris- 
tic distance of the body-centered cubic lattice. It is at first sight surprising 
that the amorphous structure does not nucleate face-centered cubic, since 
both the second-nearest-neighbor distances are already very close to those 
of successive shells in the face-centered-cubic lattice, whereas only the outer 
peak corresponds to a body-centered cubic distance. However, Alexander 
and McTague’” have argued that, other things being equal, the bcc 
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fluctuations are more probable because, in essence, they may arise by co- 
operation of three density waves whereas FCC and HCP each require at 
least four. 

For a more sensitive detection and classification of structural changes 
within the metastable liquid, the radial distribution function proves quite 
inadequate, and this had led to the development of alternative approaches. 
For instance, analyses in terms of the structure factor3'* 32, 34, 35 S ( k )  and 
Voronoi p ~ l y h e d r a ~ ~ - ~ ~  have been useful in characterizing the nucleation 
event. Triplet correlation functions also have been discussed.35* 93 In meta- 
stable liquid rubidium i t  has been shown by these methodsM3 " that, as 
might be expected in this case, the initial growing nuclei have a body- 
centered-cubic structure. For the supercooled LJ liquid there have been 
separatereports of the formation of nuclei with body-centered-~ubic~'~ 32 

and face-centered-cubic  structure^.^^ These may not be entirely conflicting 
results, however, but a manifestation of a general point made some years 
ago by Wood concerning simulation experiments on dense fluids.'"'' 

In small samples the character and course of the structural fluctuations 
that lead eventually to a single nucleation event are likely to be strongly 
dependent on the initial conditions. I t  is nuclei with the fastest local growth 
rate (or lowest local free-energy barrier) that will be observed. Rearrange- 
ment to some other macroscopically stable structure could occur a t  a later 
stage. In this regard i t  is interesting to note the results of a recent study of 
a very large sample (4000 particles) of the metastable soft-sphere fluid, in 
which both body-centered-cubic and face-centered cubic nuclei were iden- 
tified.36s 9' The results to date do seem to support the notion that structural 
fluctuations must yield a critical size of nucleus before crystallization oc- 
c u r ~ . ~ * .  35 It is largely unknown, however, how the growth of these fluctua- 
tions is related to the structural evolution of the metastable phase. 

V. ON THE EXISTENCE OF AN UNDERLYING 
SINGULARITY 

In discussion of the thermodynamics of supercooled liquids, consider- 
able attention has been given to the observation by Ka~zmann '~ '  in 1948 
that as the glass transition temperature is approached on cooling, the en- 
tropy difference between the metastable liquid and the stable crystal is ap- 
proaching a negative value. Below the experimental glass transition point, 
internal equilibrium no longer prevails; this leaves a puzzle concerning the 
thermodynamic description and physical nature of the low-temperature 
limit to the liquid state. 

From the cases reviewed by Kauzmann, and many studied since,58* '06, 

lo' the phenomenon seems to be universal, and it includes even the case of 
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argon,’* which is illustrated, and compared with a laboratory example, in 
Fig. 206. The difference in heat capacity shows no indication of decreasing 
with temperature until the onset of glass formation; in fact it generally 
increases, as in Fig. 20a for the case of 2-methyl pentane. It therefore ap- 
pears that the two entropy functions would inevitably intersect at a tem- 
perature (T,) not too far below the glass transition temperature ( Tg), were 
it not for the loss of internal equilibrium occasioned by the increasingly long 
relaxation time of the viscous liquid. 

In the absence of any interceding phenomena, it seems necessary only to 
allow the supercooled liquid longer and longer periods of equilibration to 
ensure that its entropy will fall below that of the crystal at the temperature 
TK (denoted T, and To(,,) in Refs. 58 and 106, respectively). Such an oc- 
currence, though not actually in violation of the third law at finite temper- 
atures, would imply a contradiction of the Nernst heat theorem on the 
approach to 0°K. This seems unlikely and raises the question of the ex- 
istence of a thermodynamic singularity underlying the glass transition at or 
above the Kauzmann temperature T K .  

I 2-kIhyl penlane ’ 
. .  

d 

25 50 103 I50 

T /  K 

Ln ( T / K )  

Fig. 20. Two examples of the vanishing ex- 
cess entropy para do^.'^^.'^ The area repre- 
senting the entropy of fusion on the Cp versus 
T (log scale) plot has been matched to the area 
between the crystal and supercooled liquid heat 
capacity curves (the latter being extrapolated 
naturally below the TB to indicate the su- 
percooled liquid Cp for very slow (equilibrium) 
measurements. At the temperature TK, S (su- 
percooled liquid) would equal S,,, , as can be 
seen from the relation A S -  JAC,dlnT=AS, 
for limits 7j and TK). (a) Data for 2-methyl 
pentane. [From D. R. Douslin and H. M. 
Huffman, J.  A m  Chem Soc., 68, 1704 (I%).] 
(b) Data for LJ argon from Ref. 12. Ektrapola- 
tions using both MD heat capacities extra- 
polated below lowest internally equilibrated 
temperature, and using the equation of state of 
I. R. McDonald and K. Singer [ MoI. Phys., 2.3, 
29 (1972)] marked M, yield estimates of TK 
differing by only 3°K. 
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Kauzmann did not accept this implication, however. He argued instead 
that in the temperature interval between G and TK, the probability of 
crystallization was increasing so that before the isoentropic point could be 
reached, the time scale for crystallization would become the same as that 
for configurational relaxation in the amorphous phase, as discussed in Sec- 
tion I1 above. This would precipitate a first-order phase transition by the 
spontaneous growth of fluctuations in the appropriate direction. Such an 
event would necessarily terminate the liquid-state metastable free-energy 
surface and make the apparent entropy-crossing problem metaphysical and, 
Kauzmann therefore reasoned, of no consequence. 

Since the homogeneous nucleation probability cannot be measured for 
glass-forming liquids, it has not been possible to either prove or disprove 
this denial of an in-principle ground state for the liquid state of simple sub- 
stances. The plausibility of Kauzmann's resolution, however, has suffered 
from the identity of behavior of crystallizable and atactic (noncrystalliz- 
able) polymers,'* and by the experimental contrasts in the composition 
dependencies of homogeneous nucleation temperatures ( TH)  and glass 
transition temperatures (5 and T K )  observed in binary solutions.'m 

It is possible but not easy to imagine conditions in which two phases of 
the same laboratory substance could have identical entropies and also 
maintain the identity over a range of temperatures; it is not possible, how- 
ever, in the case of classical hard and soft sphere systems since, at constant 
pressure, equal entropy in these cases implies equal volume, hence the same 
phase. Since, at constant pressure, there is only one point in temperature- 
the fusion point-where the free energies of the fluid and crystal phases of 
the same substance can be equal, a TK cannot exist for hard spheres. This 
raises the question of whether there are other occurrences that might 
terminate the supercooled fluid state above TK. Two have been suggested. 

The first is a theoretical prediction by Cohen and GrestIog that for a sys- 
tem of spherical particles, the decrease in volume available during cooling 
would result in arrival, between T g  and T K ,  at a free-volume percolation 
threshold. The percolation transition is predicted to be first order in 
character, leading to an amorphous ground state of fixed configuration. 
However, as long as such a transition is asserted to be first order, the origi- 
nal problem remains, because it is always possible in principle to supercool 
through a first-order transition. The theory leaves the fate of the now dou- 
bly metastable supercooled liquid unresolved. 

The second is a conjecture, based on evidence from MD simulations for 
simple systems, that the liquid state is terminated above TK as a result of 
the relaxation time for the equilibrium structure diverging at positive ex- 
cess entropy.20 This would imply a finite zero-frequency shear modulus,65 
hence indefinite mechanical stability. With the associated vanishing of 
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nonpropagating density fluctuations would be found a vanishing of com- 
munal contributions to the entropy and a second-order thermodynamic 
transition yielding a glass with a fixed and characteristic residual entropy.l6. 

A primary application of computer experiments is to provide unambigu- 
ous empirical routes to the testing and development of theoretical descrip- 
tions. It is therefore pertinent to inquire whether computer simulation stud- 
ies such as have been described in this chapter have or could shed any light 
on this question of the existence of the underlying thermodynamic transi- 
tion, or its nature, if it exists as such. As a consequence of the limitations 
to fast irreversible quenches imposed in computer studies, simulation seems 
to be less favorably placed to deal with this limit problem than laboratory 
experiments that approximate much more closely the metastable thermo- 
dynamic limit in the vicinity of the glass transition. In the case of simple 
spherical repulsive models, however, the equations of state through the su- 
percooled fluid ranges are exactly represented by convergent virial series. 
Thus a complete knowledge of the equation of state in the equilibrium fluid 
range determines the metastable branch and, in principle therefore, con- 
tains the answer to the question of whether an underlying thermodynamic 
transition exists. We therefore discuss briefly the present state of knowl- 
edge of the virial series for hard and soft spheres, and compare the predic- 
tions with the MD observations. 

In the case of the hard-sphere model, the situation at  present is that only 
the first seven virial coefficients have been determined"' (the first four are 
obtained exactly by analytic methods), and unfortunately t h s  is insuffi- 
cient to predict accurately the path of the metastable branch beyond the 
freezing transition or to say anything definite about the singularities in the 
virial series itself. Experimentally, there are four singular points that have 
been or could be associated with possible singularities in the virial series. 
These are the freezing transition, the glass transition, and the first-order 
poles associated with the amorphous and crystalline close-packed states at 
infinite pressure or zero temperature. The general consensus at present is 
that virial series has nothing to do with either the freezing transition or the 
MD glass transition, but there seem to be two schools of thought as to 
whether the first singularity in the virial series should coincide with an 
amorphous close-packed density or with the crystal close-packed density (or 
some other density in that vicinity). 

Those of the former school- namely Turnbull and Bagley,'I2 LeFevre,'l3 
Kratky,II4 Gordon et al.,17 Hoare,"' Hiwata1-1,~~ and Frenkel and 
M~Tague~~-e i ther  imply or explicitly assert that the virial series could be 
a continuous representation of the supercooled fluid and the amorphous 
solid, with its first singularity at  the zero-temperature point of the ground- 
state glass. This would require that the essentially Arrhenius behavior of 
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self-diffusion and fluidity though the “liquid” density range would be 
maintained up to p V / N k T =  00 and that any observed glass transition be- 
havior is purely a kinetic phenomenon. The alternative point of view 
(Woodcock,16 Cape and Woodcock2’) is that since the system has under- 
gone a glass transition instigated by an underlying thermodynamic singu- 
larity, there is no justification for associating the virial series with the 
amorphous solid and any singularities it may have. 

The latter interpretation gains some “experimental” support from M D  
behavior of second-order thermodynamic properties in both the hard- and 
soft-sphere models’6-20 around the M D  glass transition temperatures. Al- 
though Gordon et al.I7 interpreted Alder’s results on 32-particle systems as 
showing a break in expansivity at ‘‘Tg,’’ both these authorsi7 and Hiwatari9’ 
imply the absence of any discontinuities in their respective parameteriza- 
tions of the metastable amorphous phases of the hard- and soft-sphere 
models, when they used a continuous free-volume equation over the whole 
amorphous solid-supercooled fluid range. The higher order anomalies that 
were bypassed in these parameterizations are, however, weak and some- 
what diffuse for hard spheres, so there is room for dispute. At this time it is 
not possible to prove or disprove the possibility that the higher virial coef- 
ficients in the hard-sphere model expression 

(where po is the pole density), instead of following an appealing asymptotic 
approach’I6 to the value D 2  (where D is the dimensionality of the system), 
undergo a second increase, for example, terminating at infinity and imply- 
ing a continuous nonsingular thermodynamic transformation from super- 
cooled fluid to a solid, with a pole at  Bernal’s random close-packing volume. 

Both Pad6 approximant’ I ’  and the more powerful Tova approximant”’ 
predictions of the tails of the virial series are consistent with the location of 
the first-order pole at the crystal close-packed density, as required by the 
0’ closure for the virial series. In fact, Baram and Luban’l’ give this as a 
conclusion of their work. The known virial coefficients in the soft-sphere, 
inverse twelfth power models’’ also imply that the virial series contains in- 
formation on the crystalline phase at very high pressure, but is unrelated to 
the freezing transition, the glass transition, or the amorphous solid equa- 
tion of state.20 

With these possibilities in mind, we plot the courses in temperature of the 
fluid- and solid-phase entropies for hard- and soft-sphere systems, and 
compare them with the MD results in Figs. 21 and 22. I t  should be noted 
that in classical mechanical models the entropy is usually defined relative 
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Fig. 21. Entropy versus log-temperature diagram for the hard-sphere model. The solid 
curves give the computer simulation values for the supercooled fluid, glass, and crystal. The 
dashed curves have the following bases: (a) a calculation from the virial equation using the 
known first seven coefficients and higher coefficients obtained from the conjectured D 2  
closure"6 (the plot corresponds quite closely"6 with that calculated from the Carnahan- 
Starling equation'20); and ( b )  an extrapolation of higher temperature behavior such as that 
used by Goidon et al.," which implies a maximum in the series of virial coefficients. The 
entropy is defined in excess of that for the ideal gas at the same temperature and pressure. 
Some characteristic temperatures are identified: q, fusion point; T8y, upper glass transition 
temperature; TK, Kauzmann isoentropic point according to D z  closure virial equation. 

to the ideal gas at the same temperature and pressure and that at low 
temperature the heat capacities approach the constant values of 4.5Nk and 
3Nk for the anharmonic and harmonic oscillator limits, corresponding to 
the hard- and soft-sphere models, respectively. In consequence the entropy 
approaches minus infinity as T approaches absolute zero. Curve a in Fig. 
21 is that obtained for the case of the first-order pole occurring at the crystal 
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Fig. 22. Entropy versus log-tempera- 

ture diagram for the soft-sphere model. 
The solid curves give the computer simu- 
lation values for the supercooled fluid, 
glass, and crystal. The dashed curves cor- 
respond to the internally equilibrated 
fluid behaving in accord with ( a )  a six- 
term virial series” and ( b )  an alternative 
hypothetical equation of state giving a 
continuous transition to an amorphous 
ground state with residual entropy 0.15Nk 
virial coefficient series with maximum. 
The entropy is defined in excess of that 
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density, whereas curve b gives approximate behavior for the alternative case 
of the pole occurring at some limiting density characteristic of random close 
packing. 

This limit is commonly believed to be that obtained by Bernal?’ Finney?6 
and Scott and Kilgourl18 from ball-packing experiments and closely re- 
produced by finite compression rate MD experiments.6, 16a* particularly 
for large (500-particle) systems.’6b However, it is not known whether for 
larger systems, this is a true or kinetics-determined limit. notwithstanding 
the attractive agreement (to 0.2%) of the packing fraction (q = 1/677d3N/ V )  
with the number 2/77 = 0.6366, which frequently arises in random statistics 
 problem^."^ Gordon et al.,” for instance, assume that this packing density 
would be exceeded for slower compression cooling rates and estimate the 
limiting Vglass / V, stal (= 0.7405/q) to be 1.1328 (q = 0.6537; cf. crystal, 
0.7405). One of has actually observed higher limiting densities for very 
slowly compressed 32-particle systems, but these are suspect because small 
systems tend to crystallize-a periodic boundary condition artifact. 

In Fig. 22, the two dashed curves have a similar significance. Curve a ,  as 
in Fig. 21, requires the existence of a thermodynamic transition associated 
with a divergence of the relaxation time at  some temperature T> T K ,  the 
most natural choice being the temperature (marked T,BH), which corre- 
sponds to the Batchinski-Hildebrand VzH for the system (see Fig. 4). Curve 
b represents an alternative resolution of the Kauzmann paradox for this 
system and implies that the heat capacity must have a maximum, under 



450 C. A.  ANGELL, J .  H. R. CLARKE, AND L. V. WOODCOCK 

conditions of internal equilibrium, somewhat similar to that shown in Fig. 2 
of Ref. 20. 

It is a matter for some enthusiasm that the resolution of some of these 
fundamentally challenging problems in the thermodynamics of very simple 
systems is probably within reach. Simulations into the low-temperature (or 
high-density) long relaxation time region in which the resolution can be 
found are now becoming computationally feasible, and will soon be at- 
tempted. However, at the same time it must be recognized that it is for the 
simple atomic systems of greatest theoretical interest that the probability of 
nucleation of the stable phase is the greatest. That is, the problems of low- 
temperature amorphous phase thermodynamics may finally be resolved by 
an irrevocable escape of the system from amorphous phase space, as Kauz- 
mann originally proposed for complex liquids. 
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I. INTRODUCTION 

The liquid-glass transition has been intensively studied for many years. 
Despite the many papers on the subject, both experimental and theoretical, 
there is still no clear understanding of this transition. However a few rela- 
tively simple phenomenological theories have been developed to explain an 
extensive body of observations, especially those of viscosity, heat capacity, 
and volume. The focus of one set of these theories is on the temperature 
dependence of the diffusion in dense liquids. 

Two complementary attempts to interpret such transport phenomena in 
a variety of molecular systems are the free-volume model and the entropy 
theory. Both have been useful in describing diffusion in liquids in a physi- 
cally appealing manner. A second set of theories, largely phenomenologi- 
cal, has involved the temperature dependence of the heat capacity and the 
volume near the liquid-glass transition temperature. Nevertheless, in spite 
of all the work done, there are still no rigorous theoretical results. To begin 
with, our understanding of the liquid state, particularly at high densities, is 
inadequate. In addition, the liquid-glass transition is a nonequilibrium phe- 
nomenon in which the time scale for relaxation becomes comparable to ex- 
perimental times. The observed glass is not even a metastable state of the 
system, let alone the lowest free-energy state, so that equilibrium thermo- 
dynamics cannot always be applied. 

In the absence of a rigorous or at least microscopically sound theory, one 
is forced back to the modelistic theories, which are in a fragmented state. 
Accordingly, the aim of this chapter is to tie together many of these theo- 
retical ideas on the liquid-glass transition by use of a single model, some- 
thing not previously accomplished. We concentrate on the free-volume 
model because of its past success in describing the behavior of the viscos- 
ity. However, our results are much broader and transcend any one model. 

After describing and justifying the underlying assumptions of the free- 
volume model, we apply it to calculate all the thermodynamic quantities of 
interest. We also include in our model the effects of slow relaxation rates, 
so that our results can be compared directly to experiment. We still do not 
have many rigorous results. Instead, we have a simple picture of a quite 
complex set of phenomena. We have built a single, unified theory from 
which one can continue to study all aspects of the transition. Although the 
theory has its weaknesses, which principally result from the necessity to 
make approximations along the way, it has the desired robustness from 
which to proceed further. 

11. BASIC PHENOMENA AND EARLY THEORIES 

The liquid state of matter'-3 is characterized by zero shear modulus, a 
finite fluidity +, and time-average translational invariance. We know that 
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when a liquid is cooled slowly, the system usually crystallizes via a first- 
order phase transition (finite latent heat) at the melting temperature T,. At 
T,, the fluidity vanishes abruptly, and the system finds itself in a new, sta- 
ble, translationally ordered, solid state. However, in many systems, it is 
possible to supercool the liquid to temperatures below T, by rapid 
~ o o l i n g . ~ - ~  In systems in which crystallization can be avoided, several 
interesting phenomena occur. Most important, the fluidity is observed to 
decrease continuously, finally reaching a limiting value so small that it be- 
comes unobservable as relaxation rates become on the order of days or 
more. When this has occurred, the system is referred to as a The 
glassy state differs from the crystalline state in that it is disordered and only 
metastable. Put most simply,16 the glassy state is an extension of the liquid 
state in which the viscosity q = + - ’  increases above about 10’’ P: thus we 
have quantified the statement, “A solid does not flow.” 

This raises the possibility that the liquid-to-glass transition is in fact a real 
phase transition, given that in the glass the time-average translational sym- 
metry of the liquid is broken, at least on the time scale above. However, 
there is no experimental evidence for a sharp phase transition. In fact, the 
exact thermodynamic nature of the glassy state is not known. The glass and 
the supercooled liquid could form a single, metastable thermodynamic 
phase that is in local equilibrium. However, it is also possible that the ob- 
served glassy state is only a stationary frozen configuration that is not in 
local equilibrium and occurs only because the relaxation rates are very long. 
In either case, there may exist an underlying phase transition obscured by 
kinetic effects, or there could be no phase transition at all. Indeed, whatever 
the case, it is convenient to refer to this new state as the amorphous phase, 
even if the liquid-glass transition is not a true phase transition in the limit 
of slow temperature variations. 

