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Chaperone proteins — the most disordered among all protein groups —

help RNAs fold into their functional structure by destabilizing misfolded

configurations or stabilizing the functional ones. But disentangling the

mechanism underlying RNA chaperoning is challenging, mostly due to in-

herent disorder of the chaperones and the transient nature of their inter-

actions with RNA. In particular, it is unclear how specific the interactions

are and what role is played by amino acid charge and polarity patterns.

Here, we address these questions in the RNA chaperone StpA. By adapt-

ing direct coupling analysis (DCA) to treat in tandem sequences written in

two alphabets, nucleotides and amino acids, we could analyze StpA-RNA

interactions and identify a two-pronged mechanism: StpA disrupts specific

positions in the group I intron while globally and loosely binding to the en-

tire structure. Moreover, the interaction is governed by the charge pattern:

negatively charged regions in the destabilizing StpA N-terminal affect a few

specific positions in the RNA, located in stems and in the pseudoknot. In

contrast, positive regions in the C-terminal contain strongly coupled amino

acids that promote non-specific or weakly-specific binding to the RNA. The

present study opens new avenues to examine the functions of disordered

proteins and to design disruptive proteins based on their charge patterns.
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I. INTRODUCTION

There is mounting evidence for the existence of Intrinsically Disordered Proteins (IDPs) that lack specific
structures (Babu et al., 2012). These proteins do not fold into a well-defined conformation (Wright and
Dyson, 2015), although some may acquire a specific structure given the right context. IDPs are at the
core of key biological assemblies and processes, such as membrane-less organelles (Nott et al., 2015), cell
signaling (Wright and Dyson, 2015), and cell division (Buske and Levin, 2013). Disordered regions may exert
entropic forces on the proteins they bind and thereby shift the ensemble of protein structures towards one
with higher binding affinity (Keul et al., 2018). While our repertoire of IDPs is steadily growing (Piovesan
et al., 2017; Schad et al., 2017; Varadi and Tompa, 2015), the function of most is yet to be discovered (Papaleo
et al., 2016; Van Der Lee et al., 2014). Nevertheless, analysis suggests that a crucial determinant of the
global shape and function of IDPs is their charge pattern (Das et al., 2015).

A prominent class of IDPs is that of chaperones whose fraction of disordered residues, 54% on average, is
the highest among all functional classes of proteins (Tompa and Csermely, 2004). A particularly important
subclass are those that chaperone RNA folding: To perform their functions, non-coding RNAs rely on well-
conserved structures, which have been used for sequence alignment and putative RNA prediction (Nawrocki
and Eddy, 2013). While some non-coding RNAs are able to attain those structures by themselves, chaperone
proteins are essential in stabilizing correct conformations or in destabilizing, and thus rescuing, misfolded
RNAs (Bhaskaran and Russell, 2007; Papasaikas and Valcárcel, 2016; Woodson, 2010).

A prime example of chaperone-dependent RNA is the Group I Intron (GII), which has an elaborate
functional structure (Michel and Westhof, 1990). Two chaperones take part in the folding of this RNA. One
is the Cyt-18 protein that stabilizes the active structure (Guo and Lambowitz, 1992; Mohr et al., 1992).
The second chaperone is the StpA protein, which is known to destabilize misfolded GII structure (Mayer
et al., 2007; Waldsich, 2002). The structures of Cyt-18 and its complex with the GII are well-determined
(Paukstelis et al., 2008). In contrast, most of the StpA protein, 73% of the residues, is known to be
disordered. StpA consists of two domains, the N-terminal and C-terminal. Excising the C-terminal from
the sequence increases the efficacy of the chaperone, while mutations in the C-terminal hinder its binding
capacity (Mayer et al., 2007). An entropy transfer model has been proposed, where rapid and transient
binding disturbs the structure, thus allowing it to refold (Tompa and Csermely, 2004). But many questions
regarding the specifics of the destabilization function remain open. An inherent obstacle in understanding
the mechanisms of disordered proteins, such as StpA, is the lack of functional structure. The StpA-GII
problem is even more challenging since the other partner in the interaction, the GII RNA, is misfolded and
therefore lacks a specific structure as well.

