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Abstract. Transport phenomena are fundamental in physics. They allow for
information and energy to be exchanged between individual constituents of
communication systems, networks or even biological entities. Environmental
noise will generally hinder the efficiency of the transport process. However,
and contrary to intuition, there are situations in classical systems where thermal
fluctuations are actually instrumental in assisting transport phenomena. Here we
show that, even at zero temperature, transport of excitations across dissipative
quantum networks can be enhanced by local dephasing noise. We explain
the underlying physical mechanisms behind this phenomenon and propose
possible experimental demonstrations in quantum optics. Our results suggest that
the presence of entanglement does not play an essential role for energy transport
and may even hinder it. We argue that Nature may be routinely exploiting
dephasing noise and show that the transport of excitations in simplified models
of light harvesting molecules does benefit from such noise assisted processes.
These results point toward the possibility for designing optimized structures for
transport, for example in artificial nanostructures, assisted by noise.
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1. Introduction

Noise is an inevitable feature of any physical system, be it natural or artificial. Typically, the
presence of noise is associated with the deterioration of performance for fundamental processes
such as information processing and storage, sensing or transport, in systems ranging from
proteins to computing devices.

However, the presence of noise does not always hinder the efficiency of an information
process and biological systems provide a paradigm of efficient performance assisted by a
noisy environment [1]. A vivid illustration of the counterintuitive role that noise may play
is provided by the phenomenon of stochastic resonance (SR) [2]. Here thermal noise may
enhance the response of the system to a weak coherent signal, optimizing its response at
an intermediate noise level [3]. Some experimental evidence suggests that biological systems
employ SR-like strategies to enhance transport and sensing [4, 5]. Noise in the form of thermal
fluctuations may also lead to directed transport in ratchets and play a helpful role in Brownian
motors [6]–[8]. It therefore seems natural to try and draw analogies with complex classical
networks so that the physical mechanisms that underpin their functioning when subject to
noise can be perhaps mirrored and eventually used to optimize the performance of complex
quantum networks. Recently, tentative first steps toward the exploration of the concept of SR
in quantum many-body systems [9]–[11] and quantum communication channels [12]–[14] have
been undertaken, whereas other studies have focused on analyzing the persistence of coherence
effects in biological systems. In particular, detecting the presence of quantum entanglement has
been the object of considerable attention [15]5. It was noted, however, that even if found, it
would be unclear whether such entanglement has any functional importance or is simply the
unavoidable by-product of coherent quantum dynamics in such systems [17].

Here, we show that dephasing noise, which leads to the destruction of quantum coherence
and entanglement as a result of phase randomization, may nevertheless be an essential resource
to enhance the transport of excitations when combined with coherent dynamics. Indeed, we
show that a dissipative quantum network subject to dephasing can exhibit an enhanced capacity
for transmission of classical information when seen as a communication channel, even though

5 See [16] for recent experimental results.
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Figure 1. Sites (blue spheres), modeled here as spin-1/2 particles or qubits,
are interacting with each other (dashed line) to form a network. The particles
may suffer dissipative losses as well as dephasing. The red arrow indicates an
irreversible transfer of excitations from the network to a sink that acts as a
receiver.

its quantum capacity and quantum coherence are diminished by the presence of noise. This
suggests that it is the constructive interplay between dephasing noise and coherent dynamics,
rather than the mere presence or absence of entanglement, that is responsible for the improved
transport of excitations. Recently, this enhancement of quantum transport due to the interplay
between coherence and the environment has been suggested for chromophoric complexes [18]
(see [19]–[22] and note added). Chromophoric complexes are molecules that absorb light to
create an exciton which is then transported to a reaction center where it is used to trigger further
processes to bind its energy in a chemical form.

In addition to the clarifying nature of these results, it is intriguing to speculate that Nature
appears to exploit noise-assisted processes to maximize the system’s performance and it will be
worthwhile to explore how similar processes may be useful for the design of improved transport
in nanostructures and perhaps even quantum information processors.