It is commonly believed that the glassy state is never the most stable state 
of any material.’ That is, a solid is always more stable in its crystalline phase 
than as a glass. Although there is no rigorous theoretical proof for this 
statement, it is consistent with the experimental observations that the glass 
transition temperature T, is always lower (usually by a significant amount) 
than the crystallization temperature T, and that the viscosities of most 
liquids are of the order of only l o p 2  P at T,.l3 However, it is also probably 
true that the glass transition can occur in all classical liquids, including 
monatomic ones, provided crystallization can be bypassed. This idea is 
based on the hypothesis that the glassy state is truly metastable and not 
unstable and leads one to the concept of an “ideal” glassy state first sug- 
gested by Gibbs and DiMarzio” for polymeric systems and by Cohen and 
Turnbull”, l9 for simpler, even monatomic glasses. 

An “ideal” glass is a solid in internal equilibrium in which there exists a 
definite set of equilibrium positions about which each atom oscillates. 
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However, unlike the crystalline solid, these positions are randomly distrib- 
uted and do not exhibit translational symmetry. If one such structure ex- 
ists, there must be a large number of similar random structures of nearly 
equal energy. Nevertheless, the Gibbsian entropy of each would be zero, 
because these structures are mutually inaccessible for classical systems." 
One particular structure would be picked out during cooling, and the sys- 
tem would remain in that structure. A large increase of entropy would oc- 
cur only on heating back into the liquid state, when the equivalent random 
structures again become mutually accessible. Since there exist a large num- 
ber of such mutually accessible, nearly equivalent configurations, the sys- 
tem has a finite residual entropy even at zero temperature. When quantum 
mechanical effects are included, these configurations are no longer mutu- 
ally inaccessible. The system can tunnel between them, as has been ob- 
served at low temperatures. 

To produce a glass, we know that the melt must be cooled fast enough to 
avoid crystall i~ation.~-~ What determines the rate of crystallization and 
what are the best conditions for glass formation are continuing subjects of 
research activity.13 We do know that the crystallization rate of a super- 
cooled liquid is dependent both on the rate of crystal formation or nuclea- 
tion and the speed with which the crystal-liquid interface advances. Both 
the rates are strongly dependent on the reduced temperature T, = T/Tm.  It 
is not difficult to see that a melt can more easily be undercooled through 
its metastable liquid regime from T, to Tg, the higher the cooling rate and 
the higher the reduced glass transition temperature qg = Tg/Tm. For many 
glass formers, in particular the metallic glasses, crystallization can be 
avoided only by using small sample volumes, since this helps to increase the 
cooling rate and decreases the nucleation probability. Simple nucleation 
theory indicates that melts with qg 2 f should readily form This 
condition has been observed to hold for many simple molecular substances 
that easily form glasses in bulk. However very large quench rates, on the 
order of lo6 "K/sec, are necessary to form most metallic glasses for which 
qg is lower.' For these systems, the glassy state has been formed only in 
very narrow compositional ranges, usually near a eutectic composition, for 
which Z, is reduced. All the experimental results are consistent with the 
statement that the higher qg, the greater the glass-forming tendency. 

Solids can be classified according to bonding type and by their constitu- 
tents. Glasses are found to occur among all such classes of solids. The sim- 
plest ones have spherical or nearly spherical constituents and include the 
metallic glasses9* 1 3 -  21-27 and some molecular substances. In t h s  group one 
also includes the dense random packing (DRP) of hard  sphere^'^-^' and 
systems of Lennard-Jones  particle^^^-'^ studied by molecular dynamics.35 
The more complex glasses include the ionic,364' polymeric,4247 and organic 
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 material^.^-^^ There are also the network g l a ~ s e s , ~ ~ - ~ ,  which include sys- 
tems covalently bonded in two and three dimensions, both insulators and 
semiconductors. These distinctions are not sharp and the groupings over- 
lap, but the important point is that the occurrence of glasses in nature seems 
to be a universal phenomenon. 

In the liquid-glass transition region, a homogeneous and continuously 
increasing resistance to flow develops, as measured by the shear viscosity 
q. The choice of a limiting viscosity to mark the transition from fluid to a 
configurationally frozen solid is somewhat arbitrary. A value of 77-10" P 
is often used, since at this viscosity a body would substantially maintain its 
shape against small shearing forces for periods up to 1 day. This is to be 
compared with the viscosity of simple liquids such as water or alcohol, 
which at room temperature have v - I O - ~  P. For 17-IOl5 P, the time con- 
stant for relaxation becomes so long that the system is frozen into a single 
configurational state, the amorphous state, neglecting tunneling. 

The dependence of the shear viscosity TJ in both the equilibrium liquid 
and supercooled liquid phases is shown in Fig. I .  V0ge1~~ and F ~ l c h e r ~ ~  first 
observed that in the high-temperature, low-viscosity regime, q could be 
fitted to the form73-75 

where qo, 6 ,  and To, are constants. This form works well in the low-viscosity 
region (qs lo4- lo6 P) for most glasses, including the ionic, polymeric, and 
organic materials, as shown by curves b and c in Fig. 1 with = TOH #O. 
A few simple organic glasses48 and some network g l a ~ s e s , ~ ~ - ~ ~  including 
SiO, and GeO,, follow an Arrhenius behavior, 

over almost the entire temperature range studied, as shown by curve a of 

Fluid 

F 

l /To  
I /  T 

Fig. I .  Sketch of the logarithm of 
viscosity 9 (in poise) with reciprocal tem- 
perature (when the liquid is cooled from the 
liquid to the glassy state). Curve a corre- 
sponds to Arrhenius behavior, T+O. Curves 
b and c show the typical form for simple 
molecular glass formers. Curves b and c 
correspond to the Doolittle equation, where 
the free volume o/ a T -  Ton, TOH # O  at the 
high temperature and 4 a T -  To, at low 
temperatures. In curve b, ToL#O, and in 
curve c, ToL-+O. 
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Fig. 1. In Table I, we present a partial list of glass formers and their char- 
acteristic temperatures T', and q. However, most of the experimental re- 
sults do not extend to lower temperatures near T,, where q becomes ?lo8 
P. In systems that have been measured at higher viscosities (10' < q <  lOI4  
P), it is found that most glasses become Arrehenius, To,-+O in (2.1), curve 
c of Fig. 1, whereas others are described by a value of TO, +ToL < To, in 
(2. l), curve b of Fig. 1. Examples of the former include the organic liquids 
sal01,'~ a-phenyl-o-cresol, n-butylben~ene,~' and di-n-butyl phthalate,@ and 
the ionic glass 0.60KN03 - 0.40Ca(N0,)2.60 The organic liquids o- 
terphenyl". 55 and tri-a-naphthylben~ene'~ are examples of the latter. Re- 
sults for salol and 0.60KN03 -O.~OCU(NO~)~ as examples of the former and 
o-terphenyl and tri-a-naphthylbenzene of the latter are shown in Fig. 2. We 
have found only one system, the metallic glass2' AuO,,,Ge,,,SiO,,, that 
can be fitted in both regimes with a value of TOH=TOL (curve b in Fig. 1). 
Unfortunately, the metallic glasses can be studied only in the liquid phase, 

TABLE I 
Characteristic Temperatures for Glass Formers 

Au0,77Ge0.136Si0.094' 
Tri-a-naphthylbenzeneb 

o-Terphenyl' 

SaIold 
a-Phenyl-o-cresold 
2-Methyl pentane' 
Glycerol' 
Methanol' 
Ethylene glycol' 
Sorbitole 

ZnC1, ' 
B 2 0 3  ' 

H SO,. 3 H ,O ' 
Ca(NO,), .4H ,O' 
0.62KN03.0.38Ca(N0,), 

295 
342 

240 

230 
230 
79.5 
180 
103 
152 
266 
539 
375 
158 
217 
345 

24 1 
342 
248 
23 1 
226 
210 
59 
138 
60 
107 
236 
402 
260 
128 
205 
276 

200 

- 
58 
134 
63 
112 
236 
335 
250 
135 
202 

'Ref. 20. 
bRefs. 53 and 54. 
cRefs. 14, 50, 51, and 54. 
dRef. 54. 
'Ref. 39. 
'Ref. 36. 
gRefs. 38 and 78. 
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P Fig. 2 Loganthm of the viscosity 9 (in poise) 
as a function of temperature for four glass 
formers. Data for o-terphenyl (tnangles) from 
Refs. 54 and 55, tn-a-naphthylbenzene (crosses) 

l 5  *O z 5  30 35  40 4 5  5o from Ref. 53, salol (pluses) from Ref. 54, and 
0.60KN0, .0.40Ca(N03)2 (cucles) from Ref. 40. 
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with TZT,, and in the glass phases TST,, and not in the intermediate su- 
percooled liquid region (10 -' 5 7 5  lo9 P), since they crystallize too read- 
ily. Therefore a large extrapolation is necessary to interpret results for these 
systems. Tweer et al.76 have shown that many of these systems, which can- 
not be fitted by the three-parameter Vogel-Fulcher equation, (2. I), over the 
entire range (10' < q <  IOl4  P) with a single value of To, can be fitted with 
a more general five-parameter equation for q that diverges only as T+O. 
Included in this fit is the organic liquid tri-a-naphthylbenzene, which has a 
finite ToL when fitted to the usual equation for q. This leaves open the pos- 
sibility that ToL always goes to zero, and all viscosities become Arrhenius 
at a low enough temperature. 

The deviation of q from its high-temperature behavior, (2.1). could be re- 
garded as a nonequilibrium phenomenon. However, the deviation from this 
form usually begins at a temperature that is greater than the temperature 
at which the system is considered to fall out of thermal equilibrium (i.e., 
the temperature at which the anomaly in the specific heat occurs). For the 
organic glasses,54. 5 5  this deviation occurs at  a viscosity q- lo4 P, whereas 
q 2  10' P at the glass transition. In the measurements of these organic 
glasses, care was taken to assure that the equilibrium value of q was ob- 
tained.54* 55 For the metallic glass Au-Ge-Si, the viscosity when measured 
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at its highest accessible values2' begins to deviate sharply from the simple 
exponential behavior, presumably because of nonequilibrium effects. We 
expect that nonequilibrium phenomena will lead to a quite dfferent pat- 
tern of temperature variation for TJ than occurs when (2.1) no longer holds. 
Except for Au-Ge-Si, we consider the observed deviation of TJ from its 
high temperature behavior to represent typical behavior. 

During the configurational freezing of the supercooled liquid, the heat 
capacity Cp usually changes markedly within a narrow temperature range 
around a temperature q, conventionally referred to as the glass transition 
temperature. This decrease reflects the loss of configurational freedom. The 
magnitude of the drop in C' in going from the equilibrium liquid to the glass 
is usually very large, approximately 50% for most glass  former^.'^ How- 
ever, i t  is hardly detectable in the tetrahedrally coordinated network 
glasses7' SiO, and GeO,. More important, the value of T, and the shape of 
C' are found to be very dependent on the heating and cooling rates of the 
measurement and on the thermal history of the It IS ' known 
that the observed changes in heat capacity are the consequences of the fall- 
ing out of complete thermodynamic equilibrium of the system under 
observation as the time of measurement becomes comparable to the re- 
laxation times of the system. 

In Fig. 3, we show schematically the behavior of the enthalpy H and heat 
capacity C, when the liquid is cooled isobarically through the glass transi- 
tion region at a constant rate 

dT 
4= 2 (2.3) 

and subsequentially reheated at  the same rate.78 The two sketches for H a n d  
Cp correspond to two different cooling rates I qA I > I qe I. The rate of heating 
or cooling may be thought of as a series of incremental temperature steps 
AT during a time interval A t .  At high temperatures above T,, the cooling 
rate is sufficiently high that the time required for structural relaxation is 
short compared to the experimental time scale, and the enthalpy H can fol- 
low its equilibrium liquid value. At lower temperatures near q, the time 
required for structural modes to equilibrate becomes longer, so that these 
modes may not completely relax before the next time increment A t ,  and the 
experimental H begins to depart from its equilibrium value. For T < q ,  
these structural relaxation times become so long that no further changes can 
take place in the configurational state of the system, and H follows its value 
for a glass. As seen in Fig. 3, the higher the cooling rate, the higher the 
temperature at which H departs from its liquid value. As pointed out by 
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1 
Fig. 3. Enthalpy and heat capacity versus temperatures for a glass cooled and then re- 

heated through the transition region at different rates. The cooling rate lqal > lqe ( .  [After 
Moynihan et al., J .  Phys. Chem., 78, 2673 (1974).] 

Moynihan et al.,’’, 78 irrespective of the direction of the temperature change, 
the direction of the structural relaxation process is always toward equi- 
librium. That is, when the glass is heated or cooled, the enthalpy H changes 
in such a fashion as to move toward the equilibrium value. Consequently, 
on reheating, H follows a path different from that found on cooling, as in- 
dicated in Fig. 3. 

Since the heat capacity C, = aH/aT,  one expects that at a constant cool- 
ing rate in materials that do not crystallize, Cp will be a monotonic,78 
decreasing function as shown in Fig. 3. However, the majority of the mea- 
surements are done at  a constant heating rate, starting from the glassy state, 
and the observed anomaly is shown in Fig. 3 :  C’ departs from its value in 
the glass rather sharply, passes through a maximum, then decreases a t  a high 
temperature, where it merges smoothly with the equilibrium liquid value for 
CP . 
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It is found experimentally that when the heating or cooling rate q in- 
creases in magnitude, the value of T, also increases. This follows from the 
behavior of the enthalpy shown in Fig. 3. The higher the cooling rate, the 
earlier the enthalpy departs from its equilibrium value, and the higher T, 
will be. Moynihan et al.78 have carried out a systematic analysis of the de- 
pendence of the glass transition temperature on the heating and cooling rate 
q for several glass formers. They find, as shown in Fig. 4, for B,O, and 
0.6KN03.0.40Ca(N0,),, that the logarithm of the cooling rate 141 varies 
linearly with the glass transition temperature for all the glass formers 
studied. The observed dependence of the shape of C, and the value of T,  
on the rate q has been used to study the temperature-dependent kinetic 
processes occurring during the glass transition, as we discuss in greater de- 
tail in Section IX. 

The specific volume U also shows an anomalous temperature depen- 
d e n ~ e ~ ~  near T,. The behavior of 0 is universal among all systems having a 
finite T,. When measured at a constant cooling rate q, 0 follows the behav- 
ior of the enthalpy, shown in Fig. 3, as it decreases linearly with T and 
changes shape at a temperature dependent on q but close to the Tg ob- 
served for C,. Below this breakaway temperature, the system is not in equi- 
librium. If the system is annealed, not far below <, the behavior shown in 
Fig. 5 is observed. Volume U decays toward a lower asymptotic value O0, 
which can lie either on the extrapolated volume-temperature curve for the 
liquid or above it, if the annealing temperature is low enough. The latter 
observation suggests the existence for metastable equilibrium of a Go versus 
T curve that breaks away from the extrapolated liquid curve, but no in- 
formation is yet available on where or how it breaks away. There is also 

1 0 0 : "  I '  r j  

Fig. 4. Logarithm of cooling rate 14) versus limit- 
ing fictive temperature, 7 .  (The fictive temperature is 
used to give a precise measure of the glass transition 
temperature TB). Data for 0.60KN03.0.40Ca(N03), 
(diamonds) and \03 (circles) from Moynihan et al. 
[ J .  Am. Cera. Soc., 59, 12 (1976)]. The slope of Tj 

- 
0 . 2 8 8 4 t t t ,  

:h: 
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Fig. 5. Isobaric volume 0 versus T ,  illustrating 
volume hysteresis effect. The equilibrium curve in the 
liquid well above Tg is unique. At a constant c o o h g  rate 
q, the 0 falls out of equilibrium below Tg. When the 
sample is then annealed at constant T,  the volume be- 
comes densified and may reach a relaxed glass state, 
depending on the temperature. The lower portion of the 
solid curve represents the behavior after heating at con- 
stant q. Note 0 remains under its liquid value to T >  Tg. 
This plot is similar to that found for amorphous 
Selenium in Ref. 71 and for a polymeric system in Ref. , d T, T 79. 

hysteresis upon heating at  a constant rate q. The 0 remains under the ex- 
trapolated liquid volume, then rises sharply to a final equilibrium value a t  
temperature exceeding 5.  The amount of hysteresis is dependent on the 
value of q. 

These experimental results indicate that as studied in the laboratory, the 
glass transition is a kinetic phenomenon that depends on the time scale of 
the measurements. The question still remains whether, as may be suggested 
by the dielectric annealing data on selenium, there exists a real thermody- 
namic glass transition in the limit of infinitely slow heating or cooling. That 
such a thermodynamic transition should occur has been inferred by ex- 
trapolating the heat capacity versus temperature for liquids with large val- 
ues of CPr = Cp(,lquid) /CpcglaSs) and observing the manner of change of the 
difference in entropy between the liquid and crystalline states (which was 
the entropy of melting AS,,, at the melting point). 

Data for H,S04.3H,0 by Kunzler and G i a ~ q u e ~ ~  and for Ca(NO,),- 
4 H 2 0  by Angell and Tucker39 are shown in Fig. 6 .  These plots suggest that 
at only about 20°K below the normal value of T,, the difference in entropy 
between the liquid and crystalline phases would vanish at a temperature 
and become negative below q. A partial list of values of T,  compiled by 
Angell and co-workers is included in Table I .  The existence of an 
amorphous phase with lower total entropy than the stable crystal phase at  
the same temperature is unreasonable. Moreover, the heat capacity of the 
glass is known to be higher than that of the crystal at low temperatures. To 
avoid this apparent paradox, Cp has to decrease precipitously at a tempera- 
ture not far below the observed T,. From Fig. 6,  we see that this must oc- 
cur at a temperature no lower than 130°K for H2S04.3H20 and 200°K for 
Ca(N0,),.4H20.'4 As pointed out by Angell and S i ~ h i n a , ' ~  the most grad- 
ual possible decrease of Cp below Tg that remains consistent with the re- 
quirement that S(,lquld) > S(crystal) still amounts to a very sharp change in C,, 



Temperature (” K) 

f b )  

Fig. 6. Graphical estimates of the limits on the temperature range below Tg over which the 
observed equilibrium liquid heat capacity could be maintained in “slow” (equilibrium) experi- 
ments (a) for H,SO.,. 3H,O. The condition (Sliquid -Scryatal)T -0 would appear to define a 
temperature T= T,  to which, if not before, rapid decrease in the equilibrium liquid heat capac- 
ity must occur. [From C. A. Angel1 and W. Sichina, Ann. N.Y. Acud. Sci., 279.53 (1976).] This 
is shown in (b) for two glass formers. 

466 
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comparable to the high-temperature end of a common X transition. The ex- 
istence of the vanishing excess entropy was first recognized by Kauzmann; 
it points to the possible existence of an “ideal” glass transition q at a tem- 
perature r, S q  < T,. In the limit of slow heating or cooling, T,  would ap- 
proach 5.  It is also interesting to note that T, N T,  for many glass formers, 
as recognized by Angell and co-~orkers,~’ (Table I). 

The existence of a temperature of vanishing excess entropy T,  suggests 
the notion that a real phase transition, either second or first order, may oc- 
cur at T, in the limit of slow heating and cooling. The amorphous system 
would undergo a transition to a solid with negligible configuration entropy. 
However, the configuration of this new solid state is still unresolved. Kauz- 
manna’ predicted that it must be crystalline, which means that a first-order 
phase transition, a low-temperature crystallization (q  < Tm), must occur 
before the excess entropy is exhausted at T,. However, recent work by 
Angell and Donnellaa2 on the homogeneous nucleation temperature TH for 
the binary solution Ca(NO,),-H,O provides evidence that this cannot be 
true in all cases. They find that there is a composition range in which by 
extrapolation TH lies below T,. This is consistent with the view that an 
“ideal” amorphous solid state, characterized by a short-range order, is 
topologically unique and distinct from that of the crystal. The structural 
basis for this concept was first provided by Zachariasen’s random network 
model for amorphous solids.83 The statistical basis for such a state has been 
provided by Gibbs and DiMarzio,” who suggested that an underlying 
equilibrium transition of second order occurs at Tg in the limit of infinitely 
slow cooling. 