To overcome the lack of structures, one may leverage the accelerated growth in the number of known
sequences and use them for multiple sequence alignments (MSA). As of August 2018, GenBank (Sayers et al.,
2019) had sequences totaling over 3.7× 1012 nucleotides from 420 000 species, an increase of 40% from the
previous year. Techniques such as Direct Coupling Analysis (DCA) extract from the MSAs amino acid
contacts and 3D structures (Burger and Van Nimwegen, 2010; Marks et al., 2011; Ovchinnikov et al., 2015),
protein–protein interaction sites (Morcos et al., 2011; Ovchinnikov et al., 2014), RNA ligand binding pock-
ets (Reinharz et al., 2016), RNA tertiary contacts (De Leonardis et al., 2015), and RNA–protein interaction
sites (Weinreb et al., 2016). These studies have also demonstrated that many IDPs have strong correlations,
hinting at context dependant structures (Toth-Petroczy et al., 2016), though in the last study StpA did not
exhibit any particular structure. So far, however, IDP–RNA interactions — which are essential in many
molecular systems, in particular chaperones — have not been examined, perhaps due to the difficulty of
analyzing the interaction of two objects that lack defined structures and whose sequences are written in
different alphabets.

All this motivates the present study in which we adapt the DCA method to concurrently process proteins
and RNAs, which not only differ in the size of their alphabets but, on top of that, have high variability in
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sequence conservation. The adaptive method, termed αβDCA, produces the first analysis of the interaction
of a disordered protein, StpA, with a non-coding RNA, the group I intron. Our method identifies 90 strongly
coupled pairs between StpA and GII. We find that the charge pattern governs the type of interactions: The
N-terminal of StpA destabilizes the RNA by a few specific interactions among negatively charged regions
of the protein and regions of the GII, which are critically misfolded in the structures ensemble or impede
functional loops from forming. In the C-terminal, strongly coupled amino acids are mostly in positively
charged regions, and their interaction of these amino acids with the RNA is weakly specific and almost
uniformly distributed over the entire GII sequence. Moreover, while both terminals are of roughly the same
length, only 21% of the top DCA scores are in the N-terminal. These findings propose a charge-dependent
two-pronged mechanism of unspecific binding but specific disruption by chaperone IDPs.

II. RESULTS

We extended the classic mean-field approximation DCA (mfDCA) method for treating paired sequences
that are written in different alphabets and have different levels of sequence conservation (for details see
Sec. IV). First, we tested this simple DCA variant – which we call αβDCA (for treating varying alpha-
bets) – against two other DCA implementations: Gremlin, an implementation of Markov random-field
DCA (Ovchinnikov et al., 2014), and EVcouplings (Hopf et al., 2018), an implementation of pseudo-likelihood
DCA (plmDCA). For the benchmark of the 5S–RL18 ribosomal complex, the adaptive αβDCA method pre-
dicts more contacts in its top scores (see Sec. IV.E). Additionally, we observe that the mfDCA method
outperforms Gremlin in the GII alignment, most probably owing to the correct pseudo-count for a 5-letter
alphabet, rather than that of the 21-letter alphabet of proteins used in Gremlin. In the following, we
apply the αβDCA method to analyze the StpA–GII alignment (the code and alignment are available at:
https://github.com/vreinharz/ProtRNADCA).

A. αβDCA exhibits significant scores for strongly-coupled StpA–RNA contacts

The DCA method identifies strong couplings, indicating significant physical interactions. These signifi-
cant scores emerge as outliers departing from the bulk distribution of the DCA scores. Sequence conservation
is a critical factor, as too high conservation level prohibits co-evolution analysis. Fig. 1a shows the secondary
structure of the GII RNA together with its long range interactions and sequence conservation values (the
overall maximal conservation is shown in Fig. S1). As a test for how predictive the DCA is, we compare the
distribution of αβDCA scores from the StpA-GII alignment with those obtained from the same alignment
but with shuffled sequences. The scores of the original alignment spread over a much wider range then that
of the shuffled alignment, thus confirming that the DCA analysis is predictive (Fig. S2).

