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How the Escherichia coli GroEL�ES chaperonin assists folding of a
substrate protein remains to be uncovered. Recently, it was sug-
gested that confinement into the chaperonin cage itself can sig-
nificantly accelerate folding of a substrate. Performing compre-
hensive molecular simulations of eight proteins confined into
various sizes L of chaperonin-like cage, we explore how and to
what extent protein thermodynamics and folding mechanisms are
altered by the cage. We show that a substrate protein is remark-
ably stabilized by confinement; the estimated increase in denatur-
ation temperature �Tf is as large as �60°C. For a protein of size R0,
the stabilization �Tf scales as (R0�L)�, where � � 3, which is con-
sistent with a mean field theory of polymer. We also found
significant free energy cost of confining a protein, which increases
with R0�L, indicating that the confinement requires external work
provided by the chaperonin system. In kinetic study, we show the
folding is accelerated in a modestly well confined case, which is
consistent with a recent experimental result on ribulose-1,5-
bisphosphate carboxylase-oxygenase folding and simulation re-
sults of a � hairpin. Interestingly, the acceleration of folding is
likely to be larger for a protein with more complex topology, as
quantified by the contact order. We also show how ensemble of
folding pathways are altered by the chaperonin-like cage calcu-
lating a variant of � value used in the study of spontaneous
folding.

The Escherichia coli GroEL�ES chaperonin is the best-
characterized molecular chaperone that assists in vivo pro-

tein folding (1, 2). The cylindrical structure of GroEL complex
and its conformational change upon binding to ATP and GroES
have been experimentally determined (1, 3, 4). The ATP-
dependent chaperonin cycle has been studied, and how these
structural changes are coupled with substrate binding and re-
lease has been elucidated (5–7). Many protein-engineered
GroEL molecules were used to identify residues and�or seg-
ments that are important for substrate binding, ATP hydrolysis,
and so on (8, 9). With all of these, machinery of the chaperonin
was reasonably well uncovered.

On the other hand, how substrate folding is assisted by the
chaperonin is less understood. There are at least two different,
but not mutually exclusive, scenarios regarding this issue (10, 11).
The first ‘‘Anfinsen cage’’ model indicates that the chaperonin
provides a passive cage that separates a substrate protein from
other macromolecules, removing the danger of aggregation (10).
In the other ‘‘iterative annealing’’ scenario, a substrate protein
is mechanically forced to unfold upon binding to GroEL and it
folds upon transfer into the chaperonin cavity or release from
GroEL. This cycle is repeated until a substrate reaches the native
state (12–14, 38). Both Anfinsen cage and mechanical unfolding
effects may be present in reality. Here, we address yet another
factor that can assist substrate folding. Using an engineered
chaperonin system that inhibits the chaperonin cycle, Brinker et
al. (15) showed that confinement of unfolded protein alone
accelerates folding inside the cage. Thus, simply by guiding into
the cage, the chaperonin may have an ‘‘active’’ role of refolding

a substrate. Confinement effects on protein stability and folding
kinetics were recently studied theoretically by Zhou and Dill (16)
and Klimov et al. (17).

In this article, we extensively study properties of a protein
molecule confined in a simple model of a chaperonin-like cage.
There is enough evidence that a fraction of substrates can fold
within the chaperonin chamber. Once the GroES is bound, the
inner wall of the chaperonin chamber is known to be largely
hydrophilic, and thus it is unlikely that substrate proteins strongly
interact with inner wall atoms via hydrophobic interactions.
Moreover, the chaperonin can assist folding of various proteins
in a nonspecific manner, and thus any specific interaction
between the substrate and the inner wall is not crucial. Thus, a
primary effect of caging may be to restrict conformational
motion of a protein into a small volume. Physically, a polymer
confined into a small volume exhibits characteristic behavior
caused by change in its conformational entropy (16–18). We
therefore take a minimal model for the chaperonin cage, that is,
a cylindrical box with no attractive force between a substrate and
the box. We note that this caging effect must exist on top of any
other factors that may assist protein folding. Including all
possible factors into a model may lead to a slightly more realistic
model, but also complicates understanding of the roles of each
factor. In this article we focus on one: the confinement effect.