The entropy theory of the glass transition was developed by Gibbs and 
DiMarzio” and by Adams and Gibbsa4 to describe polymeric systems. By 
mixing the polymer links with holes or missing sites on a lattice to account 
for thermal expansion as in a lattice gas model, they could determine the 
entropy of mixing and the configurational entropy of the polymer. They 
found a second-order transition at a temperature #O. They then pointed 
out that this temperature would correspond to Tg if the experiments could 
be done so that system were always in equilibrium. Below T,, the config- 
urational entropy would remain zero instead of going to a meaningless 
negative number. They were able to derive a very useful result for the 
viscosity,w 

where C is constant and the excess entropy Sex is defined as S(liquid) - S(Blass,. 
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This result also suggests that the sluggish relaxation behavior governing 7 
is itself just a manifestation of the smallness of Sex in the region im- 
mediately above T,. The expression (2.4) can be used to rationalize the 
Vogel-Fulcher result for the viscosity. In systems in which Cp,, is very close 
to unity, such as GeO, and SO,, the relaxation properties will show 
Arrhenius behavior because Sex is only weakly temperature d e ~ e n d e n t . ’ ~  
However for systems in which, AC’ = C,(liquid) - C’(g1ass) is large, Sex 
should change rapidly with temperature, and non- Arrhenius behavior 
should be encountered. In fact, in many cases one can approximate AC by 
constant/T. Combining this with the observation that Sex vanishes at T,, we 
obtain ( T g T , )  

and the Vogel-Fulcher result14 

where b‘ is another constant. Equation 2.6 is consistent with the experi- 
mental observation that T, N T,; that is, the temperature of vanishing 
excess entropy should agree with the high-temperature estimate for the 
temperature at which 77 diverges. However, since the data for taken near 
Tg show an Arrhenius temperature dependence of the viscosity in most 
glasses, the results in (2.5) and (2.6) fail near Tg. The crossover to Arrhenius 
behavior can be understood in terms of the free-volume model, which we 
develop in a later section. 

Although the entropy theory of Gibbs and DiMarzio provides a justifi- 
cation for the Vogel-Fulcher result for polymers, it is difficult to apply it to 
monatomic or rigid molecules. For those glasses, their theory reduces to 
Frenkel’s hole theory of glasses, which is known not to be very accurate. 
Before the development of the entropy theory, other explanations of the 
viscosity data had been proposed. The most successful of these had been 
the free-volume model first applied by Fox and Flory” and developed 
subsequently by a large number of  author^.'^-^^ This model was motivated 
by the interesting experimental observation that the fluidity of many liquids 
decreases markedly with increasing pressure. From this pressure depen- 
dence alone, one can infer that fluidity must be closely connected with the 
average free volume u,, defined by 

u, =u-uo  (2.7) 
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where U is the average volume per molecule in the liquid and v,, is the van 
der Waals volume of the molecule. Ba t~ch insk i ,~~  as early as 1913, sug- 
gested that the fluidity increases linearly with free volume. Fox and FlorygS 
made a critical contribution with their suggestion that the glass transition 
can be attributed to the falling of the free volume below some critical value. 

D ~ o l i t t l e ~ ~  found that the fluidity of many simple hydrocarbon liquids 
could be represented by the simple form 

+ = +oexP( T) - boo 

where b is a constant of order unity. The Doolittle equation correctly pre- 
dicted the abrupt decrease in +=q-' in a narrow temperature range as v, 
becomes small. Williams et a1.86 then showed that this result is valid for a 
large number of glass formers. They proposed a description the free volume 
by the simple form 

U, =~,[0.025+a(T-T,)] (2.9) 

where ug is the volume at Tg and a = a, - ag is the difference between the 
thermal expansion coefficients of the liquid and the glass. Cohen and 
Turnbull later developed a simple theory of molecular transport in liquids 
in a series of papers.". 87* The principal idea of their work, which we de- 
velop in greater detail in a later section, is that molecular transport occurs 
by movement of molecules into voids of a size greater than some critical 
value formed by the redistribution of the free volume. The idea is analo- 
gous to that of molecular cooperation, which underlies the earlier treat- 
ments of B u e ~ h e ~ ~  and bar re^-.^^ 

Up to this point, we have discussed in general terms the behavior of a 
system near the l iquideglass transition. What happens in the low- 
temperature range for T<< T,  is also a very intriguing question. Near G, we 
have seen that the system falls out of complete thermodynamic equilibrium 
and is trapped in a region of configuration space far removed from its 
crystalline ground state. There are many other energetically equivalent re- 
gions into which the glass could have been trapped. The residual entropy is 
a measure of that number. Most of those states are mutually inaccessible 
because they are distant in configuration space; it is possible, however, that 
a few mutually accessible states of essentially the same ground-state energy 
exist. These nearly equivalent states could then effect the low-temperature 
properties of the system in a remarkable way, since at low temperature any 
additional degrees of freedom would play an important role. 
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That such nearly mutually accessible states do  in fact exist was first pos- 
tulated by Anderson et a1.IW and by Phillips'" to explain the linear tem- 
perature dependence of the specific heat at low temperatures found in 
glasses. They proposed that what they called tunneling centers, which con- 
sist of a certain number of atoms or groups of atoms, have accessible two 
nearly equivalent equilibrium configurations (corresponding to the minima 
of asymmetric double-well potentials), and tunnel between them. With that 
model they could explain several other interesting experimental 
results.'02-105 These include a TZ dependence of the thermal conductivity 
and an ultrasonic attenuation that decreases at  low temperature and 
saturates at large strain amplitude. It also has been very successful in ex- 
plaining many other experimental observations, including the existence of 
phonon and electric echoes. Nevertheless, there has been no microscopic 
analysis of what a tunneling level really is. Instead, tunneling is treated via 
a model Hamiltonian for two-level systems describing the ground states in 
the two local energy wells. 

The tunneling states are commonly held to consist of a small group of 
atoms undergoing a local rearrangement. The number of atoms involved is 
assumed to be reasonably small, to minimize the distance between states in 
configuration space. However, the larger the number of atoms, the easier it 
is to find two ground states of roughly equivalent energies. It is believed 
that this competition between accessibility and degeneracy determines the 
size of the tunneling states.lo5 Just as we have seen that the existence of the 
glass transition and the behavior of the diffusion and viscosity are univer- 
sal, it is also known that the excitations just mentioned are universal among 
all types of glass former.'06-'08 With regard to universality, the behavior at  
the two temperatures TmO and T z  T,' are thus very similar. How the glassy 
state is formed directly affects the tunneling states, and both should be de- 
scribable within the same theory and model. 

Here we show how one particular model, the free-volume model, can 
account for the glass transition, the behavior of q,  C', and U near T,, and 
the existence of low-temperature tunneling states. 

111. PHYSICAL BASIS OF THE FREE-VOLUME MODEL 

Fox and FloryE5 first postulated that the liquid-glass transition resulted 
from the decrease of the free volume of the amorphous phase below some 
critical value. The subsequent derivation of Doolittle's fluidity equation97 
within the free-volume model is based on four simple  assumption^,*^* "9 9.1 

which can be worded as follows: 

1. It is possible to associate a local volume u of molecular scale with each 
molecule (or motile segment of a flexible molecule). 
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2.  

3 .  

When u reaches some critical value u,, the excess can be regarded as 
free. 
Molecular transport occurs only when voids having a volume greater 
than some critical value u* approximately equal to the molecular 
volume u,,, form by the redistribution of the free volume. 
No local free energy is required for free-volume redistribution. The re- 
sulting equation for the diffusion constant is of the form given by (2.8). 

Assumption 1 is valid if each molecule is restricted to movement within 
a cell or cage defined by its nearest neighbors. KirkwoodIog supposed such 
cells to exist in a liquid, but for simplicity supposed further that the cells 
were all identical, forming a regular lattice."' He took for the free energy 
of N interacting molecules 

4. 

F= N f  - TS, ( 3 . 1 )  

where f is the free energy of an atom or molecule moving within its cell in 
the mean potential of its neighbors, properly corrected for double counting 
of the interactions, and S, is the communal entropy. We may regard f as 
the local free energy referred to in assumption 4. The S, arises in a liquid 
from the additional freedom each molecule possesses because it can diffuse 
throughout the entire volume. It may be written as 

S, = k In [ ( N - 1) us] 

a f  klnu, = s =  - - 
aT 

which expresses the fact that each molecule can move in any other cell in 
addition to the one arbitrarily assigned to it. Clearly, the glass transition 
might profitably be examined within the framework of a thermodynamic 
theory such as Kirkwood's. Equally clearly, justification of assumptions 1 
through 4 would justify also such a thermodynamic theory. 

Hsu and Rahman'" have shown by MD calculations that the diffusion 
coefficient of a dense, supercooled rubidiumlike liquid at constant volume 
extrapolates to zero at a temperature that is essentially zero. Earlier, a Len- 
nard-Jones liquid had been quenched into what appeared to be a glassy 
state by rapid cooling to a temperature that turned out to be below TOH. 
Subsequent simulations in a variety of systems showed, however, that the 
diffusion coefficient remained finite though small (< Ton) and that crys- 
tallization ultimately occurred. Thus the crystal is the lowest energy state 
of the system, but there is a disordered state of low atomic mobility that is 
metastable, persisting for a time that is very long on the molecular scale. 
We identify this state as a glass, as did Rahman et al.32 
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Clarke34 has examined the thermodynamic equation of state and the 
specific heat for a Lennard-Jones liquid cooled through Tg at zero pressure. 
He found that C, drops with decreasing temperature near where the self- 
diffusion becomes very small. Wendt and Abraham''' have found that the 
ratio of the values of the radial distribution function at the first peak and 
first valley shows behavior on cooling much like that observed for the 
volume of real glasses (Fig. 6), with a clearly defined T,. Stillinger and 
Weber'13 have studied a Gaussian core model and find a self-diffusion 
constant that drops essentially to zero at a finite temperature. They also find 
that the ratio of the first peak to the first valley in the radial distribution 
function showed behavior similar to that found by Wendt and Abraham"' 
for Lennard-Jones liquids. However, the first such evidence for a nonequi- 
librium (i.e. kinetic) nature of the transition in a numerical simulation was 
obtained by Gordon et al.,30 who observed breakaways in the equation of 
state and the entropy of a hard-sphere fluid similar to those in real 
materials. 

The radial distribution function found for the putative Lennard-Jones 
glass at finite T was closely similar to that found for the dense random 
packing of hard spheres in a calculation effectively carried out at T=0.1i4 
The differences of detail suggest that the structure be considered the DRP 
of soft spheres. In the DRP of hard spheres, all spheres are completely 
constrained by their nearest neighbors.", 'I5 It is thus possible to construct 
around each atom Voronoi polyhedra that differ in shape and volume, and 
to take these as the cells or cages in a cellular model. The polyhedra are 
constructed by passing perpendicularly bisecting planes through each line 
connecting the center a molecule to the center of every other molecule in 
the system. The innermost polyhedron formed by this method is known as 
the Voronoi polyhedron. The construction is an extension of the Wiper -  
Seitz construction for crystals. The results of Rahman et al." strongly sug- 
gest that the same construction can be carried out for the Lennard-Jones 
glass, and presumably for all simple molecular glasses, thus validating the 
use of a cellular model and thereby justifying assumption 1. 

Jacucci 33 has examined the structure of a dense, argonlike Lennard-Jones 
liquid in a novel and instructive way. MD calculations are typically done 
in about lo4 time steps of sec each. The positions are retained and 
the radial distribution function constructed from sets of position pairs taken 
at equal time. Jacucci first averaged the molecular positions over an inter- 
mediate time interval of 10' steps or lo-'' sec and then constructed the 
radial distribution function. He found a radial distribution function very 
close to that found by Rahman et aL3' apart from an expansion of the dis- 
tance scale. Thus a well-defined cage or cellular structure persists even in 
the liquid for a time scale longer than lo-'* sec. It would be of interest to 
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determine on what time scale and at what temperature this structure begins 
to break down. 

Further MD calculations by J a c ~ c c i ~ ~  provide both detailed justification 
of assumption 3 and additional support for the cage picture. Jacucci 
examined the separation of a pair as a function of time in his dense, super- 
cooled, argonllke Lennard-Jones liquid. He found that the separation un- 
derwent occasional large changes of order of the particle spacing. In 
between these, the separation showed rapid small fluctuations around a 
nearly constant value. In a cage picture, the former correspond to the dif- 
fusive steps of Cohen and Turnbull,''. "* which lead to an occasional re- 
organization of the cages, whereas the latter correspond to oscillatory mo- 
tion within a cage structure that remains roughly static in between diffu- 
sive steps. 

Cohen and Turnbull's critical free-volume fluctuations picture of self- 
diffusion in dense liquids is similar to the vacancy model of self-diffusion 
in crystals. However, in crystals individual vacancies exist and retain their 
identity over long periods of time, whereas in liquids the corresponding 
voids are ephemeral. The free volume is distributed statistically so that a t  
any given instance there is a certain concentration of molecule-sized voids 
in the liquid. However, each such void is short-lived, being created and dy- 
ing in continual free-volume fluctuations. The Frenkel hole theory of liquids 
ignores this ephemeral, statistical character of the free volume. 

These results of Rahman et al.,32 Hsu and Rahman,"' and J a c ~ c c i ~ ~  
strongly suggest that there is a cage structure in a sufficiently dense liquid 
that, as the liquid is cooled, persists for longer and longer times until fi- 
nally it is frozen. Assumption 1 is thus justified, and (3.1) can be made the 
basis for a simple theory of the glass transition. The computer quenching 
experiments and the structural results demonstrate as well the validity for 
the Lennard-Jones fluid of the concept of a single, condensed, amorphous 
phase comprised of the vitreous and liquid states; the results of Wendt and 
Abraham1I2 suggest that there can be a Tg below which the system goes out 
of equilibrium. 

In a cellular model of a glass or liquid derived from the Voronoi con- 
struction, each cell i differs in shape, size, and location within it of the 
molecule. We suppose, following Kirkwood, that each cell i contributes an 
additive t emf ; ,  the cellular or local free energy, to the total free energy. 
We suppose further that the cellular free energyx depends only on the cell 
volume ui, f ;  =f(u,). The total free energy F of (3.1) then becomes 

F = N  P ( u )  f (u)+kTln  P ( u ) ]  du-TS, J [  (3.3) 

where we have added the configuration entropy of P( u ) ,  the probability that 
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a cell has a volume u, whch is analogous to an entropy of mixing of the 
cells. 

The local free energy function f( u )  contains two contributions, the nega- 
tive of the work to remove a molecule from the interior of a cage of volume 
u, fo( u ) ,  and the work to expand the cage to the volume u from some suita- 
ble average value, f,( u).  The work to remove a molecule from a cage at T 
=O"K has the same general shape as a function of cage volume that the 
intermolecular pair potential has as a function of pair separation. Thermal 
effects will not modify this, and we use for fo(u) the shape shown in Fig. 
7u. The essential features of f&u) are a minimum at uo and a point of in- 
flection at u l .  The discussion of f,(u) is more intricate because it depends 
on the state of the neighborhood of the particular cell in question. One can, 
however, argue that for smaller u, the total f(u) must be quadratic in u. 
Moreover, as u increases beyond the minimum in fl( u), f,'( u )  decreases be- 
cause of the reduced effect of interaction across the void. The asymptotic 
behavior of fl( u ) ,  however, depends on whether u is in a liquidlike or solid- 
like environment. In the latter case one has both a surface energy and an 
elastic component, in the former case only surface energy. We are not in- 
terested in such wide variation of u, and for us the significant thing in both 
fo( u )  and fl(u) is the decrease in slope below that of quadratic dependence 
on u as u increases away from the minimum. Thus a shape forf(u) like that 
of fo( u )  is good enough for our purpose. Accordingly, we suppose f( u )  to 
have the model form shown in Fig. 7. For T near or above q, the effects 
of curvature inf(u) are small compared to kTg near its point inflection and 

Fig. 7. (a)  The negative of the work to remove a 
molecule from the center of a cellfo( u) versus cell volume 
u; uo marks the minimum and u1 the point of inflection 
of fo(o). ( b )  Local free energyf(u)=fO(u)+fI(u), where 
fl(u) is the work to expand the cage to the volume u from 
its average value. For u>u,,f(o) can be approximated as 
quadratic, and for u > u,, linear in its dependence on u as 
shown by the dashed curve. 

i b ,  
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we can approximatef( u)  by the following simple formy4 

The parametersf,, u,, K ,  uo <uc < u , ,  and l can be determined on a best-fit 
basis. All are functions of T and particle density. Thef, and u,, turn out to 
be irrelevant. Thermal smearing effects and thermal expansion at constant 
pressure give au,/aT, aK/aT< 0. 

The segmenting of f (u)  in (3.4) enables us to divide the cells into two 
classes. Those with u > 0, we call liquidlike, and those with u < u, we call 
solidlike. Following Turnbull and Cohen,”. we say that only liquidlike 
cells with u>uc have a free volume, which we take asw 

u / =v-uc for u>uc ( 3  * 5 )  

It immediately follows that the part of the sum of local free energy zif;(u) 
contributed by liquidlike cells, u, >u,, depends only on the average value 
of ui among the liquidlike cells. That is, according to (2.5) it depends only 
on their average free volume Eif and is unchanged by any repartition of the 
free volume among the Iiquidlike cells. I t  is in this sense that a free volume 
can be defined, as in assumption 2, and can be redistributed without change 
of free energy, as in assumption 4. This is as far as Turnbull and Cohen got 
in formulating their version of the free-volume model; they were unable to 
proceed to a thermodynamic calculation. 

As stated above,f( u) has two contributionsf,( u)  andf,( u), and the latter 
depends sensitively on the nature of the cell’s immediate environment. This 
dependence is not so crucial for smaller expansions, u < u, in the quadratic 
range, but in the linear range u>u, it must be taken into account. We 
therefore decompose 5 into two corresponding parts lo and l,, leave 5, as a 
constant, and introduce the environment dependence into l,. The system 
clearly becomes more rigid as the volume decreases; [, is maximal when 
the system is entirely solidlike. We can characterize the deviation from 
solidlike behavior through the mean free volume within the liquidlike frac- 
tion of the material: 

( ( o - 0,) P( u ) du 

As will emerge later, we are primarily interested 

(3 .6 )  

in liquidlike cells with a 
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substantial number of liquidlike neighbors. Accordingly, as GJ increases, the 
environment becomes progressively less rigid and decreases monotoni- 
cally. A very simple function of GJ, which has that monotonic behavior over 
a large range of i7, and approaches a finite limit when GJ+O (solidlike), is 

(3.7) 

where u, and T, are constants of the dimension of volume and tempera- 
ture, respectively. This form for will have important implications for the 
final forms of the average free volume GJ and viscosity q. We show below 
that this term is not an entropic contribution to the free energy but must 
come from effects of environment on the free energy of each cell. We arrive 
therefore at 

for 5 in (3.4). 
The entire cage picture on which the free-volume model and the mobil- 

ity theory are based is valid only for a sufficiently dense material. As the 
material expands, the time scale over which the cage structure persists 
becomes comparable to the time scale of motion within the cages, and the 
picture loses its meaning. We emphasize that it should be used primarily 
for discussion of supercooled liquids where the Doolittle equation holds, of 
the glass transition, and of certain aspects of the glassy state. Our model 
excludes the possibility of a channel to crystallization. Since most glasses 
are stable for periods greater than years, this does not pose a problem. 

IV. FREE EXCHANGE OF FREE VOLUME; CLUSTERS AND 
PERCOLATION 

The essence of the free-volume theory described in Section 111 is that the 
only change in free energy associated with a redistribution of free volume 
is in the entropy of the probability distribution of the free volume. This 
arises from the decomposition of the free energy into a sum of terms de- 
pending only on the volume of a single cell, the local free energy f( ui), and 
from the linearity off( u i )  in ui for liquidlike cells. Of the two, the former is 
the more serious approximation. 

Consider two liquidlike cells that are not nearest neighbors and are indi- 
vidually surrounded by solidlike cells. From the construction of the Voronoi 
polyhedra defining the cell volume, it is clear that the cell volumes are not 
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all independent variables. It is not possible to change the volume of an iso- 
lated liquidlike cell without also changing the volumes of the neighboring 
solidllke cells. Thus a change in the local free energy of an isolated liquid- 
like cell that is linear entails quadratic changes in those of the neighboring 
solidllke cells. An exchange of free volume between isolated liquidlike cells 
therefore entails a change in the sum of the local free energies of all the 
cells and will be an activated process. 

A free exchange of free volume can take place only between liquidlike 
cells that (1) are nearest neighbors and (2) have enough other liquidlike 
nearest neighbor cells ( 2 z )  to ensure that the volumes of any neighboring 
solidlike cells are not constrained to change simultaneously. This defines a 
type of percolation problem.'16-12' 

The fraction of liquidlike cells is 

p = J mP( 0) do 

Whenp is nonzero, there are clusters of liquidllke cells, each one of which 
has at least z liquidlike neighbors. It is well known that in such situations 
there is a critical concentration p, above which there exists an infinite clus- 
ter. Thus forp>p,, there is an infinite, connected liquidllke cluster, and we 
can consider the material within i t  to be liquid. For p <p,, only finite 
liquidlike clusters exist, which might imply a glass phase because the fluid- 
ity would be reduced. However, percolation theory tells us that just above 
p, the infinite cluster is very stringy or ramified so that bulk liquid proper- 
ties are not fully developed. 