The StpA–GII amino acid-nucleotide pairs with the strongest DCA couplings are shown in Fig. 1b. The
significant pairs are defined as those deviating by more than 4σ from the average of the bulk distribution.
The αβDCA identifies 90 significant pairs, 15% less than those extracted by the standard DCA, which
disregards the difference in alphabet and sequence similarity between the RNAs and the proteins.

B. Inferred protein-RNA interactions are selective in the N-terminal and global in the
C-terminal of StpA

The N- and C-terminals of StpA are known to interact differently with the RNA (Waldsich, 2002).
This motivates us to characterize the number and distribution of high αβDCA scores, which indicate strong
physical couplings, in each of these two regions. Since RNA structures fluctuate within a dynamic ensem-
ble (McCaskill, 1990), we examine the interactions in light of the two main structure ensembles and the
functional structure, and in particular link the distribution of strong couplings along the RNA.
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FIG. 1: a. GII secondary structure and its sequence conservation. The last 25 positions have no
conservation levels since they are excluded from the alignment (see Sec. IV.C).

b. Positions of significant αβDCA scores (≥ 4σ above average) between the StpA protein (vertical axis)
and the GII RNA (horizontal axis). The RNA axis is labeled with the secondary structure in parentheses
notation. The blue region is the N-terminal of StpA and the orange region its C-terminal. The pale grey

regions are the pseudoknot (PK) of GII. The last 25 positions of GII are omitted (See Sec. IV.C).
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To this end, we plot in Fig. 2 the net charge distribution along the StpA protein (averaged over a
window of 5 amino acids), above the two main clusters of the GII RNA structure ensemble as predicted
by RNAstructure (Reuter and Mathews, 2010). The arcs in the upper part depict bonds in the main
cluster, whose probability is 68.2%, and the arcs in the lower part show bonds in the second main cluster,
of probability 31.8% (Aalberts and Jannen, 2013). The red discs represent stems in the functional structure
that are absent from both ensembles, in particular the pseudoknot. Note that while pseudoknots cannot be
predicted with RNAstructure, they could not be inferred even with RNAPKplex, which was designed for this
purpose (Lorenz et al., 2011).

The significant scores between the RNA and the protein are denoted by lines. There are 90 significant
scores (≥4σ) between the protein and the RNA: 19 in negative regions of the N-terminal (dark lines), 69 in
mostly positive regions of the C-terminal (light gray lines), and 2 in the linker between the N and C-terminals
(dashed lines).

C. High scores correspond to close nucleotides in the 3D structure of GII

To check whether the RNA alignment is informative by itself, we examine the DCA scores among all
pairs of RNA positions. To validate the quality of the RNA alignment, we compared the physical contacts
predicted by DCA to the 3D structure of the td GII RNA (available at http://www-ibmc.u-strasbg.fr/
spip-arn/spip.php?rubrique136). We computed DCA scores using two methods, the mean-field approx-
imation (mfDCA) and Gremlin (Ovchinnikov et al., 2014). We note that αβDCA is identical to mfDCA
when treating a single alphabet. We consider as a good prediction a pair of nucleotides closer than 8Å in the
3D structure. Fig. 3 shows the number of these true positives (distance < 8Å) for the hundred top scores.
While the first 40 top scores are well predicted by both methods, the Gremlin method is outperformed by
mfDCA in the next 60 scores.

III. DISCUSSION

The StpA protein destabilizes the misfolded GII RNA, allowing it to achieve its functional structure.
Experiments have shown that the binding is transient and weak, with little specificity (Doetsch et al., 2011;
Waldsich, 2002). Mutation studies provide evidence for GII-StpA interactions: Mutations in the StpA C-
terminal reduce the binding affinity between StpA and the group I intron, while complete deletion of the
C-terminal increases the efficiency of StpA as a chaperone (Waldsich, 2002). A C-terminal mutation, glycine
126 changed to valine, weakens the binding and increases the efficiency of StpA (Mayer et al., 2007). In the
following, we further expand the understanding and provide a detailed picture of the GII-StpA mechanism,
based on the αβDCA results, which identify the coupled amino acids and nucleotides responsible for both
binding and destabilizing interactions.