2. The basic setting

We consider a network of N sites that may support excitations which can be exchanged between
lattice sites by hopping (see figure 1). The Hamiltonian that describes this situation is then
given by

H =

N∑
k=1

h̄ωkσ
+
k σ−

k +
∑
k 6=l

h̄vk,l(σ
−

k σ +
l + σ +

k σ−

l ), (1)

where σ +
k (σ−

k ) are the raising and lowering operators for site k, h̄ωk is the local site excitation
energies and vk,l denotes the hopping rate of an excitation between the sites k and l. It should
be noted that the dynamics in this system preserves the total excitation number in the system.
This is not an essential feature but makes the system amenable to efficient numerical analysis.
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We will assume that the system is susceptible simultaneously to two distinct types of noise
processes, a dissipative process that reduces the number of excitations in the system at rate 0k

and a dephasing process that randomizes the phase of local excitations at rate γk .
Initially, we will assume that we can describe both processes by using a Markovian master

equation with local dephasing and dissipation terms. It is important to note, however, that
the effects found here persist when taking account of the system–environment interaction in
a more detailed manner (see section 6). Dissipative processes, which lead to energy loss, are
then described by the Lindblad super-operator

Ldiss(ρ) =

N∑
k=1

0k[−{σ +
k σ−

k , ρ} + 2σ−

k ρσ +
k ], (2)

while energy-conserving dephasing processes are described by the operator

Ldeph(ρ) =

N∑
k=1

γk

[
−{σ +

k σ
(−)

k , ρ} + 2σ +
k σ−

k ρσ +
k σ−

k

]
. (3)

Finally, in order to be able to measure the total transfer of excitation, we designate an additional
site, numbered N + 1, which is populated by an irreversible decay process from a chosen level
k as described by the Lindblad operator

Lsink(ρ) = 0N+1[−{σ +
k σ−

N+1σ
+
N+1σ

−

k , ρ} + 2σ +
N+1σ

−

k ρσ +
k σ−

N+1]. (4)

The subindex ‘sink’ emphasizes that no population can escape of site N + 1. For definitiveness
and simplicity, the initial state of the network at t = 0 will be assumed to be a single excitation
in site 1 unless stated otherwise.

The key question that we will pose and answer is the following: In a given time T, how
much of the initial population in site 1 will have been transferred to the sink at site N + 1 and
how is this transfer affected by the presence of dephasing and dissipative noise.

In the remainder of this paper, we will demonstrate that, in certain settings, the presence
of dephasing noise can assist the transfer of population from site 1 to the sink at site N + 1
considerably. It is an intriguing observation that this noise enhanced transfer does not occur for
all possible Hamiltonians of the type given by equation (1) and may depend also on properties
of the noise such as its spatial dependence. These noise rates can be optimized numerically, and
in very simple cases analytically, to yield the strongest possible effect. One may suspect that
natural, biological systems, have actually made use of such an optimization.

3. The case of a linear chain

We begin with a brief analysis of the uniform linear chain with only nearest-neighbor
interactions so that in equation (1) the coupling strengths satisfy vl,k = vk,l = vδl,k+1 for
k = 1, . . . , N − 1 and ωk = ω, while 0k = 0 for k = 1, . . . , N . Extensive numerical searches
show that, for arbitrary choices of 0N+1, 0 and ω, arbitrary transmission times T and chains of
the length N = 2, . . . , 12, the optimal choice of dephasing noise rates vanish. We have used a
directed random walk algorithm with multiple initial states which has never exceeded the values
for the noise-free chain and approached them to within at least 10−8. We were able to derive
formulae for the case T = ∞ and short chains which demonstrate this behavior analytically.
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For N = 2, with ω1 = ω2 = ω and arbitrary v1,2, γi and 0i , we find, with the abbreviation
γ = γ1 + γ2 and x = 203

1 + 0103(301 + 03), that the population of the sink is given by

psink =
03v

2
1,2

x + 01(01 + 03)γ + (03 + 201)v
2
1,2

, (5)

which is evidently maximized for γ = 0. One may also obtain the analytical expressions
for N = 3 described by equations (1)–(4) for the choice and 0k = 0 for k = 1, 2, 3, 4 and
demonstrate that the optimal dephasing level is γ = 0. We find

psink =
(40 + γ1 + γ3)v

2

3605 + 6a04 + 203e + 02(2c + dv2) + 0v2 f + 4(γ1 + γ3)v4
,

where

a = (5γ1 + 5γ2 + 4γ3), (6)

b = γ1γ2 + γ1γ3 + γ2γ3, (7)

c = γ1(γ
2
2 + γ 2

3 ) + γ2(γ
2
1 + γ 2

3 ) + γ3(γ
2
1 + γ 2

2 ) + 2γ1γ2γ3, (8)

d = 32γ3 + 25γ2 + 29γ1, (9)

e = (3γ 2
1 + 3γ 2

2 + 8b + 2γ 2
3 + 32v2), (10)

f = (3γ 2
1 + 7b + 4γ 2

3 + 15v2). (11)

Then one first observes that the optimal choice is γ2 = 0 as it only occurs in the denominator
with positive coefficients. In the remaining expression one then substitutes γk = γ̃ 2

k allowing
also for negative γ̃k . Then differentiation w.r.t these γ̃k shows that the gradient only vanishes for
γ̃1 = γ̃2 = 0.