We have defined a liquidlike cell to .be in a cluster if it has at least z 
neighbors that are also liquidlike.% Within such a liquidlike cluster, cells can 
exchange their free volume freely without restriction by neighboring solid- 
like cells. The usual percolation problem has z = 1, so that all isolated 
liquidlike cells would be clusters of size one. Thus we have introduced a new 
percolation problem, which we call environmental percolation.%, 12'* 123 In 
addition to its present applications for the glass transition, this generali- 
zation of ordinary percolation has interesting applications for the study of 
many magnetic  alloy^'^^-'^^ including Ni-Cu as well as the properties of su- 
percooled water.I2' We do know that a system with z = 2  has the same value 
of p, and is essentially the same as the z =  1 case, with only a few dangling 
cells excluded from the clusters. For z > 2, the percolation threshold p,, be- 
comes z-dependent. The various critical exponents associated with the per- 
colation problem are expected to be z-dependent as well, and we have no 
knowledge of their values. However, the general structure of the theory must 
remain unchanged, and i t  is only this which we use in the following. The 
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value of z appropriate to the free-volume theory is uncertain; a reasonable 
estimate is z=$  n, where n is the average number of nearest neighbors. 

At this point one is tempted to anticipate the results of the quantitative 
analysis and suppose that the liquid phase has p >p,,, the glass phase has 
p <pcz ,  and p =pcz at the glass transition temperature. If so, the transition 
would be second order because the infinite cluster is formed sharply."6-'2' 
Calculations based on the model show that it cannot be second order in 
most circumstances, but is first order, with a range of values of p aroundp, 
excluded. Elimination of the simplifications we have introduced wipes out 
the second-order phase transition, but the first-order phase transition per- 
sists in the circumstances we believe to hold experimentally, as we shall 
discuss after presenting the calculations. 

We note also that atomic mobility occurs within finite liquidlike clusters 
that exist below the transition. Thus the fluidity of the system would in 
principle persist below T,,. 

In the usual percolation problem with z = 1, all pN liquidlike cells are in 
clusters if one counts all isolated liquidlike cells as clusters of size one. That 
is no longer true when z # 1. Only a fraction a,( p) of the pN liquidlike cells 
are now in the cluster [ a , ( p )  = 11. The cluster distribution C,,(p),  Y = 
1,2,. . . , is normalized so that"' 

where P , ( p )  is the percolation probability, the probability of being in the 
infinite cluster [ P,( p) = 0, p <pc,] .  Thus the number of cells in finite clus- 
ters is Npa,(p)Z,C,,(p), that in the infinite cluster is Npa,(p)P,(p) ,  and 
the total in clusters is Npa,( p). 

The reader is referred to recent reviews"63 ' I 7  of percolation theory for 
z =  1 for a more complete study. Here we summarize some important 
results, which we expect to carry over to the environmental percolation 
problem with z#  1. For p >p,, and 1 p -pcz I << 1, P,( p )  is assumed to have a 
scaling form, 

which defines the critical exponent p,. For z = 1, PI -0.39 in three dimen- 
sions, and pc1 -0.15 for the continuum percolation problem and pCI -0.18 
for the site percolation problem on a face-centered cubic lattice. Numerical 
results are not available for z > 2. However, we do expect a larger value of 
p,, for z > 2 and a slower growth of the finite cluster, that is, a larger value 
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of p, for z >  1. Stauffer has shown that in mean field theory for z =  1, the 
cluster distribution function Cuz( p )  has a particularly simple form. Gener- 
alizing his results for all z, we find”’ 

(4.4a) 

& = 4 I ( P c z  -P) (4.4b) 

- Cv,(p)=qov  ‘~exp(Ev‘~) 

0, =p,-%;I =(y ,  + & ) - I ,  7, =2+6,-’ (4.4C) 

where the qo and q1 are positive quantities that may depend analytically on 
p and depend on the specific percolation problem. The terms T, and u, are 
the critical indices appropriate to the cluster distribution function Cuz( p ) .  
They are related to other critical indices, /?,, y,, and 6, through (4.4~). 
Equation 4.4a can be generalized beyond the mean field approximation toll9 

where g is a universal function of its argument, depending only on dimen- 
sion and z .  

In the absence of theoretical results for the exponent &, which we need 
in later sections, we turn to some experiments on magnetic alloys for useful 
information. There are several systems- for example, Ni-Cu, in which a 
magnetic atom m i )  must have a minimum number of llke neighbors be- 
fore it can have a magnetic For Ni-Cu, n =  12 and z=8. The 
percolation threshold appears at  pc8 = 0.44, and our estimates give 0.5 < 
& < 0.7 for &. These estimates were made by analyzing the p-dependence 
of the low-temperature magnetization above but near pc8.  They are neces- 
sarily very crude because of the limited accuracy of the data, contributions 
to the magnetization from finite clusters (superparamagnetism plus weak 
ferromagnetic coupling of the finite clusters), and a probable dependence 
of the Ni moment on the number of Ni neighbors above the critical value 
of t = 8. A more refined description must await further investigation (e.g., 
by Monte Carlo techniques). The essential point is that there exists a well- 
defined p,, and a characteristic exponent p, whose values we do not yet 
know. 

V. COMMUNAL ENTROPY AND THE FREE-ENERGY 
FUNCTIONAL 

Atoms can diffuse when a fluctuation in cellular volume of atomic size 
urn or greater occurs. Such large fluctuations can arise with significant 
probability only from redistribution of the free volume (free exchange of 
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free volume) within a liquidlike cluster in the present picture; otherwise an 
activation free energy is required. The total free volume within a cluster of 
size v must therefore be greater than urn for diffusion to occur. 

Y 

2 (u i  -uc)>urn for ui >uc (5.1) 
i -  1 

The average free volume within a liquidlike cluster is U,, given by (3.6). Thus 
for diffusive motion to take place within a given cluster, its size v must be 
at  least urn /C,, 

We call all clusters liquidlike. However, a cluster for which (5.2) holds is 
liquid, rather than liquidlike, in the sense that each atom or molecule within 
it moves in time through the entire cluster. That is, each molecule finds 
accessible the configuration space of every other molecule in the cluster. We 
now suppose that exchange of free volume between solidlike and liquidhke 
cells is so slow compared to exchange between liquidllke cells that we can 
ignore it in the computation of equilibrium properties. We return to this 
point later. As we shall see in Section X, the two time scales differ by much 
more than 2 orders of magnitude, 

In a liquid cluster, an atom or molecule is not confined to a particular 
cell or cage but can wander over the entire volume of the cluster. The com- 
munal entropy'". 12' of a single cluster of size v > v m  is then given by 
kvln(v - l)V,, where U, is the average configurational volume of a liquidlike 
cell, 

where 

s ( u ) =  - - af( - - k In u,( u aT ( 5  -4) 

When the infinite cluster is present, the communal entropy is greatly 
enhanced, since many atoms have the possibility of extending their move- 
ment over the entire system. Therefore,% the communal entropy is that en- 
tropy associated with the accessibility of all the configurational volume within 
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the finite liquid clusters and within the infinite cluster when present. That is,% 

03 

v - Y ,  

where Np is the total number of liquidlike cells, Npa, (p )  is the number of 
liquidlike cells in clusters, and k is the Boltzmann constant. The first term 
in (5.5) arises from finite clusters and the second from the infinite cluster. 
Note that an extra Nln N in (5.5) arises from treating the molecules as 
distinguishable. Although this term could be eliminated by treating the 
molecules as indistinguishable, it is very convenient to keep it and simply 
regard the Nln N correction as understood. Using (4.2), we can bring (5.5) 
into a more convenient form, 

where 

We have thus expressed S, in terms of p ,  V,, v,, a , ( p ) ,  C, , (p) ,  and P,(p) .  
The first two quantities depend only on P(u) ,  and in Section VII we de- 
velop a method of determining P ( u ) .  The a , ( p )  and P, (p )  depend on 
CYz( p). Because CYz( p)  enters the free energy through S,, (5.6), it should be 
determined by minimization of the free energy. As we see below, the re- 
sults are the same as those of a percolation problem somewhat different 
from the environmental percolation problem described in Section IV. The 
essential point is that clusters with v 2 v,,, are favored because they contrib- 
ute to the communal entropy, while the formal structure of the problem re- 
mains that of a percolation problem. 

We now consider the effects of the communal entropy on the features of 
the percolation problem. Clusters of sizes less than v, tend to be sup- 
pressed; a , ( p )  and A , ( p )  move toward unity. The problem moves away 
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from environmental percolation based on an uncorrelated distribution of 
cells toward the continuum percolation problem studied by Scher and Zal- 

and Webman et al.I3’ These, together with the considerations in Sec- 
tion V on Ni-Cu alloys, give us very rough bounds on the values of p,, and 
p, appropriate to the present percolation problem,94 

0.15 5pc ,  50.45 for 0.4 5 p, 50.7 

Qualitatively speaking, as p increases toward p,,,  the mean cluster size 
grows; that is, the scale of v’s important in (5.6), grows until at p,, an in- 
finite cluster emerges. Above p,,, the percolation probability P,( p) in- 
creases. Thus S, shows a monotonic increase with p ,  with maximum and 
possibly divergent slope as p+p,, t O + .  

We can go no further toward the explicit evaluation of S, without intro- 
ducing more information about C,,,( p). Since the results we obtained for 
the cluster distribution function in Section IV are valid only in the pure 
percolation problem, they do not apply here. The cluster distribution func- 
tion can be obtained in a mean field approximation by minimizing the free 
energy with P( u), therefore p fixed. The C,,,(p) enters only through the 
communal entropy and a cluster surface free energy discussed below, which 
has not yet been explicitly introduced into the free energy. The procedure 
developed by Fisher13’ in his study of the droplet model of condensation 
can then be followed with only slight m~dification.”~ The entropy now 
contains an additional vln v contribution for “droplets” with v >  v,, which 
must be included. 

We consider the energy E,, of a cluster of v molecules. For all but the very 
small clusters, we can decompose E, into a bulk term proportional to the 
number of molecules in the cluster and a cluster surface energy contribu- 
tion, l 3  I 

E, =vEo + W (5.8a) 

where E, is the average energy per molecule. A positive surface energy 
contribution W is given by 

w-ws (5.8b) 

where s is the surface area of the cluster. Similarly, we expect the entropy 
of the cluster to have the forrnl3’ 

s,, = vSo( v )  + 0 s (5.9a) 
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Here S,(u) is the average entropy per molecule 

So( v ) = So + ka, ( p ) In v for v > vm 

=so for v<um (5.9b) 

where So is independent of v and w is the surface entropy density. We have 
added the vln u contribution for v > vm, which follows from (5.5) and (5.6). 
This is where our result differs from the usual droplet model. The surface 
entropy density w is a measure of the number of different configurations of 
the cluster that have the same surface area. Fisher constructed the classical 
configurational partition f ~ n c t i o n , ' ~ '  

(5.10) 

where the integrations are restricted to configurations in which u molecules 
form a drop. Assuming further that the pair interaction potential has an in- 
finite hard core and an attractive square well, Fisher showed that 

(5.1 1) 

where the combinatorial g ( u ,  s) is the number of configurations of v in- 
distinguishable molecules that form a drop of surface area s. Although our 
problem differs from that of Fisher in that we have clusters within a con- 
densed phase instead of drops in a gas, we can reinterpret what he does in 
terms of a Landau-Ginzburg-Wilson type of theory and carry (5.11) over 
into the present problem. The derivation of the Landau-Ginzburg-Wilson 
theory is discussed in the next section. 

The crux of the analysis is the factor g( u ,  s) entering (5.1 1). It is conve- 
nient to define the additional quantityI3' 

"ElJ 4AT) 
= exp( - - ) - 

k T  V 
(5.12) 

where G u ( T )  is related to the bulk entropy per particle So(u) in a larger 
cluster by the relation 

1 
So(u)=k lim - lnGv(T)  

Y + c c  y 
(5.13) 
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Fisher points out further that the surface of a cluster cannot exceed some 
constant multiple of the number of the particles, nor can it be less than some 
minimum surface attained by some approximately spherical cluster; thus 

u p '  - I'd Is 5 a,v (5.14) 

where a, and a, are constants. Since the terms in (5.12) are all positive, the 
standard maximum term argument leads one to the conclusion that for v 
large, G,(T) must have the form13' 

InG,(T)=lng[ v ,  S( v ,  T ) ]  -BwS(v ,  T )  

+ ?In v + O( y o )  (5.15) 

where S=S(v,  T) is the most probable or mean surface area and + is a posi- 
tive constant. For the surface to be well defined, we must have S/v+O as 
v+m, in which case it is convenient to write simply 

S=aOvo for O<o<l (5.16) 

where (I could be a function of T. From (5.13) to (5.16), we see that 
k In g( v, S) varies as So( v )  for large v, and the difference for smaller v is a 
measure of the surface entropy wS 

kln g (  v ,  S) - vSo( v )  = U S  (5.17) 

as v+m. 
Combining these results one finds 

vSo( v )  S( w - w T )  - i lnv+lng ,  (5.18) kT lnGv(T)m- - k 

This expression is different for v > v,,, and for v < v,,, because only clusters 
with v > v,,, contribute to the communal entropy So( v) and are therefore 
favored. This difference in the dependence of So(v) and the resulting dis- 
continuity at v = v,,, is the only difference from the usual percolation theory. 
The desired cluster distribution function CV2( p) is porportional to q, (T) /  V, 
obtained by substituting (5.18) into (5.12) and treating p as a function of 
temperature T. Thus C,,(p) is the same as that already given by (4.4) with 
~=?-u~(p ) fo rv>v , , , .  Forv<v,,,,Tisreplacedby?>~, so thatclusterswith 
v < v,,, are suppressed. Beyond mean field theory, we expect C,,(p) to have 
the scaling f01-m"~~ 13' given by (4.4) with comparable changes, which will 
be sufficient for the present discussions. 
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We can now evaluate S, near p,. Inserting (4.5) into (5.6) and replacing 
the sum over v by an integral leads for p near p, and /3 < 1 to: (we drop the 
subscript z for convenience): 

S, = NkPU,( P 1 { A,( P )In 6, + BT I P -Pc I 
+ B I P -p, 1 %  P -P,)ln[ NPU,( P)B I P -P,I P ]  } +Sf (5.19) 

for the communal entropy, where u ( x )  is the unit step function, S: stands 
for analytic contributions to S, and 

(5.20) 

the plus corresponding to p <p, and minus to p >p,. 

S, is a monotonic function of p and is sketched in Fig. 8. The slope of S,, 
We know that as p+O, S,+O, while as p+l, S,-+Nkln( Nu). From (5.9), 

(5.21) 

diverges as p+p, for ,4 < 1. The behavior of the slope of S, and, therefore, 
the value of p, turns out to be critical in determining the order of the phase 
transition at T,, as discussed in Section VI. 

will equal or exceed unity. Such a 
situation may occur in more complex glasses (e.g., polymer glasses). In such 
systems, the moving units are molecular segments constrained by their 
connections to the rest of the molecule. Such constraints imposed by the 
complexity of the material increase t and otherwise decrease the growth rate 
of the clusters with increasingp, increasing the value of p. If this were the 
case, then 

There is also the possibility that 

(5.23) 

where A, is a constant. Thus the slope of S, is constant as p+pc for /3 2 1. L’m N k en Vs 

pc 2 ’ Fig. 8. Sketch of the communal entropy S, as a 
0 

P function of the fraction of liquidlike cells p .  



486 G .  S.  GREST A N D  M. H. COHEN 

VI. MEAN FIELD THEORY 

A. Statistical Mechanics 
Now that we have an expression for the communal entropy, we can de- 

rive the probability distribution P( w ) .  We start from the configurational free 
energy 9 given by 

, - P F =  1 D[ Nle-BY"1 (6.1) 

Here D[ N ]  is the volume element in the N-particle configuration space, and 
V[ N ]  is the sum of the pairwise interaction potentials among the N mole- 
cules. We deal with the case of spherical molecules for simplicity; the 
results are general. We must convert (6.1) into an integral over a set of N 
independent dynamic variables that have a monatomic relationship to the 
cell volume variable u we have used thus far. Consider the configurations 
[ N - i ]  of the N- 1 molecules other than the ith that contribute signifi- 
cantly to (6.1). These produce an interaction potential with the ith mole- 
cule, 

where V(Ic -61) is the pairwise interaction, which for the densities we are 
dealing with has closed contours (defining a cell for the i th molecule) up to 
values of Yso large that they are unimportant in (6.1), a consequence of 
the steepness of the repulsive part of V. For fixed [ N - i ] ,  the volume T~ 

accessible to the center of the i th molecule is the volume inside the contour 
of constant Y[ { I N- i] corresponding to the largest value of Vof signifi- 
cant probability Y*. Fortunately, we do not need to know V* because of 
the steepness of the repulsive part V ;  using the contour V[ < I N -  i ]  = 0 gives 
us adequate accuracy. We therefore define, formally, 

where u= 1 for Y<O (i.e. for x inside the contour V=O) and zero other- 
wise; T~ is the volume inside this contour. 

We now transform (6.1) into an integral over the 7's 

(6.4a) 
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where 

There is a monotonic relationship between T ~ ,  the volume accessible to the 
center of the molecule within its cell, and ui, the volume of the cell. We can 
thus transform (6.4) into an integral over the ui, exponentiating the Jacobian 
and absorbing it into the free energy F [ u ] ,  

The results embodied in (6.4) and (6.5) are obviously too formal to be 
directly useful, so we assume further that the probability P [ u ] =  II ,P(u,) .  
We can therefore take for F [ u ]  form we have developed thus far, (3.3) as 
modified in Section V to include cluster surface energies. The F(u) de- 
pends only on the probability distribution P(u),  the cluster sue distribu- 
tion C J p ) ,  and p. Thus (6.5) can be converted into a functional integral 
over P ( u ) ,  C, , (p) ,  and p ,  and F is replaced by F [ P ,  C, p ] ,  a Landau- 
Ginzburg-Wilson free-energy functional 

The transformation from [ N ]  to [ T I  has not been shown to exist. One re- 
quirement for its existence is that T~ be finite for any configuration [ N - i ]  
of significant probability. Assign each molecule j P i  a diameter equal to the 
separation at which V(I 6 - 5 I) goes through zero. Define a continuous per- 
colation problem withp' the fraction of the space outside the molecules. As 
long as p' is below a percolation threshold p i ,  all the T~ will be finite. We 
can expect pi to be substantially larger than the value for the purely ran- 
dom case, 0.15, because large voids are suppressed by the large free energy 
they require and because the minimum linear dimension of a continuous 
void must exceed a molecular diameter. For hard spheres, the density of 
melting is two-thirds of the density of the ideally close-packed crystal. The 
density for dense random packing (the glass form) is 15% larger than that 
of the crystal. Thus the thermal expansion on melting is about 18'36, close 
to the random percolation threshold and presumably much less than p i .  We 
expect therefore that the T~ are finite and that the transformation [ N 1 - 4  T ]  

exists. 
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To find CV2( p), P( u), and p itself, we do a mean field calculation. We 
have in fact already found C,,(p) by such a mean field calculation in Sec- 
tion V. We require that 6F/6X = 0 subject to normalization conditions- for 
example, 

JornP(o)du=l 

where X is Cvz( p), P( u), and p in turn. In as much as CPz( p) has already 
been studied, we find P(u) and p in the present section. We choose 
F [ P ,  C ,  p] to be of the form given by (3.3), insertf(u) from (3.4) and (3.8), 
and S, from (5.6). We note thatf(u) in (3.3) is regarded as independent of 
P ( u )  and yet that in (3.4) and (3.8)f(u) has in it an implicit dependence on 
P( u) through the presence of 4. The most convenient way to resolve this 
inconsistency is to treat f( u) as though it were a self-consistent field, itself 
the results of a first functional derivative of the total local free energy with 
respect to P ( u ) ,  and not differentiate it further in the variation of 
F [  P, C ,  p]. Otherwise, to avoid multiple counting, we would have to deal 
more explicitly with a complex nonlinear functional of P( u) with no direct 
physical interpretation. Moreover, the introduction of Cf into f( u) forces it 
into the role of a self-consistent field. 