A. Binding is mediated by positively charged regions of StpA

Binding of StpA to GII is driven by electrostatic forces mediated by positively charged amino acids (Mayer
et al., 2007). This is confirmed by the αβDCA showing that the vast majority of high scores in the C-terminal
are in positively charged regions (Fig. 2). This also implies that most of the binding energy comes from amino
acids in the C-terminal. It was conjectured that binding is only weakly specific and prefers unstructured
RNAs (Mayer et al., 2007), and our analysis confirms this as well, showing spread of top αβDCA scores all
over the RNA. Fig. 4 shows the cumulative number of top scores of with the C-terminal along the RNA,
demonstrating the roughly uniform spread (with gaps excluded), with notable enrichment before position
200.

In a fine-grained examination, one notices several interactions of special interest. The glycine at position
126 of the protein, which is known to strongly reduce binding affinity when mutated, takes part in three

http://www-ibmc.u-strasbg.fr/spip-arn/spip.php?rubrique136
http://www-ibmc.u-strasbg.fr/spip-arn/spip.php?rubrique136
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FIG. 2: Significant scores between the protein and the RNA. Top: the protein charge distribution.
Bottom: the RNA sequence with the two main structure clusters. Arcs represent base pairs: yellow only in

the main, most probable cluster, blue only in the secondary, least probable cluster, and black in the
functional structure. Red discs are base pairs in the functional structure absent from both clusters. Brown
arcs are the P3 stem. Positions highlighted in green in the protein and RNA had more than 50% of gaps in
the alignment and were therefore omitted from the analysis. Significant DCA scores are denoted by lines:

dark between the N-terminal and the RNA, light gray lines between the C-terminal and the RNA.
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FIG. 3: Evaluating the predictive power of the group I intron RNA sequence alignment. Fraction of
nucleotide pairs closer than 8Å for the top DCA values using mfDCA and Gremlin.
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FIG. 4: Cumulative distribution of top αβDCA scores of amino acids in the C-terminal of StpA coupled
with nuecletides along the RNA. Positions with over 50% of gaps omitted from the analysis are in grey.

The black curve is the cumulative uniform distribution with the same gaps.

different pairs. Position 113 of the protein — which participates in 14 different pairs, more than any other
amino acid — is strongly coupled to positions 125 and 162 in the RNA, which themselves are also coupled
with glycine 126. Position 125 of the RNA resides in the 5′-end of the pseudoknot, and position 162 in the
3′-end of the P3 stem. The two RNA regions with the strongest coupling to the C-terminal are both ends
of the pseudoknot, which are involved in erroneous base pairs in the two dominant structures. This may
explain why the isolated C-terminal is a much inferior chaperone than the whole protein. While important
misfolded regions are disrupted, strong electrostatic binding slows the release of StpA, thereby impeding the
correct folding of the RNA.

B. Destabilization is mediated by negatively charged regions targeting specific RNA positions

Removing the linker and C-terminal increases by 50% the efficiency of StpA, implying that the N-terminal
drives the destabilization (Mayer et al., 2007). While the N-terminal composes 48.5% of StpA, it contains
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only 21% of the strong couplings, 19 out of 90. The black lines in Fig. 2 show the coupled pairs between
StpA and GII. Of those pairs, 7 are coupled with regions that determine the functional RNA conformation
in both structure ensemble, in particular the one position paired with the positively charged amino acid at
position 39 in the N-terminal. The other 12 pairs destabilize four different regions.

In both ensembles, the functional short stems at the beginning and end of the GII sequence are blocked
by a stem linking those two parts together. We find three interactions that target this region: First, the
3′-end of the pseudoknot, in both ensembles, is blocked by misfolded stems which are strongly correlated
with a position of the N-terminal. Second, following the 5′-end of the P3 stem, the region between positions
60 and 85 of the RNA has the right conformation in the less probable ensemble and is targeted by three
couples. Finally, 3′-end of the P3 stem, present only in the least probable ensemble, is involved in one
coupling. The last 3 coupled positions are in a hairpin stem preceding the P3 3′-end. This stem is missing
functional base pairs in both ensembles, two of the coupled pairs are in positions lacking a base pair, the
third in the unpaired region of the hairpin.