The substrate protein model we use here is one of the standard
models (19). It is well buttressed by the recently developed
theory of spontaneous protein folding, which greatly deepened
our understanding of proteins over the last few decades. Natural
proteins have evolved their sequences so that interactions at the
native structure are almost perfectly optimized (20, 21). This
leads to the view that the protein energy landscape has a
funnel-like global shape toward the native structure (22, 23).
Technically, this funnel-like landscape can easily be realized by
the so-called Go-like models (19, 24, 25). Many simple Go-like
models were proposed and used for folding study (19, 25).
Surprisingly enough, these simple models explained quite well
experimental observation of folding pathways and rate constants
qualitatively and sometimes quantitatively. We use here one of
these models that was well characterized (19, 26, 27) as a model
protein, to which we add the chaperonin-like cage.

In this article, we compare in detail protein folding with and
without the chaperonin-like cage via molecular simulations. We
first describe the simulated system. The chaperonin-like cage is
modeled as a cylindrical box that restricts a substrate protein
molecule. Only nonspecific repulsive force is considered be-
tween the chamber wall and protein amino acids. We then show
that a protein in the cage is thermodynamically more stable than
that without the cage, as anticipated earlier (16, 17). This finding
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is consistent with the experimental result of encapsulated pro-
teins in silica matrix (28). This stabilization is surprisingly large
when the substrate protein is of comparable size to the cage
scale. An estimated temperature shift is as large as �60°C. We
found that, for all proteins studied, the shift in the folding
transition temperature �Tf caused by confinement into size L
cage scales in a universal manner, �Tf � (R0�L)�, where � �3 and
R0 is the characteristic size of a substrate. We then study folding
kinetics and pathways, where we found that the chaperonin cage
does not affect the folding of small protein, accelerates that of
modestly large protein, and decelerates maximally large protein.
Interestingly, the acceleration effect is likely to be more prom-
inent for proteins that have more complex topology. We also
compute site-resolved ensemble of folding pathways, showing
that the pathways are significantly affected by confinement.

Model and Methods
The model of a substrate protein we use is that of Clementi et al.
(19), where the protein chain is represented only with C� atoms
of every amino acid residue. C� atoms represented as spherical
beads are connected via virtual bonds. Go-like energetic bias
toward the native structure is added to both local and nonlocal
interactions. Local interactions provide energetic bias in the
local geometry to that of the native structure. For the nonlocal
interactions, attractive interactions are introduced only for the
pairs of amino acids that are in contact in the native structure,
which makes global folding energy surface funnel-like. The rest
of the pairs have only repulsive interactions. The chaperonin-like
cage is a hard wall that provides repulsive force to protein amino
acids when they come close to the wall.

The effective energy, V, at a protein conformation � is
comprised of two contributions, V � Vprotein � Vcage; Vprotein is
for the intraprotein interactions and is the same as the energy
function of Clementi et al. (19). Vcage is for the interaction
between protein amino acids and the chaperonin cage and is
purely repulsive. Explicitly, V is given as
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where all but the last term correspond to Vprotein and the last term
is the Vcage. In the equation, bi, is the virtual bond length between
two adjacent amino acid C�s, namely, bi � �bi� � �ri�1 	 ri�, where
ri is the position of the ith amino acid. �i stands for the angle
between two adjacent virtual bonds bi and bi�1. �i represents the
ith dihedral angle around the ith bond bi. The first three terms
provide interactions local along the chain, whereas the fourth
and fifth terms are interactions between pairs that are distant
along the chain. In the latter, �native contact means that the
summation is taken over only pairs that are close in space at the
native structure (the precise definition is given below). These
pairs are called the native contacts. rij is the distance �rj 	 ri�
between the ith and jth amino acids. Parameters with the
subscript 0 are the constants, of which values are taken from the
corresponding variables in the native structure. Thus, we note
that each term in the first four terms gives the lowest energy in
the native structure. In the caging potential Vcage, di is the

distance between the chaperonin wall and the ith amino acid.
H(x) is the Heaviside function, namely, H(x) � 1 for x  0 and
H(x) � 0 for x 
 0. Thus, a positive energy is enforced when
amino acids are within C�2 distance from the wall. Throughout
the article, we use Kr � 100.0, K� � 20.0, K�

(1) � 1.0, K�
(3) � 0.5,

�1 � 0.18, and �3 � 0.18 for intraprotein interactions, which are
the same values as those used in Koga and Takada (27). For the
caging potential, Kcage � 100.0, and C � 4.0 Å are used for all
proteins studied. We also note that the same unit is used both for
energy and temperature and thus the Boltzmann constant
kB � 1.