This approach, though more tedious, may be taken to higher values of N as well. Extensive
numerical searches lend further support to the observation that dephasing does not improve
excitation transfer for uniform chains but a general proof has remained elusive.

So far, the findings are consistent with the expectation that noise does not enhance
the transport of excitations. However, for non-uniform chains we encounter the different
and perhaps surprising situation where noise can significantly enhance the transfer rate of
excitations.

As an illustrative example, we may keep the nearest-neighbor coupling uniform but allow
for one site to have a different site energy ω. If we choose N = 3, ω1 = ω3 = 1, 01 = 02 =

03 = 1/100, v1,2 = v2,3 = 1/10, 0N+1 = 1/5 and T = ∞, then we obtain the results depicted in
figure 2. One observes that dephasing assists the transmission only when site 2 is sufficiently
detuned from the neighboring sites.

This example suggests a simple picture to explain the reason for the dephasing enhanced
population transfer through the chain. Site 2 is strongly detuned from its neighboring sites and
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Figure 2. The optimal improvement of the transfer efficiency is plotted versus
the site frequency ω2 in a chain of length N = 3 and system parameters
ω1 = ω3 = 1, 01 = 02 = 03 = 1/100, v1,2=v2,3=1/10, 0N+1=1/5 and T =∞.
One observes that dephasing only assists the transmission probability in some
frequency intervals.

the coupling v to its neighbors is comparatively weak, i.e. v � δω with δω = min[|ω2 − ω1|,

|ω3 − ω2|]. Hence, the transport rate is limited by a quantity of order v2/δω, as it is a second-
order process, also known as superexchange [23] in solid state physics, due to the lack of
resonant modes between neighboring sites. Introducing dephasing noise leads to a broadening
of the energy level at each site k and a linewidth proportional to the dephasing rate γk . Then,
with increasing dephasing rate, the broadened lines of neighboring sites begin to overlap and
the population transfer will be enhanced as resonant modes are now available. Enhancing the
dephasing rate further will eventually lead to a weakening of the transfer as the modes are
distributed over a very large interval and resonant modes have a small weight. Dissipation
does not lead to the same enhancement as, crucially, the gain to the broadening of the line
is overcompensated by the irreversible loss of excitation. This is corroborated by numerical
studies where increasing dissipation does not assist the transport. The physical picture outlined
above is confirmed in figure 3. We chose a chain of length 3 which suffers dephasing only in
site 2 and uniform dissipation with rates 0k = 1/100 along the chain while ω1 = ω2/4 = ω3 = 1
and v1,2 = v2,3 = 1/10. The close relationship of this model to Raman transitions in quantum
optics will be exploited to propose a realizable experiment in a highly controlled environment
to verify these effects (see section 7 on experimental realizations). In the examples above,
the improvement of excitation transfer due to the dephasing is small. One can easily show,
however, that this improvement may be made arbitrarily large in the sense that without noise
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Figure 3. The difference between transfer efficiency and the efficiency without
dephasing is plotted versus the dephasing rate γ2 in a chain of length N = 3
and ω1 = ω2/4 = ω3 = 1, v1,2 = v2,3 = 1/10, γ1 = γ3 = 0, 0k = 1/100 for k =

1, . . . , N , 0N+1 = 1/5 and T = ∞. Initially increasing dephasing assists the
transfer of excitation while very strong dephasing suppresses the transport.

the transfer rate approaches zero while it approaches unity arbitrarily closely for optimal
noise levels. As an example, for N = 3, ω1 = ω3 = 1; ω2 = 100, v1,2 = v2,3 = v, γ1 = γ3 = 0
and 01 = 02 = 03 = v2/ f and 04 = 105v we find for 1p = psink(γ2,opt) − psink(γ2 = 0) that

lim
v→0

1p =
f 2γ 2

2

f 2γ 2
2 + 3 f γ2((ω2 − 1)2 + γ 2

2 ) + ((ω2 − 1)2 + γ 2
2 )2

. (12)