Without StpA, around 55% of the RNA is able to fold into its functional self-splicing form, and this
folding fraction rises to roughly 80% in the presence of the chaperone (Mayer et al., 2007). The strong
correlations we observe manifest an interplay between the two main structure ensembles of the RNA, with
the less probable one presenting most of the correct base pairs. Regions that contain functional stems in the
least probable ensemble are all targeted by destabilizing couplings with the N-terminal. In both ensembles,
the functional but energetically unfavorable pseudoknot has stems in its 3′-end impeding its formation.
These stems are also destabilized by the N-terminal.

C. Conclusion

DCA methods have been applied to infer protein structure, and protein–protein or protein–RNA inter-
actions (Weinreb et al., 2016). DCA demonstrated high correlations among amino acids in IDPs, suggesting
that many IDPs do exhibit structure in a particular context (Toth-Petroczy et al., 2016). In the present
study, we expanded DCA to account for the different alphabets and different levels of sequence diversity
in the concatenated sequences of protein and RNA used for the alignment. We used this adapted αβDCA
method to infer the strong couplings between a non-coding RNA, GII, and its disordered protein chaperone,
StpA. Understanding the StpA-GII is particularly challenging, since on top of the inherent disorder of the
protein, the misfolded RNA also lacks a well-defined structure.

The present αβDCA method produces 15% less significant contacts than the traditional mfDCA. In cases
where the structure is unknown, a rather arbitrary significance threshold must be chosen. Having less scores
departing from the distribution indicates better discrimination of important co-evolving pairs. We observe
that the binding, mediated by electrostatic forces of positively charged amino acids, is non-specific or only
weakly specific. These strong couplings, observed in the positively charged regions in the C-terminal of
StpA, are paired with evenly distributed nucleotides along the RNA sequence. In contrast, the αβDCA
shows that the structural disruption driven by the N-terminal is mediated by negatively amino acids that
target specific regions of the RNA sequence. In particular, regions in the two main structure ensembles of
the RNA impeding the formation of the first and last stem, as the pseudoknot, are strongly coupled with
the N-terminal. Stems in the more probable structure ensemble — which are conflicting with the functional
stems present in the lower probability ensemble — are also targeted.

The present study is the first direct coupling analysis of the coupling between a disordered chaperone
and its RNA target. Charge patterns have been known to be crucial for the global structure of disordered
proteins, and here we shed some light on how they can affect destabilization mechanisms involved in RNA
chaperoning. The analysis suggest several concrete experimental tests, for example mutations at positions
99 and 113 in the C-terminal are expected to significantly decrease binding affinity. The αβDCA variant used
in the study is simple and general enough to be easily applied for investigating other IDP-RNA mechanisms.
An interesting application of the present analysis is the identification of chaperone IDPs from their charge



9

pattern. Those patterns could also be used to design novel destabilizing proteins.
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IV. METHOD

We first present a modified DCA algorithm, termed αβDCA, adapted for treating paired sequences
that are written in different alphabets and have different sequence conservation levels. The different na-
ture of the paired sequences influences the normalization factors that are crucial to predict the disen-
tangled covariations. To illustrate the method, we show how the data for the StpA protein and the
group I intron RNA was gathered, and how the alignment was built. The code is freely available at:
https://github.com/vreinharz/ProtRNADCA.

A. αβDCA: direct coupling analysis for varying alphabets and sequence conservation

Direct coupling analysis (DCA) has proved extremely useful for disentangling covariations between non-
interacting residues in multiple sequence alignment (MSA) (Morcos et al., 2011; Weigt et al., 2009). It aims
to find the Potts model that maximizes the entropy, in order to infer the most likely probability having the
given dinucleotide marginals without any additional constraints (Weigt et al., 2009). The original method
was constructed to treat alignments of sequences written in the same alphabet, namely the protein amino
acids written in the language of the genetic code. We modify this method to treat in tandem two alphabets,
of sizes r and s. Given a sequence of n characters, we assume that the first ζ elements are from the alphabet
of size r, and the last n − ζ from the alphabet of size s. In this study, the first alphabet is of the protein
amino acids and a gap, hence r = 21, and the second is of the RNA nucleotides and a gap, i.e. s = 5.