Protein dynamics is simulated by the Langevin equation at a
constant temperature T,

miv̇i � Fi � �ivi � �i, [2]

where vi is the velocity of the ith bead, a dot represents the
derivative with respect to time t and thus vi � ṙi. Fi and �i are
systematic and random forces on the ith bead, respectively. The
systematic force Fi is derived from the effective energy V as
usual, Fi � 		V�	ri. The white and Gaussian random forces 
i
satisfy �
i� and its variance is �
i(t)
j(t�)� � 2�ikBT�ij�(t 	 t�)1,
where the bracket denotes the ensemble average and 1 is a 3 �
3-unit matrix. For numerical integration of the Langevin equa-
tion, we use an algorithm by Honeycutt and Thirumalai (29). We
use �i � 0.25, mi � 10.0, and the finite time step �t � 0.2.

We define that ith and jth amino acids are in the ‘‘native
contact’’ set if one of the nonhydrogen atoms in the jth amino
acid is within 6.5-Å distance from one of nonhydrogen atoms in
the ith amino acid at the native structure �0. For a given protein
conformation, �, we define that the native contact between i and
j is formed if the distance rij is 
1.2 rij0. We then use a standard
measure of the nativeness, Q(�), for a given protein conforma-
tion �, defined as the ratio of numbers of formed native contacts
at � to those at the native structure �0.

In the article, we use eight relatively small proteins (
100
residues) that cover a wide variety of protein topology, including
� proteins, ��� proteins, and � proteins. For five of eight
proteins (depicted in Fig. 1 where the four-character codes are
those of the Protein Data Bank), various cage size is explored;
they are IgG-binding domain of protein G (ID code 2gb1, ���
protein), 434 repressor (ID code 1r69, � protein), src SH3
domain (ID code 1srl, � protein), Ada2h (ID code 1aye, ���
protein), and tenascin fibronectin type 3 (ID code 1ten, �

Fig. 1. Cartoon of chaperonin-like cage and proteins studied. (Left) The
chaperonin-like cage is modeled as a cylindrical box with a characteristic
length L, in which a folding protein molecule is confined. (Right) The native
structures of five proteins studied (of eight); they are, from the top left to the
bottom right, protein G, 434 repressor, src SH3 domain, Ada2h, and fibronec-
tin type 3. The Protein Data Bank codes are given above the structures, and the
number of residues and radii of gyration in the native structures are shown in
parentheses.
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protein). Three other proteins are simulated with a fixed size of
cage to investigate topological effects on folding: chymotripsin
inhibitor 2 (ID code 1coa, ��� protein), Sso7d (ID code 1bnz,
� protein), and ACBD (ID code 2abd, � protein).

Confinement Effects on Thermodynamics
For each protein with or without the chaperonin cage, the first
step is to use the bisection method to find out the approximate
folding transition temperature, Tf. We start with folding simu-
lations at a very low temperature (Tlow) and a high temperature
(Thigh). Each trajectory contains 107 molecular dynamics steps,
which are much longer than the folding�unfolding time scales.
Typically we observe at Tlow that the protein quickly reaches the
native state with high Q values (Q 0.5) and stays in the native
state for most of the simulated time, indicating that the tem-
perature is below Tf. While at Thigh, the protein stays in the
denatured state with a low Q score (Q 
0.5) showing that the
temperature is above Tf. Next, we take the midtemperature Tnew
� (Tlow � Thigh)�2 and monitor Q values in the repeated
simulation. If the protein is in the native (denatured) state more
than half the time, we then replace Tlow (Thigh) with Tnew. The
same procedure is iterated nine times to narrow down the range
of Tf. The final Tnew is expected to be close to Tf. All of these
sampled data are used in the weighted histogram method
(WHAM) (30) to obtain thermodynamics quantities, such as the
heat capacity Cv �  �E2� 	 �E2� kBT2, where E is the total energy
and the free energy curve F(Q) � 	kBT log P(Q). The peak
position in Cv(T) along T is identified as the folding transition
temperature Tf.