This is maximized for γ2 = ω2 − 1 when it takes the value 1p = f 2/( f 2 + 6 f (ω2 − 1) + 4(ω −

2 − 1)2). In the limit f → ∞ this approaches 1, that is, without noise the excitation transfer
vanishes, whereas with noise it achieves unit efficiency! It should be noted that being a system
of fixed finite size, the effect may not be directly attributed to Anderson localization [24] which,
in addition, does not occur in systems attached to a sink, as is assumed here [25]. However,
dephasing noise may play a constructive role because by destroying destructive interference it
can open additional transport channels [26].

4. Entanglement and coherence in the channel

We have seen that the transport of excitations in the system may be assisted considerably by
local dephasing. Now we would like to discuss briefly the quantum coherence properties during
transmission by studying the presence of entanglement and the ability of the chain to transmit
quantum information. To this end, we consider how entanglement is transported along the chain
when it is used to propagate one half of a maximally entangled state to obtain an insight into how
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0−1 No dephasing
0−2 No dephasing
0−3 No dephasing
0−4 No dephasing
0−1 Dephasing
0−2 Dephasing
0−3 Dephasing
0−4 Dephasing

Figure 4. The time evolution of the entanglement between a decoupled site and
the sites in the chain of length N = 4 and system parameters ω1 = ω2 = ω4 = 10,
ω = 14, v1,2 = v2,3 = v3,4 = 1, 0k = 1/10 for k = 1, . . . , N and 0N+1 = 1. The
initial state is a maximally entangled state between the decoupled site and the
first site of the chain. Dephasing destroys entanglement along the chain and has
no beneficial effect.

the quantum capacity of this channel is affected by dephasing. To illustrate this, we consider a
chain of N = 4 sites (see figure 4). We choose the same parameters as in figure 2 and fix ω3 = 14.
Comparison of the entanglement between an uncoupled site and the various sites in the chain
for vanishing dephasing and the optimal choice of the dephasing for excitation transfer show
that, while entanglement propagates through the system, the amount of entanglement decreases
with increasing dephasing. In fact, the dephasing rate that optimizes the ability of the channel
to transmit quantum information vanishes, in contrast to the situation for excitation transfer.
Therefore, although dephasing may enhance the propagation of excitations, it also destroys
quantum coherence and in the present setting it leaves an overall detrimental effect.

5. Complex networks and light-harvesting molecules

So far, we have demonstrated that in linear chains local dephasing noise may enhance the
transfer of excitations. Going beyond this, we will now consider fully connected networks
subject to Markovian loss and dephasing. These will serve as simplified, Markovian, models
for the transfer of excitons in the Fenna–Matthews–Olson (FMO) complex of Prosthecochloris
aestuarii, which is a pigment–protein complex that consists of seven bacteriochlorophyll-a
(BChla) molecules (see [20]–[22] and note added for closely related work). This complex is
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able to absorb light to create an exciton. This exciton then propagates through the complex until
it reaches the reaction center where its energy is then used to trigger further processes that bind
the energy in chemical form [18, 27]. The Hamiltonian of this complex may be approximated by
equation (1), where the site energies and coupling constants may be taken from tables 2 and 4
of [18]. We then find, in matrix form

H =



215 −104.1 5.1 −4.3 4.7 −15.1 −7.8

−104.1 220.0 32.6 7.1 5.4 8.3 0.8

5.1 32.6 0.0 −46.8 1.0 −8.1 5.1

−4.3 7.1 −46.8 125.0 −70.7 −14.7 −61.5

4.7 5.4 1.0 −70.7 450.0 89.7 −2.5

−15.1 8.3 −8.1 −14.7 89.7 330.0 32.7

−7.8 0.8 5.1 −61.5 −2.5 32.7 280.0


, (13)