The term P(u) enters both explicitly in F [ P ,  C ,  p] [cf. (3.3)] and im- 
plicitly through the presence of v,,,, O,, and p in S, [cf. (5.2), (5.3), and (4. I)]. 
A convenient simplification of (5.3) is 

v, =~,(~,)+u;(u,)~f  (6.7) 

We now write the communal entropy in the form 

Its variation is, from (6.7), (3.6), (5.2), and (4.1), 

SS, = N k J m  [ R , (  u -uc) - R 2 ]  u( u - u,)6P( u )  du (6.9a) 

(6.9b) 

(6.9~) 

(6.9d) 
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where (6.9~) is obtained from (6.9b) and (5.6). Inserting this into the varia- 
tion of F [ P , C , p ]  gives us the desired expression for P ( u ) ,  

P(v)=pG;'exp( - T) v-vc 

where 

for u > v C  (6.10b) 

(6.1 1) 

(6.12) 

(6.13) 

(6.14) 

Our result for v > uc is essentially identical to that derived earlier by 
Cohen and Turnbul18" for the most probable distribution of free volume 
x, P(x)=y/v,exp( -yx/uf), where u, is the free volume averaged over all 
cells, u, =pG,, and y is a numerical factor between and 1 introduced to 
correct for overlap of the volume between neighboring cells. Comparing the 
exponent yx/u, = ( y / p ) x / G ,  with the exponent in (6.10b), (v- uc)/u,, we 
see that the two distributions are identical if x is taken as (v-uc) and y is 
taken asp,  which would be close to $ in the temperature region considered 
in Ref. 88. 

Equation 6.13 is a self-consistency condition for p ,  since its right-hand 
side contains p through the presence of R I in r of (6.12), and R ,  in Q of 
(6.14). We must therefore solve (6.13) before we can calculate the heat 
capacity or thermal expansion and characterize the glass transition. In- 
deed, (6.13) is precisely the mean field equation forp obtained by the vari- 
ation of F directly, as shown below. 

B. p and the Order of the Transition 

The self-consistency condition (6.13) is the key to the glass transition. To 
make its content and meaning clearer, we derive it by an alternative proce- 
dure. Instead of considering all possible variations of P(v) that leave it 
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normalized, we consider only those that leavep invariant. Variation of F [  PI 
subject to these two constraints leads again to (6.10) for P ( u )  but with p 
unspecified, that is, without (6.13). Insertion of P( u )  in the form (6.10) back 
into (3.3) gives 

= 4( p )  + Nfo (6.15) 

for the free energy as a function of p .  In (6.15), - NkT( 1 -p)ln ug is the part 
of the free energy 4 ( p )  associated with the solidlike cells, 

that associated with the liquidlike cells, 

the entropy of mixing of solid- and liquidlike cells, and N k S  the communal 
entropy. 

The values of p that make F [  P ,  C, p ]  in (6.10) stationary are obtained by 
differentiating (6.15) with respect to p and setting the result equal to zero. 
Carrying out the differentiation and simplifying the result by using the 
stationarity of F [  P ,  C ,  p ]  with respect to P ( u )  at constant p gives (6.10) as 
the condition of stationarity of the free energy with respect top.  We now 
study its solution in each of the three cases /3 = 1, /3 < 1, and /3 > 1. 

Returning then to (6.13), we see that it has the form p = h ( p )  = [ l  + 
Q u , T ] - ' ,  where ug is independent of p and r is a smoothly decreasing 
function of p .  Both R ,  and 5, are essentially independent of p as shown be- 
low, but R ,  is nonmonotonic, going to - 00 atp, because of the divergence 
to + 00 of a S / a p  for /3< 1. Thus p ,  goes to - 00 atp,, Q to zero, and h ( p )  
to unity. Therefore (6.13) does not possess a solution for p in the vicinity 
of p, ,  and p cannot increase continuously through p ,  with increasing tem- 
perature. The graphical solution of (6.13) is sketched in Fig. 9 for several 
temperatures. There is a bifurcation from one solution p I >p ,  at high tem- 
peratures to three solutions pI  >p,,  p z  <pc,  p:, < p ,  at low temperatures. 
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h ( p )  ,/ ; 
Fig. 9. Graphical solution of (6.13). Solid ( u ) ,  dotted (b), and 

dashed ( c )  curves correspond to h ( p )  (see text) for p< 1 at three 
, different and increasing temperatures. The circles give the values 
/ of p that satisfy (6.13). Case u has three solutions, and case c has 

one. Case 6 corresponds to the bifurcation point between u and c. 

pq 
_...’ 

0 ~~ - ’ ~~ 

P C  
P 

Recall that these pi are stationary points for the free energy ‘ 3 ( p ) .  We 
therefore pass from a single minimum in T ( p )  at high temperatures with 
p >pc, corresponding to the liquid, to three extrema in T( p )  at lower tem- 
peratures. Figure 10 sketches these features of ‘3( p). There are two minima 
a t p ,  > p ,  andp, <p, ,  separated by a maximum at p z  at lower temperatures. 
At some temperature T,, T ( p l ) = 9 ( p , ) ,  and there is a first-order phase 
transition. Below q, ‘3( p , )  > ‘3( p , ) ,  and the minimum free-energy state has 
p = p 3  <pc corresponding to a solid, the glass. Above q, 9(p l )  <‘3(p3),  and 
the minimum free-energy state has p = p  , >pc, corresponding to the liquid. 
At a temperature T, > T, (curves b in Figs. 9 and lo), the minimum at p ,  
disappears, and the glassy state is no longer locally stable. The minimum at 
p ,  persists down to T=O, so that there is no critical end point for the liquid 
state. This results only because (dS/dp)lpc= 00. The expected dependence 
of p on T in the vicinity of T, is shown in Fig. 11. The persistence of the 
minimum at p ,  down below T, can give rise to hysteresis and relaxation ef- 
fects associated with cooling, and the persistence of the minimum at p ,  up 
to T, can give rise to similar effects on heating. These are not the relaxa- 
tion effects commonly observed at T,  5 T, that are associated with non- 
equilibrium liquid states. 

Fig. 10. Sketches of the free energy Gs(p) as a func- 
tion of the liquidllke cell fraction p .  Curves u, 6, and c 
correspond to those so labeled in Fig. 9. The positions of 
the solutions of Fig. 9 are indicated by dots. Curve u’ 
corresponds to S ( p , ) = S ( p , )  at the temperature Tp ,  
where the first-order phase transition occur. Crosses em- 
phasize the l n f i t e  negative slope of Sa t  pc,  the percola- 
tion threshold. 

- P  0 
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- ~ -L ._ Fig. 1 I .  Sketch of the probability of liqludlike cells p versus 
T T near T, for p< I .  

p 
T P  

The first-order transition is a direct result of the divergence of a S / a p  as 
p+pc for /?< 1. The latter is caused by the rigid and arbitrary manner in 
which the cells were divided into liquid- and solidllke cells. We discuss be- 
low the consequences of eliminating this unphysical feature of the model. 

For /?> 1, a S / a p  is finite a t  pc, though nonanalytic, and therefore R ,  is 
always finite. The order of the transition now depends critically on the value 
of (aS /ap) Ipc .  When this quantity is large, the function h ( p )  is similar to 
that found for /?< 1. That is, h(p , )  approaches 1 and there are three solu- 
tions for p for some range of temperatures. In our search of the parameter 
space, as discussed below, this occurred most of the time. For smaller val- 
ues of ( a S / a p ) l ,  coupled with a slow variation in a S / a p  versus p ,  h ( p )  
will vary more slowly as a function of p and can give rise to only one solu- 
tion p for each T that satisfies (6.13). Nevertheless, S changes its functional 
dependence on p at p,, and there is a phase transition. Since p is a continu- 
ous function of T, the transition is second order, with corresponding to 
p =p,. Thus the transition for p 2 1 may be either first or second order, de- 
pending on the value of (aS/dp)l,,, and the magnitude of the variation in 
a S / a p  versus p .  We find, as discussed in Section VIII, that the former is 
most often the case. This situation with /?2 I may correspond to the case 
of the complex organic and polymeric glasses, where the infinite cluster has 
difficulty developing because of the additional constraints. Therefore /? in- 
creases and may become greater than or equal to 1. Even if /? remained less 
than unity in the complex glasses, the interplay between the configura- 
tional entropy (present in them but not in the simple glasses) and the 
communal entropy could lead to a variation in the total entropy, with p 
characterized by an exponent f i  near pc, with f i = / ? + x  > 1. Thus x de- 
scribes the retardation in the growth of the internal configurational en- 
tropy imposed by the constraints on the free volume. If either /? o r b >  1, 
our thermodynamic results for some values of the parameters may be com- 
pared to those for polymers of Gibbs and Dimarzio,” who predict that the 
glass transition is a second-order phase transition in the limit of slow cool- 
ing. We make this comparison in Section VIII. 
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VII. FREE VOLUME AND VISCOSITY 

In the preceding section, we found that p is usually a discontinuous 
function of T. Here, we show that both the free volume o/ and the viscosity 
77 are only weakly dependent on p and therefore do not reflect strongly the 
existence of the transition. 

The free volume i$ is given by the self-consistency condition, (6.13). The 
contribution to R ,  from aS/av ,  can be neglected because C,,(p) ,  the 
number of clusters of size vm, is exponentially small compared to the total 
number of clusters present. We have, after combining (3.8), (6 .9~)  and 
(6.12), a simple equation for v/, 

Here A , ( p )  measures the number of clusters that are larger than some 
minimum value v, and a , ( p )  measures the number of liquidlike cells that 
belong to liquid clusters. As we found in Section VI, clusters of size V<V, 
are less favored because they do not contribute to S,. We expect the num- 
ber of these clusters to be reduced compared to an ordinary percolation 
problem; therefore a , ( p )  and A,( p )  should be close to unity for p near p ,  
and nearly independent of p .  In the extreme limit that no clusters of size 
v < v, are allowed, a,( p )  and A,( p )  would be identically equal to one. Thus 
(7.1) gives a cubic equation for Gj that depends on T and only very weakly 
on the probability p .  Neglecting this dependence on p by setting a,( p )  and 
A , ( p ) =  1 ,  we see is a smooth function of T near Tg. The contribution on 
the left-hand side of (7.1) arises from the communal entropy and would be 
absent if we had neglected the communal entropy in our deviation of the 
free energy. The first two terms on the right-hand side follow from our 
choice of { in (3.8). The second term, which depends on I , ,  is similar to the 
entropic contribution R , ,  except for the temperature dependence. The latter 
is important at low temperature, where one can neglect the contribution on 
the left-hand side. This important difference in the temperature coeffi- 
cients arises because S, enters the free energy only as TS,. Thus the depen- 
dence of {, on 6, in (3.7) cannot be an entropic effect, since it has both the 
wrong T dependence and sign. For higher temperatures, R,Ef is constant, 
and including it in (7.1) does not affect the general form of 67. Thus includ- 
ing R ,  in the expression for u/ will make only a quantitative, not qualita- 
tive, modification at high T and no change at low T, and we can absorb its 
effect in the remaining three parameters. This helps to reduce the prolifera- 
tion of free parameters and gives a simple result for the free volume that is 
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valid at all temperatures, 

( T - T o ) 2 + A  k 
4u { ""I (7.2) 

where kTo = kT, + u&,. Equation 7.2 is noteworthy because U; vanishes only 
as T goes to zero, in contrast to the earlier view that the free volume 
vanishes at some finite temperature. This limiting behavior is independent 
of the exact form of R ,  or { and follows from (6.12), since R, is finite as T 
goes to zero. Because of the explicit free-volume dependence in 1 in (3.8), 
6, has a characteristic dependence proportional to (T- To) at hgh temper- 
atures. This introduction of 6, into {, (3.7), as a phenomenological way to 
account for the effect of neighboring cells, does not affect the low- 
temperature behavior of ?if, only the high-temperature region. 

The original work on the free-volume model by Cohen and Turnbull*'* " 
showed that the fluidity obeyed the Doolittle equation (2.8). We show that 
the percolation ideas developed in this paper give rise to the same equation 
for the fluidity. 

Let D, be the diffusion coefficient for a particle moving in a cluster of 
size u. The total diffusion coefficient D is then given by 

From Ref. 88, we have that 

where U is the average gas kinetic velocity, ?(u) is a correlation factor that 
may be associated with the magnitude of each displacement within the 
cluster, and a ( u )  is a mean net displacement, which depends on the 
immediate neighborhood of the moving particles and incorporates cooper- 
ative effects. The ?( u )  must go from 0 at u = 0 to 1 at u = 00. The basic as- 
sumption is that ?( u )  is a step function such that it is zero for u < u* and 
unity for u > u * ;  that is, for u < u* the only motion that takes place is oscil- 
lation within a cage, oscillation having a vanishing correlation factor. Here 
u* = u, +urn - bii / ,  where b is a constant and u* is the minimum size of the 
cell necessary to accommodate two atoms. The correction b6, in u* is pre- 
sent because the second atom does not have to fit entirely into the cell but 
can use some of the free volume of the neighboring cells. The value of a ( u )  
can be chosen to be proportional to u in the small u limit. Then since P,( u )  
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= p  r exp[ - I'( u - q)], we have 

D = Dopa,( p ) A , (  p)e - ' m / ' ~  (7.5) 

where we have added the contribution from the infinite cluster forp >pc and 
Do is a constant. We have included in D only the contributions from the 
liquid clusters. Equation 7.5 can be rewritten in the form 

when om /u/ <<V, the average cluster sue, then 

v m  z a P & l  
v- 1 

and one obtains the Doolittle equation. The latter is valid forp near and 
greater thanp,. Forp<<pc, (7.6) is no longer valid because a , ( p )  and espe- 
cially A,(p)< 1. However, p<pc probably occurs only at lower tempera- 
tures in the region that is not experimentally accessible. Since D depends 
onp, we could expect a discontinuity at Tp that is not seen experimentally 
because the material goes out of equilibrium at and T, < 5. The value 
of the viscosity at T, is usually between lo8 and 10" P. Thus a value of 
only 20 to 30 K below would usually give a value of q too large to mea- 
sure, even if an equilibrium measurement could be made. In any event, the 
jump in q would be difficult to detect. 

In fitting the experimental data for q to the Doolittle equation, Gf is suc- 
cessfully approximated as proportional to T- TOH for the high-temperature, 
low-viscosity regime, and to T- To, for the lower temperature regime, 
where T,, may vanish. A viscosity in the range 104+106 P is typical of the 
crossover region separating these two regimes. Our theory gives a formula 
for Cf, (7.2), which is more general and can be expected to fit in both re- 
gimes. We have fitted the viscosity of several organic glasses, &O, and 
0.60KN0,~0.40Ca(N0,)2 , for which data are available over a large range, 
to 

(7.7) 
2B 

log, ,~=A + 
T -  T , + [ ( T - T , ) ~ + ~ " ~ s ~ T ] ~ / ~  

where B=v,S,log,,e. The fit was excellent for all available data, and the 
parameters of best fit are shown in Table 11. The goodness-of-fit parameter 
x 2  =Z[(log,, qcal - log,, qexp ) * ]/(N-4), where N is the number of data 
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points, was typically between 0.001 and 0.007 for the glasses considered. 
The error in the fit  is comparable to the experimental error. For all the 
glasses in Table 11, 7 was measured over at least 12 orders of magnitude. 
We find from the fits that To > T,, for each of these glasses. Included in the 
fit were two glasses, o-terphenyl and tri-a-naphthylbenzene for which 
ToL #O, whereas the other four showed Arrhenius behavior at  low temper- 
ature, ToL+O. The fits for tri-a-naphthylbenzene and for o-terphenyl are 
shown in Figs. 12 and 13, respectively. The best fits to the Doolittle equa- 
tion with 15, a ( T -  TO") are shown by the dashed curves in Figs. 12 and 13. 
We also tried fits where the preexponential A was temperature dependent, 
since q-T' / 'D- ' .  However this dependence is so weak compared to the 
exponential dependence on u,,, /C, that the fits are comparable to those with 
A constant. 

The generalization of these results to include the effects of the pressure 
P is straightforward. The free energyf( ti) then contains an additional term 
Po. The effect of the term on P( u ) ,  u > u,, is simply to change lo +lo + P. 
Thus the free volume has the same form as in (7.2) with lo-$o + P. The 
characteristic temperature To then has the form 

Ua p To( P)' To + - k 

High-temperature viscosity measurements3* a t  elevated pressure for 
0.62KN03. 0.38Ca(N03), were fitted to the usual three-parameter Doolit- 
tle equation with a To that had a linear dependence on pressure as in (7.8). 

TABLE I1 
Parameters Used in the Fit for the Viscosity 7 (7.7) 

Tri-a-naphthylbenzene' -2.44 345.3 10.6 401.8 
o-Terpheny 1 -2.65 253 .O 6.4 278.7 
a-Phenyl-c-cresol' - 1 . 1 1  92.4 2.9 252.8 
Sal0lC -0.52 25.3 0.94 264.6 

0.60KNO3.0.40Ca(NO,), - 1.79 362 .O 6.4 365.4 
8203 0.63 1825.4 72.6 609.5 

*Ref. 53. 
bRefs. 54 and 55. 
'Ref. 54. 

Ref. 60. 
=Ref. 40. 
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The fit gave a value of u, = 1.1 A3. Unfortunately, we know of no high- 
pressure, low-temperature studies of 77 that can be used to check fully the 
temperature and pressure dependence of (7.2) and (7.6). Recently there have 
been some high-pressure studies ( ~ 5 1 0 ~  P) for a number of inorganic 
glasses at room t e m p e r a t ~ r e . ' ~ ~  Further studies as a function of both T and 
P would be very useful for testing the present model. 

From Table I1 and (7.7), we obtain the value of 260.5 for um/u, in 
0.60KN03 .0.40Ca(N03), . The two compositions (0.62 - 0.38 and 0.60 - 
0.40) are close enough for the difference to be ignored. These values of 
um/uu and u, lead to a value of om of 237 A3. This corresponds to a radius 
rm of 3.8 A, which is to be compared to the ionic radii of 1.33 A for K + ,  
0.99 A for Ca2+, and approximately 3.0 A for NO;. The comparison shows 
clearly that the diffusive units are most probably not the individual ionic 
species but complexes instead. 

are nearly 
equal in many materials (e.g., see Table I). This can be understood in our 

Angel1 and c o - ~ o r k e r s ' ~  have pointed out that T, = TOH and 

Fig. 12. Viscosity versus temperature for Fig. 13. Viscosity versus temperature for 
o-terphenyl based on data of Refs. 54 and 55. 
The solid curve is the best fit to (7.2) and 
(7.6). for the parameters given in Table 11. 
The dashed curve is the best fit with 0, a T-  
TO", TOM =248.K. 

tri-a-naphthylbenzene, based on data of Ref. 
53. The solid curve is the best fit to (7.2) and 
(7.6), for the parameters given in Table 11. 
The dashed curve is the best fit (Ref. 53) with 
t7, aT- TOH, TOH -342°K. 
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model as follows. From (7.6) and the Stokes-Einstein relation G, extrapo- 
lates to zero at T, in our theory. However, if 6, +O, then p+O from (6.13), 
so that the communal entropy and entropy of mixing also vanish. The only 
nonvanishing contribution to S is the entropy of the solidlike cells, which is 
essentially the same as the entropy of the crystal. This is true because no 
liquidlike cells remain when p goes to zero. Thus according to our theory, 
extrapolating the entropy to the crystal values using C, data from essen- 
tially the same range of temperature as that from which the extrapolation 
of 9 to infinity was made, must yield 

T,  N T, (7.9) 

because p=O both at T, and at  T,  and p is a single-valued function of T. 

VIII. EQUILIBRIUM THERMODYNAMIC PROPERTIES 

A. Specific Heat 
The specific heat can be calculated in the vicinity of Tg from C, = 

T(aS/aT), where from (6.15), 

S = N k  -(l-p)ln - -pln -pR  6 + S  { ( l i p )  (:,) I '  ) (8.1) 

The heat capacity is the sum of contributions from the configuration and 
communal entropy, 

and 
as ap 

cpc0- = T- ap - aT 

where we assume that p is a smooth function of T away from rp  so that we 
can use the chain rule. We know little about 6, = a S / a P  except its scaling 
form near p,. From (5.21), we know that ep a Ip-p,I -a where a= 1 -p .  
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With our earlier estimates of /3, we crudely estimate a to be positive and in 
the range 0.3-0.6. Note that the usual exponent a for the percolation prob- 
lem is negative, since the entropy is related to the configuration probability 
of being in a cluster. Here the communal entropy is present and results in 
a different expression for a, dependent only on 0. For the critical contribu- 
tion to c,, which is dominant in the vicinity of p,, we take 

-a 
P -P, E(P, -P) 

Pc 

for p <p, and the same function with primed parameters for p >p,. We set 
D = D' and E= E' because these contributions arise from analytic terms in 
S, that are continuous through p,. We also set A' > A ,  because the presence 
of the infinite cluster makes a large additional contribution to S, and there- 
fore ep abovep,. 