A representative time course of Q(t) for the protein G is
depicted in Fig. 2 Top, where the left is the case without the
chaperonin cage (the bulk system), and the right is with the
cage of size L � 20 Å. These are the result at Tf

0, the transition
temperature of the bulk system. The bulk protein exhibits sharp
two-state transitions between the native (high Q values) and the
denatured states (low Q values), whereas the confined protein
stays most of the time in the native state at Tf

0. The scattered plots
in the (Q,Rg) plane at the same condition are given in Fig. 2
Middle, where Rg is the radius of gyration of a protein. We see
clearly that, without the cage (the bulk system), the denatured
state ensemble has the Rg distribution mostly 15 Å, whereas the
caged protein has limited denatured conformations with Rg

�15 Å. Because of this reduced conformational entropy, the
denatured state of caged proteins has higher free energy than
that of the bulk protein. The free energy curves at the corre-
sponding conditions are presented in Fig. 2 Bottom. As expected,
for the bulk system (Fig. 2 Bottom Left) the free energy curve has
double minima with the equal free energy in the native and the
denatured states, whereas the denatured state of the caged
protein becomes unstable (Fig. 2 Bottom Right). Therefore, at
the same temperature, the chaperonin-caged protein has larger
native stability than the protein without the cage. Naturally,
the folding transition temperature is increased by caging into
the chaperonin chamber (17). At the transition temperature
Tf (Tf  Tf

0) of the confined system (L � 20 Å), the protein
exhibits the two-state transition, but it is less sharp than the bulk
case (data not shown). Also in the confined system, the dena-
tured state has higher Q values than that of the bulk system (data
not shown), indicating that the denatured state of the confined
system possesses significant residual order (17). We comprehen-
sively performed the same type of simulations for five proteins
in Fig. 1 for various cage sizes L, 14 Å 
 L 
 100 Å as well as
the bulk and three more proteins with L � 25 Å and the bulk
system.

Now, we consider more quantitatively to what extent the
protein is stabilized by confinement. For that purpose, we
compute the folding transition temperature Tf for five proteins
in various sizes L of the cage. As mentioned above, Tf is

identified by the peak in the heat capacity Cv curve as a function
of T. Fig. 3a illustrates the heat capacity as a function of T in the
case of protein G. We see that the peak in Cv shifts to higher
temperature as the cage size decreases. The same effect was
found for a � hairpin confined in a spherical pore studied by
computer simulation somewhat similar to the present one (17).
Here, the estimated temperature increase is ‘‘dramatically’’
large; for example, the protein G in the cage of size 15 Å has the
transition temperature �20% higher than that without the cage,
which corresponds to the increase of �60°C assuming that Tf

0

is of the order of �350 K. Similar amount of increases in Tf for
proteins in a small cage is obtained from all five proteins studied
(see Fig. 3b for details). Experimentally, �-lactalbumin confined
in a silica matrix showed the denaturation temperature elevated
by �30°C (28). We also note that the peak in Cv-T plot becomes
broader as the cage size decreases. The denatured state in the
smaller cage is made of more compact non-native structures.
These compact non-native structures possess residual native-like
partial order more significantly than the bulk proteins (data not
shown). This results in weaker and less prominent phase tran-
sition, as seen in Fig. 3a.

In Fig. 3b, we plot the folding temperatures Tf of five proteins
in the chaperonin cage of size L against N3�5�L. Note that both
axes are in logarithmic scale. We see clearly, for well-confined
cases, that the data lie on a straight line, indicating the power low
dependence of the temperature shift with N3�5�L. The linear
regression of the data points N3�5�L  0.25 leads to the scaling,

Fig. 2. Folding time course and distribution of the nativeness measure Q
both for unconfined (Left) and confined (Right) protein G (Protein Data Bank
code 2gb1) at the transition temperature of unconfined system Tf