where we have shifted the zero of energy by 12 230 (all numbers are given in the units
of 1.988 865 × 10−23 nm = 1.2414 × 10−4 eV) for all sites corresponding to a wavelength of
∼=800 nm. Recent work [18] suggests that it is this site 3 that couples to the reaction center
at site 8. For this rate, somewhat arbitrarily, we chose 03,8 = 10/1.88 corresponding to about
1 ps−1 (value in the literature range from 0.25 ps−1 [18] and 1 ps−1 [20] to 4 ps−1 [15]). Again,
we will assume the presence of both dissipative noise (loss of excitons) and dephasing noise
(due to the presence of a phonon bath consisting of vibrational modes of the molecule).
Note that we assume a Markovian master equation to describe these processes. While this
may represent a rather simplified model of the FMO complex it allows us to exemplify
dephasing enhanced transport in complex networks in a simple setting that, we believe,
reflects the essential dynamics of FMO complexes. More discussions concerning the Markovian
approximation may be found in section 6. The measured lifetime of excitons is of the order
of 1 ns which determines a dissipative decay rate of 20k = 1/188 and that we assume to be
the same for each site [18]. If we neglect the presence of any form of dephasing and we
start with a single excitation on site 1, then we observe that the excitation is transferred to
the reaction centre (site 8). For a time T = 5, we find that the amount of excitation that is
transferred is psink = 0.551 926. Optimal dephasing rates that maximize the transfer rate of
the initial excitation in site 1 considerably improve on that. For T = 5, we find the optimal
dephasing rates (γ1, γ2, γ3, γ4, γ5, γ6, γ7) = (469.34, 5.36, 99.13, 5.55, 114.86, 1.88, 291.08)

and the much improved value psink = 0.988 526. For T = ∞, we find the dephasing
free transfer probability of psink = 0.814 25, whereas for the optimal dephasing rates
(γ1, γ2, γ3, γ4, γ5, γ6, γ7) = (27.40, 26.84, 1.22, 87.12, 99.59, 232.76, 88.35) we find psink =

0.999 11. It should be noted that these dephasing rates are comparable to the inter-site coupling
rates which suggests that a more accurate treatment will need to go beyond the use of Markovian
master equations (see section 6 below for a brief discussion).

We conclude that dephasing may lead to a very strong enhancement of the transfer rate of
excitations in a realistic network. In fact, in models obtained from spectroscopic data measured
on the FMO complex it is indeed observed that almost complete transport should take place
within time T = 5 [18]. It is remarkable that such a rapid transfer cannot be explained from
a purely coherent dynamics following equation (13) and the results above suggest that the
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underlying reason for the speed up is the presence of dephasing which may even be local.
Needless to say, these suggestions will have to be verified in more accurate, non-Markovian,
models of the dynamics of the FMO complex [28].

6. Beyond Markovian master equations

So far, we have demonstrated the existence of dephasing enhanced excitation transfer in fully
connected networks employing a master equation description. The optimized dephasing rates
that have been obtained, in particular those in the context of our simplified model of the FMO
complex, can be comparable to the coherent interaction strengths and may be similar to the
spectral width of the bath responsible for the dephasing [18]. This may not be fully compatible
with the Markovian master equation approach employed so far as its derivation relies on several
assumptions including the weak coupling hypothesis and the requirement for the bath to be
memoryless [29]. The derivation is further complicated for systems with several constituents
where the local coupling of its constituents is not compatible with non-local structure of the
eigenmodes of the systems. This is especially so when the coherent inter subsystem coupling
is of comparable strength to the system–environment coupling. The situation is made more
difficult due to spatial as well as temporal correlations in the environmental noise (which is to be
expected in particular for the FMO complex but also many other realizations of coupled chains
in contact with an environment). Bloch–Redfield equations and other effective descriptions are
sometimes used but still represent approximations to the correct dynamics [29], where the errors
are often difficult to estimate precisely.

Therefore, we demonstrate briefly that dephasing assisted transfer of excitation can also be
observed when one uses a microscopic model of an environment that may, in addition, exhibit
non-Markovian behavior. To this end we study the effect of an environment which is modeled
by brief interactions between two-level systems and individual subsystems of the chain in which
excitation transport is taking place. The strength and nature of the interactions can be chosen to
implement dephasing (elastic collisions) and dissipation (inelastic collisions). Non-Markovian
effects can be included in the model depending on the spatial and temporal memory of the
environment particles. Interaction strengths are determined for a single site system to obtain the
dissipation rate 0 and dephasing rate γ . This simplified model allows us to study the effect of
more realistic environments outside the master equation picture and results are summarized in
figure 5. A more detailed simulation of excitation transfer taking account of the full-environment
is beyond the scope of the present work and will be presented elsewhere [28].