To complete the calculation of C,, we must know the temperature de- 
pendence of ij,, u,., and most important, p .  This can only be done by solv- 
ing the self-consistency condition p =h(p) ,  (6.13), in more detail. To 
reduce the number of free parameters, we use the viscosity data fitted by 
the parameters in Table I1 for the temperature dependence of 6,. For this 
reason, we limit our discussion to systems in which 17 has been measured 
over a wide temperature range. The remaining parameters are then uo, u,, 
and K to describef(u) andp,, a, A ,  A',  D, and E in c,. If we scale all volumes 
by u, taken equal to urn, that leaves only uc/uo and ~ = K U ;  as unknowns in 
f(u). The latter is constrained, since we know 

that is, the derivative of the free energy is rising more rapidly in the solid 
than in the liquidlike regimes. This gives 

where we can take GJequal to its value at T,. The value of u,/w,is taken to 
be between 1.05 and 1.15. This leaves only the parameters in C, to be de- 
termined. However, these are constrained by the requirement that for three 
solutions of p in the vicinity of T, and '3( p ,) = '3( p j )  at Tp ,  which should 
satisfy the condition T,  I T, < T,. Here T, is the temperature at which the 
system falls out of thermodynamic equilibrium for the experimental heat 
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capacity measurements. We also require that ACp = CpOiquid) - Cp(glass) > 0. 
This reduces the range of parameter space that is allowed. In practice, 
choosing values for p, ,  a, r7 and uc/uo effectively reduces the freedom in 
choosing the remaining parameters in 6'. We have not tried to span the 
complete parameter space but show here typical results for C, versus T. In 
the examples below, we choose a = 0.3. The results are not critically depen- 
dent on a because we have found similar results for both larger and smaller 
values of a. The important effect of the parameter a is on the size of the 
latent heat at T,. In general, the larger the value of a, the larger the latent 
heat. 

In our first paper,94 we presented the equilibrium results for C' and 0 for 
the organic glass tri-a-naphthylbenzene. For comparison, we present here 
results for the ionic glass 0.60KN0,. 0.40Ca(N03),. We find similar 
results for o-terphenyl and B,O, glasses. In Fig. 14 we show the 
result for the probability distribution function P( u )  versus v for 
0.60KN0, -0.40Ca(N03), for the parameters given in the figure legend. 
Note the bimodal distribution in P ( u ) ,  which is discontinuous at u=u,. In 
Fig. 15 we show a result for C, versus T near T,, for a set of parameters given 
in the figure legend. Since T,  is unknown for this system, we have chosen 
parameters to give T, =335" K. The rise in C, in the equilibrium liquid 
phase is characteristic of several of the organic glasses. Since the transition 
is first order, there is a latent heat at T,,, denoted by a delta-function spike. 
There may also be other contributions to C, that we have not included, but 
they should be smooth near T,. 

I I 

20 

2 

Fig. 14. Plot of the logarithm of the probability distribution function P ( u )  for 
0.60KN03.0.40 Ca(N0,)2 at T =  340°K and p -0.20. The free-volume parameters from Table 
I1  and (7.2) are used for c,, and we have chosen ~==Ku;  = 10S"K an uc/uo = 1.1. 
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T(K)  

Fig. 15. Equilibrium heat capacity Cp versus T near T p .  The transition is first order and 
the latent heat is represented by a splke at Tp in Cp. We have used the free-volume parameters 
from Table I1 for 0.60KN03.0.40Ca(N03),, To = 365.4"K, o,,,To=416.8"K, and ua/u,,, = 
0.0038. The other parameters chosen are ;= I05"K, o,/u, = 1 . 1 ,  R, =O,p, -0.15, a=0.3, A =  
0.6, A'=2.0, D =  1.0, and E=0.5, which give -335°K. 

This result cannot be compared directly to the experimentally measured 
C', since that is greatly affected by lunetic phenomena occurring around 
T,. Those measurements do not give an equilibrium result for C,, which is 
what we have calculated. 

As a second example, we have calculated the heat capacity for the 
metallic glass Auo,,,Geo,L36Sio,w4. Using the viscosity and heat capacity 
measured by Chen and Turnbull," we learn that CF/u,,, =(T-241.3)/540.6 
and T, =295" K. Results for C' versus Tare  shown in Fig. 16 for parame- 
ters given in the legend. Here we have chosen parameters to give T, =280" 
K, but the results are similar for other values of T,. Note that the heat 

1 1  
2511 f, 300 

T ( O K 1  

Fig. 16. Equilibrium heat capacity Cp 
versus T near Tp using the free-volume 
parameters for the metallic glass Au,,,, 
Geo,,36Sio,w: To =241.3"K, u,J0 =590.6"K, 
and u, =O.  The latent heat is represented by 
a spike at T p .  The other parameters chosen 
that give =280"K are ;= I05"K, uc/oo = 
1 . 1 ,  R, = O ,  pc  ~ 0 . 2 ,  a ~ 0 . 3 ,  A -0.7, A'=2.0, 
D=O.5, and E=0.30. 

)O 
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capacity decreases with increasing temperature above Tp,  as observed ex- 
perimentally. As discussed above, it is difficult to compare our results di- 
rectly with the measurements, which are not carried out at equilibrium. 

For p 2 1, the temperature dependence of p relates to the value of 
(i3S/i3p)lPr= - D> 0 in (8.5). For most values of D, the transiton is similar 
to that found for p< 1. That is, Q is very small nearp, and h(pc)S1. Th~s 
gives three solutions of the equation p=h(p )  for some range of tempera- 
tures. The only differences are a reduction in the latent heat and the intro- 
duction of a critical end point for the liquid. The latter is the temperature 
below which the liquid state does not exist. There is a much smaller range 
of parameter space for whichp is a continuous function of T through T p ,  
and a second-order phase transition occurs at T= Tp when p =pc. This re- 
quires values of D, A, and A' in (8.5) so small that C, becomes a very smooth 
function of T, with no anamolous rise. The decrease in C, with decreasing 
T is then too gradual to avoid the entropy crisis. We therefore conclude that 
although a second-order transition is possible in our model, it is very im- 
probable and does not correspond to the type previously proposed by Gibbs 
and DiMarzio. l7  In our model, internal configurational entropy is omitted, 
but entropy of mixing and communal entropy are included explicitly. In the 
entropy model of Gibbs and DiMar~io, '~  the communal entropy is omitted, 
but entropy of mixing and internal configurational entropy are included 
explicitly. By increasing the exponent p above 1, we have attempted to 
subsume the internal configurational entropy missing from our model into 
the communal entropy. The loss of the entropy catastrophe thereby indi- 
cates that this is an inadequate way to deal with the internal configura- 
tional entropy. The problem of how to incorporate communal entropy into 
the entropy theory or internal configurational entropy into the free-volume 
theory remains unsolved. 

B. Thermal Expansion 
Experimentally, the volume depends on the cooling and heating rates 

during the measurement and shows hysteresis. Here we calculate the aver- 
age volume U as a function of T; it is given by 

(8.6) 

Inserting (6.10a) and (6. lob) into (8.6), we have 

a=p( u, + 6,) + (1 -p)u, 
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Thus with the exception of p ,  the parameters in (8.7) for 0 are smooth 
functions of temperature and show no anomaly at  Tp .  However, p is a dis- 
continuous function of T at 5 and, as a result, this model predicts a jump 
discontinuity in 6 at T. The volume will show a change of slope near T,, as 
the contributions from the infinite cluster dominate for p >p,, while the 
solidlike and finite-size clusters dominate forp <p,.  In Fig. 17 we show the 
result for 0 versus T using the parameters for 6,/v,,, for 0.60KN0,. 
0.40Ca(N03), and those in the legend of Fig. 15. 

Above Tg, where the material is in equilibrium, a direct comparison can 
be made between our theory and experiment. The observed values of a?= 
dln( o / d T )  are constant there. Our theoretical values are not constant as a? 
continues to increase with T. For instance, for tri-a-naphthylbenzene, the 
observed value of 6 is 5.2 x 10-4/oK. This difference is probably related 
to our mean field theory, which neglects interaction between neighboring 
cells. These interactions should retard the growth of U in the liquid. Note 
that we have omitted from consideration the temperature dependence of uo 
and u,. These quantities would largely compensate for each other in the 
liquid domain. Below T,, the calculated value of a? for the solidlike domain 
is far smaller than the value observed below Tg. Since the variation ofp with 
T is largely frozen out below T,, and the temperature dependence of u/ 
makes a small contribution below T,, the value of & observed below 
should in fact correspond to our calculated value below Tp .  The dis- 
crepancy arises from our neglect of du,,/dT and can yield an estimate of it. 
These results indicate that the volume 0 is very sensitive to the simplifica- 
tions we have introduced in our model. However, we expect that TJ and C, 
are less sensitive and should be more characteristic of a dense liquid and 
glass. 

T( K)  parameters are the same as in Fig. 15. 
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C. Robustness of the Theory 

Now that we have described in some detail the analysis of the free-volume 
model, it is worthwhile to pause and consider the effect of the numerous 
simplifications introduced. The important question is, of course, how do 
they affect the physics of the equilibrium phase transitions as developed in 
the preceding sections? Fortunately, we do not expect that any of our as- 
sumptions will affect qualitatively the nature of the liquid-glass transition. 

To see this explicitly, let us review the most important simplifications in- 
troduced. These include the artificially sharp distinction between liquid and 
solidlike cells, which allowed us to approximate the local free energy by 
quadratic and linear regions. From this assumption, we were led im- 
mediately to the conclusion that only liquidlike cells exchange volume 
freely. However, there surely exist activated processes by which solid- and 
liquidlike cells can exchange volume, and these will be particularly im- 
portant near the surface of liquidlike clusters. We have ignored all therm- 
ally activated motion, which should be important at low temperatures where 
the number and sizes of the liquidlike cells are reduced. There are also 
time-dependent effects, in which solidllke cells become liquidlike, and vice 
versa. We have assumed that the time scale on which this occurs is sub- 
stantially longer than that for atomic motion with a liquid cluster. For T 
near and just above 5,  this should not be important, since the relaxation 
rates are long and the cage structure should be long-lived. However, for T 
>>q, this effect will be important. Finally, we have factored the joint prob- 
ability distributions of cell volumes and treated the total free energy in a 
mean field theory. We assumed that f( u) and P( u)  depend only on the cel- 
lular volume u and neglected any interaction with neighboring atoms. The 
only local environment effect we included was in the dependence of {, on 
G,, (3.7), and this we treated as a mean field correction. 

However, we expect none of these effects to change the qualitative na- 
ture of the transition. This can most easily be seen by considering how one 
might begin to generalize the solution of the model within mean field the- 
ory, to eliminate these artificial discontinuities. First, one would introduce 
the probability u ( u )  that a cell of volume u will be liquidlike. If a cell’s lo- 
cal environment were such that it could participate in a free exchange of 
free volume, we would call that cell liquidlike. This requires only that in a 
localized region of configuration space (i.e., in cell u-space) the conse- 
quences of finite curvature in the free energy F on a scale given by kT can 
be neglected. That is, ( A X ) 2 6 2 F / S 2 X  is small in comparison to kT, where 
X is a generalized configuration coordinate and AX is its probable range of 
variation. In the local regions in which this condition is not satisfied, the 
cells are considered to be solidlike. One would expect that u ( u )  would be 
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an S-shaped function such that u( u )  = 0 for u much less than a critical value 
u, and u(u)=  1 for u>u,. There would be a narrow range of u about u, in 
which the transition from 0 to 1 is made. Most important, the probabilityp 
survives elimination of the discontinuities, since one can define 

The theory now proceeds as developed in Sections V and VI, essentially 
unchanged. For example, P ( u )  will have the same bimodal structure as 
shown in Fig. 14, but will now be continuous. Similar smoothing of all 
artificially introduced discontinuities will not affect the theory in any es- 
sential way. The loss of a sharp distinction between liquid- and solidlike 
cells could vitiate use of the percolation theory. The nonanalyticity in S will 
certainly be lost, leading to a communal entropy for which i3S/ap is al- 
ways less than infinity. However, the first-order phase transition should be 
preserved, just as it was for most of the parameter space even when p> 1. 
The discontinuity i n p  and I7 would be reduced, as would be the latent heat. 
One important effect of this smearing will be the appearance of a critical 
end point for the liquid, a temperature below which the liquid phase is no 
longer even metastable. The second-order transition, which is only a small 
region of parameter space for p 2 1, is now wiped out completely by the re- 
storation of analyticity. Our theory thus leads to a first-order phase transi- 
tion or no transition at all. However, the entropy catastrophe can be re- 
solved within our theory only if a transition occurs. 

We have now completed our discussion o f  the equilibrium liquid-glass 
transition. However, as discussed above, the results for Cp and V obtained 
in this section are not seen experimentally. This leads us to consider non- 
equilibrium phenomena in the next section. 

IX. STRUCTURAL RELAXATION AND THE 
FREE-VOLUME MODEL 

The marked changes characteristic of a first-order transition shown in 
Figs. 15 and 17 are not seen experimentally. The observed anomalies in C, 
and V are the consequences of the falling out of complete thermodynamic 
equilibrium of the system as the time of measurement becomes comparable 
to the relaxation time of the system. The results just described cannot 
therefore be compared directly with experiment. First we must develop a 
relaxation theory of the kinetic effects observed around and below G. 

The changes of the volume I7 and enthalpy H consequent to stepwise or 
continuous changes in temperature have been investigated by a number of 



506 G .  S. GREST AND M. H.  COHEN 

workers, following the early work of The essential features that re- 
late the dependence of Tg on q to the temperature dependence of the 
structural relaxation time T( T) determined from cooling the liquid was first 
presented by Ritland.’34 Results for heating are more difficult to interpret, 
since the temperature dependences of U and H are affected by the detailed 
thermal history of the glass during cooling and annealing. To account for 
these effects quantitatively, it is necessary to develop a multiparameter ap- 
proach, which has been done by Narayana~wamy,’~~ Moynihan and co- 
worker~,’~. 78 and Kovacs and c o - ~ o r k e r s . ~ ~  These theories all involve the 
same basic assumptions but use different techniques and approximations. 
However, they are all built on the assumption that the volume U and en- 
thalpy H of the nonequilibrium glass would always relax to its metastable 
equilibrium value for the liquid, in the limit of infinitely slow cooling. That 
is, none of these theories has allowed for the possibility of an “ideal” glass 
phase in which the long time values of V and H differ from their extrapo- 
lated liquid value, as suggested by Ref. 71. The results of the recent work 
by Moynihan et al.I5, 78 and Kovacs et al.79 have shown that one can un- 
derstand quantitively the experimental results for both Cp and V by intro- 
ducing only a limited number of free parameters. Both theories stress the 
importance of including both a distribution of relaxation times T;(T)  for the 
structural modes and keeping track of the thermal history of the sample. 
However, no microscopic specification of the structural modes is made. One 
crucial result obtained by Moynihan et aL7’ is the dependence of In( q on 
temperature. They find 

where Ah* is an activation enthalpy and R is the ideal gas constant. This 
result is in agreement with the experimental observation that In1 q I vanes 
linearly with l /Tg  for all the glass formers that have been systematically 
studied. Since T is large, a plot of lnlql over a limited temperature range 
would be approximately linear with respect to T, as shown in Fig. 14 for 
&02 and 0.60KN03 .0.40Ca(N03),. The reader is referred to the recent re- 
views by Moynihan et al.78 and Kovacs et al.79 for further details of their 
analysis. 

Here we wish to describe how the effect of these strongly temperature- 
dependent structural relaxation rates near can be incorporated into the 
free-volume Our analysis differs significantly from that described 
above because we have at our disposal an equilibrium theory of the heat 
capacity and volume to begin our discussion. By starting from a concrete 
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model of a glass, the free-volume model, we can identify the dominant 
structural mode and establish its relaxation mechanism. From our discus- 
sions above, we have that the free energy is a function of the form 

A characterization of the free energy and therefore the structure of the sys- 
tem is obtained by a specification of P(u) ,C , , (p )  andp,  which we can de- 
note by the set { X , } ,  and which we refer to as the structural variables. The 
equilibrium state was obtained from the variational condition 

SF - =o  
SX;  (9.3) 

which determines the equilibrium variables of X I .  found in Section VI. A 
study of relaxation near equilibrium can be made by examining the gener- 
alized equation of motion which we write in the form, 

SF X .  = A .  .- 
' " S X J  (9.4) 

where the set of parameters A,, describes all possible relaxation processes 
and a sum over repeated indices has been assumed. By considering the 
possible processes that contribute to the structural relaxation, we can sep- 
arate out the rapidly relaxing quantities from those that are more slowly re- 
laxing. The rapidly relaxing quantities can then be assumed to be in secu- 
lar equilibrium during the variation of the slowly relaxing quantities. 

The variable P ( u )  should reach its equilibrium value very rapidly for 
fixedp, since both the vibrations of the atom or molecule in the solidlike 
cells and the free exchange of free volume associated with the oscillations 
in cages for liquidllke cells occur readily. Since the cluster size distribution 
C,,( p )  is fixed for fixedp, this leaves p as the one fundamental variable that 
determines structural relaxation. The value of p can change only by ex- 
change of volume between solid and liquidlike cells, that is, by a reorgani- 
zation of the cell structure. Therefore it can change only by self-diffusion, 
which is not localized within a cluster. In more detail, this exchange of 
volume between solidlike and liquidlike cells occurs at a cluster boundary 
and requires a cage rearrangement. This requires a diffusive step and be- 
comes more difficult as T approaches T,, since the diffusion rates are de- 
creasing exponentially. This same process that changes p allows C,,(p)  to 
equilibrate with a new value of p .  Thus p is the controlling variable. Every- 
thing else is in secular equilibrium with p .  
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In the free-volume model, p becomes the dominant “structural mode” of 
the relaxation theories.” The rearrangement of the cage structure requires 
diffusion, which is slowly being frozen out. As T approaches T,, p can no 
longer follow its equilibrium value, but becomes frozen at a value p >p,. 
Since the variation in p no longer contributes to the heat capacity, C, de- 
creases. The relevant contribution to C, arises from the communal entropy, 
which depends primarily on p and ceases to change. However, at tempera- 
tures above T,, the structure can equilibrate rapidly compared to the mea- 
surement time and both p and Cp approach their equilibrium value. 

Since the heat capacity is measured using a differential scanning 
calorimeter, the dependence of C, on time and temperatures is complicated 
because C, is measured continuously while the sample is being heated or 
cooled at a constant rate. Therefore, the time for the heat capacity mea- 
surement is not well defined, and thermal history effects complicate the 
shape of the step at T,. To overcome this difficulty, one can approximate 
the real situation by changing the temperature in small discrete steps AT at 
time intervals A t .  Stephens’* and Moynihan et al.78 follow this procedure 
and calculate the change in the sample’s enthalpy H and its heat capacity 
from C’ = A H/AT. However, we already have an explicit expression for the 
equilibrium enthalpy and heat capacity. Since the result for C,, (8.2), de- 
pends partially on the rate of change of p with respect to T, we need only 
include the effect of p falling out of equilibrium (i.e., @/dT+O) for T <  7‘’ 
in that re~ult.~’ 

The exact dependence of the probability p on the detailed microscopic 
mechanisms that determine the interchange of volume between liquidlike 
and solidlike cells is unknown. In the development of the equilibrium re- 
sults, we have assumed the local free energy4 of each cell depends only on 
its volume ui, f=f(u) as shown in Fig. 7. Consistent with this assumption, 
we assume a single average relaxation time T ( T )  for which the structural 
modes (i.e.,p) equilibrate. We can then allow in an average way for the fact 
that these modes may not completely relax before the next time increment 
A t .  Although we do not expect results for C, that are quantitatively correct, 
we do expect the results to be qualitatively correct. The goal of the present 
analysis is to develop a clear, consistent picture of the freezing process, de- 
void of any unnecessary complications. We leave open at this point the 
more involved study that would be essential to obtain quantitative com- 
parisons with experiment. We can then write an expression for p ( T ) ,  the 
probability of having a fraction of liquidllke cells at temperature T,9’ 

where p’( T) is the value of p at the end of the previous step and peq( T) is 



LIQUIDS, GLASSES, AND THE GLASS TRANSITION 509 

the equilibrium probability for that temperature. For high temperatures 
hr/.r(T) is large andp(T)=peq(T). However as T approaches T',p(T) can 
no longer follow p (T) and will finally freeze out a value pfroz, which will 
depend on the cooling rate and T ( T ) ,  for all T <  q. That is,9' e9 

(9.6) 

even though pq( T-tO) = 0. 
The program is then simply to start at a high temperature, where p ( T )  = 

p,(T) and lower the temperature at a fixed q < O .  The result forp(T) can 
then be used in (8.2) to (8.4) for C, to obtain results that can be compared 
directly with experiment. The only quantity that we must specify in addi- 
tion to those in the equilibrium theory is the relaxation time T(T) .  Since 
T ( T )  is to describe the relaxation by diffusion of structural modes rep- 
resented by the variation of p ,  it should have the same temperature de- 
pendence as the shear viscosity 77. That is, we suppose that the same 
microscopic movement processes underlie self-diffusion, viscosity, and 
structural relaxation. This supposition is consistent with existing theories 
and with a number of experimental results indicating that the activation 
enthalpy Ah* for volume or enthalpy relaxation is generally the same as the 
activation enthalpy for the viscosity v.'* We therefore assume that T( T) can 
be expressed by the Doolittle equation, 

(9.7) 

in analogy with the result for 17. The only additional free parameter so in- 
troduced will be the preexponential factor T ~ ,  since the three parameters for 
u,,,/fi, can be taken from a best fit of (7.7) to the viscosity data. 