0. (Top) Time
series Q(t) are plotted for representative trajectories. (Middle) Scattered plots
in the (Q, Rg) plane are drawn from the same trajectories. (Bottom) The free
energy profile F(Q) as a function of Q is plotted. The confinement induces
restriction to the denatured distribution as seen (Middle Right), which makes
the denatured state less stable (Bottom Right) (at T � Tf

0).
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Tf 	 Tf
0 � (N3�5�L)3.25�0.09. We emphasize it is remarkable that

proteins with completely different topology and sizes exhibit this
universal scaling. For a cage size much larger than the protein
native size, i.e., the left side in Fig. 3b, the data deviate from the
line. Here, the temperature shift becomes very small, and thus
inherent numerical error would be significant. Also, for such a
large box, translational motion of a protein molecule in the cage
comes into play, and the translational entropy could be the
source of the deviation.

This scaling rule can be interpreted with a simple polymer
model. At the folding transition temperature Tf

0, the free ener-
gies of the native Fn and the denatured Fd states of a bulk protein
are equal to each other by definition: Fn � Fd . The native state
has only negligible conformation entropy, and thus we set the
native entropy at zero: Fn � En. In the denatured state, we
assume the residual interaction is negligible and thus only
entropic contribution 	Tf

0S0 remains. Combining these rela-
tions, we get Fn � En � 	Tf

0S0 � Fd. If the denatured state were
approximated as the random coil without self-avoiding interac-
tions, i.e., the ideal chain in the polymer theory (16, 18), the
confinement to the characteristic length L would induce free
energy change of �F � T(R0�L)2, where R0 is the radius of the
denatured protein (18). The resulting folding temperature can be
estimated through Fn � En � 	Tf  S0 	 (R0�L)2 � Fd. These
equations together give an estimate of the change in the tran-
sition temperature as (Tf 	 Tf

0)�Tf
0 � (R0�L)2 (16). Instead of the

ideal chain, if we use a mean field approximation to the excluded
volume interactions (18), we get an estimate of �F � T(R0�L)3

and therefore (Tf 	 Tf
0)�Tf

0 � (R0�L)3. Here, R0 should scale as
the ‘‘real’’ chain with the volume interaction, for which the Flory
theory gives an approximate scaling R0 � N3�5, where N is the
number of amino acids here. The scaling estimated by the
simulation Tf 	 Tf

0 � L	3.25 is fairly close to that by the mean field
theory. We note that scaling with respect to L is characterized
here, but not the scaling on the chain length N. Simulated
proteins here span only a very limited range of the chain length,
and therefore scaling with N is not the issue here. We can only
be sure that for a fixed L, Tf 	 Tf

0, increases with N.
We next compare the free energy of the confined system with

that of the bulk system. Because confinement reduces confor-
mational entropy of the protein, we expect increase in the free
energy. The free energy change �F upon confinement into the
size L cage can precisely be calculated by, for example, the free
energy perturbation technique, but it can easily be estimated as
�	kBT log P
L, where P
L is the probability for a bulk protein

to have conformations that can be fit in the size L cage. Fig. 4
shows the estimate of the free energy change for five proteins at
TTf

0 as a function of N3�5�L. We see that the free energy
increases with N 3�5�L. It grows drastically above N3�5�L �0.7,
which would correspond to the maximal size of the substrate
protein (�60 kDa) that can enter into the chaperonin. We
emphasize here that substrate proteins favor the bulk phase
rather than inside the cage and thus external work is necessary
for a substrate protein to be transferred in the cage. Therefore,
the chaperonin cycle inherently requires some source of free
energy. In the real chaperonin system, this is provided by ATP
hydrolysis. More precisely, the binding affinity of GroEL with
ATP and GroES provides work for a substrate to enter into the
cage. The chaperonin cycle includes the release of the nucleotide
and GroES from GroEL, for which the ATP hydrolysis is the
prerequisite. If the free energy cost of confining a protein
exceeds the work provided by the binding of ATP and GroES,
the substrate does not preferably enter into the cage.