The MSA of M sequences of length n is recorded as its sequence of columns {Cp1 , . . . , Cpn} where p ∈
[1, . . . ,M ] are the M sequences and 1, . . . , n are the columns. Since the proteins and RNAs have different
sequence similarity and alphabets, we define two values for calibrating the pseudo-count:

mprot
p =

M∑
q=1

[
1 if similarity(Cp1,...,ζ , C

q
1,...,ζ) > 80%

]
,

mrna
p =

M∑
q=1

[
1 if similarity(Cpζ+1,...,n, C

q
ζ+1,...,n) > 80%

]
,

(1)

where similarity(Cpa,...,b, C
q
a,...,b) > 80% is true if sequences Cp and Cq are identical in over 80% of the

positions between a and b. We note that the values of mprot
p and mrna

p are at least 1 since each sequence is
identical to itself. We additionally define Mprot

eff =
∑M
p=1 1/m

prot
p and M rna

eff =
∑M
p=1 1/m

rna
p . The parameter

λ is a pseudocount set to the appropriate value of Mprot
eff or M rna

eff , as in previous studies.
The frequencies of each letter in each column, and of each pair of letters for each pair of positions, need

to be re-weighted as following. We define the frequency count of a letter α at column i, given the indicator
function 1, as:

fi(α) =


1

Mprot
eff +λ

(
λ
r +

∑M
p=1

1
mprot

p
1α,Cp

i

)
: i ≤ ζ

1
Mrna

eff +λ

(
λ
s +

∑M
p=1

1
mrna

p
1α,Cp

i

)
: ζ < i

(2)

Similarly, the frequency count of a pair of letters (α, β) at positions (i, j) is defined as:

fij(α, β) =


1

Mprot
eff +λ

(
λ
r2 +

∑M
p=1

1
mprot

p
1α,Cp

i
1β,Cp

j

)
: i < j ≤ ζ

1
1
2 (M

prot
eff +Mrna

eff )+λ

(
λ
rs +

∑M
p=1

1
1
2 (m

prot
p +mrna

p )
1α,Cp

i
1β,Cp

j

)
: i ≤ ζ < j

1
Mrna

eff +λ

(
λ
s2 +

∑M
p=1

1
mrna

p
1α,Cp

i
1β,Cp

j

)
: ζ < i < j

. (3)

The rest of the equations follow closely the formulation in (Morcos et al., 2011). The coupling value
eij(α, β), between two letters (α, β) at positions (i, j), is calculated through the set of n(n−1)/2 matrices e,
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the connected correlation matrix. For each pair of positions i, j, one defines a matrix e

ij , whose dimension
is: (r − 1)2 if i < j ≤ ζ, (r − 1)(s − 1) if i ≤ ζ < j, and (s − 1)2 if ζ < i < j. For all i ∈ [1, . . . , n],
j ∈ [1, . . . , n] the entries of e

ij are:

e

ij(α, β) = fij(α, β)− fi(α)fj(β) (4)

where α and β take all possible r − 1 or s− 1 values, depending on the index i and j. Finally, the coupling
between positions i, j is obtained by inverting e

eij = −( e−1
ij ) , (5)

where that block matrix is extended with 0s so that the dimension of eij is r2 if i < j ≤ ζ, rs if i ≤ ζ < j,
and s2 if ζ < i < j. The inverse of the connected correlation matrix return the negative coupling term, we
correct it by taking minus its value (Morcos et al., 2011).

We can now define a pseudo-probability, Pij(α, β), of observing (α, β) at positions (i, j), given auxiliary
residue fields h̃ for each position:

Pij(α, β) =
1

Z
exp

[
eij(α, β) + h̃i(α) + h̃j(β)

]
, (6)

where Z is the normalization factor. The values of the fields h̃ are determined by the observed single residue
count, and must satisfy the system of equations:

fi(α) =
∑
γ

Pij(α, γ), fj(β) =
∑
γ

Pi,j(γ, β) , (7)

noting we must assume that if i ≤ ζ : h̃i(r) = 0 (resp. if ζ < i : h̃i(s) = 0).
At this point, we can compute the directed information between two positions, Dij , as:

Dij =
∑
α,β

Pij(α, β) ln
Pij(α, β)

fi(α)fj(β)
. (8)

Finally, the distortion of the scores due to the undersampling effect is corrected using an average product
correction (APC) method (Dunn et al., 2007).