Using the values for p, , (T)  obtained for the glass formers, tri-a- 
naphthylbenzene, 0.60KN0,. 0.40Ca(N03), , and B,O,, we have calculated 
the dependence of C' on heating and cooling rates and history of the sam- 
ple. Our results convince us that the effects are universal, as found experi- 
mentally for all glass formers. The value of 7o was chosen so that Ts is 
consistent with the experimentally observed values. We found95 results that 
were insensitive to the choice of increments AT and Ar for fixed q, pro- 
vided AT< 1°K. In the present analysis, we choose AT=0.05"K. The final 
results are dependent only on the product 4r0, and not q and T~ indepen- 
dently, since they enter only through this product in (9 .3 ,  where Ar is re- 
placed by AT/q.  The results for tri-a-naphthylbenzene have been de- 
scribed elsewhere.95 Here we show results for 0.60KN03. O . 4 ~ ( N o 3 ) ,  and 
B203. 
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In Fig. 18, we show results for C, versus T for 0.60KN03.0.40Ca(N03), 
for three values of 470 obtaining on cooling the system from high tempera- 
ture. The parameters used to determine peq( T) are given in the legend of 
Fig. 15. If we consider these curves to have 70 fixed, say T~ = lo-'' sec, 
curves a to c correspond to q= -0.1, - 10.0, and - 1000.O°K/min, respec- 
tively. Another way to think of these curves is to have q fixed, say q= 
- IO.O"K/min, then curves a to c correspond to T~ = lo-',, lo-", and 
lo-* sec, respectively. As expected, C, is a monotonic, decreasing func- 
tion. For faster cooling rates, Cp departs from its equilibrium value at a 
higher temperature, since the system falls out of equilibrium sooner. The 
value of pfroz is larger for larger cooling rates. In most materials, C, cannot 
be measured on cooling, since crystallization occurs before the glass phase 
is reached. However, in our calculations, we have ignored the channel to 
crystallization and are able to study C, under cooling conditions. 

Most experimental measurements are made upon heating the sample 
from its glassy state. To consider this case, we start at low temperatures 
wherep'(T) equals its frozen-in value and 7 ( T )  is very large. Then we take 
AT>O and follow the same procedure described above. In Figs. 19 and 20, 
we show results for 0.60KN03 -0.40Ca(N03), obtained by heating. 

Figure 19 gives results for five values of qT0, in which the initial frozen-in 
state is obtained by cooling at the same respective rates. If we consider q= 
10.O°K/min, then curves a to e correspond to T~ = lo-',, lo-", 
lo-'', and sec, respectively. Another way to think of these curves is 
to have T~ fixed, say r0 = 10 - lo  sec, then curves a to e correspond to q = 0.01, 
0.1, 1.0, 10.0, and 100.O°K/min, respectively. As expected, the larger the 
value of 470, the larger the transition temperature Tg. If we consider to 
be the midpoint of the rise in C, (an arbitrary, but useful definition), we 

Fig. 18. Heat capacity Cp versus T for 
0.60KN0,. O.4OCa(NO3), cooled through 
the transition for three values of 4 ~ ~ .  For 
T~ = 10 - lo sec, these curves correspond to 
( 0 )  4' - 0.1, ( b )  - 10.0, and ( c )  
- 1000.O°K/min. If, instead we consider q 

T ~ -  

320 3 40 360 380 fixed, say equal to - lO.O"K/min, then (a) 
( b )  lo-'', and (c) lO-"sec. 

I .o 

T(K) 



1.0 
320 340 360 380 

I 1 I 10 
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Fig. 19. Heat capacity C, versus T for 0.60KN03.0.40Ca(N03), heated through the 
transition region at various rates after cooling the glass at the same respective rate. For T~ = 
10-Io sec, these curves correspond to (a) q = O . O I ,  ( b )  0.1, (c) 1.0, (d) 10.0, and (e) 
100.O°K/min. If instead we consider q fixed, say equal to IO°K/min, then (a) T~ = I0-l3 ( b )  
lo-',, ( c )  lo-", (d) and (e) sec. The inset shows our results for (de- 
termined by the midpoint in the nse in C,) as a function of loglo(qTo).  The slope of the h e  is 
in excellent agreement with experiment. 

cooling at different rates. For T~ = 10 - I '  

sec and a heating rate q -  10"K/min, 
these curves correspond to ( a )  cooling at 

51 1 

Fig. 20. Heat capacity Cp versus T for 
0.60KN0,. 0.4OCa(NO3), heated through 
the transition region at a fixed rate, after 
cooling at different rates. For q, = 10 - ' I  

sec and a heating rate q -  10"K/min, 
these curves correspond to (a)  cooling at 
- I .O"K/min,  prrol  = 0.203:  ( b )  
- 10.O°K/min, pfrol = 0.207; and ( c )  
- 1OO.O"K/min,prroz =0.211. 
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find that log,,(q~,) depends linearly on T,, as shown in the inset. This lin- 
ear dependence of log,,(q7,) also occurs if one uses the temperature T,,, 
for the maximum in C,, or T,,, for the minimum in C, to describe the 
transition temperature. We find the slope of T, versus log,,(q.r,) equals 
3.9"K, in remarkable agreement with the experimental result 33°K found 
by DeBolt et al.78 and shown in Fig. 4. This result is remarkable because 
we make no reference in our equilibrium calculation for peq(T) and Cp to 
this slope. Once p,,(T) is calculated, the only free parameter is T,, which 
shifts the position of T,, not the slope of T, versus log,,(qT,). The im- 
portant conclusion to be drawn from this agreement is the correctness of 
the choice of T ( T ) ,  (9.7), to have the same temperature dependence as the 
viscosity. This conclusion is further supported by the results for B203 shown 
below (Fig. 21), for which the slope of T, versus log,,(qT,) also is remarka- 
bly close to its experimental value. From the published data for 
0.60KN03.0.40Ca(N0,), at q =  10"K/min, we can estimate that ~ , - 1 0 - ' ~  
sec. 

In Fig. 20 we plot results for heating at a constant rate 47, = 10-"/6O0K 
starting from different frozen-in states. These frozen-in states could be ob- 
tained by cooling at different rates or annealing at  low temperatures. If we 
take T, = lo- ' '  sec and q= 10.O°K/min, the curves correspond to cooling 
as shown in the legend; the large dip in C, for case c results because pfroz is 
larger than it  would have been for a cooling rate q= - lO.O"K/min, and p 
decreases to approach its equilibrium value when A t  first becomes com- 
parable to T ( T ) ,  instead of increasing. In this region &/dT<O and Cp de- 
creases. Although this dip in Cp is often seen experimentally, the depth in 
case c is too large. Stephens72 has suggested that a spectrum of relaxation 
times would reduce the depth of this minimum in C,. The dip before the T, 
step would be washed out by more rapidly relaxing processes and the re- 
laxation peak would be considerably broadened. For case a, starting from 
the frozen state, pfroz is lower than it would have been if cooled at the same 
rate used in heating, and as seen, the peak in C, is greatly enhanced. Above 
T,, A ~ / T ( T )  is large and C, equals its equilibrium value shown in Fig. 20. 

We should point out that C, continues to rise above T,, while experimen- 
tally Cp is essentially constant for 0.60KNO,~0.40Ca(NO,),. This, we be- 
lieve, is caused by the contributions to C, proportional to ati,/aT. Al- 
though the phenomenological form for u/ when used in (7.2) fits the viscos- 
ity data very well, it does not necessarily predict the correct curvature of 
5,. From fitting the viscosity data to (7.2) and (7.7), aGF/i3T appears to have 
its maximum far above T,, at T ~ 4 0 0 " K .  Studies of the thermal expansion, 
however, indicate that it should be at  a lower temperature, near T,. This 
spuriously high temperature for the maximum in aU,/aT produces the 
spurious rise in C, above T,. We suspect that fitting a more accurate form 
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for ti,(more free parameters) to 17 would eliminate it. However, this is a small 
point and should not detract from the more important results near T,. 

To check that these effects are universal, we have now calculated C' for 
a total of three glass formers. Results for tri-a-naphthylbenzene were shown 
in Ref. 95. We choose a third example, the network glass \O,, for two 
reasons. First, it should be very different from both the inorganic tri-a- 
naphthylbenzene and the ionic 0.60KN0,. 0.40Ca(N03),, and second, data 
for 17 are available over a wide range, which we can use to fit the parame- 
ters in U,. The dependence of T,  and C, on scanning rates q have also been 
studied in detail and are shown in Fig. 4. First we calculatedp,,(T) follow- 
ing the procedure outlined in Section VI. We chose the unknown parame- 
ters to give an equilibrium liquid-glass transition at  a temperature T, below 
the observed T,. The parameters used in our calculation forp,(T) are i= 
2x1O5"K, u c / u o = l . l ,  R,=0,pc=0.15, a=0.3, A=0.6, A'=3.0,  D=l.O, 
and E=0.5, which give T, =480"K. Results for equilibrium C, are similar 
to those shown in Fig. 18 for 0.60KN03~0.40Ca(N03),. We then calcu- 
lated C, following the procedure outlined above. Results for cooling at fixed 
q were similar to those shown in Fig. 21, which shows results for heating 
through the transition region at  various rates after cooling the glass at the 

( a )  (b )  

7 , ,  , , I I 

w? 10 

~ 1 ,  ;:ILL 520 540 560 

T ( K l  

0 01 I I I I I I I 
520 540 560 580 I 

T(K)  

Fig. 21. Heat capacity Cp versus T for q0, heated through the transition at various rates 
after cooling the glass at the same respective rate. For T~ = 10 - l o  sec, these curves correspond 
to ( 0 )  q p O . 1 ,  ( 6 )  1.0, (c )  10.0, and ( d )  IOO.O"K/min. If instead we consider q fixed say equal 
to lO.O"K/min, then (a) T~ = lo-", ( b )  lo-", (c )  lo-", and ( d )  sec. The inset shows 
our results for as a function of log,o(q70). 
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same respective rates for B,O,. As seen in the inset, T, was found to de- 
pend linearly on log,,( qTo)  over the temperature range studied. We find that 
the slope of versus l ~ g , ~ ( q ~ , )  equals 13.1 OK, also in good agreement with 
the experimental result 14.5"K shown in Fig. 4. From the results of these 
three glass formers, we believe the results for the nonequilibrium heat 
capacity can easily be explained in terms of the free-volume model. Al- 
though we have made several simplifying assumptions, particularly in 
regard to the existence of a single relaxation time, we believe that we can 
describe the essential features of the transition without introducing any ad- 
ditional free parameters beyond those used in the equilibrium calculation, 
apart from 7,. 

It is interesting to attempt a simple theory of the parameter T ~ .  Relaxa- 
tion of p occurs at the cluster surfaces via a diffusive jump across the inter- 
face. Using the free-volume model of self-diffusion (Section VII), we 
obtain the following for T ~ ,  

where S / V  is the surface-to-volume ratio of the liquid clusters. Since we 
are near the percolation threshold and the minimum-sized liquid cluster 
contains v,,, /C, molecules, S /  V is well approximated by 5 ( v i  /ti/) - ' I3.  The 
result for T~ is lO-'Osec for 0.60KN03~0.40Ca(N03),, in excellent agree- 
ment with the value found from the lnq versus T, data. 

X. TUNNELING MODES 

We saw in Section IX that the system's falling out of equilibrium at 
has a profound effect on p, the fraction of liquidlike clusters. Since the de- 
crease of p requires a structural rearrangement of molecules in the dense 
liquid, it becomes more difficult as T approaches T,, where the value of p is 
frozen at pfroz >p,,. This freezing in of liquid clusters affects the low- 
temperature properties of glasses by giving rise to the tunneling levels, de- 
scribed in Section 11. 

because of 
the finite cooling rate used experimentally to avoid crystallization. Within 
those clusters, there remains the possibility that large (-atomic size) dis- 
placements can occur for T I  by the coupling of translational motion and 
density fluctuations that lies at  the heart of the free-volume model of diffu- 
sion. For temperatures near T,, the curvature in f(o) is negligible, and the 
local free energy is independent of the relevant configuration coordinates. 
However, when the glass is cooled down, T<<T,, this curvature becomes 

A number of liquid clusters of size v > v,,, is frozen in at T I  
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significant and gives rise to local energy minima separated by saddlepoint 
barriers on the order of kTg in size. The energy scale is set by k q  because 
it is near G that the system falls out of equilibrium, freezing in potential 
variations of at most this size. This last result is quite general and does not 
depend on the free-volume model. 

At high temperatures ( 2  G), the curvature in the free energy of the liquid 
clusters can be ignored, diffusion can occur, and, ultimately, extended mo- 
tion can occur. At low T, the system freezes into one of its many total free- 
energy minima. The most probable pattern is a freezing inward into the 
cluster from the interface with the solidlike or glassy regions. However, 
there is no significant relaxation between the clusters and the solidlike en- 
~ironment.’~ Whatever excess volume Au, was in the cluster stays within the 
cluster. Within each cluster of size v, this excess volume Au, is .[(TI, -u,)+ 
V,]. The vG, comes from the free volume that is still freely redstributed a t  
high temperatures ( I  q). The ~ ( u ,  -uo) is the thermal expansion of each 
cell required to bring it  into the liquidlike range. Some fraction of the 
v( u, - uo) will become available for redistribution as the cluster freezes into 
the minima. 

The freezing of a liquid into a glass requires atomic movement, which 
occurs by the concentration the free volume into ephemeral voids of the size 

This process can be regarded as a diffusion of the void away from the 
interface into the interior, where it becomes trapped as the freezing is com- 
pleted. Thus within the originally liquid clusters there forms one void of 
volume somewhat greater than urn for each vm = urn /V, atoms. 

The free-volume model leads us directly to an estimate of the number NT 
of these voids present at low T. There is a void of size urn for each group of 
approximately vm atoms in a cluster. We find 

where i = p a , ( p ) N  is the total number of atoms in clusters, P,(p) is the 
probability of being on the infinite cluster, and C,,(p)  is the cluster distri- 
bution. In general a,( p )  < 1, since we require each atom in a cluster to have 
at least t nearest neighbors that are also in the cluster. The quantities a , ( p ) ,  
P , ( p ) ,  and C,,(p)  have not yet been determined theoretically, but we can 
estimate useful upper bounds on vm and NT. 
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From Section IX, our best fits to the measured viscosity data for six glass 
formers give v, =urn /C, x 3 0  at  G. That is, for each 20 to 40 atoms within 
a cluster, we expect to find a void of the size mu,,,. Having chosen the per- 
colation threshold value of p ,  = 0.15, we found that pfroz -0.2 was a typical 
result from our relaxation studies of the specific heat near T,. Then if we 
consider 

we find 

A realistic range would be lo-’ - 10 - 5 .  A more precise estimate must await 
a study of the cluster distribution function C,,(p).  

It is important to note that NT depends only onp,,,, which in turn de- 
pends on the product 47(T). In our simulations of several glass formers we 
find that pfroz changes by only a small amount for very different cooling 
rates q or during annealing at temperatures near T,. There should be little 
variation of the number of tunneling levels NT with the cooling rates used 
to produce the glass. To our knowledge, there has not yet been any sys- 
tematic study of the dependence of NT on q. 

We assert that these voids are the tunneling centers. Any one of the 
neighboring atoms can move into the void, but in contrast to the crystal, 
the void itself and the configuration of the surrounding atoms will be irreg- 
ular, so that such motion can be expected to be substantially easier for one 
particular atom. That atom then tunnels into the void by muftiparticle tun- 
neling along a suitable one-dimensional path. Ignoring path curvature, we 
have for the effective Hamilt~nian,’’~ 

= - P 2  + V ( x )  (10.2) 
2 P  

provided the tunneling energy separations are much smaller than the mean 
phonon frequency w, (x ) .  Here p is the mass of the atom, Vo(x)  is the equi- 
librium potential energy, Q0( x )  is the ground-state eigenfunction for all the 
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remaining degrees of freedom A, and the integration in the last term is over 
those degrees of freedom. The V ( x )  wd1 be of the general form shown in 
Fig. 22, assumed by Anderson et a1.lW for the voids as large as those we 
consider here. It is possible but highly unlikely that more than two minima 
exist. There will be tunneling between the two minima, with a tunneling 
energy 

A, =woepA (10.3) 

and energy 

E =  ?(Az +A:)’/’ (10.4) 

relative to the mean energy f w, above the lower minimum. Here A is the 
usual splitting between the lowest two energy levels. An estimate of A for 
the symmetric-well case can be obtained by using the triangular barrier ap- 
proximation, which gives 

*= !! h [ 2p( v- ;wO)]l/z (10.5) 

where d is the separation in x of the two minima. Because the liquid clus- 
ters freeze in at T I  Tg, the energy scale of A is set by Tg. Either of the two 
can be the lower minimum, so that A has a symmetric, roughly Gaussian 
distribution around zero with a root-mean-square value for which T, sets 
the scale. The 1 A 1 can be represented as distributed over a rectangular dis- 
tribution of width I T,. Since w, is a typical vibrational frequency, it will 
be on the same scale; V is also governed by the same scale. Therefore val- 
ues of V so close to f w, that according to (10.5) A is small enough for 
A: =Az are improbable. Consequently, we almost always have A, << 1 A 1, and 
the density of states for the tunneling levels is given by the distribution of 
l * l *  

\ I 

Fig. 22. Potential energy surface producing a tunneling 
state characterized by a barrier height Y ,  asymmetry A ,  and I ~- 

+d. generalized distance d .  
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At low T, the important values of I A I for the specific heat are -kT<<kT,. 
We can restrict ourselves to the case A = O  in estimating A and use (10.5). 
We are thus dealing with a void containing two energetically equivalent 
positions for a given atom in estimating A. If it were a vacancy in a crystal, 
the value of A so calculated would be sharply defined, having a delta func- 
tion distribution. The disorder in the glass smears this distribution, roughly 
as a Gaussian, as shown in Fig. 23. For there to be a two-level system, there 
is a Amin for each barrier shape -5- 10. Since ultrasonic experiments are 
insensitive to large lo’ there is an effective cutoff AUa=hmin + 1. The 
P( A )  is found to be essentially constantlo3 between A and A:,,. From 
the fast and slow specific heat measurements,103* ‘04* I3’-I4O we know that 
P(A)=O for A > h , , ,  and A,,, < A ,  = 15-20. This tells us that all the 
tunneling levels contribute to C’, and we can expect the distribution in curve 
b of Fig. 23 to be appropriate. 

set limits on the relaxation times TI for the coupling of 
the phonon system to the tunneling center systems by faster heat capacity 
measurements. From their data we141 infer that 51.1 sec I TI 5 5m sec, which 
corresponds to Amin = 12 and A,,, N 17, consistent with the previous 
estimates and Fig. 23. Since all A contribute to C,, we can calculate the 
fraction of the centers fT contributing to C, at 1 O K  to be 1 OK/[ A I of 
the total NT.  Since potential variations in A of at most T, in size are frozen 
in at the glass transition, one expects I A I to scale with T,, which would 
lead to a value of f l , / N - ~ l O - ~ ,  in good agreement with experiment. This 
T,-’ dependence of the density of states has recently been observed experi- 
mentally by ReynoldsI4’ and Raychaudhuri and P ~ h l ’ ~ ~  for a number of 
glass formers. However, we are unable to estimate the value for the peak in 
P( A )  or A,,,. This involves solving a multiparticle tunneling problem, 
which cannot even be started until more details of the configuration are 
known. 

The essential point of the free-volume picture on which all else depends 
is the notion that the free energy as a function of the cellular volumes taken 
as configuration coordinates is flat, on the scale of kT for T 2 T,, in certain 
regions of the configuration space. It is this feature, and this feature only, 

Loponen et 

( C )  p(A’k Amin h A, 
Fig. 23. Probability distribution P ( A )  versus A .  
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that we are invoking to explain the existence of tunneling levels. A free- 
energy flat in localized regions of the configuration space on a scale of kTg 
simply cannot be regarded as flat any longer at temperatures much lower. 
Instead k q  becomes the bound to the magnitudes of the variations, that is, 
maxima, minima, and saddle points (enhanced somewhat by thermal con- 
traction) of importance for tunneling at low temperatures. In this view, 
tunneling is a continuation of diffusion. This view is independent of the 
particular set of configuration coordinates convenient for any particular 
material and thus portrays tunneling as a general phenomenon, universal 
in the same way that diffusion, viscosity, and the glass transition are uni- 
versal. 