Confinement Effects on Folding Kinetics and Pathways
Here, we investigate folding mechanisms of a substrate protein
in the chaperonin-like cage. First, we look into the folding rate
constants kf. For all proteins studied, with various sizes L of the

Fig. 3. Change in the thermodynamic stability of a chaperonin-caged protein. (a) The heat capacity Cv of protein G (Protein Data Bank ID code 2gb1) as a function
of temperature T for several different cage sizes L [L � � (bulk), 50, 30, 20, and 15 Å]. As the cage size decreases, the folding transition temperature Tf is increased
and the peak becomes broader. (b) The relative change in the folding transition temperatures (Tf 	 Tf

0)�Tf
0 caused by confinement plotted against N3�5�L for five

proteins studied. Both axes are in the logarithmic scale. Symbols are defined in the figure. The straight line is obtained by the linear regression.

Fig. 4. Estimated free energy cost of confining a protein molecule into the
chaperonin-like cage plotted against N3�5�L. Results for five proteins are
depicted, and symbols used are the same as those in Fig. 3.
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cage, we repeat folding simulations 100 times from completely
random structures at Tf

0, the folding temperature of the bulk
system. The time at which the protein reaches the native
structure (Q  Qn, where Qn is the free energy local minimum)
for the first time is averaged over to get the first passage time f
for folding. The rate constants kf (L, Tf

0) for folding in the size
L cage at Tf

0 are estimated as the inverse of the first passage time
f, as usual.

Fig. 5a plots the calculated folding rate constants kf with (the
size L � 25 Å) and without the chaperonin cage against relative
contact order (RCO) � N0.607, because it was shown previously,
for the current simulation model, that the logarithm of the rate
of spontaneous folding is best correlated with RCO � N�, where
� is �0.607 � 0.18. Here RCO is a measure of native topological
complexity introduced by Plaxco et al. (31). We see that, for all
eight proteins studied, the folding is accelerated by the chap-
eronin-like cage. In the same way as the spontaneous folding,
folding rates are correlated with the topological complexity.
More interestingly, the slope in Fig. 5 is smaller in the case of
confined proteins, which indicates that acceleration by the
confinement is likely to be more prominent for proteins with
more complex topology. In vivo, it was reported that proteins
with ��� topology and more than two domains have higher
propensity to binding to GroEL (32). Remarkably, our results
suggest that folding of these proteins are more accelerated by
confinement.

Next, we look at how the folding time depends on the size of
cage L. Fig. 5b plots the ratio kf (L, Tf

0)�kf
0 against N3�5�L. We

see that the folding is accelerated in a modestly small cage
(N3�5�L �0.5), whereas the folding rate is retarded in a very
small cage size L, therefore giving a cage size at which the folding
rate is maximal. The same tendency was found in a simulated �
hairpin (17). As clarified above, with a fixed temperature, the
native state becomes more stable as L decreases. This process
makes the folding free energy barrier smaller, or downhill, and
thus folding is accelerated. However, in a too small cage, the
peptide chain cannot easily make global reconfiguration, leading
to glassy dynamics. This clearly makes folding dynamics slower.
It is interesting that the fastest folding is attained at roughly the
same value of N3�5�L. Recently, using an engineered chaperonin
that inhibits the cycle, Hartl’s group (15) showed that confine-
ment itself accelerates the folding of ribulose-1,5-bisphosphate
carboxylase-oxygenase (RuBisCo), but not that of rhodanese.
RuBisCo is 50 kDa, which is slightly below the limit size of
substrates that enter into the chaperonin cage (�60 kDa) and

thus RuBisCo folding may correspond to near the peak in Fig.
5b. On the other hand, rhodanese is much smaller (33 kDa) and
thus its folding may not be significantly affected. We also note
a slight difference in situation between the current simulation
and the experiment; the former focuses on the substrate folding
in the cage, whereas in the latter folding is initiated by adding
GroES and ATP analog.

We briefly investigate how ensemble of folding pathways is
altered by the confinement. To this end, we compute the
site-resolved nativelike order qi(Q), which monitors the degree
of formed native interactions near the amino acid i along the
folding reaction coordinate Q (27). The qi(Q) at the transition
state ensemble can be viewed as a theoretical counterpart of the
� value that was developed by Fersht in the study of spontaneous
folding (33). Here, we focus on the case of src SH3 domain
folding because, for this protein, the current Go model was
proven to give fairly consistent results with experiments (19, 34).
In the spontaneous folding of SH3 domain, the distal � hairpin

Fig. 6. Schematic view of protein folding funnel of bulk and confined
proteins. The conformational entropy of the denatured state decreases with
the confinement factor N3�5�L, which leads to a steeper funnel. For the
confinement factor larger than N3�5�L �0.7, the energy landscape becomes
increasingly more rugged, and thus folding becomes slower.