7. Experimental realizations

The FMO complex provides a fascinating setting for the observation of dephasing enhanced
transport but it is also a very challenging environment to verify the effect precisely. Here we
present several physical systems in which the dephasing enhanced excitation transfer may be
observed and which are at the same time highly controllable. Perhaps the simplest such setting
is found in atomic physics (see figure 6) where the behavior of a chain of three sites may be
simulated using detuned Raman transitions in ions such as Ca+, Sr+ or Ba+. The master equation
of this system simulates exactly that of a chain with a single excitation as has been described
throughout this paper. Atomic populations may be measured with very high accuracy using
quantum jump detection [31, 32].
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Figure 5. Here we show how the transfer in the presence of dephasing into a
bath that is modeled by a collisional model where local sites briefly interact with
a single particle. The interaction strength is chosen such that in an uncoupled
systems the sites suffer the optimal decoherence rates γopt as presented in the
previous section multiplied with factors 0, 0.0064, 0.16 and 1. The dynamics is
similar to that observed for the master equation approach and shows only minor
deviations. Increased dephasing rates do improve the excitation transfer also in
this model.

A variety of other natural implementations of dephasing-assisted excitation transport
can be conceived and will be studied in detail elsewhere. Firstly, the oscillations of ions
in a linear ion trap transversal to the trap axis realizes a harmonic chain [33] that allows
for the implementation of a variety of operations such as preparation of Fock states and is
capable of supporting nearest-neighbor coupling between neighboring ion oscillators [34] and
allowing high efficiency readout by quantum jump detection [31]. When restricting to the single
excitation space, the dynamics of the system is described by master equations that become
equivalent to those presented in this paper.

Furthermore, harmonic chains are also realized in coupled arrays of cavities which have
recently received considerable attention in the context of quantum simulators [35]. Ultra-cold
atoms in optical lattices which have previously been used to study thermal-assisted transport
in Brownian ratchets [36] present another scenario in which to study such dephasing-assisted
processes. Chains of superconducting qubits or superconducting stripline cavities [37] may also
provide possible settings for the observation of the effects described above.
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Figure 6. An atomic system with Raman transitions provides a transparent
illustration of dephasing-assisted transport. The required level structure may be
realized in Ca+, Sr+ or Ba+. Each atomic level represents a site in the chain which
may be populated. Starting with all the population in level 1, one may then
irradiate the system with classical laser fields of Rabi-frequency � on the 1 ↔ 2
and the 3 ↔ 2 transition [30]. Level 3 in turn is assumed to decay spontaneously
into an additional level |r〉 that plays the role of the recipient. Spontaneous decay
of the chain as a whole is modeled by spontaneous decay into level |0〉 from
which no population can enter the levels |1〉, |2〉, |3〉 and |r〉 anymore. Dephasing
noise may now enter the system affecting level 2, for example, through magnetic
field fluctuations.

8. Conclusions

The results presented here demonstrate that while dephasing noise destroys quantum
correlations, it may at the same time enhance the transport of excitations. In fact, the efficient
transport observed in certain biological systems has been shown to be incompatible with a fully
coherent evolution while it can be explained if the system is subject to local dephasing. Hence,
in this context, the presence of quantum coherence, and therefore entanglement, in the system,
does not seem to be enhancing excitation transfer. This suggests that entanglement that may be
present in bio-molecules, though interesting, may not be a universal functional resource. It is
a timely question to confirm these results within a more elaborate decoherence model for the
dynamics of biomolecules where the assumptions of markovianity and weak coupling can be
relaxed and we have presented a preliminary study in this direction using a collisional model
for the environment.

Importantly, the results presented here suggest that it may be possible to design and
optimize the performance of nano-fabricated transmission lines in naturally noisy environments
to achieve strongly enhanced transfer efficiencies employing the concept of noise-assisted
transport.
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Notes added. While finalizing this work, we became aware of independently obtained but
closely related results presented in [20]–[22]. There it was shown that quantum transport can be
enhanced by an interplay between coherent dynamics and environment effects with particular
emphasis on excitonic energy transfer in light harvesting complexes [20]. The roles of the
different physical processes that contribute to the energy transfer efficiency have been studied
in [21] and the enhancement of quantum transport due to a pure dephasing environment within
the Haaken–Strobl model was demonstrated in [22].
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