B. StpA homologues

The StpA protein from Escherichia coli (strain K12) sequence is

MSVMLQSLNNIRTLRAMAREFSIDVLEEMLEKFRVVTKERREEEEQQQRELAERQEKIST
WLELMKADGINPEELLGNSSAAAPRAGKKRQPRPAKYKFTDVNGETKTWTGQGRTPKPIA
QALAEGKSLDDFLI.

The distribution of charges along the sequence is a known indicator of the global conformation of dis-
ordered proteins (Holehouse et al., 2017). The Das–Pappu phase diagram shows that the StpA protein
belongs to the ensemble of “Janus sequences”. Those are collapsed or expanded depending of context, and
most functional disordered proteins belong to that group. This region of Janus sequences contains 40%

of known disordered proteins (Das et al., 2015), whereas another 25% reside in the strong polyampholyte
region, and 30% are classified as weak polyampholyte.

The jackhmmer method (Potter et al., 2018) was run iteratively 13 times, until the number of sequences
added to the matches was less than 1% of the already identified ones. We identified 21593 matches, 5749
of them unique. jackhmmer provides a sequence alignment of all the hits, which belong to 7539 different
taxa. Every sequence in GenBank (Sayers et al., 2019) associated with those taxa was downloaded, a total
of 633GB of data.
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C. Group I intron

The td group I intron (GII) sequence from phage T4 thymidylate-synthase is:

gguUAAUUGAGGCCUGAGUAUAAGGUGACUUAUACUUGUAAUCUAUCUAAACGGGGAACC
UCUCUAGUAGACAAUCCCGUGCUAAAUUGUAGGACUGCCCGGGUUCUACAUAAAUGCCUA
ACGACUAUCCCUUUGGGGAGUAGGGUCAAGUGACUCGAAACGAUAGACAACUUGCUUUAA
CAAGUUGGAGAUAUAGUCUGCUCUGCAUGGUGACAUGCAGCUGGAUAUAAUUCCGGGGUA
AGAUUAACGACCUUAUCUGAACAUAAUGcuac

and its functional secondary structure is

((((......))))((((((((((....))))))))))...((((((...((((((....
(((.....)))...))))))((.....(((((((((.....))))))))).....))...
[.[[[[[.(((....)))(.(((((((....))))))))..))))))(((((((......
)))))))......]]]]]]...(((((((....))))))).((((......))))(((((
((.........)))))))..............

where the pseudoknot is indicated with square brackets, ‘[’ and ‘]’.
The GII has 14 different subgroups, which have been cataloged in the GISSD database (Zhou et al., 2008).

Identification and alignment of GII sequences are highly dependent of the subgroup they belong to (Nawrocki
et al., 2018). Therefore, for each subgroup, we generated a covariance model using Infernal (Nawrocki
and Eddy, 2013). The IA2 subgroup is the most compatible with GII. With GII, Infernal reports an
E-value of 1.7× 10−36 and 63% of the base pairs are well predicted. In particular, the complete P3 stem
(brown in Fig. 2) is perfectly aligned with the consensus structure. We note that while the sequence has 273
nucleotides, only the first 248 were matched. The rest of the analysis is performed on those 248 nucleotides.

A search of matches to the IA2 subgroup was then computed with the cmsearch routine of Infernal, on
all sequences from the 7359 taxa gathered previously. A total of 7542 sequences were identified as significant
— e-value < 0.01 — with default parameters, 471 of them unique. The cmsearch tool returns an alignment
of those sequences.

D. Protein–RNA alignment

Duplicate proteins and RNAs were removed from each taxon. Every possible protein–RNA pair inside a
taxon was concatenated together. This yielded a total of 13 230 couples, 10 013 of which unique.

Only columns where StpA and the GII have less than 50% of gaps were kept. In total, 39 positions of
the proteins were removed, the N-terminal’s first 30 positions, 6 in the C-terminal and 2 in the linker. In
the RNA, 64 positions were removed. The resulting protein alignment is composed of 95 columns and the
RNA alignment of 184.