Fig. 5. (a) Folding rate constants kf of eight proteins unconfined and confined in the chaperonin cage against the relative contact order (RCO) � N0.607 (slope:
	2.19 � 0.43 for bulk, 	1.39 � 0.45 for L � 25 Å). (b) Folding rate constant kf as a function of N3�5�L for five proteins. Each kf is normalized by the folding rate
constant in the bulk system kf

0.
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(the third and the fourth strands, around residues 40 in Fig. 7,
which is published as supporting information on the PNAS web
site, www.pnas.org). Residues (numbered from 1 to 56) are
known to be a part ordered earlier (see Fig. 7a). When confined
into the size L � 15 Å cage, folding nucleus is somewhat
delocalized to the distal � hairpin and a loop between the first
and the second strands, called the RT loop. See Supporting Text,
which is published as supporting information on the PNAS web
site, for more details.

Discussions and Conclusion
We have studied in detail how folding of a substrate protein is
assisted simply by putting it into a chaperonin-like cage. In
thermodynamics, the confinement into the cage reduces primar-
ily conformational entropy of the denatured protein, which leads
to relative stabilization of the native state. With a fixed size of
the cage, the stabilization is larger for a larger substrate. From
Fig. 2 Bottom, we can deduce the effective energy �E(Q)� and the
entropy S(Q) as a function of Q, which is plotted in Fig. 8, which
is published as supporting information on the PNAS web site.
We clearly see that for a given E higher than the native energy
the entropy S is reduced by confinement. This E-S curve
corresponds to the slope of the funnel shape because the latter
is the schematic illustration of the relation between E and S.
From kinetic study, we saw that the substrate protein dynamics
is slowed down at a cage size comparable to that of the protein.
In the funnel perspective, this corresponds to increased rugged-
ness on the slope of the funnel. Combining these, we get a
coherent view of protein folding in the chaperonin-like cage. Fig.
6 illustrates how folding funnel is altered by confinement. As
N3�5�L increases, the slope of the funnel becomes larger, which
corresponds to the increase in the folding transition tempera-
ture. On the other hand, the ruggedness of the energy landscape
drastically increases above a critical value of N3�5�L (in the
current model, �0.7) leading to slower folding.

In this article, we analyzed properties of a protein encapsu-
lated in the chaperonin-like cage. As in the iterative annealing

model, binding to the GroEL and transfer into the chaperonin
cavity may induce mechanical unfolding and refolding of a
substrate. Previous computer simulations showed that iterative
cycles of hydrophilic and hydrophobic environment can accel-
erate sampling of protein conformation by once unfolding the
protein when the environment is hydrophobic (13, 35). We stress
that this effect and the confinement effect we studied here is not
at all contradictory. Indeed, it is possible to combine these two
effects in the context of the present simulation framework. For
example, as in ref. 13, we can dynamically change the nature of
the inner wall of the chamber to look at the effect of iterative
annealing on top of the caging effect. Related to this is potential
importance of non-native interactions in chaperonin-assisted
folding. We can take into account non-native hydrophobic
interactions in the current model although they are not included
in the present work.

Another aspect not taken into account here is how the
chaperonin can reduce protein aggregation, the aspect of the
Anfinsen cage model. In particular, the living cells are crowded
with biomolecules, and the macromolecular crowding crucially
increases propensity to aggregation (36, 37). Technically, dealing
with aggregation problem by molecular simulations is difficult.
A simple mesoscopic simulation showed indeed that aggregation
can be reduced by adding molecular chaperones (39). We also
mention that a protein molecule confined in a cage resembles
that in crowding solution. Enhancement of the folding rate by
confinement is parallel to the prediction that macromolecular
crowding accelerates folding unless aggregation occurs (36, 37).

It may be the case that the Anfinsen cage effect, the iterative
annealing effect, and the static confinement effect studied here
all are present in reality, and together they explain how protein
folding is assisted by the chaperonin.
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