XI. CONCLUSIONS 

In this chapter we have tried to give a thorough description of the transi- 
tion from a liquid to a glass within the context of a single model, the free- 
volume model. The major results of the theory are more general, however, 
and are not specific to one model. The model, in spite of its phenomeno- 
logical nature, can provide a useful understanding of the complex phenom- 
ena occurring as a dense liquid solidifies without crystallizing. 

The free-volume model was originally derived to explain the temperature 
dependence of the viscosity. We have shown that it has a much broader 
application and can explain many of the outstanding experimental ob- 
servations. This includes the existence of an entropy catastrophe at T,  and 
the approximate equality of T, and T,, first observed by Angel1 and co- 
worker~.'~ The relation between lnlql and G, measured by Moynihan et 
al.,78 also follows naturally and quantitatively from the notion that the 
liquidlike cell fractionp is the important variable that ceases to reach equi- 
librium when the relaxation rates become longer than the time scale for the 
measurement. 

We also find that a simple estimate of T,, within the model also produces 
remarkable agreement with estimates from the experimental observations. 
The connection between the low-temperature properties of the glass and its 
behavior at the transition region follows as a natural consequence of our 
nonequilibrium theory. The estimate of the number of tunneling levels is 
very close to the usual predictions. The remarkable agreement of these pre- 
dictions with the experimental results, of course, cannot be taken too seri- 
ously, but it does support our belief that the model correctly describes many 
of the essential features of the transition. 

We should point out explicitly that our theory is not a theory of melting, 
though at first sight it has many similar features. Since this is an important 
point, let us make it very explicit. In our theory we derived a free energy 
F [  XI = F [  P ( u ) ;  Cvz( p); p]. The equilibrium values for P( u ) ,  Cvz( p) and p 
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are obtained from S F / S X = O .  This free energy and, therefore, the equi- 
librium values of p ( ~ ) ,  C,,(p)  andp,  depend parametrically on the interfa- 
cial tension a,, between the liquidlike and solidlike regions. If one were to 
develop a theory for melting, a similar argument could be made in which 
one introduces a free energy F,[ X ]  of the crystalline state containing clus- 
ters of liquidlike cells. This F,[ XI depends on the interfacial tension a,, be- 
tween crystal- and liquidlike regions. However, the structure of the solid- 
like regions is very close to that of the liquidlike regions; for example, for 
simple substances, the cage structure is based on dense random packing in 
both cases. Therefore, very little mismatch occurs across the interface. 
However, the mismatch is much greater at the crystal-liquid interface, so 
that a,, >as,. Following (5.8) to (5.18), one sees that as a increases, p and 
C,( p )  for v > v, are rapidly suppressed. Thus, although the same theory that 
yields a first-order phase transition between the glass and the liquid at 5 
yields also a first-order phase transition between the crystal and the liquid 
at T,, it follows from a,, >>a,, that T, >>q and that there are no premelting 
phenomena. 

The conceptual structure of our theory emphasizes the importance of 
entropy. There are in general three possible contributions to the entropy: 
communal, internal configurational, and mixing. The movement of the 
molecules or molecular segments within a cluster gives rise to the com- 
munal entropy and is fundamental to it; it also gives rise to the configura- 
tional entropy, though less directly. Although the entropy of mixing was 
included in our model, we did not include the internal configurational en- 
tropy, as is done in the complementary “entropy” theory. Remember that 
entropy is central to both theories. Both theories yield what is essentially a 
vacancy model for molecular motion, the free-volume model theory giving 
a more realistic description by including the fluctuations of the voids. The 
free-volume theory, however, admits in addition a description of the evolu- 
tion of the communal entropy, which is the most fundamental aspect of the 
passage from the solid to the liquid state. 

The essential features of the glass transition do not require the free- 
volume concepts. On a more abstract level, the theory is based only on the 
notion that there exists a configuration space X in which F [ X ]  is locally 
flat on the scale of k q  or greater and that these configuration coordinates 
control movement and, therefore, the buildup of configurational and com- 
munal entropy. At low temperatures, far below q, one can no longer as- 
sume that F [ X ]  is locally flat. The finite curvature gives rise to tunneling 
levels because the atoms or molecules can no longer move freely within the 
configuration space. In this general view, the localized tunneling motions 
are the low-temperature residuum of the free exchange of coordinate val- 
ues and of the attendant classical diffusion at higher temperatures. 
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Although the free-volume theory has been successful, there are, of course, 
places where the model fails or additional work is needed. The model does 
not produce a satisfactory dependence of volume u on temperature. This is 
due in large part to our approximate form forf(u): this local function ne- 
glects, except within mean field theory, the interaction of atoms with their 
neighbors. The form used for f(u) gives rise to a temperature dependence 
for u that is not linear, as found experimentally. We have also not included 
in any explicit manner the fact that in many glass formers the motile seg- 
ment is a flexible molecule with internal configuration coordmates. This 
effect should be included for the polymer systems in which neither the in- 
ternal configurational entropy nor the communal entropy dominates. The 
explicit elimination of the artificially introduced simplifications should be 
pursued, as discussed in Section VIII. We do  not expect it to make qualita- 
tive changes in the nature of transition, but it is essential if any quantita- 
tive agreement with experiment is to be expected. Moreover, a reduction in 
the number of sensitive free parameters in the theory is needed. 

There has been no direct verification of the conceptual structure of the 
theory. That is, a microscopic determination of the cluster distribution 
function has not been made, and the effects of percolation have not been 
seen. Assuming that the structure of the glass is well-defined liquidlike 
clusters in a denser solidlike background, one might expect to be able to 
see these clusters by either neutron or X-ray scattering. Since urn is proba- 
bly between 100 and 400 A3 and vrn -30 at TST,, one would expect that a 
probe compatible with scattered wave vectors on the order of 0.1 A- ' could 
be used. 
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Boltzman equation, 93  
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periodic, 246 
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Chargedipole systems, 308 

Chemical reactions, type o f  
bimolecular, 72,94 
dissociation, 82 
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Chemical relaxation time, 74 
Clausius-Mossotti approximation, two- 

Clausius-Mossotti, continuum, 210 
Cluster series expansion, 237-238 
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Computer simulation studies, see Crystal 

nucleation; Glass transition 
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Correlation fluctuations, 344 
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Coupling mode, 91 
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Critical exponent of dielectric constant, 

Critical temperature, 295 
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fluids, 404 
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characterization of, 441-443 
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factors involved, 403 
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Dielectric constant, 185 

228,229 

theory, 2 
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critical properties of, 295-303 
dielectric anomaly of, 297 

high-frequency, 278 
solutedependent, 304 
see also Fluids 

by Chandler, site-site for polar-polarizable 
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by H@yeStell, 190 

Dielectric constant expressions: 

general, 204 
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by Kirkwood, 232 
by Lebowitz, Stell, and Baer, 192 
by de Leeuw, 250 
by Nienhuis and Deutch, 192 
by Ramskaw, 192 
by site-site correlation functions, 

by Wertheim, 196,212 

Diffusion coefficient, 74 

20 1 

see also Mean spherical approximation 

autocorrelation function for, 91 
relative, 137 

Diffusion eigenfunction, 145 
construction of, 175-176 

Diffusion equation, 72 
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Electrodynamic theory, 357 
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definition of, 480 
in free energy equation, 471 
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vanishing of, 498 
configurational, 467,473,492,498 
crisis of, 465,502 
of crystal, 465,498 
excess of, 468 
of mixing, 467,490,498,502 
residual, 458,469 
of surface, 483,484 
theory of, 456,467,468,502 
vanishing excess of, 465 

482 
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temperature, 467 
Equations of motion calculations, 

31-61 
and configurational interactions, 49 
derivation of equations, 8-16 
electron affinities for: 

fluorine, 5 3 
hydroxyl, 5 3 

extended, 49 
ionization intensities, 43, 64 
ionization potentials for: 
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hydrogen fluoride, 5 3 
neon, 5 3 
nitrogen, 31 

orbital basis set dependence, 34 
shake-up energies of nitrogen, 42 
shifted vs. unshifted denominators, 38, 

Simon’s method, 31-34 
of third order, 36 
Yeager’s method, 3 1-34 
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Equations of motion operators, 10-22 
annihilation condition, 11 

approximate ground state improvement, 
15,59 

conditions satisfied by, 11 
deexcitation, 15, 20 
transition matric elements calculation, 

16 
Equations of motion operators basis: 

completeness of, 15, 17 
electron affinities and ionization 

excitation energies, 21 
linear independence of, 16-18 
orthogonalization of, 25 
unorthodox, use of, 56 
many body, 18 

potentials, 20 

Equilibrium, metastable, 506 
Equipartition theorem, 342, 343 
Excluded volume effects, 81 
Expotential approximation, 226 
Expressions for correlations, asymptotic, 

Expressions for dielectric constant, see 
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Dielectric constant, expressions 

Felderhof rederivation of Werhteim- 
Frohlich expression, 279 

Fermi’s golden rule, 4 3  
Field point formulation, 164-167 
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by Kirkwood and Yvon, 273 
by van Vleck, 274 

Fluctuation-dissipation theorem, 84 
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computer simulation studies of, 245- 

quantitative results for, 254-273 
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see also Dielectric constant 
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electrostatic, 332, 369 

mean, 80, 198-199 
random, 84 
repulsive, 96 
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interpolation formula for, 374 
Free energy, 476,487,504 
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of liquidlike cells, 475,490,499 
local, 473,474,475 
of solidlike cells, 490,499 

of amorphous phase, 470,471 
distribution of, in liquids, 473 
free exchange of, 479 
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of phase transition, 493 

Free volume, 493 

Free volume model, 456,468,475, 
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and fluidity, 470,494 
in glass transition, 470 
and heat capacity, 514 
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limitation of, 476 
robustness of, 504-505 
with structural relaxation rates, 506 

Free volume theory, see Free volume 

Frenkel’s hole theory, 468 
Friction coefficient, 83 

Friction tensor, 133 
Frohlich expression, 279 
Fulcher equation, 410 
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model 

relative, 158 
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Generalized mean field approximation, 
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computer simulation: 
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relaxation process, 435 
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structural characterization of glass, 
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enthalpy and heat capacity of, 462 
entropy of, 443445 
fust order, 457,467,478,491,492, 

and free volume model, 470 
second order, 467,478,492,502, 

simulation studies, 403,412414 
compression rates, 436 
densities, 417418,436437 
and diffusion coefficients, 406407 
and diffusivity-temperature relation, 

500,505 
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410 
viscosity in, 461 

dependence on heating and cooling 

lower, 419 
upper, 419 

Glass transition temperature, 445 

rate, 464 

GMF approximation, 219, 238 
GMS approximation, 237-238 
Green’s function, see Many body Green’s 

Ground state functions, see Approximate 
function 

ground state functions 

Hankel transform, 235 
Hard-spheres with dipoles and quadrupoles, 

Hartree-Fock theory, timedependent, 15 
269-271 

in configurational freezing, 462 
dependence on heating and cooling 

rates, 462,503,509 
and entropy of melting, 465 
in isobarical cooling, 462 
for metallic glasses, 501 

Heat capacity, 456,463,498,500, 508 
HNC approximation, see Hypernetted- 

Homogenous nucleation, 401. See also 

HQye and Stell theory of nonlinear effects, 

Hydrostatic pressure term, disjoining 

Hypernetted-chain approximation, 238- 

chain approximation 

Crystal nucleation 

316 

pressure, 341 

24 3 
linearized, 218,238 
perturbation expansion of, 244-245 
quadratic, 223,238 

Initial conditions effect, 149-152 
Integral equation solution: 

diffusion eigenfunction and, 175-177 
theories for polar-nonpolarizable fluids, 

232-245 
Intensity fluctuation spectroscopy, 376 
Interface: 

of liquid film, 360 
viscoelastic properties of, 365 

Ionization cross sections, 63 
intensity borrowing, 44 

Jepsen and Friedman equation, 
199 

Kinetic effects, 457,464,465, 

Kinetic equations, 105-125 
472,501,505 

pair, 120-123 
derivation of, 173-175 

derivation of, 167-172 
singlet, 115-120 

Kinetic theory, renornialized, 106 
Kirkwood equation, 198 
Koopman’s theorem, 15,35 
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Langevin equation, 82-84 

L3 approximation, 237 
Lattice gas, 296 
LHNC approximation, 218, 238 
Light scattering, 341 
Linear (LIN) approximation, 237 
Linearized hypernetted-chain approxima- 

Liouville equation, 89 

Liouville operator, 4 ,62,  88 
Liquid films, free, see Soap films 
Liquid-glass transition, see Glass transition 
Liquidlike cells, 48 1,493,508 

free energy of, 475,476,490 
free volume of, 475 

generalized, 106 

tion, 218, 238 

pseudo, 96-97 

exchange, 477,504 
Liquidlike clusters, 478,480,493 
Liquids: 

dense, 456 
Lennard-Jones, 472,473 
monotonic, 457 
rubidiumlike, 471 
supercooled, 459,462,471,476 
viscosity, 459 

Liquid surfaces, 34 1 
Local density fields, 85 
LOGA, 216,224,225 
Long time tail, 80 
Lowest-order-a-ordered approximation, 

216,224 
for soft-core potentials, 225 

Macroscopic law, 76 
Many body Green’s function: 

diagrammatic expansion of, 529 
hierarchy of equations, 5 
one electron, 5, 15 
orbital basis set dependence, 35 
shake energies, calculation of, 31 
two electron, 5 

matic, 2 
Many body perturbation theory, diagram- 

Marangoni effect, 336 
Markov approximation, 90 
Maxwell stress tensor, 364 
Mean field theory, 479,484,462492 

Mean force, 80 
free energy in, 504 

potentials of, 80, 198-199 
Mean reaction field method, 253-254 
Mean spherical approximation, 216, 224, 

Mean spherical approximation solution: 
of Blum for multipolar molecules, 233 
for dipole fluids, 237 
for dipolequadrupole fluids, 237 
for quadrupole fluids, 237 

Memory kernel, 89 
dynamic, 112-113 
static, 11 2-1 13 

232 

Metastable state, 456,457 
Minimum image method, 246-249 
Mode coupling, 91 
Molecular dynamics, 398,458,471, 

Molecules: 
472 

rigid-polar , 188-20 1 
surface active, 335 

Monte Carlo method, 398 
MSA, 216,224,232 
Multiple expansion for electrostatic 

interactions, 230 

Network model, random, 467 
Nonequilibrium phenomenon, 456, 

Nonhydrodynamic contributions, 149 
Nonlinear effects theory, of Hoye and 

Nonperiodic boundary conditions, 253- 

Nucleation theory, 458. See also Glass 

46 1 

Stell, 316 

254 

transition 

Onsager continuum, 210 
Onsager continuum Limit, 199 
Onsager’s approximation, 198 

two-particle, 209 
Onsager’s regression hypothesis, 357 
Onsager’s theory, 262 
Operators: 

of binary collision, 97 
EOM, see Equations of motion operators 
Liouville, 97 

pseudo-, 97 
Optimized random phase approximation, 

ORPA approximation, 224 
224 
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Orstein-Zernike equation, 189 
for site-site correlation function, 

28 1 
Oseen interaction, 135 

Packing, dense random, 472 
Pad6 approximant of rushbroke, Stell and 

Pad& producing approximation, 238 
Pair correlation function, 188-201, 

Pair distribution function, 81 
Pair kinetic equations, see Kinetic 

equations 
Pair potential, 229 
Pair potential models: 

H@ye, 238 

254 

hard-sphere, 422423 
Lennard-Jones, 422423 
properties: 

thermodynamic, 423427 
isobaric heat capacity, 426427 

transport, 428430 
see also Glass transition, computer 

simulation 
soft-sphere, 422423 

Partitioning theory, 24-29 
Born expansion, 25,36 
denominators, w-dependent, unshifted, 

primary operator space, numerical 

primary space for ionization potentials, 

25 

selection of, 27 

26-29 
Patey approximation: 

LHNC, 218,238 
QHNC, 223,238 

ability distribution function, 500 
cluster distribution function, 478,479, 

clusters: 

Percolation theory, 477,493 

482,487,507 

finite, 477 
infinite, 477 

critical exponents, 478,482 
and mean field approximation, 479 
per colation : 

continuum, 482 
environmental, 477,481 
probability, 478,482 
threshold, 477, 479,499 

probability distribution, 487 
Percolation transition, 445 
Perturbation expansion of HNC equation, 

see Hypernetted-chain approximation 
Phase transition, see Glass transition 
Photodissociation, 149 
Plane-wave approximation, 43,63-69 

density of states, 64 
Poisson-Boltzman equation, 3 37 
Polarizable molecules, 27 2 
Pollock and Alder results for Stockmayer 

fluids, 267-268 
PPA approximation, 238 
Propagator, 5 

Quadratic hypernetted-chain approxima- 
tion, 223,238 

Radical complex mechanism, 157 
Rate coefficient, 73 

correlation function expression for, 

diffusive, 81 
of one-way flux, 105 
time dependent, 75 

88-94 

Rate constant, intrinsic, 78 
Rate kernel, 75 

analysis of, 139-149 
dynamic process contributing to, 139- 

kinetic theory expression for, 125-127 
nonhydrodynamic states contribution 

from pair theory, 138-139 
projection onto diffusion modes, 143-146 
Smoluchowski equation result for, 162- 

t-space expression for, 79 
structure of, 101-105 

Rate law, 7 3 
generalization of, 75 

Reaction coordinate, 86 
Recombination, geminate, 155 
Regression hypothesis, 116 
Relaxation time: 

chemical, 74 
structural, 506 

determination of, 412 
dielectric, 412 

143 

to, 147-149 

164 

Relaxation times in glass transition, 404 
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and displacement from equilibrium, 

sample size effect on, 421 
temperature dependence of, 416,419 
viscosity: 

419-421 

bulk, 412 
shear, 412 

Repulsive forces, 96 
electrostatic, 336-338 

Ring collision events, 107 
Rotational invariants, 230 

Self-consistent field method (SCF), 35 
Self-consistent Ornstein-Zernike approxima- 

tion (SCOZA), 238 
by H@ye and Stell, 226 

Single superchain (SSC) approximation, 

Single kinetic equation, see Kinetic 

Sink Smoluchowski equation, 128, 136- 

Sink term, 81 
Site-site correlation function, Ornstein- 

Zernike equation for, 281 
Smoluchowski equation, 80-81, 130. 

See also Rate kernel 
Soap films, 330,335-338 

black spots on, 330 
colors interference, 330 
contact angles, 333 
diffraction of light by, 347-350 
diffusion in, 365-366 
equilibrium film, 341 
equipartition of energy, 334 
evaporation disturbing effect on, 373, 

fluctuation dynamics, 356-367 
instability regions in, 355 

scattering of light by, 334. See also 

on substrate, 367 
surface fluctuations in, see Surface 

fluctuations 
thickness profile of, 333 

238,288 

equations, 238, 288 

139. See also Rate kernel 

374 

growing fluctuations, 375 

Surface light scattering 

Soap molecule, monolayer, 335 
Solidlike cells, 475,490,499,504 
Solutions, ionic, 303-314 
Spccics, microscopic specification of, 84-88 

Specific heat, 295 
Spherical cutoff method, 246 
Spherical sample, 200 
Stochastic trajectories, 84 
Stockmayer fluids Pollock and Aldei 

Stokes law, 107 
Sum-of-the-pairs theories, 3 
Surface fluctuations, 352-354 

results for, 267-268 

modes of: 
bending, 350 
squeezing, 350 
uncoupled, 350 

Surface light scattering, 344-346 
angular dependence of, 346 
by carbon dioxide, 342 
instrumental broadening effects, 389 
by water, 352 

Surface pressure, 335 

Timedependent Hartree-Fock theory, 

Transition state theory, 72 
Truly periodic boundary condition, 249- 

Tunneling centers, 470 
Two-particle approximation: 

by Clausius-Mossotti, 208 
by Onsager, 207 

15 

25 3 

Virial series vs. molecular dynamics 

Viscosity, 456,493,503,509 
observations, 446-449 

by Arrhenius, 459,468 
by Doolittle, 469,476,494,495, 

experimental results, 460,495,496 
non-Arrhenius, 468 
pressure dependence of, 496 
by Vogel-Fulcher, 461,468 

configurational, 480 
effects, excluded, 81 
free, see Free volume 
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Volume, 456,464,502,505 

Voronoi polyhedra, 443,472,473, 
416 

Wertheim continuum, 212 
Wertheim-Frohlich expression, Felderhof 

rcdcrivation of, 279 