E. 5S RNA–RL18 protein interactions

We compare four DCA methods for the benchmark of inferring the interactions between the 5S RNA
and the RL18 protein. The four methods are: (i) standard mfDCA, where the pseudocount is kept at 21
for every position in our alignment, (ii) Our αβDCA implementation of mfDCA with adaptive pseudocount,
(iii) The implementation EVcouplings (Hopf et al., 2018) of pseudo-likelihood DCA (plmDCA), and (vi)
The Markov-random field DCA as implemented in Gremlin (Ovchinnikov et al., 2014).

We used the protein alignment of RL18 provided in (Weinreb et al., 2016). The RNA sequences where
recovered from the Rfam family RF00001 (Kalvari et al., 2017). We followed the protocol of Sec. IV.D. Due
to the large amount of sequences, we selected randomly one pair of protein–RNA per taxonomic family,
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as in (Weinreb et al., 2016). The alignment before removing columns with over 50% of gaps is available
at https://github.com/vreinharz/ProtRNADCA. We computed amino acid–nucleotide distances in the 4V4Q
protein structure (Schuwirth et al., 2005). Pairs with distance shorter than 10Å are considered to be in
contact.

We show in Fig. S3 the results of the first top 100 scores for each method. Only mfDCA and αβDCA
(mfDCA adaptive) have their highest scores correctly predicting a contact. While mfDCA’s fourth hit
is correct but not the one in αβDCA method, the opposite occurs at their sixth top score. Both methods
outperform Gremlin and EVcouplings on the top 20 scores. While mfDCA and αβDCA true positives steadily
declines as more top scores are taken into account, Gremlin sees an increase to up to 50% at its 30th score.
All methods then converge to roughly 22% true positive when the first 100 scores are taken into account.

The overlap of scores over 4σ from each bulk distribution is shown in Fig. S4 (Heberle et al., 2015). While
95% of those overlap between mfDCA and αβDCA, they are almost completely exclusive from Gremlin and
EVcouplings top results. None of the top pairs is identified by all of the four methods and only 2 are shared
by mfDCA, αβDCA and Gremlin. This is the only overlap between any three methods.
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SUPPLEMENTARY MATERIAL
1. Group I intron sequence diversity

Fig. S1 shows the conservation of the most frequent nucleotide in the GII alignment. Necessarily, each
position must be at least as conserved as the ones in the GII sequence conservation figure. Each nucleotide
shown is the most frequent one. If only A or G are present in that position, an R is shown for purine. If only
C or U are present in that position, a Y is shown for pyrimidine.

FIG. S1: The most conserved nucleotide for each position, with its percentage of conservation.

2. APC values vs. random shuffling of the aligned sequences
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FIG. S2: The distribution of APC values obtained by our method on the StpA-GII alignment compared to
the same values after shuffling the sequences. There are 100 blue and 100 orange bins. The orange bins are

therefore narrower.
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3. Comparing four DCA methods on the ribosomal 5S–RL18 complex

FIG. S3: Comparing four DCA methods for the benchmark of inferring the 5S–RL18 complex from PDB
4V4Q. The graphs show fraction of pairs with a distance below 10Å for the top 100 DCA values for each

method. The circles indicate the last score over 4σ from the bulk distribution.

FIG. S4: Intersection of the scores over 4σ for each of the four DCA methods on the 5s–RL18 complex.


	Unspecific binding but specific disruption  of the group I intron by the StpA chaperone
	Abstract
	I Introduction
	II Results
	A ßDCA exhibits significant scores for strongly-coupled StpA–RNA contacts
	B Inferred protein-RNA interactions are selective in the N-terminal and global in the C-terminal of StpA
	C High scores correspond to close nucleotides in the 3D structure of GII

	III Discussion
	A Binding is mediated by positively charged regions of StpA
	B Destabilization is mediated by negatively charged regions targeting specific RNA positions
	C Conclusion

	IV Method
	A ßDCA: direct coupling analysis for varying alphabets and sequence conservation
	B StpA homologues
	C Group I intron
	D Protein–RNA alignment
	E 5S RNA–RL18 protein interactions

	 Acknowledgments
	 References
	 Supplementary material
	1 Group I intron sequence diversity
	2 APC values vs. random shuffling of the aligned sequences
	3 Comparing four DCA methods on the ribosomal 5S–RL18 complex



